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ABSTRACT

The performance of ccnvolutional codes in fading channels typical of the

planetary entry channel is examined in detail. Here:the signal fading is due

primarily to turbulent atmospheric scattering of the RF signal transmitted •

frc-rr; an en^ry probe through a planetary atmosphere. The primary motivation is

in support of the Pioneer-Venus mission although the results should have wider

applicability. Short constraint length convolutions! codes are considered in

conjunction with binary phase-shift keyed (BPSK) modulation and Viterbi maximum

likelihood decoding while for longer constraint length codes we consider

sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms.

Careful consideration is given to the modeling of the channel in terms of a few

meaningful parameters which can be correlated closely with theoretical propagation

studies. For short constraint length codes we are primarily interested in the

bit error probability performance as a function of E, /N parameterized by the

fading channel parameters. For longer constraint length codes interest will

center on the effect of the fading channel parameters on the computational require-

ments of both the Fano and ZJ algorithms. In either case the effects of simple

block interleaving in combatting the memory of the channel is thoroughly explored.

The approach is analytic where possible otherwise resort is made to digital

computer simulation.
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1.0 Introduction

The use of convolutional codes in conjunction with coherent binary phase-

shift Keyed (?-?3K) modulation has proven to be an effective and efficient means

of obtaining error control on the classical deep space channel. Recent work by

Heller and Jacobs [l] has discussed the performance of short constraint length

convolutional codes in conjunction with coherent BPSK modulation and Viterbi

maximum likelihood decoding (cf. [gj , [3] ) while Jacobs QtJ has treated the per-

formance of longer constraint length convolutional codes utilizing sequential

decoding (cf. [5] , K3)• Again these works have been confined to the classical

deep space channel where the net effect of the channel is simply the introduction

of an additive white Gaussian noise (AWGN) component. In future planetary entry

missions, however, the classical deep space channel provides an inappropriate

model of the actual propagation environment experienced by an entry probe in

transmitting an RF signal through a planetary atmosphere. Here it is expected

that the signal will undergo fading due to a number of causes most notable of

which appear to be: entry probe dynamics; effects of oscillator instabilities

which become pronounced at the typically low bit rates associated with planetary

entry missions; multipath reflections off the planet surface; turbulent atmospheric

scattering of the RF signal within the planetary atmosphere. Our interest is

primarily with this latter problem although the approach is purposely quite

general and can be easily modified to apply to more general fading channel

conditions. Unfortunately little is known concerning the performance of con-

volutional codes in fading channel environments typical of the planetary entry

channel. The present study has been addressed to this problem. The primary

motivation is in support of the Pioneer-Venus mission although the results should

have wider applicability. In particular, we consider coherent BPSK modulation
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2.

in conjunction with Viterbi maximum likelihood decoding for short constraint

length codes while sequential decoding strategies are employed for the longer

constraint length codes. In the latter case both the Fano and Zigangirov-Jelinek

(ZJ) algorithms are considered. Careful consideration is given to the modeling

of the channel in terms of a few meaningful parameters which can be correlated

closely with theoretical propagation studies . For short constraint length codes

we are primarily interested in the bit error probability performance as a function

of EL/N parameterized by the fading channel parameters. For longer constraint

length codes interest vl-11 center on the effect of the fading chanu^l parameters

on the computational requirements of both the Fano and ZJ algorithms. In either

case the effects of simple block interleaving in combatting the memory of the

channel is thoroughly explored. The approach is analytic where possible otherwise

resort is made to digital computer simulation.

2.0 Preliminaries

Before proceeding to a discussion of binary convolutional code performance

on fading channels typical of planetary entry missions, let us first consider the

performance afforded by the use of coherent BPSK modulation on the additive white

Gaussian noise (AWGN) channel. This will not only serve to introduce the results

to follow but will allow a check on the accuracy of the various channel/decoder

simulation programs employed. Consider then the communications system illustrated

in Figure 2-1. Here the binary data stream £ a.'t is applied to a binary con-

volutional encoder resulting in "a binary sequence £ x. ~i (actually +_ l) at its

output which is in turn applied to a modulator/transmitter producing at its output

•the analog channel waveform.

's(t) = \2* cos (cuot + 0) 2 XjP(t - i Ts) (2.1)
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where 'n is the carrier frequency, 9 the carrier phase assumed known at theo

receiver, and p(t) a pulse-like waveform of duration T seconds satisfyings

Tc O
f S p'(t)-dt = 1 (2.2)

•'o •

so that E can be interpreted as the signal energy per transmitted channel symbol.
S

The quantity E is related to the energy per transmitted information bit E, by

. Eg = R Ejj : . (2.3)

where R is the rate of the binary convolutional code. We have been concerned only

with codes for which R = 1/n where n is the number of transmitted channel symbols

per information bit. In some cases the binary information sequence Sa-~l taust ^e

blocked into segments or frames of length N bits to each of which K-l (K is the

code constraint length) tail zeros are added which, of course, carry no information.

Such a procedure is not necessary for Viterbi decoding but is required with

sequential decoding to facilitate decoder synchronization and/or restart after

buffer overflow. The effect of the tail zeros is to reduce the energy available

for information transmission, resulting in a relationship between E and E. given by

so that if N» K as in most cases of interest, we have E $z RE. as in (2.3).

• Due to the presence of additive channel noise, the channel output is

v(t) = s(t).+ n(t) (2.5)

where n(t) is zero-mean AWGN with double-sided noise spectral density N /2 watts/Hz.

We will assume that the receiver utilizes a coherent matched filter matched to the

pulse p(t). .As a result, the receiver output after suitable normalization is the

sequence of real numbers 5 r."l where

''̂•'- - --Ljj, .'„ * /



and, as before, S x.~l is a sequence of ̂  1 values determined by the actual infor-

mation sequence and the specific structure of the binary convolution code employed.

The sequence S n.\ , on the other hand, is a sequence of independent and identically

distributed (i.i.d.) random variables with zero mean and unit variance. The

decoder processes the sequence £ r."l to produce at its output the sequence \ a. V

where a. is an estimate of the i*h transmitted information bit a.. Let us

consider first the bit error probability performance of this system, employing short

constraint length binary convolutional codes and Viterbi maximum likelihood

decoding.

2.1 Viterbi Decoding

Recently Viterbi [_3J has provided a rather complete analysis of binary con-

volution codes and their performance in typical communication systems. His work

has shown the utility of the state diagram and associated generating function

approach to analyzing such problems. We will assume knowledge of this approach

in what follows. Of immediate interest is the fact, as Viterbi has shown, that

a tight upper bound on bit error probability can be obtained in terms of the

generating function T(D, N) (see Ref . [J3J for definitions) associated with a

particular binary convolutional code. In particular, if d~ is the free distance

of a 'code of rate R and with associated generating- function T(D, N), then a tight

upper bound on the resulting bit error probability is provided by the expression

erfc ( >) exp • (2eric ^ \/ iff ' exP N^ f ^M /- -\ \*'

N=l, D=exp < - - Z
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An efficient computer program (cf. \_7_j ) has been written to evaluate this bound

for arbitrary binary convolutional codes specified only in terms of their code

connection vectors. Odenwalder |_8J and more recently Larsen f9j have tabulated

a number of good codes which, among other things, possess the desirable property

of maximizing the free distance d for a given rate and constraint length. In

particular, Odenwalder lists codes for rates R = 1/2 and 1/3 and constraint

lengths K 4s 9, while Larsen has extended this tabulation to R = 1/2, 1/3 and 1/k

for constraint lengths K ̂  2U. The upper bound given by (2.7) has been evaluated

for the Larsen codes for rates R = 1/2, 1/3 and 1/U and constraint lengths K ̂  10.

The results are illustrated in Figures 2-2 through 2-̂ . The simulated bit error

probability performance for selected R = 1/2 and 1/3 codes for various degrees of

receiver output quantization are illustrated in Figures 2-5 through 2-8. The

random number generator used in these simulations is one developed and tested

previously at Lincoln Laboratory Iio]. The path memory of the Viterbi decoder

was chosen long enough to render negligible the effects of memory truncation

(approximately 10 constraint lengths in each case). In all cases we have used

uniform quantization of the matched filter outputs. More specifically, assume

that there are Q, distinct quantization levels } q.., q0, ...,q̂  v where Q is some
"f"Vi

power of 2. Then if I. represents the upper endpoint of the j quantization
J

interval "j =1, 2,...,Q we shall assume

IQ/2=0 (2.8a)

IQ..j = - Ij 5 j = 1, 2,..., I - 1 (2.8b)

with the additional assignments

I = +:<*> ; I = -co (2.8c)

* ' /
The quantization levels are taken as the integers +1, +2,..., +Q/2
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If $ 7. ̂  represents the sequence of quantized matched filter outputs then

j = 1, 2.....0.. The receiver Quantisation is then, - q. if
>. J J

Qcompletely determined by specification of the quantities <.., j = 1, 2,..., ̂  - 1.
J ^

We have taken in all our studies the uniform quantization grid such that

1. -!._-!_ = A ; j = 2,..., Q/2

Simulation results have suggested that L^ values as indicated in Table 2-1 are

close to optimum and will be utilized in all simulations to be reported here

(2.9)

Q

• u
8

16
32

A

1.0

0.5

0.25

0.125

Table 2-1

Approximately Optimum Uniform
Quantization Spacing

The results illustrated in Figures 2-5 through 2-8 are in complete agreement

with those reported previously by Heller and Jacobs jjf] an(i serves as a useful check

on the accuracy of the simulation program.

2.2 Fano-Decoder

An important and useful parameter in characterizing the performance of

sequential decoding schemes in general and the Fano algorithm in particular is the

critical rate R (sometimes called the computational cutoff rate R ) which for ,o comp

coherent BPSK modulation and equally probable signaling is given by (cf. Qy,

Chap. 6)

dr (2.10)
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where p \ rjx = i^ is the a posteriori probability of having observed a receiver

output value r du.rir.rj any one channel signaling interval given that the corre-

sponding tre.nsrr.it ted. Gy.rxol was x = i fur i = +_ 1. For the AWGN channel, the

receiver, outputs are described by (2.6) and the sequel with the result

2E 2

Substituting into (2.10) and performing the indicated integration we obtain

E
R0 = 1 - log2 1 + exp < - —

o
(2.12)

For quantized receiver outputs, the value of R must be computed according to

(2.13)

where now p } "r = q.|x=i£ is the a posteriori probability that the quantized

receiver output assumes the j quantization level q., j =1, 2, ...,Q during any
J

signaling interval given that the corresponding transmitted symbol was x = i with

i = + 1. A plot of R vs. E /N is provided in Figure 2-9 for different amounts
~"" O S O

of receiver quantization. In Table 2-2 we illustrate how closely the value of R

for uniform quantization approaches that with optimum quantization for selected

values of E /N . This table is taken from Richer 111.
s' o '—'

One of the principal problems encountered in the practical implementation of

sequential decoding schemes in general and the Fano algorithm in particular is the

variability of the amount of computation required to decode a message block. In

particular, if CN is the total number of computations required to decode a message

block consisting of N bits, then it can be shown [12|-[13] that the number of

computations per decoded information bit C=CN/N has a probability distribution
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E /Hc' o

-17 clb

' • -

-9 db

-3 db

Number of Quantization
Intervals Q

U
8

16
32
00

\

8
16
32
00

U
8

16
32
00

Ko

Optimum

0.0127
0.0139
0.01^2
0.01U3
Q.Olkk

0.0773
0.08UU
0.0865
0.0871
0.087^

0.283
0.306
0.313
0.315
0.316

Uniform

0.0138
O.OlUl
0.01^3

0.08U1
0.0861
0.0870

0.305
0.312
0.315

Table 2-2

Comparison of R for Optimum and

Uniform Quantization at Selected Values of E /H
s o
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which is approximately Pareto (cf. Cramer [l̂ J , page 2H8) of the form

A X"0 • (2.1k)

where ih« approximation holds only for large X. The quantities A and a in (2.l4)

depend primarily on the channel and, in particular, on the quantity R/R through

its dependence on E /N . Here R/R is the code information rate normalized by the

critical rate R and is easily computed with the aid of Figure 2-9 as a function

of E /N . For a > lt the expected value of the number C of computations pers o

decoded information bit exists and is finite while for a •£ 1 it does not exist.

Furthermore, it can be shown that a > 1 for R/R < 1 while a ̂  1 for R/R ̂  1. It' . *• , . ' o ' o

is for this reason that R has beeri called the critical or computational cutoff .o

rate of sequential decoding. Our interest in sequential decoding will be confined

to a particular code and block length. In particular, we consider a K = 32,

R = 1/2 code described by Massey and Costello [15] . Although not a systematic

code, this code has the unique ability of recovering the transmitted data sequence

by simple modulo-two addition of the hard decisioned received data sequence. In

«-ii cases we consider a block length of N = 250 bits and Q = 8 level quantization.

The decoder utilizes threshold spacing TQ = h bits. In Figure 2-10 we illustrate

the empirically derived probability distribution of CL, for several values of

U
R/R determined by simulation on the basis of 10 successive transmissions of the

250 bit message. A computational cutoff of 5 x 10 computations per block has

been -imposed in these simulations. Table 2-3 lists other pertinent results of

these simulations.

.

The number of computations per decoded information bit C can then be determined

as C=CN/Nwith N = 250.
ORIGINAL PAGE IS

. OF POOR QUALITY
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R/R' o

0.80

0.90

0.99

Block Error Probability
PE

0.00

0.00

0.00

Quit Probability*
PQ

0.00

o.op

0.002

A

1J..5X108

2.5x10?

l.lxlO3

a

3-50

2.82

1.20

Based upon an imposed computational cutoff of 5 x 10 computations
per 250 bit block.

Table 2-3

Other Pertinent Results of Fano Decoder
Simulations in AWGN Channel

2.3 Zigangirov-Jelinek (Zj) Decoder .

The Fano algorithm treated in the preceding section has been used extensively

in sequential decoding applications. It has been thoroughly investigated and its
n ~i • r "i

behavior well documented (l6J - [20] and generally understood. Recently an alter-

native sequential decoding algorithm has been proposed independently by

Zigangirov J2l] and Jelinek [22] sometimes referred to as the Zigangirov-Jelinek

or simply the ZJ algorithm. This algorithm differs from the Fano algorithm in

that it saves all information on path segments which have been previously examined

for possible future use. It can be shown J23J that the performance of the two

algorithms are identical in the sense that,-for all practical purposes, the sets

of nodes examined by both algorithms are the same as are the paths ultimately

selected. The significant difference is in the search strategies. With the .ZJ

algorithm, a node may be extended at most once, while the Fano algorithm allows

repeated visits t.o a node in the process of decoding a received data sequence.

There is an obvious tradeoff here between the smaller number of computations of

the ZJ algorithm and the reduced memory requirements of the Fano algorithm. In
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light of the potential computational advantage of the ZJ algorithm, and the

relatively low and continually decreasing cost of memory, the ZJ algorithm is

the more likely candidate for providing near real-time decoding of long constraint

length convolutional codes.

The details of a digital computer program for simulating the performance of

the ZJ algorithm under a variety of channel conditions has been described

previously in \2hj and need not be repeated at this time. The basic ZJ algorithm

is'characterized by the use of a memory table or "stack" to store node or

cumulative path metrics associated with paths previously examined and extended.

Each table entry consists of the identification of the most recent node on each

path previously explored together with the cumulative path metric up to that node

in the code tree. It is to be noted that there is exactly one entry for each

previously explored path. The table entries are ordered in terms of decreasing

path metrics so that, in particular, a pointer directed to the top of the stack

will always be pointing to the node which currently possesses the largest

cumulative path metric associated with it. The ZJ decoder then consistently

attempts to extend the path through the node currently identified with the top

entry in the stack. More specifically, the ZJ algorithm proceeds according to

the following rules:

1.) Initialize by clearing the memory table and creating

one entry corresponding to the root of the code tree.

The cumulative path metric associated with this entry .

is set equal to zero.

2.) Retrieve the entry with the largest cumulative path

metric currently residing at the top of the stack.

If the associated node is at the end of the code tree,
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decoding is completed - announce the corresponding

N-bit message as having been transmitted. Otherwise

continue to step 3-

3.) Compute the cumulative path metrics associated with

the two successors of the node identified in step 2.

^.) Entries are created for these two successor nodes and

inserted in the stack at appropriate positions while

the entry for the predecessor node is deleted.

5.) Go to step 2.

There are several comments appropriate to this basic ZJ algorithm. First,

observe that since there are a finite number of nodes in the code tree the

algorithm will eventually terminate although possibly with an erronous decision.

Indeed, even when a correct decision is eventually made a large number of

computations may be required. Second, it is to be noted that a decoding table

Nwith at least 2 entries is required to avoid overflow although under typical

noise conditions only a small percentage of this number will actually be used.

For large IT it becomes unfeasible to provide the required memory so that the

ZJ algorithm will be forced to operate with a reduced table size. Under such

conditions it is, of course, possible that momentarily atypical noise conditions

can result in the only entry associated with the correct path being purged from

the stack. As a result, the decoder will have great difficulty in extending

any of the remaining incorrect paths to the end of the code tree. It is clear,

however, that given enough time the decoder will eventually make a decision

although in error. If the table size is to be reduced then, it would appear

appropriate to terminate decoding with declaration of an erasure if the number



C of computations per decoded information bit exceeds a fixed preset limit C ,

or equivalently if the total number of computations exceeds KG . . This will

surely reduce the block error probability P_ but at the expense of an increaseLJ

in the quit probability PQ. This is tolerable provided that C is not so low

as to result in the decoder quitting an appreciable percentage of the time when

the correct path is in fact still represented in the decoding table. As part of

the description of the ZJ decoder then we must specify the table size T ̂  2

and the imposed computational cutoff C . Other than some experimental work by
DlcLX

Richer [13 there is little information to aid in this choice. In Figure 2-11

we illustrate the empirically derived probability distribution of CM for the ZJ

decoder for several values of R/R again using the K = 32, R = 1/2 Massey

quick-look code. These results were obtained on the basis of 10 successive

transmissions of the 250 bit message with an imposed computational cutoff of

k5 x 10 computions as in the case of the Fano decoder. Again the computational

distribution exhibits Pareto behavior although the computation count for a

specified R/R is, as expected, reduced considerably over that for the Fano

decoder. The table size T in these simulations was chosen to consist of a

maximum of 5 x 10 entries and is sufficient to insure that the probability of

purging the -correct path is negligible. Indeed, Figure 2-12 illustrates the

empirically determined probability distribution of the required table size for

several values of R/R , again for the Massey K = 32, R = 1/2 code. This data

was obtained by monitoring the maximum depth into the decode table or stack

achieved by the table entry corresponding to the correct path. Interestingly

enough this distribution again exhibits Pareto behavior although we have not made

any great effort to pursue this result. It is clear, however, from Figure 2-12

•* . .
Here a computation will be taken to mean a single iteration of the steps 1-5
describing the basic ZJ algorithm.
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Empirical Probability Distribution of Computational
Count for ZJ Decoder in AWGN Channel
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Massey Quick-Look Code

Table Size X

Figure 2-12
Empirical Probability Distribution of Required

Table Size for ZJ Decoder in AWGN
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that only moderate table sizes are required tp provide reliable decoding in the

presence of AWGN. Table 2-U lists some other pertinent simulation results.

R/Ro

0.80
0.90
0.99

Block Error Probability
PE

0.00

0.00

0.00

"X*
Quit Probability

PQ

0.00

1.5 x 10 "^

8.0 x 10'3

l.^xlO23

7.9xlOU

2.5xl03

a

9.60
2.^0

1.36

* k '
Based upon an imposed computational cutoff of 5 x 10 computations per
250 bit block and a decode table consisting of 5 x 103 entries.

Table 2-4

Other Pertinent Results of ZJ Decoder
Simulations in AWGN Channel

It is to be noted that the computational advantages of the ZJ decoder vis-a-vis

the Fano decoder is offset somewhat by the more complicated nature of a typical

ZJ computation. In particular, even for decode tables of modest size, the sort and

merge (or insert) operation represented by step k of the basic ZJ algorithm can be
i

extremely time consuming if not performed intelligently. As a result, the com-

putational advantage of the ZJ algorithm can be severely compromised if careful

attention is not given to the data file organization and/or search strategy of the

decode table. We have not investigated this topic to any great extent. It is

felt,, however, that with appropriate care given to such details the ZJ decoder

does indeed appear a more attractive alternative to the Fano decoder for providing

near-real time decoding of long constraint length convolutional codes.
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3.0 Fading Channel Characterization

The transmitted channel waveform s(t) for BPSK modulation has been given

previously by (2.2) and the sequel. It will be more convenient in what follows

to consistently use complex signal representations. In particular, s(t) can be

expressed in the form

r r— ̂  *•>*!
S f 4-\ — Do J \ I OT? J • v • ^ f ^ - ^ ^ P ^ O l f'^^^{ii) — ne < W c.& yx. u ^ u - l l J e I (3*-L)I i J

where u (t) is the complex envelope of the transmitted channel signal during any

one signaling interval. More specifically, in this case

UQ(t) = p(t) e
30 • (3.2)

where p(t) and 9 have been defined previously in conjunction with (2.1). From

(2.2) it follows that

S |uQ(t)|
2 dt = 1 (3.3)

0

The transmitted signal s(t) can be written' in the still more convenient form
C J^> t

s(t) = Re | u(t) e °

where now

u(t) = \2E x i uQ(t-iTs) (3.5)

i

The received signal is similarly of the form

<- dcn f )
u(t) = Re |w(t) e ° J (3-6)

vrtiere now w(t)-is the complex envelope of the received waveform and will be assumed

of the form

w(t) = z(t) + n(t) . (3-7)
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Here the quantity z(t) is the complex amplitude of the received scattered signal

component and n(t) is a signal independent zero-mean stationary complex Gaussian

random process with • •

E fn(t) n(to)"̂  = 0 (3.8a)

and

E $n(t) n*(t0)} = NQ .S(t-tQ) (3.8b)

where £(•) is the Dirac delta function and N /2 is the double-sided noise spectral

density of the inphase and quadrature components in watts/Hz. We have assumed that

z(t) can be expressed in the form (cf. [25] )

z(t) = [r + a(t)] u(t) (3.9)

Here JT = ̂ e ^ is a complex quantity whose amplitude V is a fixed deterministic

quantity while the phase ($ is uniformly distributed over C-JT, it"] . The quantity

a(t) is a complex zero-mean Gaussian random process completely described in terms

of a channel scattering function as described previously in [25] . We will assume
o . .

that (5~ is the common variance of the inphase and quadrature components of a(t)

2 2 r " i
(actually (3~ = (T /2 in the notation of 25 ). Under these conditions, the

£L L. -J

*probability density function (p.d.f.) of

r(t) = | T + a(t) j (3.10)

is given by the Rayleigh-Rice distribution

f.(r) = — expR 2 (3.11)
= 0' : r <.0

Hopefully it will not cause confusion that we are using r(t) to represent, the
envelope of the received signal component and 5 rA to represent the sequence
of matched filter outputs.
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where I (x) is the modified Bessel function of the first kind of order zero. If

# = 0 (or equivalently P = 0), this reduces to the Rayleigh distribution.

; r £ 0
(3.12)

j r < 0

The mean-square value of the Rayleigh-Rice distribution is easily seen to be given

.by

E r2 = 2 <T2 + tf2 (3-13)

f (r) = ̂  exp J - -

A. 2 Q
where a = tf/cP allowing ^ to be measured in units of <j^ .

It should be noted, that a number of theoretical propagation studies concerned

with RF signal fading in the Venus ian atmosphere (cf . [26] , [27] ) have been con-

cluded indicating that instead of (3«9)> "the received signal component is described

by

z(t) =̂ (t) u(t)

where the amplitude r(t) = a!(t) | is lognormal, i.e.,

r(t) = e%(t) . . (

2
with %(t) a real zero-mean Gaussian random process with variance <f?. and the

phase 0(t) = arg \ "a(t)V is likewise a real . zero-mean Gaussian random process with

P
variance <Tj . It follows that under the lognormal assumption. r(t) has mean

= exp < T / 2 (3.15)

and mean-square value -

E r2} = exp
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Table 3-1 summarizes some pertinent information on the log-amplitude process *X.(t)

and the phase process 0(t) taken directly from [27] •

The results of these previously referenced propagation studies have been

discussed in [28] where arguments have been advanced in support of the Gaussian

model represented by (3-9) an<l the sequel. These arguments will not be repeated

here. Let us note, however, that for the most part our simulation studies have

neglected phase fluctuations and have concentrated on the effects cf amplitude

fluctuations alone. The important question in a choice of fading channel model

is then how closely the Rayleigh-Rice and lognormal distributions resemble each
. - • • 2 ' ' '

other. At least for the relatively small values of CĴ / indicated in Table 3-l>

the lognormal distribution is closely approximated by the Rayleigh-Rice distri-
<-)

bution for appropriate choice of X and ^ . This is particularly true in the

region of small values of r relative to the rms value (r = \J E ̂ r j) which

essentially determines the performance with coding. In particular, consider the

exceedence probability given by Q̂ .(r) = 1 - FD(r) where F (r) is the cumulativei\ . K K • •

distribution function (c.d.f.') corresponding to either the lognormal or

Rayleigh-Rice distribution. For the former we have

=1 ; r < 0

with 3> (x) the unit Gaussian c.d.f., while for the Rayleigh-Rice distribution we

have . - ' . • -

) = Q(a, r/<p) ; r £ 0
- (3.18)

= 1 : r<0
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L*,km

.55

30

10

5

1

2

^
0.056

0.018

0.0025

0.0007

h x 10~5

2 ,2
0-0 , rad

0.2282

0.13̂

0.05

0.025

0.005

B**, Hz
X

Q.U36

0.59

1.02

•1.U5

3-23

* L is depth of penetration into Venusian atmosphere

** B . is 3 db single-side bandwidth of the log-amplitude spectra

Data based upon homogeneous turbulence below 55 km with structure constant

6 -V3
C = 2.02k x 10 m (inferred from Venera U)

and wind shear velocity

v. = 50 m/sec and uniform (Venera k data)

Table 3-1

Summary of Log-Amplitude and Phase Fluctuation Results
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where

AQ(a, P) « / x exp V- i-f̂ - V I (a x) dx

is Marcum's Q-function (cf. [29] ). The quantity Qp(r) is plotted in Figure 3-1
p

for selected <S^ and a. It is clear that there is a close resemblence for

appropriate parameter choices. We have, not attempted to determine an optimum

choice of parameter values in any sense. Instead we have chosen to evaluate code
/ 9

performance parametrically as a function of both o and tf^t • *n particular,

for fixed X we have equated mean-square values for both the Rayleigh-Rice and

the lognormal distributions to obtain an empirical relationship between a and

. Equating mean-square values we obtain

2 &2 + X2 = exp £2 tfT (3.20)

so that for fixed choice of <5"̂ v and ̂  we can solve for (Ĵ  (or equivalently

2
(Tl ) with the result3 , • . • • • . - - - . • . . . . . .

6 = 2 CT2 = exp 2 $£ - X2 (3-21)

»(1 -^) + 2 <TX

where the approximation is justified due to the relatively small values of

as indicated in Table 3-1. It follows that .

' 2 2^ (I-*2) + 2 d^2

2which is the desired empirical relationship. For the small values of cfo considered

here the choice "tf = 1 .appears to provide the best match. For example with

= 0.056:and X = 1 we have from (3.22) a ask. 2 while a%7.5 for (T = 0.018.

In either case, the match between the Rayleigh-Rice and lognormal distributions as

2illustrated in Figure 3-1 is quite good and, improves with smaller values of <J .
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i- -i 2
Indeed, as argued in [28] it is only for small values of <Ŝ  that the lognortnal

distribution for the scattered signal amplitude can be considered valid.

Although the case "tf = 1 appears to provide a best fit to the lognonual

distribution it remains of interest to consider performance over a wide range of

X values . Due primarily to limitations on computer processing time, however,

we have been forced to limit our consideration of o values. As a result, we

have chosen to concentrate on the two cases ^ = 0 and X = 1, This should

essentially bound the range of anticipated channel conditions.

In previous work |2j , [2g we choose to restrict attention to channel

frequency dispersion functions of the form

B + fo

(3.23)

where B is the coherence bandwidth of the channel in Hz. As a result the auto-o

correlation function of the a(t) process in (3-9) 3"-s given by .

Raa(f ) = E £a(t + T) a*(t)\ (3.24)

2 e

A relationship between B and B-y was derived in 28 with the result
O '*"

Bo = V 2 C ^ BX - (3.25)

2With 67/ 3Jid B^_ specified as in Table 3-1 it is a simple matter to tabulate

2appropriate values of the two important parameters <2^ and B . This is provideda o

in Table 3-2. .
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L , km

55

30

10

5

1

^
0.056

0.018

0.0025

0.007

UxlO-5

V Hz

0.1*36

0.59

1.02

1.1*5

3.23

VT
o TC "K

o.li*6

0.112

0.071

0.051*

0.029

<>f

X= o

1.1.18

1.037

1.005

1.001

1.000

y= 1

0.112

0.036

0.005

0.001

-

L is depth of penetration into Venusian atmosphere

Data taken from Table 3-1.

Table 3-2

Summary of Fading Channel Model Parameters

li, is to be recalled that in [25] it was assumed for simulation purposes

that the process a(t) varies slowly relative to an elementary signaling interval

of T seconds duration so that it can be considered constant over any such interval
S - - . • • • - . " • - . - -• t " . ..

but allowed to vary from interval-to- interval. It was remarked that this is a

realistic assumption for B T << 1. From Table 3-2 it is seen that this restrictso s

us to signaling rates in excess of approximately one channel symbol/second which

is felt quite reasonable for planetary entry missions. We will assume that some

mechanism is available to allow perfect phase tracking of the signal component of

the received signal. Admittedly this is somewhat unrealistic and later in this

report we will describe in some detail the effects of imperfect phase tracking.

For the time being, however, let us assume that a perfect carrier phase reference

is available. .The receiver output, after suitable normalization, is then the

sequence.

ORIGINAL PAGE IS
OF POOR QUALITY
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i - = 1, -2,... (3.26)

which replaces that given previously in (2.6). Here a. represents the value of the

a(t) process throughout the i signaling interval and can be described by the first

order regression

+ * ; i = l,2,... (3.2?)

The sequence 5 w.~l is an i.i.d. sequence of zero mean complex Gaussian random

variates such that

E \ v±
v^ = ° (3-28a)

and

E ̂ wiwj*} = (! - p2) tff Sij <3-28b)

' . -2«B T -
with &._. the Kronecker delta function, P= e and T the duration of anij \ s

elementary signaling interval. This scheme has been described previously in [25]

and need not.be repeated. Simulation studies have been performed parametrically as

a function of B T and allows conclusions to be drawn as a function of signaling
O S . ' i . o o

rate fg = l/Tg.

Finally, it is to be noted, that one of the major concerns in the simulation

results to be described in the following sections is to establish the efficacy of

interleaving in combatting the channel memory represented by the time-correlated

fading.' For short constraint length codes the quantity of interest is the amount

of interleaving required to achieve a given error probability for specified E, /N

as a function of the parameters describing the channel model, the code and the

receiver operation. Of particular importance will be the interleaving requirements

as a function of the channel coherence bandwidth B with other parameters held

fixed. For longer constraint length codes we are interested in the effectiveness

ORIGINAL PAGE IS : ;
OF POOR QUALITY



37.

of interleaving in reducing the computational and/or storage requirements of

sequential decoders in the presence of fading. While there are many interleaving

techniques possible, we shall employ a particularly simple approach until such

time as a superior approach becomes apparent. We shall call this approach block

interleaving and is described as follows: The encoded serial bit stream is first

blocked into blocks of length L bits where L = An for some X= 1, 2, ... and

n is related to the code rate R = 1/n. An I x L block interleaver then transmits

each of the L successive bits in a block separated by I - 1 bits from I - 1 other

blocks. The storage requirements are then N = I x I. bits.

i'

U.O Simulation Results for Viterbi Decoding

In this section we will describe some of the simulation results obtained to

date for short constraint length convolutional codes in conjunction with Viterbi

maximum likelihood decoding. The channel model will be as described in the pre-

ceding section. The codes considered in this study are listed in Table U-l. In

. R bits/channel use

1/2

1/3

Constraint Length K

3, 7, 10
3, 6

Table U-l

Short Constraint Length Codes Considered
in Simulation Study

each case we utilize the Odenwalder/Larsen codes (cf. |_8j, L9j) as discussed pre-

viously in Section 2.0. The K = 3 code for both rate 1/2 and 1/3 is included since

its performance is relatively easy to simulate. In cases where ^ = 0 we have

' 2 *simulated only the case (3~* =1 since Table 3-2 indicates the actual value willc l . . .

be very close to unity for a wide range of mission parameters. For ^ = I, on the
p

other hand, we have considered only the value CT* - 0.1 as this appears repre-
" a -

sentative of worst case values appearing in Table 3-2. .



38.
Let us first consider the effects of <5^ and/or ^ on the bit error

9.

probability P, when there is little or no memory on the channel. This is obtained
•x*

by setting B T equal to some relatively large value, say B T = 10.0. The

resulting performance then represents an ultimate limit for fixed X and <T*a

which can be approached with sufficiently large interleaving. The simulated per-

formance . with infinitely fine quantization is illustrated in Figures 4-1 and 4-2
O O

for tf = 0 and (T- = 1.0 and in Figures 4-3 and 4-4 for X = 1-0, ff^ = O-1

with selected rate 1/2 and 1/3 codes. These results should be compared with

Figures 2-5 through 2-8 for performance over the AWGN channel. It should be clear
O

from Figures 4-3 and 4-4 that, for % = 1.0 and <J^ =0.1, performance close to

that obtained in the absence of fading can be achieved provided the channel is

2 'memoryless. For smaller values of <P , the performance approaches the upper
a

bound for the AWGN channel even more closely. The case V = 1.0 and (T* =0.1
3.

then, according to the discussion of the previous section, provides a useful

measure of representative performance when the scale of amplitude fading repre-
2 • • • • • - " • • 2 •

sented by <5^ is small. Although large values of <T^ have not been predicted
P

by propagation studies, the case ^ = 0, (£ =1.0 nevertheless provides aa
2

useful measure of performance for large <£\ and in this sense provides a worst
Xs»

case performance bound.

In Figures 4-5 through 4-8 we illustrate the expected performance as a

function of the dimensionless quantity B T when there is no interleaving ando s

infinitely fine receiver quantization is employed. It is apparent that severe

degradation in performance results with increasing channel memory represented by

small values of B T . In particular some degree of interleaving must be provided

if the signaling rate is such that B T ^ 0.1. Referring to Table 3-2, for a
O S

penetration of 55 km into the Venusian atmosphere this would imply a maximum

*
Care must be taken in the interpretation of the large B0TS results. As stated, they
provide a useful measure of the ultimate performance which can be approached with
sufficiently large interleaving. The actual performance for large BOTS (i.e., fast
fading) must take into account the decorrelation loss in the detectors. We have not
pursued this question. >
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signaling rate of approximately 1 channel symbol per second if interleaving is to

.be avoided. It should be noted that at higher altitudes 0f- is smaller and the

effects of channel memory are not as severe. This is offset,however, by the corre-

sponding decrease in B . At any rate, the conclusions to be drawn are that some

degree of interleaving is required if reasonable signaling rates are to be achieved.

4.1 Interleaving Considerations

A number of simulations have been performed to establish the efficacy of

interleaving in reducing the channel memory and thereby avoiding the severe

degradations in error probability performance for small B T demonstrated in theo s

preceding section. While considerably more work is required in this area, some

tentative conclusions can be drawn on the basis of simulation results obtained as

part of this study.

An Illustration of typical improvement in bit error probability to be

realized with the use of a simple block interleaver structure is provided in /

Figures 4-9 and 4-10 for a K.= 7, R = 1/2 code with B T = 0.001. In all caseso s

we have employed an I x L block interleaver as described in Section 3.0 with

L = x n for some n = 1, 2,... and n is related to the code rate by R = 1/n. We

have found it convenient in simulating interleaver performance for convolution

codes of different rates to parameterize results in terms of the.two quantities

I and £ . As a result we have consistently labeled curves in terms of the literal

product I x & . Note that no interleaving is implied in the case 1 x A, for any

value of Ji . It is clear from Figures 4-9 and 4-10 that, at least for this code,

an interleaver of size in excess of 30 x 30 is required to approach within 1 db

of the limiting performance for B T in the vicinity of 0.001. Similar conclusions
OS • .

can be drawn from Figures 4-11 and 4-12 for a K = 6, R = 1/3 code and in Figure 4-13

for a K = 3> R = 1/2 code again with B T = 0.001 in each case. For larger values
O S
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of B T . of course, the interleaving requirements are less severe. This iso s

illustrated in Figures k-lh and U-15 for a K = 6. R = 1/3 code with B T = 0.01' o s

and B T =0.1 respectively. The effects of interleaving have shown a surprisingos

insensitivity to both code rate and constraint length depending instead only upon

the value of B T . It is somewhat surprising that such small amounts of inter-
O S

leaving can be so effective in combatting the memory effects of the channel.

This behavior is easily explained by reference to Figure U-16 which illustrates

in some detail the approach of the bit error probability performance to the

limiting case of zero channel memory as a function of B T for a K = 3> R = 1/2o s

code. Observe that for B T = 0.001 initially, a 30 x 30 interleaver results ino s

an "effective" time-bandwidth product of 0.03 which according to Figure U-l6

should provide performance within 1 db of the limiting case. In general an inter-

leaver of size I x X results in an "effective" time-bandwidth product of

B T x I since successive symbols are then separated by I channel symbols reducingos .

the memory or equivalently increasing the coherence bandwidth by the factor I.

This is illustrated in Figure .U-17 for a K = 1, R = 1/2 code with an initial

B T = 0.001. It is demonstrated that the performance obtained with interleavingo s .

compares favorably with that obtained with the corresponding "effective" value

of B T . As a rule of thumb it would appear that if performance within a fewo s

tenths of a db of the limiting performance is^ to be obtained, the "effective"

B T should be in the vicinity of 0.1. Table U-2 provides a summary of the inter-o s

leaving requirements as a function of B T .
O S .



| Q 0 ;--•«•*•»•*.*»

= G, R = '/3, B0TS=0.0!

10-4
Limiting
Case" of Zero
Channel Memory'

10X10

20X2O

4 S 9 IO

Figure U-l4

Effects of Block Interleaving for K = 6, R = 1/3

Code with B T = 0.01 and V = 0, (T^ = 1.0os a



55.

Limiting
Cocc of Zero

[- Channel tfciY

rsL._,L_J-™}J ,JUW«J,3 •"-*-1
47*° 5 G ~ ; n"'f "Q

Eb/N0indb

•I-.T-.. ;:^a --«v.-- ':.*;:..

9 10

Figure U-15

Effects of Block Interleaving for K=6, R=l/3

Code with B T =0.1 and y=0, <̂ 2=1.0 .
O S Q ,



56.

KT5 J~
5

= 3, R=

NO INTERLEAVING

J«=O.OI5

= O.O3

= 0.06

(Limiting Case)

JL—L
13 15 17

Eb/N0in db

Figure ̂ -16
Approach of Performance with K = 3, R = 1/2 Code to

Limiting Performance with Increasing B T
O S



57.

l-

I K>-*fc-
O
J2t
Cv.
Q.
Ov_

• k_
LU

F
C
C

ir»-
10

ORIGINAL

NO INTERLEAVING

-WITH INTERLEAVING
: = 0.00!)

JL
6*

i J.
7

ir,
S IO

Eb/W0
Figure 4-17

Comparison of Performance of K=7, R=l/2 Code
for Various Amounts of Interleaving with •

Corresponding "Effective1.1 B T
O S



58.

B To s

.1

.01

.001

Required I x X

1x1

10 x 10

100 x 100 '

Table U-2

Summary of Interleaving Requirements as a
Function of B T to Obtaino s
Performance within a Few-

Tenths of a db of
Limiting Performance

Finally it is to be noted that in «-iT of the preceding work we have con-

sidered only square interleaver structures. It is to be expected that performance

should be an insensitive function of the dimension A and hence economies can be

realized by reducing this dimension considerably. Figure it—18 illustrates typical

results for a K = 3, R = 1/2 code utilizing non-square interleaving. Obviously

there is a finite limit to how small X can be made without seriously degrading

performance. This is a subject of continuing study.

i - •

k.2 Quantization Effects; .

In all the simulations described so far infinitely fine quantization was

employed. It remains to determine the effects of receiver quantization. The

effects of receiver quantization are in clear evidence in Figure U-19 and Figures •

k-20 and k-2L for a K = 6, R = 1/3 code and B T =10.0 and B T =0.01 respectively.
OS O S

In each case no interleaving is employed. It appears, as in the case of the AWGN

channel, that a degradation of only a few tenths of a db result with Q = 8 level

quantization. We do not expect the previously drawn conclusions on interleaving

requirements to be altered if 8 level receiver quantization is employed.
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U.3 Comparison of Results With Lognormal Amplitude Distribution

While there is some theoretical justification of the lognormal amplitude

distribution there is also reason to believe that the Rayleigh-Rice amplitude

distribution provides a more realistic model of actual fading channel behavior.

It is of some interest to compare simulation results obtained under both assumptions.

This is illustrated in Figure U-22 for a K = 3, R = 1/2 code and B T = 0.001. For
' O S

2 2the lognormal distribution we take (Tjc = 0.056 and tf^ = 0.018 with B^ related

to B through (3.25). The parameters of the Rayleigh-Rice distribution have been
Q .

chosen as 6 = 1.0 and (p taken from Table 3-2. The simulated bit error proba-
ct

bility performance compares favorably with the correspondence improving with smaller

2
values of o^ .

k.k Imperfect Phase Tracking

The simulation results reported in preceding sections have all assumed perfect

phase tracking. As a result, the sequence of matched filter outputs can be described

by (3.26) and the sequel. In reality, since the phase is not known at the receiver,

' thquadrature matched filters must be employed. During the i signaling interval

the inphase and quadrature matched filter outputs can be respectively represented as

~2E
. ,COS °< + nT -i ' i =1, 2,... (k.la)

'o

and

' 2E

Here f nT .~l and ̂  nQ .A are mutually independent i.i.d. zero-mean unit Gaussian

sequences and
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0. = arg r + a.]

= tan-1 cos i =1, 2,...

represents the value of the true phase process 0(t) throughout the i signaling

interval. The quantities a . and aQ . are respectively the inphase and quadrature

components of the complex quantity a. described previously, i.e.,

a. = a + j a ; i = 1, 2, ... (If.3)
X i, X "ot, i

as in [25] , It proves convenient to represent the quadrature matched filter outputs

as .

~ZE- . , - ,
F + a J e *

where now

^ = n + j n ; i = 1, 2,... (if.5)

We have then made use of a phase estimator originally proposed by Jacobs |_UJ aj^

easily shown to be related to that described by Arnstein [jo] . In particular, we

develop the estimate

1, 2,...' (If.6)

r J

of the phase 9. during the i signaling interval based upon N past observations of
**

the matched filter output sequence represented by .(if.If). The 180 phase ambiguity

represented by:the + sign in (U.6) can easily be removed by periodic insertion of

a known signal sequence and subsequent tracking of the phase during successive

signaling intervals. An analysis of the estimation accuracy to be achieved with
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this estimator is provided in [3l] where it is shown that for large SNR the

performance approaches that of a first order phase-locked loop (PLL) with

tracking bandwidth b_ = I/NT . The advantage of this approach is that it does
Li S

not require carrier power. If the phase were truly constant for all time it

would make sense to utilize as large a value of N in (̂ .6) as possible. The

assumption of constant phase over the N preceding signaling intervals is

approximately satisfied if N < 1/B T where the dimensionless quantity B T has
O S . O S

been defined previously. In our simulations we will assume that

N=1V <*-7
O S

when 0 < a < 1 is to be specified. The question remains as to how a is to be

chosen as a function of the fading channel parameters. Figure U-23 illustrates

a typical simulation result for a K = 3, R = V2 co<ie with ̂  = 0, (T* = 1.0 and
a

B T = 0.015- With a choice V - 0, the phase varies so rapidly that nothing is
O S

to be gained by employing N in excess of 3 (a = 0.05 in this case). In Figure

k-2h we illustrate the performance of the phase tracker for a K = 3, R = 1/3 code
O i .

now with V = 1.0, (T* = 0.1 and B T = 0.001. Here the phase varies so slowlya os

that performance within a few tenths of a db of that afforded by perfect phase

tracking can be achieved with N = 100 (a = 0.1). Additional results are illu-

strated in Figures U-25 and l)-26. It would appear that for Y = 1.0, (T* = O'l,a

which we feel are typical channel parameters for a Venusian atmosphere,a value a

in the range 0.25 £: d £ 0.1 should provide performance within a few tenths of a

db of that obtainable with perfect phase tracking.

5.0 Simulation Results for Sequential Decoding .

In this section we will describe some of the simulation results obtained

for both Fano and ZJ decoding of long constraint length convolutional codes. We
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vill attempt to parallel the discussion of the Viterbi decoding results presented

in the preceding section to the extent possible. It is to be emphasized at the

outset that considerably less simulation results have been obtained for sequential

decoding vis-a-vis the results for Viterbi decoding. This is due chiefly to the

time consuming and expensive nature of the computer processing required in order

to obtain statistically significant data. As a consequence, the results and con-

clusions reported here should be considered tenative based as they are on a

limited number of simulation results. It is expected, however, that all sub-

stantive issues will be resolved in the course of work presently in progress.

In H.IT simulations of sequential decoder performance we have made use of

the Massey quick-look .code described previously in Section 2 with constraint length

K = 32 and rate R = 1/2. Each frame or block consisted of 250 information bits

to which 31 tail zeros -were added. The receiver employed uniform quantization

with Q, = 8 levels. All simulation results are reported on the basis of 10

successive transmissions of the 250 bit message. A computational cutoff of
^ •

5 x 10. computations was imposed for both the Fano and ZJ decoder. The ZJ

algorithm employed a decode table consisting of a maximum of 5 x 10 entries

although only a small percentage of this number were ever required. Both the

Fano and ZJ decoders employed a bias X = 1/2 (i.e., equal to the rate) while

the Fano decoder employed a threshold spacing T = U bits. We have found it

convenient to present simulation results for fixed values of R/R . Here R

refers to the computational cutoff rate or critical rate in the absence of fading,

i.e., in the AWGN channel as determined by (2.13) and the sequel. It is recog-

nized that the actual critical rate is effectively lowered in the presence of

fading although no attempts have been made to explicitly compute this quantity
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as a function of the underlying channel parameters. In what follows then we will

continue to use the normalized rate R/R referred to the critical rate of the' o

original AWGW channel as a convenient parameter in describing the behavior of

sequential decoders in the planetary entry channel.

In Figures 5-1 and 5-2 we illustrate the empirically determined computational

distribution of the Fano decoder as a function of the dimensionless quantity B To s

for R/R =0.8 and 0.9 respectively. Here the channel parameters were chosen as

V= 1.0 and CT =0.1. For the case R/R = 0.99, the probability of exceeding the
€L O

kimposed computational cutoff of 5 x 10 computations per block was close to unity

even for B T = 10.0 so that results are not plotted. Similarly, for the choice
. - O S ' . ' . - •. . - .. . ; . _ ...

P
of channel parameters ^ = 0.0 and (T* =1.0 the quit probability Pn was con-a H

sistently found to be close to unity for R/R > 0.8. As a result, this worst

case has been eliminated from further consideration. On Figures 5-1 and 5-2 we

have indicated the performance in AWGN for comparison purposes. The case B T =10.0
O S

represents, for all practical purposes, the limiting case of zero channel memory

which can be approached with sufficiently large interleaving. It is clear that

even moderate amounts of channel fading can result in severe degradation of the

computational performance of the Fano decoder. Furthermore, even if large amounts

of interleaving is provided the best that one could expect is to approach the

limiting case of zero channel memory represented by the case B T = 10.0. Foro s

R/R close to unity, this performance can in turn be orders of magnitude worse

than the computational requirements in the AWGN channel. Similar comments can be

made for the ZJ decoder on the basis of the simulation results obtained

to date. In the absence of fading, prudent system design would dictate

choosing R/R close to unity. From the limited simulation results reported here

it must then be concluded that, in the presence of even moderate amounts of channel
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fading, interleaving alone will not prove sufficient to insure computational

requirements comparable to that of the AWGN channel. What is required is clearly

a combination of interleaving and a simultaneous reduction in the operating R/R

ratio. While it is felt that the required reduction in R/R can be explicitly

calculated, no attempt was made to do so as part of this study. It is felt that

this is a topic worthy of additional investigation.

5.1 Interleaving Considerations

A limited number of simulations have been performed to investigate the

efficacy of simple block interleaving in combatting the channel memory and thereby

reducing somewhat the computational requirements of sequential decoders for small

values of B T . Typical results for a Fano decoder are illustrated in Figures 5-3

and 5-U for R/R = 0.8 and 0.9 respectively with B T = 0.01 in either case.
O O S ' .

Here it would appear that an interleaver of size 50 x 50 will suffice to provide

performance comparable to the memoryless channel if R/R = 0.8 while for

R/R = 0.9 an interleaver of size 100 x 100 is required. Unfortunately time and

computer processing costs have precluded obtaining additional simulation results.

It is recommended that future investigations concerning the efficacy of inter-

leaving consider the more meaningful range of R/R values such that R/R •£ 0.8.

6.0 Summary and Conclusions

An attempt has been made to describe an approach to the determination and

parameterization of the performance of convolutional codes on fading channels

typical of planetary entry missions. For short constraint length codes and Viterbi

decoding we have considered the effects of amplitude fading alone under the assumption

a perfect carrier phase reference is available and have shown the severe degradation

which results unless some form of interleaving is utilized to combat the channel
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memory. The efficacy of simple block interleaving was investigated and shown to

be quite effective in reducing the bit error probability P, . The effects of

imperfect carrier phase tracking was then considered and a simple phase estimator

proposed which has shown to result in performance comparable to that of perfect

phase tracking for reasonable E,/W and provided the parameters of the phase

tracker were chosen appropriately. Other than some additional work on the effects

of phase tracking errors, it is felt that the treatment of short constraint length

codes and Viterbi decoding is complete.

For longer constraint length codes and sequential decoding much more work

remains. In particular, additional work should be done to establish the efficacy

of block interleaving than has been reported here. The penality in operating

R/R to maintain computational and/or storage requirements comparable to that for

the AWGW channel should be investigated in detail. We have not studied the

effects of imperfect phase tracking to any great extent and this subject is

certainly worthy of detailed investigation. Finally, it appears that with

suitable implementation, the ZJ decoder is capable of .providing near real-time

decoding of long constraint convolutional codes. This could be of considerable

utility in relay links where decoding is provided onboard the spacecraft. Much

work remains, however, before a complete understanding is available concerning

the nature of the tradeoff between the block error probability P_, the quit error
•t<

probability Pn and the computational and storage requirements. These topics are
*i

all subjects of continuing investigation.
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