Ol /37458

VR B TO THE L3

Performance of Convolutional Codes on
Fading Channels Typical of
Planetary Entry llissions
J.W. ilodestino, S.Y. Mui, T.J. Reale
Communication and Information

Processing Group

Systems Engineering Diviéion
Rensselaer Polytechnic Institute
Troy, New York 12181

- (NASA=CR=-137658) : PERFORMANCE OF - N75‘2106I
CONVOLUTIONAL CODES ON FADING CHANNELS . - ‘ i

' TYPICAL OF .PLANETARY ENTRY MISSIONS . Report :

" for 1 .Jun. 1973 =-:31 May 1974 (Rensselaer ‘Unclas -

 Polytechnic -Inst.) : 83 .p HC $4.75 _CSCL 22A G3/63.- 18209

‘This work was performed under Contract No. NGR33-018-188
 for the National Aeronautics and Space Administration,
Ames Research Center, Moffett Field,California.

_Period Covered - : -

June 1, 1973 to May 31, 1974



ABSTRACT

The performance of convolutional codes in fading channels typical of the
planetary entry channel is examined in detail. Here:the signal fading ie due
primarily to turbulent atmospheric scattering of the RF signal‘transmitted
from an entry probe throush a planetary atmosphere. The primary motivetion is
in suppert of the Pioneer-Venus mission although the results should have ﬁider
‘applicability. Short constraint length convolutional codes are considered in
conjunction with binary phase-shift keyed (BPSK) modulatioﬁ and Viterbi maximum
likelihood decoding while for longer constraint length codes we consider
sequehtial decoding utilizing both the Fano and Zigangirov-Jelinek (2J) algorithms.
Careful consideration is given to the modeling of the channel'in terms of a few
meaningful parameters which can be correlated closely with theoretical propagation
studies. For short cohstraint length codes we are.primarily interested in the

"bit errof.probability performance as a.function of Eb/No paremeterized by the
fading channel parameters. For longer constraint length codee interest will
Vcenter on the effect of the fading channel parameters on the.computational require-
ments of both the Fano and Zi algorithms. In either case the effects of simple
block interleaving in combatting the memory of the channel is thoroughly explored.
The approach is analytic where possible otherwise resort is.made to digital

computer simulation.



1.0 Introduction

The use of convolutional codes in conjunction with coherent binary phase-

'shift Yeyed {T®PGK) modulation has proven to be an effective and efficient means

of obtaining error control on the classical deep Space channel. Recent work by
Heller and Jacobs 1] has discussed the parformance of short cénstraint length
convolutional codés in conjunction ﬁith coherent BPSK modulation and Viterbi
maximum likelihood decoding (cf. [2], [3]) while Jacobs [y] has treated the per-
formance of longer.éonstraint length convolutional codes utilizing sequentiél
decoding (ef. [5], [6]). Again these works have been confined to the classical
deep space channel where the net effect of the channel is simply the introduction
of an additive white Gaussian noise (AWGN) componenﬁ. In future planetary entry
missions, however, the classical deep space Ehannel provides an.inappropriate_
model of the éétual propagation environment experienced b& an entry probe in
transmitting an RF signal througﬁ a planetary atmosphere. AHere it is expected
tﬁat the signal will undergo fading due to a number of causes most notable of
which appear to be: entry probe dynamics; effects of oscillator instabilities
which bécome pronounce& at tﬁe typically low bit rates associated wiﬁh pla;etary
entry missions; multipath reflections off the planet surface; ﬁurﬁulent atmospheric
scattering of the RF signal Within the planetary atmosphere."Our interest is
primarily with this latter problem alﬁhough the approach is purposely quite
genefal and can be easily modified to apply to more general fading channel
conditions. Unfortunately little‘is known concerning the performance of con-
Qoiutional codes in fading channel environments typical of the planetary entry

channel. The'present study has been addressed to this problem. The primary

motivation is in support of the Pioneer-Venus missionAalthdugh the results éhould

have wider applicability. 1In particﬁlar, we consider coherent BPSK modulation
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in conjunction with Viterbi maximﬁm likelihood decoding for short constraint
length codes while seguential décoding strategies are emplo&ed for the longer
constraint length godes. In the latter case both the Fano and Zigangirov-Jelinek
(zJ) algorithms are considered. Careful consideration is given’to fhe modeling
of the channel in terms of a few meaningful pa;ameters which can be correlated
closely with theoretical propagation studies. For short constraint length éodes
we are primarily interested in the bit error probability perfbrmance as a function
of Eb/No parameterized by the fading chanpel parameters, Fof-longer constraint
length codes interest will center on the effect of the fading ci.ann:l parameters
on the cémputatiénal requirements of both the Fano and ZJ élgoriﬁhms. In either
case the effects of simple block interleavihg in combatting the memory of the
channel is thoroughly explored. The approach is analytic where possible otherwise

resort is made to digital computer simulation.

2.0 Preliminaries

Before proceeding to a discussion of binary cohvolutionai code performahce
on fading channels typical oéiplanetary entry missions, let us first consider the
performance afforded by.the use of coherent BfSK'modulation on the additive white
Gaussiaﬂ noise (AWGN) channel. This will not only serve to iﬁtroduce the results
tb follow but will allo# a check on the accuracy of the vdribus-channel/decoder
simulation programs employed. Consider then the communications system illustrated
in Figure 2-1. Here the binary data stream i.ai}. is applied to a binary con-
volutional encoder resulting in "a binary sequence i:%:} (actugily + l).at its
output which ;s in turn applied to a modulator/transmitter producing at its output

the analog'channél waveform.

s(t) =\/ 2E cos (wot + 9) :E: xip(t - i'Ts) o 1 (2.1)
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where g is the carrier frequency, © the carrier phase assumed known at the

receiver, and p(t) a pulse-like waveform of duration Ts seconds satisfying

T |
fs p(t) dt = 1 - | (2.2)
. |

so that Es can be interpreted as the signal energy per transmitted channel symbdl.
The quantity Es is related to the energy per transmitted information bit Eb by
=R B ; _ - » ' (2.3)

where R is the rate of the binary convolutional code. We have been concerned only

'with codes for which R = 1/n where n is the number of transmitted channel symbols

per 1nformatlon bit. In some cases the binary information sequence i. '} must be

blocked into segments or frames of length N bits to each of whlch K-1 (K is the
code constralnt length) tail zeros are added which, of course{ carry no information.
Such a procedure is not hecessary for Viterbi deqoding but is réquired with
sequential decoding to facilitate decoder synchronization and/or restart after
buffer ovérflow. The effect bf the tail zeros is to reduce the:energy available

for information transmission, resulting in a relationship between ES and Eﬁ given by

_ N
Eg = R(N+K-l) E, . ' (2.4)
so that if N>»> K as in most cases of interest, we have EszREb as in (2.3).
Due to the presence of additive channel noise, the channel output is

v(t) = s(t). + n(t) | A(2-5)

‘where n(t) is zero-mean AWGN with double-sided noise spectral density N_/2 watts/Hz.

We will assume that the'rgsgiver utilizes a coherent matched filter matched to the
pulse p(t). :As a fesult, the receiver output aefter suitable normalization is the

sequence of real numbers S{ri} where -
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; i=1, 2,... . : (2.6)

and, as befcre, i‘xig is a sequence of + l.values determined by the actual infor-
mation sequence and the specific structure of the binary convolution code employed.
The sequence ini},, on the other hand, is a sequence of indepéndent and identically
distributed (i.i.d.) random variables with zero mean and unit variance. The

dgcoder; processes the sequence iri} to produce at its output the sequenge %ai}
where 2& is an estimate of the ith transmitted information bit a;. Let us |
consider first the bit error probability performance of this system employing short
constraint length binary convolutional codes ahd Viterbi maximum>likelihood

decoding.

2.1 Viterbi Decoding

Recently Viterbi [3] has provided a rather complete analysis of binary con-
volution codes and their performance in typical commnhication systems. His work
has shown the utility of the state diagram and associated‘generating function
approach to analyzing such problems. We will assume knowledge of this approach
in what follows. Of immediaﬁe interest is the fact, as Viterbi has shown, that
a tight upper bound on bit error probability can be obtained in terms of the
genefating function T(D,AN) (see Ref. [3] for definitions) éssbciatéd with a
particular binary convdlutional code. In particular, if df is the free distance
of a 'code of rate R and with associated generating'functidn T(D, N), then a tight

upper bound on the resulting bit error probability is provided by the expression

2d_R d | o

N=1, D=exp {-

oz|J§
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An efficient computer program (cf. [%] ) has been written to evaluate this bound
for arbitrary binary -convolutional codes épeqified only in terms of their code
connectiizn vectors, bdenwalder [é] and more recently Larsen,[é] have tabulated
a nurber of good codes which, among other things, possess the desirable property
of maximizing the free distance df for a given rate and constraint length. 1In
particular, Odenwalder lists codes for rates R = 1/2 and 1/3 and constraint
lengths K & 9, while Larsen has extended this tabulation to R = 1/2, 1/3 and 1/4
for constraint lengths K € 24, The upper bound given by (2.7) has been evaluated
for the larsen codes for rates R = 1/2, 1/3 and 1/k4 and constraint lengths K < 10.
The results are illustrated in Figureé 2-2 through 2-4. The simulated bit error
probability performancé for selected R.= 1/2 and 1/3 codes for various degrees of
receiver outpgt‘quantization are illustrated.in Figures 2-5 thfough 2-8. The
random numbef generator‘used in these simulations is‘one developed and tested
previously at Lincoln Léborétory [Eé]. The path.memory of the Viterbi decoder
was chosen long eﬁough éo render negligible the effects of me&ory truncation
(approximately 10 constraintllengths‘in each case). In all cases we have used

uniform quantization of the matched filter outputs. More speéifically, assume

. : 4 %
that there are Q distinct quantization levels iql, Qpsee ,qQ} where Q is some

power of 2. Then ifIIj represents the upper endpoint of the jth quantization

interval j =1, 2,...,Q we shall assume

I.,.=0 | . (2.8a)

Q/2

ey =-Ty5 3=l 2,31 . - (2.8b)

with the additional assignments

'IQ;+500 5 - I =-00 | ' ' "~ (2.8¢c)

The quantization levels are taken as the integers +1, +2,..., +Q/2
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Y.o=q, if I, .<&Lr,. &I, j=1,2,...,2. ‘he receiver quantization is then
i J j-1 i< .
. s o . . . - . Q
compleiely deiecmined by specificarzisn of the quantities I, J=1, 25000y, == 1.
2 J £ . J, 2. H 2 2

We have taken in all our studies the uniform quantization grid such that
I =L = JANE BEREIR Q/2 (2.9)

Simulation results have suggested that ZB values as indicated in Table 2-1 are

close to optimum and will be utilized in all simulations to be reported here

Q &
1.0 4

8 0.5 | ' e

16 | 0.25 ' ‘

32 0.125

Table 2-1

Approximately Optimum Uniform
Quantization Spacing

The results illustrated in Figures 2-5 through 2-8 are in complete agreement
with those reported previously by Heller and Jacobs [i] and serves as a useful check

on the accuracy of the simulation program.

2.2 Fano-Decoder

_An important and useful parameter in cﬁaracterizing the performance of
sequential decoding schemes iﬁ general and the Fano algorithm-in particular is the
critical rate Ro (sometimes called the computational cuﬁoff rafe Rcomp) which'for:
coherent BPSK modulation and equally probable signaling is given by (cf. [1],

Chap. 6)

Ry = 1- .'Log2 l +f \/p {rlx=l} -pi r(‘x=-ll} d.r . (2.10)

-0

A '
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where p g r‘x = i} is the a posteriori probability of having observed a receiver
sutpuy value r durirs any one channel signaling interval given that the corre-
sponding trancmitted gpubrl was x = 1 for 1 = + 1. For the AWGN channel, the

&

. receiver cutpuis are descrited by (2. o) and the sequel with the result

: 2"‘ |
pir[} = exn{-—(r-Y\/N } (2.11)

Substituting into (2.10) and performing the indicated integration we obtain

E .
s |
R, = 1-1og, |1+ exp {- 'ﬁ; : - . (2.12)

For quantized receiver outputs, the value of Ro must be computed according to

. ) Q _ '
R, =1 - log, |1+ Z\/pi T = qjlx=l} D i 'F:qjl){:-l} (2.13)
. j= : ' ' .

where now p i T = qj|x=i} is the a posterlorl probablllty tha.t the qua.ntlzed

receiver output assumes the Jth quantization level qj, j =1, ,...,Q during any
signaling interval given that the corresponding tra.nsmittéd symbol was x = i with
i=+1. A plot of RO vs. EsyNo is provided in Fiéure 2~-9 for different amounts -
of receiver quantization. In Té.ble 2-2 we illustrate how closely the value of Ro
for uniform quantization approaches that with optimum ﬁua.ntiza.tion for selected
values of Es/No' Thié table is taken from Riche.r E.J-._] . |
. One of the principal problems encountez;ed in the practical implementation of

sequential decoding schemes in general and the Fano algorithm'in particular _is the
variability of the amount of coxﬁputation required to decode'a‘messa;ge block. In

particular, 1f C,. is the total number of computatiohs required to decode a message

N
‘block consisting of I bits, then it can be shown E.] E.?] that the number of

computatlons per decoded information bit C_=CN/N has a probabl_llty dlstrlbutlon
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Number of Quantization
Es/ o Intervals Q Opt irmm Uniform
A7 @ L 0.0127 -
8 0.0139 . 0.0138
16 0.0142 0.01k4k1
32 0.0143 - 0.0143
[5o) 0.01L4 - -
-9 db L . 0.0773 -
A 8 0.08L4 0.0841
16 0.0865 0.0861
32 0.0871 - 0.0870
0 0.087k -
-3'db L 0.283 -
8 0.306 0.305
16 0.313 - 0.312
32 . 0.315 0.315
e o) 0.316 -
Table 2-2

Comparison of Ro for Optimum and

Uniform Quantization at Selected Values of Es/No

17.
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which is approximately Pareto (cf. Cramer E_ﬂ , page 248) of the form

P{C;X}zA.‘{-a | o (2.14)
where the approximation holds only for large X. The quantities A and a in (2.1h)
depend primarily on theichannel and, in particular, on the quantity R/RO through
its dependence én ES/NO. vHere R/Rb is the code infermation réte»normalized by the
critical rate RO and is easily comput§§ with the aid of Figure 2-9 as a function
of ES/NO. For a > 1, the expected value of the number C of computations per
decoded.information bit exists and is finite while for a< 1 it does not exist;
Furthérmore, it cen be shown that a > 1 for R/R,< 1 while a £1 for R/R_21. It
is forAthié reason that Ro has;béeﬁ'called'fhe critical or computational cutoff
rate of sequential decoding; Oﬁr interest in sequential decoding will be confined

to a particular code and block length. In particulér, we consider a K = 32,

R = 1/2 code described by Massey and Costello [;ﬂ . Although not a systematic

code, this code has the unique ability of recovering the transmitted data sequence
by simple modulo-two addition of the hard decisioned received data sequence. In

250 bits and Q = 8 level quantization.

all cases we consider a block iength of N
The decoder utilizes threshold spacing_To =4 bits. In Figuré 2-10 we illustrate

the empirically derived probability distribution of C for several values of

N

R/R0 determined by simulation on the basis of th successive tfansmissions of the
* .

250 bit message. A computational cutoff of 5 x lOh computations per block has

been imposed in these simulations. Table 2-3 lists other pertinent results of

these simulations.

*The number of'computatibns per decoded information bit C can then be determined
as C=Cy/Nwith N = 250. : L
ORIGINAL PAGE IS
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R/R Block Error Probability | Quit Probability | - A | a
Py | P |

0.80 ©0.00 0.00 4.5x%108] 3.50

0.90 " 0.00 ' » 0.00 © |2.5x107| 2.82

0.99 . 0.00 ) 2 0.002 - |1.1x103|1.20

*Based upon an imposed computational cutoff of 5 x lOu computations
per 250 bit block. ’

Table 2-3

Other Pertinent Results of Fano Decoder
Simulations in AWGN Channel

2.3 Zigangirov-Jelinek (ZJ) Decoder

The Fano algorithm treated in the preceding section has been used exténsively
in sequential decoding applications. It has beenLthoroughly.investigated and its
behavior well documented Eéa4lé0 and éenerally understood. Recentlﬁ an alter-
native sequential decoding algorithm has been proposed iﬁdepeﬁdently by |
Zigangirov [?g and Jelihekhﬁéa sometimes referred to as the.Zigangirov-Jelinek
or simply tﬁe ZJ algorithm. fhis algprifhm differs from thé Fano algorithm in
that it séves all information on path segments which have been previéusly examined
for possible future use. It can be shown [éi] that»the performance of the two
algorithms are identical in the sense that, for all practical purposes, the sets
of noaes examined by both algorithms are the same ﬁs are the paths ultimately
selectéd. The significant differeﬁce is in the search strategies. With the ZJ
algorithm, a node may be extended at most once, while the Fanb.algorithm allows
repeated visiﬁé:to a node in the process of Qeéoding a receivgd'data seQuence.
There is an obvious tradeoff here between the smaller number 6f computations of

the ZJ algorithm and the reduced memory requirements of the Fano algorithm. In
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light of the poféntial cbmputational advantage of the ZJ algorithm, gnd the
relatiQely low and cbﬁtinually decreasing cost of memory, the ZJ algorithm is
the more likely candidate for providing near real-time decoding of long constraint
length convolutional codes.

The details-of a digi;al computer program for simulating the performance of
the ZJ algorithm under a-variety‘of channel conditions has beén>described

previously in [éE] and need not be repeated at this time. The basic ZJ algorithm

. is characterized by the use:of a memory table or "stack" to store node or

cumulative path metrics associated with paths previously exémined and extended.
Each table entry consists of the identification of the most recent node on each
bath previously explored-together with the cumulative path mefric up to that node
in the code tree. It is to be noted that there is exactly one entry for each
previously explored path.' The table entries are ordered iﬁ terms of decreasing -
path metrics so that, iﬁ particular, a pointer directed to the top of the stack
will always be pointing to the node which currently possesses the largest
cunulative path metricvassociated with it. The ZJ decodér-then‘consistently
attempts to extend the path ;hrough'the node currently identified with the top
entry in the stack. More specifically, the ZJ algorithm proceeds according to
the following rules:
1.) Initialize'by'clearing the memory table and creating
one entry cdrresponding to thé root of the code tree.
The cumulative path metric associated with this entry
is set equal to zero. N
2.) . Retrieve the entry_with_fhe‘largest cumﬁlative path
mefric currently residing at the top of the sﬁéck.

-If the associated node is' at the end of the code tree,

e e 210 g rm i n s nme s i L e e e e vpre e — % g ompir e e o + o e s ntsg en e gem e s e T
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decoding is completed - announce the corresponding
N-bit message as having been transmitted. dthefwise
continué to step 3. » |

3.) Compute the cumulative path metrics associated with
the two successors of the node identified in steé 2.

4.) Entries are created for these two successor nodes and
inserted in the stack at appropriate positions while
the entry for the predecessor node is deleted.

5.) Go to step 2.

There are séveral éommeﬁts éppropriate to this basic z2J algérithé; .First,
observe that since there aré>a finite numbér of nodes in the-édde tree.the
algorithm will eventually terminate although possibly with an erronous decision.
Indeed, even when a correct decision is eventually made a 1arge number of
co@putations may be required.v Second, it is to be noted that a decoding table
with at least 2N_entries is required to avoid overflow although under typical
noise conditions only a smali.percentage.of this number will actually be used.
For large N it becomes unfeasible to provide the required mémory so that the
ZJ algorithm will be forced to operate with a reduced table size. Under Such
conditions it is, of course, possible that momentarily atypical’noise conditions
can gesult in the only entry associated with the correct path being purged from
the stack. As a result, the decoder will have great difficulty in extending

any of the remaining incorrect paths to the end of the code tree. It is clear,

" however, that given enough time the decoder will eventually make & decision

although in error. If the table size is to be reduced then, it would appear

appropriate- to terminate decoding with declaration of an erasure if the number
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C of compupations* per decoded information bit exceeds a fixed preset limit Cmax;
or equivalently if the total number of computations excee&s Ncmax' This will
surely reduce the block error probability PE but at the expgnse'of an increase
in the quit probgbility Pb.. This is tolerable provided that-Cmax is not so low
as to result in the decoder quitting an appreciable percentage of the time when
ﬁhe.correct path is in fact still represented in the decoding table. As part of
the description of the ZJ decoder then we must specify the table size T & 2N
and the imposed computationél cutoff Cmax' Other phan some expérimental work by
Richer [11] there is little information to aid in this choice. In Figure 2-11
we illustrate the empirically derived probability distribution of ¢, for the ZJ
decoder for several values of R/Ro again using the K = 32, R = 1/2 Massey
quick-look code. These results were obtained on the basis §f lOl+ successive
. transmissions of the 250 bit message with an imposed computétional cutoff of
5> X lOu computions as in the case of the Fano decoder. Again the coﬁputational
distribution exhibits Pareto behavior although the computation count for a
specified R/Ro is, as expectgd, reduced considerably over that for the Faﬁo
decoder. The taﬁle size T in these siaulations was chosen tsiconsist of a

3

maximum of 5 x 10~ entries and is sufficient to insure that the probability of
purging the -correct path'is negligible, Indeed, Figure 2-12 illustrafes the
.empirically determined probability distribution of the requiréd table size for
sevefal values of R/RO, again for the Massey K = 32, R = 1/2 gode. This data
was obtained by monitofipg the maximum depth into the decode ﬁable or stack
achieved by the table entry corrésponding to #he cérrect path;:‘Interestingly

enough this disiiibution again exhibits Pareto behavior although we have not made

any great effort to pursue this result. It is clear, however, from Figure 2-12

Here a computation will be taken to mean a single 1terat10n of the steps 1-5
describing the basic ZJ algorithm.
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that only moderate table sizes are required to provide reliable decoding in the

presence of AWGN. Table 2-L 1ists some other pertinent simulation results.

R/RO Block Error Probability Quit Probability* A
P P a
E Q .
0.80 0.00 , 0.00 ] 1.4x10°3 9.60
0.90 0.00 1.5 x 1074 [7.0ma0% 2.40
0.99 © 0.00 | 8.0 x 1073 2.5x10°  |[1.36

Based upon an imposed computational cutoff of 5 x 1oh computations per
250 bit block and a decode table consisting of 5 x 103 entries.

Table 2-L4

- Other Pertinent Results of ZJ Decoder
Simulations in AWGN Channel

It is to be noted that the computational advantages oflﬁhe ZJ decoder vis-é-vis
the Fano decoder is offéet SOQewhat by the more complicated nature of a typical
ZJ computation. In particular, even for decode tables of modest size, the sort and |
merge (or insert) ope?ation représented by step -4 of the basic ZJ algorithm can be
extremely time consuming iflnot performed intelligently. As a result, the com-
putational advantage of the ZJ algorithm can be severely comprdmised if careful
attention is not given to the data file organization and/or search stirategy of‘the
decode table. We have not investigated this topic to any greaﬁ‘exﬁent. It is
felt,. however,'that ﬁith appropriate care gi&en to such detéils thé Z& decoder

does indeed appear a more attractive alternative to the Fano decoder for providing

near-real time decoding of long constraint length convolutional codes.




3.0 Fadin~ Channel Characterization

The transmitted channel waveférm s(t) for BPSK modulation has been given
previously by (2.2) and the sequel. It will be more convenient in what follows
to consistently uée complex signal representations. 1In particﬁlar, s(t) can be
expressed in the form

t

s(t) =‘ Re {\/2}:5 z Xy uo(t-iTs) eaw"_ ' (3.1)
i ’ '

where ub(t) is the complex envelope of the transmitted channel signal during any
one signaling interval. More specifically, in this case
-g : .
u (£) = p(t) e’ | - | (3-2)
where p(t) and © have been defined previously in conjunction with (2.1). From

(2.2) it follows that

R j [u (8)] < at =1 | (3.3)
. The transmitted signal s(t) can be written in the still more convenient fdrm
Jo t :
s(t) = Re {u(t) e © } _ ‘ (3.4)
" where now
u(t) =

~y V -1 .

V2, D %, u (t-in) (3.5)
i A :

The received signal is similarly of the form

jmot ‘ )
u(t) = Re Jw(t) e ' f © (3.6)
where now w(t).is the complex envelope of the received waveform.and will be assumed
of the form

w(t) = z(8) + n(t) A (3.7)
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Here the quantity z(t) is the complex amplitude of the received scattered signal
component and n(t) is a signal independent zero-mean stationary complex Gaussian

random process with

E {n(t) n(to)} =0 | (3.8a)

E {n(t) n*(to)} =N §(t-t) (3.8b)

where §(-) is the Dirac delta function and NO/2 is the double-sided noise spectral
density of the inphase and quadrature components in watts/Hz. We have assumed that

z(t) can be expressed in the form (cf. [25] )
z(t) = [F * a(.t>] u(t) o I (3.9

Here f = Xeaw is a complex quantity whose amplitude X is a fixed deterministic
quantity while the phase Y is uniformly distributed over [ -r, ). The quantity
a(t) is a complex zero-mean'Gaussian random process completely described in terms

of a channel scattering function as described previously in [:2'5] . We will vassume

that &~ is the common variance of the inphase and quadrature compcnents of a(t)

(actually ()“2 = 03‘2/2 in the notation of [25] ). Under these conditions, the

probability density function (p.d.f.) of -

2(t) = | O vaw | _ | | (_3.10)'

is given by the Rayleigh-Rice distribution

, 2,.%21 - o
fR(r) = 5—2— exp - r__i-?x_ Io(r—_)_gé.); . r> 0.
o= 2¢ g (3.11)
= 0 5 r <0

*x : : '
Hopefully it will not cause confusion that we are using r(t) to represent the
envelope of the received signal component and 21'1‘}_ to represent the sequence
of matched filter outputs. I
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where Io(x) is the modified.Bess_el function of the first kind of order zero. If
X = 0 (or equivalently I" = 0), this reduces to the Rayleigh distribution.

2
r

: r . .
folr) = —5 exp (- 5 ; r>0

2 T ' (3.12)
H r<<o

° 9

The mean-square value of the'Ra.yleigh-Rice distribution is easily seen to be given

s {:2)

by

202+ Y2 | (3.13)
0'\2 2+ a2]

where Q 8 X/d‘ allowing Xz to be measured in units of 0"2.

It should be noﬁed, that a number of theoretical propagatién studies concerned
with RF signal fading iq tbe Venusian atmosphere (cf. [26:' ) ' [Eﬂ) have been con-
cluded indicating that iﬂstead of (3.9), the received signal coﬁponent is described
by |

z2(t) =73(t) u(t)

where the amplitude r(t) 4 lg(t) | is lognormal, i.e.,

x(t)

r(t) = e (3.1’4)

with X(t) a real zero-mean Gaussian random process with variance J,;ce and the
phase ¢(t) = arg i?i(t)}. is likewise a real .zero-mean Gaussian random process with

variance 6‘¢2. It follows that under the lognormal assumption r(t) has mean

E ir} ‘.= exp i@e/;} - - R © (3.15)

and mean-square value

E {re} = exp {2 d,;(_e} -  (3.16)
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" Table 3-1 summarizes some pertinent information on the log-amplitude process .(t)

and the phase.process @#(t) taken directly from [?ﬂ .

The results of these previously referenced propagation sfudies have been
discussed in [é@ where arguments have been advanced in support'of the Gaussian
model represented by (3.9) and the sequel. These arguments will not be repeated
here. Let us note, however, that for the most part our simulation studies have
neglected phase fluctuations and have concentrated on the effects cf amplitude

fluctuations alone. The important question in a choice of fading channel model

.is then how closely the Rayleigh-Rice and lognormal distributions resemble each

other. At least for the relatively small values of @3~ indicated in Table 3-1,.
the logncrmal distribution is closely approximated by the Reyleigh~Rice distri-

bution for appropriate choice of ¥ and 0‘2. This is particularly true in the

region of small values of r relative to the rms value (rrms = \jzgizﬁz}) which
essentially determines the performance'with coding; In particular, cénsider the
exceedence proﬁaﬁility-given by QR(r)'= 1- FR(r) where FR(r) is the cumulative
distribution function (e,d.fﬁ) corresponding to either the lognormal or

Rayleigh~Rice distribution. For the former we have

l-§{1§*xr}; rx0 - (3a7)
1 ; ' |

H r<o0

0 (x) -

with ‘§ (x) the unit Gaussian c¢.d.f., while for the Rayleigh-Rice distribution we
have ) :, :
o (x) = r/a) ra0 . |

: ;; 1 o r<o0

T e g ey 4 e TR £t 3 S T e T e
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L¥,¥m o %2 crf , redc B;*f Hz
.55 0.056 0.2282 0.1h36
30 0.018 0.134 | to_.~ 59

10 _ 0.0025 0.05 - 1.02

5 0.0007 0.025 1.15

1 4 x 1077 0.005 3.23

¥ L is depth of penetration into Venusian atmosphere

*%¥ B +£ is 3 db single-side bandwidth of the log-amplitude spectra

Data based upon homogeneous turbulence below 55 km with structure constant

6 -1/3
c, = 2,024 x 107" m (inferred from Venera L) -

end wind shear velocity
vy = 50 m/sec and uniform (Venera U4 data)

Table 3-1

t

Summary of Log-Amplitude and Phase Fluctuation Results
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where
co 2, 2 o
Q(a, B) ] [ X exp |- L—;—a- Io(a x) dx
B

is Marcum's Q-function (cf. [2@ ). The quantity QR(r) is plotted in Figure 3-1
for selected Qg and a. It is clear that there is a close resemblence for
appropriate parameter choices. We have not attempted to determine an optimum

choice of parameter values in any sense. Instead we have chosen to evaluate code

performance pa.rametricaliy as a function of both X and 63(.2 - In particular,

for fixed X we have equated mean-square values for both the Rayleigh-Rice and
the lognormal distributions to obtain an empirical relatio'nship between ¢ and

0’3(‘2. Equating mean-square values we obtain

20?+X2=ex§§2 53;“} (3.20)

so that for fixed choice of d?xg and X2 we can solve for 0‘\2 (or equivalently

N 2) with the result

2 2 - ' ' |
022 =2 5 exp: 22 o‘“x} - )g2 _ o (3.21)
(1 -%7) + 2 '0“;(,2 |

where the approximation is justified due to the relatively small values of o’;f

as indicated in Table 3-1. It follows that

oc2=(

%2 _2¥° o |
& T1%d e oF | G2

which is the desired empirica.l felationship. Fof the small Values of O"xe considered
here t.hve choice Xv= 1 appears to provide ‘the best match. For 'exa.mple with

Ox® = 0.056'and ¥ = 1 we have from (3.22) a= 4.2 while @ =T7.5 for %> = 0.018.
In either case, the match between the Rayleigh-Rice and lognormal distributions as

illustrated in Figure 3-1 is quite good and, improves with smaller values of 0'-3(_2.
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Indeed, as argued in ?E-j] it is only for small va.lueé of 6}_2 that the lognormal
distribution for the scattered signal amplitude can be considered valid.

Although the case ¥ = 1 appears to provide & best fit to the lognormal
distribﬁtion it remains of interest to consider pei‘formance over a wide range of
X values. Due primarily to limitations on computer processirig time, however,
we have been forced to limit our consideration of ¥ values. _As a result, we
have chosen to concentrate oh ﬁhe two cases X = Orand ¥ =-l., This should
essentially bound the range of anticipated channel conditions_.

In previous work [-_23 s @8 we choose to restrict attention to channel
frequency disperéion functions of the form | |

3D = gi ——s | (3.23)

B+ °f
o}

where BO is the -coherencé bandwidth of the channel in Hz. As a result the auto-

cbrrelatic;n function of the a(t) process in (3.9) is given by

R‘aa(’c') E ia(t + T) a*(t)‘}" . | - ‘ (3.2ﬁ)

5 -2n30121
e .
a

A relationship between B, and B+ was derived in [25_1] with the result
B‘ = \/ 2»0} Bx . : - ’ ’ _. _ (3-25)

With Gskg_and B specified as in Table 3-1 it is a simple matter to tabulate
appropriate values of the two important parameters 03‘2 and Bo.' This is provided

in Table 3-2. .




¥, o’f | B, M B =VZ QB’:, Hz v 2y v
55 0.056 0.436 0.146 | 1.118 0.112
30 0.018 0.59. 0.112 1.037 0.036
10 0.0025 1.02 0.071 1.005 0.005

5 0.007 1.h5 0.05h4 1.001 0.001
1 bx1072 3.23 0.029 1.000 -

*L is depth of penetration into Venusian atmosphere
Data taken from Table 3-1. _ )
- Table 3-2

- Summary of Fading Channel Model Parameters

It is to be recelled that in [?E]-it was assumed for simulation purposes
that the process a’t) vafies s;owly.reldtive to an elementary Signaling interval _
of T seéonds duration so that it4can'b§.con;ide?ég'éonstahtiovgr‘any such interval.
but allowed.to vary from interval-to-interval. .It was remarked that this is a
realistic assumption for BoTs 2< 1. From Table 3-2 it is see.n; tﬁat this restricts
us to sigualing rates iniexceSS of épproximately one channei symbol/second which
is felt quite reasonéble for planetary entry missions. We will éssume that some
mechanism is available tq‘allcw perfect pﬁase tracking of the signal component of
the received signél. ‘Admittedly this is someﬁhat unrealistic and later in this
report we will describe in some detaii the effects of imperfect phase tracking.
For the tiﬁe being, howéver, let us assume that a perfect carriér phase refereﬁcé
is available. The re;eiver output, after suitable nofmaliza;ion, is then the

sequence.

ORIGINAL PAGE IS
OF POOR QUALITY
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+ g i= l; 2,.,.4 - (3.26)

which replaces that given previously in (2.6). Here a; represents the value of the
a(t)'process throughout the ith signaling interval and can be described by the first
order regression

85,y = fJai W3 i=1, 2,... C (3.27)

The sequence i W;E is an i.i.d. sequence of zero mean complex Gaussian random
variates such that , _

E S(wiwi} =0 . (3.28a)
and

* 2l 2 : . .
E iwiwj } = (1 - P ) o, Sij : (3.28b)

-EnBoTs .
and Ts the duration of an

with gij'the Kronecker delta function, €>= e
elementary signaling interval. This scheme has been described pfeviouély in [éﬂ
-and need not. be repeated. Simulation stuﬁies have been perforﬁed parawetrically as
a function of BoTs and allgws qonclusions tc be drawn as a_fqnction of signaling
rate fs = l/Ts.

Finally, it is to be noted that one of the major concerns in the simulation
results to be described in the following sections is to establish.the efficacy of
interleaving in combatting the channel memory represented by the time-correlated
fading.” For short constraint length codes the quantity of intergéq is the amount
of interléaving required to achieve a given error probabi}ity_fdr ;pecified Eb/N0
as a function of tﬁe parameters describing the channel model, the code and the
receivér operation.: Of particular importance will be the interleaving requirements

as a function of the channel coherence bandwidtn BO with other parameters held

fixed. For longer consiraint length codes we are interested in the effectiveness
o (=3 .

ORIGINAL PAGE IS
OF POOR QUALITY
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of interleaving in reducing the computational and/or storage requirements of
sequential decoders in the presence of fading. While there are many ihterleaving
techniqﬁes possible, we shall employ a particularly simple approéch until such
time as a superior apprdach becomes apparent. We shall call this approéch block
interleaving and is described as follows: The_encoded serial bif stream is first
blockc—;d into blocks of length L bits where L = ﬂn for some ,Q: 1, 2, ... and

n is related to the code>rate R=1/n. An I x L block inﬁerieaver then transmits
each of the L successive bits in a block separated by I - 1 bits from I - 1 other

blocks. The storage requirements are then N = I x I bits.

4.0  Simulation Results for Viterbi Decoding

In this section we will describe some of the simulation'fesults obtained to

~date for short constraint length convolutional codes in conjunétion with Viterbi

maximum likelihood decoding. The chammel model will be as described in the pre-

ceding section. The codes considered in this study are listed in Table 4-1. In

'R bits/channel use . Constraint Length K

vl/2' 3, 7, 10
1/3 . 3,6
Table L-1

Short Constréiht Length Codes Considered
in Simuwlation Study
each case we utilize the Odenwalder/Lafsen codes (cf. [é], [é]) as diécussed pre-
viously in Section 2.0. The K = 3 code for both rate 1/2 and'l/3‘is included‘since
its performancg ié relativély easy to siﬁulate. In cgsés wheré 'X = 0 we have
simglatedvonly thé case 0;? = 1 since Table 3-2 indicatés_the actuél value will
be very close to unity for a wide range of mission parameters;: For ¥ =1, on the

2

other hand, we have considered only the value (5; ‘= 0.1 as this appears repre-

- sentative of worst case values appearing in Table 3-2.°
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Let us first consider the effects of ¢5;2 and/or ¥ on the bit error

probabiiity Pb when there is little or no memory on the channe;. This is obtained
by seffing BOTS equal to some relaﬁively large value, say BOT; = 10.0.* The
resulting performance then represents an ultimate limit for fixed & and 0;?
which can be approached with sufficiently large interleaving. The simulated ﬁer;
formance.with infinitely fine quantization is illustrated in Figures L4-1 and 4-2
for X = 0 and af = 1.0 and in Figures 4-3 and b-4 for ¥ = 1.0, af = 0.1
with selected rate 1/2 and 1/3 codes. These results should be compared with
Figufes 2-5 through 2-8 for performance over the AWGN channel. It should be clear
from Figurés L-3 and 4-U4 that, for Y =1.0 and 622 = 0.1, performance close to
that obtained in the absence of fading can be échieved provided the channel is
memoryless. For smaller values of 6;?, Ehe performance approaches the .upper
Abound for the AWGN channel even more closely. The case. X'= 1.0 and cj;e = 0.1
then, according to the discussion of the previous section, providgs a useful
measure of representative performance when the scale of amplitude fading repre-
'sentéd by -Ciié ié smali. 'Althdugh-large valﬁes of (ﬁ}f have ﬁot been predicted
by propagation studies, the c§se ¥ =0, 0;2 = 1.0 neverthéless provides a
useful measure of performance forvlarge (S;? and in this sense provides a worst
case performance bound. |

In Figures 4-5 through 4-8 we illustrate the expected performance as a
function of the dimensionless quantity BOTs when there is né iﬁterleaving and
infinitely fine receiver quantization is employed. It is apparent that severe
degradation in performance fesults with increasing channel_memqu represented- by
small values of BoTs’ In particular some degree of interleaving must be profided

if the signaling rate is such that BOTst 0.1. Referring to Table 3-2, for a

~ penetration of 55 km into the Venusian atmosphere this would imply a maximum

*Care must be taken in the interpretation of the large B,Tg results. As stated, they
provide a useful measure of the ultimate performance which can be approached with
sufficiently large interleaving. The actual performance for large ByTg (i.e., fast
fading) must take into account the decorrelation loss in the detectors. We have not.

pursued this question. IR S
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signaling rate of approximately 1 channel symbol per second if interleaving is to
.be avoided. It should be noted that at higher altitudes 052 is smaller and the
effects of channel memory are not as severe. This is offset,however,by the corre-
sponding decrease in Bo' At any rate, the conclusions ?o be drawn are that some

degree of interleaving is required if reasonable signaling rates are to be achieved.

4.1 Interleaving Considerations

A number of simulations have been performed to establish the efficacy of
interleaving in reducing the channel memory and thereby avoiding the severe
degradations in error probability ﬁerformance for small BOTsldemonstrated-in the
precgding section. While considerably more work is requirea in this aresa, somé
tentative conclusions can be drawn on the basis of simulation results obtained as
part of this study.

An Illustratién of typical improvement in bit error probability to bei
realized with the use of a simple block intérleaver structuie.is provided in :
Figures 4-9 and 4-10 for a K =7, R = 1/2 code with B.T_ = 0.001. In all cases
we have employed an I x L bléck interleaver as described in Section 3.0 with
L= Q n for some n = l,.2,...'and n is related to the code raﬁe.by R = l/n. We
have found it convenient in simulating interleaver performancg for convolution
codes of differgnt ratés to parameterize results in terms of the:two quantities
I and 2 . As a result we have consistently iabeled ¢urves iﬁ terms of the literal
product I x Q,.. Note that no interleaving is implied in the cése 1x li for any
value of § .- It is clear from Figures 4-9 and 4-10 that, at least for this céde,
an interleéver of size in excess of 30 x 30 is required to éppréach within 1 db
of the limiting performance for BéTS in the vicinity of O.OQlT Similgr conclusions
can be drawn from Figures 4-11 and 4-12 for a K = 6, R = 1/3 code and in Figure 4-13

for a K = 3, R = 1/2 code again with BT, = 0.001 in each case. For larger values
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of BOTS, of course, the interleaving requirements are less severe. This is

illustrated in Figures 4-14 and 4-15 for a X = 6, R = 1/3 code with B T, = 0.01

and BoTs = 0.1 respectively. The effects of interleaving have shown & surprising

insensitivity to both code rate and constraint length depending instead only upon
the value of B T_. It is‘sdmewhat surprising that such small amounts of inter-
leaving can be so effective in combatting the memory effects of the channel.

This behavior is easily explained by reference to Figure 4-16 which illustrates

in sohe detail the approach of the biﬁ error probability performance to the
limiting case of zero ghannel memory as a function of BoTs for ﬁ K = 3,AR = 1/2
code. Observe that for BT, = 0.001 initially, & 30 x 30 interleaver results in
an "effective" time-bandwidth producé of 0.03 which according to Figure 4-16 |
should provide performance within 1 db of the limiting case. In general an inter-
leaver of size I x Q results in an "effective" time-bandwidth p:o&uct of

BoTs x I since successivg symbols are then separated by I channel symbﬁls reducing
the memory or equivalently increasing thevcoherence bandwidth by the factor I.
This is illustrated in Figure 4-17 for a K =7, R = 1/2 code wiﬁh an initial

BoTs = 0.001.  It is. demonstrated that the performapce obtaine& with interleaving
compares favorably with fhat oﬁtained with the corresponding "effective" value

of BOTS.‘ As a rule of thumb it would appear that if performance within a few

tenths of a db of the limiting performance is to be obtained, the "effective"

ABoTs should be in the vicinity of 0.1. Table L4-2 provides a summary of the inter-

leaving requirements as a function of BoTs'
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BT Required I x ¥

.1 1lx1

.01 10 x 10

.001 100 x 100
Table L4-2

Summary of Interleaving Requirements as a
Function of BoTs to Obtain

Performance within a Few
Tenths of a db of
Limiting Performance
Finally it is to be noted that in all of the preceding work we have con-
sidered oniy square interleaver structures. It is to be expected that performance
should be an 1nsen51tive function of the dimension R and hence economies can be
realized by reducing this dimension considerably. Figure 4-18 illustrates typical
results for a K = 3, R = 1/2 code utilizing non-square interleaving. Obviously
there is a finite limit to how small Q can be meie without seniously degreding
perfofmence. This is a subject of continuing study. |

1

4.2 Quantization Effects:

In all the simnlations described so far infinitely fine Quantization was
employed. It remains to determine the effects of receiver quantization. The
effects of receiver quantization are in clear evidence in Figﬁre 4-19 and Figures
4.20 and L4-21 for a X = 6, R = 1/3 code and éoTs = 10.0 and BOTS = 0.01 respectively.
In each case no interleaving is employed. It appears, as in the case of the AWGN
channel “that a degradation of only a few tenths of a db result w1th Q=28 level
quantlzation. We do not expect the previously drawn conclu51ons on interleaving

requirements to be altered if 8 level receiver quantization 1is enployed;
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4.3 Couparison of Results With Lognormal Amplitude Distribution

‘While there is some  theoretical justification of the lognormal amplitude
distribution there is also reason to believe that the Rayleigh-Rice amplitude
distribution provides a more realistic model of actual fadiné'éhannel behavior.

It is of some interest to compare simulation results obtained under both assumptions.
This is illustrated in Figﬁre 4.22 for a K =3, R = 1/2 code and_BoTs = 0.001. For

the lognormal distribution we take O3> = 0.056 and 03"

= 0.018 with B related
to Bo through (3.25). The parameters of the Rayleigh-Rice distribution have been
chosen as ¥ = 1.0 and cn;g taken from Teble 3-2. The simulated bit error proba-

bility performaﬁce coﬁpafés favorabl& with the'cbrrespondeﬁce improving with sméiiér

values of 63(2.

L.k Imperfect Phase Tracking

The simulation results reported in pfeceding sections héve all assumed perfect
phase tracking. As a rgsult, the sequence of matched filter oﬁtbuts can.be described
by (3.26) and the séquel. Invreality, since the phase is notvknown at the receiver,
quadratﬁre'matched filters muét be employed. During the ith signaling interval

the inphase and quadrature matched filter outputs can be respectively represented sas

/eE |
s _ A
rI,i X ﬁ;- 'jji +a, lcos 0, + N g3 i=1, 2,... (4.1a)
2E
x ___S I' + a
Q,1 i N, i i

Here i ny if} and %_qQ ii& are mutually independent i.i.d. zero-mean unit Gaussian
L2 ) ’ : :

and

s
|

r sin Oi +n. . 3

Q,1

=1, 2,... (4.1b)

sequences and
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i = e [P *?J - (4.2)
¥sin WY + a i .
Ycos Y + a.J.:,i

©
]

1

tan

; =1, 2,...

represents the value of the true phase process 6(t) throughout the ith signaling

interval. The quantities a and a., . are respectively the inphase and quadrature
2 .

I,i Q,1

components of the complex quantity a; described previously, i.e.,

8, = &

i I,i +.j aQ,i 3 1= l, 2, s ’ (’4,3)

as in [25] .. 1t proves convenient to represent . the _quadraﬁure matched filter outputs

as
Ry = rI,i + 3 To,i : (4.4)
| 2E_ 39, o
=xi T |.F+ a'ile +Ni 5 i=1, 2,...
o] _ , ,
where now
Ny=np g *tdng s i=1, 2,... L - (4.5)

We have then made use of a phase estimator originé.lly propose;d‘by Jacobs [h] and
easily shown to be related to that described by Arnstein I:?@ . In particular, we

develop the estimate

-1 .

o 1 | 2 o |

6, =+ 3 arg Z R 5 i=1, 2,...» : (L.6)
k=i-N : '

h signaling interval based upon N past observations of

of the phase Oi during the it
the matched filter output sequence represented by (4.4). The 180° phase ambiguity
represented by ‘the + sign in (4.6) can easily be removed by 'pe.ri,odic insertion of

a known signal sequence and subsequent tracking of the phase during successive

signaling intervals. An analysis of the estimation accuracy ‘to be achieved with

e e i e 4 % BT SIS Dy e o e S RN Py W S T ST T 4 A S W 6 e e 05 P pm e 2




this estimator is provided in [3.‘_1] where it is shown that for large SNR the
performance approaches that of a first order phase-locked lodp (PLL) with

tracking bandwidth b, = l/NTs. The advantage of this approach is that it does

L
not require carrier power. If the phase were truly constant for all time it
would make sense to utilize as large a value of N in (’4.6) as possible. The
assumption of constant phase over the N preceding signaling intervals is

approximately satisfied if N £ l/BoTs where the dimensionlesqu;ua.ntity BoTs has

been defined previously. In our simulations we will assume that

6.

R | - (4.7)

when 0 € & €1 is to be specified. The question remains as to how a is to be

chosen as a function of the fading channel parameters. Figu.:e h-23'illustra.tes

a typical simulation result for a K = 3, R = 1/2 code with X_ =0, 052 = 1.0 and

B I, = 0.015. With a choice ¥ = 0, the phase varies so rapidly that nothing is
to be gained by employing N in excess of 3 (@ '= 0.05 in this case). In Figure

4.2l we illustrate the performance of the phase tracker for a X = 3, R = 1/3 code

now with ¥ = 1.0, of

= O.J.Iand BoTs = 0.001. Here the phé.sé' varies so slowly
that performé.nce within a few tenths of a db of that é.fforded by‘perfect phase
tracking can be achieved with N = 100 (& = 0.1). Additional.‘results are illu-
strated in Figures 4-25 and 4-26. It would é,ppea.r that for Xv= 1.0, o-f = 0.1,
which :we feel are typical channel parameters for a Venusian a.'tmés;ahere,a vélue o
in the range 0.25< a £ 0.1 should provide performance within é. few tenhths of a

db of that obtainable with perfect phase tracking.

5.0  Simulation Results for Sequential Decoding .

In this séction we will describeA some of the simulation results obtained

for both Fano and ZJ decoding 6f long constraint length convolutional codes. We
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T1.

will attempt to parallel the discussion of the Viterbi_decodiné :esults presented
in the preceding sectioh to the extent possible. It is to be émphasized at the
outset that considerﬁbly.less simulation results have been obfained for sequential
decoding vis-a-vis the results for Viterbi decoding. This is due chiefly to the
time consuming and expensive dature of the computer processing required in order
to obtain statistically significant data.' As a consequence, the-results and con-
clusions reported here should be considered tenative based as'thgy are on a
limited number of simulation results. It is expected, however; that all sub-
stantive issues will be resol?ed in the course of work presentl& in progress.
Inzall Siﬁulations'of sequéntial decoder performance we have made use of
‘the.Massey quick-look .code descfibe& previously'in Section 2 with-constraint length
= 32 and rate R = 1/2. Each frame or block consisted of 250 information bits
to which 31 tail zeros.were added. The receiver employed uniform quantization
with Q@ = 8 levels. All simulation results are reported on the ﬁasis of 1ou
successive transmissions of the 250 bit message. A computationél cutoff of
5 x 10% computations was imposed for both fhe Fano and ZJ decéder. The ZJ
algorithm employed a decode table consisting of a maximum ofv5'2A1C3 entries
although only a small percentage of this number were ever required. Both_the
Fano and ZJ aecoders employed a bias A = 1/2 (i.e., equal to_the rate) while
the Fano decoder employed a threshold spacing To = b bits. We have found it
convenient to present simulation results for fixed values of ﬁ/R . Here R
refers to the computational cutoff rate or critical rate in the absence of fadlng,
i.e., in the AWGN channel as determined by (2.13) and the sequel. It is recog-~

nized that the actual critical rate is effectively lowered in. the presence of

fading although no attempus have been made to explicitly compute this quantity

T S VUV



as a function of the underlying channel parameteré. "In what follows then we will

T2.

continue to use the normalized rate R/Ro referred tq-the critical rate ofAthe
original AWGN‘channel és a convenient parameter in describing the behavior of
sequential decoders in the planetary entry channel.

In Figures 5-1 and 5-2 we illustrate the empirically determined computationa.
distribution of the Fano decoder as a function of the dimensionless quantity BoTs
for R/Ro = 0.8 and 0.9 respectively. Here the channel parameters were chosen as
¥=1.0 and 022 = 0.1. For the case R/Ro = 0.99, the probability of exceeding the

imposed computational cutoff of 5 xleh'computations per block was close to unity

even for B T = 10.0 so that results are not plotted. Similarly, for the choice

of channel parameters ¥ = 0.0 and 6;? = 1.0 the quit probabil;ty Ph was con-
sistently found to be close to unity for R/RO > 08 As a result, this worst

case has been e;iminated from further consideration. On FigﬁreS‘s-l and 5-2 we
have indicated the pérformance in AWGN for comparison purposes. 'The éase BOTS = 10.0
represents, for all practical purposes, the limiting case of zero channel memory
which can be'apﬁfdached ﬁith.sufficienﬁl& large ihﬁerleé?ing;L It is cleaf.fhét
even moderate amounts of chanﬁel fading can result in severe degfadation of the
computational performance of thé Fano decoder. Furthermore, even if large amounts
of interleafing is provided the best that one could expect’is'té approach the
limiting case of zero channel memory represented by the casé BOTS = 10.0. For
R/Ro close to unity, this performance can in turn be orders of-magnitude worse
than the computational requirements in'the_AWGN channel. Similar comments can be
made for the ZJ decoder on the basis of the simuiation'resultS' obtained

to date. - In the absence of fadiﬁg, prudent systém design would dictate

choosing R/Ro close to unity. From the limited simulation results reported here

it must then be concluded that, in the presence of even moderate amounts of channel
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fading, interleaving alone will not prove sufficient to insure comﬁutational
requirements comparable to that of the AWGN chapnel. What is required is clearly
a combination of interleaving and a simultaneous reduction in the operating R/Ro
ratio. While it is felt that the required reduction in R/Ro cap be explicitly
calculéted, no attempt was made to do so as part of this study. It is felt that

this is a topic worthy of additional investigation.

5.1 Interleaving Considerations

A limited'number of simulations have been performed to investigate the
efficacy of simple block interleaving in combattiing tﬁe channel memory and thereby
reducing somewhat theAéompuﬁétional requifementé of‘sequentialideééders fdr small
values of BoTs' Typical resﬁlts for a Fano decoder are il;gstratéd in Figures 5-3
and 5-i for R/R_ = 0.8 and 0.9 respectively with BT = 0.0l in éither case.

Here it would appear that an interleaver of size 50 x 50 wili suffice to provide
performance comparable to the memoryless chamnnel if R/Rb = 0.8 whilekfgr

R/Ro = 0.9 an interleaver»of size 100 x 100 is required. Unfortunately time and
computer processing costs havé precluded obtaining additional simulation résults.
It is recommended that futureiinvestigafions concerping the efficacy.of inter-

leaving consider the more meaningful range of R/Ro values such that R/Roé 0.8.

6.0 Summary and Conclusions

. An attempt has been made to describe an approach to the determination and
parameterization of the performance of convolutional codes on fading channels
typical of planetary entry missions. For short constraint length codes and Viterbi
decod%ng we haye.considered the effects of amplitude fading alone under the assumption
a perfect carrier:phase reference is available and have shown fhe severe degradation

which resulté unless some form of interleaving is utilized to combat the channel
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memory. The efficacy of simple block interleaving was investigaﬁed and shown to
be quite effective in reducing the bit error probebility Pb. "The effects of
imperfect carrier phase tracking was then considered and a simple phase estimator
proposed which has shown_to result in performance comparable to that of perfect
phase tracking for reasonable Eb/Nb and provided the parameters:of the phase
tracker were chosen appropriately. Other than some additional wbrk on the effects
of phase tracking errors, it is felt that the treatment of shorﬁ constraint length
codes and Viterbi decoding is complete.

For longer constraint length codes and sequential decoding much more work

' remains. In particular, additional work should be done to establish the efficacy |

of block interleaving than has been reported here. The penalit& in operating
R/R§ to maintain computational and/or storage requirements comparable to that for
the AWGN channel should be investigated in detail. We have not-studied the
effects of imperfect phase tracking to any great extent and this'subjéét_is
certainly worthy of aetailed investigation. Finally, it appéars that with
suitable implementation, thé Z2J decoder is capable of .providing near real-ﬁime
decoding of long constraint convolutional codes. This could 5e of considerable
utility in relay links where decoding is provided onboard the spacecraft. Much
work remains, hoﬁever, before a complete understanding is'avaiiable concerning
the nature of the tradeoff between the block error probabilit& P, the quit error

E

probability P, and the cdmputational and storage requirements.- These topics are

Q

all subjects of continuing investigation.
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