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PREFACE

The Spacecraft Materials Guide is intended primarily for the aerospace engineer responsibie

for the design and fabrication of spacecraft systems as an aid in the selection of components

and the utilization of suitable materials systems and processes. A variety of materials and

processes that pertain to aerospace fabrication is discussed, problem areas are noted, and

recommended materials are presented.

It has been recognized that consideration of the requirements to be placed on materials in

spacecraft design is important, particularly in view of the hazardous nature of space environ-

ments. The ultimate success of a system is strongly dependent upon the satisfactory resolu-

tion of the various crucial materials problems which can be encountered. The effectiveness

of any resolution must necessarily be predicated on the cooperative rapport established

between the designer and the materials specialist, with the latter bringing both service ex-

perience and laboratory evaluations to the problem-solving process.

As the focal point for many technical matters dealing with materials and processes, the

Materials Engineering Branch (MEB) at Goddard Space Flight Center (GSFC) has been

directly exposed to numerous spacecraft problems and component failures. As a conse-

quence, a considerable amount of information has been compiled from internal and other

sources and, of equal importance, a great deal of specialized experience has been acquired

regarding practical design use of engineering data or material properties.

One of the important functions of the MEB at GSFC is the dissemination of this reservoir

of knowledge to those responsible for planning, designing, and fabricating flight hardware.

For this reason, this Spacecraft Materials Guide is issued to summarize many of the materials

which have demonstrated their suitability for space application, and to point out common,

recurring problem areas. Recognizing the broad nature of the subject of materials, the text

of this document was deliberately limited to the following four topics: "Encapsulants and

Conformal Coatings," "Optical Materials," "Lubrication," and "Bonding and Joining."

Historically, these applications have incurred a high incidence of problems. It should be

noted that this Spacecraft Materials Guide differs from other similar publications in that

much of the information contained herein was developed within the Materials Engineering

Branch by its technical staff in the course of carrying out their materials support respon-

sibilities to NASA/Goddard flight projects.

The purpose of this document is to instill an awareness of and an appreciation for the dan-

gers inherent in the misapplication of even suitable materials for spacecraft use through the
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presentation of materials, problem areas, and solutions. Some information may not have

been fully covered and some omissions may exist which, if available, would enhance the text.
Comments will be most appreciated.

Charles L. Staugaitis

Head, Materials Engineering Branch

Goddard Space Flight Center
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ENCAPSULANTS, CONFORMAL COATINGS

Aaron Fisher

INTRODUCTION

Encapsulant materials are part of a broad spectrum of protective media generally employed

in providing a status quo environment for embedded units. Unit in this context refers to a

wide application spectrum such as PC boards, high voltage cabling, and connectors. The

purpose of encapsulants is to prevent any detrimental change which might alter the optimal

function or operation of an embedded or coated unit (1) by vibration cushioning, (2) by

providing anticorrosion dry environments which also minimize electrical malfunction, and

(3) by providing a firm structure for handling or a cellular structure in cases where weight

might be a problem.

Conformal or thick coatings provide combinations of properties which could be considered

an extension of those provided by encapsulants. Basically, the encapsulant is a pourable

material of a resinous nature. When chemically modified, that is, cured or hardened, it will

supplant the medium of comparatively easily ionizable air. The cured material provides a

physically protective body of uniform electrical properties and/or other attributes selected

to best suit the function of the unit.

CONSIDERATIONS

There are many types of encapsulants and coatings and many formulations within a given

type. It is simply not very practicable to note that some form of protection is necessary

and then indiscriminately select any system which is pourable and hardens readily. A mate-

rial must be selected after its properties or characteristics have been sieved, not only through

the requirements of the unit to be treated, but also through the requirements of adjacent

components and the environment. An encapsulant system with properties that are compati-

ble with the original unit, adjacent complexes, and the environment becomes the system to

use. In some cases a resin system may have to be designed to meet all necessary parameters

successfully.

However, within the plastics industry there are companies that provide a variety of plastic

materials with known properties which can satisfy a host of specialized applications. In the

design of a total system, it is imperative that the materials selected be compatibly coupled

with the particular hardware design. The choice of an encapsulant must suit the design;

however, in some cases it may be necessary to modify the original design concept in order



to makeit easilyadaptableto areadilyavailableformulationsystem.A cooperative
approachbetweenthematerialanddesignengineerscouldpreventasituationwherean
excellentdesign,drivingrapidlyto its ultimategoalof flight hardware,findsthat arequired
specializedtypeof protectionisnot availableor that existingtypesareincompatible.

A fewexamplesillustratethedangersof not only impropermaterialselectionsbut alsoin-
adequatecoordinationbetweenthematerialsspecialistandthe designengineer.Production
photomultipliertubes,becauseof eitherimproperpottingmaterialsor technique,developed
soft resinspotsandpossiblyincipientcracksin areasof highvoltage.Thepottingmaterial
andtechniqueusedwereincompatibleasa"total" tubedesignpackage.The tube was

electronically excellent. The designer did not completely foresee all the requirements for

good potting. High voltage-resistance and easy-fill operability were required of the potting

material. The resultant solid potting was essential to the support of the tube during launch

vibration and later to contain the high voltages inherent in the systems operation. It had

not been foreseen that a viscous resin-glass bead composite would have difficulty flowing

through narrow apertures. In addition, catalyst blending had not been uniform. This

resulted in potting soft spots, with lowered voltage resistivity.

A unique and immense spacecraft light baffle, which cost several hundred thousand dollars,

was nearly scrappe d because an epoxy black paint would not adhere well to the aluminum

surface. The specks of paint and the exposed aluminum reflecting surface could detrimen-

tally affect the optical data input once in orbital operation. The flat black optical properties

of the paint were acceptable, but the paint failed in its adhesion requirements, a potential

source of damage to the optical system. Through laboratory testing it was determined that

overcoating the old paint on the baffle with flexible, adhering, flat black paint Chemglaze

Z-306, a polyurethane type, would be an effective solution. This was undertaken with

totally positive results; no paint specks lifted during vibration tests and the baffle was
successful.

These examples indicate that encapsulants and coatings must be designed to fulfill very

specific functions and be compatible with other critical experiment parameters. The im-

portant point is that the design must be approached from the aspect of the total system and

is not limited to local materials consideration. That is, the possible impact of a specific

material on its total environment, the potential effects or ramifications of using a particular

material or encapsulant, cannot be ignored in experiment design.

A more specific example, a connector insulation problem common to all spacecraft systems,

required that an insulating resin protect exposed pins which were located between a previ-

ously applied support shrink tubing and solder cup of Cannon connectors. In previous

applications, the multiheaded harnesses with wire-suspended connectors had been coated

with a low-viscosity, modified epoxy resin. Adequate insulation of the pins with that

material required that all of the connector pins from a specific cable be first coated on one

side and allowed to cure overnight. The connectors were then turned over so that the pins

could be coated and cured on the opposite side. This procedure took too much time, wasted

manpower, and required considerable accuracy. In addition, the resin could possibly flow
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into theconnectorandcoatcontactsor freezethe desired floating characteristics of the pins

when the resin cured. If this occurred, the harness would not meet its specifications.

A new approach to insulation was required which would eliminate the above noted problems

inherent with a low-viscosity resin. A flexible, fast curing, very low outgassing, thixotropic,

ultraviolet fluorescent resin was developed. A modification allowed this to be extruded as

a continuous 2.8 × 10.3 cm (1/8 in.) diameter "grease consistency" rod from a highly

pressurized 4.13 X 105 to 4.8 × 10s N/m 2 (60 to 70 psi) trigger-activated, hand-held

dispenser. This system allowed for:

• Connectors to be twisted and held at any angle from the cable while the protective

insulating resin bead was run around the connector pins;

• A connector to hang at any angle from the cable while the next connector was

insulated; and

• The cable to be left untended, at any angle, while the next cable connectors were
coated.

The resin system is designed to gel in about one hour, after which rougher handling is

allowable. A solid, room-temperature cure occurs within 16 to 18 hours, and very little

exotherm is produced. A complete cure requires 7 days at room temperature.

A fluorescent material was incorporated in the resin to provide the capability for the follow-

ing inspections:

• Inadvertent flow-through onto the pfins,

• Presence of voids, and

• Presence of gaps in the coating.

The cured resin fluoresced and emitted a bright green color when exposed to a common,

hand-held laboratory ultraviolet source of 3650,8,. Imperfections could be observed and

recoating performed as required.

The material was excellent from a low outgassing point of view; total weight loss was

0.38 percent and volatile condensable materials were 0.02 percent. Insulation operations

on 170 connectors of a previous IMP spacecraft not utilizing this technique required

approximately- 14 man-days. The new procedure required only 3 man-days (a three-man

team completed the entire job in one day) and provided a neater, more reliable package than

previously possible. This potting formulation and procedure for insulation of electrical con-

nectors is described in Appendix A. Sources for the required material components are also

presented in Appendix A.

The material used was a Cab-o-sil modified, fluorescent thixotropic urethane resin system

whicll has grease-like consistency and is highly viscous when prepared (see formula below).

The resin was applied using a pressurized 4.13 X l0 s to 4.8 X 105 N/m 2 (60 to 70 psi) gun,

with very little subsequent resin flow, no matter what the angle of application or base support.



Theformulation,aftercure,becomesaflexible,fluorescent,solidpolyurethaneandhas
verylow outgassingin avacuumenvironmentat 398K (125°C).

Thefollowingformulaisbasedonquantitiesof resihneededfor severalconnectorsandmay
beincreasedproportionatelyasnecessaryif manyconnectorsarebeingprepared.

SolithaneC-113
SolithaneC-113-300
Cab-o-silMS-5
DibutylTin Dilaurate

Vyac Luminescer 174

30.00 g

21.90 g

3.40 g

0.05 g

0.05 g

General Types of Encapsulants

Encapsulants have been and can be designed to modify many of the basic properties of the

original resin by the incorporation of various additions. There are companies that specialize

in providing modified resin systems with various and highly desirable characteristics. In

addition, they provide measured physical properties and describe successful areas of appli-

cation.

The basic resin systems are classified as:

• Rigid,

• Semirigid, or

• Flexible.

The basic resin material may be epoxy, polyurethane, polystyrene, polyester, acrylic, or

silicone;the choice of material is governed by the need for some secondary or tertiary prop-

erty, that is, adhesion, electricals, thermal conductivity, expansion, outgassing, and so forth.

Solid and foam structure materials are included in the above basic resin systems. Foams

may be initiated as a pourable liquid or may be heat generated from a compounded solid.

Low Density Foams

Low density foams 0.03 to 0.32 g/cm 3 (2 to 20 lb/ft 3) range from a thin friable condition

to a potentially structural form capable of supporting applied loads. The methods of

developing cellular structure for different chemical forms are:

• Air whipped, pourable-promotes cellular formations by incorporating air bubbles;

• Chemically, gas generated, pourable-gas evolves from reaction of components;

• Gas added under pressure, moldable-bubbles produced by introducing N 2gas under

pressure in a confined volume and then subsequently releasing pressure;

• Heat breakdown of an incorporated blowing agent, which releases gas to the surround-

ing polymer matrix.
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In manyrubbersandelastomersthermalactivationreleasesdesiredgasbecausesuchblowing
agentsasbicarbonateandcelogenhavepreviouslybeenincorporatedinto theformulations.

Syntactic Foams

Syntactic foams 0.35 to 0.08 g/cm 3 (2:2 to 50 lb/ft 3) represent two-component, bubNe-

resin systems. They consist of a polymeric or ceramic hollow sphere included within a

polymerizable matrix, either foam or liquid. These foams may be pourable but generally

are applied by a trowel.

Electrical Encapsulants

In addition to low density and syntactic foams, highly specialized encapsulant systems can

be formulated for electrical applications. The many possible modifications are tailored

using specific fillers to meet specific requirements such as:

• Conductivity-RF Shielding,

• Resistivity,

• Dielectric constant, from 1 plus to 10 or 25, and

• Dielectric strength-high-voltage resistance and corona resistance.

Other requirements for specialized encapsulant systems may include:

• Thermal conductivity,

• Thermal expansion to approximate that of metals,

• High density,

• Ultraviolet resistance,

• Particulate radiation resistance,

• Fluorescence,

• Shrinkage,

• Thixotropy.

Some resin systems have high viscosities, some are thixotropic, while others may be fluid.

Some need elevated temperatures for cure, others harden at room temperature, yet others

require moisture or sometimes ultraviolet light in order to cure. Some systems generate

high temperatures and are violently exothermic during cure, while others are only warm to

the touch.

The limitless possibilities available to achieve the desired properties required for a particular

application of encapsulants and conformal coatings necessitate careful consultation of the

parameters of available materials prior to final fixing of design. Potting materials can also



beusedimproperly;someof themoreimportantfactorswhichcanbeapotentialproblem
if overlookedarepresentedbelow.

• Thermal Expansion. It is undesirable to have high coefficient mismatches because of

the induced stress buildup during thermal cycling. Semirigid potting materials can be

useful for minimizing stress at interfaces, and specially filled materials of comparatively

low expansion can equalize thermal coefficients. Where an item may require exten-

sive silicone potting, the container should allow freedom for silicone expansion. In

addition, high thermal expansion of the silicones is modified by using hollow spheres

as fillers.

• Dielectric Constant. Dielectric-constant-sensitive breadboard hookups invariably

behave differently than conformally coated circuit board prototype hookups. The

difference could be in the required circuit board coating whose dielectric constant

may range from 2.5 to 5.6, while the breadboard hookup circuitry operates at an air

interface dielectric constant of 1.0.

• Corona. Some simple, ruggedly designed, solid-state, high-voltage circuits might per-

form more efficiently without potting, if they could withstand launch vibration effec-

tively. If not., low-outgassing silicones are recommended.

• Voids. Most pottings are improved by resin deaeration in a vacuum prior to potting.

This is especially important in high-voltage systems.

• Foams. Among other considerations, rigid, gas-tight cellular foams can maintain dielec-

tric constants, normally between 1.2 to 1.7, depending on the dielectric constant of

the resin matrix and the foam density. However, with flexible unicellular foam sys-

tems, dielectric constant changes will occur in vacuum over the long term.

• Potting Mixing. Ingredients should contact only glass or stainless equipment during

mixing prior to pouring in order to minimize the introduction of organic contaminants,

water vapor, and so forth, which occurs by using paper cups, wooden stirrers, or some

wax coated containers.

• Primer Coat. Some pottings, such as silicones or polyurethanes, may require primers

to optimize adhesion.

• Barrier Coats. Silicone pottings may require a barrier precoating to prevent substrate

poisoning of potting catalyst and corresponding softening in the affected area.

• Hollow Spheres. Hollow bodies useful for inclusion in acceptable resin matrices should

be tested for potential cracks. These may be immersed in ethyl alcohol and can be

pressurized to about 1.7 X 10 s N/m 3 (25 psi) while in the alcohol. Those hollow

spheres that subsequently float are dried and selected for actual potting.

• Outgassing. There are many materials which generate products while in vacuum at

various temperatures, and the possibility for affecting other systems by outgassing
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mustbeconsidered.Theseproducts,for example,moisture,unreactedconstituents,
solvents,andlow molecular weight polymers, may condense on cool optics or thermal

control surfaces. In addition, such vapor state products may create a poor vacuum

locally in a high-voltage area, thereby creating an environment conducive to corona

discharge as indicated by Paschen's Law. Condensables can also disastrously affect

the efficiency of radiant coolers and thereby destroy the discriminatory effect of

critical semiconductors.

Therefore, a basic consideration in utilizing all polymer materials is that their outgassing

levels be low, and that they meet the combined criteria of no greater than 1-percent total

weight loss nor more than 0. l-percent condensables. Test conditions include heating at

398 K (125°C) for 24 hours in a vacuum of at least 1.33 × 10 -4 N/m 2 (1 × 10 -6 torr) and

controlling the condensing plate at 298 K (25°C).

The requirement described eliminates many potentially undesirable material selections.

Outgassing information on over 2638 variously preconditioned polymers, available at

GSFC*, indicates that there are acceptable polymeric materials suitable for any spacecraft

application problem. Potting and conformal coating materials with acceptable outgassing

properties are presented in Appendix B.

* See, "A Compilation of Low Outgassing Polymeric Materials Normally Recommended for GSFC Cognizant

Spacecraft" by A. Fisher and B. Mermelstein, NASA TM X-65705, July 1971, and "A Compilation of

Outgassing Data for Spacecraft Materials" by W. A. Campbell, Jr., R. S. Marriott, and J. J. Park, NASA

TN D-7362, September 1973.
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OPTICAL MATERIALS

Alfred G. Eubanks

INTRODUCTION

Those materials and systems which serve primarily to transmit or to reflect electromagnetic

radiation in the ultraviolet, visible, and/or infrared wavelength regions are described in this

chapter in terms of their use in space. Included are lenses, windows, mirrors, and optical

filters. Applications of optical systems in space include still and television camera lenses;

windows; selective wavelength filters for detectors used in light-sensing devices such as

star trackers and meteorological experiments; and reflective devices such as mirrors to direct

light beams and to function as Cassegrainian telescope reflectors.

The application of each space optical system is usually unique and, thus, requires individual

selection' of the materials to fulfill the design specifications. It is impossible, therefore, to

present a list of optical materials that will be suitable for all optical systems. There are,

nevertheless, certain characteristics that pertain to most optical materials which can be

helpful in their selection and use. First, almost all optical systems contain either crystalline

or amorphous ceramics. Ceramics are brittle (which can lead to chipping or cracking), weak

in tension, and strong in compression. In addition, many single-crystal optical materials such

as potassium bromide (KBr), sodium chloride (NaC1), and lithium fluoride (LiF) are cleav-

able and may split under relatively low stresses. Secondly, it should be recognized that vir-

tually no optical material, especially when used as a transmitting medium, is completely

stable when exposed to space radiation conditions, for example, electrons, protons, and

solar cosmic and ultraviolet radiation. Even the most radiation resistant of these materials

exhibit some degradation, especially in the ultraviolet region, when exposed to sufficient

radiation. Also, all of the optical transmitting materials with which the Materials Engineer-

ing Branch has had experience fluoresce to varying degrees during radiation and exhibit

phosphorescence for varying periods of time after cessation of the irradiation.

Finally, it is especially important that optical materials intended for space use, since they are,

as previously noted, mostly ceramics, be properly prepared to ensure compositional uniform-

ity, absence of foreign materials, freedom from internal stresses, and so on, and that their

relatively unusual properties be considered when they are designed into a system.



MATERIALS

The optical materials discussed in this chapter are separated into the following categories.

• Optical Glasses

• Fused Silicas (as utilized in protective windows and solar-cell covers)

• Interference Filters

• Mirror Materials

• Colored-Glass Filters

• Infrared Transmitting Materials

Table 1 lists a number of the above materials that have been used in space applications along

with some of their pertinent physical, mechanical, and optical properties.

Optical Glasses

Most optical glasses, with the exception of some of those containing lead (for example,

flints), exhibit appreciable degradation of optical properties, primarily transmission, al-

though the refractive index may also change, in some cases, when exposed to simulated

space radiation levels. Test data are available for a number of optical glasses including

Corning numbers 8362, 8363, and 8365 and general glass types 517:645, 541 : 599, 573: 574,

617:336P, and 649:338P. Except for those glasses with a "P" designation* and Coming

8362, 8363, and 8365, which are lead-containing glasses, the glasses listed show a signifi-

cant decrease in transmission when exposed to ultraviolet radiation equivalent to 400 to

500 hours of solar exposure or to charged particle radiation on the order of 1012 electrons

per cm 2 of 1-MeV energy or of 1013 protons per cm 2 of I-MeV energy. These dose levels

are usually experienced in relatively short periods in the space environment, depending

on the orbit. Our experience shows, however, that optical glass elements can generally be

shielded from most of the particle radiation by placing a protective window in front of the

optical system. These protective windows are commonly made of fused silica or sapphire.

For missions where the glasses will be exposed to appreciable amounts of ultraviolet rad-

iation, a suitable short wavelength cutoff filter may prove satisfactory.

Another approach would be to use a cerium-doped optical glass as the front element in the
optical system or as a window material.

Fused Silicas

All of the fused silicas tested by the Materials Engineering Branch degrade when exposed

to high levels of ultraviolet radiation (several percent in the ultraviolet region after 2200 hours

* The "P" designation indicates those glasses that have had cerium oxide added as a means of increasing their
resistance to radiation.
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for the best grades); however, this level of ultraviolet radiation is not usually experienced

because of mission length, except in cases where long sun-viewing periods are required by

experiment objectives. In the case of charged particle radiation, exposure to 1-MeV electrons

on the order of 1014 electrons per cm 2 or to I-MeV protons on the order of 1015 protons

per cm 2 can cause significant transmission degradation in this material. Fused silicas vary,

as do most materials, in their ability to resist radiation. Our experience indicates that the

higher-purity fused silicas such as Coming 7940 and Suprasil-W are more resistant than

others such as Infrasil-I, Infrasil-II, and General Electric 101. Data showing the effect of

ultraviolet radiation on the transmission of several fused silicas are shown in Figures 1 and 2.

Figure 3 shows the effect of charged particle radiation on one of these materials. With

regard to mechanical properties, fused silicas are strong enough to remain intact during pre-

flight handling and launch, unless large-sized, relatively thin elements are used.

40

2O

I I 1 I I 1 I I I I n

0.2 03 04 0.5 0.6 0.7 0.8 0,910 2.0 30 40 50

WAVELENGTH {Micromelef$}

Figure 1. Transmittance of Suprasil-W before and after ultraviolet irradiation at 3.5 ultraviolet solar con-

stants for 1100 equivalent ultraviolet solar hours (4-mm-thick sample).

Interference Filters

The radiation resistance of multilayer interference filters depends on two factors: (1) the

substrate material and (2) the materials which constitute the interference layers. In the

case of filters transmitting somewhere in the wavelength region between 180 nm and 2.5/_m,

our experience has shown that Coming 7940, Suprasil-W, and Linde sapphire are acceptable
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Figure 2. Transmittance of Corning 7940 fused silica before and after ultraviolet irradiation at 3.5 ultra-
violet solar constants for 1100 equivalent ultraviolet solar hours (4-mm-thick sample).

as substrate materials, although the user should be aware that sufficient ultraviolet radiation

can cause degradation of several percent in the ultraviolet transmitting region. For the in-

terference layers, cryolite (Na3AIF 6) has been found to be unacceptable from a radiation

resistance standpoint; whereas magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), thorium

fluoride (ThF4), zinc sulfide (ZnS), and zirconium oxide (ZrO 2) are satisfactory. We have

also examined aluminum, silver, and gold as thin-film materials and found them to be

acceptable for filter applications.

It should be pointed out that the spectra of many multilayer interference transmission fil-

ters begin to change almost immediately after deposition of the thin-film layers and continue

to do so for as long as six to eight months before becoming stable. In most cases, an experi-

enced filter manufacturer can allow for this change so that the filter will transmit at the

desired wavelength after stability is attained.

If constructed of the thin-film and substrate materials described above, interference filters

have satisfactory mechanical properties for withstanding launch environment when properly

supported.
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Figure 3. Transmittanceof Suprasil-Wbefore and after irradiationwith 1.0-MeV electronsto atotal dose
of 1014electrons/cm2.

Mirror Materials

Mirror components include the substrate, the reflecting surface, and any thin-film coatings

applied to the reflecting surface. Our experience has been that any fused silica having a

surface smoothness acceptable for a particular application is also acceptable as a substrate

material. Crystalline ceramics such as Cer-Vit have also proven to be satisfactory as mirror

substrate materials. Other materials, such as the various grades of Vycor, may also be

acceptable, but these glasses have not been tested at the GSFC laboratory.

Vapor-deposited gold, silver, and aluminum have been found to be satisfactory reflecting

surfaces. Silver has the best reflectance in the visible wavelength region, but its reflectance

decreases below about 350 nm. Aluminum, on the other hand, has much better reflectance

in the ultraviolet but is not as good as silver in the visible. Table 2 gives the reflectances of

silver, gold, and aluminum at selected wavelengths. Aluminum and gold are much more

resistant to tarnishing and discoloration than silver; therefore, they are recommended for

wavelength regions and applications where their reflectance is suitable. It may be necessary

to use silver when high reflectance in both the visible and infrared wavelength regions is

required. In this case, however, great care must be exercised in handling and in protective
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Table2
NormalReflectanceof EvaporatedAluminum,Silver,andGold

Wavelength
(um)

0.222
0.240
0.260
0.280
0.300
0.320
0.340
0.360
0.380
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.800
0.900
2.0
4.0
6.0
8.0

Aluminum

0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.93
0.93
0.93
0.92
0.92
0.92
0.90
0.89
0.86
0.87
0.97
0.97
0.98
0.98

Silver

0.28
0.28
0.29
0.25
0.17
0.09
0.73
0.88
0.92
0.94
0.96
0.98
0.98
0.98
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.99

Gold

0.27
0.31
0.36
0.37
0.38
0.38
0.38
0.38
0.38
0.39
0.40
0.50
0.82
0.92
0.95
0.97
0.97
0.98
0.98
0.99
0.99
0.99

proceduresto preventtarnishing.Certainoverlyingprotectivecoatingsareusefulto accom-
plishthis if theyareappliedin apinhole-freecondition.

In applyingthin films, extreme care must be exercised in cleaning the substrate prior to

application. The cleaning procedures are standard and are well known to experienced mirror

manufacturers. Maintaining good process control is most important, and high-purity film

materials and a clean, oil-free vacuum are necessary. Glow discharge or back sputtering is
recommended.

Of the protective coatings for mirrors, work at GSFC has shown that magnesium fluoride

and silicon oxide are most useful from the standpoints of affording tarnish protection and

of being resistant to solar and charged particle radiation. Either electron-beam sputtering

or vapor deposition may be used to apply these materials.
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Colored-glass Filters

A number of colored-glass filters have been examined for space application. These include:

Schott Filter glasses OG530, RG530, RG695, GG495, and Coming Filter glass 7-54. Of

these, only the Schott Filter glasses OG530 and RG695 were found to be sufficiently radia-

tion resistant to be used in space, and these should be protected by a cover plate of fused

silica of sufficient thickness to provide shielding from charged particles. Schott filters

OG530 and RG695 are'being used on the Earth Radiation Budget (ERB) experiment to be

flown on Nimbus-F.

Infrared Transmitting Materials

The infrared transmitting materials which were investigated by GSFC's Material Engineering

Branch include germanium; Eastman Irtran materials 1 (magnesium fluoride), 2 (zinc sulfide),

and 4 (zinc selenide); and single crystals of barium fluoride, cesium iodide, magnesium

fluoride, lithium fluoride, calcium fluoride, and sapphire. All of these materials are accept-

able for use in the infrared region and show no degradation in transmission in the infrared

after exposure to solar radiation or to charged particle radiation. However, both barium

fluoride and lithium fluoride are weak, that is, cleavable, in certain crystallographic directions,

and care must be taken to ensure that crystals of these materials are suitably oriented and

supported to avoid mechanical failure caused by stress encountered during launch. Table 3

lists some MEB-tested materials and their suitability for space use.

MECHANICAL CONSIDERATIONS

In installing optical elements in satellite systems and in experiments, it must be remembered

that most of these materials are by their nature brittle and weak in tension. Therefore, to

prevent cracking or chipping, care must be exercised in designing mountings so that suitable

cushioning and support are provided. Suggested methods include the use of flexible materials

between the optical element and the metal support element, proper matching of thermal

expansion coefficients between the element and the metal support, and consideration of

the thickness and size of the optical element, that is, its strength relative to the launch and

service stresses that will be imposed. Because nearly every space optical system is unique

in design, a detailed quantitative consideration of these factors must be left to the designer.
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Table3
Suitabilityof SelectedOpticalMaterialsfor SpaceUse

Item

OpticalGlasses
Corning8362
Coming8363
Corning8365
517:645

541:599

573:574

617:336P
649:339P

FusedSilica
C7940
Suprasil-W

Infrasil-I
Infrasil-II
GE101
GE 102

InterferenceFilters
(TransmissionType)

Mirror Materials
FusedSilica
Cer-Vit

Aluminum (thin film)

Gold (thin film)

Silver (thin film)

Magnesium fluoride

Silicon oxide

Suitability for

Space Use

yes

yes

yes
no

no

no

yes

yes

yes

yes

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

Comments

Lead-containing

Lead-containing

Lead-containing

Suitable if not exposed to space-

type radiation

Suitable if not exposed to space-

type radiation

Suitable if not exposed to space-

type radiation

Doped with cerium oxide

Doped with cerium oxide

If exposed to charged particles or

ultraviolet, slight fluorescence

occurs. Little, if any, phosphores-

cence.

May be suitable for short missions

May be suitable for short missions

Note comments under interference

filters.

Substrate material

Substrate material

Note comments on these reflective

materials, that is, aluminum, gold,

and silver in section on mirror

materials.

Protective coating for reflective

material
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Table3 (continued)

Item

Colored-GlassFilters
OG530(Schott)
RG530(Schott)

RG695(Schott)
GG495(Schott)

7-54(Corning)

InfraredTransmitting
Materials

Germanium

Irtran I
Irtran 2
Irtran 4

Bariumfluoride
Cesiumiodide
Magnesiumfluoride
Lithium fluoride
Calciumfluoride
Sapphire

Suitabilityfor
SpaceUse

yes

no

Comments

Suitable if not exposed to space-

yes

no

no

yes

yes

yes
yes

yes

yes

yes

yes

yes

yes

type radiation

Suitable if not exposed to space-

type radiation

Suitable if not exposed to space-

type radiation

Does not fluoresce or phosphoresce

in visible or shorter wavelengths

Not checked at infrared wavelengths

Not checked for fluorescence or

phosphorescence

Fluoresces and phosphoresces

in the 200-nm to 700-nm region

(wavelength limits of our experi-

ments) when exposed to space-

type radiation
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LUBRICATION

Alfred J. Babecki

INTRODUCTION

Lubrication, as used in this chapter, refers to the process of providing a medium to reduce

the friction developed between metal surfaces moving relative to each other, not static sur-

faces. Sometimes in spacecraft applications it is desirable to separate statically contacting

surfaces to prevent them from bonding, euphemistically termed "cold welding." Even if

the contacting surfaces move once relative to each other or only a few times, this condition

is not considered one for lubrication in this chapter. However, it is known that these static

surfaces are sometimes coated with a solid lubricative film or other nonmetallic coating

anyway.

The usual kinds of rolling or sliding applications that require lubrication are discussed, as

well as the various types of lubricants that are used, including oils, greases, lamellar solid

films, soft metal platings, and plastic films. Some comments from future topics of this

guide, such as bearings and gears, will be repeated here because of their relevancy to the

subject of lubrication.

Function

The function of lubricative materials is to keep metal surfaces separated and to provide a

low-shear boundary layer between them. The lubricative function should persist at all

temperatures of operation and for the design life of the apparatus. Any condition which

affects these goals should be taken into consideration, such as viscosity, speed, load changes,

evaporation, excessive debris buildup, and wear of solid films. It is often mandatory that

the shear force (torque) remain constant throughout the life of a device.

Performance

The performance of the lubricative material is dependent upon many factors, including the

surface finish of the mating components, the loads, the atmosphere, the quantity, the storage

time, and the temperature. Solid film lubricants are less affected by most of these factors

than liquid lubricants; however, because solid films usually cannot be replenished, their

effective operating lifetime is more dependent on the number of wear cycles. Therefore,

solid film lubricants may have a shorter period of use in space applications than liquid

lubricants. Generally, the frictional force increases with time for oil- and grease-lubricated
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systemsasthelubricantdegrades;but it alsodecreaseswith timefor bondedsolidfilmsas
theywear,until wearoutor catastrophicfailurefrom debrisaccumulationdevelops.

General Problems

Problems that arise with lubricated systems are related to the degradation of the lubricant,

to the loss of the lubricant, or to some other condition in the bearing or system. These

conditions are described below so that proper attention may be given to minimize or pre-

vent their occurrence.

1. Lubricant degradation causes increased friction from:

• Polymerized thickening of oils and greases caused by high temperatures, oxidation,

or catalysis; °

• Loss of lubricant by creep;

• Loss of lubricant by evaporation;

• Rapid wear or loss of adhesion of bonded solid film or metal-plated lubricants;

• Excessive wear and transfer of plastic material from lubricative ball separators; and

• Reaction of the lubricant with contaminants.

2. Nonlubricant conditions that can cause failure of bearings or can increase the bearing

torques include:

• Excessive bearing preloads applied initially or by virtue of differential thermal

expansion such that heavy metal-to-metal contact occurs;

• Soft-metal ribbon ball separators that are guided on the race lands (shoulders)

and create much wear debris because of their relative high wear rate;

• Phenolic or sintered-nylon ball separators that are not impregnated with the liquid

lubricant;

• Fretting due to rotation or vibration of the bearing bore on its shaft;

• Corrosion in nonstainless steel bearings;

• Particulate contamination in the bearing;

• Coarse ball and ball groove finishes which prevent development of hydrodynamic oil

films and cause metallic wear; and

• Manufacturing defects, such as cracked separators and bent shields, which are not

detected because of inadequate inspection.

3. Marginal motive power that is not tolerant to normal frictional increases, whatever the

reason.
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4. Inspectionof lubricatedcomponentsis inadequateto ensureconformancewith
specifications.

OILS AND GREASES

Oils

Oils are liquid lubricants that vary widely in important properties, such as viscosity, pour

point, evaporation rates, surface tension, oxidation resistance, and additive content. There-

fore, consideration of these properties should be made when selecting an oil for a particular

application. Operating parameters that should be considered are speed, load, atmosphere,

temperature, and power available. Other considerations include component surface finishes

and hardness, and ball separator type, if a ball bearing. Oils vary greatly in composition,

which determines the above-named properties; mineral (petroleum) oils are good lubricants

but are not as useful below approximately 263 K (-10°C) because of increase of viscosity

and turning torque. Synthetic esters are fair lubricants and cover a wider range of service

temperatures from 233 K to 373 K (-40°C to +100°C). Silicones are relatively poor lubri-

cants with a very wide temperature range, from about 203 K to 473 K (-70°C to +200°C).

Problem Areas with Oils

For an oil to be able to perform the intended lubrication, it must keep the contacting metal

surfaces separated, at least during most of its design life. Figure 4 depicts the well-known

Stribeck Curve that relates friction to viscosity, speed, and load and also illustrates the three

regimes of lubrication. Boundary lubrication is the zone of some metal-to-metal contact;

hydrodynamic lubrication is the zone of full fluid film separating the metal surfaces;

elastohydrodynamic (EHD) or mixed lubrication is between the two. The conditions that

reduce the separating film thickness are slow speeds, high loads, high temperatures, rough

surfaces, and reduction in oil quantity. As the oil film thickness fails and metal-to-metal

contact occurs, high localized flash temperatures and catalytic fresh metal surfaces can be

developed by the shearing of asperities, both of which can bring about evaporation or

polymerization of the oils. The polymerization causes the oils to become increasingly more

viscous and raises the bearing torques. If the motive power is very limited, the bearing

torques could be raised to intolerable levels. In some instances, as the oil thickens through

polymerization and forms a thicker film, it becomes a better lubricant for a period of time.

Indeed, some oils may degrade to a point because of frictionally-induced polymerization

and subsequently function satisfactorily for prolonged periods because of the increased

viscosity.

For critical applications, the motor size should be large enough to allow for some increase

in bearing torques due to lubricant degradation or particulate contamination. The choice

of an optimum oil will delay the degradation or prevent it altogether. However, the optimum

oil may have a relatively high viscosity and, therefore, may cause excessively high initial

bearing torques which should remain relatively constant with time. Thinner oils that result
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Figure 4. Stribeck Curve (top), showing the various lubrication regimes and

how they relate to fluid film thickness and the factors involved.

in lower initial bearing torques will degrade through metallic wear or evaporate more quickly,

promote increased torques, and lead to ultimate failure. A large torque margin can be re-

tained when using a more viscous but better oil by reducing the quantity of free oil in the

bearing. This procedure is more advisable for long life than the use of a greater quantity

of a much less viscous oil. This philosophy is especially true if the bearing surface finishes

are relatively coarse, about 0.05/am (2/_in.) rms or more, that is, more than 0.25 ttm

(10/ain.) peak-to-peak.

The parameters that are most significant for consideration will vary with the application.

High speeds, fine finishes, and light loads will permit the lower viscosity oils to be used, but

if the oil is open to vacuum at temperatures above 311 K (+100°F), then the evaporation

rate will be a major consideration. Figure 5 depicts the evaporation rates of some oils with

increasing temperatures. Those which can maintain low oil film loss rates at higher tempera-

tures are generally the more viscous ones.
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Figure 5. Weight loss rates of various spacecraft oils in vacuum

versus temperature.

Another reason for oil film loss is that of surface migration (creep). The lower the sur-

face energy of an oil, the more likely it is to creep. The silicone and fluoropolymer oils

such as F-50 and Krytox have the lowest surface energy of the spacecraft oils. The min-

eral (petroleum) oils, such as Apiezon C, have about the highest. Low-energy fluorochem-

ical barrier films can be used to inhibit creep of oil; but, care must be taken to prevent

entry of the barrier material into the bearing. These films are covered in M1L-B-81744 and

MIL-STD-1334 (AS).

Besides the surface finish of the balls and races in a ball bearing, the material of the ball

separator, if one is used, must be considered when an oil lubricant is used. Metal-ribbon-
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typeseparators(Figure6) areusuallyfabricatedfrom soft stainlesssteelandhavelargeareas
of rubbingcontactwith theballsandracelands.Theseseparatorswearquiteeasilyin bear-
ingslubricatedwith low-viscosityoilsandshouldbeavoided,if possible.Figure7 picturesa
wornareaona metalribbonseparator.Metal-crown-typeseparators(Figure6)areusually
madeof hardenedstainlesssteel,whichhasahigherresistanceto wearand,also,hasasmall-
ercontactareawith theballsandraces;theyareto bepreferredto theribbon-typeseparators.
Theporousnonmetallicseparators(Figure6), whichcanbevacuum-impregnatedwith the
oil, suchasthe laminated'phenolic,sinterednylon, or sinteredpolyimide,arethemostdesir-
able,providingthehigherstrengthof themetalseparatorsisnot required.

BASIC TYPES OF SEPARATORS

CROWN RIBBON MACHINED

Figure 6. Various types of ball separators. These types may be made

from various materials such as filled Teflon, polyimide, nylon, delrin,

and various metals. Other types of ball separators include coil springs,

plastic slugs or tubes, and riveted assemblies.

Oil Selection

A number of the more commonly used oils for spacecraft applications are given in Table 4,

along with some of their pertinent properties. The high vacuum system used to obtain the

evaporation test results is shown in Figure 8. Included in Table 4 are a few oils which have

had little or no flight use but which appear by test results to be very attractive for spacecraft

use. There are innumerable oils on the market, and some of them may be equivalent to or

better than those listed in the table. However, information on them is not presently avail-

able to permit their listing.
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Figure 7. One half of a metal ribbon ball separator showing evidence

of wear at the area of contact with the inner race land (20X magnifi-

cation).

RECORDING

CHART

J_ ELECTRONIC

VACUUM

,_:_ BALANCE

VACUUM
CONTROLS

HEATER

Figure 8. System used in determining the Critical Evaporation Temperature of lubricants contained in a
volume of 1.7 cm 3, with a surface area of 0.87 cm 2 .
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Table 4

Oils for Spacecraft Use

Oil

Wmdsor-Lube

L-245X

Andcrol L-401D

Brayco NVF-4

Pioneer P- 10

Apiezon C

Kendall SRG-30

Teresso V79

Kendall KGS0

Krytox 143AZ

Krytox 143AA

Krytox 143AB

GE F-50

GE S1:96(50)

D(" US 1265

DC F6 1101

GE SF 1147

Type

Diester 216/450

Dicster 213/511

Diestcr 219/450

Diestcr 216/477

Mineral 261/505

Mineral 247/422

Mineral 264/505

Mineral 269/477

Fluorocarbon 216/422

Fluorocarbon 227/450

Fluorocarbon 233/477

Silicone 200/477

Silicone 233/'477

Fluorosiliconc 233/477

i Fluorosiliconc

Methyl alkyl

polysiloxane

Te nl pera! ure

Range K (°C)

(-57/+1771

(-60/+2381

(-54/+177)

(-57/+204)

(-I 2/+232)

1-26/+ 149)

(-9/+232)

(-4/+204)

(-57]+149)

(-46/+1771

(-40/+204)

(-73/+204)

(-40/+204)

(40/+2041

233/477 (-40/+2041

220/533 (-53/+260)

Viscosity

ill 2 • s1 X 10-6/K (°('1

or

cS/K ('_(')

20/298 (25)

20/298 (25)

30/298 (25)

23/298 (25)

87/311 (38)

10/311 (38)

370/298 (25)

340[298 (25)

34/298 (25)

70/298 (25)

140/298 (25)

70/298 (25)

50/298 (25)

300/298 (25)

I 1.000/298 (25)

49/298 (25)

Critical

F.val_oration

Temperature K (°C)*

311 (38)

295 (22)

345 (72)

333 (60)

359 (86)

<293 (<20)

ND

ND

<293 (<20)

306 (33)

355 (82)

364 (91)

ND

357 (84)

>373 (>100)

336 (63)

Boundary

Performance**

VI'

P

F

F

V(;

(;

ND

V(,

F

V(;

V(;

P

VP

(;

F

P

* Critical livaporation Telnperature is that tenlperature at which the rate of weight loss exceeded 1 mgjtu

in a vacuum pressure of less ttmn 1.33 × 102 N/m 2 (1 × 10 5 tort) under the MEB test c_mdilions. It

is the temperature where Ihe weight loss would be 1 percent in 24 hours, the critical evaporation rate.

** Boundary performance rating: VG 2>1 × tO_' revs.,G = 5 X I05 - 1 X 10 6 revs., F = I X 105 - 5 X lOSrevs.,

P- 2 × I0 '_ - 1 X 105 revs., VP < 2 X 104 revs. under the MEB LFW-1 test conditions.

ND = Not determined.

It would be most desirable to reduce the number of candidate oils to a few that could

satisfy all requirements. If attention is paid to such parameters as good labyrinthing, bar-

rier films, narrow temperature ranges, good bearing quality, and adequate torquing power,

then a relatively few oils can suffice.

One of the pertinent properties of oils to be considered is that of boundary film strength,

or the ability to lubricate in a thin-film (EHD) regime. The Dow Coming LFW-1 machine

(Figure 9) has been used to rate oils and greases in this property. In this test, a rotating hard

steel ring is in contact with a stationary hard steel block. Both test pieces are coated liber-

ally with the oil (or grease), allowed to drip for 5 minutes, and the test is run until the

frictional coefficient between them reaches 0.33 or until 1 X 106 revolutions is passed. The

load, speed, and surface finish can be varied. Weight change of the test pieces, size of the

wear scar, and temperature of the block are measured. Observations of changes in the

appearance of the lubricant are made and recorded, and the samples are photographed.
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D B G

pA

C

Figure 9. Dow Corning LFW-1 Friction and Wear Test Machine. A. Rotating ring and

stationary block specimens. B. Friction load transducer. C. Dead weight load.

D. Temperature recorder for stationary block. E, Speed controller. F. Friction force

recorder. G. Revolution counter.

Table 5 provides a comparison of oils tested as determined by the number of sliding revolu-

tions before failure under similar test conditions in air. The results shown are based upon

multiple tests. The table also illustrates the influence of surface finish on formation of a

hydrodynamic lubricating film. (See the GE F-50 results.)

In general, the fluoropolymer and silicone oils are the most resistant to oxidation and

polymerization at elevated temperatures, have the widest service temperature range, and

usually have the lowest evaporation rates. However, as indicated earlier, these oils have tile

disadvantage of having lower surface energies than the diesters and mineral oils, with the

result that they do migrate (creep) along the metal surfaces more readily. This tendency

can be minimized or restricted by the careful application of low-energy barrier films. In

addition, the silicones are relatively poor boundary lubricants and do not readily accept the

common additives to improve this feature. The silicones, such as F-50, should be low on the

oil selection list because of their tow film strength and high creep tendency.

Whatever the final decision in oil selection, the actual oil used should be reasonably fresh,

that is, not oxidized or contaminated, and should be filtered through a 0.5-/xm filter
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membrane before use. The addition of the oil to the bearing should be on the basis of

weight rather than by the number of drops.

Oil Additives

The ability of an oil to maintain separation between metal surfaces in a bearing can be en-

hanced by the addition of a strong polar compound, or fill former, to the oil. Such com-

pounds are classed as mild pressure agents or extreme pressure agents. Lead naphthenate

(LN) is an example of the former and tricresylphosphate (TCP) an example of the latter.

These additives may be only slightly soluble in the desired oil; therefore, the solubility

limit should be determined so that only highly soluble additives are used with a particular

oil; otherwise separation is likely. In Versilube F-50 oil, TCP is soluble to approximately

1.75 percent by weight;in diesters, such as P-10, and in the mineral oils, such as Apiezon C,

TCP is soluble in much higher percentages, up to at least 25 percent for the diesters and

10 percent in the mineral oils.

The mechanisms by which the pressure additives may improve lubrication are not completely

known; indeed, different additives may involve different mechanisms. In the case of F-50

oil, a 1-percent addition of TCP causes a visible film to form on the contacting surfaces of

low-alloy steel parts and provides long life and low friction. The film is thought to be a

phosphate compound formed by the TCP in contact with freshly worn metal surfaces. TCP

in F-50 does not appear to be as effective on high chromium steels, such as 440C. Tests

with TCP in synthetic diester oils, such as P-10, also indicate that a greater quantity of the

additive is required for use on the more noble 440C steel (5 percent versus 2 percent for the

52100 steel).

There are many pressure additives that are available, but their effectiveness would have

to be determined by a bearing or friction test, such as that provided by the Dow Corning

LFW-1 test machine. Table 6 lists some oil test data that show the influence of the additives.

Greases

Greases are oils that are thickened by the addition of (1) soaps such as stearates or (2) fillers,

such as finely divided silica, in order to provide a host for the lubricating component. In

most instances, the thickening agent is not a good lubricant by itself. In general, the impor-

tant lubricating properties of the grease are those imparted by the oil in it. Greases are

classed as either channeling or nonchanneling. Channefing greases are waxy, or stiff, and

remain in place after once being pushed aside; that is, the balls make a channel through the

grease. Nonchanneling greases are buttery, or adherent, and are continually dragged back
into the wear zone.

The greases offer the advantages of reducing such oil problems as creep and evaporation and

of inhibiting the ingress of particulate matter into the bearing wear surfaces. If enough

motive power is available to operate fully packed bearings, the grease may also afford the

means to incorporate more lubricant into the bearings than by oil alone.
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Problem Areas with Greases

As with oils, the grease must keep the metal surfaces separated in order to provide good

lubrication. In the case of a channeling grease, such as Andok-C, this may not be as readily

achieved as in the case of a nonchanneling grease, such as Beacon 325, because the lubricant

in channeling grease does not easily bleed back into the wear zone. However, as a conse-

quence of this channeling feature, the torque of bearings lubricated with such a grease is

relatively constant from low 223 K (-50°C) to moderate 323 K (+50°C) temperatures. This

feature is desirable for some applications, but bearing life depends primarily on the oil film

originally established. In sealed environments, such as tape recorders, the Andok-C grease

has provided virtual trouble-free operation when adequately supplied.

In general, greases will produce higher bearing torques than oils because they are stiffer. This

stiffness will increase with time as the oil component may be lost due to evaporation. The

use of shields on the bearings will tend to inhibit the evaporation of oil and the extrusion

of the grease. In the case of channeling greases, where the oil film is not readily replenished

in the wear zone, a fine finish (less than 0.025/am (1 _tin.) rms) on the contacting surfaces

is recommended. In the case of the nonchanneling greases, the smoothness of the finish may

not be quite as critical, although the smoothest finish feasible is desirable. The bearing

torque will increase with decreasing temperature, as the oil viscosity of the nonchanneling
grease increases.

In Figure 10, the evaporation (weight loss) rates of some of the commonly used spacecraft

greases are pictured, and Table 7 presents their ratings as boundary lubricants. These data

show that a common spacecraft grease, G-300, is a relatively poor lubricant but does have

a low evaporation rate compared to the better lubricating greases.

Another problem area is the thinning of greases with solvents to a soupy consistency in

order to dip the assembled bearing and, thereby, "grease plate" it. Most grease manufacturers

do not recommend this procedure unless the grease is not adversely affected.

Table 7 presents some LFW-1 test data which show the detrimental effect on wear life of

two solvents used to thin Andok-C for grease plating purposes. If the thinned grease or

bearings are tightly packaged before all of the solvent has escaped, then needle-like crystals

of the solvent/grease composition may grow, causing some concern. These crystals will

disappear if the container is allowed to remain open until they sublime, or the crystals will
melt if mixed back into the grease.

Another application problem can exist when the grease is injected into a ball bearing.

Normally, the bearing is in the assembled condition without shields and positioned horizon-

tally, and the grease is deposited as several individual globs on the outside surface of the ball

separator, on one or both sides. As a result, the grease may not enter into the ball grooves

easily, especially in the case of the stiff channeling types, and the bearing may be put into

operation essentially without lubrication. If shields are installed, the inspection for this
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Figure 10. Weight loss rates of various spacecraft greases in vacuum

versus temperatur.e.

problem becomes virtually impossible. A more desirable method of application is to inject

grease by using syringes, with the aid of visual magnification, directly into the ball groove.

Because of their consistency, greases are not amendable to filtration, and the introduction

of particulate matter into the bearing by "dirty" grease is a possibility. Fortunately, such

particles, unless large and numerous, are forced out of the wear zone where they may re-

main trapped by the excess grease. Some vendors have provided coarse filtration (>10/am)

by thinning the grease so that it can be forced through a filter. This procedure has the same

objections as cited for grease plating.
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Grease Selection

Table 8 fists some of the more commonly used greases for spacecraft applications, as well

as some that have indicated good performance in tests. As with oils, the grease to be used

should be from a fresh batch. If soft-metal, ribbon-type ball separators are employed in a

ball bearing, then the quantity of grease used should be enough to inhibit separator wear,

that is, filled 25 percent or more of the maximum it can hold.

Grease is a good lubricant to use in sliding friction applications, such as gear trains. It also

is a prime candidate for those applications where the movement is intermittent with long

stationary periods where a liquid lubricant might evaporate or creep. If a certain grease is

found to be too stiff for a particular application, it can be thinned with more oil component

to the desirable consistency.

In general, a grease would be useful in those applications where a hydrodynamic oil film

might not be achieved, such as where the bearing operation was at slow speed (less than

50 rpm) or frequently changing in speed and direction. In such a case, a nonchanneling

grease would probably be more effective than a channeling one.

Grease Additives

Mild pressure and extreme pressure agents may be added to greases if they are compatible

with the oil component. The effectiveness of the additive may be influenced by the metal

composition of the contacting surfaces and should be determined by means of test results

if none already exist.

SOLID FILMS

Lamellar Materials

Lamellar lubricating materials are those which have a crystal structure that allows shear to

occur on certain crystallographic planes at low shear forces. Commonly used materials of

this type are graphite; the disulphides, such as molybdenum disulphide (MoS 2);and the di-

selenides, such as tungsten diselenide (WSe 2). They provide lubrication by serving as a non-

metallic interface between the metal contacting surfaces and by their ability to shear and

slide over themselves with low shear force. These materials are used in those instances where

oils or greases cannot be used, for example, where condensable contaminants must be kept

low or where very low or high temperatures are experienced. They are also used when

long periods of nonoperation in a space vacuum are required because these materials do not

evaporate or creep at normal spacecraft temperatures. The most commonly used of these

materials is MoS 2. Impurities in the lubricative powder may affect their performance and

should be prevented.

The MoS z is applied to contacting surfaces by a number of methods: burnishing it onto the

surface;mixing it with a bonding agent, such as epoxy, phenolic, polyimide, or other resin,

spraying it onto the surface, and baking it to cure the bonding agent;and vacuum sputtering

it on in low-pressure argon.
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Another method used by one vendor is to impinge the material onto the surface with a high-

pressure stream of glass beads or other particulate medium. Another method used is to

tumble the parts in a ball mill containing the lubricative material and small metal or ceramic

balls.

Problem Areas with Lamellar Solids

In most instances where the MoS 2 (or other lamellar solid) is applied by mechanical means

(burnishing, impinging, tumbling), the adherence is not very good, and the coating often

does not provide complete coverage. This may be due to the lack of cleanliness of the sur-

face. Such films, however, may be adequate for light duty, such as a solenoid core or a

slowly operating gear or bearing. The effectiveness and life of the film in a medium or long

duty bearing is enhanced by supplementing it with a lubricative ball separator. Such a

separator may be made of Teflon or polyimide and contain some MoS 2 which may partially

replenish the original coating. The plastic also aids in the lubrication process.

With bonded solid films, the cured film may be of the order of 5 to 13 #m (0.2 to 0.5 mils)

in thickness. Consequently, the bearings employing such a film should be procured with

greater play in them than for oil or grease use. As this coating is put into service, a good

deal of that original thickness is worn loose and will become debris that may increase the

torque or jam the bearing. Such surfaces should be worn-in prior to use and the debris

removed by air or gas jet, or the excess film may be burnished off with steel wool or with a

rotating or oscillating stiff bristle brush and the debris removed before assembly of the coat-

ed parts.

Both the bonded and the mechanically applied solid films are susceptible to failure when

exposed to liquids such as solvents, oils, and moisture. These agents tend to loosen the
bond and increase the wear rate of the film. Therefore, components coated with such solid

films should be kept protected from these liquids.

Many of these solid films are proprietary. Table 9 lists a number of films which have been

used or suggested for spacecraft use. Their performance is dependent upon such factors as

the load-on and the smoothness of the contacting surfaces. In general, these coatings are

not affected by temperature, vacuum, and speed of operation. Parts which are coated with

these films should be examined for coverage and uniformity. One or more witness samples,

coated along .with the parts, should be used for destructive tests for adhesion and wear life.

When done properly, the RF or d.c. sputtering method of applying the MoS 2 appears to be
the best for ball bearings in vacuum, based on sliding friction tests conducted in vacuum

by Lewis Research Center and ball bearing tests performed by New Hampshire Ball Bearing

Co. for GSFC. These tests showed the sputtered film to outperform both the burnished and

bonded films. However, bearing tests in air have provided mixed results and indicate that

the film should not be subjected to many wear cycles outside a vacuum. The film is applied

to argon-ion cleaned surfaces in a partial vacuum under high voltage conditions. Consequently,

the particles are imbedded into the surface, resulting in good adhesion. The usual film
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thickness is only 0.2 to 0.4/am (2000 to 4000A), so that loose bearing clearances are not

necessary. However, because of this thinness, the substrate must be smooth and hard in

order to prevent rupturing of the film. It is a suitable film for ball bearings, but not for

journal bearings made of soft stainless steel. Witness samples should also be coated for

examination and test. In ball bearings, only the races and separator need be sputter-coated.

Soft Metal Platings

Low shear-strength metal platings, such as gold, silver, bismuth, and lead, are sometimes

plated onto wear surfaces to provide some lubrication, that is, low shear operation. The

films may be deposited by electrodeposition, by vapor deposition, or by ion plating, with

the former method providing the heavier films. The ion plating technique, like sputtering,

applies the film after ion cleaning and under high acceleration forces, so that adhesion is

usually better and the film thickness control and uniformity are better than by the other

two methods. Ion plating is usually applied to very low-speed operation and intermittent-

type operation applications. Like the lamellar solid lubrication, the soft metal films have

a finite life that is measured in cycles of operation, rather than days or months of service,

because the lubricative film does not replenish itself.

This method of lubrication, in general, results in higher frictional coefficients than the

lamellar solids, but it is not as sensitive to liquid exposure. In fact, some bearing systems

have used the soft metal platings in conjunction with burnished or bonded MoS 2 and with
liquid or grease lubricants. Ion plating is also useful where electrical conduction is required,

such as slip rings and commutator surfaces.

Problem Areas with Soft Metal Platings

One chief problem with soft metal platings applied by electrodeposition is lack of adhesion

and the development of flaking that leads to lubrication failure and increased friction. Such

debris can also cause electrical problems if it infiltrates areas of circuitry. The adhesion

problem is intensified when the metal plating is too thick or deposited on substrates too

soft for the loads applied.

Such metal platings as silver, which react with gaseous components of the environment, may

develop tarnish films that can increase friction and electrical resistance, as well as cause con-

cern over the appearance.

Bearings that are to be coated with soft metal platings should have greater internal play be-

cause the coating thicknesses may be several micrometers (tenths of a mil) in thickness.

Plastic Films

Plastic, or polymer, materials that are used as solid lubricants in spacecraft applications are

the Teflons (PTFE and FEP) and the polyimides. These can be sprayed and fused coatings,

or they can be burnished films. The common method of burnishing a plastic film into a bali
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bearingis byusinga plasticballseparatorwhichtransfersthe lubricativefilm by rubbing
contactonto theballsandthenonto theraces.Suchballseparatorandsleevetypebearing
materialsareoften filledwith variousadditionalmaterialsto achievespecialproperties:
MoS2 for additionallubrication,fiberglassandmetaloxidesfor strength,metalpowders
for thermalconduction,asbestosto reducethermalexpansion,andothers.Mostof these
plasticmaterialsthat aresuitablefor ballseparatorsandsleevebearingsareavailableas
bulkitems;thefusedplasticfilmsareusuallyproprietaryandareappliedby theindividual
vendor.Table10listssomeof thecommercialmaterialsof eachtypethat areavailableand
thetypesof applicationsfor whichtheymightbesuited.

Problem Areas with Plastic Films

With the fused plastic coatings, the chief problems are those of lack of adhesion, nonuni-

fortuity of thickness, high thermal expansion coefficients that cause interference problems,

and cold flow. The chief problems with the burnished plastic films are incomplete or non-

uniform coverage, excessive transfer, wear out or breakage of the relatively weak ball separa-

tors, and development of loose debris that cause high torque.

Solid Film Selection

Any of the solid films may be usable in an application where very limited sliding operation

is required. In applications, such as with ball bearings, the transfer system from plastic ball

separators has given many millions of revolutions under light loads and unidirection contin-

uous rotation, with some debris buildup. However, under intermittent operation and oscilla-

tory operation, these transfer films have caused torque spikings that were objectionable.

Bearings using the transfer method should have their races preburnished with the plastic

material, or they should be run in under increasing loads for 25,000 to 50,000 revolutions

to distribute the film before being installed into service. The transfer system should not be

used in ball bearings where variations in torques (torque ripple) or high starting torques

cannot be tolerated. Similarly, the bonded MoS 2 films, when properly applied and worn in,

have provided many millions of cycles of operation. These films are not as sensitive to loading

conditions and temperature variations as are the transfer films, but they may be more
sensitive to moisture than the transfer film.

The fused plastic films are not used in lubricating gears, bearings, and other close tolerance

devices because these films are normally too thick and are easily ruptured in such applica-

tions. They are useful to lubricate valve poppets, latches, and other devices that need to

operate very infrequently under light loads or in an environment, such as a fuel system, that
would be too severe or damaging to other methods of lubrication.

Table 11 lists the main advantages and disadvantages of the various solid film systems.
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Table 11

Advantages and Disadvantages of Solid Film Lubricant Systems

Advantages Disadvantages

Low outgassing

No surface migration

Broad service temperature range

Long-term stability

Good radiation resistance

High load capacity (bonded films)

Use low precision parts

Eliminate labyrinths

Compatibility (bonded films with transfer

films)

Nonreplenishable

No cooling capacity

Wear rate load sensitive (transfer films)

Roughness higher than with oil (bearings)

High starting torque spikes (transfer films)

Form loose debris (transfer films and

nonburnished bonded films)

Require greater bearing play (bonded films)

Bond degraded by exposure to liquids

(bonded films)

Usually proprietary
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BONDING AND JOINING PROCESSES

John J. Park

INTRODUCTION

The process of joining separate pieces or components solidly together requires thoughtful

consideration. For example, the type of materials to be joined (metal-to-metal, metal-to-

plastic, metal-to-ceramic, or plastic-to-plastic), the temperature that can be tolerated by each,

the required strength or other physical or mechanical properties of the bond, and the ease

and the cost of the process must be considered as well as inspectability and repairability

when deciding upon the technique for bonding materials. The constraints inherent in cer-

tain materials and bonding techniques also must not be overlooked.

The various bonding and joining techniques include welding, brazing, soldering, adhesive

bonding, and mechanical joining. A weld joint is obtained by melting together a small

portion of similar or compatible alloys. A solder or braze joint is a thin layer of an entirely

different alloy which is compatible with both of the metals being joined. Joints that are

made using an adhesive layer require a good bond to each member, making surface prepara-

tion and adhesive curing important steps. A mechanical joint made with rivets or bolts is

localized and nonleakproof; the strength is dependent upon the number of rivets or bolts.

SOLDER

A solder is a low melting point alloy, usually consisting of lead and tin as the major constitu-

ents, which joins two metals without fusing or melting the separate pieces. The solder must

adhere, react, or bond tightly to each of the metal surfaces, which might be dissimilar alloys.

In the soldering process, the melting temperature of the filler metal is usually well below

699 K (800°F). The solder makes its bond by dissolving a small amount of the surface ele-

ments of each alloy at a temperature much lower than the alloy's melting point or by react-

ing with the surface to form compounds.

Solder is most commonly seen as a roll of hollow-core or solid-core wire which is applied

manually. However, this is not the only technique for using solder. To solder solar cell

connectors, small, thin, preformed disks of solder are placed beneath the connector and

then melted. Another technique is to precoat a surface, for example, by dipping the piece

into molten solder or by electrodeposition of a solder layer, perhaps 0.0127 mm (0.0005 in.)

thick. Electrodeposition is often used on electronic circuit boards.
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Onlytwo soldersarelistedin theGSFCPreferredPartsList (for electronicsoldering):
SN60andSN63,whichhavetwodifferenttypesof flux. Thesesoldersare60percenttin
and63percenttin, respectively.The63-percenttin alloy(SN63)meltsat455 K (360°F),
whichis theeutectictemperaturefor tin-leadmixtures,andthe60-percenttin alloy(SN60)
becomescompletelymoltenat 463 K (375°F)but hasaliquid-solidmix from455K (360°F)
to 463 K (375°F).

Theidentificationof thesolders,asfoundin FederalSpecificationQQ-S-571,includesthe
lettersWRAPor WRMAP,where:

W identifiestheformasWire

RA identifiestheformasRosinflux core- Activated

RMA identifiestheform asRosinflux core- Mildly Activated,and

P identifiestheflux corecondition,Plastic(asdifferentfrom Dry powder).

TheGSFCPreferredPartsList will soonincludetypeR solder(ResinCore-nonactivated),
whichmaybeusedfor criticalapplications,thoughagoodjoint maybemoreeasilymade
usingRMAor RA. In orderof preferencefor R, RA, andRMA, theRMAis themostde-
sirableandtheRA is theleastdesirable.

Thefluxesarenecessaryin promotingor acceleratingthewettingof the metalsurfacesby
removingor excludingoxidesor otherimpuritiesfromthejoint areas.Thesefluxes,reactive
astheyshouldbe,mayrangefrom thehighlycorrosiveto thenoncorrosive;inanycase,
theresidualflux mustberemovedby cleaningwith theappropriatesolvent.Thecorrosive
fluxesarecommonlyinorganicacidsandsalts,suchashydrochloricacid,zincchloride,or
sodiumfluoride. Thesecorrosivefluxesmustberemovedbyhot water,sometimesacidified,
andthenremovedbyahot waterrinse.Theintermediatefluxesaremainlymild organic
acidsorbases,suchaslacticacidor urea;their residueisusuallysolublein hot water. The
rosinresidues,asin theR, RA, andRMA,aresolublein bothethyl andisopropylalcohols,
trichloroethylene,andmostcommonorganicsolvents.

Problems

Cracking encountered in bonding a window of Irtran 4 (polycrystalline zinc selenide) using

a tin-silver solder was resolved by the use of pure indium solder. In this case, the plastic

deformation of the indium occurs at stress levels that are lower by an order of magnitude

than the tin-silver-alloy deformation stress levels; the effect of temperature changes resulted

in cracks in the Irtran 4 window when using the tin-silver solder but no cracks when using

the indium solder. In addition, the joint area of the Irtran 4 window had to be metallized

by vapor deposition before soldering; a titanium-Inconel layer and an Inconel-platinum-gold

metallization layer were each separately applied to the Irtran 4 and each was satisfactory.

Problems have been encountered in the soldered solar cell tab-joint on OAO solar paddles.

The tabs (electrical leads) lifted as a result of thermal cycling between 344 K and 167 K

(+ 160°F and -160°F), lifting occurring in fewer than 200 cycles. The system consisted of

silver-plated copper tabs, lead-tin solder, and vapor-deposited silver on titanium on the solar
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cell. Extensiveinvestigationof thematerialsandtechniquesshowedanumberof reasons
for the lifting. Theseincludedcontaminationof thesurfaceby thesiliconesolarcellcover
adhesive,lackof sufficientfiller or lackof sufficientsolderjoiningthetab,andprobable
reheatingof thesolderarea.Thereheatingof thesolderresultedin a dissolutionof the
silverplatingto form athree-elementalloyof lead,tin, andsilver.Additionalbrief heating
canincreasethemeltingpoint of thesolderby 5K (5°C) for eachremeltandasmuchas
a 25K (25°C)increasewlth repeatedremelting.Thefailureanalysisconclusionsindicated
poormanufacturingtechniques.Theproblemwasnot relatedto thesolderalloyor its in-
herentlackof adhesionbut moreto thetechniqueof applyingthesolder.

Anotherproblemwith tin-lead-silversolderoccurredin sealingagold-platedKovarlid to
thegold-platedKovarcanof aflat-packdevice.Duringtestingthelid cameoff. During
failureanalysisof thesolderregion,grainy-appearingsurfacesandcrystallineareaswereob-
servedin thesolder.Metallographicexamination,X-raydiffraction,andelectronprobe
analysiswereusedin identifyingtheintermetalliccompoundsandin detectingthelocations
of thereactingelements.Theanalysisindicatedthattheformationof gold-leadcompounds
occurredfrom thereactionbetweenthesolderandthegoldplating. Suggestedsolutions
includedremovalof thegoldor useof athinnergoldplating,or substitutionof tin-plating
for thegold. If temperaturelimitationswouldpermit,agold-germaniumsolderalloy,having
ameltingpoint of 633K (360°C),couldbeareplacementfor thelead-tinsolder.

Recommendations

As a first step, one should obtain handbooks on soldering, such as NASA SP-5002 "Solder-

ing Electrical Connections" and NHB5300.4 "Requirements for Soldered Electrical Connect-

ions." Such publications will provide useful information on the techniques of soldering.

These publications include pictures and drawings to show techniques and joint appearances.

Another problem that can occur with gold plating, mentioned above, is the failure of the

solder joint. While gold plating protects the base metal from oxidation or corrosion, more

than 5 percent of the gold in the solder results in a brittle joint. Removal of the gold just

before soldering will improve the joint. Removal of the gold by using a typewriter eraser

or by wicking and removal from a solder cup connector are desirable preliminary steps.

When alcohol is used to dissolve the flux, it is desirable to use the minimum volume of

alcohol. It is.possible for the solution to "wick up" between the wire lead and its insulation,

resulting in corrosion. Stripping of the lead for a short distance and the use of minimal

amounts of solvent are simple precautionary steps.

BRAZING

Brazing is a metal joining process, similar to soldering, in which the space between adjacent

surfaces is occupied by a relatively thin solidified metal alloy. Brazing also refers to a

higher temperature reaction than does soldering, specifically for temperatures of 698 K

(425°C) and above. Brazing filler metals usually are nonferrous metals or alloys that have
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ameltingtemperatureabove698K (425°C)butbelowthat of the pieces being joined.

Brazing filler metals must wet the surfaces to be joined, must flow sufficiently to fill irregu-

lar surface areas by capillary action, must be sufficiently stable to remain uniform in com-

position upon solidification, and must have the required strength and ductility characteris-

tics for particular applications.

Because brazing is by definition a relatively high temperature reaction, caution must be

exercised in its use for each particular application. The choice of the filler metal composition

must be specific for two metals to be joined. For example, aluminum brazing filler metals

are useful for joining two aluminum alloys but are not satisfactory for joining aluminum

to copper. Titanium may be brazed using pure silver or a silver alloy filler metal, and beryl-

lium may be brazed using aluminum-silicon filler metals or using a silver + 1 percent lithium

alloy.

There are different techniques for brazing dependiag upon the number of items to be brazed

and their complexity. Thus, one may torch braze by hand, as in soldering; because of the

higher temperatures required in brazing, acetylene or propane torches with oxygen are used.

Furnace brazing in gas-fired or electrically heated furnaces is especially suitable for numer-

ous, repetitive joinings. Induction brazing permits a localized heating of a specific area but

it also requires careful design of the joint and of the heating coil to ensure that the joining

surfaces reach the required temperature at the same time. Dip brazing is carried out by

immersing the part with the brazing filler metal into a molten salt as the heat source. The

choice of brazing technique to use thus depends upon the parts to be joined, their complex-

ity, and their number.

The brazing filler metal, which forms the joint, must wet the surfaces of the base metals to

be joined and must flow properly by capillary action. Various alloys are available as filler

metal, such as silicon-aluminum, copper-phosphorus, and copper-gold, but these must be

selected for the specific application. The filler metal can be either wire, preformed sheet,

or even in the form of parts or powder. In addition, it may be necessary to use a flux or a

nonreactive atmosphere to prevent oxidation. The necessity for high temperatures in brazing

adds another variable to be considered in deciding how this joint should be made.

Dip brazing should not be attempted without giving careful consideration to the possibility

of some warping, particularly in cases where parts having strict dimensional requirements are

joined. Another point to consider is the type of material to be subjected to this elevated

temperature treatment, specifically with reference to whether or not it is a heat-treatable

material.

Problems

Brazing Beryllium

A type of problem often encountered involved the brazing of beryllium. A beryllium piece

with 17-#m (0.7-rail) copper plating was brazed with an 88-percent aluminum, 12-percent

silicon alloy. This was compared with the braze of an unplated beryllium piece brazed with

a 99-percent aluminum alloy. It was found that the copper plating resulted in reactions
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leadingto theformationof hard,brittle compoundsin thebraze.Thesecompoundsconsist-
edof copper-berylliumparticles,copper-aluminumparticles,andalsolargesiliconcrystals.
By comparison,thebrazeareafor theunplatedberylliumresultedin goodpenetrationinto
thesurfaceirregularitiesandasoft, ductilealuminummatrixwith uniformlydispersed
siliconparticles.Recommendationsweremadethat thecopperplatingberemovedandthat
tilealuminum,12-percentsiliconalloybeselectedoverthe 99-percentaluminumbrazefiller
metalto provideahigherstrengthjoint.

Mercury L oaks

All conditions of the brazed system must be considered, as is illustrated by the following

mercury leak problem. Mercury leaks occurred in a stainless steel system brazed using a

silver solder. The amalgamation of mercury with the silver of the 45-percent silver, 15-percent

copper, 16-percent zinc, 24-percent cadmium braze alloy resulted in a leakage path through

the braze metal. The solution of the problem is the selection of a silver-free braze alloy. A

more desirable solution is to weld the joint, which would provide a nonreactive joint.

Melting Point Considerations

The heaters for the ATS-F cesium ion engine, which could not pass on-off cycling tests to

1273 K (1000°C), provide an example of thermal problems. These sheath heaters consisted

of a nichrome wire packed in aluminum oxide, placed in a stainless steel tube. This stainless

steel sheath was joined to an outer stainless tube by welding. A braze joint, made by using

88-percent copper, 12-percent nickel alloy which melts at 1393 K (1120°C), was employed

to join two tubes adjacent to the heater. By metallographic investigation and electron probe

analysis, a copper-rich alloy was found between the sheath and the tube, though this joint

had been made by welding. The failure analysis showed that liquid metal corrosion by the

copper in the brazing alloy had attacked the stainless steel grain boundaries of the sheath

and the tube and had penetrated completely through the wall. This weakened the joint suffi-

ciently to cause separation and resulted in heater failure. Because of conduction mad heat

losses, temperatures above 1273 K (1000 ° C) were needed in order to reach the 1273 K

operating temperature. Temperatures were well in excess of the melting point of the braze

at 1393 K (1120 ° C) and were reached quickly after turn-on, even though a difference of

120 K was believed to be a sufficient safety factor to avoid braze remelting. The most de-

sirable solution was the substitution of a welded joint for the brazed joint; the use of a

heat sink to reduce the temperature of the metals in the area of the braze was feasible but

was the less desirable solution.

Recommendations

Prior to brazing, the surfaces of pieces to be mated must be cleaned of grease, oil, surface

films, and other contaminants. A flux may be necessary to provide a chemical cleaning or

deoxidizing. The relative positions of the separate pieces must be maintained during the

heating and cooling phases of the bonding procedure. The heat distribution, heating rate,
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andtheproperbrazingtemperaturesmustbecarefullycontrolled.After thebrazing,a
postcleaningoperationmaybenecessaryto remove residual flux.

WELDING

Practically all of the necessary information on good liquid-phase welding practices can be

found in the literature, such as the American Welding Society's "Welding Handbook." How-

ever, all too often this information is overlooked or ignored.

In welding, it is important to use a good welding specification. Certain precautions should

be emphasized:

• Preheating is necessary in order to reduce the cooling rate of the weld metal and the

heat-affected zone;

• Stress-relieving or post-heati_g is necessary to reduce or to equalize the residual stresses

within the weld-affected volume;

• Proper fixturing will keep the pieces aligned properly before and after welding;

• Heat-sinking will assist in keeping the heat within the desired weld area, though it

should not be so effective as to absorb too much heat and so "quench" the weld; and

• The correct atmosphere for the specific metal, as titanium or beryllium, must be

maintained.

It also should be apparent that controllable inputs, such as heat, gas purity, and weld alloy,
are all critical factors.

Problems

A specific example of poor technique occurred in the welding of aluminum pipes to an

aluminum forging. Cracks appeared in the forgi_lg adjacent to the weld zone. The cracks

were attributed to excessive heat-sinking by the relatively large forging; a contributing factor

was the too-tight fixturing which provided an excessive restraining force.

Spot Welding

Spot welding is a resistance welding process in which a localized molten volume is produced

by the heat generated by the electrical resistance to the current flow between the electrodes.

The size and shape of the weld nugget are limited primarily by the size and the contour of

the electrodes. Force must be applied between the electrode before, during, and after the

current surge to 2nsure a continuous electrical path and to forge the heated parts together.

The operation of spot welding involves the coordinated application of the proper amount

of current for the correct time. The current must go through a closed circuit between the

electrodes, which are shaped to provide the necessary current density and pressure density.

Sufficient heat is generated in a confined volume of metal to melt portions of both metal
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pieces;themoltenportionmustberetainedwhilesolidifyingandformingthejoint. The
joint is influencedbytheelectricalcurrent,thetime, theelectrodes,thesurfacecondition
of themetalparts,andthemetalcomposition.

Thespeedandeaseof spotweldingmakesthetechniqueappearextremelysimple.How-
ever,certainfundamentalpropertiesof themetalpiecesbeingjoinedcancausesomeprob-
lems.Thethermalconductivityandtheelectricalresistivityof twometalsmaybewidely
differentandmaycauseaweldnuggetto bewholly in onepieceor theotherunlessthe
weldparametersareoptimized.

• Nickel-Stainless Steel-The selection of the spot-welding parameters often depends

upon the development of a weld schedule for the specific alloys. In one instance, the

welding of a 0.0635-mm-thick by 50.8-mm-diameter (0.025-in.-thick by 2-in.-diameter)

stainless steel shell to a 0.17-mm-thick by 6.35-mm (0.007-in.-thick by 0.25-in.)

strip of nickel resulted in the weld nugget being confined solely to the stainless steel.

In this instance the difficulty lay primarily in the large heat imbalance caused by the

lower thermal and electrical conductivity of the stainless steel and the unfavorable size

ratio of the two pieces. A series of test spot welds utilizing various power settings were

examined metallographically after being pull-tested; information derived from these

welds helped in the establishment of the proper weld parameters. The resultant weld

schedule of 25 watt-seconds at 12.7 kg (28 lb) produced good interpenetration of the

nickel and of the stainless steel, good bond strengths, and a sound, nonporous weld

nugget.

• Kovar-Nickel In a similar manner, the spot welds ofa Kovar cup, 1.43 cm (9/16 in.)

ttigh, 4.77 mm (0.188 in.) outer diameter, 0.38 mm (0.015 in.) wall thickness, and

1.60 mm (0.063 in.) bottom thickness, to a nickel strip 0.78 mm (0.031 in.) thick,

were examined because of poor welds. The weld nuggets were confined almost entirely

to the Kovar. The problem was basically one of achieving a heat balance across the

parts being welded so that the interface between the Kovar and the nickel has a higher

resistance than either the electrode-work piece interfaces or the bulk of the material

being welded. Following a series a weld changes and the metallographic examinations,

the recommendations included: reduce the thickness of the Kovar cup bottom from

1.60 mm to 0.75 mm (0.063 in. to 0.030 in.); use a 3.17-mm (1/8-in.) diameter domed

tungsten electrode against the nickel; inspect the electrode surface after each weld;and

replace the electrodes after every fifth weld.

OTHER TECHNIQUES

While it is unlikely that the designer can specify a particular welding technique, it may be

useful to review a number of joining processes in current use such as TIG, MIG, laser, and

electron beam.
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Tungsten-Inert-Gas (TIG) Welding

Tungsten-inert gas provides the acronym for TIG welding and partially describes the method,

but the procedure is actually gas tungsten-arc welding. This is an arc welding process that
utilizes a nonconsumable electrode of tungsten and has a gas to protect the metal being

welded. Ideally, the tungsten does not melt and drop into the area of the weld. The electrode,

the puddle of molten metal, and the adjacent areas must all be protected by the flowing gas.

The gas must be nonreactive with the welded pieces and is usually argon gas, helium gas, and

argon-helium or argon-hydrogen mixtures. The gas must be pure and only "welding grade"

gas is safe to use. Notwithstanding the fact that this is a highly sophisticated process, it

has become perhaps the most universal joining technique available; however, it is a rather

slow process when welding large thick plates. For example, with a 6.6-m (260-in.) diam-

eter rocket motor with a wall thickness of 1.5 cm (0.6 in.), more than 12 passes were used to

make the joint.

Metal-Inert-Gas (M IG) Welding

Metal-inert-gas (MIG) welding is a considerably faster welding process; however, there can

be a high incidence of porosity. Consequently, the TIG welding process often should be

used in order to meet radiograptfic requirements which are set forth in the various specifica-

tions.

MIG welding occurs with the formation of an arc between a consumable electrode and the

work piece. The metal electrode is a bare solid wire of unlimited length, and it is melted to

become the filler metal in the desired area. Note that the electrode is consumed and it is

extremely long, as opposed to the short (perhaps 25-cm long) electrode of the more common

arc welding. The inert gas flows past the electrode and must also protect the molten tip of

the electrode, the weld puddle, the arc, and the whole surrounding area from oxidation or

reaction. MIG welding is not solely an inert gas technique, since carbon dioxide and argon

plus controlled percentages of oxygen are used, as well as argon, helium, and nitrogen.

Choices of weld metal and of protective gas depend upon the metals being joined. For ex-

ample, carbon dioxide is the proper gas for carbon and low alloy steels if one uses a deox-

idizing electrode wire;helium is the choice for aluminum and copper alloys; but argon may

be used for virtually all metals.

The advantages of MIG welding include continuous electrodes of any necessary length, the

absence of slag from any flux, and the use of smaller diameter electrodes which permit a

higher current density and greater weld-metal deposition rate. The disadvantages, when

compared to the shielded-arc process, include the possibility of weld cracking due to the

absence of a flux to reduce the cooling rate; the use of the inert gas which may be disturbed

by air currents, especially when welding outdoors; the need to get quite close to the weld

area, which may be a problem in reaching confined or inconvenient areas; and the higher

cost of the equipment.
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Electron-Beam Welding

The electron beam can be easily generated at the cathode but the stream of electrons must

be accelerated, collimated, and focused at the desired area for the weld. The focusing of

the electrons may be as small as 0.3 to 0.9 mm (about 0.01 to 0.03 in.), but the beam may

have a power density of about 1.6 × 10 4 watts/era 2 (105 watts/in. 2), which is sufficient

to vaporize metals. The electron beam and the work piece must be enclosed in a vacuum

of 1.3 × 10-3 N/m 2 (10 -s torr) or better. This information implies some of tile disadvan-

tages of electron-beam welding, namely: the cost of the equipment, the necessity of having

the work piece within the vacuum chamber, and the necessity of proper alignment and

holding of the welded pieces within the vacuum. However, there are certain advantages,

such as the ability to make deep, narrow, and less tapered welds than arc welding provides

and with a lower total heat input; excellent control over the weld dimension and properties;

and the cleanliness of the weld, all of which tend to ensure consistent quality and joint

integrity.

Laser Welding

Aside from the fact that lasers have other uses in measuring, sighting, and aligning, the con-

centrated laser beam may also be of sufficient power to melt metals. The laser (from

"light amplification by stimulated emission of radiation") achieves its power from the release

of energy as an atom returns from the "excited" state to the "ground" state. Rather than

describe the workings of the laser, it should be sufficient to say that the released photons

are coherent, namely, being in the same direction, in phase, and of the same wavelength.

There may be different crystals, such as doped ruby (A12 03 doped with a little Cr 2 03),

carbon dioxide gas carrier, helium-neon gas, or YAG (yttrium-aluminum-garnet), all con-

taining excited atoms and able to release the energy in a coherent wave. The beam may be

focused and concentrated at a desired spot to achieve melting, cutting, or welding of even

the refractory metals.

Recommendations

In automatic spot welding it is highly desirable that an evaluation of the variables related to

the welding apparatus, the electrodes, and the materials be carried out to ensure achieving

consistent, reliable welds. An isostrength diagram should be constructed, and a number of

weld joints made by varying the power input and the time ; the weld joints should be tensile

tested. In conjunction with metallographic examination, the proper range of power settings

to give consistently strong welds can be determined. It is also important that a periodic

calibration of the equipment be undertaken to ensure that the isostrength diagram is not

being altered by unexpected equipment errors.

ADHESIVES

Adhesives have many advantages in spacecraft joining applications. Adhesives produce a con-

tinuous bond to distribute stress loads more uniformly over the area being joined and
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canjoin sheetto frames,heavygagemetalto thingagemetal,or metals to nonmetals. Ad-

hesives can be flexible, which improves the resistance to vibrational fatigue and permits the

transfer and distribution of stresses. In providing a continuous contact between mating sur-

faces, adhesives also act as a sealant and a liquid barrier. Adhesives can produce a joint that

has no external projections nor surface irregularities. Joints can be made simultaneously at

room temperature and on large areas. The ease of application, along with the above advan-

tages, make adhesives a very attractive bonding technique.

The selection of the adhesive is dependent upon the function of the completed structure.

Factors to consider include bond strength (peel, shear, or tensile strength), fabrication tech-

niques, cure times or temperatures, or unique requirements. The adhesive for holding a

2-cm by 2-cm by 2-mm glass cover slide to a solar cell will be different than the adhesive

used in structural honeycomb. Additionally, the techniques of applying these two adhesives

will be very different.

Problems

Solar cell covers were adhered by using the Dow Corning XR-6-3489 adhesive. After machine

soldering the solar cell interconnects, it was found that a large number of the covers were

delaminated. Upon prying off the covers, it was also found that the adhesive was slightly

tacky, even though the adhesive had been cured 4 hours at 338 K (65°C). The dual problem

was a dirty surface on the cover and the uncured adhesive. A procedure to clean the covers

to a water-drop-free condition was developed, which greatly improved adhesion. The ad-

hesive was changed to the room-temperature-curing Dow Corning 93-500, though a later
test showed that the XR-6-3489 cured after an additional one hour at 373 K (100°C).

Recommendations

The use of adhesives is relatively simple, although certain precautions should be observed.

Certain one-component adhesives, none of those listed below, release acetic acid as they

cure; the one-component Dow Corning C-6-1104 gives off the less harmful methanol. In

using the two-component adhesives, be sure to check the shelf life remaining and avoid using

outdated materials. Storage at temperature below 305 K (90°F) is required, and refrigerated

storage extends the shelf life. In mixing the adhesives, use only glass, plastic, or metal con-

tainers and a glass or metal stirring rod in order to avoid the absorption of components or

the release of poisoning compounds. The mixture should be degassed briefly in a vacuum

of about 1.3 × 103 N/m 2 (10 tort) to remove the entrapped air.

The adhesive should be applied to clean, dry surfaces. Clean and degrease the metal or

plastic surfaces and wipe with a solvent such as acetone. Rubber surfaces should be rough-

ened, as with sandpaper, to improve adhesion and then should be wiped off with acetone.

Maximum adhesion is obtained by using a primer, which should dry for up to an hour in air.

In applying the adhesive, the thickness of the adhesive layer should be about 0.25 to 0.38 mm

(10 to 15 mils), though for solar cell covers the adhesive thickness is from 0.038 to 0.075 mm
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(0.0015to 0.003in.). Whenappliedasathin film of 0.076mm(0.003in.), theDowCorning
93-500mustnot beexposeduncoveredfor morethan90minutesor asignificantlossof
catalystmayoccur. All adhesivesmayhavetheir ownidiosyncrasies,and,consequently,the
informationin themanufacturer'sliteratureshouldbefollowed.

Theuseof adhesivefilmsor sheets,suchasfor honeycombs,often involvesthosetypeswhich
mustbekeptrefrigeratedbeforeuse.Theproperstorageof suchadhesivesis important,and
thestoragelife mustbecloselyfollowed. In addition,theseareusedby applyingtemperature
andpressureto thehoneycombcomponentsof up to 438K (165°C)and 10× 104N/m2
(15psi).

In AppendixC,a wideassortmentof adhesivesfor variousapplications,alongwith their
respectiveoutgassingdata,isgiven.Theadhesiveshadbeentestedfor their outgassingin
thestandardizedscreeningtest,whichinvolvesdeterminingthetotal massloss(TML) at
398K (125°C)for 24hoursin avacuumof 1.3× 10"4N/m2 (10"6 torr) anddetermining
thecollectedvolatilecondensablematerials(CVCM)at 298K (25°C)for thesame24hours
in thesamevacuumsystem.
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APPENDIX A

THIXOTROPIC COATING

PROCEDURE FOR INSULATING WITH A THIXOTROPIC COATING

1. Weigh out 30.0 g of fresh (from an unopened can and less than two months old)

Solithane C-113" and 3.4 g of dried Cab-o-sil into a 250 cc glass beaker. (The Cab-o-

sil must have been previously preheated at 423 K (150°C) for 48 hours in a clean

shallow pan to remove moisture). Blend thoroughly with a stainless steel spatula or

stirrer. If the dry Cab-o-sil is not used, improper cure will occur.

2. Weigh out the remaining ingredients, and add to the above:

21.9 g of fresh Solithane C-113-300;

0.05 g of Vyac Luminescer 174;

0.05 g of dibutyl tin dilaurate, and blend thoroughly.

3. Place prepared blend in a vacuum chamber at 0.133 N/m 2 (10 .3 torr) or lower for

6 to 8 minutes to remove occluded air. During this period, the chamber pressure should

be cycled from 0. 133 N/m 2 (10 -3 torr) to atmospheric pressure several times ('bumped')
to facilitate air elimination.

4. Remove blend from chamber and transfer via spatula to the pressure gun dispenser

cartridge, being extremely careful not to entrap air bubbles.

5. The gun dispenser is then locked and pressurized with from 413 × 103 to 482 × 103 N/m 2

(60 to 70 psi) of ultra-dry nitrogen. The viscous thixotropic resin is applied in and

around the insulated cable wires and connector pins by easily controlled trigger action.

6. Upon completion of Step 5, it is important that the resin be inspected for air bubbles,

uncoated areas, and pin holes. These defects are easily observed with an ultraviolet

lamp and should be corrected at this time by removing or adding resin as needed. The

dye fluoresces a light blue-green color when activated by a 3650-A excitation
source.

7. The resin has a long pot life and may be allowed to cure at room temperature for one

week. After 48 hours, the surface is almost tackfree. An option for faster curing would

be to initially gel the resin at 306 K (33°C) for 2 hours, followed by 316 K (43°C) for

2 hours, and 338 K (65°C) for one hour. This is a complete application process in itself.

*Sources are listed on the following page.
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However,requestsfor additionalinformationindicatinghow this initial insulation

application is related to the process of RF shielding unprotected wire between braid

shielding and connector is also available.

SOURCES OF MATERIAL

1. Solithane C-113

2. Solithane C-113-200

3. Cab-o-sil MS 5

4. Vyac Luminescer 174

5. Dibuty Tin Dilaurate (T-12)

6. Brookfield Mixer Model

L-2789

7. Ultra-Violet Lamp UVSL 25

8. Resin Dispenser - Model 102

Kit Nozzle 2" with 0.065"

orifice. 20 cc - capacity cartridge

9. Nitrogen-Ultra-dry

Thiokol Chemical Company

Trenton, New Jersey

Thiokol Chemical Company

Trenton, New Jersey

Cabot Corporation

Boston, Massachusetts

American Cyanamide

Bound Brook, New Jersey

General Electric Company

Waterford, New York

Brookfield Engineering Laboratory

Stoughton, Massachusetts

Ultra Violet Products

San Gabriel, California

Kenics Corporation

Wakefield, Massachusetts

Local Source

56



LOW

AND

APPENDIX B

OUTGASSING POTTINGS

CONFORMAL COATINGS

There are extensive numbers of potting and conformal coating materials. Those materials

which have low outgassing rates are listed in the following tables.
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Code

AB

AO

BN

CI

DC

EC

EM

ET

FU

FW

GE

GS

HA

HY

MM

MR

NM

PD

PR

RD

RO

SB

SC

SH

SW

TH

GSFC

JPL

SRI

Code to Sources

Sources

Ablestik Adhesive Company
Allaco

Bacon Industries

Ciba Corporation

Dow Coming Corporation

Emerson & Cuming Incorporated

EMR Company

Epoxy Technology Incorporated

Furane Plastics Incorporated

Fenwall Company

General Electric Company

Goddard Space Flight Center

Hughes Aircraft Corporation

Hysol Corporation

Minnesota Mining and Manufacturing Company

Marblette Corporation

National Metallizing Company

Products Research Incorporated

Products Research & Chemical Corporation

Resdell Company

Radio Corporation of America

Santa Barbara Research Center

Schenectady Chemical Company

Shell Chemical Company

Sherwin Williams Paint Company

Thiokol Chemical Company

Data Sources

Goddard Space Flight Center

Jet Propulsion Laboratory
Stanford Research Institute
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APPENDIX C

ADHESIVES

There are an extensive number of potential spacecraft adhesives. However, with the addition-

al space requirement of low outgassing, only those adhesives which have acceptably low

outgassing as determined with the Micro-VCM apparatus are listed. The cure listed is the

lowest temperature cure which resulted in an acceptable outgassing profile. The adhesives

are subdivided into potential uses.

The adhesives may be two-component mixture or even three-component; the components

are given in order in their respective amounts along with the necessary temperature cure. In

addition, the outgassing data for total mass loss (TML) and for collected volatile conden-

sable materials (CVCM) are given.

GENERAL ADHESIVES % TML % CVCM

Ablebond 41-5

30 minutes at 423 K (150°C) 0.46 0.01

Ablebond 41-6

30 minutes at 423 K (150°C) 0.34

Ablebond 224-8 A/B as 100 A/7.3 B

by weight (BW) 1 hour at 325 K (52°C) 0.40

Armstrong A31 A/B as 6 A/4 B BW

2 hours at 333 K (60°C) 0.56

Armstrong A-271 A/B as 7 A]3 B BW

14 days at 298 K (25°C) 0.73

Armstrong C7/W as 1 C7/1W BW

21 days at 298 K (25°C) 0.36

Armstrong C7/W as 2 C7/3W BW

7 days at 298 K (25°C) 0.81

AY 105/HY 951 as 100 AY 105/12 HY 951 BW

3 hours at 338 K (65°C) 0.61

0.01

0.00

0.03

0.02

0.02

0.10

0.05
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% TML % CVCM

Bondmaster E645 A/B as 10 A/3 B BW

1 hour at 373 K (100°C) plus 4 hours at

453 K in 1.3 N/m 2 (180°Cin 10 -2 torr)

vacuum

Bondmaster 620

2 hours at 353 K (80°C) plus 1 hour at

423 K (150°C) plus 2 hours at 473 K

(200°C)

BR 34

30 minutes at 298 K (25°C) plus 30 minutes

at 377 K (104°C) plus 90 minutes at 450 K

(177°C)

Chemlok 220

30 minutes at 298 K (25°C) plus 10 minutes

at 433 K (160°C)

Conap K-20 A/B as 20 A/9 B BW

2 hours at 323 K (50°C) plus 30 minutes

at 358 K (85°C)

Crest 3135/7111 as 1/1 BW

24 hours at 298 K (25°C)

Crest 7343/7139 as 100/11 BW

3 days at 298 K (25°C)

DC 6-1104

7 days at 298 K (25°C)

DC 93-500 as 10/1 BW

24 hours at 298 K (25°C)

DER 332 LC/Versamid 140 as 6/7 BW

12 hours at 313 K (40°C)

Easypoxy K-20 A/B as equal lengths A/B

24 hours at 298 K (25°C)

Easypoxy K-40 A/B as equal lengths A/B

24 hours at 298 K (25°C)

Easypoxy K-256 A/B as equal lengths A/B

24 hours at 298 K (25°C)

0.50

0.75

0.66

0.39

0.75

0.47

0.85

0.19

0.16

0.55

0.65

0.60

0.60

0.01

0.03

0.00

0.01

0.05

0.01

0.10

0.01

0.00

0.02

0.01

0.02

0.04
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%TML %CVCM

Eccobond51/9as100/7BW
24hoursat 298K (25°C) 0.44

Eccobond276/cat17as10/1BW
2hoursat353K (80°C)plus1hourat 0.49
423 K (150°C)plus2 hoursat 473K (200°C)

Eccobond285/9as25/1BW
24hoursat 298K (25°C) 0.49

Eccobond285/11as20/1BW
8hoursat 355K (82°C) 0.28

Eccobond285/24LVas25/2BW
24hoursat 298K (25°C) 1.00

Epibond123/cat952as20/3BW
24hoursat 298K (25°C) 0.63

Epibond123/cat9615-10
7daysat 298K (25°C) 0.86

Epibond1210/9615as100/65BW
3hoursat 339K (66°C) 0.66

Epibond8510A/B as10/3BW
5 daysat 298K (25°C) 0.05

EponX-24
15minutesat 333K (60°C)plus45minutes
at 298K (25°C)andpressureplus4 hoursat
298K (25°C)plus10hoursat 373K(100°C) 0.42

Epon820/TETAas10/1BW
3daysat 298K (25°C) 0.43

Epon828/EM308as2/1 BW
30hoursat 2.98K (25°C)plus72hoursat
324K and0.00013N/m2 (51°Cand 10-6tort) 0.86

Epon828/TETAas10/1BW
3 daysat 298K (25°C) 0.51

Epon828/Versamid125/MDas100/21]13

4 hours at 344 K (71°C) 0.70

0.02

0.01

0.01

0.01

0.01

0.03

0.03

0.02

0.00

0.05

0.06

0.01

0.01

0.02
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Epon828/Versamid140as1/1BW
24hoursat 298K (25°C)

Epon828/Versamid140as6/4 BW
24hoursat 298K (25°C)

Epon929
1hourat 422K (149°C)

Epon934A/B as100/33BW
7 daysat 298K (25°C)

Epon956A/B as100/58BW
7 daysat 298K (25°C)

Epo-Tek920
45minutesat 353K (80°C)

Epoxy-patchkit 1Casequallengths
24hoursat 298K (25°C)

Epoxy220A/Basequallengths
24hoursat 298K (25°C)

EPY150pre-packkit
16hoursat 298K (25°C)

EX 8762
1hourat 433K (160°C)plus
2hoursat 513K (240°C)

FM 37
10hoursat 394K (121°C)

FiberiteE-3938
10minutesat 422K (149°C)plus
2 hoursat 433K (160°C)

GelvaMPsolRA263Pressuresensitive
7 daysat 298K (25°C)

GelvaMPsolRA 784Pressuresensitive
24hoursat 298K (25°C)plus24hoursat
339K (66°C)

GelvaMPsolRA 858Pressuresensitive
24hoursat 298K (25°C)plus24hoursat
339K (66°C)
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%TML

0.41

0.74

0.60

0.28

0.19

0.65

0.82

0.89

0.99

0.08

0.73

0.44

0.79

1.00

1.02

% CVCM

0.03

0.05

0.01

0.01

0.01

0.01

0.03

0.08

0.04

0.01

0.05

0.01

0.08

0.05

0.02



%TML %CVCM

HysolEA 956A/B as100A/58BBW
7 daysat 298K (25°C) 0.69

HysolXC9- G710/H2-3561as100/26BW
24hoursat 298K (25°C)plus6 hoursat
342K (69°C) 0.90

LCA4/ACTBA5as100/4.5BW
16hoursat 373K (100°C) 0.19

Metre-grip3446/T9as1%catalystBW
2 hoursat 366K (93°C)plus 16hoursat
477K (204°C) 0.50

MMMEC2258
24hoursat 448K (175°C) 1.01

MMMEC2290
30minutesat 355K and0.013N/m2
(82°Cand 104 torr) plus
30minutesat 450K and0.013N/m2
(177°Cand 10 "4 torr) 0.02

Narmco 3135/7111 as 1/1 BW

24 hours at 298 K (25°C) 0.60

PR 1710

16 hours at 298 K (25°C) plus 1 hour at

394 K (121°C) 0.38

PS 18

72 hours at 298 K (25°C) 0.74

PS 269 A/B as 1/1 BW

24 hours at 298 K (25°C) 0.79

R8-2038/H2-3475

24 hours at 298 K (25°C) 0.53

Resdel O1-02-01 Ciba 6005/Resdel 41 as 511 BW

10 minutes at 433 K (160°C) 0.82

Resyn 30-1215
16 hours at 298 K (25°C) plus 2 hours at

339 K (66°C) 0.63

Rhoplex N-619

30 minutes at 298 K (25°C) plus 1 hour at

343 K (70°C) 0.52

0.03

0.02

0.00

0.00

0.00

0.02

0.01

0.01

0.00

0.10

0.01

0.03

0.02

0.01
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%TML %CVCM

RTV-566 as 0.075% BW catalyst B

7 days at 298 K (25°C)

RTV-566 as 0.08% BW catalyst B

7 days at 298 K (25°C)

RTV-566 as 0.09% BW catalyst

7 days at 298 K (25°C)

RTV-566 as 0.10% BW catalyst

7 days at 298 K,(25°C)

RTV-566 as 0.2% BW catalyst B

24 hours at 298 K (25°C)

RTV-566 as 0.3% BW catalyst B

24 hours at 298 K (25°C)

RTV-566 as 0.5% BW catalyst B

24 hours at 298 K (25°C)

RTV-566 as 0.7% BW catalyst B

24 hours at 298 K (25°C)

RTV-567 as 0.3% BW catalyst

5 days at 298 K (25°C)

RTV-567 as 0.5% BW catalyst

5 days at 298 K (25°C)

Scotchweld 1838 A/B as 1/1 BW

24 hours at 298 K (25°C)

Scotchweld EC2214 NMF unfilled

1 hour at 394 K (121°C)

Scotchweld EC3500 A/B as 3/2 BW

1 hour at 394 K (121°C)

Solithane 113/300/TIPA as 100/51/4.5 BW

7 days at 298 K (25°C)

Stycast 1263/31 as 100/3 BW

16 hours at 380 K (107°C)

Stycast 2850 FT/24LV as 100/7 BW

24 hours at 298 K (25°C) plus 72 hours
at 333 K (60°C)
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0.11

0.11

0.11

0.10

0.27

0.34

0.41

0.36

0.53

0.51

0.66

0.78

0.20

0.36

0.33

0.39

0.01

0.01

0.01

0.02

0.00

0.00

0.01

0.01

0.02

0.03

0.03

0.02

0.07

0.02

0.04

0.01



% TML % CVCM

Stycast 2850 GT/9 as 100/0.3 BW

7 days at 298 K (25°C)

Tra-Bond 2248 Bipax kit

16 hours at 298 K (25°12) plus 2 hours at

338 K (65°C) plus 2 hours at 363 K (90°C)

Y-663 thermopoxy

1 hour at 450 K (177°C)

0.33

0.72

0.41

ADHESIVE FILMS, SUPPORTED AND UNSUPPORTED

Ablefilm 517 glasscloth support/epoxy film

3 hours at 347 K (74°C) 0.07

CMC 10 film, thermosetting

30 minutes 438 K (165°C) 1.02

Coast epoxy prepreg F 161-83-1 P08/20

2 hours at 436 K (163°C) 0.67

FM 123-2 LVC

1 hour at 394 K (121°C) 0.69

FM 150-1 supported epoxy, aluminum filled

1 hour at 450 K (177°C) 0.50

FM 150-2 supported epoxy film EP15

1 hour at 450 K (177°C) 0.87

FM 150-2U unsupported

1 hour at 450 K (177°C) 0.90

HX-1000 laminating film

15 minutes at 492 K (216°C) 0.10

Hysol A9-601

1 hour at 394 K (121°C) and pressure 0.37

Metlbond 227

1 hour at 400 K (127°C) 0.99

Narmco 328

90 minutes at 438 K (165°C) 1.00

0.00

0.01

0.08

0.01

0.04

0.12

0.01

0.05

0.07

0.03

0.01

0.03

0.08

0.11
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CONDUCTIVE OR FILLED ADHESIVES % TML % CVCM

Eccobond 56C/9 as 20/1 BW

16 hours at 323 K (50°C) 0.30

Electrobond 2015 A/B as 10/1 BW, silver filled

2 hours at 338 K (65°C) 0.44

Epon 815/DER 732/V9/silver powder/AEP

4 hours at 347 K (74°C) 0.57

Epon 828/Versamid 140/Silflake 135 as 5/5/40 BW

7 days at 298 K (25°C) 0.50

Epo-Tek H21D A/B as 10/1 BW

30 minutes at 373 K (100°C) 0.19

Epo-Tek H 31

1 hour at 423 K (150°C) 0.59

Epo-Tek H 41

I hour at 423 K (150°C) 0.14

Epo-Tek H 43

1 hour at 423 K (150°C) 0.21

Epo-Tek H 44

1 hour at 423 K (150°C) 0.27

Epo-Tek H 74 A/B as 10/0.3 BW

30 minutes at 423 K (150°C) 0.56

Epo-Tek H 80 silver filled

24 hours at 323 K (50°C) 0.17

Epo-Tek H 81 A/B as 10/1 BW

12 hours at 323 K (50°C) 0.06

Hysol K8-4238/H2-3475 as 25/4 BW

24 hours at 298 K (25°C) 0.32

K-16A/Bas3/1 BW

48 hours at 298 K (25°C) 0.22

P-61 silica filled

2 hours at 373 K (100°C) plus 8 hours at 408 K

(135°C) 0.31

Resdel epoxy with iron filling

10 minutes at 433 K (160°C) 0.67

0.03

0.02

0.08

0.04

0.00

0.06

0.00

0.00

0.01

0.01

0.01

0.02

0.01

0.01

0.04

0.03

76



%TML %CVCM

Scotchweld2214 HD aluminum filled

40 minutes at 394 K (121°C)

Tecknit 72-0002

48 hours at 394 K and 0.0013 N/m 2

(121°Cand 10s torr)

Tecknit 72-08116 A/B as 1/1 BW

30 minutes at 372 K (99°C)

Tra-Bond 2151

Bipax kit

72 hours at 298 K (25°C)

Traduct BA 2902 silver filled

2 hours at 333 K (60°C)

0.49

0.02

0.61

0.65

1.06

0.05

0.01

0.03

0.02

0.04
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