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STUDY OF THE MODIFICATIONS NEEDED FOR EFFECTIVE

OPERATION OF NASTRAN ON IBM VIRTUAL STORAGE COMPUTERS

By C. W. McCormick and K.-H. Redner
The MacNeal-Schwendler Corporation

SUMMARY

Currently, the NASA Structural Analysis (NASTRAN) computer program is

operational for three different series of computers, one of which is the
f

IBM 360/370 series. NASTRAN is executed on an IBM 360/370 computer by more

than 60 percent of the official NASTRAN users. Many of the IBM 370 models

now have a new capability called Virtual Storage (VS).

This study was conducted to determine the necessary modifications to

make NASTRAN operational under virtual storage operating systems (VS1 and

VS2). The study also presents suggested changes which will make NASTRAN

operate more efficiently under virtual storage operating systems.

INTRODUCTION

This report presents the final results for the study of the modifica-

tions needed for effective operation of NASTRAN on IBM Virtual Storage com-

puters. The principal goals of this study were as follows:

1. Determine the minimum coding changes required for the conversion

of NASTRAN to operate on virtual storage computers.

2. Determine the areas of NASTRAN where modifications will improve

the efficiency.

3. Make suggestions for implementing changes with a minimum number

of computer-dependent subroutines.

4. Estimate the time and cost involved in design, coding, and

implementation of all suggested modifications.



5. Prepare a list of user practices for NASTRAN operations on

virtual storage computers.

This study was completed without the use of any computer time. The

MacNeal-Schwendler Corporation has had some experience with a modified

version of NASTRAN under the VS1 and VS2 Release 1 operating systems. How-

ever, the only significant modification in this system relative to VS was

to change the procedure for the acquisition of address space. Furthermore,

some of the details of the VS operating systems are still being modified in

new releases. Consequently, as experience is gained with the operation of
^

NASTRAN under virtual storage operating systems, some of the conclusions

and recommendations made in this report may need to be modified.

Information regarding the characteristics of the Virtual Storage

Operating Systems and hardware performance were obtained from the IBM

manuals listed in the Bibliography. The details of the NASTRAN code were

obtained from the NASTRAN Programmer's Manual and the NASTRAN source code.

The timing for the mathematical operations was taken from previous exper-

ience with actual runs on virtual storage machines.

The report begins with a brief description of virtual storage operations

on IBM computers with special emphasis on those characteristics which are

most important for NASTRAN performance. The section on operating system con-

siderations includes the changes required to make NASTRAN operational on cur-

rent versions of the virtual storage operating systems and a discussion -of

the. use of overlay structures. Following a review of NASTRAN performance

with virtual storage operating systems, specific changes are suggested to

improve the efficiency of NASTRAN in a virtual storage environment. The

estimated effort to implement all suggested changes is included. The report

concludes with some recommended user practices and some general conclusions.

. . , - • " . - ' - 2 -



VIRTUAL STORAGE OPERATIONS

It is assumed in this report that the reader is already familiar with

the virtual storage concept and it is not the intent in this section to

present an introduction to virtual storage. However, it is desirable to

define the virtual'storage terminology used in this report and to review

those characteristics of virtual storage operations which are most important

in NASTRAN performance.

Virtual Storage Vocabulary

The definitions of terms are based on the hardware and software

developed by IBM for the implementation of the virtual storage concept.

Address Space - the set of memory addresses used by a program. VS1

and VS2 Release 1 allow a total address space of 16 megabytes. VS2 Release 2

allows each user an address space of 16 megabytes.

Demand Paging - the occurence of a page fault indicates that a new page

must be loaded into real memory before program execution can continue. In a

demand paging system, pages are never loaded until the page fault occurs

which references that page.

Density of Reference - refers to the fraction of a referenced page which

is actually used by the program.

Locality of Reference - good locality of reference means to concentrate

all storage references in as few pages as possible, not necessarily contiguous

pages.
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Page - a subdivision of the address space, 2K bytes on VS1 and 4K bytes

on VS2.

Page Fault - an interrupt which occurs when an address is generated

which falls in a page which is not in real memory.

Page Frame - a subdivision of real memory equal in size to one page

of data.

Page Replacement - a page fault signals the need to load a page in the

real memory. If all the available page, frames are already occupied, then

the required page must replace one of the pages already loaded. The job of

selecting which page to replace is the job of the page replacement algorithm.

0S/VS has chosen a technique which is closely related to the least recently

used scheme. This procedure is based on the idea that a good choice of a

page to replace will be found among the group of pages which have not been

referenced in some time, since if it has not been used recently it probably

won't be used again very soon.

Real Memory - the set of memory addresses which are physically available

on the CPU.

Thrashing - this term is applied when a system is spending more time

paging than in program execution. The worst possible thrashing situation

which can occur would be a page fault on every single instruction execution,

resulting in a performance degradation of several thousand to one. Thrashing

is usually caused by random references to an address space which is larger

than the real memory available. Thrashing is controlled by monitoring the

paging rate (i.e., page faults per second), and if it exceeds some level to

deactivate a task. The task to be deactivated may be chosen on the basis

of priority or resource requirements.
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VI0 (Virtual Input/Output) - the VI0 processor enables temporary data

sets to reside on the paging device rather than the usual secondary storage

devices. 1/0 requests issued against a VI0 temporary data set by conven-

tional access methods (such as BSAM used in NASTRAN) are intercepted before

they are executed. VI0 intercepts and simulates the channel programs asso-

ciated with the request. VI0 data sets are processed using paging 1/0 thus

eliminating channel program translation and page-fixing by the 1/0 supervisor.

Virtual Memory - the address -space which can be addressed by a relocate

CPU. Physically, the virtual memory exists on a disk storage device, and

although a program may reference virtual memory in a random fashion, the

information must be transmitted from disk to real memory one page at a time.

Working Set - the number of pages that a program actually references

over some interval of time. The size of the working set represents the

amount of real memory used -by the program.

Program Performance in Virtual Storage

The most important consideration is to keep the central processing

unit (CPU) busy doing useful work. This can be best accomplished by keeping

the working set as small as possible and still maintain reasonable paging

rates. Although there is an overhead associated with the dynamic address

translation, this time is not likely to be significant as long as the paging

rates are low enough to be supported by the paging hardware. If each piece

of data transferred from virtual memory is used only once, the address trans-

lation overhead will be rather high, but at the same time the paging rates

will also be too high for the hardware devices.
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For programs like NASTRAN the paging rate is the single most important

consideration in program performance. If the paging rate is too high, the

operating system will either give the CPU to other jobs, or if NASTRAN is

the only job in execution, the CPU will run at very low efficiency. The

paging rates can usually be reduced by increasing the size of the working

set. However, for some operations this will result in an unreasonably large

working set. To maintain efficiency on virtual storage systems the working

set must be kept small by having good locality of reference. If at the same

time the density of reference is kept high, the paging rates will be low.

Paging Devices

In designing algorithms for virtual storage systems, the upper limit

for the paging rate can be taken as the maximum that can be supported by

the available paging device. This approach is based on the assumption that

if several jobs are simultaneously executing, each job will receive its

share of CPU time and paging device time. For example, if the allowable

paging rate is 100 pages per second and 10 jobs are in execution, it is

assumed that on the average each job will receive 10% of the CPU time and

will page at a rate of 10 pages per second. If one job is using more than

its share of CPU time, say 20% in the above example, then it is assumed

that it will be allowed to page at 20 pages per second.

Available paging devices are the movable head disks, such as the 2314

and 3330, or the fixed head disk, such as the 2305 Model 1 or the 2305 Model 2.

The fixed head disks are much faster because the transfer rate involves only

the rotational delay and the read time, whereas the movable head disk also

includes the access time associated with the movement of the read head. The

paging rates for the various devices are summarized in Table 1.
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Theoretically, the size of virtual storage is limited only by the

addressing range of the computing system. In System/370 a 24-bit address

is used which allows 16 megabytes of addressable storage. In reality, the

size of virtual storage is limited by the amount of external page storage

available in the system. The capacity of the available paging devices is

summarized in Table 2.

OPERATING SYSTEM CONSIDERATIONS

VS1 and VS2 Release 1

While VS1 and VS2 Release 1 are quite different operating systems,

they bear a rather close resemblance to 0S. VS1 looks to the user very

much like 0S/MFT, while VS2 Release 1 is essentially similar to 0S/MVT.

Experience to date with NASTRAN running under these operating systems has

indicated that only modest changes are required to make the code operational.

Only two changes are required in the NASTRAN code to make it operational

under VS1 and VS2 Release 1. First, the method of core acquisition must be

modified to make it compatible with the virtual storage concept. Second,

all accidental fetches outside of the user region must be removed.

The current method of core acquisition will only allow NASTRAN to use

address space between the point at which NASTRAN is loaded and the end of

real memory. Under virtual storage operating systems, NASTRAN should be

allowed to use all parts of the address space. The change in the method of

core acquisition requires only a modest 'change to two routines - GNFIAT and

EJDUM2. Both of these routines must be modified to issue a variable GETMAIN

for the maximum possible value of the address space (16 megabytes), instead

of the maximum real address space on the machine. The necessary alters to

implement this change on Level 15.7.7 are given in Figure 1.
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TABLE 1

HARDWARE PAGING RATES

Device
Model

2314

3330

2305-1
1

2305-2

Access

.0600

.0300

--

--

Time -

Rotational
Delay

.0125

.0084

.0025

.0050

Seconds

Read
4K Bytes

.0128

.0050

.0013

.0027

Total
per Page

.0853

.0434

.0038

.0077

Paging
Rate

(pages/
sec.)

12

23

260

130

TABLE 2

CAPACITY OF PAGING DEVICES

Device
Model

2314

3330

2305-1

2305-2

Bytes
per Track

7,294

13,030

14,136

14,660

Megabytes
per Unit

26.2

94.1

4.7

10.2

Pages (4K)
per Unit

6,392

22,968

1,146

2,483
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./ CHANGE NAME=EJDUM2

./ DELETE SEQ1=290,SEQ2=360"

MAXCORE DC XL4'FFFOOO' 00001090

./ CHANGE NAME=GNFIAT

./ DELETE SEQ1=25700,SEQ2=26200

MAXCORE DC XL41FFFOOO' 00052500

Figure 1. Alters for NASTRAN Level 15.7.7.
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Under VS operating systems all addresses outside of your own address

space are fetch protected. Under real operating systems accidental fetches

outside of your region will usually not cause errors unless the data is

actually used. However, under VS operating systems any accidental fetch

outside your own address space will result in a fatal error. The only known

accidental fetch outside of the assigned address space for Level 15.5 occurs

in TRD. Changes in the code for TRD on Level 15.7.7 have removed this

accidental fetch.

VS2 Release 2

The NASTRAN "open core" concept has been implemented on IBM 360/370 by

making certain assumptions about the way in which the GETMAIN/FREEMAIN

macros operate. Chief among these assumptions are:

1. Load modules are loaded by the operating system by issuing GETMAINs

which are satisfied from the beginning of the address space. Fur-

thermore, since the GETMAINs cover blocks within the address space

(2K bytes for 0S), any space not used within the block by the load

module is freed at the beginning of the address space required for

the module.

2. User requests for working storage (GETMAINs) are satisfied from the

end of the address space in the order in which issued.

3. An area released by a FREEMAIN can be subsequently reacquired by a

GETMAIN.

Figure 2 depicts NASTRAN on IBM 360/370 based on these assumptions.

In this figure, areas 1 and 2 are acquired by the operating system to load

the modules of the NASTRAN program. At the time LINKNS01 (the NASTRAN

preface) is loaded, areas 3, 4 and 5 are all free. The initial operation

in the preface is to read the NASTRAN data card. This causes the F0RTRAN
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ADDRESS SPACE

0

REGION

"free space"

NASTRAN Load Module

"free space"

LINKNSxx Load Module

"open core"

area left free for OS SVC's

FORTRAN buffers, etc.

AREA 1

AREA 2

AREA 3

>AREA 4

AREA 5

Figure 2. Allocation of Address Space for NASTRAN
on IBM 360/370 Computers
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1/0 package to issue a GETMAIN for a buffer for FT05F001. According to

assumption (2), this GETMAIN will be satisfied from area 5. Subsequently,

a buffer for FT01F001 will be required. Then, when GNFIAT is called, it

issues a GETMAIN request for all available address space within the region.

This will be satisfied by areas 3 and 4. Based on the K0N360 parameter,

area 4 is released by GNFIAT via the FREEMAIN macro.

The additional main requirement for NASTRAN is that area 3 be contiguous

with area 2. This is required in order to address continuously from within

area 2 through the end of area 3. This is, in fact, the basis of the "open

core" implementation on IBM 360/370. Continuity is assured if assumptions

(1) and (2) are satisfied. And this has been the case on all IBM operating

systems through VS2 Release 1.

These assumptions break down, however, in VS2 Release 2. The principal

breakdown occurs under assumption {2). Under VS2 Release 2, all GETMAIN

requests are satisfied from the beginning of the address space. Referring

to the above scenario of operations during the NASTRAN preface, this means

that areas 1 and 2 will look approximately as described in Figure 2, however

area 5 will appear immediately following area 2. For NASTRAN, of course,

this means that open core is fragmented and the program cannot operate. The

exact failure is an ABEND issued by GNFIAT when the continuity test fails.

It should be possible to modify NASTRAN in such a way that it executes

properly under all current IBM operating systems. A potential problem

remains, however, and because of this a "generalized" solution may be

required. This is included in the recommended modifications. The problem is

that IBM will not commit an answer to the question regarding satisfying

assumption (3). Sufficient experience has not been gained to date to know
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the answer by experience. Furthermore, even if this assumption is satisfied

in Release 2 of VS2, there is no guarantee that the assumption will continue

to be satisfied in future releases of VS2.

The recommended changes to NASTRAN to provide compatibility of address

space acquisition across IBM operating systems are as follows:

1. Modify subroutine NASTRAN to process a FARM field coded on the EXEC

control statement. Two parameters are needed. They are

0PENC0RE = ™ A T M smd K0N360 = nnnK. The values for the para-| GETMAIN j

meters should be stored in I0TABLE.

2. Modify the SUBSYS deck for LINKNS01 so that EJDUM2 is called in that

link.

3. Rewrite the EJDUM2 subroutine in its entirety. If 0PENC0RE=GETMAIN

is coded, EJDUM2 will issue a GETMAIN as the first operation in any

link. This should insure the acquisition of an address space con-

tiguous with the link. By looking in the inter-link communication

vector (DATAB) , EJDUM2 will know in which link it is operating. Its

operations in LINKNS01 will differ somewhat from other links. If

0PENC0RE=LINKEDIT was coded, EJDUM2 will set the last address of

open core (LEND) to the last address in the link. The LINKEDIT

option provides a method of operating open core entirely within the

link. This may be required if assumption (3) does not hold up.

Such an option requires a separately linkedited version of NASTRAN.

4. Modify subroutine GNFIAT to account for the fact that the initial

address space acquisition has already occurred in EJDUM2.



Overlays in Virtual Storage

Since the virtual storage operating system loads code only on demand,

it is possible to remove the overlay structure and still keep the minimum

amount of code resident in real memory. When a program without an overlay

structure is loaded for execution, the program is read first from its library

into real memory by the loader. The loader finds free page frames, one at

a time, until the entire program has been located in virtual storage. This

operation will not cause any paging activity unless the program is so large

that it takes all of the available page frames. In this case, the first

pages will be written to the paging device to make room for later pages.

When execution finally begins, the program is dispatched by a branch to its

entry point. If this page has been paged out, it must then be paged back

in and execution begins. Since the NASTRAN object library consists of about

seven million bytes, each loading of the program without overlay would

.require a large number of unnecessary paging operations.

When a program is loaded for execution with an overlay structure, only

the root segment needs to be loaded before execution can begin. With a good

overlay structure, there will be little or no paging of the code during

execution. In the case of NASTRAN, there will usually be a modest amount of

paging activity because a single overlay often contains code which is not

used for every execution. If the overlay structure were removed from

NASTRAN, it would not only cause a very high paging rate at the beginning of

every execution, but would also tend to fill the primary paging device. For

'example, each module of a 2305 Model 1 fixed head disk will only hold about

five million bytes of information. In addition, almost half of the available

address space would be used for code.
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During execution the program without an overlay structure must rely on

paging operations to provide the code as needed. Therefore, when control

passes from phase to phase during execution, the old working set is gradually

replaced by'the pages making up the new working set. Those pages which have

been changed will have to be written out if real memory is highly utilized.

Some of the page out operations will probably be just wasted motion, because

the change in the page was not really essential (for example, an intermediate

work area).

The operation of a program using overlays is quite different. When a "

new segment is requested (either implicitly or explicitly) all of the page

frames occupied by the current segment are released immediately with no

paging out of changed pages. The new segment is then loaded directly from

the program library as if it were a new program. The load modules can be

stored on the relatively slow movable head disks as is the current practice

on real memory machines.

It is recommended that NASTRAN use an overlay structure on virtual

storage machines for the following reasons:

1. There is less contention for page frames because pages are released

"in blocks when a segment ends.

2. Loading the working set for each segment is faster because there is

no page out activity.

3. The initial program load is faster because only the root segment

must be loaded.

4. Almost half of the address space will be saved for NASTRAN operations.

5. Valuable space on the high-speed paging device will be saved for

more important operations.
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The performance of a program in a VS environment is not very sensitive

to the details of the overlay structure. The main reason for having "an

overlay structure with large programs is to avoid overloading the virtual

storage and the paging devices. The use of any reasonable overlay struc-

ture will usually result in only a modest number of paging operations.

Consequently, it is recommended that NASTRAN use the same overlay structure

on virtual storage machines as on real storage machines.

REVIEW OF CURRENT NASTRAN CODE

Almost all matrix operations in NASTRAN and some of the data processing

subroutines are provided with spill logic to be used in those cases where

the arrays being processed are too large for main memory. This spill logic

can be thought of as a kind of software paging where the page size is 100K

bytes or more rather than the usual 4K bytes in virtual storage operations.

In all cases where spill logic is provided, and in most other parts of the

NASTRAN code, the working space is used in a random way. This random use

of the working space will usually cause excessive paging if the code attempts

to use more working space than is available in real memory.

The relatively large address space available with virtual storage will

allow NASTRAN code to operate on matrices and tables approaching sizes of a

million words without the use of spill logic. One of the important tasks

in the review of the current code is to calculate the paging rates when the

spill logic is. replaced by .the use of a large virtual address space. A

second major task in the review of the current code is to review the working

space requirements for all modules without spill logic with regard to their

performance in a virtual storage environment. The working space was taken

as a point of departure in the review of the NASTRAN code because all sig-
P

nificant data operations in NASTRAN take place in the working space area.
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Summary of Working Space Requirements

A summary of the working space requirements was prepared for use as an

aid in the review of the code for the functional modules and the matrix

operations. The notation in the tables is .the same as that used in the

NASTRAN Programmer's Manual.

Table 3 tabulates the working space requirements and the basis for the

spill logic, if any, for each of the basic matrix subroutines. Further

details may be found in Section 3.5 of the Programmer's Manual.

Table 4 tabulates the working space requirements for each of the

functional modules. Each functional module is identified as belonging

to one of four groups depending on the nature of the working space require-

ment. The four groups are defined as follows:

Group 0 - modules which have no working space requirement in the "open

core" region. Small working arrays may be provided within the module code.

Group 1 - modules which require space for vectors or tables which do

not exceed eight times the number.of grid points in the finite element model.

None of these modules are provided with spill logic.

Group 2 - modules which require space for tables or matrices of variable

sizes. Spill logic is provided in those cases where the working space

requirements may be large.

Group 3 - modules for which the working space requirements are estab-

lished by one or more matrix routines. . In these cases the basis for any

spill logic is given in Table 3.
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NAME

ADD

CDC0MP

DEC0MP

DMPY

| FBS
I
i GFBS
I

1 MERGE

| MPYAD-1
| .
j MPYAD-2

| MPYAD-3
i

| PARTN
i

| SADD

I SDC0MP

' TRNSP

TABLE 3

WORKING SPACE FOR MATRIX SUBROUTINES

WORKING SPACE SPILL LOGIC

None

2*DEC0MP

B(B+B) + BC + (B+B)C + CC

Diagonal Matrix

Right-Hand Sides

Right-Hand Sides

1 Column

No

2*DEC0MP

BR+BC+CC-t-C(B+B)

No

Columns of R .H.S .

Columns of R.H.S .

No

Right-Hand Matrix plus Result Matrix! Columns of Matrices

Packed Left-Hand Matrix

Left-Hand Matrix

1 Column

1 Column

i(Active Columns)2

Full Matrix

Columns of Matrix

Columns of Matrix

No

No

Rows of Triangle

Submatrices
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In some cases operations within the same functional module have dif-

ferent working space requirements, and hence a single module may be identi-

fied with more than one group. Only the critical working space requirements

are listed in Table 4 for each of the functional modules. Further informa-

tion may be obtained in Section 4 of the Programmer's Manual.

Input/Output Operations

With the exception of card image processing, printed output and user 1/0

in the INPUTT and 0UTPUT modules, all input/output operations in NASTRAN are

accomplished through 10360 which utilizes BSAM macros. Since the operations

occur at the block level (GIN0 accomplishes the blocking/deblocking), they

can be optimized for the various types of secondary storage units available

in any given computer configuration. This optimization is still valid under

VS operating systems.

VS2 offers other possibilities, for example VI0. The user can specify

VI0 through JCL and, as a result, its use is transparent to the operating

program. Because of the transparency, some experiments could easily be con-

ducted CVI0 can be used only for temporary data sets such as PRIxx, SECxx

and TERxx in NASTRAN). However, the VS2 literature indicates that performance

improvements can be expected through VI0 only when more than 7-9 blocks per

track are used. Since the NASTRAN standard is usually 1-3 blocks per track,

no performance gain is anticipated in this area.
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TABLE 4

WORKING SPACE FOR FUNCTIONAL MODULES

MODULE

ADD

ADDS

BMG

CASE

CEAD

CYCT1

CYCT2

DDRMM

DDR1

DDR2

DEC0MP

DPD

DSCHK

DSMG1

EMA

EMG

FBS

FRRD

GROUP

3

3

1

2

3

3

2

3

2

3

3

2

3 . .

3

3

3

2

3

2

2

2

3

2

' 3

|

WORKING SPACE

See ADD in Table 3

See SADD

BGPDT + 26* Boundary Points

: CASECC

DET - See CDC0MP

HESS - See CDC0MP, GFBS

HESS - 6N2 ••- 8N

INV - See CDC0MP

INV - 14 Vectors

See MPYAD

; See MPYAD

Largest 0FP Output Record.

; • 'See MPYAD

i See MPYAD

See MPYAD, FBS

• See SDC0MP, DEC0MP, CDC0MP

EQDYN + 1 Data Table

. See MPYAD

. Same as SMA1

Complete Packed Matrix

CSTM, MPT, DIT, C0NGRUENT

See FBS, GFBS in Table 3

Vector *Frequencies

See MPYAD , SDC0MP , CDC0MP , DEC0MP , FBS , GFBS

•

SPILL LOGIC

No

No

No

No

Yes

Yes

No

Yes

No

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

1 Pivot Point

No

Yes

1 Frequency

Yes
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TABLE 4 (Continued)

WORKING SPACE FOR FUNCTIONAL MODULES

!

! MODULE
!

!

! GKAD

I GKAM

: GPCYC

j GPFDR
i

GPSP

1 GPWG
!
j

GP1

GP2

GP3

GP4

IFP1

INPUT

INPUTT1

INPUTT2

MATGPR

MATPRN

MATPRT

MCE1 .

MCE2

MERGE

MPYAD

MTRXIN

GROUP

3

3

1

1

1

3

1

1

2

1

2

0

0

2

1

1

1

1

3

1

3

2 ;

, ~ _ . .

WORKING SPACE

See MPYAD

See MPYAD

EQEXIN+CYJOIN+USET+Vector

EQEXIN + 1 Vector

USET+SIL+GPL

See MPYAD

2(Grid+Scalar)

2 (Grid+Scalar)

2(Grid+Scalar)

6*Grid+Scalar

CASECC Record

None

None

Longest Record

GPL+USET+SIL

1 Column of Matrix

1 Column of Matrix

1 Vector

See MPYAD in Table 3

1 Column of Matrix

See MPYAD

EQEXIN + 1 DMIG

r

SPILL LOGIC

Yes

Yes

No

No

No ;

Yes

No

No '

No

No

No

No

No

No

No

No

No

No

Yes

No

Yes

Partitions of DMIG
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TABLE 4(Continued)

WORKING SPACE FOR FUNCTIONAL MODULES

MODULE
1

0FP

0PTPR1

0PTPR2

0UTPUT1

0UTPUT2

0UTPUT3

PARAM

PARAML

PARAMR

PARTN

PLA1

PLA2

PL A3

PLA4

PL0T

PLTSET

PLTTRAN

PRTMSG

PRTPARM

RAND0M

RBMG1

RBMG2 i

RBMG3 !

RBMG4 :

|
| GROUP
'

0

2

2

0

2

0

0

0

0

1

2

1

1

r\

1

2

0

0

0

2

3

3

3

3

WORKING SPACE

None

6 Data Tables

5 Data Tables

None

Longest Record

None

None

None

None

1 Column of Matrix

Same as SMA1

1 Solution Vector

1 Solution Vector

Same as SMA1

Grid + 8*Points in Plotted Set

Element ID + Grid ID for Plotted Set

None

None

None

2*NFREQ+5*RANDPS+NTAU+PRETAB .
+5*POINTS+POINTS*NFREQ

See PARTN

See SDC0MP

See MPYAD, FBS

See MPYAD

SPILL LOGIC

No

No

No

No

No

None

No

No

No

No

Yes

No

No

Yes

No

No

No

No

No

1 POINT*NFREQ

No

Yes

Yes

Yes
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TABLE 4 (Continued)

WORKING SPACE FOR FUNCTIONAL MODULES

MODULE

READ

RMG

SCE1

SDRHT

SDR1

SDR2

SDR3

SETVAL

SMA1

SMA22

SMA3

SMP1

SMP2

SMPYAD
•

S0LVE

; SSGI

SSG2

SSG3

SSG4

GROUP

3

2

3

2

2

3

3

2

3

2

2

2

0

2

2

2

3

3

3

3

3

2
1

3

3

3

i - - -

I WORKING SPACE

DET - See DEC0MP, SDC0MP

GIV - Triangle of Matrix

INV - See SDC0MP

7 Vectors

Triangle of RADMTX

See MPYAD, DEC0MP, GFBS

See PARTN

14*Elements+Solution Vector

See MPYAD

EQEXIN + 1 Vector + CASECC + CSTM

Stress Matrices + 1 Vector

S0RT1 Output Group

None

CSTM+MPT+GPCT+submatrices
for 1 pivot

Same as SMA1

Matrix for General Element

See SDC0MP, MPYAD, FBS

See SDC0MP, FBS, MPYAD

See MPYAD

See .MPYAD

See DEC0MP, SDC0MP, FBS, GFBS

1 Load Vector

See MPYAD

See FBS, MPYAD

See MPYAD, FBS

SPILL LOGIC

i

Yes

Rows

Yes

No

No

. Yes

No

No

Yes

No

Subset of Stress Matrices

Subset of Output Group

No

1 Column

1 Column

Yes

Yes !

Yes

Yes

Yes

Yes

No
i

Yes

Yes

Yes
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TABLE 4(Concluded)

WORKING SPACE FOR FUNCTIONAL MODULES

1

MODULEi

SSGHT

TABPCH

TABPRT

TABPT

TA1 .

TRD

TRHT

TRLG

TRNSP

' UMERGE

UPARTN

VDR

VEC

XYPL0T

XYTRAN

GROUP

2

2

2

0

fj '

2

3

2

3

2

3 .

2

3

3

3

1

1

' 2

2

WORKING SPACE

3 Vectors + 2 Tables

2*Longest Record

1 Record of Table

None

Grid*Connections+ECT

Vector*Time Steps

See MPYAD, DEC0MP, SDC0MP

7 Vectors + Nonlinear Tables

See SDC0MP or DEC0MP

7 Vectors + Nonlinear Data

see "MPYAD
2*USET + 3*Load Points + 2*SIL

See TRNSP in Table 3

See MERGE

See PARTN

EQDYN + Solution Vector

USET

(X.Y)Pairs to be Plotted

Curve Data for 1 Frame

1
SPILL LOGIC

No

: No

No

! No

: Grid*Conn.

1 Time Step

Yes

No

Yes

No

Yes

No

Yes

No

No

No

No

Single Pair

Delete Curves
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Matrix Operations

When considering the efficiency of NASTRAN, particularly in the solution

of large problems, the matrix operations are the most important. Usually the

large memory requirements and the long running times are associated with the

matrix operations. Matrices in NASTRAN are stored by columns in a packed

string format. It does not make any difference whether the matrices are

stored by rows or by columns. The important consideration is that once a

choice has been made, the matrix operations must be designed to operate

efficiently for the type of storage selected.

In reviewing the code for the matrix operations, it will be assumed

that the address space is larger than the real memory space. In other words,

the hardware paging will be used to the maximum extent possible. The NASTRAN

spill logic will not function unless the working space requirement exceeds

the available virtual address space.

It will also be assumed that the matrices are large compared to the

size of a single page. A page containing 4K bytes will hold about 500 terms

for a dense matrix and as few as 200 terms for a very sparse matrix. The

performance of the matrix routines for smaller matrices will be less critical

because the density of reference will tend to be higher. For example, if

only a single term is used from each column for a given operation, the

density of reference will be higher if several columns are contained within

a single page.

Partition and Merge

The working space requirement for PARTN and MERGE is relatively small

as it consists only of a single column plus a packed array of one word for

each 31 rows for use as a mapping function. No working space is required for
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the matrices to be partitioned or merged, as the NASTRAN 1/0 routines provide

the nonzero terms sequentially one at a time. No spill logic is provided for

this matrix operation.

Matrix Addition

The ADD routine does not require any working space, as the NASTRAN 1/0

routines provide the nonzero terms sequentially one at a time. The result of

each unit addition is immediately transferred to the output buffer.

The SADD routine requires working space for a single column of the

result matrix. The input matrices are read by the NASTRAN 1/0 routines •

sequentially a single term at a time. No spill logic is provided for this

routine.

Matrix Multiply/Add

The general multiply/add operation may be written as follows:

A B + C = Dmn np mp mp

In Method 1 for MPYAD working space is required for the [B] and [D] matrices

as shown in Figure 3. If the address space required for the shaded areas of

the [B] and [D] matrices is larger than the real memory available, the

shaded areas will be paged once for each nonzero term in the [A] matrix.

The paging rate for the [B] matrix is calculated as follows:

Total Number of Pages = p(mnp.)
A.

Total CPU Time = mnpp. M

where p. = density of [A] and M = time for single multiply/add operation.

The paging rate required to keep the CPU busy is the ratio of the total

number of pages to the total CPU time. Therefore, the paging rate is given
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as follows:

Paging Rate = g

For M = 10 microseconds, the paging rate for the [B] matrix will be 100,000

pages per second. A similar paging rate will apply for the [D] matrix. A

similar calculation will give the same paging rate for the transpose option

of Method 1.

In Method 2 for the multiply/add operation, the main working space

requirement is for packed columns of the [A] matrix as shown in Figure 4.

If the address space required for the [A] matrix is larger than the real

memory available, the [A] matrix will be paged a number of times equal to

the number of columns in the [B] matrix.

The resulting paging rate for Method 2 is calculated as follows:

P(mnp.)
Total Number of Pages = =p-̂ —

. Total CPU Time = mnpp.p M
A D

where P is the number of nonzero terms per page.

The paging rate required to keep the CPU busy is the ratio of the total

number of pages to the total CPU time. This paging rate is given as follows:

1Paging Rate =
PMpB

The minimum paging rate will result when the [B] matrix is full. However,

this method is rarely used when the [B] matrix is full, as Method 1 is

usually more efficient. The paging rate for p = 1, P = 500 terms per page,
D

and M = 10 microseconds is 200 pages per second. If the [A] matrix is sparse,

which is the usual case for Method 2, the paging rate will be greater because

of the reduced number of matrix terms per page.
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The paging rate for the transpose option of Method 2 will be the same

as the non-transpose option with p taken as unity, as no advantage is taken

of the density of the [B] matrix in the transpose option.

In Method 3 for the multiply/add operation, the main working space

T
requirement is for unpacked columns of the [A] matrix (rows of [A] ) as

shown in Figure 5. If the address space required for the [A] matrix is

larger than the real memory available, the [A] matrix will be paged once

for each nonzero term in the [B] matrix.

The paging rate is calculated as follows:

m(npPB)
Total Number of Pages = =

Total CPU Time = mnpp M

The paging rate is given as follows:

Paging Rate = ̂

For M = 10 microseconds and P = 500 terms per page, the paging rate for the

[A] matrix will be 200 pages per second.

The multiply option with a diagonal matrix (DMPY) requires working space

for only a single column, and no spill logic is provided.

Matrix Decomposition

For symmetric decomposition (SDC0MP) the working space required is iC2,

where C is the number of active columns. If the working space required for

decomposition operations is larger than the real memory available, the tri-

angular array with the side dimension of C will be paged a number of times

equal to the number of rows in the matrix. The paging rate is calculated

as follows:
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C2NTotal Number of Pages = i ——

Total CPU Time = iC2NM

where N is equal to the number of rows in the matrix.

The paging rate required to keep the CPU busy is given as follows:

Paging Rate = -^

For the case of 500 nonzero terms per page and a unit multiply time of

10 microseconds, the paging rate will be 200 pages per second.

The paging rate for unsymmetric decomposition (DEC0MP) will be the

same because the number of terms is four times as great and the CPU time

is also four times as great. The paging rates for complex decomposition

(CDC0MP).will only be about one-half as much because the number of\ terms

per page is one-half as great and the unit multiply time is almost four

•times as great.

Forward/Backward Substitution

In the Forward/Backward Substitution operation working space is

required for the right-hand- sides. The active pages at a particular time

.during the forward pass ̂ are shown in Figure 6. As indicated in Figure 6

the terms from a single row are operated on with strings from the tri-

angular factor and the results are stored in the associated strings for

the right-hand sides. If the address space for the shaded areas is greater

Cthan the real memory, ^- L pages will be required for each shaded area and

for each row of the matrix. The paging rate is calculated as follows:

Total Number of Pages = 2 (^- L)N
O

Total CPU Time = CNML
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where N = the number of rows on the right-hand side,

L = the number of columns on the right-hand side,

C = the number of active columns in the triangular factor, and

S = the number of consecutive nonzero terms in the string.

The corresponding paging rate is as follows:

2
Paging Rate = <^

If the triangular factor is very sparse, that is S = 1, and if M = 10

microseconds, the resulting paging rate is 200,000 pages per second. If

single page buffers are used, the maximum value for S is about 500, which

would result in a paging rate of 400 pages per second.

Matrix Transpose

For the transpose operation working space is required for the whole

matrix. If the required working space is greater than the available real

memory, the paging rate is calculated as follows:

Total Number of Pages = NL

Total CPU Time = NLI

where N = the number of rows,

L = the number of columns, and

I = input/output time.

The input/output time is the CPU time required for the unpacking and packing

of the nonzero terms in the matrix. The paging rate is as follows:

Paging Rate = •=-

For dense matrices, the input/output time is about the same as the unit

multiply time. If I is taken as 10 microseconds, the paging rate is

100,000 pages per second.
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Sparse matrices should be transposed by using the transpose option.of

multiply/add to operate on an identity matrix. The paging rate for trans-

posing sparse matrices will be the same as that for multiply/add Method 2.

Summary of Paging Rates for Matrix .Operations

The paging rates for the matrix operations are summarized in Table 5

for computer models 145, 158 and 168. The times for the unit multiply

operation and the unit input/output operation were both taken as 80 micro-

seconds for the model 145, 10 microseconds for the model 158, and 3 micro-

seconds for the model 168.

A review of Table 5 indicates that it is not possible to support the

paging rates if the current NASTRAN code is used with a large address space.

This is equivalent to using hardware paging rather than software paging.

Some of the operations could be supported on the model 145 with a fixed

head disk. However, this combination of hardware is extremely unlikely.

In all other cases, the paging rates are either at the limit of the avail-

able devices, or in many cases, far exceed the limits of the available

devices. It is concluded that hardware paging cannot be used with the

current NASTRAN code.

Executive Operations

Many of the executive modules have essentially no working space

requirements at all. Consequently, these modules will operate in very

modest amounts of real memory and paging rates will be extremely low.
v

Several of the executive modules require working space for tables.

Since these tables are used in a random way, there must be enough real

storage to support the table size or paging rates of several thousand
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TABLE 5

PAGING RATES FOR MATRIX OPERATIONS

r—
Matrix Operation

MPYAD - 1

MPYAD - 2

MPYAD - 3

SDC0MP

CDC0MP

FBS - Dense

Sparse

TRANS - Dense

Sparse *—

Paging

Model 145

25,000

25

25

25 '.

12

50

25,000 ;

12,500

25

Rate - Pages/Second

Model 158 \

\
200,000 i

200

200

200

100

. 400

200,000 ;

100,000

200

Model 168

700,000

700

700

700

350

1,300

700,000

300,000

700
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pages per second will result. However, the real storage requirement for

these modules is not likely to be greater than 200K bytes and frequently

much less. Also, the execution time for these modules is relatively short.

The only executive routine for which a large amount of working space

is required is the subroutine for sorting the bulk data deck (XS0RT). The

XS0RT routine uses the working space in a random way, consequently high

paging rates can be expected unless enough working space is provided to

hold the complete bulk data deck. Since only a few items of data are

used from each page, the paging rates can be expected to be at least

several thousand pages per second.

Functional Modules

The working space requirements for the functional modules are given in

Table 4. The discussion of the performance of the existing code for the

functional modules is organized according to the groups specified in the

second column of Table 4.

All of the functional modules in Group 0 have essentially no working

space requirements. All operations either take place in small local arrays

within the code or in a nominal working space of a few words. This group

of modules offers no special problems with regard to efficiency under VS

operating systems.

The functional modules in Group 1 all use the working space in a random

way. Consequently, the paging rates for these modules will be several

thousand pages per second unless the available real memory is at least

equal to the required working space. On the other hand, the working space

for the modules in this group is a well-defined function of problem size,
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and the running times for these modules are relatively short. Therefore,

the modules in Group 1 should not cause any special problems with regard to

efficiency under VS operating systems unless the required working space is a

large fraction of the available real memory.

The PL0T module is a little different than the other modules in Group 1.

Although the working space for the PL0T module is similar to that for the

other modules in Group 1, the amount of code in a single overlay is much

greater. On real machines, the minimum core requirement is often controlled

by the PLOT module, especially for small problems. However, since much of

the PLOT code is dormant at any particular time in execution, the VS

operating system will page out much of the code, and the working space

requirement should not be any greater than other modules in Group 1.

Some of the functional modules in Group 2 are not provided with spill

logic. In real memory systems these modules will issue a fatal error message

if there is not sufficient main memory to support the working space require-

ments. In VS systems these modules will have high paging rates if there is

not sufficient main memory to support the working space requirements. Al-

though these modules without spill tend to have small working space require-

ments, this is not necessarily always true. Consequently, it is possible

that many of the modules in this group will experience high paging rates

with VS operating systems, particularly for large problems.

The inverse power option for READ has a working space requirement for

7 vectors and CHAD has a similar requirement for 14 vectors. In both cases

a fatal error message will be issued by real memory operating systems if the

required working space is not available. However, with VS operating systems

the working space requirement is less, because not all vectors are needed
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at the same time. If working space is provided for only two vectors, the •

average paging rate over the period of an iteration is less than one page per

second. However, since some of the vectors are used several times per

iteration, local paging rates of several hundred pages per second would

occur. This could be relieved by providing working space for four vectors,

as three of the vectors are used only once for each iteration. In any event,

the high paging rates would be of very short duration as not more than 10 or

20 pages are likely to be required for each vector.

The modules in Group 2 with spill logic can be expected to have working

space requirements for large problems which will exceed the available real

memory. When the working space requirement for any one of these modules

exceeds the available real memory, the paging rates will far exceed the

capacity of the fastest paging devices. The high paging rates will result

in poor performance with VS operating systems.

The working space requirements for the functional modules in group

3 are controlled by one or more matrix operations. These modules can be

recognized in Table 4 by the references to the various matrix operations

given in the column headed Working Space. - The operation of these modules

will be dominated by the matrix operations, hence their performance will be

the same as that for the individual matrix operations.

SUGGESTED CHANGES TO NASTRAN CODE

In considering changes to the NASTRAN code to improve performance under

VS operating systems, it is important to recognize that actual field exper-

ience with VS is rather limited and that the operating systems are still

undergoing significant modifications. Under these conditions, it seems

desirable to make all changes in such a way as to maintain maximum possible

flexibility in°the program operations with virtual storage operating systems.
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Another important consideration is to make all changes in a machine-

independent fashion without degrading the performance on any of the real

memory machines. With the exception of the LINKEDIT option associated with

Release 2 of the VS2 operating system, all suggested changes are machine

independent. The GETMAIN option for VS2 Release 2 described in the section

on operating system considerations is machine independent. The LINKEDIT

option is only provided as a back-up procedure because the method of

acquiring address space is not yet well defined for Release 2 of VS2.

The current NASTRAN code will operate satisfactorily if the address space

is limited to that which can be reasonably supported by the available real

memory. Although this procedure will not take any special advantage of

virtual storage, it will restrict the paging rates to reasonable values.

The procedure for doing this is given in the section on recommended user

practices.

The single 'most important change needed in the code is to provide both

the size of the address space and a. reasonable value for the available real

memory. The address space is specified on the JOB card, and stored by the

operating system in the same way -as for real memory systems. A reasonable

value for the real memory could be specified as a parameter on the EXEC card,

and the difference between the address space and the real memory could be

stored in the SYSTEM common block, which for the purposes of discussion will

be called SYSTEM(V). Then, if SYSTEM(V)=0, it either means you are on a

real memory machine or for some reason do not choose to use the virtual

memory space. With this provision any routine can access SYSTEM(V) and

take whatever action is appropriate for that particular routine.

f •
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The allocation of a fixed amount of real memory on a VS machine is

inconsistent with the whole concept of virtual storage. On the other hand,

if there is not enough real memory to support the programs in execution at

any one time, the performance will be very poor. If the real memory require-

ment is too large a fraction of the total available real memory, the

required space will be difficult to acquire and the wall clock times will be

very long . In general, the operating system will not permit a program to

execute unless there is sufficient real memory available to support the

working space requirement. If the real memory is insufficient to support the

program operations, the paging rates will tend to exceed allowable values,

and the operating system will deactivate the job. The deactivation procedure

will make the wall clock times long especially when there are other jobs

in execution at the same time with smaller real memory requirements.

The major objective of the suggested code modifications is to reduce

the amount of working space to the smallest possible value without unreason-

able increases in the CPU time. At the same time, the paging rates must

be kept within the limits of the available paging devices. Paging rates

that are beyond allowable values for extended periods of time will always

lead to poor performance.

Input/Output Operations

As indicated in the section on Input/Output Operations under the Review

of Current NASTRAN Code, no obvious changes to the input/output operations

appear warranted. One possibility for a small improvement would be to have

all GIN0 buffers be one page in length and aligned on page boundaries. Such

a procedure would be relatively easy to implement but it is felt that its

payoff in terms of performance improvement would be small.
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If it is desired to implement this feature, it could be accomplished as

follows:

(YES
1. Add to the FARM field the parameter PAGEBUFF to be coded PAGEBUFF=|N^

and process this parameter in NASTRAN.

2. Add to the EJDUM2 implementation discussed earlier an additional

GETMAIN for, say, 20 pages.

3. Modify GIN0 to bypass the buffer addresses which are passed through

a CALL 0PEN and substitute instead a page buffer from a pool of

buffers established by EJDUM2.

4. Modify GNFIAT to force the SYSBUF parameter to one page.

Matrix Operations

No changes in the code are recommended for PARTN, MERGE, ADD, SADD,

or DMPY. None of these routines have large working space requirements.

Consequently, there should be no degradation of performance under VS operat-

ing systems.

All matrix routines which have large working space requirements are

also provided with spill logic. If a limitation on the amount of working

space is provided to these modules, the existing spill logic, with slight

modifications can be used to improve their performance under VS operating

systems. In general, this objective can be accomplished by modifying the

code in each of these modules to reference SYSTEM(V) in order to obtain an

allowable value for the working space. Details for each of the matrix opera-

tions are given in the following sections.
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Changes for Multiply/Add

The arithmetic time for Method 1 is a constant regardless of the amount

of working space. The product of the time for spill operations and the

amount of working space is also a constant. Therefore, the product of total

CPU time and time for real memory occupancy will be a minimum if working space

is provided for only a single column of the right-hand matrix. However, this

will result in excessive paging rates.

If working space is provided for the shaded areas of the right-hand

matrix and the result matrix as shown in Figure 7, the paging rates can be

reduced in direct proportion to the number of columns, c, per pass. The

number of columns per pass can be controlled by limiting the amount of work-

ing space. The working space can be limited by making a CALL to C0RSZ and

subtracting the contents of SYSTEM (V).

The paging rate is calculated as follows:

Total Number of Pages = (mnp.)-̂ -

Total CPU Time = mnpp. M
f\

1 . •Paging Rate = cPM

For P = 500 pages, M = 10 microseconds, and c = 20 columns, the paging rate

is 10 pages per second.

Virtual address space can be provided for the left-hand matrix in a

machine-independent way by using the option for multiple buffers already

available in the NASTRAN code. The address space remaining after subtract-

ing the working space, SYSTEM(V), can be used for multiple buffers. Only a

modest change is required in the code for MPYAD to implement this option.
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If SYSTEM(V) = 0, no virtual memory is available, and the code would operate

in the usual way. Multiple buffers should not be used in the case of a

single pass (c=p), because in this case there is never any real advantage

and c may be small enough to cause high paging rates.

If the full address space is used for Methods 2 and 3, the paging rates

shown in Table 5 are much less than those for Method 1, but they still

exceed allowable values. The paging rates for both Methods 2 and 3 can be

reduced to negligible values by assigning working space based on the dif-

ference between C0RSZ and SYSTEM(V). This modification will cause both

Methods 2 and 3 to perform in about the same way as on a real memory machine.

If the left-hand matrix is dense, the number of passes will be large and

the wall clock time will be too large for good performance in a virtual

environment. The wall clock time can be reduced by providing multiple

buffers in the virtual address space for both the right-hand matrix and the

result matrix when the number of passes is greater than one.

Changes for Decomposition Routines

The only change recommended for symmetric decomposition is to refer to

SYSTEM(V) in allocating working space in order to control the paging rates.

The spill logic in the current symmetric decomposition will operate very

well in virtual memory systems, as long as the working space is .limited to

some reasonable fraction of the total available real memory.

The same procedure for allocating working space should be used for

unsymmetric decomposition. In this case the spill logic is not nearly as

effective as the new symmetric decomposition, because of the relatively

large number of transfers between main storage and secondary storage. How-

ever, no further changes are suggested for unsymmetric decomposition. If a
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new unsymmetric decomposition is designed, consideration should be given to

virtual storage operations at that time.

Changes for FBS Routines

The paging rates for the FBS routines can be controlled by using the

existing spill logic to hold several columns from the right-hand side in the

working space. The paging rates will be negligible, but the wall clock times

will be very large in the case of multiple passes. The wall clock times

can be reduced by providing multiple buffers for the triangular factor in

the virtual memory space.

If a single column of the right-hand side is held in the working space

and multiple buffers are provided for the triangular factor, the paging rate

for the triangular factor is calculated as follows:

O"M/^ T

Total Number of Pages = —5—

Total CPU Time = 2NCLM

Paging Rate = J- '

If P = 500 nonzero terms per page and M = 10 microseconds, the resulting

paging rate is 200 pages per second. The total number of pages and the

paging rate are reduced in direct proportion to the number of columns of

the right-hand side held in the working space for each pass. If working

space is provided for 20 columns, the paging rate is reduced to 10 pages per

second.

The number of columns on the right-hand side used for each pass can be

controlled by the user 'with his specification of the working space. The

p'rogram determines the amount of working space by referencing SYSTEM(V)
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and C0RSZ. If there is insufficient buffer space in virtual memory for

the complete triangular factor, all available space will be used, and the

remaining part of the factor will be transferred from secondary storage

to main memory in the usual way.

Changes for Transpose Routine

The current transpose routine in NASTRAN is not effective for sparse

matrices and should never be used for this case. Sparse matrices should

always be transposed by using multiply/add with the transpose option opera-

ting on an identity matrix. The only change recommended for the current

transpose routine is to use SYSTEM(V) in determining the amount of working

space. This procedure will avoid the high paging rates discussed in

previous sections. The routine will operate with the regular spill logic in

those cases where the complete matrix to be transposed cannot be held in

the available working space.

Changes in the Executive Operations

No changes are suggested for any of the executive modules except XS0RT.

.The maximum working space required by all other executive routines is not

large and in any event these modules do not have long running times, even

for large problems.

The XS0RT routine should be modified to reference SYSTEM(V) in order

to determine the amount of working space available. This will prevent the

extremely high paging rates which would be associated with the use of

virtual memory for sorting operations. If the total address space were

used for XS0RT, the paging rates could easily reach tens of thousands of

pages per second. This high paging rate results from the poor locality of

reference and the poor density of reference associated with sorting operations,
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The existing spill logic in NASTRAN confines all references to a well-

defined working space.

Changes for Functional Modules

Very few direct changes are suggested for any of the functional modules.

Reference to Table 4 indicates that several of the functional modules (Group

0) have virtually no working space requirements. No changes are recommended

for any of the functional modules in Group 0.

Many of the functional modules are in Group 3 for which the working

space and paging rates are controlled by one or more matrix routines. No

modifications are needed for any of the modules in this group. The suggested

modifications for the basic matrix routines will automatically provide for

efficient operation of the functional modules in Group 3.

The functional modules in Group 1 have working space requirements that

do not exceed eight times the number of grid points. None of the modules in

this group are provided with spill logic. Since other routines, such as

FBS and MPYAD, will require working space for several vectors, the working

space for modules in Group 1 can be expected to be less than that required

by other operations. Consequently, no changes are recommended for any of

the functional modules in Group 1.

All functional modules in Group 2 with spill logic are likely to have

very high paging rates for large problems. However, the paging rates for

these modules can be easily reduced to negligible values by using the

existing spill logic. The only coding change required is to reference both

SYSTEM(V) and C0RSZ when the amount of working space is determined.
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The only remaining functional modules are those in Group 2 without spill

logic. All of these routines compare the working space requirement with

that which is available, and in real memory machines issue a fatal error

message if there is insufficient working space. In order to prevent thrashing

on virtual machines, the same test should be made and a fatal message should

be issued if the working space is insufficient. The amount of working space

available should be determined by referencing both SYSTEM(V) and C0RSZ.

The working space requirement for most of the functional modules is the

same on virtual machines and real machines. However, the inverse power

option for eigenvalue analysis is an important exception to this rule. For

example, in the case of real eigenvalue analysis working space is required

for seven vectors on real memory machines, even though only two are used at

any one time. Consequently, on virtual machines working space is needed for

only two vectors. However, there will be local high paging rates unless

working space is provided for four vectors. This is because four of the

vectors are used several times in each iteration*

The vector operations in NASTRAN, such as those used in the inverse

power method of eigenvalue extraction and in direct transient response

require special consideration. The wall clock time for these operations is

rather long because the triangular factors are transferred between secondary

storage and main storage during each iteration. For direct transient

response, this may be as many as a few thousand times. It is tempting on

virtual storage machines, particularly for smaller problems, to place the

triangular factors in virtual storage and thereby substantially reduce the

wallclock time for these vector operations. However, this should not be

done, because the paging devices cannot support the paging rate required for
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this application. The paging rates for equation solution with a single

right-hand side were calculated in the section on changes for FBS routines.

Since these paging rates cannot be supported by available devices, the

operating system will deactivate the job every time it tries to execute.

The result will be that the job will never execute as long as any other job

is on the machine. If it is the only job on the machine, it will execute,

but the CPU will operate at extremely low efficiency.

Cost Estimate for Suggested Changes

The effort required to design, code and implement all suggested changes

is as follows:

Modification Man Days

1. Revise address space acquisition ' 25

2. Establish SYSTEM(V) to define working space 1

3. Align GIN0 buffers on page boundaries 2

4. Modify MPYAD to use SYSTEM(V) and multiple buffers 3

5. Modify all decomposition routines to use SYSTEM(V) 1

6. Modify all FBS routines to use SYSTEM(V) and 3
multiple buffers

7. Modify transpose routine to use SYSTEM(V) 1

8. Modify XS0RT to use SYSTEM(V) 1

9. Modify PL0T and all functional modules in Group 2 7
of Table 4 to use SYSTEM(V) - 40 modules

Total to design and code 44

System integration and documentation 22

Total for Project 66

Required computer time is 3 CPU hours on an IBM 370/168.
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RECOMMENDED USER PRACTICES

The minimum change required to make NASTRAN operational under VS operat-

ing systems is to modify the procedure for the acquisition of address space.

If this is the only modification made the user must restrict his address

space to some reasonable fraction of the total available real memory. The

larger the fraction of real memory requested for address space, the greater

will be the tendency to begin thrashing and the longer will be the wall clock

time. A reasonable choice for address space is to use the same region that

would have been used for the same problem on a real memory machine.

If all of the recommended changes are made, the maximum available

address space should be requested on the JOB card. For VS2 Release 2, the

maximum address space is 16 megabytes. For other operating systems, the

maximum address space will be much less than 16 megabytes. The exact

amount available will depend on installation procedures. In selecting the

address space, consideration should also be given to the amount of hardware

available to provide the virtual storage space and to any cost penalties

that might be associated with the use of a large virtual address space.

The amount of real memory space to request on the EXEC card depends on

problem size. This real memory request is not directed at the operating

system but rather at the NASTRAN code. This is the way in which the user

tells the NASTRAN code that if all program operations are organized to

limit the working space to the real memory specified, there will be no

thrashing and the wall clock time for execution will be reasonable.

The real memory request should be the maximum of the following in bytes:

-51-



1. Statics problems - 175,000 + 48G

2. Dynamics problems - 150,000 + 32G

3. Plotting operation - 200,000 + 32G

4. FBS and MPYAD operations - 150,000 + ~ or 150,000 + BN

where G = total number of grid points

B = number of bytes in largest unpacked column used in FBS or MPYAD

N = maximum number of columns on right-hand side in FBS or matrix in MPYAD

R = allowable paging rate in pages per second

M = time for unit multiply/add operations in seconds

P = number of bytes per page

For small problems the amount of real memory will be controlled by the

first or second expression above, depending on whether the problem to be

solved is a statics problem or a dynamics problem. If plotting operations

are requested for small problems, the third expression will probably con-

trol the real memory request. Large problems usually involve significant

MPYAD-or FBS operations and the fourth expression will usually control

the real memory request. If the Inverse Power Method of eigenvalue extraction

is used, the 32G term for dynamics problems should provide space for at least

two double precision vectors. The above working space allows for half track

GIN0 buffers on 3330 disk files and a modest amount of code to be paged out

during execution. In order to avoid thrashing, the working space must always

be less than the total amount of real memory on the machine. The wall clock

time for execution may be very long if the working space is a large fraction

of the available real memory.

-52-



CONCLUSIONS

1. The minimum change required to make NASTRAN operational under virtual

storage operating systems is to modify the procedure for acquiring

address space.

2. The performance of NASTRAN can be improved on virtual storage machines

if both the address space and the working space are considered

by the program.

3. For small problems, the real memory actually used by NASTRAN at any

time will usually be less than 200K bytes.

4. The maximum amount of real memory required for the efficient solution

of large problems will be smaller than on real memory machines.

5. The current NASTRAN code can be easily modified to give good performance

with virtual storage operating systems.

6. If NASTRAN is improperly used with virtual storage "operating systems,

the performance will be very bad.

7. Hardware paging cannot be exclusively used for large problems because

the available paging devices cannot support the resulting paging rates.
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