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FOREWORD

The work described in this report was performed at the Grumman Aerospace
Corporation, Bethpage, New York, and administered by the Vibration Section of the
Structures and Dynamics Division, NASA Langley Research Center, Hampton,
Virginia.

The work performed under NASA Contract NAS1-10635-13 included the con~
struction and delivery of the 1/8-Scale Shuttle Model External Tank and the genera-
tionand delivery of a NASTRAN hydroelastic model of this tank, Prior to the manu-
facture of the model, the Space Division of Rockwell International funded a design
effort to modify the forward attachments of the External Tank (ET) to the Solid
Rocket Booster (SRB) so that they more closely represented the prototype attach-

ments.

After it became apparent that modifications in NASTRAN hydroelastic formula-
tion were advisable, additional funding was provided by the Space Division of Rock~
well International to partially support the developments described in Section 4. Al-
though not part of the task under NAS1-10635-13, Section 4 is included as informa-
tion for potential NASTRAN users.

Many persons at Grumman and NASA Langley have contributed to the various
phases of this program. The technical assistance and direction of Dr. L. P.
Pinson and Mr. U. J. Blanchard of the NASA Langley Research Center is grate-
fully acknowledged. The following persons contributed significantly to this effort

at Grumman:

e Master Agreement Program Management: E, F. Baird
e Task Order Management: M. Bernstein

e Design and Manufacturing Liason: A, P, La Valle

e Stress Analysis: W. P. Blerds

e Manufacture of Model: R. A. Wagensell

o Model Final Assembly: M. Gack, G. Stevens
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¢ NASTRAN Dynamic Analysis: M. Bernstein, J. Zalesak, P, W. Mason,
D. Gregory

Modification of Hydroelastic Formulation: R. Coppolino
NASTRAN Modification: R. Coppolino and A, Levy
e Shell Analysis: V. Svalbonas

This report consists of two volumes as follows:

| o Volume I - Technical Report

e Volume II - Supporting Data



ABSTRACT

This report describes a NASTRAN analysis of the external tank (ET) substructure
of the 1/8-scale space shuttle structural dynamics model.

The NASTRAN hydroelastic procedures were used to form a model of the liquid
oxygen portion of the ET. Large computer storage requirements and running times
were required unless these procedures were modified. Several possibilities were
demonstrated including the substitution of the real for the complex eigenvalve routine
and the use of the OMIT capability to reduce the number of fluid coordinates.

A NASTRAN model of the complete ET was then formed and reduced to 252
degrees of freedom using these procedures. A reviéw of the eigenvector extracted,
using the unsymmetrical inverse power method, indicated that the structural OMIT's
resulted in unsatisfactory modal deflections. More basic modifications to the
NASTRAN hydroelastic capébility appeared necessary to generate a successful ET
model.

An approach is described which, by assuming incompressibility, reduces the
fluid representation to a symmetric mass matrix which can be added to the structural
mass. The problem can then be splved using faster and more efficient eigenvalue.
routines. Using this approach the ET NASTRAN mo'delbwas analyzed for three
separate weight conditions, Computational efficiency was good, averaging less than
1 CPU minute for each mode;
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NOTE

This report is one of a series describing analytical work at

Grumman on the 1/8-Scale Structural Dynamics Model.
The other reports are: )

e Analytical and Experimental Investigation of a 1/8-Scale
Dynamic Model of the Shuttle Orbiter:

-  Volume I, "Introduction' - NASA CR 132488
May 1974

-  Volume II, "Technical Report" - NASA CR 132489
July 1974

-.  Volume IIA, "Supporting Data' - NASA CR
132490 May 1974

-  Volume HOIB, '"Supporting Data' - NASA CR
132491 May 1974

e Development of Technology For Modeling of a 1/8-Scale
Dynamic Model of the Shuttle Solid Rocket Booster (SRB)
- NASA CR 132492 July 1974
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DEVELOPMENT OF TECHNOLOGY
FOR FLUID-STRUCTURE INTERACTION
MODELING OF A 1/8-SCALE DYNAMIC

MODEL OF THE SHUTTLE
EXTERNAL TANK (ET)

By M. Bernstein, R. Coppolino, J. Zalesak, and P.W. Mason

GRUMMAN AEROSPACE CORPORATION
Bethpage, New York 11714

1 - INTRODUCTION AND SUMMARY

This report discusses work performed by Grumman under Task Order 13 of
Master Agreement Contract NAS1-10635 with the Structural Mechanics Branch,
Structures and Dynamics Division, NASA/Langley Research Center, Hampton,
Virginia. '

The objectives of this task were:

e Formulation of an analytical NASTRAN representation of the significant
dynamic characteristics of the 1/8-scale model of the shuttle external
tank as specified by drawings and design details developed under
NAS1-10636-11

e Construction of the external tank model

e DParticipation in a comparison of experimentally determined structural
dynamic characteristics with results of the analysis, and proposing
modifications in analysis technology as required.

The NASTRAN hydroelastic analysis capability was utilized to formulate a mod-
el of the liquid oxygen tank and a separate model of the remainder of the external tank.
Early experience with this liquid oxygen tank model demonstrated the long computer
running times and large core required for a moderately complete representation.
Methods for reducing computation costs were evaluated in a small hemispherical tank
model. It was determined that both the use of the OMIT capability to reduce the num-
ber of fluid coordinates, and modifications to avoid the use of the complex eigenvalue

routine were helpful. The liquid oxygen tank lower dome representation was
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improved by a series of modifications evaluated using static pressure loading in
Rigid Format 1. The significant liquid oxygen tank modes for the zeroth and first
harmonic were calculated for symmetric boundary conditions.

The intertank skirts and liquid hydrogen tank structure was modeled initially
in Rigid Format 3. When weight representing the liquid hydrogen was added as non-
structural mass, unusual shell deformations resulted and the model was not con-
sidered satisfactory. Therefore, a hydroelastic representation of the liquid hydrogen
was added and the problem formulated in Rigid Format 7. Difficulties with the
NASTRAN System are described on page 183 of Reference 5-1.

The complete model consisting of the two tanks and the intermediate structure
was submitted for modal analysis in Rigid Format 7 at Langley. However, the prob-
lem was too large to run successfully. Simultaneously, a reduced version of the
model obtained by using the OMIT feature of NASTRAN to decrease the number of
structural coordinates and to omit all the interior fluid coordinates was submitted for
computation at Grumman. Only the zeroth fluid harmonic was permitted. One mode
at 46.5 Hz was obtained, characterized primarily by longitudinal motion. A review of
the modal deformation pattern indicated anomalous behavior associated with the use
of OMIT's of fluid loaded structure.

. Development work on the external tank model was suspended at this point to
devote all available effort toward reconciling the discrepancy between measured and
calculated orbiter modes (Task 12 of NAS1-10635). It was apparent that additional
modifications in NASTRAN were required to alleviate the large computation time

requirements for the external tanok.

Although not funded under this task, an approach to modifying the NASTRAN
hydroelastic analysis was developed by R. Coppolino and is noted herein. On the
basis of assumed fluid incompressibility, the fluid representation can be reduced to
a symmetric mass matrix which is added directly to the structural mass matrix. The
assembled hydroelastic problem can then be solved in Rigid Format 3 using the faster
eigenvalue routines. In addition, a harmonic reduction scheme which expresses finite
element structural deformation in terms of circumferential harmonics has been intro-
duced for tanks of revolution. This technique has been demonstrated to be more

accurate and efficient than conventional Guyan reduction for structures of revolution.



Harmonic reduction is ideal for the NASTRAN hydroelastic analysis. Circum-
ferential displacement harmonics automatically enforces strict compatability with
the fluid which is developed in terms of the pressure harmonics. These develop-
ments, described in Appendix B, are expected to materially enhance the use of the
NASTRAN hydroelastic analysis for large problems.
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2 - DESCRIPTION OF THE 1/8-SCALE SHUTTLE MODEL EXTERNAL TANK

The 1/8-scale shuttle dynamic model is based on Grumman's parallel-burn
Space Shuttle Design 619 shown schematically in Fig. 2-1. A mockup of the 1/8-
scale Shuttle model basic configuration is shown in Fig., 2-2. Fig. 2-3 shows a
detailed structural arrangement of the prototype External Tank (ET). In simplifying
the design, a major objective was to keep the model fabrication cost within target
while retaining as many of the significant structural dynamic characteristics as pos-
sible. For the allotted funds it was impossible and also technically unnecessary to consider
an exact or "replica' model at the small scale necessary for testing in the existing
NASA/Langley facilities. Therefore, only the general characteristics of the major
external tank elements were simulated without attempting to model local details.

The external tank consists of four elements which can be physically separated
as schematically shown in Fig.. 2-4. The 1/8-scale external tank is partially as-
sembled in Fig. 2-5 between supporting SRB components. The forward element of the
external tank is the liquid oxygen tank which is assembled into the intertank skirt
in Fig. 2-6. The intertank skirt provides the two support points for the model
suspension system, and the forward ET/SRB interstage connections. A short aft
skirt furnishing the aft supports for attaching the solid rocket boosters forms the last
element, The structure is described in NASA CR 112205 (Ref. 5-2), and previously
in Ref, 5-1. However, a relatively complete description is included within for

ready reference.

The scaling relationships that must exist between the model and the prototype
are indicated in Table 2-1. These follow directly from a dimensional analysis of the
various parameters that influence the dynamic behavior of the structure, and from
the choice of the model material. Extrapolating prototype behavior from model
test data is accomplished by using these scaling relat—ionships direci:iy. It -sh'ould be
noted that because of design expediency, some of the scaling rules have been com-
promised. For example, the local skin stiffness on the model is less than the re-
quired scaled value of the prototype for preventing buckling. Some liberty was also
taken in modeling the stiffness characteristics since some lumping was necessary



in order to avoid the large expense of exact scaling of very small dimensions. Thus,
stiffeners have been lumped to some extent but not eliminated completely. If they

were completely eliminated, since the local stiffness of the skins was not duplicated,
premature buckling would occur.

While accurate modeling of the prototype was desirable for extrapolating basic
Shuttle dynamic characteristics, another prime object of the study was the NASTRAN
dynamic analysis and its correlation with model test data. A complete static and
dynamic analysis was made using NASTRAN with the structure modeled to a degree
of refinement considered sufficient for preliminary design purposes. Thus the
need for direct scaling of the prototype design to obtain an exact model in every de-~
tail was not considered crucial. It should also be pointed out that the Shuttle design
was still in a state of flux at the beginning of this study, hence any attempt to model
the then current vehicle exactly would not be overly beneficial to the Shuttle Project.
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Table 2-1 Pertinent Scaling Relationships for the 1/8-Scale Model

Physical Quantity Magnitude @) Physical Quantity Magnitude ‘@)
b -4 Stress (0 = Ee) Im = 9,
Length and displacements i = —8—
p
Force (F = gA) -Fﬂ =<1)2 i
Poisson’s ratio, v P = ¥, Fp 8 62
: Pm
Mass density —_ =1 (EA), e
Pp Longitudinal stiffness, EA AT :(g) =1/64
p
E
Modulus of elasticity, E == } Bending stiff E1 e T 8 (L\
Ep P e &0, ~\8/ -1/4096
eﬂ’\ - ep (GJ)m 1 4
Torsional stiffness, GJ s oS 6 7
rsional stiffness (GJ)p (8) - 1/4096
Am 5 (1)2 sl W
LEPR bl e < e 3
R S 64 Weight (W = pV) i =(l) H
8 512
p
. : 'm 1\4 1 a 8
Area moment of inertia, | - (3) g Acceleration (F = ma) AL =
P P
: w
M + o Triertis: 1 _lﬂ - (_1_)5 s 5 Natural Frequency, w ;ﬂ = g_.
ass momen inertia, 'b 5 33768 p
TT-1
T13-1(T)

ey

aSubscript “’m’’ refers to the model; subscript ’p” refers to prototype.

2.1 LIQUID OXYGEN TANK

The 1/8-scale model llquid oxygen tank (Fig. 2-7 and Drawing AD 383-505
listed in Table 2-2) is a monocoque welded structure (2219 aluminum) consisting of:

e A quasi-elliptical aft dome
e A cylindrical portion
e A conical portion

e A removable spherical cap.




‘The dome which extends from X Station 83.78 is formed from two tangential spheri-
cal segments in order to approximate an ellipse. The central 77° is formed to a

23.6 in, radius. The outer portion, to the full tank diameter of 39.75 in. is formed
from a 18,35 in. radius centered 2.2 in. away from the tank axis. The central 12°

of the dome is 0,040 in, thick to allow for installation of a pressure transducer and for
a drain/fill fitting. The remainder of the dome is 0.016 in. thick. The dome is

welded to the lower side of a machined ring and the cylindrical portion of the tank is
welded to the upper side. The central portion of the ring is a flange drilled to accept

the bolts which fasten to the intertank skirt. Above the ring the tank is cylindrical to
X Station 56.28 and then is conical to X Station 31.93 where the radius has been re-
duced from 19.5 in. to 14 in. A sharper conical taper to X Station 23 reduces this to
an open top of 9 in. radius., The sidewalls of the tank are of constant thickness,
0.020 in. A spherical segment . 025 in. thick covers the top of the tank. The cover

segment has a cutout, and a removable cap for access to the interior of the tank.
2.2 INTERTANK SKIRT

The intertank skirt (2024 Aluminum) extends from X Station 83.78 to 113, 70,
The intertank skirt is designed with two SRB/ET interstage connections that are
representative of the proposed Rockwell International Shuttle configuration of Novem-
ber 6, 1972. This was a modification to the original Grumman design for the 1/8-
scale shuttle model. The intertank structure is designed to provide attachment points
for the model suspension system used during simulated free-body testing. The shell
is milled to three thickness (t) as illustrated in Figure 2-8 (also referto Fig. 2-6). The
heaviest regions are close to the solid rocket booster interstage attachments and the
model suspension lugs where the thickness is 0.1 in. A partial longeron which trans-
mits load from the skin to the model suspension lug and interstage connection pin re-
enforces this region. The shell thickness reduces to 0.055 in. and then to 0.025 in.
away from this region as indicated on the figure. Three ring frames are riveted to
the shell. The heaviest frame consisting of back-to-back channels is located at the
SRB/ET interstage (X Station 99.98). This ring frame also has a lateral strut ex-
tending between the interstage points to distribute the forward SRB loads. The other
two are single rings and are located at approximately the quarter points along the
length. These were added to minimize buckling. Riveted construction is used through-
out. The intertank skirt is shown attached to the liquid hydrogen tank in Fig. 2-9.
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Table 2-2 Drawing Descriptions of 1/8-Scale Model

Drawing Number

Description

AD383-502 A External Tank Assembly
-505 N/C LO, Tank Assembly (2 sheets)
-506 N/C Intertank Skirt Assembly
-507 A LH; Tank Assembly (2 sheets)
-508 N/C Aft Skirt Assembly
-514 N/C LH, Tank Fitting Instaitation
-515 A Rings for External Tank
-516 A Intertank Skirt Frame Assembly
-517 N/C LH, Tank Frame Assembly
-518N/C External Tank Aft Skirt Frame Assembly
-541 N/C Intertank Skirt Assembly {(NAR Configuration)
-542 N/C Frame Instaliation Intertank Skirt (NAR Configuration)
-5643 N/C SRM Forward Skirt Assembly (NAR Configuration)
-544 N/C Thrust Fitting-Intertank Skirt (NAR Configuration)
-545 N/C Thrust Pin (NAR Configuration)
-5646 Comparison NAR Shuttle Configuration and 1/8-Scale
Dynamic Model
-568 ET and SRB Measurements
NOTE:

1. Copies of each of the above drawings have been submitted separately to NASA/Langley

and to Rockwell International.

2. These drawings are available from the Vibration Section, Structures and Dynamics

Division, NASA/Langley Research Center, Hampton, Virginia 23365.

T14-1(T)
Ti3:2(TY
—60° —-40°
we 1

— — a— —

SRB INTERSTAGE
CONNECTION PIN

Fig. 2.8 1/8-Scale Model Intertank Skirt - Developed View of One Side

X STA 83.78

X STA 99.98

X STA 113.70



2.3 LIQUID HYDROGEN TANK

The liquid hydrogen tank is a ring frame stiffened cylinder (2024 Aluminum)
of riveted construction extending from X Station 113. 7 to X Station 258.125, shown
schematically in Fig. 2-4. Figure 2-9 is a photograph of the partially fabricated
tank showing the internal members. Three major ring frames provide support
for the orbiter attachment while six others are inserted to minimize buckling.
The cylindrical portion of the skin is milled to be 0.025 in. on the side
adjacent to the orbiter and 0. 016 in. at other locations. The front and back domes are
0.020 in. and are the same dimensions as that on the liquid oxygen tank. The
lower dome is attached with removable fasteners for access to the interior. There
are three major ring frames formed from back-to-back channels while the others
are single angles. The aft major frames of X Station 229,156 and 245,536 are re-
enforced by internal struts in a triangular pattern to distribute the orbiter load.

These struts are also formed from channel sections fastened together. Fittings for
attaching to the orbiter including a drag support and two struts in the Z direction are
included as part of the tank (Fig. 2-10).

2.4 AFT EXTERNAL TANK SKIRT

The aft skirt is a simple riveted cylindrical extension (2024 Aluminum) of the liquid
hydrogen tank. There is an interior stiffener frame (single angle) and an aft frame
(back-to-back channels) which contains two lateral struts for distributing the aft
SRB loads. The aft skirt attached to the liquid hydrogen tank is shown in Fig. 2-11.

2.5 DIMENSIONS

Numerical dimensions of all parts of the external tank may be determined from
the drawings listed in Table 2-2. During the manufacture of the model, dimensions
of various parts were measured. These are listed on a three sheet drawing, "ET and
SRM Measurements''. All drawings have been submitted to the NASA Langley Research
Center along with the NASTRAN model.
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Fig. 2-10 View of Partially Assembled Liquid Hydrogen Tank
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Fig. 2-11 View of Assembled 1/8-Scale Model Aft Skirt Attached to Liquid Hydrogen Tank
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3 - NASTRAN MODEL AND RESULTS

3.1 INVESTIGATIONS OF HYDROELASTIC ANALYSIS IN NASTRAN USING A
SMALL HEMISPHERICAL TANK MODEL

In developing and conducting the hydroelastic analyses of the 1/8-scale model
tanks, a series of exploratory calculations were made using NASTRAN models of
small hemispherical tanks. One of those analyzed had a 10 in. radius and walls of
0. 022 in. aluminum for the upper 45 degrees, and 0.028 in. aluminum for the lower
90 degree segment including the apex. Boundary conditions in the analysis consisted
of fixing five of the coordinates at the equator and permitting the shell to rotate about
the tangential direction. These tank dimensions were selected to approximate one
of a series tested at SWRI and reported by D. D. Kana and A. Nagey in May 1971
under contract NAS8-30167. The NASTRAN model (Fig. 3-1), consisted of 19 fluid
rings and 22 grid points to represent a 45 DOF segment of the tank. QUAD2 bend-
ing and membrane quadrilateral elements were used for the shell and TRIA2 bending
and membrane triangular elements for the apex. The Analyses Displacement Set
consisted of 114 DOF including 38 for the fluid (half for the Oth and half for the 4th
cosine harmonic). The Oth harmonic was selected to agree with the test data and
technique. Testing was limited to vibration of the entire tank parallel to the axis
through the apex of the hemisphere. The fourth harmonic was added because it was
the next highest compatible with the symmetric boundary.conditions, and it was advis-
able to include at least two harmonics in this check problem. Only symmetric
boundary conditions were run. Some of the calculated mode shapes for this model
are shown in Fig. 3-2 through 3-6. The deflected shapes for the Oth harmcnric show
reasonable agreement with reported experimental data but the frequencies are 10 to

25% higher as shown in the table on the following page.



Comparison of Nastran Model and Experiment

SWRI NASTRAN
No. of Measured Calculated
Nodal Frequency Frequency
Circles Hz Hz Increase
2 (Near Boundary) 750 940 1.25
2 1310 1335 1.10
3 1510 1714 1.13
4 1760 2074 1.18

T13-1(T)

The disagreement could be due to the assumptions concerning the thickness of the
tank or the boundary conditions at the support. The major purpose of this small
model was to investigate the readiness of NASTRAN hydroelastic analyses as re-
quired to support the 1/8-scale model. The small size and low computation costs
were a decided advantage. The agreement between calculated and measured mode
shapes and the approximate agreement in frequencies was sufficient to proceed in
evaluating various computational possibilities as discussed in the following para-
graphs,

The basic difficulty in assembling a suitable model was the high core and long
computation time required in the direct application of the NASTRAN hydroelastic
analyses to the 1/8-scale liquid oxygen tank. It was also obvious that the combined
liquid oxygen' and hydrogen tanks model would be too large, therefore, reductions in
both the computer core requirements and runniné time were mandatory. Mr. R, E,
Gillian of NSMO at NASA Langley suggested reducing the required core size by set-
ting up the eigenvalue problem as an unsymmetric real matrix using the READ module
from Rigid Format 3 in place of the CEAD module required in Rigid Format 7. This
step could halve the core requirement for the eigenvalue portion of the analysis. Dr.
R. Coppolino of Grumman suggested considering the fluid incompressible (Appendix B)
and employment of structural harmonics as well as fluid harmonics.
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NOTE: (1) 45° SEGMENT USED (SEE SKETCH ON TABLE 3-2).
(2) UNDERLINED NUMBERS ARE FLUID RINGS, REMAINDER ARE STRUCTURAL GRID POINTS.

56,7

38,39,40

41

T13-12

Fig. 3-1 NASTRAN Modei of Small Hemispherical Tank
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Fig. 3-2 First Mode of Small Hemispherical Tank




COMPLEX EIGENVALUE ANALYSIS — INV POWER
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Fig. 3-3 Second Mode of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS — INV POWER
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Fig. 3-4 Third Mode of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS — INV POWER
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Fig. 3-6 Fifth Mode of Small Hemispherical Tank



An immediate method for implementing the latter suggestion is to OMIT all
interior fluid coordinates. This is equivalent to assuming an incompressible fluid as
may be noted from Equations 4 and 5 of Appendix Bl, A more conventional method
for reducing the problem size is to OMIT structural coordinates, although this is a
questionable procedure for a uniformly loaded shell. All three procedures were
evaluated in the hemispherical tank model by modifying it into various sets as follows:
(refer to Fig, 3-1).

e Set 1l - The READ (real eigenvalue) module was substituted for the CEAD
(complex) module in Rigid Format 7

e Set 2 - The interior fluid elements (RINGFL 8, 9, 15, 16, 22) were set up
for Guyan reduction using OMIT 1 cards

e Set 3 - A moderate number of structural coordinates (13, 26, 35) along the
tank shell between boundaries were set up for Guyan reduction

e Set 4 - A larger number of structural coordinates including all those along
the tank shell between boundaries (13, 20, 26, 31, 35, 39) were set up for
Guyan reduction

e Set 5 - Finally, portions of Steps 2 and 4 were combined to reduce the size of

the model.

A comparison of the eigenvalues obtained for these various models is listed in
Table 3-1, There is agreement among all models for those modes which involve
motion in the 4th fluid pressui'e harmonic because this induces a pressure node along
the meridian line where the structural points are omitted. This occurs in the 4th,
6th, 8th and 9th eigenvalues. Review of the mode shapes indicates a node line through
the location of the omitted structural coordinates. These modes therefore, do not
evaluate the effect of omitting coordinates. Comparison of the other modes indicates
that omitting interior fluid coordinates (at grid points 8, 9, 15, 16, 22) did not change
the eigenvalues as may be seen by comparing Sets 1 and 2 and Sets 4 and 5. In other
work, when omitting both interior and boundary fluid coordinates it was found that the
eigenvalues changed by small amounts in the lowest modes and significant amounts at
higher frequencies. )

3-9



Table 3-1 Comparison of Eigenvalues for Various Modifications

Base Set 1 Set 2 Set3 Set4 Set5
No 5 Fluid 3 Struct. 6 Struct. 6 Struct. +
CEAD Omits Omits Omits Omits 5 Fluid Omits
1 939.6 939.7 939.7 9979 1059.5 1058.9
2 1335.4 13355 1335.5 1486.0 1756.7 1753.4
3 17137 17139 | 17139 1848.1 - -
4 1853.2 1853.2 1853.2 1853.2 1853.2 1853.2
5 2074.1 2074.2 2074.2 2348.9 - -
6 22298 2229.8 22298 2229.8 2229’8 22298
7 2356.7 2356.3 2356.3 - - -
8 - 2571.2 2571.2 25712 2571.2 2571.2
9 - 2873.4 2873.4 28735 28735 287356
10 - - - 3058.6 3203.8 3199.7
11 - 3695.0 3659.0 37545 3768.4 3764.9
Aset-114 93 83 78 63 74
Time (minutes)
Sys 26.2. 12.4 11.0 12.3 7.4 149
Cpu 5.3 2.6 2.3 26 1.7 2.7
Note: The Inverse Power Method in Release 15.5 was Used for All Calculations.

T13-3(T)

Table 3-1 also permits comparison of eigenval ues obtained by omitting only
structural coordinates. Set 1 differs from the Base set by having all rotations about
coordinate 5 (tangential motion) omitted. This produced no calculable change in
eigenvalues or vectors as was anticipated. In Set 3, three grid points located as
sketched in Table 3-2 (13, 26, 35) had the remaining 5 coordinates omitted so that
they were unconstrained by any applied forces. Set 4 was run with all structural
points on the same meridian omitted (13, 20, 26, 35, 39). This magnitude of reduc-
tion would be necessary to reduce the current external tank model to about 200 DOF.
There is a noticeable shift in the lower frequency eigenvalues and a change in the
eigenvectors. Table 3-2 also compares the relative responses in the first mode. The
radial and axial deflections change at locations where the coordinates are omitted.
Tank fluid pressures at the boundary do not change much at the higher modal pressure

locations.
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Calculations indicate the READ module could be substituted for CEAD at a con-

siderable savings of computer time nor did omitting all interior fluid coordinates

change the computed eigenvalues or eigenvectors. The inaccuracies inherent in

omitting tank coordinates with significant fluid loading is also apparent.

Table 3-2 Comparison of Shapes of First Hydroelastic Mode for Various Model Modifications

Axial Deflection Radial Deflection

Coord Set 1 Set 3 Setd Set 2 Set1 | Set3 Set 4 Set 2
12 0.36 0.30 0.26 0.36 231 | 235 2.28 2.31
13 0.36 0.32 0.26 0.36 231 | 226 1.83 2.31
14 0.36 0.30 0.26 0.36 231 | 235 2.28 2.31
19 1.51 1.33 1.19 1.51 196 | 2.19 2.31 1.96
20 151 1.33 0.85 1.51 196 | 2.19 2.22 1.96
21 151 1.33 1.19 1.51 196 | 2.19 2.31 1.96
25 404 373 349 4.04 212 | 059 0.66 2.12
26 4.04 2.32 2.02 4.04 2.12 | 2.00 0.18 2.12
27 404 373 3.49 4.04 212 | 059 0.66 2.12
30 6.50 6.60 6.11 6.50 -70 | -.63 -40 -70
31 6.50 6.60 3.72 6.50 -70 | -.63 1.02 -70
32 6.50 6.60 6.11 6.50 -70 | -.63 -40 -70
34 856 | 880 8.89 8.86 -70 | -.66 -.66 -70
35 8.56 6.59 6.88 8.56 -70 | -.66 0.02 -70
36 8.56 8.80 8.89 8.56 -70 | -.66 -.66 -7.0
38 9.19 9.58 9.83 9.19 -10 | -.10 -.10 -10
39 9.19 9.58 9.81 9.19 -10 | —.10 -.01 -10
40 9.19 9.58 9.83 9.19 -10 | —10 -10 -10
M 9.14 9.53 9.78 9.14 - - - -

Tank Wall Fluid Pressure
1 16 8 22 16 ~ Schematic Loca-
18 182 127 92 182 ~ 2 i tion of Grid Points
24 YA 387 346 471 gﬂ» - » OFluid Points are
29 | 761 741 656 761 5 3 g circled.
33 959 950 944 959 ol )
37 | 1000 1000 1000 1000
T134(T)
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3.2 LIQUID OXYGEN TANK MODEL

The liquid oxygen tank shell structure is represented by QUAD2 and TRIA2 bend-
ing and membrane quadilateral and triangular elements. The size of the elements
used was a compromise between a reasonable representation of the simpler shell
modes and the necessity to reduce the number of DOF's for the model. Therefore,

a 22-1/2 degree arc length was selected for the span of each shell element giving 8
grid points about a semi-circle. Figure 3-7 represents the current model. The
number of diametrical circles necessarily corresponds to the number of exterior
fluid rings used. Two were selected for the cylindrical portion to maintain panel
aspect ratios close to one for most locations. The dome representation was con-
sidered most important and 6 fluid rings were used in the original model, therefore

6 diametrical circles were used and the apex point was connected by MPC's. This
original dome representation is depicted in Fig. 3-8. Previous work on a small
hemispherical dome with uniformly spaced fluid rings resulted in an irregular defor-
mation pattern close to the apex point, therefore, the lowest fluid rings were placed
as sho§vn. The dome representation was later modified as discussed below. Four fluid
rings were used for the top conical section of the tank which was considered less sig-
nificant than the dome; three interior fluid rings were used throughout most of the tank.
Close to the bottom of the dome, where the pressures were most important, the fluid
elements were made smaller (Fig. 3-7).

This model, which consisted of about 740 DOF''s in the analysis set (50 fluid
elements and 136 structural elements), was assembled into a NASTRAN model and
submitted for computer analysis after a small hemispherical tank problem similar
to that described in Subsection 3.1 had been successfully run. Difficulties encountered

with this large problem were:

1. Hydroelastic problems would not run in Level 15.5, A system @®C-1 error
occurred while executing module GKAD, This error was listed as SPR 1020.
In order to avoid this problem, Level 15.1 was used for most analyses. The
error was later fixed in Level 15.6.5 and should be correctable according
to the NASTRAN System Monitoring Office.
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2, Often, only a single eigenvalue was extracted using the Inverse Power
Method although more were present. This error was listed as SPR 998,

It is probably a function of the completion codes. It occurred for both Level 15.1
and 15.5. In order to avoid this problem the Determinent Method was used, which

is somewhat slower.

3. Fluid ring element numbers must be entered in ascending order and they
cannot be numbered higher than 33000. Violating the first rule results in a
fatal message that the SEQGP card references an undefined grid point.
Violating the second rule causes an @C-5 system error in Module TA1,
These errors were listed as SPR 1017 and 1016, They were identified after
several exploratory computer runs and avoided by renumbering the fluid

elements.

Several other errors were encountered and overcome by modifying the data or
the analysis options. The problem was submitted for analvsis with only one pressure
harmonic (the zeroth) and a limited frequency sweep range requested, to reduce the
computer running time. Computer submittals for the model after it had been devel-
oped are summarized in Table 3-3, There was no reduction in coordinates attempted
in these runs. The only coordinates initially included in the OMIT set were those re-
quired to avoid singularities. Boundary conditions for this analysis consisted of re-
straints against motion in the X direction (parallel to the tank axis) at all coordinates
at X Station 83.78. A total of five elastic modes was obtained for the 'zeroth harmonic

and four for the first harmonic as indicated in Table 3-3.

The mode shapes obtained are shown plotted in Fig. 3-9 through 3-17. The
predominant characteristic is the number of nodal pressure surfaces through the
fluid, which varies from none for the lowest frequency to three for the highest.
Structural deflections are also shown. They generally tend to follow the pressure
variations. The pressures and deflections are only shown along one mexidional line
since they are essentially axisymmetric for the zeroth harmonic and a.ntisymlhetric
for the first harmonic. The deflections differ from the pressure patterns at the
higher frequencies at 110 and 134 Hz for the first harmonic. At these modal patterns,
the grid point spacing is too coarse to be adequate.
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An anomalous behavior notable in the deflections is the small magnitude on the
dome at the third set of grid points from the apex. This "kink" in the deflections —-
along the diametrical ring through the center of the dome is obvious in the lower zeroth
harmonic modes. The pressure pattern in the first mode is quite regular and the

_dome Ehi_c{cness is a ugifm:r_g 0.016 in. _through the adjacent grid points. A change to

0. 040 in. does occur closer to the dome center but this does not explain the deforma-

tion pattern.

The near uniform pressure on the tank dome in the first mode facilitated an
analytical determination of the dome deformation under uniform pressure at reduced
computation cost. The deformation pattern obtained for the original 6 rows of ele-
ments is shown in Fig. 3-18 and the dome deformation similar to that in Fig, 3-9,
Replacing the central elements and multipoint constraints (MPC) at the apex with
triangular elements as shown in Fig. 3-19 and using CQDMEM2 quadulateral mem-
brane elements in place of QUAD2 plates, still resulted in an unsatisfactory deforma-
tion pattern illustrated in Fig. 3-20. Adding additional rows of elements for a total of
9 and modifying the geometry resulted in an improved deformation pattern (Fig. 3-21).
However, in veiw of the necessity to keep down the number of DOF's, a compromise
configuration of 7 rows of elements was attempted. The results are seen in Fig.

3-22 and 3-23. The apex deformation appear irregular and more flexible than the
adjacent dome regions, however, the remainder of the dome appears satisfactory.
This apex anomaly is not considered significant since it is expected to have little

effect on the local pressures.

The revised apex was then incorporated into the liquid oxygen tank model and
the first mode recalculated. The frequency shifted slightly from 22.9 Hz to to 23.1
Hz. The mode shape in Fig. 3-24 is an improvement over the original in the dome

region,
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Table 3-3 Summary of Computer Runs in Rigid Format 7 To Calculate
Liquid Oxygen Tank Hydroelastic Modes

Fluid Frequency Reason Computer (1)
Harmonic Range Frequencies for System Minutes
Specified Scanned (Hz) Termination Required
{Hz)

(4] 8to24 5.2 (Slosh) Qut of Time 92 (Inverse Power)

0 8t024 11.1 (Slosh) Qut of Time 63 (Determinant)

0 16 10 40 229 Out of Time 65

0 40 t0 53 None None in Range 41

0 40to0 72 None Qut of Time 100

0 72 t0 95 75.2,915 No More In 85

Range

0 95 to 135 115.2, 124.3 o 88

1 95 to 135 100, 134.3 o 1235

1 72 to 95 None " 48

1 401072 60.5 o 65

1 7210 13 19.2,27.3 o 118

(Slosh)

(1) Nominal Budgetary Value is $7 per System Minute (on the IBM 370/165).

T13-5(T)
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3.3 REMAINDER OF EXTERNAL TANK
The intertank skirt, liquid hydrogen tank, and aft skirt were modeled using:
o. CQUAD2 bending and membrane elements for the shell |
e CBAR beam elements with offsets for the frames
e CONROD rod elements for the internal struts
e CONM concentrated masses to simulate fittings and non-structural weights.

MPC was used to restrain attachment locations intended for later use When
coupling with the other parts of the NASTRAN model. Figures 3-25 and 3-26 show the
model frames and shell. '

The weight of this portion of the structure was calculated independently for
comparison with the NASTRAN model. The weight calculated for half the structure
was 67.81b compared to 66.2 1b for the NASTRAN model. The location of the center-
of—gravity was calculated as 75.14 in. aft of the forward dome compared to 75,3 in.
from the NASTRAN model. Free modes for the symmetric case were calculated for
the structure without fluid loading. The first mode (Fig. 3-27) was predominantly
bending while the second (Fig. 3~28) was a breathing mode with the central thinner
portion of the liquid hydrogen tank deforming the most. The higher modes consistéd
primarily of local shell deformations of the central region. After the modes for the

" rempty shell bad been calculated, the weight of the hydrogen was distributed as

non=-structural mass, The resulting modes contained considerdble panél‘ motion and
- this procedure did not yield a satisfactory model. Therefore, i1t was decided to in-
corporate the hydrogen as a fluid using the hydroelastic capability.

Another separate study of the central portion of the liquid hydrogen tank was
conducted ﬁsing the STARS-2 shell vibration program. It was necessary to assume
that the skin was of uniform 0. 016 in. thickness in the region to use this program.
‘Several analyses were made to determine whether local vibratory motion could be
anticipated, and to estimate the effects of fluid pressure upon the shell_ frequencies.
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These calculations, which are brietly summarized in Appendix A, consisted of deter-
mining modes and frequencies for:

e Effects of Pressure on Frequencies

~ Zero pressure
-~ Fluid pressure
- Ten times fluid pressure

e Effects of Edge Restraints

- Fixed ends
~ Pinned ends
- Free axially, pinned laterally

Results of the pressure variation are listed in Table A-1 of Appendix A. The effect of
fluid pressure is less than 2%. Even an increase to ten times this pressure only
raised the frequencies for the lowest mode (n = 2) by about 3% and the n = 5 mode by
about 18%,

Results of the effects of edge restraints were interesting in that the mode shape
for the pinned end conditions were characterized by deflections adjacent to the bound-
aries. These calculations summarized in Appendix A also demonstrated the suscep-
tibility of this region of the tank to local vibration modes. The NASTRAN model of
this region is probably too coarse for an adequate representation. This effect how-
ever is not considered significant in the overall modes of the combined shuttle and
therefore could be neglected initially, particularly since the number of elements in

the model were already too high,
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Fig. 3-27 1/8-Scale Model Liquid Hydrogen Tank, First Symmetric Mode — 139.25 Hz (Structure Only)
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3.4 COMPLETE MODEL OF EXTERNAL TANK

The data decks for both the hydrogen and oxygen tanks were joined together to
form a single structure. The NASTRAN model is shown in Fig. 3-29. An attempt
was made to run the hydroelastic analyses in Rigid Format 7 but NASTRAN time esti-
mates indicated acpu time in excess of 2 hours. A Rigid Format 3 run was made
which effectively ignored the fluid and determined the modes for the empty structure.
Five elastic modes were obtained which were primarily characterized as follows:

Frequency, Hz Major Deformation
104.1 1st Bending
137.7 Breathing of LH2 Tank
147.8 Local Shell Motion in LH2 Tank
152,6 Local Shell Motion in LH, Tank
200,7 2nd Bending

The full model had also been submitted to Langley Research Center for com~
putation on the CDC 6600 where it was determined that the problem was too large to be

run.

In order to reduce the problem size, Guyan reduction was utilized and the
problem was reduced to 412 DOF's and analyzed in Rigid Format 7. This version too
ran out of time before extracting a root. The core requirements would have to be
drastically reduced to avoid spillage and reduce time. Therefore, the READ module
was substituted for the CEAD and a larger number of structural coordinates (1675
out of 2145 in the G set) were placed in the OMIT set leaving 198 DOF''s in the A set,
Only the zeroth fluid pressure harmonic was requested.

One eigenvalue was obtained at 45.2 Hz., A review of the mode indicated that
in the cylindrical portions of the LO2 and LH2 tanks, radial motion occurred in
higher order bending modes (i.e., 3 full waves about the circumference). Previous
analyses of a small hemispherical tank, indicated that this radial pattern might be
due to the coordinate reduction process and the problem was reformulated to retain
more fluid loaded structural points, This was accomplished by including all interior
fluid coordinates in OMIT set, In order to assure reasonable computer time the A
set was kept at 252 DOF's which still required omitting many fluid loaded structural
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grid points, The reformulated model was used to compute one low frequency mode,
which now became 45.6 Hz. NASTRAN input data for this model is listed in Appen-
dix C. Computer running times are listed in Table 3-4, The calculated modes for
both models is similar, characterized primarily by longitudinal motion with the LO2
tank and LH2 tank moving in opposite directions. There is also some vertical bend-
ing as in the first mode of a free-free beam. The radial motion for both models, in
the LH2 tank light frame area is compared in Fig, 3-30. The motion on the refor-
mulated model at one location where no structural elements were omitted, as shown on
the bottom of the figure, is characterized as n =1 circumferential motion as con-
trasted with the n = 3 motion for the original model shown in the upper part of the
figure. Even with all interior fluid points in the OMIT set, the 224 remaining séruc-
tural coordinates were not sufficient to avoid apparent anomalies in the tank sidewall
motion. The mode shape for one location in the LO2 tank in Fig. 3-31 presents two
sets of adjacent grid points, 6 in, apart. At one station, motion in alternate points
were in the OMIT set. The primary motion is similar along the Z-axis at both sta-
tions. The radial motion differs considerably, with the deflection at Station 71.78 in
an N = 0 mode as anticipated, while that at Station 65.78 shows three full bending
waves around the semi-circle. This variation in a mode where the pressure does

not vary circumferentially (Oth harmonic) is not convincing.

A more significant difference between the two models appears in the modal
pressure coefficients. Table 3-5 presents a comparison at several locations in the
LO2 and LH2
at the LO2 tank bottom, When interior fluid points were omitted, the LO2 tank bot-
tom pressure was 7% less, LH2
node surface occurs toward the top of the LO2 tank., In addition to the LO2 tank bot-
tom pressure being lower, the generalized mass for the mode with interior fluid
points in the OMIT set is twice as high (24.72 compared to 11.22), The tank bottom

pressure response to an oscillating force at the SRB or Orbiter axial attachment

tanks., With only structural points omitted, the largest pressure occurs

tank bottom pressure was 27% higher, and a pressure

points would be considerably lower (about 60%) for the mode calculated with omitted
interior fluid points. This appears to be a significant differencé between the models.
Including fluid loaded structural coordinates in the OMIT set does not appear to give
satisfactory model.
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Table 34 Comperison of Computer Times for NASTRAN External Tank Hydroelastic Analysis

Rigid | READB)for | READ) for
Format 7 | CEAD. OMIT | CEAD.OMIT
CEAD. Structure Interior
OoMIT Fluid and
Structure Only Structure
Size of Analysis Sets g 2145 2145 2145
m 1 1" 1
n 2134 2134 2134
s 262 262 262
f 1872 1872 1872
o 1460 1674 1620
a (=d) 412 198 252
Time to SMP 1 Module — CPU (sec) 232 197 212
Elapsed (sec) 1135 1153 1566
% Full for Stiffness Matrix Ks§(%) 24 24 24
Guyan Reduction GO (%) 79 56.1 85.9
) Kaa (%) 63 32,6 79.6
Time to Reduce Stiffness {in SMP 1)
CPU (sec) 982 307 458
Etapsed (sec) 2577 1248 1006
% Full for Mass Matrices
' Mif (%) 0.1 0.1 0.1
Maa (%) 63 329 79.6
Time to Reduce Mass Matrix {In SMP 2)
CPU (sec) 982 188 458
Elapsed (sec) 2577 698 1006
Time from SMP 2 to GKAD
CPU (sec) 202 4 4
Elapsed (sec) 647 1253 31
% Full for Dynamic Matrices
Kdd (%) 73.2 405 895
. Mdd (%) 63.7 409 895
Time in GKAD
CPU (sec) 1126 310. 627
Elapsed (sec) 4609 1253 1418
Time to do Eigenvalue Analysis
Complex{1) (CEAD) CPU (sec) 2354
Elapsed (sec) 23720 .
Real (READ) CPU (sec) 650 285
Elapsed (sec) 2327 1706

T13-6(T) (1)
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[ Rigid | READ (3)for | READ (3) for
(2) Format 7 | CEAD. OMIT CEAD. OMIT
OMIT Structure Interior
Structure Fluid and
Only Structure

Total Time for Problem{5)

CPU Time (min) 40 i 28.1 33.2
Channel Time (min) 279 11.8 334

Core Occupancy (Kbyte-hr) 2390 298.5 499.3

(1)  Ran out of time; No eigenvalues found; Large spillage.
{2) All computer runs used 450 Kbytes of core.

{3) See Subsection 3.1 for demonstration problem showing substitution of READ module
for CEAD, and eigenvalues and eigenvectors unchanged when omitting interior fluid points.

(4) Elapsed time indicates both input-output operations and delays due to other users occupying

computer.
(6) All runs started from the same checkpoint tape 020951.
T13-6(T){2)
Summary of Total NASTRAN Computing Time for External Tank
Debugging Good Runs
L. CPU | Sys No. of CPU Sys No. of
Item Description Min | Min_| Runs Min Min | Runs
! LOX TANK SYM. HYDRO-ELASTIC ANALYSIS Using DET.
method good runs gave 1 or 2 modes for 800 DOF (no omits) 96 250 12 150 904 10
TOTAL TIME - 246 1154 22
I LH, TANK(LH ,mass distributed to'shell) A.F.3
1. Symmetric Case {Phase 1} — INV gave 15 modes for 216 DOF [140 . 654 7 20 101 1
2. Anti-symmetric Case (Phase 1) — INV gave 15 modes for 194 *
DOF 20 93 1 29 110 2
160 747 8 49 211 3
TOTAL TIME > 200 958 11
{]] COMBINED LOX AND LH 2= SYM CASE
1. No fluid — INV gave 10 modes for 130 DOF 36 141 3
2. Fluid in LOX Only — DET gave 1 slosh mode 106 1555 7 30 250 1
3. Fluid in Both — 1 mode after changing to INV for 412 DOF 99 1514 3 52 279 1
{Not feasible to coupte whole shuttle by this method)} 205 3069 10 118 670 5
TOTAL TIME » 323 3739 15
TT-192
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e MODEL WITH NO FLUID OMITS
e ALL STRUCTURAL POINTS MARKED O ARE OMITTED
e 452 HZ.

e MODEL WITH ALL INTERIOR FLUID PTSOMITTED \
¢ NO STRUCTURE OMITS IN THIS RING
® 465 HZ.

+ ya

T1341

Fig. 3-30 1/8-Scale Model External Tank — Comparison of Deflections of Light LH, Tank
Ring at Station X 188.75
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Table 35 Comparison of Tank Modal Pressures

[

Distance Modal Pressure
Location | Tank | Axial From | Radial From { Interior Fluid No Fluid Omits
Bottom Center Line Omits
{inches) (inches) {45.6 Hz) {45.2 Hz)
8439 LH, 0 6.4 1.00 0.73
8419 35 6.4 0.99 0.72
8420 35 126 0.99 0.72
8399 8.5 6.4 0.97 0.72
8400 8.5 126 0.97 0.71
8401 85 17.9 097 0.71
8379 10.3 6.4 0.96 0.71
8380 11.3 12.6 0.96 0.71
8381 113 19.8 0.96 0.71
5178 LO, 0 1.8 -.93 -1.00
5179 0.6 5.3 -.93 - .99
5165 1.3 5.0 —.88 - .97
5166 1.3 9.3 —.88 -~ 96
5152 3.4 5.0 -85 -~ .95
5153 3.4 9.0 —.84 - 94
5154 3.4 12.3 —.83 - .93
5139 6.7 5.0 -77 - .90
5140 6.7 10.0 —.76 - .89
5141 6.7 13.6 -74 — .88
5142 " 6.7 16.3 -73 - .87
5022 66.0 5.0 0.29 - .15
5023 66.0 7.8 0.32 - .15
5024 66.0 10.8 0.37 - .15
5025 66.0 14.2 0.47 - .16
T13-72(T)
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4 - NASTRAN MODIFICATIONS

e e =

4,1 DEVELOPMENT OF THE MODIFIED NASTRAN HYDROELASTIC ANALYSIS

A re-formulation of the NASTRAN hydroelastic analysis technique was developed
on the basis of assumed fluid incompressibility for application in the study of liquid
filled tank dynamics. The incompressible fluid formulation results in a set of alge-~
braic equations relating the fluid bounding surface pressures to outward normal sur-
face accelerations. Internal fluid pressures are dependent on surface pressures and
(in the special case of negligible free surface gravitational potential) free surface
displacements are dependent on structural interface displacements. The final repre-
sentation of the fluid is in terms of a mass matrix which is symmetric, positive-
definite, and directly related to the fluid kinetic energy. Expressed in terms of ﬂ111d/
structure interface motion, this matrix is added to the structural mass matrix in a
typical hydroelastic analysis Aproblem. The form of the dynamic equations is the same
as for an empty structure with the dynamic state completely determined by structural
motion. Data such as surface pressure, internal pressure and free surface
displacement are recoverable through algebraic relationships. Details of the
basic theoretical development are presented in Appendix B1.

The re-formulated hydroelastic analysis utilizes the fluid finite elements in
NASTRAN which describe relationships between circumferential harmonic pressure
distributions and discrete displacements for polygons of revolution. These relation-
ships have the potential of describing the fluid dynamics in an over-or-under deter-
mined sense; a consistent and more concise description is realized by constraining
rings of grid points to displace in the harmonic shapes specified by the pressure DOF's.
Since the displacements are vector quantities (3 displacements, 3 rotations per grid
point) each component must be expressed in terms of harmonics as described in
Appendix B2. The procedure described in Appendix B2 serves as an
efficient general reduction scheme for structures of axisymmetric geometry (harmonic

reduction). Implementation of harmonic reduction in NASTRAN is accomplished by
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use of MPC's which relate physical grid displacements to harmonic grid displacements
(the Fourier coefficients) defined by extra GRID or GRIDB cards. Due to the volumi-
nous number of MPC statements required to define the harmonic reduction, an
automatic transformation data generation program (HARM) has been written; a
FORTRAN listing of HARM is presented in Appendix C. Harmonic reduction was
initially demonstrated ona 60degree spherical cap model for whichnatural freque}fyas_
resulting from Guyan reduction and harmonic reduction were compared to STA_RS—Z
results (assumed exact). The results summarized in Appendix_BZ. 3 indicate that
harmonic reduction is inherently more accurate and efficient than Guyan reduction

for this geometry.

Modification of the NASTRAN hydroelastic formulation was accomplished by
utilization of ALTER-DMAP statements in Rigid Formats 7 and 3 for calculation of
fluid matrix data and hydroelastic modes, respectively. Listings of the modified
Rigid Formats are presented in Appendix C with bulk data for a basic checkout

_problem consisting of a circular cylinder with fluid. The results of elementary

assembled hydroelastic analysis problems consisting of a fluid-filled hemispherical
elastic container and a fluid-filled circular cylindrical shell are summarized in

Appendix B3.

The results of this initial study clearly indicate the accuracy and efficiency
inherent in the modified hydroelastic analysis for the two problems considered.
Excellent agreement between finite element and exact analytical solutions was

achieved,

4.2 ANALYSIS OF THE 1/8-SCALE EXTERNAL TANK

Upon verification of the re-formulated NASTRAN hydroelastic analysis, a study
of 1/8-scale model ET dynamics was initiated. The structural and fluid models utilized
were nearly identical to those discussed inthe previous sections; the current mathe-
matical model utilizes symmetric harmonics n= 0, 1, 2, 3 for the fluid. Normal and
tangential motionofthe tank surface is convenientlydescribed interms of local spherical
and cylindrical reference frames. Harmonic reduction with harmonics n=0, 1, 2, 3
retained, isutilized onthe structural model with ultimate reductionto an analysis set of

128 outward normal harmonic DOF's.



Computational efficiency in the ET study is very good with the total run time
per liquid level never exceeding 20 cpu min computation times plus 5 cpu min plot
tape preparation (for approximately 130 plots) on Grumman's IBM 370/168 computer.
In a typical run, 128 eigenvalues were extracted by the Givens method and the lowest
25 free-free mode shapes with modal pressure distributions computed. In the attempt
to study ET dynamics with the old NASTRAN hydroelastic analysis, computation time
was in excess of 70 cpu min with multiple submissions and only one eigenvalue and
mode shape extracted by the unsymmetrié inverse power method. Some further cost
savings are anticipated due to checkpoint-restart capability; an inconsistency in
Grumman's NASTRAN job control language (JCL) data, causing errors in checkpoint
runs has recently been detected and corrected. By utilization of checkpointing in a
first case liquid level NASTRAN run, structural and fluid data may be saved on tapes
eliminating much of the computation time associated with preparation of matrix data
common to all liquid levels. It is expected that the total running time per liquid

'level will be reduced to about 10 cpu min for cases subsequent to the initial run,

To date, three liquid fill conditions have been studied consisting of:
e Liftoff - hLOX =175 in., hLHz =141 in,

'o Empty - hLOX =hLH2 =0.
Modal data for each of these fill conditions is summarized in Tables 4-1 through 4-3
with dome pressure gain presented as a measure of POGO sensitivity (A derivation
of the pressure gain parameter is presented in Appendix B4). CALCOMP plots of the
current analysis mode shapes are presented in Fig. 4-1 through 4-72, Unrealistic
behavior of the individual tank dome apexes is present in the liftoff configuration
(Fig. 4-1 through 4-23) and in the post max Q configuration (Fig. 4-24 through 4-28).
This localized behavior is eliminated by an "apex fix' in the post max Q configura-
tion (Fig. 4-29 through 4-60) and in the empty configuration (Fig. 4-51 through 4-72)
with negligible effect on natural frequencies. The apex fix consists of a set of MPC's
forcing the apex and the set of grid points connected to it by triangular elements to

move as a rigid body in the zeroth harmonic. *

* This should not be confused with the preliminary apex fix presented in Appendix B2. 4.



In order to verify the current NASTRAN results, the dynamic pressure distribu-
tions in the first bending (Fig. 4-73) and axial modes (Fig. 4~74) were studied and
found to be consistent with structural deformation and modal generalized mass.
Additional confidence in the current analysis results was achieved upon comparison of
the current empty tank modes presented in Fig. 4-51 through 4-53 with the few modes
calculated in a previous analysis based on no reductions (Fig. 4-75 through 4-77).

The frequency comparisons for this case are as follows:

Mode “Exact’”’ No Reductions Harmonic Reduction
1st Bending 104.4 105.6

LH, Cylinder N =3 151.6 163.0

T13-1(T)

The above comparisons indicate the accuracy associated with harmonic reduc-
tion applied to geometrically axisymmetric but structurally non-axisymmetric tanks.
Analysis/test comparisons are currently in progress and will be fully documented in
the Task 21 final report.

Table 4-1 1/8-Scale External Tank (ET) Hydroelastic Mode Summary (at Lift-off)

Mode No.{ Freq. Modal LOX Dome LH; Dome
(Hz) Mass Description of Mode Pressure Gain Pressure Gain
{Ib-sec’ fin} x10° x10°
4" 29.7 4.751 ET 1st Axial n=0 0.84 0.22
5 345 0.857 LOX n=2 (No Dome) 0.02 0.005.
6 ° 35.7 0.760 ET 1st Bending n=1 0.26 0.11%
7 36.6 0428 LOX n=3 {(No Dome} 0.05 0.03
8 54.9 2667 ET 2nd Axial n=0 0.43 0.59
g ° 57.8 0.131 LH; Cylinder n=2.3 0.10 0.12
10 ° 614 0.067 LH; Cylinder n=3,2 on 022
1 62.1 0.395 LOX n=3 (No Dome) 0.07 0.03
12 63.8 0.520 ET 2nd Bending n=1 045 0.04
13 68.4 0.581 LOX n=2 (No Dome} 0.01 0.02
14 ° 96.0 0.618 toxn=1 0.66 0.005
15 ° 96.1 0.433 LOX n=0 196 0.04
16 °  |1094 | 0455 LOX, LH; n=0 1.00 " 0.8
17 145 0.741 LOX, LtH; n=23 0.06 0.009
18 1178 0.277 LOX n=3 (No Dome) 0.04 0.003
19 ° 119.7 0.142 LH; Cylinder, LOX n=2,0 0.55 0.010
20 ° 119.8 0.254 LOX n=0 1.78 0.1
21 ° 124.2 0.21 LOX n=1 1.63 0.02
22 1288 Q062 LH, Cylinder a=3 a0 0.007
23 ° 1350 0.475 LOX n=0 0.97 0.16
24 ° 135.9 0.431 ET, LOX Dome n=1,0 1.25 0.03
25 138.2 0.589 LOX n=2 0.04 0.01
* = POGO Sensitive Mode
Note: Modes 1, 2, 3 are Rigid Body Pitch Plane Modes
T138IT)

4-4



Table 4-2 1/8-Scale External Tank (ET) Hydroelastic Mode Summary (Post Max Q)

Mode No. | Freq. Modal LOX Dome LH, Dome
(Hz) Mass Description of Mode Pressure Gain { Pressure Gain
(Ib-sec?/in.) x10° x103
4 420 0.5649 LOX n=2 {No Dome) 0.085 0.055
5 455 0.294 LOX n=3 (No Dome) 0.044 0.040
6 * 49.2 0.427 ET 1st Bending n=1 0.500 0.478
7" 51.8 1.809 ET 1st Axial n=0 0.799 0.684
8 58.6 0.140 LH, Cylinder n=2, 3 0.041 0.034
9 * 61.7 0.074 LH, Cylinder n=3, 2 0.121 0.099
10 * 79.2 1.158 ET 2nd Axial n=0 0.529 0.256
i 79.7 1.135 ET 2nd Bending n=1 0.718 0.102
12 105.7 0.359 LOX n=2 (No Dome) 0.019 0.006
13 107.8 0.177 LOX n=3 {(No Dome) 0.033 0.004
14 * 113.7 0.244 LOX n=0 272 0.033
15 * 120.7 0.160 LOX n=1, ET n=1 2.66 0.021
16 * 120.9 0.346 LOX n=0 1.28 0.215
17 1255 0.126 LH, Cylipder n=3, 2 0.038 0.003
18 130.6 0.106 LH, Cylinder n=3, 2 0.085 0.014
19 1446 0.396 LOX n=2 0.097 0.010
20 146.2 0.125 LOX n=1 2.59 0.057
21 148.6 0.338 LOX n=0 1.256 0.095
22 149.1 .21 LOX n=3 {No Dome) 0.03 0.004
23 150.6 0.283 ET Bending, LOX Dome n=1 0.828 0.114
24 * 162.9 0.089 LOX n=2 0.911 0.008
25 " 167.8 0.079 LOX Dome, ET n=0 4.27 1.76

*=POGO Sensitive Mode

T139(T)
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4-6

Table 4-3 Empty 1/8-Scale External Tank (ET) Mode Summary

Modal
Freq. Mass
Mode No. (H2) (Ib-sec? /in.) Description of Mode
4 105.6 0.0425 ET 1st Bending n=1
5 153.0 0.0094 LH, Cylinder n=3
6 161.7 0.0172 LH, Cylinder n=2,3
7 226.0 0.0497 ET 2nd Bending n=1
8 2578 0.0770 ET 1st Axial n=0
9 2747 0.0271 LH, Cylinder n=2, 3
10 328.3 0.0122 LH; Cylinder, LOX n=3, 2
11 3320 0.0149 LOX, LH,; n=3,2
12 3328 0.0234 LOX, LH; n=3, 2
13 343.7 0.0118 ET n=3
14 357.8 0.0696 ET Bending n=1, 3
15 431.0 0.0210 LH, Cylinder n=2
16 459.1 0.0615 LH; Cylinder n=3, ET n=1_
17 4729 0.0114 LH; Cylinder n=3
18 482.2 0.0185 ET n=2
19 498.6 0.0076 LOX n=3
20 513.2 0.0697 ETn=1,2,3
21 533.1 0.0243 ET n=2,1
22 567.2 0.0487 ET n=1,2,3
23 604.6 0.0391 ET n=2,1,3
24 625.4 0.0116 LOX n=3
25 628.0 0.0144 ET n=3, 2
T1310(T)




HARMONIC REDUCTION
UNDEFORMED SHAPE
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Fig. 4-1 External Tank With Fluid, Liftoff Configuration

T13:61
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4-8

MODAL DEFORMATION — SUBCASE 1 MODE 4 EIGENVALUE = 34936 (RADIANS/SEC)?

HARMONIC REDUCTION

Fig. 4-2 External Tank With Fluid, Liftoff Configuration
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MODAL DEFORMATION — SUBCASE 1 MODE5 EIGENVALUE = 46981 (RADIANS/SEC)

HARMONIC REDUCTION

'Fig. 4-3 External Tank With Fluid,. Liftoff Configuration

T1363
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4-10

HARMONIC DEFORMATION

50367 (RADIANS/SEC)?

MODAL DEFORMATION — SUBCASE 1 MODE 6 EIGENVALUE

Fig. 44 External Tank With Fluid, Liftoff Configuration
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4-14

Fig. 4-8 External Tank With Fluid, Liftoff Configuration

MODAL DEFORMATION —~ SUBCASE 1 MODE 10 EIGENVALUE = 148882 (RADIANS/SEC)?

HARMONIC REDUCTION
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4-20

HARMONIC REDUCTION

SUBCASE 1 MODE 16 E{GENVALUE = 472148 (RADIANS/SECY

MODAL DEFORMATION —

Fig. 4-14 External Tank With Fluid, Liftoff Configuration
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HARMONIC REDUCTION

MODAL DEFORMATION — SUBCASE 1 MODE 17 EIGENVALUE = 517366 (RADIANS/SEC)?
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Fig. 4-15 External Tank With Fluid, Liftoff Configuration
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MODAL DEFORMATION — SUBCASE 1 MODE 18 EIGENVALUE = 548146 (RADIANS/SEC)

HARMONIC REDUCITON

Fig. 4-16 External Tank With Fluid, Liftoff Configuration
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HARMONIC REDUCTION

MODAL DEFORMATION — SUBCASE 1 MODE 26 EIGENVALUE = 754276 (RADIANS/SEC)?

Fig. 4-23 External Tank With Fluid, Liftoff Configuration
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HARMONIC REDUCTION

MODAL DEFORMATION — SUBCASE 1 MODE 7 EIGENVALUE = 104736 (RADIANS/SEC)?

Fig. 4-27 External Tank With Fluid, Post Max. Q Configuration

T13-77
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HARMONIC REDUCTION

MODAL DEFORMATION — SUBCASE 1 MODE 15 EIGENVALUE = 676228 {(RADIANS/SEC)?
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Fig. 4-28 Extarnal Tank With Fluid, Post Max. Q Configuration
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Fig. 4-39 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-30 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-35 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-39 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-41 External Tank With Fluid, Post Max. Q Configuration -
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Fig. 442 Extémal Tank With Fluid, Post Max. Q Configuration
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_Fig. 4-44 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-45 External Tank With Fluid, Post Ms_:x. Q Configuration
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Fig. 4-46 External Tank With Fluid, Post Max. Q Configuration

T1396



HARMONIC REDUCTION

MODAL DEFORMATION — SUBCASE 1 MODE 22 EIGENVALUE = 877137 (RADIANS/SEC)?

Fig. 447 External Tank With Fluid, Post Max. Q Configuration
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Fig. 449 External Tank With Fluid, Post Max. Q Configuration
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Fig. 4-51 External Tenk Without Fluid
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HARMONIC REDUCTION
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Fig. 4-55 External Tank Without Fluid
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MODAL DEFORMATION — SUBCASE 1 MODE 10 EIGENVALUE =4254448 (RADIANS/SEC)?

HARMON!IC REDUCTION

Fig. 4-57 External Tank Without Fluid
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Fig. 4-60 External Tank Without Fluid
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MODAL DEFORMATION — SUBCASE 1 MODE 17 EIGENVALUE = 8826886 (RADIANS/SEC)?

HARMONIC REDUCTION

Fig. 4-64 External Tank Without Fluid
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MODAL DEFORMATION — SUBCASE 1 MODE 23 EIGENVALUE = 14432951 (RADIANS/SEC)?

HARMONIC REDUCTION
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Fig. 4-70 External Tank Without Fluid
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Fig. 471 External Tank Withopt Fluid
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Fig. 4-73 Post Max Q External Tank 1st Bending Mode (Mode 6)
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Fig. 4-74 Post Max Q External Tank 1st Axial Mode (Mode 7)
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