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A B S T R A C T

This ^report is concerned with the analysis of laser scintillation

data obtained by the NASA Goddard Space Flight Center balloon flight

#5 from White Sands Missile Range on 19 October 1973. The principal

objective of the analysis in this report is to relate the measurement

data, taken with various size receiver apertures, to predictions of

aperture averaging theory. On the basis of this study, it is concluded

that the data is in reasonable agreement with theory. The following

parameters are assigned to the vertical distribution of the strength of

turbulence during the period of the measurements (daytime), for

X. = 0. 633 p,m , and the source .at the zenith* the aperture averaging

length, is d0 = 0. 125 m , and the log-amplitude variance is

a 2 = 0.084 nepers2 . This corresponds to a normalized point
Jd

intensity variance of 0. 40 .

In the course of the work reported here, it has been necessary

to extend the previous results on aperture averaging to account for

the effect of a central obscuration. This work is presented in

Appendix A .
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1. Introduction

It is well known that atmospheric turbulence will cause the strength

of an optical signal to fluctuate. The reliability of an optical communications

channel will be influenced by such signal fluctuation -- the fades producing

more disadvantages than will be compensated by the anomalous signal en-

hancements. For a small diameter receiver, operating in the visible, the

signal fluctuations can be very significant. Fortunately, if a large diameter

receiver is used, not only is a greater average signal power collected, but

also the relative magnitude of the signal fluctuations is reduced. This effect

is referred to as aperture averaging. .In the recent past, NASA-Goddard

Space Flight Center has conducted experimental work in this area,1 and

Optical Science Consultants, under funding from NASA-Goddard Space Flight

Center, has carried out theoretical analysis of aperture averaging.2 In this

report, we shall be concerned with establishing a relationship between these

two efforts, i. e. , between theory and experimentation. The primary em-

phasis of the work we shall be reporting here will be on the experimental

aspects of the program. First, however, we shall review the pertinent

features of scintillation and aperture averaging theory.

1. 1 Scintillation. Theory

The basic theory associated with scintillation was originally developed

by Tatarski3*4 and has recently been reviewed by Lawrence and Strobher.5

For the pur poses of this report, we sjiall rely on these and a few other refer-

ences, and here we shall only quote without derivation the most pertinent

general aspects of scintillation theory.

We start by noting the ubiquity of the log-normal distribution in

optical scintillation due to atmospheric turbulence. Tatar ski appears to

have been the f i rs t to predict that the logarithm of the amplitude of a scin-

tillating wave would follow a normal distribution. He also presented
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experimental evidence for this. The fact that the amplitude follows a

log-normal distribution implies, of course, that the intensity also does

so.

At one time, it was believed that the signal collected by a large

aperture, being the sum of the almost independent random intensities at

various points in the aperture, would have a normal distribution by virtue

of the central limit theorem. However, it was observed6 that such signals

actually appeared to follow a log-normal distribution, and subsequently a

theoretical explanation for this fact was obtained by Mitchel. 7 We pres-

ently expect that all turbulence-induced scintillation signals will be log-

normally distributed, no matter how large the collector aperture -- and,

in fact , there has been no serious experimental evidence to the contrary.

The log-normal distribution for signal strength, S (i.e.., optical

power) is characterized by three parameters. These are S , the mean

signal power, L, , the mean value of the log-signal power, and aL
2 ,

the variance of the log-amplitude. Here the instantaneous random signal

power, S , is related to the instantaneous random log-signal power, L ,

by the equation

S = S exp (L) . (1)

Making use of the fac t that the ensemble average of the exponential of a

gaussian random variable, with zero mean, is equal to the exponential

of one-half the variance, i.e. ,

(exp (x)> = exp (| (x2)) , (2)

where x is a gaussian random variable with zero mean, it follows that

L = - § aL
2 . (3)
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Obviously, then, there are really only two independent parameters

characterizing the log-normally distributed signal power, namely, S

and aL
3 . It can be shown from Eq. 's (2) and (3) that the signal power

variance, as
2 , can be written as

« as
2 = S2 [exp (aL

2) - 1] , (4)

and-inversely that

CTs2

aL
2 = to. (— + 1 ) . . (5)

The extent of the scintillation fluctuations is governed by the vari-

ance of the logarithm of the signal power. For a very small aperture col-

lector (which in essence is making measurements of the optical power

density at a point), the logarithm of the signal power, L , can be related

to the logarithm of the field amplitude as

L = 2JL , (6)

so that the log-amplitude variance, a*2 , can be written as

V = iaL
2 . (7)

Analysis of optical propagation through turbulence has established that the

log-amplitude variance can be written as

a/ = 0.56k7/6 f ds CN
2 Q^s.L) (L-sF8 , (8)

Path

where the integration is over the propagation path, with s running from

0 at the source to L at the place where the optical power density is measured.

- 3 -



The refractive -index structure constant, CN
2 , is allowed to vary along

the propagation path in accordance with whatever geophysical considera-

tions apply. The optical wave number is given by k = 2rr/\ . According

to whether the source is a point source or an infinite plane wave source,

the value of Qx is

1 , for an infinite plane wave source
. (9)

(s/L,)5/6 , for a point source

For propagation from some high altitude H to the ground, at a zenith

angle 9 (so that H = L cos 9 ) , Eq. (8) can be recast in the form

= (cos 9P/6 (a/)Zflnl th , (10)

where

* C2 Q l

The point we particularly wish to note here is that one can explicitly

define a zenith viewing log-amplitude variance, (<3«3)zs fu th > an<^ that the

log-amplitude variance for viewing at a zenith angle 9^0 is proportional

to this variance and depends on the 11/6 -power of the cosine of the zenith

angle. Similarly, the variance of the logarithm of the signal power, aL
2

also depends on the 11/6-power of the cosine of the zenith angle. We can

write

aL
3 = (cos 9)11/6 (aL

2)Zenlth , (12)

where

= 4(a/)Z e B l t h . (13)
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1. 2 Aperture Averaging

Because the signal power fluctuations measured at different points

(at the same time) are not perfectly correlated, the fluctuation of the total

signal power collected by a large receiver aperture will, in a percentage-

wise sense, be less than that of the signal collected by a small aperture.

The key point here is the distance in which the decorrelation becomes sig-

nificant, and the nature of the decrease in correlation. These two matters

will determine the degree of aperture averaging achieved by a given size

aperture.

It is convenient to define aperture averaging in terms of the ratio

of the normalized signal power variance for an aperture of diameter D

to the normalized signal power variance for a very small aperture. Using

the notation of a subscript zero to denote measurements with a very small

aperture diameter, we note f i rs t of all that in accordance with Eq\ (4)

(<V% = V {exp [(aL
2)0] - 1} . (14)

The aperture averaging factor , © , is explicitly defined by the relation-

ship

as
2 (as

2)0

-3- = ® -=— . (15)
S2 S0

2

At one time, it was thought8 that for large aperture diameters the

aperture averaging factor would be inversely proportional to the aperture

area, i. e. , to the number of independently scintillating regions that existed

within the aperture. The correlation length (i. e. , the distance in which the

decorrelation becomes significant) would be a dimension characteristic of

the size of each of these independently scintillating regions. More recently
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it has been recognized2'9 that the existence of long range negative cor-

relation of scintillation forces a modification of this rather simple line of

reasoning. (The existence of long-range negative correlation of scintil-

lation is to be associated with the fact that turbulence does not destroy,

i. e. , absorb, optical power, but merely redistributes it. Optical energy

that "disappears" in one region must show up somewhere else. Because

of the nature of the turbulence scattering mechanism, some of this redistri-

bution involves rather large displacements of the energy. Hence, the long-

range negative correlation. ) The current theory for aperture averaging

predicts that the normalized variation of total signal power collected by a

circular aperture of diameter D will vary as the 7/3-power of the dia-

meter for large diameter apertures.

The constant of proportionality for this dependence, which we denote

by do , has the dimensions of length, and has been shown2 to be given by

the expression

3/7

d0 = 2.399

J ds CN
2 Q2(s,L)(L-s)2

Path

J*. ds CN
2

(16)

Path

where the symbols have the same meaning as in Eq. (8), with Q1 as defined

by Eq. (9). ^Q^ is defined by the equation

1 , for an infinite plane wave source,
Q2(s,L) = { • . (17)

(s/L,)"1/3 , for a point source

If we cast this result in terms of values for viewing in the direction of the

zenith rather than at a zenith angle 9 , for a source at altitude H ( where

H = L cos 9 ' ) , we get

- 6 -



= (d0) (cos (18)

where (do)Zeimh is the value of d0 for zenith viewing. . Its value is

given by the expression

2,399k-1/-

j dh CN
2 O, (H-h, H) h2

o

J dh CN
2 C^ (H-h, H) h5/6

3/7

(19)

With this expression for the length dQ , the aperture averaging

factor, ® , for a circular clear aperture of diameter D has been shown

to be3

© = [1 + (D/d0)7/s + (D/d0)7/3]-i . (20).

If the aperture has a central obscuration of diameter d , then it is shown

in Appendix A that the aperture averaging factor has the form

D2

r^-d2
1 d2/!^

A \7/e 7/3
• (21)

1. 3 Optical Communications Considerations — - " -

Analysis of the effect of log-normally distributed fluctuations of

optical signal strength on the error rate of a photon detecting (i. e. , photon

counting) intensity receiver where the noise is the Poisson shot noise of

the signal shows that a given log-intensity variance can be equated with an

equivalent reduction in the average signal power, for a given bit-error-rate.

In Fig. 1 we show representative results10 for such losses as a function

of the logarithm of the signal power variance. As can be seen, the effects

- 7 -
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are potentially significant. It is in the context of such results as these

that the matter of aperture averaging becomes significant, as a basis for

reducing the signal fluctuations.

It is in relation to this sort of consideration that the NASA-Goddard

Space Flight Center balloon flight laser scintillation measurement program

described in Reference 1 has its significance. In this report, we are prin-

cipally concerned with examining the experimental data obtained in that

flight test program to obtain a check of the aperture averaging results pre-

sented above. In the next section, we shall review the general nature of

the flight measurements. In the sections after that we shall examine the

data in detail.

2. Flight Test Program - General Description

During October 1973, NASA-Goddard Space Flight Center personnel,

supported by personnel from the Air Force Cambridge Research Laboratory,

conducted a series of balloon flights at the U. S. Army White Sands Missile

Range for the purpose of gathering data of atmospheric turbulence and its

effect on laser beam propagation.1 In this report, we shall be concerned

with the analysis of optical scintillation data gathered on Flight #5. In

particular, we shall be concerned with the down-link scintillation data,

involving a He-Ne laser transmitter in the balloon and an adjustable aper-

ture receiver on the ground. Data was gathered over a time span of about

three (3) hours.

This flight for the purpose of gathering data on optical effects was

supported by thermosonde balloon Flight #7 to provide data on the vertical

distribution of turbulence during this time period. Unfortunately, because

of unidentified problems presumed to be associated with solar heating of
*

the thermosonde, the measurements of the atmospheric turbulence

* Previous successful thermosonde measurements of CN
2 were conducted

during night time hours, so there was no problem of solar illumination
heating of the micro-temperature sensors.

- 9 -



refractive-index structure constant, CN
2 , appear to be unreliable. This

CN
2 data is examined in Appendix B. It has not seemed practical to attempt

to directly relate it to the optical measurements which we shall be consider-

ing in the body of this report.

In this section, we shall describe the general nature of the experi-

mental equipment and of data taken, as well as providing a description of

the flight profile. Detailed examination of the measurement data, per se,

will be deferred to subsequent sections.

2. 1 Equipment Description

The basic electro-optical equipment utilized in generating the data

we shall be considering here consists of two parts , the ground-based tele-

scope receiver portion, and the balloon payload laser transmitter portion.

In addition to the ability to perform their basic functions of reception and

transmission, each unit had the ability to track the other unit, so that fairly

narrow fields-of-view and transmitter •beamwidths could be utilized. This

required the ground-based receiver to also function as a transmitter, send-

ing out a beacon signal to the balloon which the balloon unit could track.

The balloon payload transmitter utilized a 1. 5 mW He-Ne laser

operating at X = 633 nm . The transmitted laser beam had a beam spread

of 20 mrad, while the transmitter rms tracking jitter associated with its

ability to track the laser beacon was of the order of 0. 5 mrad . Using

available .theory for the, statistics of laser beam fade induced by pointing

jitter,11 we see that if we consider the laser beam to have a gaussian in-

tensity profile with a 10 mrad one-sigma spread, then the normalized rms

fluctuations associated with the pointing ji t ter will only be

00 y T 2 1/2

RMS Jitter Scintillation = [j dl ( ~ °} P rob ( I )T
LO o

l ^ / l t 7 2 . (2D
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where p, is the ratio of the beam spread (10 mrad) to the rms pointing

jit ter (0. 5 mrad) all squared, so |j, = 400 . Evaluation of Eq. (21) yields

RMS Jitter Scintillation = [(1 + 2/p,)-1 - 2(1 + l/li)-1+ 1]1/2 , (22)

which for large values of p, is approximately given by

RMS Jitter Scintillation M (2 pT2)1/2 . (23)

In this case, with \i = 400 , the rms scintillation due to transmitter point-

ing jitter will only be 0. 353% , a clearly miniscule effect. Even if the rms

jitter were ten times as large, i.e. , 5 mrad , transmitter pointing jitter

would only be 3. 53% , still a minor quantity. We may therefore conclude

that the laser transmitter was adequately stabilized so that it can be con-

sidered to be a stable source.

With the very large beam spread of ± 1 0 mrad, we may further con-

clude that the beam may adequately be characterized as a point source.

This follows from consideration of the fac t that atmospheric turbulence

over the propagation path would not be expected to result, on the one hand,

in any difference in the received average power at the receiver if addi-

tional laser power were added at the wings of the beam, and on the other

hand, in any reduction in the average received power if energy were re-

moved from .near the wings of, the transmitted beam.

The ground based laser receiver was a 0. 76 m (i. e. , 30 inch)

diameter telescope with an optical detection apparatus with an intermediate

focal plane that limited the receiver field-of-view to 0. 5 mrad. Past the

field stop, it was possible to insert various size iris diaphragms into the

signal beam so as to in effect reduce .the signal collection aperture to

various sizes. It was possible to set the effective aperture size to

- 11 -



correspond to circular clear apertures of 0. 04 m , 0. 08 m , 0. 16 m ,

and 0. 32 m . In addition, the iris diaphragm could be set to correspond

to a 0. 64 m circular aperture or to a 0. 76 m circular aperture, but

each with a 0. 20 m diameter concentric circular obscuration.

The received signals were detected by a photomultiplier and re-

corded for later data reduction. Data reduction was done by standard

laboratory equipment and digital computer, with no special character-

istics that need be mentioned here.

2. 2 Balloon Flight Log

Balloon flight #5 was released at approximately 08:30 MST from

the White Sands Missile Range on 19 October 1973. The balloon altitude

and the zenith angle from the line-of-sight from the ground station to the

balloon are shown in Fig. 2, together with an indication of the periods

when the balloon-borne laser transmitter was operating. To provide a

quick basis for calculation of the balloon altitude and the zenith angle of

the line-of-sight at any time during the flight, we have made use of linear

interpolation of the data listed in Table 1.

2. 3 Data Run Log

During the course of flight #5, a set of 76 separate signal recording

runs was carried out. All of these runs were connected with measurement

of the scintillation of the 633 p,m laser beam from the balloon-borne trans-

mitter.' The "basic measurements were madeJwith"the "ground-based receiver

looking at the laser transmitter, but some of the data runs, called background

runs, were made with the receiver pointed a small distance away from the

laser transmitter so that data on only the background waserecorded. Back-

ground runs were made close enough in time to the scintillation runs that

a background run was available as a reference for almost all of the scin-

tillation runs. The effective receiver aperture size setting was varied from

- 12 -
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T a b l e 1

Balloon Flight Profile During Laser Operation

Time
(MST)

10:00

10:15

10:30

10:45

11:00

11:15

11:30

11:45

12:00

12:15

12:30

12:45

13:00

13:15

Altitude
-Mm-)-',

18, 245

20, 045

21, 580

22, 615

23,465

24,150

25, 070

26, 080

26,420

26,455

26, 420

26, 325

25, 790

24,910

Zenith Angle
(deg)

56. 56

56. 57

57. 19

56. 78

53. 13

49. 34

45. 52

48.66

52. 72

56. 21

62.39

69. 70

74.24

76.87
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run to run at the discretion of the experimenter, but the associated back-

ground run was always carried out with the same aperture setting. More-

over, in the analog-to-digital conversion process (which was used in

conditioning all of the scintillation data we shall be considering) though the

converter gain setting was varied in accordance -with the average signal

strength, the same gain setting was used for the analog-to-digital conver-

sion of the associated background data run.

In Table 2, we provide a log of each of the data runs. The table

indicates the time of the data run, the duration, the type of run (i. e. ,

whether it was a scintillation run or a background run), the effective aper-
/-,

ture diameter setting, and the background run number associated with each

scintillation run. (We note that the central obscuration aperture settings,

i. e. , 0. 76 m diameter with 0. 20 m diameter obscuration, and the 0. 64 m

diameter with 0. 20 m diameter central obscuration, are referred to merely

as 0. 76 diameter and 0.64 m diameter settings, respectively. ) It will be seen

from a study of the data in Table 2 that there was no applicable background

run for certain of the scintillation runs. Because of the absence of this ref-

erence data, these runs could not be used in our data analysis.

By making use of the data in Table 1, we were able to obtain an

altitude, zenith angle, and range to be associated with the start time of

each data run listed in Table 2. In Table 3, we show the values of these

quantities for each scintillation run for which we had a useable associated

background run. — _ - _ . . . —
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Ta ble 2

Data Run Log

Data Run
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Start Time
(MST)

10:01:58

10:03:05

10:08:28

10:11:10

10:11:45

10:12:30

10:13:40

10:14:15

10:15:20

10:16:30

10:19:32

10:21:30

10:22:12

10:24:54

10:25:30

10:28:45

10:29:25

10:46:30

10:31:00

10:31:49

10:32:30

10:43:00

10:47:05

10:48:08

10:49:30

* Duration
(sec)

20

15

22

20

10

10

10

15

15

20

15

16

20

18

20

20

15

20

30

27

18

16

25

24

10

.Type

Scint

Scint

Scint

Scint

Back

Back

Back

Scint

Scint

Scint

Scint

Scint

Scint

Scint

Back

Back

Scint

Scint

Scint

Scint

Back

Back

Scint

Scint

Back

-Aperture
Diameter "

(m)

0. 76

0. 76

0. 08

0. 04

0. 04

0. 08

0. 76

0. 76

0. 76

0. 76

0. 64

0. 08

0. 08

0. 08

0. 08

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 08

Associated
Background
Run Number

7

7

6

5

Self

Self

:Self

7

7

7

None

15

15

15

Self

Self

16

73

21

21

Self

Self

22

22

Self
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Table 2 (Continued) Page 2

Data Run
Number

26

2.7

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Start Time
(MST)

10:52:28

10:53:40

10:54:30

10:59:10

10:59:55

11:01:58

11:03:05

11:04:14

11:04:45

11:05:10

11:06:00

12:02:00

12:04:14

12:05:26

12:08:20

12:09:05

12:11:38

12:14:50

12:22:10

12:25:00

12:26:32

12:27:50

12:30:20

12:31:00

12:32:20

12:32:55

12:33:50

Duration
(sec)

30

24

12

20

25

14

10

12

10

10

24

19

10

08

07

12

05

10

10

10

21

25

40

50

10

15

40

Type

Scint

Scint

Back

Scint

Scint

Scint

Back

Scint

Back

Back

Back

Back

Scint

Scint

Scint

Scint

Scint

Back

Back

Back

Scint

Scint

Scint

Scint

Back

Back

Scint

Aperture
Diameter

(m)

0. 08

0. 04

0. 04

0. 76

0. 76

0. 32

0. 32

0. 32

0. 32

0. 32

0. 76

0. 76

0. 76

0. 76

0. 32

0. 32

0. 16

0. 16

0. 76

0.76

0. 76

0. 76

0. 32

0. 32

0. 32

0. 08

0. 08

Associated
Background
Run Number

None

28

Self

36

36

32

Self

34

Self

Self

Self

Self

37

74

None

None

43

Self

Self

Self

45

45

50

50

Self

Self

51

- 17 -



Table 2 (Continued) Page 3

Data Run Start Time
Number (MST)

53

54

55

56

57

58

59

60

61 ,

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

12:35:25

12:37:05

12:38:05

12:39:00

12:39:45

12:40:26

12:42:40

12:44:30

12:45:06

12:47:00

12:50:10

12:51:30

12:53:00

12:55:10

12:56:55

12:58:40

12:59:10

13:02:15

13:06:25

13:07:40

10:44:00

12:22:10

12:59:10

13:02:15

Duration
(sec)

30

40

17

15 -

20

16

32

05

30

30

10

30

20

60

60

15

60

45

35

40

16

10

50

58

Type

Scint

Scint

Back

Back

Scint

Scint

Scint

Back

Scint

Scint

Back

Scint

Back

Scint

Scint

Back

Scint

Scint

Scint

Back

Back

Back

Scint

Scint

Aperture
Diameter

(m)

0. 16

0. 16

0. 16

0.32

0.32

0. 32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0.76

Associated
Background
Run Number

55

55

Self

Self

56

56

60

Self

60

63

-Self

65

Self

68

68

Self

68

68

72

Self

Self

Self

72

72
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Ta ble 3

Flight Parameters for the Useable

Scintillation Data Runs

Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

29

30

31

33

38

39

42

Altitude
(m)

18,481

18,615

19,261

19,585

19,955

20,079

20,199

20,710

20,782

21,058

21, 520

22 ,700

21,649

21,705

22,733

22,793

23, 106

23,418

23,460

23, 555

23,658

26,430

26,433

26,447

Zenith Angle
(deg)

56.56

56. 56

56. 57

56. 57

56. 57

56. 58

56. 63

56.84

56.87

56.98

57. 17

56.41

57. 16

57. 14

56.27

56..02

54. 67

53. 33

53. 15

52. 63

52.06

53. 70

53.98

55.42

Range
(m)

33, 538

33, 782

34,958

35, 547

36, 221

36,460

36, 724

37,861

38, 022

38,643

39,690

41, 036

39,924

40,004

40, 943

40, 778

39,957

39,215

39, 119

38, 810

38,479

44, 649

44,953

46, 606
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Table 3 (Continued) Page 2

Run
Number

46

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

75'

76

Altitude
(m)

26,428

26,425

26,418

26,414

26,398

26,386

26,375

26,358

26,354

26,340

26,321

26,254

26, 093

25,962

25,900

25,820

25, 658

25,414

25,820

25,658

Zenith Angle
(deg)

60.96

61. 50

62. 55

62.88

64.26

65. 03

65.84

67. 14

67.47

68. 56

69.73

70. 30

71.67

72.78 .

73. 31

73.99

74.63

75.36

-73.99

74. 63

Range
(m)

54, 446

55,375

57, 313

57,938

60, 775

62, 503

64,446

67, 854

68, 791

72, 069

75,976

77, 902

82,958

87, 684

90, 166

93, 603

96, 831

100, 584

93, 603—

96, 831
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3. Background Data Runs

A total of 25 background runs were carried out. For each of

these runs, a 100-level probability density histogram, p(x) , was pre-

pared. Using this, it was a straightforward matter to calculate the

associated mean,

x = > P(XJ) xt , (24)

i

variance (or second central moment)

a2 = £ p(x t) (xj-x)2 , (25)

i

third central moment,

p(x t) (x t-x)3 , (26)

'i

and fourth central moment,

p ( X l ) ( x t - x ) 4 . (27)

i

In Table 4, we list each of these runs together with the four leading

moments. _

3. 1 Expected Gaussian Distribution Moments

Based on the approximation that there are a very large number of

background photoelectrons detected during each measurement interval, we

can approximate the expected Poisson distribution of the photoelectron

count by a gaussian distribution. This implies that the skewness and

curtosis of the measured distribution should both vanish. We recall that

- 21 -



the skewness of a distribution is the ratio of the third moment to the

three-halfs power of the variance, i. e. ,

Ysk = H3/(*
3)3'2 ' (28)

and the curtosis of a distribution is the ratio of the fourth central moment

to the square of the second, minus three, i.e. ,

- 3] . (29)

In Table 5, we list the calculated skewness and curtosis of the 25 back-

ground data run distributions of Table 4. We see from a study of the data

in Table 5 that only a very few of the background data runs have probability

distributions whose skewness and curtosis appear to be in general agree-

ment with the hypothesis that the distribution is gaussian.

3. 2 Data Contamination and Reliability

The results shown by our study of the data in Table 5, as stated in

the preceding paragraph, raise the concern that our background data runs

may have been significantly contaminated by noise and/or that there may

be some problem in the data channel (i. e. , the photomultiplier, amplifier,

recorder, digitizer, or other element) that might make our entire data set

of questionable value. To make certain that this was not the case, we have

plotted the cumulative probability distribution for each of these background

data runs on normal distribution scale graphs. These plots are shown in

Fig. 's 3 to 27.

* On such a graph, the cumulative probability distribution for a gaussian
random function will plot as a straight line.
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Figure 5. Background Probability Distribution for Run #7
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Figure 11. Background Probability Distribution for Run #32.
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Figure 15. Background Probability Distribution for Run #43.
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Figure 19. Background Probability Distribution for Run #55.
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Figure 21. Background Probability Distribution for Run #60.
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Figure 23. Background Probability Distribution for Run #65.
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Figure 25. Background Probability Distribution for Run #72.

.90 .95 .98 . 99

50

40

^ 30
T3
fl

g
M
bO

"o 20

10

I I

. 0 1 . 0 2 .05 .10 .30 .50 .70

Cumulative Probability

Figure 26. Background Probability Distribution for Run #73.

.90 .95 . 98 . 99

- 34 -



50

40

30

20

10

!

. 01 . 02 . 05 . 10 .30 .50 .70

Cumulative Probability
^'X

Figure 27. Background Probability Distribution 4oV/Run #74.

.90 .95 .98 . 99

- 35 -



. T a b l e 4

Background Run Measured Moments

Run
Number

5

6

7

15

16

21

22

28

32

34

36

37

43

45

50

51

55

56

60

63

65

68

72

73

74

Aperture
Diameter

(m)

0. 04

0. 08

0. 76

0. 08

0. 16

0. 16

0. 16

0. 04

0. 32

0. 32

0. 76

0. 76

0. 16

0. 76

0.32

0.08

0. 16

0. 32

0.76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Mean

21.64

23.71

15. 19

30.62

23.80

2.1.08

24.07

36. 13

18.44

24.91

19.06

26.24

23. 18

25.03

20.64

33.02

32.27

25. 57

23.20

17.83

17.98

18.26

31. 59

15.59

11.25

Central Moments
j- f

Second

14. 29

13. 77

10. 17

15. 74

11. 58

13. 70

12. 37

12. 59

4. 871

37.95

8. 056

28.45

14. 72

23.09

17. 90

41. 51

90. 74

52. 55

28.42

24. 18

25.87

25.91

84. 72

6. 585

3.261

Third

64. 50

53. 32

2.286

55. 25

26. 53

40. 24

36. 61

26. 85

4. 444

-38. 37

13. 59

-13. 78

32. 71

5. 639

42.26

166.3

402. 5

303.3

" 83759

69.39

81. 87

74. 17

-67. 62

8.996

2.919

. Fourth

1160.

964.2

313.3

1141.

468.8

<9'0'6, '6

721.4

560.7

183.4

4253.

338. 8

26.23

741.9

1706.

1407.

6033.

26770.

12710.

'" 2725. -

19. 63

2334.

2238.

21260.

142.8

33. 59
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T a b l e 5

Background Run Measured Skewness and Curtosis

Run
' Number

5

6

7

15

16

21

22

28

32

34

36

37

43

45 '

50

51

55

.. 56.—..,

60

63

65

68

72

73

74

Diameter
' (m)

0. 04

0.08

0. 76

0.08

0. 16

0.16

0. 16

0. 04

0.32

0.32

0.76

0.76

0. 16

0. 76

0. 32 "

0. 08

0. 16

JO. 32. , ;

0. 76

0. 76

0. 76 '

0. 76

0. 76

0. 76

0. 76

Skewness

1. 194

1. 043

0. 07048

0. 8848

0. 6732

0. 7936

0. 8415

0. 6010

0.4134

-0. 1641

0. 5943

-0. 09081

0. 5792

0. 05082

0. 5580

0. 6218

0.4657

0, 7962

0. 5517

0. 5836

0. 6222

0. 5624

-0. 08672

0. 5234

0.4957

Curtosis

2. 681

2.085

0. 02913

1. 605

0.4960

1.830

1. 715

0. 5374

4. 730

-0. 04694

2.220

-2. 968

0.4240

0.2000

0.2677

0. 5013

0.2513

1. 603

0. 3738

-2.966

0.4875

0.3337

-0. 03796

0.2932

0. 1587
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By noting the way in which the cumulative distribution plot deviated

from a straight line, it is possible to gain some insight into the apparent

degree of contamination of the data. We see from a study of these figures

that in the range of 0. 1 to 0. 9 cumulative probability, the distributions

appear to be fairly well characterized by a straight line, corresponding

to some gaussian distribution. Apparently the data corruption is limited

to the extremes, with the central region seeming to be relatively unaffected.

We expect the distortions of the extremes of the distribution to affect the

higher moments before it affects the f i r s t two moments, i. e. , the mean

and variance, thus allowing for the possibility that we could rely on the

mean and variance, although as Table 5 indicates, the third and fourth

moments must be considered suspect. To see whether or not this was the

case, i. e. , that we could rely on the mean and variance values computed

for each of the background data runs, we have extracted a mean and vari-

ance for the straight line gaussian drawn on each of the f igures, i. e. ,

Fig. 's 3 to 27, to match the data in the 0. 1 to 0. 9 cumulative probability

range, and compared these straight-line-fit mean and variance to the

mean and variance calculated directly from the full probability density.

In Table 6, we show these values organized to facilitate comparison. As

can be seen, the comparison is quite good, indicating that the factors that

affected the data probably did not significantly affect the calculated mean

and variance of each background run. Accordingly, we have fel t justified

in using these mean and_ variance values in the next section in the reduction

of the scintillation run data.

* It is significant to note that had we used the straight-line-fit mean and
variance rather than the values calculated from the full distribution in
our reduction of the scintillation data, the effects on the final results
would have been legligible.
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T a b l e 6

Background Data Runs, Mean and Variance

T

Run
Number

5

6

7

15

16

21

22

28

32

34

36

37

43

45

50

51

55

56

60

63

65

68

72

73

74

l

Diameter
(m)

0. 04

0.08

0. 76

0. 08

0. 16

0. 16

0. 16

0. 04

.0. 32

0. 32

0. 76

0. 76

0. 16

0.76

0. 32

0. 08

0. 16

0. 32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Measured

Mean

21. 64

23. 71

15. 19

30. 62

23.80

21. 08

24. 07

36. 13

18.44

24.91

19. 06

26. 24

23. 18

25. 03

20.64

33. 02

32. 27

25. 57

23. 20

17.83

17.98

18.26

31. 59

15. 59

11.25

, Variance

14.29

13. 77

10. 17

15. 74

11. 58

13. 70

12. 37

12. 59

4.871

37.95

8. 056

28. 45

14. 72

23. 09

17. 90

41. 51

90. 74

52. 55

28. 42

24. 18

25. 87

25. 91

84. 72

6. 585

3. 261

Straight -Line Fit

Mean

21.15

23.45

14. 85

30. 60

23. 60

20. 75

23. 80

35. 80

17. 90

24.65

18. 55

26. 10

23. 10

24. 85

20.45

32.60

32.05

25. 15

22.85

17. 25

17. 70

18.05

30.95

15. 15

10. 80

Variance

10.48

10.99

9.493

12.87

9.255

10.99

9.735

12.87

2.945

33. 77

3.956

28.97

14. 61

22.27

20. 12

36. 07

81. 17

48. 74

27. 72

23. 77

26. 50

23. 01

86.89

5. 660

3. 505
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4. Scintillation Measurements

The data recorded during each scintillation run was processed

to produce a 100-level probability density histogram. - From this prob-

ability density, the mean, variance (or second central moment), the

third central moment, and the fourth central moment have all been cal-

culated in accordance with Eq. 's (24)-(27). In Table 7 we show these

results. We recognize that this data does not represent scintillation

alone. It also includes the effects of background and background noise,

the moments of which can be estimated from the corresponding back-

ground runs. The match between the scintillation run and the background

run is as indicated in the last column of Table 2.

4.1 Reduced Scintillation Data

The equations relating the actual scintillation moments to the

measured background and measured scintillation moments can be derived

as follows. Consider two random variables, Xg and xs , corresponding

to background and scintillation, and

x, = Xg +Xs . (30)

kg is the random variable whose statistics govern the data taken in a back-

ground run, and Xj is the random variable whose statistics govern the

data taken in a scintillation run. In Tables 4 and 7, we have the measured

four leading moments of Xg and XT . We wish to determine the four

"leading moments of xs . As a matter of definitionr we note that the-four

leading moments of xe are

XB = < X B > , (31)

aB
2 = < ( x B - x B ) 2 > , (32)

M. 3 f B = < ( x B - x B ) 3 > , (33)

• ^B = < U B - x B ) 4 > , (34)
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T a b l e 7

Scintillation Run Measured Moments

. Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

^29

30

31

33

38

39

42

46

* Diameter
(m)

0. 76

0. 76

0. 08

0. 04

0. 76

0. 76

0.76

0. 08

0. 08

0. 08

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 04

0. 76

0. 76

0. 32

0. 32

0. 76

0. 76

0. 16

0. 76

*•

Mean

42.37

38. 17

34. 54

24. 70

40. 10

38.79

34.33

43.06

40. 17

38.42

40. 73

28.04

37.32

39.24

38.44

39.82

38. 59

44. 05

44. 56

33. 32

46.00

40.22

43.29

39.83

47. 11

Central Moments

Second

117. 9

135. 5

117.8

29.90

141. 6

99.36

66.44

140. 3

110. 4

84. 93

133. 1

105. 9

136. 0

168.3

144. 0

142. 9

29.99

132.8

147. 4

70. 32

128. 8

149. 8

169. 1

137. 3

150. 0

, Third

808.3

953. 2

- 1314.

115. 1

2159.

395.3

325.8

984. 7

796.8

483. 1

1087.

1242.

1223.

1697.

1870.

1625.

200. 7

- -•' 889. 7 ..

1091.

440.4

808. 2

842.3

328. 7

853. 3

700.9

Fourth

51970.

60790.

64510.

3904.

120100.

28680.

16120.

70520.

47600.

27420.

63110.

55500.

69770.

104200.

95560.

86690.

4886.

58330.

72150.

18920.

58240.

63760.

80300.

59210.

66380.

- 41 -



Table 7 (Continued) Page 2

Run
Number

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

75

76

Diameter
(m)

0.76

0.32

0.32

0.08

0. 16

0. 16

0.32

0.32

/ 0.76

0.76

0. 76

0.76

0.76

0.76

0. 76

0. 76

0.76

0.76

0. 76

Mean

46.22

34.20

33. 61

35. 59

36. 13

36. 87

36. 59

35. 62

41. 23

42. 09

34.80

38. 70

32. 18

31. 19

28. 39

28. 81

39. 02

40. 41

40. 49

Central Moments

Second

117. 1

123. 1

119. 0

61.45

151. 7

162. 5

172. 2

157. 0

169. 5

170.9

150. 3

174. 1

144. 3

131. 0

113. 4

115. 0

137. 7

97. 04

93.97

Third

669.3

976.3

1059.

354.2

1636.

1794.

1735.

1386.

1056.

1157.

1135.

1036.

1144.

989.9

1029.

902. 7

371. 0

648. 6

623. 6

Fourth

48570.

54670.

56890.

13930.

95290.

106300.

107400.

85470.

89290.

95370.

80710.

92350.

69590.

58600.

53830.

46350.

59000.

35460.

31100.
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the four leading moments of XT are

XT = < X T ) , (35)

0T
2 = < ( x T - x T ) 2 ) , (36)

H 3 < T = < ( x T - x T ) 3 > , (37)

H 4 > T = < ( X T - X T ) * > , (38)

and the four leading moments of x3 are

xs = < x s > , (39)

as
2 = < ( x s - x s ) 2 > , (40)

.H3i, = < ( x s - x s ) 3 > , (41)

V-*.* = <(*s - *s)
4> • (42)

It is these last four quantities which we wish to calculate from values of

the preceding eight quantities as given in Tables 4 and 7. [In Eq. *s (31)

to (42), the angle brackets ( ) , denote an ensemble average. ]

It follows from Eq. 's (30) and (J5) that

- ( X B > + < x s > . (43)

Making use of Eq. 's (35) and (39),

XT = X + x3 , (44)
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and solving for xs , we get

xs = XT - XB . (45)

From Eq. 's (36), (30), and (44), we obtain the result that

aT
2 =

= < [ ( X B - X B ) + (x s -x s ) ] 3 >

= ( (x e -x s ) s > +2 < ( x s - x 8 ) ( x s - x s ) > + (x s -x s ) 2 > . (46)

If we make use of Eq. 's (32) and (40) and note that XB and xs are inde-

pendent random variables so that ( (XB - X B ) (X S - x s)) must vanish, we can

recast Eq. (46) in the form

aT
2 = aB2 + as

2 , (47)

so that

as
2 = aT

2 - aB
2 . (48)

From Eq. 's (37), (30), and (44), we obtain the result that

- - = < [ ( X B - X B ) + ( X S - X S ) ] 3 > .

= < ( x B - x B ) 3 > + 3 < x B - x B ) 2 ( x s - 3 E s ) >

+ 3 < ( x B - x B ) ( x s - x s ) 2 > + <(x s -xs)
3> . (49)

Now making use of the fact that xs and xs are independent random

variables, we see that ( (XB - xB)2 (xs - xs )) and < (XB - XB)(XS - xs)
2) must
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vanish, so that Eq. (49) can be rewritten as

^ 3 f T = < ( x B - x e ) 3 > + < ( x s - x s ) 3 > . (50)

Using Eq. 's (33) and (41), we see that Eq. (50) can be recast in the form

To obtain an expression for p,4 s , we start with Eq. (38) and

substitute Eq. 's (30) and (44), to yield

M-4.T = < [ X B + X S - ( X B + X S ) ] 4 )

= < [ ( X B - X B ) + ( x s - x s ) ] 4 >

= <(xe -xB)4> + 4 < ( X B -x B ) 3 (x s -x s )> + 6 < ( X B - X B ) ( X S - X S ) >

+ 4 < ( x B - x B ) ( x s - x s ) 3 > . (52)

Now if we again take note of the fact that XB and xs are independent

random variables, we see that ( (XB - xe )
3(xs - xs)) and < ( X B - X )(x -xs)

3}

vanish, while < (XB - xB)2 (x9 - xs)
s) can, with the help of Eq. 's (32) and (40),

be rewritten as

<(x B -3E B ) 2 (x s -x s f ) = < ( x B - x B

This, together with Eq. 's (34) and (42), allows us to rewrite Eq. (52) as

, s

Solving for p<4 s , we get

M*S = ^4T - ^4 - 6 °B2 °S* • (55)
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Making use of Eq. 's (45), (48), (51), and (55), we have been able

to calculate the four leading moments of the scintillation with background

effects extracted. Starting with the data in Tables 4 and 7, and using these

equations, we have generated the results shown in Table 8. The values

in Table 8 represent, in a sense, the basic scintillation measurement

values which we plan to use to compare measurement with theory. Actually,

however, it is more convenient to work with the normalized moments, i. e. ,

the central moments divided by the appropriate powers of the mean. We

define the normalized second, third, and fourth central moments of the

scintillation as

E = as
2/(3Es)2 , (56)

3 < (5V)

and

M4 = ^.s/^s)4 > (58)

respectively. In Table 9, we show the values of these normalized central

moments as calculated from the data in Table 8. It is these values which

we shall actually use in our comparison of measurement data with theory.

4. 2 Comparison With Log-Normal Hypothesis

As noted earlier, we expect the laser beam scintillation to manifest

a log-normal probability distribution. To test this hypothesis and, as in

Section 3. 2, to see if the data is significantly contaminated by non-propagation

effects, we shall calculate the expected values of the normalized third and

fourth moments from the normalized second moment, and compare these

calculated values with the measurement values given in Table 9.

To obtain the expressions we shall need to calculate the normalized

third and fourth central moments from the normalized second central moment,

we proceed by considering a random variable x , distributed according to a

- 46 -



T a b l e 8

Scintillation Run Moments With Background Effects Extracted

Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

- 29- - -

30

31

33

38

39

42

46

Diameter
(m)

0. 76

0. 76

0. 08

0. 04

0. 76

0. 76

0. 76

0. 08

0.08

0. 08

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 04

._. ...0:._7-6- —

0. 76

0. 32

0.32

0. 76

0. 76

0. 16

0. 76

Mean

27. 18

. 22 .98

10. 83

3. 06

24. 91

23. 60

19. 14

12. 44

9. 55

7. 80

16. 93

12. 45

16. 24

18. 16

14. 37

15. 75

2. 46

-24 99tj TT • -/- /-• - - - —

25.50

14. 88

21. 09

13. 98

32. 04

16.65

22. 08

Central Moments

Second

107. 7

125. 3

104. 0

15. 61

131.4

89.19

56.27

124.6

94.66

69.19

121. 5

99.32

122. 3

154. 6

131.6

130. 5

17.4

-124 7

139.3

65.45

90.85

121.4

165.8

122. 6

126. 9

Third

806. 0

950. 9

1261.

90. 6

2157.

393. 0

323. 5

929. 5

741. 6

427'. 9

1060.

1233.

1183.

1657.

1833.

1588.

173. 9

876 1

1077.

436. 0

846, 6

856. 1

325. 8

820. 6

695. 3

Fourth

45080.

52830.

54950.

1406.

111800.

22920.

12370.

57620.

37520.

19740.

54200.

51433.

58810.

90590.

65070.

76280.

3011.

51960

65080.

16820.

33300.

40420.

77020.

47640.

47090.
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Table 8 (Continued) Page 2

Run
Number

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

75

76

Diameter
(m)

0.76

0.32

0.32

0.08

0. 16

0. 16

0.32

0.32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Mean

21. 19

13. 56

12. 97

2. 57

3.86

4.60

11. 02

10. 05

18. 03

18. 89

16. 97

20. 72

13. 92

12. 93

10. 13

10. 55

7.43

8.82

8.90

Central Moments

Second
/

94. 01

105.2

101.1

19.94

60.96

71. 76

119. 7

104. 5

141. 1

142. 5

126. 1

148.2

118.4

105. 1

87.49

89.09

52.98

12. 32

9.25

Third

663. 7

934. 0

1017.

187. 9

1234.

1392.

1432.

1083.

972. 4

1073.

1066.

954. 1

1070.

915. 7

954. 8

828. 5

438.6

716. 2

691.2

Fourth

33840.

42320.

44980.

2931.

35330.

40460.

56960.

39830.

62510.

68350.

60450.

67010.

48950.

40020.

37990.

30260.

10810.

7937.

5138.
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T a b l e 9

Scintillation Run Normalized Central Moments With Background
Effects Extracted

Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

29

30

31

33

38

39

42

46

Diameter
(m)

0. 76

0. 76

0. 08

0.04

0. 76

0. 76

0. 76

0. 08

0. 08

0. 08

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 04

0. 76

0. 76

0. 32

0. 32

0. 76

0. 76

0. 16

0. 76

Normalized Central Moments

Second

0. 1458

0.2373

0.8870

1.667

0.2118

0. 1601

0. 1536

0. 8049

1. 040

1. 137

0.4240

0.6407

0.4637

0.4688

0.6374

0.5262

2.875

0. 1998

0.2143

0.2956

0.2043

0.6209

0. 1615

0. 4422

0.2603

Third
S

0.04014

0.07836

0.9925

3. 162

0. 1395

0.02990

0.04614

0.4828

0.8514

0.9016

0.2185

0.6389

0.2761

0.2766

0.6179

0.4066

11.68

0.05614

0.06498

0. 1323

0.09025

0.3133

0. 009904

0. 1778

0. 06459

Fourth

0.08261

0.1894

3.994

16.03

0.2903

0.07390

0.09220

2.406

4.511

5.334

0.6597

2. 141

0.8455

0.8329

1.995

1.240

82.22

0.1332

0. 1539

0.3432

0. 1683

1. 058

0.07309

0.6199

0. 1981
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Table 9 (Continued) Page 2

Run
Number

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

75

76

Diameter
(m)

0. 76

0.32

0. 32

0. 08

0. 16

0. 16

0. 32

0.32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Normalized Central Moments

Second

0. 2094

0. 5721

0.6010

3. 019

4. 091

3. 391

0. 9853

1. 034

0. 4340

0. 3993

0.4379

0. 3453

0. 6110

0. 6286

0. 8526

0. 8004

0. 9597

0. 1584

0. 1168

Third

0.06975

0. 3746

0.4660

11. 07

21. 45

14. 30

1. 070

1. 067

0. 1659

0.1592

0. 2180

0. 1073

0.3966

0.4236

0. 9185

0. 7056

1. 069

1. 044

0. 9805

Fourth

0. 1678

1.252

1.590

67. 18

159. 1

90.37

3.863

3.904

0. 5915

0.5368

0.7289

0.3636

1.304

1.432

3. 608

2.443

3. 547

1.312

0.8189
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log-normal distribution. If we define the random variable L, by the

relationship

L = Mx/x) . (59)

where

x = <x> , (60)

so that

x = x exp (L) , (61)

then L is a gaussian random variable.

We note f i rs t that if we substitute Eq. (61) into Eq. (60) and make

use of the fact that for x a gaussian random variable

< e x p ( X ) > = exp [- < X > ] exp [ i < ( x - x) 3 ) ] , ' ( 6 2 )

(which can be demonstrated by carrying out the ensemble average as an

integration of the exponential times a gaussian probability density weight-

ing), then it follows that

1 = <exp (L)>

= exp ( L + t aL
8) , (63)

so that

E = - foL
3 . (64)

Here

L = <L> (65)

and

. (66)
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The normalized second central moment of x can be written as

Ex = <(x - x) 2) /x2

= <[exp (L) - 1]2>

= <exp (2L)> - 2 <exp (L)> + 1 . (67)

Making use of Eq. 's (62) and (64), we see that

< e x p ( 2 L ) > = exp (2L) exp (2aL
s)

= exp (cL
2) , (68)

while

<exp (L)> = exp (L) exp (| aL
2)

= 1 . (69)

Making use of Eq. 's (68) and (69), we can rewrite Eq. (67) as

E, = exp (ou
2) - 1 (70)

so that

exp (aL
2) = 2X + 1 . (71)

The normalized third central moment of x can be written as

M3/x = < ( x - x ) 3 > / x 3

= <[exp (L) - 1]3>

- <exp (3L)> - 3 <exp (2 L)> + 3 (exp (L)> - 1 . (72)

Making use of Eq. 's (62) and (64), we can write

< e x p ( 3 L ) > = exp (3 L) exp (4. 5 aL
2)

= exp (3 0L
2) . (73)
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If we substitute Eq. 's (68), (69), and (73) into Eq. (72), we get

M3,x = exP <3 at2) - 3 exP (&La) + 2 '

and now making use of Eq. (71), we can cast this result in the form ~

M3/x = (Sx + 1)3 -S fc , + D + 2

= (Sx)
3 + 3 (Zx)2 + 3 (Sx) + 1-3 tex) -3 + 2

= (Ex)3 + 3 (Ex)2 - (75)

Eq. (75) represents the desired relationship between the normalized second

central moment and the normalized third central moment for a log-normal

random variable.

The normalized fourth central moment of x can be written as

M4,x = < ( X - X ) 4 ) / X 4

= <[exp (L) - 1]4>

= < exp (4 L)> - 4 < exp (3 L)> + 6 < exp (2 L)>

- 4 <exp (L)> + 1 . (76)

Making use of Eq. 's (62) and (64), we can write

(exp (4L)> = exp (4 L) exp (8aL
2)

= exp (6 oL
3) . (77)

If we substitute Eq. 's (68), (69), (73), and (77) into Eq. (76), we get

M 4 f X = exp (6aL
2) - 4 exp (3 aL

3) + 6 exp (aL
2) - 3 , (78)

and now making use of Eq. (71), we can cast this result in the form
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= (£X + 1)S- 4 (Sx + l ) 3 +6 (Ex + l) - 3

= (Z,)6 + 6 (E,)5 + 15(EX)4 + 20fex)3 + 15(EX)2 + 6(Ej + 1

- 4 [(EJ3 + 3(EX)2 + 3(SX) + 1] + 6 [(Ej + 1] - 3

+ 6(SXF + ISfEj4 + 16^ )3 + 3(EX)2 . (79)

Eq. (79) represents the desired relationship between the normalized second

central moment and the normalized fourth central moment for a log-normal

random variable.

Making use of Eq. 's (75) and (79), we have used the normalized

second central moments of the scintillation runs to calculate expected

normalized third and fourth central moments based on the assumption

that the scintillation data has a perfect log-normal distribution. These

calculated values, along with the actual measured values as given in Table 9,

are shown in Table 10. From a comparison between the actual measured

normalized third and fourth central moments with the values calculated

based on the log-normal hypothesis as shown in Table 10, we can see that

the scintillation signal apparently can not be categorized as accurately

following a log-normal distribution.

As before in the examination of the background data, we consider

that the problem is possibly due to the inability of the data channel to

properly handle the extremum values. This could be due to data channel

intfoduc'ed noise at the low end, or to saturation or infrequent spiking noise

at the high end. In any case, we should be able to see such effects from an

examination of a plot of the cumulative probability density. In Fig. 's 28 to

71, we have plotted the cumulative probability distribution for each of the

44 scintillation data runs on log-normal probability paper. (The signal

magnitude is plotted on a logarithmic scale and the cumulative probability
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T a b l e 10

Comparison of Measured and Computed Normalized Third
and Fourth Central Moments for Scintillation Runs

Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

29

30

31

33

38

39

42

Diameter
(m)

0. 76

0. 76

0.08

0. 04

0. 76

0. 76

0. 76

0. 08

0. 08

0. 08

0. 16

0. 16

0. 16

0. 16

0. 16

0. 16

0. 04

0. 76

0. 76

0.32

0.32

0. 76

0. 76

0. 16

Normalized Central Moments

Measured

« Third

0. 04014

0. 07836

0. 9925

3. 162

0. 1395

0. 02990

0. 04614

0.4828

0.8514

0. 9016

0. 2185

0.6389

0. 2761

0. 2766

0. 6179

0.4066

11.68

0. 05614

0. 06498

0. 1323

0.09025

0. 3133

0. 009904

0. 1778

Fourth

0. 08261

0. 1894

3.994

16. 03

0. 2903

0. 07390

0. 09220

2.406

4. 511

5. 334

0. 6597

2. 141

0. 8455

0. 8329

1.995

1. 240

82. 22

0. 1332

0. 1539

0. 3432

0. 1683

1. 058

0. 07309

0.6199

Computed

Third

0. 06690

0. 1823

3. 058

12. 97

0. 1441

0. 08104

0. 07440

2. 465

4. 350

5. 351

0.6155

1.495

0. 7448

0. 7623

1.478

0. 9763

48. 57 "

0. 1277

0. 1476

0.2880

0. 1337

1. 396

0. 08251

0. 6730

Fourth

: o. 1206
0.4352

26. 59

297. 1

0.3195

0. 1531

0. 1376

18.88

47. 01

66. 08

2. 331

8. 686

3. 073

3. 179

8. 538

4. 575

3174.

0. 2731

0. 3297

0. 8041

0.2898

7. 827

0. 1566

2. 652
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Table 10 (Continued) Page 2

Run
Numbe r

46

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

- 75 =

76

Diameter
(m)

0. 76

0. 76

0.32

0. 32

0. 08

0. 16

0. 16

0. 32

0. 32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Normalized Central Moments

Measured

Third

0.06459

0.06975

0.3746

0.4660

11.07

21.45

14.30

1. 070

1.067

0. 1659

0. 1592

0.2180

0. 1073

0.3966

0.4236

0.9185

0.7056

1.069

1. 044 ,

0.9805

Fourth

0. 1981

0. 1678

1.252

1. 590

67. 18

159. 1

90.37

3.863

3. 904

0. 5915

0. 5368

0. 7289

0.3636

1. 304

1.432

3.608

2.443

3. 547

-1.312 _,

0.8189

Computed

Third

0.2209

0. 1407

1. 169

1.301

54. 86

118. 7

73. 51

3.869

4.314

0.6468

0. 5420

0.6594

0. 3988

1. 348

1.434

2. 800

2. 435

3. 647

, 0. 07922 ...

0. 04250

Fourth

0. 5619

0.3100

5.989

7. 031

3975.

16920.

6855.

38.83

46.38

2. 504

1- 943

2. 575

1.260

7.423

8. 151

23. 11

18. 52

35.30

, 0. 1488

0.06931
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Figure 28. Signal Probability Distribution for Run #1.
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Figure 29. Signal Probability Distribution for Run #2.
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Figure 31. Signal Probability Distribution for Run #4.
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Figure 32. Signal Probability Distribution for Run #8.

.90 .95 .98 .99

100

50

c
0

bo
.•-I

CO

20

10 I I I I I l l i i i i J I I
.01 .02 .05 .10 . .30 .50 .70

Cumulative Probability

Figure 33. Signal Probability Distribution for Run #9.
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Figure 34. Signal Probability Distribution for Run #10.
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Figure 36. Signal Probability Distribution for Run #13.
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Figure 37. Signal Probability Distribution for Run #14.
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Figure 38. Signal Probability Distribution for Run #17.
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.90 .95 .98 .99

100

50

M)
ti
0>
M

4->
CO

« 20c
M

• r^

CO

10 I I I I ! I

.01 .02 .05 .10 .30 .50 .70

Cumulative Probability

Figure 41. Signal Probability Distribution for Run #20.
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Figure 42. Signal Probability Distribution for Run #23.
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Figure 44. Signal Probability Distribution for Run #27.
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Figure 46. Signal Probability Distribution for Run #30.
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Figure 49. Signal Probability Distribution for Run #38.
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Figure 52. Signal Probability Distribution for Run #46
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Figure 53. Signal Probability Distribution for Run #47.
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Figure 54. Signal Probability Distribution for Run #48.
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Figure 60. Signal Probability Distribution for Run #58.
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Figure 61. Signal Probability Distribution for Run #59.
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Figure 62. Signal Probability Distribution for Run #61.

.90 .95 .98 .99

100

50

W)
fi

m

.& 20

10 I I I I I I J |_

.01 .02 .05 .10 .30 .50 .70

Cumulative Probability

Figure 63. Signal Probability Distribution for Run #62.
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Figure 64. Signal Probability Distribution for Run #64.
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Figure 65. Signal Probability Distribution for Run #66.
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Figure 67. Signal Probability Distribution for Run #69.
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on a normal distribution scale. ) If the random variable whose cumulative

probability is being plotted follows a log-normal distribution,. the plot will

be a straight line. An examination of each of these figures shows that the

measured distribution can be reasonably accurately classified as log-normal,

at least between the 10% and 90% cumulative probability levels. In the ex-

tremes beyond these limits, other contaminating effects sometimes appear,

but they appear to be either too small or too infrequent to significantly

affect the main body of the distribution between 10% and 90% -- though

lying at the extreme values, they are obviously able to affect the higher

moments, as noted in examination of Table 10.

As a method of validating the measured values of the scintillation

runs' mean and variance (i. e. , second central moment) with background

effects removed, which we presented in Table 8 and which we used to cal-

culate the normalized second central moment of the scintillation given in

Table 9, we have taken a straight-line fit to the data in Fig. 's 28 to 71 in

the 10% to 90% range, and obtained an independent estimate of the mean

and second central moment for each scintillation run from this. In Table 11

we show the original measured data as taken from Table 7 and the corres-

ponding straight-line fit data obtained from the figures.

As can be seen from a comparison of the two sets of data in Table 11,

the measured data for the first two moments seems to be in good agreement

with the straight-line fit data. The discrepancies are all less than 20% and

generally are less than 10%. Based on this, we conclude that whatever

effects caused the extremes of the probability distribution to deviate from

a log-normal distribution, and the third and fourth moments to deviate from

the values expected for a log-normal distribution, did not significantly affect

* Because the cumulative probability data plotted in Fig. 's 28 to 71 still
contains the effect of the background, it is necessary to compare the
straight-line fit data to the measured moments in Table 7, i. e. , the
measured moments without background effects removed, rather than to
the data in Table 8 for which the background effects have been removed.
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T a b l e 11

Scintillation Data Runs, -Mean and Variance

Run
Number

1

2

3

4

8

9

10

12

13

14

17

18

19

20

23

24

27

29

30

31

33

38

39

42

Diameter
(m)

0. 76

0. 76

0.08

0.04

0.76

0.76

0. 76

0.08

0.08

0.08

0.16

0. 16

0.16

0.16

0. 16

0.16

o.ol
0.76

0.76

0.32

0.32

0. 76

0. 76

0. 16

..Measured

Mean

42. 37

38. 17

34. 54

24. 70

40. 10

38. 79

34. 33

43. 06

40. 17

38.42

40. 73

28. 04

37. 32

39. 24

38.44

39'. 8;2'.

38. 59

44. 05

44. 56

33.32

46. 00

40. 22

43.29

39.83

Variance

117. 9

135. 5

117. 8

29.90

141. 6

99.36

66. 44

140. 3

110.4

84. 93

133. 1

105. 9

136. 0

1'68. 3

144. 0

142. 9

" 2 9 . 9 9

132. 8

147. 4

70. 32

- 128.8

149. 8

169. 1

137. 3

Straight -Line Fit

Mean

41. 59

37. 95

34. 18

24. 31

39. 59

38.20

33. 51

42. 51

39.61

38. 16

40. 06

27. 72

36.45

38. 69

38. 14

39. 82

38.48

42. 81

43.77

32.61

45. 33

39. 33

43. 25

39. 79

Variance

119. 1

158. 5

113.2

27. 25

120.8

109. 3

65.53

141. 3

104. 4

80. 35

133.4

101. 2

137. 7

169.4

137. 6

139. 7

"'2:6: 97

134. 1

151. 2

69. 23

130. 1

166. 5

161.3

151.4
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Table 11 (Continued) Page 2

Run
Number

46

47

48

49

52

53

54

57

58

59

61

62

64

66

67

69

70

71

75

76

Diameter
(m)

0. 76

0. 76

0.32

0. 32

0.08

0. 16

0. 16

0. 32

0.32

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

0. 76

Measured

Mean

47. 11

46. 22

34. 20

33. 61

35. 59

36. 13

36. 87

36. 59

35. 62

41. 23

42. 09

34. 80

38. 70

32. 18

31. 19

28. 39

28. 81

39. 02

40.41

40.49

Variance

150.0

117. 1

123. 1

119.0

61.45

151. 7

162. 5

172.2

157. 0

169. 5

170.9

150. 3

174. 1

144. 3

131.0

113.4

115. 0

137. 7

97. 04

93.97

tStraight-L,ine Fit

Mean

46. 54

45.76

33.70

32.69

35.36

35. 14

36.25

35.89

34.88

40.40

41.22

33. 59

38. 13

31.95

30. 70

27.75

28. 13

38.83

39. 71

39.80

Variance

165. 0

119. 6

135.8

120. 1

62.48

155. 5

173. 3

187. 7

177. 6

166. 7

174. 3

157. 3

215. 2

169. 5

156. 6

126. 5

130. 3

148. 8

96. 65

98. 30
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the f i rs t and second moments. Therefore, we believe that the measured

scintillation mean and variance (i. e. , second central moment) without

background effects removed, as presented in Table 7, can be relied upon.

Thus we shall be able to use, without concern for the effects of spurious

signal contamination, the normalized second central moment values pre-

sented in Table 9 as calculated from the values in Table 7 in our study

of the relationship between measured data and aperture averaging theory.

We take this up in the next section.

5. Comparison of Experimental Results With Theory

At this point we have, in terms of the normalized second central

moment, i. e. , the normalized variance for the scintillation runs, as

presented in Table 9, a suitable measurement data base for comparison

of theory with experiment. The basic theory of aperture averaging is

presented in Eq. 's (19) and (20), with: the appropriate prior equation pro-
' -v.-

viding a definition of the quantities. Because our measurements were

taken at different zenith angles, we shall be particularly interested in

Eq. 's (11) and (17) as a basis for correcting the data for its zenith angle

dependence. We shall take up the matter of zenith angle dependence com-

pensation f i rs t , and then go into the question of comparing the data with

theory.

5. 1 Zenith Angle Dependence Compensation

Ideally,, if we had a reliable measure of the vertical distribution

of the optical strength of turbulence, CN
2 , during the approximately

three-hour measurement period of the data collection portion of flight #5,

we could calculate the expected value of the normalized variance of the

aperture averaged scintillating laser signal and compare it with the meas-

ured values. This would automatically take accoant of the zenith angle

dependence and we would not have to devote any special attention to it.
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Unfortunately, however, the measured values of CN
2 , as discussed

in Appendix B, do not appear to be reliable, and we have therefore had

to relate the measurements to theory through a more indirect process.

This causes us to have to consider the zenith angle dependence explicitly.

There are two ways in which zenith angle dependence enters into

the value of the normalized variance of the signal. First, we note that

in accordance with Eq. (11), the magnitude of the scintillation as meas-

ured by a very small diameter receiver with no aperture averaging will

vary as the 11/6-power of the cosine of the zenith angle. Actually it is

the variance of the logarithm of the signal that varies as (cos 9)~11/s .

Secondly, in accordance with Eq. (17), we note that the length d0 , which

is divided into the aperture diameter to provide a dimensionless number

from which the aperture averaging factor can be calculated, varies as

one over the square-root of the cosine of the zenith angle, i. e. , as

(cos 9)~1/3 . In our examination of the measured normalized variance

of the signal fluctuation, we shall use these two relationships to relate

the measured values to the values we would expect if the source had been

directly overhead, i. e. , of a zenith angle 9 = 0 .

5. 1. 1 Aperture Size Compensation

To take account of the fact that dQ varies as (cos 9)~1/2 and

convert our measured values to equivalent values for 9 = 0 , we note

that the aperture averaging factor for an aperture of diameter D is a

function of D/dQ . This means that the degree of aperture averaging

achieved when 0^0 with an aperture of diameter D is equivalent to

the degree of aperture averaging that would have been obtained by an

aperture of diameter Deff at 9 = 0 , where

Deff = D (cos 9F3 , (80)
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since, as a result of Eq. (17)

D/dQ = D e f f / ( d 0 ) Z 8 n l t h . (81)

This means that if we wish to compare our measured normalized variance

results with theory for aperture averaging of a source at the zenith, we

should plot the normalized variance, or rather an adjusted normalized

variance, not against the aperture diameter D , but rather against the

aperture averaging equivalent diameter for zenith viewing, i. e. , against

D,ff •

5. 1. 2 Normalized Variance Compensation

In order to be able to adjust the normalized variance for its zenith

angle dependence, we have to be able to separate the aperture averaging

factor from the small diameter receiver signal variance, so that we can

scale this signal variance for the zenith angle dependence. We recall from

Section 1, Eq. 's (13) and (14), that the normalized variance can be written as

S = ^T~
S2

= ® [exp (OL
S) - 1] , (82)

and from Eq. (11), we see that this can be written as

If we solve Eq. (83) for the aperture averaging factor, ® , we get

(84)
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We see that the aperture averaging factor can be calculated from the

measured normalized signal variance, as
s/Ss , and the zenith angle i ,

but only if we assume that we know the log- intensity variance for propa-

gation from the zenith, i. e. , (ai.2)z enit'fe *

Our approach to this zenith angle compensation problem is to

assume that we know (aL
2)z nlth and see how a particular value works

out in matching the data to the theory. . In the next subsection, we present

the results of such an effort.

5. 2 Data Analysis

Making use of the effective diameter scaling relationship presented

in Eq. (80), we have been able to convert the actual receiver diameter for

each scintillation data run to an effective diameter. These results are

shown in Table 12. Along with the effective diameter results, we have

also included in Table 12 the value of the aperture averaging factor com-

puted for various values of (cT|.2)z »th • Based on the fact that the normal-

ized small diameter receiver signal variance viewing a source at the zenith

angle would be

] - 1 • (85)

we have chosen the four values of (aL
2)Zenlth equal to 0.300 , 0.336 , 0.372 ,

. v- "

and 0.405 , corresponding to S°ZeBlth equal to 0.35 , 0. 40 , 0.45 , and

0. 50 , for the aperture averaging values computed in Table 12.

In Fig. "s 72 to 75, we have plotted the aperture averaging factor ,

® , computed for each of these four values of £0
2-,.tJ)

 as a function of

the effective diameter, D^f , using the data in Table 12. The encircled

data points correspond to the set of scintillation data runs performed using

the 0. 76 m diamete'r : ap'erture^withcth'e 337 2:0 m central obscuration. The

shaded circle near the center of each of the large elliptical regions in these
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Figure 72. Aperture Averaging Measurements Corrected to
Zenith Viewing Using E°-'Zeolth ~ °- 32- Theoretical predictions are
shown for dQ = 0. 100 m , 0. 125 m , 0. 150 m , 0. 175 m , 0. 200 m ,
0. 225 m , and 0. 250 m , as the solid curves. . Measured values are
indicated by the dots. The encircled data points were taken with a

central obstruction in the aperture.
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Figure 73. Aperture Averaging Measurements Corrected to Zenith
Viewing Using S°Zenl th =0. 40. Theoretical predictions are shown for
d0 = 0. 100 m , 0. 125 m , 0. 175 m , 0. 200 m , 0.225 m , and 0. 250 m,
as the solid curves. Measured values are indicated by the dots. The
encircled data points were taken with a central obscuration in the aper-
ture. The choice of E°Zen{t b

 =0. 40 and do =0. 125 m appears to give the

best fit to the data of all the possibilities considered.
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Figure 74. Aperture Averaging Measurements Corrected to Zenith
Viewing Using E°z9nl th

 =0-45. Theoretical predictions are shown for
d0 = 0. 100 m , 0. 125 m , 0. 150 m , 0. 175 m , 0. 200 m , 0. 225 m ,
and 0. 250 m, as the solid curves. Measured values are indicated by
the dots. The encircled data points were taken with a central obscur-
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Figure 75. Aperture Averaging Measurements Corrected to Zenith
Viewing Using So

Zenl th =0. 50. Theoretical predictions are shown for
d0 =0. 100 m , 0. 125 m , 0. 150 m , 0. 175 m , 0. 200 m , 0. 225 m ,
and 0. 250 m , as the solid curves. Measured values are indicated
by the dots. The encircled data points were taken with a central
obscuration in the aperture.
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four figures represents a nominal average of the values encircled by the

ellipse. As pointed out in Appendix A, for a 0. 20 m central obscuration

in a 0. 76 m receiver aperture, we expect only about half as much aper-

ture averaging as would be produced by a 0. 76 m diameter receiver with

no central obscuration. A factor of two below the shaded circle, we have

plotted a plus mark (+) which we believe properly represents the average

value of all of the enclosed data points after we make allowance for the

central obscuration. We would expect the theory for aperture averaging

with a clear aperture to match up to this point, i. e. , (+) , rather than to

encircled data points as plotted.

On each of the four figures, i. e. , Fig. -'s 72 to 75, we have super-

imposed the prediction of the aperture averaging factor for a clear aper-

ture for various values of (d0)Zenlt)l , as calculated from Eq. (19). Ex-

amination of all of the figures suggests that the best match to the data is

provided by using the values

( d o ) z e n i t h = 0 .125m

These values are in reasonably good agreement with what we would normally

expect for daytime propagation, namely, a log-amplitude variance,

0"02 = 0. 0841 , and a scintillation correlation distance of the order of

12.5 crn . -

5. 3 Conclusions

While the spread of the data is too large to tightly bound the con-

clusions that can be drawn from a comparison of theory and experiment,

we can generally conclude that the experimental data are in general agree-

ment with the existing theory of aperture averaging. Most of the deviation

between theory and experiment can be attributed to the stochastic nature
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of the scintillation phenomena. The few data points that significantly

deviate from the theoretical predictions are most likely due to excess

noise or some other anomaly in the data channel. The values obtained

for the log-amplitude variance, a^2 , for \ = 0.633 |j,m zenith propa-

gation, namely, a*2 = 0. 084 , is apparently the only available meas-

urement for the scintillation effects of turbulence during daylight hours.

We believe the general agreement of the data obtained in this experiment

with theoretical predictions of aperture averaging provides a basis for

applying that theory in the analysis of the expected performance of a

space-to-ground laser communications link.
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Append i x A

A p e r t u r e A v e r a g i n g

i n the

P r e s e n c e of a C e n t r . a l O b s c u r a t i o n
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Introduction

The theory of aperture averaging of atmospheric turbulence-induced

intensity variations was rather extensively treated in a previous work of

ours1 for the case of a circular clear aperture. Here we shall be concerned

with assessing the implications of a circular central obscuration on the vari-

ance of the aperture averaged signal. As we shall see, the theoretical re-

sults for aperture averaging with central obscuration can be obtained directly

from our previous results for aperture averaging without any central obscur-

ation. We therefore f i rs t briefly review these results, and then proceed

with the development of the new results.

Previous Results

It has previously been shown2 that for propagation over a path of

length L , by radiation of wave number k , if the distribution of the re-

fractive-index structure constant over the path is given by CN
2(s) (where

s = 0 at the source and s = L at the aperture, i.e. , measurement plane),

the log-amplitude variance is given by the equation

a^2 = 0. 56 k7/6 J ds CN
2(s) s5/6 p,5/s , (1)

Path

where , . . . . . . . . . .
1 , if the source is an infinite plane wave source

V. = { • (2)
s/L , if the source is a point source.

It has been shown3 that since the fluctuations of intensity are log-normally

distributed, if the mean intensity at the measurement plane is denoted by

IQ , then the intensity variance can be written as

aj2 = I0
2 [exp (4 a&

a) - 1] . (3)
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In our previous work on aperture averaging1 we showed that if we

considered a circular clear aperture of diameter D collecting a signal

S from the fluctuating intensity signal described above, that signal would

have a mean value SQ , and a variance, as
2 given by the expressions

S0 = i TT D2 I0 (4)

and

as2 = ax
3 (l n D?)3 ® (5)

•where ® . is what we have called the aperture averaging factor. The value

of the aperture averaging factor was developed for the circular clear aper-

ture. It was shown that for an aperture of diameter D , the aperture

averaging factor has the value given by the expression

/ D \7/6 / D \7/3 -T1

8 = 1+ +

where the length dQ is a propagation parameter whose value is

3/7
J ds CN2(S) (L-s)2 n-

- 2.399k-i/2 Path

.f. ds CN
2(s) (L-s)5/6 t̂sfe»*" >-N V ^ F / v^_ ^ t ^

Path

(7)

With these results, it is a straightforward matter to undertake the calcu-

lation of the aperture averaged signal for a circular clear aperture of

diameter D , given the distribution of the refractive-index structure

constant along the propagation path. We now turn our attention to the

problem of extending these results to the case of a circular aperture with

a central obscuration.
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Central Obscuration Considerations

In this section, we shall be concerned with a circular aperture

of diameter D with a concentric circular obscuration of diameter d ,

subject to the constraints that we are dealing with an aperture that is

large enough that

D :» d0 , (8)

| (D-d) » d0 , (9)

but for which we shall not be too severe in enforcing the "very much

greater than" relationship. Our approach to this problem is by noting

that the fluctuations of the aperture averaged signal are not due to vari-

ation in the total optical signal power reaching the measurement (i. e. ,

the aperture) plane, but rather are due to redistribution of the energy

from one point in the plane to another. Generally speaking, this redis-

tribution of energy takes place over a range of the order of dQ or less.

This means that the variations of the aperture averaged signal collected

by an unobstructed circular aperture of diameter d are to be associated

with variations in the spill over of energy into or out of the region sur-

rounding that aperture. Similarly, the variation in the aperture averaged

signal from an unobstructed circular aperture of diameter D are to be

associated with the random relocation of energy between inside and out-

side of the circle. For the obstructed aperture, if we assume that D is

sufficiently greater than d , as required by Eg. (9), then the aperture

is randomly exchanging optical power with its external surroundings with

an exchange variance, a.2 , as given by the clear aperture formula for

diameter D , and is randomly exchanging optical power with the internal

"surroundings" (i.e. , the obstruction region), with an exchange variance

CTd2 ' as given by the clear aperture formula for diameter d . The signal
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variance as
2 is the sum of these two variances, i.e. ,

os
2 = aD

2 +a f l
2 , (10)

where

V - °T
2 (in D)2 [i + f^-f6 + f:rTf . (ID

d \7/s / d

It now follows that the aperture averaged signal variance for the obstructed

aperture case can be written as

© (13)

where ® is the modified aperture averaging factor. Its value is given by

the expression

D2 j 1 ^_ , d2/Ds

, T) ,7/3_

* ! 1Vd0 / J

D \7/6 / D N7/3- / d N7/6 / d \7/3

This, together with Eq. (13), represents our basic result for aperture aver

aging with central obscuration.

To see the significance of the central obscuration correction factor

for aperture averaging, compared to the result for unobstructed aperture

averaging, we have calculated the aperture averaging factor for the variety

of cases listed in Table 1. As can readily be seen, the correction can be

significant -- in the cases shown, the difference represents about a factor

of two.
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T a b l e 1 A

Aperture Averaging

With and Without Central Obscuration

D = outer diameter

d = central obscuration diameter

dQ = aperture averaging length

do
(m)

0. 100

0.11

0. 12

0. 13

0. 14

0.15

0. 16

0. 17

0. 18

0. 19

0.200

®
D = 0". 76 m

. 007986

. 009857

.01193

. 01420

. 01667

. 01933

. 02218

. 02521

.02842

. 03181

. 03536

®
D = 0. 76 m
d = 0. 20 m

. 01756

.02115

. 02500

. 02907

. 03336

. 03785

. 04252

. 04736

. 05236

. 05751

. 06279

0
D = 0. 64 m

. 01166

. 01435

. 01732

. 02055

. 02405

. 02781

. 03181

. 03604

.04050

. 04518

. 05006

®
D = 0.64 m
d = 0. 20 m

. 02598

. 03127

. 03691

. 04288

. 04914

. 05567

. 06244

. 06944

.07663

. 08401

. 09156
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Ap p e n d i x B

T h e r m o s o n d e B a l l o o n F l i g h t # 7

M e a s u r e m e n t s o f
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Introduction

At approximately the same time that laser transmitter balloon

flight #5 was being conducted, thermosonde balloon flight #7 was carried

out to obtain data on the vertical distribution of the refractive-index

structure constant, CN
2 . The basic plan whsn the experiment was

organized was to obtain data on CN
2 which could then be used with propa-

gation theory and aperture averaging theory to allow run-by-run compari-

son of measurements with theory. Unfortunately, as noted in the body of

this report, the thermosonde appears to have functioned incorrectly

(possibly due to solar heating) and the measured values of CN
2 appear

to be substantially too large. In this appendix we shall briefly present

the results associated with the thermosonde data, and explain the basis

for considering the derived values of CN
2 to be too large. We have not

been able to develop any plausible method of "correcting" the measured

values of CN
2 .

Measurements

The thermosonde makes measurements of the mean square difference

of temperature at two points some fixed distance apart. From this, it is

then possible to calculate the temperature structure constant, CT
2 . From

that, and knowledge of the local temperature and pressure, it is then a

straightforward matter to calculate the refractive-index structure constant,

C 2
*~N

Because of the stochastic nature of turbulence, individual meas-

urements of CN
2 fluctuate strongly and a great deal of averaging is re-

quired to obtain statistically significant results. Because the thermosonde

balloon's altitude is continuously changing as the CN
2 measurements are

being made, it is convenient to convert the measurements into an estimate

of the integral of CN
2 over altitude. Such a curve is relatively smooth,
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and in fac t can usefully be represented by a quite smooth curve. The

slope of this smooth curve can then be taken as a well-averages estimate

of the value of CN
3 at each altitude.

In Fig. B-l, we show a plot of the integral of CN
2 with altitude

starting at 1. 5 km. The smooth curve has been drawn so as to represent

what we identify as the general trends of the integral. However, it does

not follow the point-by-point irregularities which we identify with the

stochastic aspects of the measurement data. Working with the slope of

this curve, we have prepared estimates of the mean value of CN
2 in each

of the one-kilometer intervals centered about the altitudes 2 km , 3 km ,

. . ., 25 km . These results are shown in Table B-l .

Calculations and Conclusions

We have utilized the turbulence mode presented in Table B-l to

calculate the expected log-amplitude variance, a*2 , and the scintillation

averaging length, dQ , for \ = . 633 M/m radiation viewed at the zenith.

Using this turbulence model, we obtain Q 2 = 0.474 nepers2 , and

d0 = 0. 0889 m . We note f i rs t of all that these results are in significant

disagreement with the measurements of scintillation which we found were

best explained by the values a*3 - 0. 0841 nepers2 and d0 = 0. 125 m .

The value of dQ obtained from the thermosonde data is only 70% as large

as the value obtained from the optical measurements, a discrepancy large

enough to raise questions, but not large enough to base a f irm conclusion

on. . However, the value of c«3 calculated from the thermosonde data is

564% larger than the value obtained from the optical measurements. This

is much too large an error to be attributed to the stochastic nature of the

data. Moreover, the value of aa
3 obtained from the thermosonde data

J6

is so large as to put the propagation into the saturation of scintillation

regime --a condition which we consider highly unlikely for this propagation
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path. We note that this value of a 2 , i.e. , a 2 - 0.474 , corresponds
$j &

to an rms intensity fluctuation of 237% . This large an intensity scintil-

lation would be clearly visible as a very distinct phenomena for all high

altitude optical sources during the daytime. Since no such striking inten-

sity scintillation is observed, and because a.3 = 0.474 is so at variance

with what we expect for this propagation path, we resolve the discrepancy

between the thermosonde data and the optical data by concluding that the

thermosonde data should be considered unreliable. We have been unable

to discover any simple and credible correction to the thermosonde data

which would remove the discrepancy, and therefore consider the thermo-

sonde data as not being part of the data base of this experiment.
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T a b l e B- 1

Estimates of CN
2 From Thermosonde Balloon

Flight #7

Altitude
(km)

2

3

4

5

6

7

8

9

10

11

12

13

14

-15

(=£>
3. 23 x 10-*6

2. 27

1.67

1. 28

1. 27

0. 97

0.86

1. 08

1. 40

1.39

1. 60

1. 80

2.19

1 . 49

Altitude
(km)

16

17

18

19

20

21

22

23

24

25

(m.-3/3)

1 . 1 3 X 1 0~16

0. 79

0. 79

0.62

0.48

0. 59

0.52

0.45

0.36

0.17
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- A p p e n d i x C

T e m p o r a l P o w e r S p e c t r

- 109 -



This appendix is in the nature of an addendum to the body and

principal concerns of this report, which was to study aperture averaging.

Having had the recordings of the various data runs, it has been conven-

ient to Fourier analyze some of that data and study the resulting spectra.

Our objective in doing this has been two-fold. First, we wish to assure

ourselves that there is no noise entering into our data as a single frequency,

such as 60 Hz ripple. Secondly, we wish to see if we can say anything

useful about the temporal nature of the aperture averaged signal fluctua-

tions.

In Fig. 's C-l to C-16, we show the Fourier transform of various

of the background runs. In none of the background run spectra do we see

any evidence of a serious amount of single frequency noise. In this sense,

the experimental apparatus was apparently free of spurious noise problems.

We note, however, the rather peculiar and not particularly consistent set

of shapes for the background run spectra. We take this as an indication

of some excess low frequency noise. Fortunately, the variances of the

background runs were generally low enough that we can conclude that this

excess noise was not significant.

In Fig. 's C-l 7 to C-32, we show plots of the power spectra ob-

tained from 16 scintillation runs taken with various aperture diameters

and when viewing at various zenith angles. Here again we note the absence

of any single frequency noise, which assures us of such things as that

there was no significant ripple in the laser output --a matter which was

not tested in our examination of the background run power spectra.

We note that for these power spectra, with the single exception

of Run #4, Fig. C-l 7, which was for a 0. 04 m diameter aperture,

all of the scintillation power spectra appear to exhibit a relatively well

defined decline starting at very low frequencies. It is not clear what
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is the origin of this low frequency strength in the power spectra. We

have calculated a nominal transition frequency for each of these figures

based on an estimated effective wind velocity of v = 15 m/sec , and a

linear dimension equal to either the projected aperture diameter, D cos 9

or dQ = 0. 125 m .whichever is larger. Our nominal transition frequency

is

v/(2 D cos Q)

v/(2 d0)

is greater

At frequencies below fy we expect the power spectrum to be

relatively constant or decreasing. . In each of the scintillation data run

power spectra figures, we have indicated this transition frequency by

an arrow. As can be seen, in general the power spectra continues to

rise as frequency decreases below fT . We have not been able to identify

this source of extra low frequency power. The possibility exists that it

may be related to turbulence effects interacting with the small diameter

laser beam in the atmosphere. However, this is only conjecture, and

further study of this question is required.
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Figure C-2. Power Spectrum for Background Run #28.
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Figure C-4. Power Spectrum for Background Run #15.
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Figure C-5. Power Spectrum for Background Run #25.
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Figure C-6. Power Spectrum for Background Run #21.
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Figure C-8. Power Spectrum for Background Run #35.
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Figure C-10. Power Spectrum for Background Run #56.
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Figure C-12. Power Spectrum for Background Run #63.
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Figure C-17. Power Spectrum for Scintillation Run #4.

100

0
0)

120

10
20 80 10040 60

Frequency (Hz)

Figure C-18. Power Spectrum for Scintillation Run #27.
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Figure C-20. Power Spectrum for Scintillation Run #14.
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Figure C-22. Power Spectrum for Scintillation Run #19.
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Figure C-23. Power Spectrum, for Scintillation Run #54.
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Figure C-24. Power Spectrum for Scintillation Run #33.
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Figure C-25. Power Spectrum for Scintillation Run #48.
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Figure C-29. Power Spectrum for Scintillation Run #62.
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Figure C-30. Power Spectrum for Scintillation Run #64.
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