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GLOSSARY 

Symbols 

A area 

Cp specific heat 

D diameter 

h heat transfer coefficient 

L length 

m mass flow rate 

N number of active heat pipes 

Q heat load 

T temperature 

A T temperature difference 

U overall heat transfer coefficient 

E heat exchanger effectiveness, = (Tn - Tout)/(Tin - Tv) 

'7 fin efficiency factor 
17 

x 
fin efficiency factor of fluid header 

Subscripts 

e evaporator 

c condenser 

ct contact area between header and panel HP evaporator 

f panel feeder heat pipe 

H header 

HX heat exchanger 

i inside 

in inlet 

LM log-mean 

m interface between header evaporator and heat exchanger 

o heat exchanger fins 

out outlet 

p polyurethane bond 

R fin root 

V vapor 
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SUMMARY 

A 1. 2 by 1. 8 m (4 ft by 6 ft) variable conductance heat pipe radiator has been 

designed, built and tested which has deployment capability and can passively control 

Freon-21 fluid loop temperatures under varying loads and environments. The radi­

ator consists of six grooved variable conductance heat pipes attached to a 0. 032-in. 

aluminum panel. Heat is supplied to the radiator via a fluid header or a single fluid 

flexible heat pipe header. The heat pipe (HP) header is an artery design that has a 
flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 

watts have been successfully tested with the header flexed in a 90 degree orientation. 

Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied 

by 70 F. Without variable conductance heat pipe (VCHP) control the temperature 

variation was 42 0 F. An alternate control system was also investigated which used a 

variable conductance heat pipe header attached to the heat pipe radiator panel. This 
system proved ineffectual due to the inability of the header to carry large loads when 

configured as a VCHP. 
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1- INTRODUCTION 

Heat pipe radiators are recognized as an attractive alternate to conventional 

pumped looped radiators in spacecraft thermal control systems. They have no mov­

ing parts, require no electrical power, do not generate noise or vibration, are insen­

sitive to meteoroid penetration and are weight competitive. Of particular benefit is 

the ability of the heat pipe radiator to provide self-control of the heat source fluid. 

This can be done by building variable conductance into the heat distributing feeder 

heat pipes, building variable conductance into a heat pipe delivery header, or a hy­

brid of both. Although each of these methods offers different features, they all con­

trol fluid exit temperatures without the use of by-pass loops, valves, etc. 

It has been shown that the availability of electrical power, above that supplied 

by the Orbiter, will vastly improve the utilization of Shuttle flights by allowing more 

payloads per flight. However, this requires additional Shuttle heat rejection capability. 

One method of providing this with minimum impact on Shuttle design is to use de­

ployable radiators that would reject waste heat while Spacelab operations are per-. 

formed from the orbiting Shuttle cargo bay. Using a heat pipe radiator, the load 

could be delivered by a fluid loop or a heat pipe header. The heat pipe header would 

have to be capable of flexing at least 90 degrees and providing high thermal trans­

port capacity. A unique feature offered by the heat pipe radiator is minimum vibration 

environments that are necessary, for example, when conducting low-g space processin 

experiments. 

This report describes the effort involved in the design, analysis, fabrication 

and testing of a 24 square foot heat pipe radiator system that has deployment cap­

ability. In addition, different methods of fluid temperature control are examined. 

Following the design and analysis of the radiator system, individual component heat 

pipe parts were fabricated and tested. The radiator was then assembled and perfor­

mance tested in an ambient simulated radiation environment. Additional thermal 

vacuum testing has been planned by the National Aeronatics and Space Administration/ 

Marshall Spabe Flight Center (NASA/MSFC) at their facilities. 
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2 - DESIGN
 

2.1 	 DESIGN REQUIREMENTS 

The objectives of this program were to design, build and test a heat pipe radi­

ator that: (1) incorporates a deployable, flexible heat pipe header, and (2) serves 

as an experimental research tool for investigating various methods of temperature 

control. 

The radiator will interface with a pumped Freon-21 fluid heat source, extract 

heat from it and reject it to a space environment. The prime thermal requirement 

is to maintain the Freon-21 temperature exiting the radiator between 70 and 90 F over 

a load range of 200 to 400 watts in an environment that varies from -110 to'-30OF. 

The design requirements are as follows: 

* 	 Panel area (single side heat rejection): 1. 2 by 1. Sm (4 by 6 ft) 

* 	 Surface properties: a/ce = 0.25/0.90 

* 	 Head load 

- Maximum 400 watts
 

- Minimum 200 watts
 

* 	 Environment equivalent sink temperature
 

- Maximum 430 0 R (-300 F)
 

- Minimum 3500 R (-100'F)
 

* 	 Freon-21 flow rate: 0. 063 Kg/s (500 lb/hr) 

* 	 Freon-21 outlet temperature
 

- Maximum 900 F
 

- Minimum 70 F
 

* 	 Freon-21 inlet temperature (derived from inlet conditions)
 

- Maximum 101 0 F
 

- Minimum 75.5°F
 

o 	 Heat pipe header bend requirement: 0 to 90 degrees. 

2-1 
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Four methods of temperature control, "as shown in Fig. 2-1, were evaluated. 

System A couples radiator panel variable conductance heat pipes (VCHP's) directly 

to a fluid line header; temperature control is provided by the panel VCHPts. (The 

shaded area represents the gas blocked or non-operating portion of the radiator.) 

System B uses a flexible single fluid heat pipe (SFHP) header to connect panel VCHP's 

to a fluid heat exchanger. Again, temperature control is provided by the panel VCHP's. 

System C uses panel SFHP's connected to a VCHP header. The VCHP header pro­

vides panel load control. System D is a hybrid that uses both panel VCHP's and a 

VCHP header for temperature regulation. In all systems that use the heat pipe 

header (B, C, and D), load is provided to the panel by a fluid heat exchanger attached 

to the header's evaporator section. 

In addition, a fifth "no control" system (denoted by 1) was evaluated to serve as 

a basis of comparison with the other four control systems. It is identical to System 

A except that the feeder pipes are single fluid devices. A summary of these systems 

is as follows: 

System Header Type Feeder Type 

A Fluid (Freon-21) VCHP 

B SFHP VCHP 

C VCHP SFHP 

D VCHP SFHP 

I Fluid (Freon -21) SFHP 

Each pipe is required to operate either as a single fluid or variable conductance 

heat pipe. Therefore, each pipe is designed with a reservoir and is sealed with a 

valve to allow evacuation and recharging. 

2.2 SYSTEM DESIGN 

The overall configuration of the deployable heat pipe radiator is shown in Fig. 

2.2. It consists of four separate detachable pieces of hardware: heat pipe panel, flex­

ible heat pipe header, heat exchanger, and fluid header. The heat pipe panel can be 

attached to either the heat pipe header or the fluid header using removable clamps. 

Similarly, the heat exchanger is mechanically clamped to the evaporator section of 

the heat pipe header. An assembly drawing is presented in Fig. 2-3. 
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Table 2-1 Heat Pipe Panel Design Details 

OVERALL PANELSIZE 4 X 6 FT 
NUMBER OF FEEDER PIPES 6 
SPACING BETWEEN PIPES 8 IN. 
RADIATOR FIN MATERIAL 2024 T-3 ALUMINUM 
RADIATOR FIN THICKNESS 0.032 IN. 
FEEDER TO FIN ATTACHMENT POLYURETHANE ADHESIVE 
FIN TO FIN ATTACHMENT RIVETS 
FEEDER TYPE HEAT PIPES EXTRUDED AL 6063 AXIAL GROOVES 
WORKING FLUID 	 AMMONIA 
LENGTH: 	 EVAPORATOR 1 FT* 

TRANSPORT 3 IN. 
CONDENSER 6 FT 

DIAMETER ACROSS FLATS 0.562 IN. 
RESERVOIR MATERIAL STAINLESS STEEL 321 
RESERVOIR SIZE 3-IN. DIA X 6-IN. LONG 
Vr/Vc 	 7.3 
MAXIMUM DESIGN LOAD PER PIPE 67 WATTS OR 3,000 WATT-IN.
 
WEIGHT OF PANEL 13.1 Kg (28.8 LB)
 
WEIGHT PER UNIT AREA 5.9 Kg/m 2 (1.2 LB/FT 2)
 

*The Evaporator Length for Five of the Six Feeder Pipes isOne Foot. The Last 
or End Feeder Pipe Hasa Foreshortened Six In. Evaporator. 

U0.562 MOS -

I 	 FUSION WELD (TYPICAL)
45 - LOCATED AT POSITION 

± SHOWN EQUALLY SPACED 

0.43 	 DETAILA 

RIrYPICAL) 

0.024 
IREF) .017 

.040 

0.625 ± 0.005 

NO. OF GROOVES: 27 
SEE DETAIL "A" 

IT' 19' ±30' 27 FINS EQUALLY SPACED 	 ALL DIMENSIONS IN INCHES 

Fig. 2-4 Groove Pipe Extrusion 

I 
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artery can vent unwanted gas bubbles without destroying wick integrity. This is 

accomplished by using perforation dimensions (diameter to foil thickness ratio) such 

that the menisci on both sides of the hole interfere causing the liquid to drain from 

the hole, and permitting the bubble to vent. See Fig. 2-7 for foil details. 

Based on the above considerations, a number of design features were incor­

porated to minimize the influence of non-condensible gas bubbles within the artery 

during VCHP operation. These included: 

(1) 	 Design the artery with a sufficient number of spiral gaps(6) to carry a 

600 watt load assuming the tunnel completely inoperative. 

(2) 	 Provide shielding around the artery within the condenser to allow subcool­

ing of returning condensate. 

(3) 	 Provide a gas trap between the end of the flexible section and beginning of 

the condenser. In this region (see Fig. 2-7 and 2-8) the outer wrap of the 

artery is expended and in contact with a cooled surface at the beginning of 

the condenser. Vent holes through the screen layers to the tunnel allow 

tunnel gas bubbles to collect in the gas trap region. Because this region 

is subcooled, relatively large quantities of gas can be collected and thus 

free the flow of liquid condensate through the tunnel. The vapor space in 

this region is restricted and can result in large pressure drops at high 

loads. Therefore, a vapor bypass tube is provided around the gas trap. 

(4) 	 Provide a perforated foil at the evaporator end to vent gas bubbles that may 

migrate into the evaporator; foil thickness = 0.00076 cm (0. 0003 in.); hole 

diameter = 0.0051 cm (0. 002 in.). 

2.2. 3 Heat Exchanger 

This unit is a two-piece aluminum clam shell design 0. 76 m (30 in.) long that 

clamps over the circular evaporator section of the heat pipe header. Freon-21 flows 

through an annular section, 2.347 cm (0. 924 in.) inside diameter by 2.855 cm 
(1. 124 in.) outside diameter. Aluminum finning, 0. 0152 cm (0. 006 in.) thick, 15 
fins per inch, is brazed in the annulus. A photograph of the heat exchanger is shown 

in Fig. 2-9. It is estimated that the heat exchanger effectiveness between the Freon­

21 and ammonia vapor in the header is over 80 percent. 
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Fig. 2-9 Heat Exchanger (Clamps to Header Heat Pipe) 
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2.2.4 fluid Header 

This aluminum unit is 1.22 m (48 in.) long and clamps directly to the six 
evaporators of the panel feeder pipes. It has a finned annular Freon-21 flow area 
1.27 cm (0.5 in.) inside diameter by 1. 91 cm (0. 75 in.) outside diameter. Approxd­

mately 15 fins per inch are brazed into the annular region to improve heat transfer 
effectiveness. The outer surface of the fluid header, identical to that of the heat 
pipe header condenser, has a flat machined surface that is clamped to the feeder 
evaporators. Thermal grease is used as an interface material. A drawing of the 
fluid header is shown in Fig. 2-10. 

The assembled radiator with the flexible heat pipe header and heat exchanger 
(System B) is shown in Fig. 2-11 with the header in the straight and bent positions. 
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3 - SYSTEM PERFORMANCE ANALYSIS 

3. 1 SUMMARY 

This section presents a systems analysis of the deployable heat pipe (HP) radi­
ator design. Computer programs were used for the analysis of four of the five oper­
ating modes of the panel. Comparison of results showed that for systems A (fluid 

header/VCHP feeder), -B (HP header/VCHP feeder), and C (VCHP header/HP feeder) 
a much tighter temperature control could be obtained than that of System I, which 
represents a fixed conductance no control heat pipe radiator system (fluid header/HP 
feeder). The best control was provided by System C which essentially met the per­

formance requirements calling for an outlet fluid temperature range of 70-90°F be­
tween 200 and 400 watts and an environment of -110°F to -30 0 F. Systems A and B 
did not provide tight enough temperature control. This is due to the higher temperature 

drop between the fluid and VCHP pipes in these systems compared to that in System 
C. Methods of varying temperature control are also presented. 

3.2 DISCUSSION 

The purpose of this analysis is to evaluate the various control systems available 
with the deployable heat pipe radiator. Computer runs were made for four of the five 

possible systems (D was the exception). These systems are summarized in Table 

3-1 (See Fig. 2-1). 

System I is a fixed conductance heat pipe radiator and fluid header which serves 

as a no-control panel for comparison purposes. The other systems represent gas 
loaded heat pipes that are completely passive; that is, they require no reservoir 
temperature control. System D was not analyzed because of the extensive program 

modifications required. 

Each system was analyzed using a computer program which combines the over­
all systems thermal equations (Appendix A) withthose defining the interface position 
of a gas loaded variable conductance heat pipe. Program input to each system con­
sisted of physical dimensions of the various hardware components for that system, 
Examples of this include pipe lengths, reservoir volume, feeder to header contact 
area, and fin configuration for fluid header. Additional thermal data used is sum­

marized in Table 3-2. 
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Table 3-1 Performance of Various Radiator Control Systems 
OUTLET 

FLUID TEMP 

SYSTEM HEADER TYPE FEEDER TYPE VARIATION,OF 

A FLUID (FREON-21) VCHP 28 

B SINGLE FLUID HP VCHP 31 

C VCHP SINGLE FLUID HP 20 

D VCHP VCHP 

I FLUID (FREON-21) SINGLE FLUID HP 83 

Table 3-2 Thermal DataInput 

PARAMETER VALUE UNITS 

HEADER EVAPORATOR FILM COEFFICIENT 2,000 BTU/HR-FT 2 OF 

HEADER CONDENSER FILM COEFFICIENT 2,400 BTU/HR:FT 2 OF 

HEADER/HX CONTACT CONDUCTANCE 1,000 BTU/HR-FT 2 OF 

HEADER/FEEDER CONTACT CONDUCTANCE 1,000 BTU/HR-FT 2 OF 

FEEDER EVAPORATOR FILM COEFFICIENT 1,530 BTU/HR-FT 2 OF 

FEEDER CONDENSER FILM.COEFFICIENT 1,675 BTU/HR-FT 2 OF 

POLYURETHANE BOND CONDUCTANCE 300 BTU/HR-FT 2 OF 

CONTROL GAS CHARGE 0.0437 (HDR) LB 

CONTROL GASCHARGE 0.0135 (FDR)- LB 
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Usingtheprevious parameters and a given sinktemperature, the fluid (Freon-21) 
inlet temperature, which in systems B and C is inputted to the heat exchanger and in 

systems A and I to the fluid line header, was varied and the response of the system 
determined. Output included fluid outlet temperature, header vapor temperature, 

feeder vapor temperature, radiator temperature and load. Runs were made at both 

extremes of radiator environment (-300 F and -1100F) and at an intermediate temper­

ature of -70 0 F. A fluid flow rate of 500 lb/hr was used for all runs. 

The performance requirements call for an outlet fluid temperature of 700F to 

90 F over a load range of 200 to 400 watts with an environment range of -110 F to 

-30 F. A summary of results from the computer runs with regard to these perfor­

mance requirements appears in Fig. 3-1 and Table 3-1 for each of the four configura­

tions (two additional runs involving modifications of configurationB are also shown 

and will be discussed later). Figures 3-2 through 3-4 represent comparison plots 

of fluid outlet temperature versus load for all four systems at each of the three radi­

ator environments. Figures 3-5 through 3-8 are separate plots, for each configuration 
of fluid inlet, fluid outlet, vapor and average radiator temperatures versus load at 

the -700F environment. 

As seen from the results of Figures 3-2 through 3-4, a signiificantly tighter 

control of the fluid outlet temperature is obtained for systems A, B and C over that 

of system I. System C provides the best control of outlet temperatute, and baisically 

meets the performance requirements. The outlet temperature range of system C 

can easily be lowered by slightly lowering the control gas charge. Systems A and B 

provide good temperature control but not enough to meet the design goal of 70 to 90°F. 

This is because the panel was primarily designed for system C and as a resultper­

formed somewhat less than optimum when configured in systems A and B, as Fig. 3-2 

through 3-4 show. The wider control tolerance is the result of a higher temperature 

drop between the fluid and the VCHP vapor in systems A and B compared to C. 

Best control results when there is a minimum thermal resistance between the 

fluid and VCHP vapor. This is because the VCHP.vapor inherently reacts to load 

and environment changes attempting to maintain itself at constant temperatures. The 

fluid temperature, coupled to the VCHP vapor by a thermal resistance, will vary over 

a range which is proportional to the magnitude of that resistance i.e., Tfluid = 

Q R + T vap . The higher the resistance the wider the fluid temperature variation. 
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A high thermal resistance is displayed in Fig. 3-7 for system B which shows 

a temperature drop of 13 F between the fluid outlet and the VCHP feeder vapor tem­

perature at 300 watts. In comparison, as Fig. 3-8 shows, the temperature drop be­

tween the fluid outlet and the VCHP header vapor for system C is only 10 F. This is 
due to three additional resistances that configuration B has, namely, the header con­

denser film, the header to feeder contact conductance, and the feeder evaporator 

film. Of the three, the contact conductance represents the largest resistance. 

A run was made to see the effect of reducing this resistance, which can be.done 

by using a metallurgical bond between the header and feeders, double sided radiators,. 

etc. Using a large value of contact conductance and increasing the nitrogen control 
gas charge from 0.0135 to 0. 0175 lb resulted in a panel performance that essentially 

met the design goals. This is seen in Fig. 3-1 for system B modified with a large 

contact conductance. 

The performance of system A is somewhat better than that of system B. As 
seen in Fig. 3-6, the average temperature drop between the fluid outlet and VCHP 

vapor (feeder pipes) is approximately 80F at 300 watts compared to 1 F for system 
C. In this case, the higher resistance is also due to the header to feeder contact con­

ductance, as well as the one sided heat input from the fluid header to the feeders and 

the feeder evaporator film. 

Aside from decreasing the resistance between the fluid and VCHP vapor, finer 
temperature control can also be obtained by narrowing the temperature range of the 

reservoir. This was demonstrated for system B where the reservoir temperature 

was held constant at -51 F. Fig. 3-1 summarizes the result which shows that 
system B (with constant reservoir temperature) meets the performance requirements 

of 70 to 90 F. Constant reservior temperature can be provided, if necessary, by 
using a thermostatically controlled heater. 

Two points are worth noting. In Figures 3-2 through 3-7 the curves for systems 
A, B and C turn upward and parallel curve I at the high power levels. This indicates 
that the interface has progressed beyond the condenser and into the reservoir. Under 

these conditions the pipe operates as though it were a single fluid device. Secondly, 
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the nitrogen control gas charge in the VCHP's for systems A, B and C were selected 
primarily to meet-the upper design point of a 90°F fluid outlet temperature at 400 

watts and a -30 0 
F environment (See Fig. 3-1 and 3-2). This results in lower fluid 

outlet temperatures for systems A and B at the lower end of the design point (200 
watts and -110 F environment). By increasing the gas charge, the operating range 
of the pipe could just as easily been raised so that it overlaps the performance re­
quirements. 

3.3 Conclusions 

* 	 Systems A, B and C provide significant temperature control over system I 

* 	 System C provides the best control, essentially meeting the design goals 

* 	 Systems A and B provide good temperature control but are outside the design 
goal. This is because the hardware was primarily designed for system C 
and performed somewhat less than optimum when configured in systems A 
and B. The temperature drop between the fluid and VCHP was higher in both 
systems A and B than in system C, thereby accounting for the wider control 

tolerance 

* 	 If required, finer temperature control can be achieved for systems A, B and 

C by 

-	 Providing a narrower temperature range for the reservoir 

- Reducing the thermal resistance between the fluid and the VCHP, e.g., 
double sided radiator, brazed joints, etc. 
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4 - COMPONENT TESTS 

4.1 FEEDER HEAT PIPE TESTS 

Prior to assembly of the radiator panel, acceptance tests were performed on 

each of the six grooved feeder pipes. All pipes were tested for proper capacity in 

the single fluid mode. Two pipes (Serial No. 01 and 05) were further tested in the 

VCHP mode to assure no performance degradation due to non-cdndensibles. One of 

these pipes (Serial No. 01) was also tested in the straight and final "L-shaped" con­

figuration to determine the effects, if any, of bending the grooved pipe. 

Tests were conducted with one sided electrical heat input on the 0. 3m (1 ft) 

evaporator. Heat was removed by submerging the 1. 8m (6 ft) condenser in a water 

trough covering half the circumference. Figure 4-1 shows the instrumentation draw­

ing. Figure 4-2 shows maximum sustained load versus tilt for the same pipe (Serial 

No. 01) in three different configurations. The straight pipe, single fluid, tilt data 

(data point o) is extrapolated to zero tilt to yield a value of about 130 watts. This is 

well above the 67 watt requirement for the 400 watt panel. Actual test data at zero 

tilt shows a higher load of 180 watts. However, this can be misleading since puddling 

effects enhance performance at zero tilt. Adding nitrogen control gas to the pipe 

provided a variable conductance heat pipe (VCHP), which exhibited no degradation in 

performance as evidenced by the A data points. Subsequent bending of the pipe and 

testing in the VCHP mode also showed no degradation below single fluid performance. 

In the VCHP mode, the interface was positioned so that at least three-fourths of the 

condenser length was active. This results in a pumping length comparable to the 

single fluid case. Results for the other five pipes are shown in Fig. 4-3 through 4-5. 

In all cases the design requirement of 67 watts at zero tilt was met. 
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The temperature distribution along (Serial No. 01) pipe in the VCHP mode is 

shown in Fig. 4-6 at three different power levels. At 20 watts, the vapor/gas inter­

face is located near the beginning of the condenser. At 80 watts, the interface moves 

along the condenser exposing a larger condensing area to the water heat sink. Finally 

at 160 watts, the entire condenser length is active. During these power changes, it 

is noticed that the evaporator temperature, as expected, remained unchanged at an 

average value of about 62. 50 F. Also, at 160 watts, the temperature differential be­

tween the evaporator and condenser is only about 20F. 

The thermocouple temperature data is presented in Table 4-1 for Serial No. 01 

pipe, bent 90 degrees for both the single fluid and VCHP test conditions. This data 

was typical for the other five feeder pipes. 

" HP LEVEL 
" BENT CONFIGURATION 
" SINGLE SIDE HEAT INPUT/REMOVAL 

T/CNO.--- 1234 567 8 9 10 11 12 13 14 15 16 17 
22 23 

18192223 
I -I I I I I I I I I 1 19 

------04 1 
EVAP CONDENSER i 

70 • 

65 - 8OW 160W 

TEMP., 0 F 60 -- =~~~~ -- ,.- "-I RES= -998°F 

55 - HEAT 20W 
SINK 

50 

Fig. 4-6 Feeder VCHP Test Results - Temperature Profile 
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Table 4-1 Feeder Heat Pipe Bench Test Data (S/NO.01) - Bent 

SINGLE SINGLE -SINGLE 
TEST MODE: FLUID FLUID FLUID VCHP* VCHP* VCHP* 

Tilt (in.) 0 1/4" 1/2" 0 0 0 
I (AMPS) 3.84 2.86 1.56 1.28 2.56 3.62 
V (VOLTS) 
Q (WATTS) 

47 
180 

35 
100 

19 
80 

15.6 
25 

31 
80 

44 
160 

T/C # 1 
2 

62.5 
63 

60 
61 

61.5 
59.5 

62.5 
62 

62.5 
63 

62.2 
62.5 

EVAPORATOR 3 62 60 58 62 62.8 62 
4 63 60 58 62.5 63 62.5 

15 64 61 58.5 62.5 63 63 
TRANSPORT 6 61.5 59 57 61 61.5 61 

7 61 59 57 61 61 60.8 
8 60.5 59 57 59 61 60.5 
9 60.5 58.5 57 58.5 61 60.3 
10 61 59.5 57 58.5 61.5 61 
11 61 59.5 57 58.5 61 60.5 

CONDENSER 12 61 59.5 57 58.5 61 61 
13 61 59 57 58.5 60 60.5 
14 61. 58 57 58.5 57.5 60.3 
Ls 61J 58.5 57 58.5 58.5 60.3 
16 61 58.5 57 58.5 58.5 60.5 
17
18 

61
61.5 

58.5
58.5 

6
57 

58.5
58 

58.5
58 

60.8
61 

19 60.5 58 57 57 57 60.3 
LOW-K /20

/21 
59.5 
61.5 

58 
60 

57 
58.5 

54 
-4 

54.5 
-6 

58.5 
2 

RESERVOIR tf22 64.5 62.5 61 -85.5 -89 -91 

23 64 62 60 -97 -96 -99.5 
HEAT SINK 24 57 57 56 59 58.5 57 

ROLL NO. 8 9 9 9 9 9 
DATE 9/30/74 10/1/74 10/1/74 10/2/74 10/2/74 10/2/74 
TIME PM AM AM AM AM AM 

Ammonia Charge (GMS): 44*Nitrogen Gas Charge (Ib): 0.0135 
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4.2 FLEXBLE HEAT PIPE HEADER TESTS 

The purpose of these tests was to determine single fluid and variable con­
ductance performance with the pipe oriented in a straight configuration and flexed at 
a 90 degree angle. In the flexed orientation, the evaporator was always tested in a 
horizontal plane on level or tilted above the condenser. Electrical heat input was pro­
vided around the entire circumference of the 76.2 cm (30 in.) evaporator. Heat was 
removed by submerging the condenser in a flowing water trough. During some tests, 
a water spray was used to lower the pipe temperature during high power runs. A 
thermocouple installation drawing is presented in Fig. 4-7. 

Figure 4-8 shows the test results obtained with the pipe charged only with 
ammonia. The maximum sustained capacity was about 950 watts at zero tilt with the 
pipe in a straight configuration. This was well above the 400 watt panel requirement. 
Strong performance was also noticed at high tilts, which unlike the longitudinally 
grooved pipe, is characteristic of the fine pore size obtainable with screen wicks. 
With the pipe flexed at a 90 degree angle, (see Fig. 4-9) no degradation in perfor­
mance was noticed as shown by the data points at 0.5 in. and 1.0-in. tilts. Although 
in these tests power was turned off while the pipe was repositioned, subsequent tests 
revealed that the pipe remained primed during repeated slow flexing of the evaporator 
between its straight and angled positions. Thermocouple data in the straight and 
flexed configuration is presented in Table 4-2. 

After the single fluid test sequences, nitrogen was added to the pipe to allow 
VCHP testing. In this mode, only loads as high as 300 watts could be obtained. It 

was apparent that the tunnel was unprimed and it is probable that a portion of the 
spiral gaps were also unprimed, since the full gap capacity was estimated to be about 
600 watts. Failure to prime was attributed to the presence of gas bubbles within the 
artery as well as high pressure oscillations which were subsequently recorded at 
relatively low power (150 watts) levels. Appendix C documents the pressure 

oscillations that were observed with and without the presence of nitrogen control gas. 
Efforts to vent the gas bubbles through the perforated evaporator end foil or collect 

them in the gas trap proved unsuccessful. 
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Table 4-2 Header Heat Pipe Bench Test Data 

SFHP SFHP SFHP SFHP 
TEST MODE: STRAIGHT STRAIGHT STRAIGHT BENT 

TILT (IN.) LEVEL LEVEL 1/2" 1/2" 
I (AMPS) 7.5 9.3 7.5 7.4 
V (VOLTS) 88 10.2 88 87 
0 (WATTS) 660 945 660 650 

TC# 74.5 82 79.5 8512 71. 5 78 78 80 
EVAPORATOR 3 75.5 83.5 81 84 

4 77.0 86 81 84 
5 75.5 83.5 81.5 83.5 
6 76.5 85 82 85 

TRANSPORT 7 70.0 75 75 78 
8 68.5 74 74 77.5

67.0 68 66 71
10 68 73.5 74 76 

11 69 74 74.5 77.5 
12 67.5 72.5 73.5 76.5 

CONDENSER 13 68 73.5 74 77 
14 68 73 74 77 
15 68 72.5 73 76 
16 68 73 73 76 
17 68.5 73.5 74 77 
18 - - ­
19 68 72 73 77 

LOW-K {20 66 71 71.5 76 
121 69 74 74.5 77 

RESERVOIR j22 70.5 75 75 77.5 
123 70.5 75 75 77.5 

HEATSINK 24 55 56 56 66.5 

ROLL NO. 4 4 4 5 
DATE 10/30/74 10/30/74 10/30/74 11/1/74 
TIME 1407 1522 1158 1158 

AMMONIA CHARGE (GMS): 357 
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5 - RADIATOR SYSTEM TESTS 

After assembling the feeder pipes into the panel, tests were performed for sys­

tems A and B. In addition, a "no-control" system (denoted by I) was tested which was 

identical to system A except that the feeder pipes were single fluid devices, charged 

only with ammonia. Although not having any variable conductance control capability, 

this system was tested to serve as a basis of comparison with the other two control 

systems, A and B. Systems C and D were not tested due to the inability of the header 

to satisfactorily operate in the VCHP mode. These tests were essentially acceptance 

tests to check the overall performance of each system. More thorough thermal vacuum 

tests are planned by NASA/MSFC. 

Testing was done at ambient pressure in an insulated box to simulate a radiation 

environment. Fig. 5-1 shows the schematic of the test set-up. The radiator was in­

stalled horizontally in the box above a 0. 318 cm (0.125 in.) thick aluminum cold plate. 

The underside of the radiator transferred heat to the cold plate which was cooled by a 

LN2 /distribution system. The upper side of the radiator was insulated. This arrange­

ment, which is the opposite of normal orientation (upper side is radiator), minimized 

convection between the radiator and the cold plate thereby producing a more realistic 

radiation coupling. Both sides of the radiator and the reservoirs were coated with 

Z306, a black paint with a 0.85 emittance. The heat source was supplied by a 0. 063 

kg/s (500 lb/hr) temperature controlled Freon-21 loop coupled either to the fluid 

header (in systems I and A) or the heat pipe header heat exchanger (in system B). A 

total of 45 thermocouples were used for systems A and I tests while 48 thermocouples 

were used for system B tests. Figure 5-2 shows the thermocouple locations. Included 

in the total are four thermocouples used to monitor the cold plate temperature (en­

vironment). 

A typical test run consisted of setting and maintaining the cold plate to a temper­

ature between -30 0 F and -110 0 F. The Freon-21 inlet temperature was then adjusted to 

a steady value of about 60°F and a flow of 500 lb/hr. When steady state was reached, 

data from all 48 thermocouples were recorded. 
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Approximately six runs were made with the inlet at 60 0 F, 700 F, 800 F, 900 F, 

1000 F and 1100 F. These values extended below and above the required load range 

of 200 watts to 400 watts. 

Figure 5-3 shows the steady state response of the Freon-21 exiting the fluid 

header as a function of load for system I. As expected, the response was typical of a 

fixed conductor radiator/fluid loop panel. At low loads the Freon-21 outlet temper­

ature approaches the sink temperature, which in this case was between -84 0 F to -70 0 F. 
Appendix D contains temperature maps (OF) for all thermocouples for system I tests 

as well as systems A and B. Two maps, Figures D-1 and D-2, are presented for sys­
tem I at 370 and 650 watts respectively. (In some cases, inconsistencies in data ap­

pear, such as in Figure D-2 where T/C 41 is lower than T/C 2. This is attributed to 

poor contact of T/C 41.) 

After this test, system A was evaluated by adding nitrogen to each of the feeder 

pipes making them VCHP's. Results for this system (Fig. 5-3) show that the outlet 

fluid temperature has been significantly controlled over a load range from near zero 

to 600 watts. This is accomplished by the action of the VCHP's automatically adjust­

ing the active radiator area to changes in load. Figure 5-4 shows an approximate 

temperature map of the radiator at three different power levels of 240, 440 and 590 

watts. These were obtained from temperature maps in Figures D-4, D-5, and D-6. 

(Maps at zero and 625 watts are also included in Figures D-3 and D-7.) As the load 

increases, a larger portion of the radiator above 50°F is activated. Also, those feeder 

pipes which are nearest the warmer Freon-21 inlet have longer active condensers than 

downstream feeder pipes. The temperatures along the first or most upstream feeder 

pipe is shown. (Distance between thermocouples is about 25.4 cm (10 in).) Note that 

at the interface for the 240 watt profile, the pipe temperature changes sharply from 

above 50°F to below -40 0 F. At near zero load (Fig. D-3), the inlet and outlet temper­

atures were both 55.51F while the panel, which was essentially shut-off, was about 

-50 to -20 0 F over its entire surface. 

Test results for system B, which uses the flexible heat pipe header in place of 

the fluid header, is shown in Fig. 5-5. It is seen that the outlet Freon-21 temperature 

was effectively controlled over a load range extending to about 850 watts. Furthermore, 
there was no significant difference in performance with the flexible header pipe in a 

straight or bent (90 degree) configuration. 
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" 	 SINK TEMP: -710 F TO -910 F 

TOUT = 6350 F 

0 = 240 WATTS 3 

F F TIN = 70F 

--49F -42F 54F 

LESS THAN 50f F TOUT = 70.0 

Q = 440 WATTS 

500 F OR GREATER 

6i t TIN = 82.561F 63F 
61F
63F
61F 


T OUr 76.5o I 
Q 590 WATTS 

ORIGINAL PAGE 7 TN 92.5 

OF POOR QUALrry 72F 73F 71F 	 I 

Fig. 5-4 	 System A Test Results -
Panel Temperature Pattern 
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TEMP' F -20 FR-21 FLEXIBLE 

HP HR 

-40 

ENVIRONMENT EMP 

_0 /I COLO PLATE) 

-100 I M I I I 

0 200 400 O 800 

THERMAL LOAD. WATTS 

Fig. 55 Radiator System BTeat Results 

Although the Freon-21 temperature response is similar for both systems A and 

B, there is a basic difference in the manner in which the radiator area responds. This 

is shown in Fig. 5-6 where a panel profile for configuration B is depicted at two power 

levels of 198 and 462 watts. As power increases, the active radiator area increases. 

However, unlike system A, the active area increases more uniformly across its 1. 2m 

(4 ft) width. This is because the condenser of the heat pipe header supplies a uniform 

temperature heat source to the radiator as opposed to continually decreasing temper­

ature heat source supplied by the fluid header in system A. The temperature distribu­

tion along the first pipe is also shown, indicating the drop off in temperature across the 

interface. Figures D-8, -9, and -10 depict temperature maps for the straight con­

figuration at 198, 313, and 462 watts. Figures D-11, D-12 and D-13 depict temper­

ature maps for the bent configuration at 99, 396 and 692 watts. 

The overall performance summary of systems A and B are given in Table 5-1 

along with the no-control system I. It is obvious that systems A and B provide effec­

tive outlet temperature control over that of system I. There is also no significant 

difference n performance between system A and either the straight or deployed orien­

tation of system B. Although it appears that the Freon-21 outlet temperature was be­

low the minimum design goal value of 700 F, final evaluation of panel thermal perfor­

mance can only be done in a thermal vacuum test environment, where other factors 

which affect outlet temperature response, such as reservoir temperature and system 

heat losses can be properly examined. 
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* SYSTEM B: HP HDR/VCHP FEEDERS 

" FREON-21 FLOW RATE: 446 LB/HR" SINKTEMP: -45FTO-95F 

" HDR PIPE - STRAIGHT 

LESS THAN 
506F 

50F OR GREATER 

TIN 91.5 F 
Q = 198 WATTS 53F 0 462 WATTS 

53F TIN= 70.5 F 
-5F-20F 

TOUT =77.5F-24F -18F 33F ° 4F 64F 63F TFTOUT =64 

Fig. 5-6 System B Test Results - Panel Temperature Pattern 

FTable 5-1 Performance Summary of Radiator Systems 
OUTLET TEMPERATURE, 

FREON-21 
SYSTEM AT 200W AT 400W AT, OF 
1 (NO CONTROL) 8 50 42 

A (FLUID HEADER) 62 69 7 

B (HP HDR-STRAIGHT) 64 71 7
 
B (HP HDR-BENT) 62 70 8
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6 - CONCLUSIONS
 

" 	 Two completely passive heat pipe radiator systems have been built which 

successfully demonstrated effective temperature control of a fluid loop 

heat source 

- System A - Fluid header coupled to a radiator composed of VCHP's 

- System B - Heat pipe header coupled to a radiator composed of VCHP's 

* 	 The heat pipe header of System B has a flexible section that allows radiator 

deployment over a 90 degree bend. Single fluid transport capacities of about 

850 watts, corresponding to 51, 000 watt-in, have been achieved in a 90 degre 

bent orientation 

* 	 Each system has demonstrated the ability to provide near complete radiator 

shut down in cold environments, thereby preventing fluid loop freeze-up in 

low power situations 

* 	 Although thermal performance of both systems A and B were similar, de­

tailed evaluation must be made in more refined thermal vacuum tests 

* 	 Radiator concepts that provide temperature control using large capacity 

variable conductance heat pipe headers are not attractive at the present time 

because of the unreliable nature of artery type VCHP's. On the other hand, 

longitudinally grooved pipes, although smaller in capacity, perform reliably 

it the VCHP mode. 
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APPENDIX A - DEPLOYABLE HEAT PIPE RADIATOR - PANEL DESIGN SELECTION 

SUMMARY 

This analysis details the selection of the basic panel design for the deployable 

heat pipe radiator. It considers concepts that use either a fluid header or a heat pipe 

header and provides parametric performance analyses for each basic type. 

The recommended panel design, which is suitable for any operating mode, uses a 

0. 032-in. thick aluminum panel with six heat pipes. The pipes are coupled to the fluid 

or HP header with mechanical attachments, whose efficiency have a strong impact on 

panel performance. 

INTRODUCTION 

The objective of this tradeoff study is to determine the number of panel feeder 

heat pipes and the panel fin thickness that will best satisfy the performance require­

ments of the deployable heat pipe radiator. These requirements are summarized in 

Table A-1. The four possible operating modes are included in this preliminary 

design study (see Fig. 2-1). 

The basic panel design, in terms of the number of heat pipes and fin thickness, 

is dictated by successful operation at the maximum load (400 watts) and maximum en­

vironment (-30°F sink) condition. If the panel can be designed to provide the necessary 

fin root temperature to reject the maximum load in the warmest environment, then it 

can be made to function properly under less severe combinations of load and environ­

ment. As seen in Fig. 2-1, only two generic categories need be considered for opera­

tion at maximum load and environment since all panels will be fully open, utilizing all 

of the available 24 square feet surface area. One category (Category I) uses a direct 

coupling to a fluid line header (system A). The other category (Category H) uses a HP 

header to couple the panel to the fluid loop (Systems B, C and D). At the extreme 

operating condition Systems B, C and D are indistinguishable when considering the 

temperature drops through each system, since the VCHP's and SFHP's have exactly 

the same active lengths. 
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RESULTS 

The major factors which dictate the thermal design of the heat pipe radiator 

panel are the fin root temperature, thermal load and the environment. This is illus­

trated in Fig. A-I which shows the net heat rejection per unit area as a function of fin 

root temperature for several values of fin effectiveness (flF) at the warmest (-300 F) 

and coldest (-110(F) environments. Considering the critical design case (400 watts, 

-30OF sink) and a completely active 24 square foot area, about 57 BTU/hr must be 

rejected from each square foot of area. Assuming a fin effectiveness of 0. 90 (a 

reasonable design target), a root temperature of 620F is needed to reject the 400 watt 

load to the -30O.F environment. This means that the panel design, no matter what 

category, must result in a minimum fin root temperature of 62 0 F if it is to meet the 

critical design case heat rejection requirements. A lower fin effectiveness would re­

quire a higher fin root temperature for the same heat rejection. For example, 730F 

is needed at 7 F= 0.80 and 83BF at '7F = 0.70. This means that the overall system 

temperature drop from the fluid inlet to the fin root must be further minimized in 

order to accommodate lower effectiveness values---that means decreasing thermal 

resistances. 

Figure A-2 is a general design curve that relates the panel design, in terms of 

number of heat pipes and panel fin thickness, to fin effectiveness. It assumes a 

4 ft x 6 ft aluminum panel with a 0.90 surface emittance and a ratio of sink to root 

temperature (TS/TR) of unity. 'The latter assumption insures conservative results 

since the effectiveness increases as the ratio TS/TR decreases from 1.0, all other 

things being equal. From Figure A-3, the requirement for a 62 0 F root temperature 

and a 0. 90 effectiveness can be met either by a 0. 032-in. thick fin and six heat pipes, 

or a relatively thick 0.048-in. fin and five heat pipes. Four heat pipes don't come 

close to meeting the 0.90 requirement for any reasonable thickness. Figures A-I 

and A-2 can be used together to relate panel heat rejection capability and root temper­

ature to the required panel design. This was done for the critical design case and the 

results are summarized in Table A-2. 

It now remains to be seen if Category I and II systems can be designed to give the 

necessary fin root temperatures that will meet the heat rejection requirements. This 

can be done by analyzing the temperature drops through each system, from fluid inlet 

to fin root, and comparing the available fin root temperature with the minimum re­

quired value, as given in Table A-2. 
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Table A-1 - Performance Requirements Summary 

MAX MIN 
LOAD, 0, WATTS 400 200 
FREON-21 FLOW RATE, LB/HR 500 500 
FLUID OUTLET TEMP, 0 F 90 70 

FLUID INLETTEMP, OF 101 75.5 
SINK TEMP,°F -30 -110 

Tsn -1100 F 100 - T=ik- 3YF 1.0 
• / 1.0 

90 / .90 

80 .80 

70 -. 70 

60 - 0.= 400 WATTS 
- - - - --- -- MAX (FULL OPEN) 

F 50 _ 
1.0­

0.90 40-x cc 

0.80 0 
0.70 30 6 

w 

20 

I10 

100 80 60 40 20 0 ~'0 20 40 60 80 100 

FIN ROOT TEMP (OF) FIN ROOT TEMP (0 F) 

(AQ)REJ ne (aT8 -aTS) 

Fig. A-i Heat Pipe Radiator Panel Heat Rejection Capability 
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* ALUMINUM PANEL, 4 FT x 6 FT 
= Se 0.90
 

SK= 100 BTU/HR FT°F
 
T"s = 1.0
 

TR 0.85 0.80 0.75 0.70 77F 

SINGLE SIDE REJECTION 2.2 ­

2.0 

1.8 

-1.6 
C. 	 0.90 

.4k 1.4 

PANEL .1.2
 

HEAT PIPES
 
1.0 

0.0

5.9 

6 J 	 r0.4 0.2­
0.048 	 0.040 0.032 0.024 -0 -0 o 40. 80 120 

FIN THICKNESS,t, IN. ROOTTEMP,TR, 0 F 

Fig. A-2 Radiator Fin Effectiveness (-qF) 
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Tk Z hcT = CONTACT CONDUCTANCE 

TIN nA.. TOUT 

FINS: 15 FINS/IN. 

0.006 IN. THICK 
0.10 IN. HIGH 

1.0 

0.9 

0.8 hCT,BTU/HR FT2,0 F 

0.7 ­

06 

z 4000 
> 0.5 

C, 

2000 
04 

Ix 

0.3 - 1000 

02 500 

0.1 

4 5. 6 

NO. OF PANEL HEAT PIPES 

Fig. A-3 Heat Exchanger Effectiveness - Finned Tube Header to Panel Heat Pipe 
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Table A-2 Heat Pipe Panel Requirements, 
0rej 400 Watts, Tsink = -30 0 F 

7F 
0.9 

TROOT (OF) 
62 

NO. OF HEAT PIPES 
6 
5 

t (IN.) 
0.032 
0.048 

0.8 73 6 
5 
4 

0.016" 
0.024 
0.036 

0.7 83 6 
5 
4 

0.016" 
0.016* 
0.024 

*Minimum allowable thickness for fabrication 

Category I (System A) Performance 

Assuming a properly finned fluid tube header, the most critical parameter affect­

ing the fin root temperature, and thus the panel heat rejection capability, is the contact 

conductance at the fluid tube to HP evaporator interface. As seen in Fig. A-3, the heat 

exchanger effectiveness from fluid to HP vapor is a strong function of the interface con­

ductance, hCT. The number of pipes has little effect since the overall heat transfei 

lengths are about the same, varying from 40 in. (four HP's with 10-in. long evapor­

ators) to 36 in. (six HP's with 6-in. evaporators). The generalized expression giving 

fin root temperature as a function of various system parameters is given below and 

developed in detail at the end of this Appendix. 

Tx IN - EIh A 

It has been solved for the 400 watt design case and the results are plotted in Fig. A-4, 

which gives fin root temperature as a function of number of panel heat pipes for several 

values of interface contact conductance, hCT. As seen from the figure, a contact 

conductance of 1000 BTU/Hr Ft2°F results in a fin root temperature of at least 62.5 0 F, 

depending on the number of HP's. Higher values of hCT yield correspondingly higher 

fin root temperatures. Reasonable combinations of hCT and number of HP's that re­

sult in acceptable-roottemperatures, as determined from Fig. A-4, are given in Table 

A-3.
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Table A-3 Category I, Available Root Temperatures 

hct(BTU/HR FT2 0F NO. HEAT PIPES TR (OF) 

1000 6 62.5 
1000 5 64 
1000 4 65 
2000 6 73 
2000 5 73.5 
2000 4 74 

* SYSTEM 	A - FLUID LINE TO PANEL VCHP'S 
* MAX LOAD, MAX ENVIRONMENT CONDITION
STIN= 1010F, Q = 400 WATTS, TSINK = 30F 

* 	 ACTIVE AREA =24 FT 2
 

Q/A = 57 BTU/HR FT2
 
90 hCT, BTU/HR FT'2F 

80 
4000 

2000 

70 

1000 
-60 

0 
L50 
I­
I- 50O 

0
 

4 5 

NO. OF PANEL HEAT PIPES 

Fig. A-4 Heat Pipe Radiator Performance 
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The necessary design for Category I panel can be determined when Table A-S, 

the available root temperature, is compared with Table A-2, the required root tem­

perature. From Table A-2, a fin effectiveness of 0. 9 needs a 620 F root and an effec­

tiveness of 0. 8 needs a 730F root. From Table A-3, the lower value of hCT (1000 

BTU/Hr Ft2OF) will only yield a 62.5 to 65OF root temperature, the higher 73 0 F root 

temperature can only be obtained by doubling hCT to 2000 BTU/Hr Ft2oF. Values of 

contact conductance on the order of 1000 BTU/Hr Ft2 OF have been demonstrated with 

a previous radiator panel using mechanical clamps (ref. 5) and it would be reasonable 

to limit the design of the deployable panel to this demonstrated value. From Table A-3, 

the constraint of a limiting 1000 BTU/Hr it 2oF value of contact conductance limits the 

panel to an available root temperature of 62.5 0 F. From Table A-2, this means using 

either six heat pipes and a 0. 032-in. fin or five heat pipes and a 0.048-in. fin to get a 

0.90 fin effectiveness. 

Consideration must now be given to the required heat transport capacity per heat 

pipe before a final decision is reached on panel design. Using the 400 watt maximum 

load, the load per heat pipe will be 67 watts (3000 watt-in. ) with six pipes and 80 watts 

(3600 watt-in.) with five pipes. Since the demonstrated transport capacity of the lon­

gitudinally grooved pipes with a single fluid (NH3 ) is 5000 watt-in., limiting each HP 

to the lowest requirement will result in the greatest design margin. This is especially 

important when the -heatpipes are operated as VCHP's since there might be some per­

formance degradation due to the presence of the nitrogen control gas. 

Considering the greater performance margin available using six HP's and the 

lighter gage panel required, a six HP panel design is recommended for Category I. 

The following summarizes the recommended design for the panel. 

Category I Recommendations 

No. of HP's: Six 

Aluminum fin thickness: 0. 032 in. 

Category II(Systems B, C and D) Performance 

The category II panel may not be as efficient as Category I due to the insertion 

of an additional thermal resistance, the HP header. However, this inefficiency can 

be overcome if the fluid heat exchanger is properly designed to give a high enough 

value of effectiveness. Since the heat exchanger is removable, there is an additional 
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factor, the interface contact conductance with the HP evaporator section, that affects 

the effectiveness. Figure A-5 gives the heat exchanger effectiveness as a function of 

exchanger length for several values of interface conductance, hIn . Restricting the 

length to a reasonable 24 in. requires conductance values in excess of 1000 BTU/ 
2o

Hr. Ft F to insure effectiveness values greater than 0. 8. 

The end of this appendix contains the detailed development of the heat transfer 

equations for the Category II analysis. Results for the 400 watt critical design case are 

presented in Fig. A-6 which gives fin root temperature as a function of heat exchanger 

effectiveness for several values of contact conductance between the panel HP' s and HP 

header, hCT. As seen, a given root temperature can be provided by various combina­

tions of effectiveness (c ) and contact conductance (hCT); the higher the effectiveness 

the lower the necessary value of hCT and vice-versa. The curves of Fig. A-6 are cross 

plotted on Fig. A-7 to give the required combinations of c HK and hCT needed to pro­

vide the minimum 620F fin root temperature. Table A-4 summarizes the results for 

reasonably attainable values of c HX (0. 8 and 0.9). 

Before recommending a Category II design, consideration must once again be 

given to the extra performance margin that is available with six panel heat pipes. The 

additional margin must be weighed against the slightly higher values of hCT that would 

be required by using more pipes. Using six pipes instead of five provides a 30 percent 

increase in capacity margin per HP while incurring only a 6 percent penalty in required 

contact conductance. For this reason the six HP design is also recommended for the 

Category 11 panel. 

The complete design recommendations for the category II panel are given below: 

Category II Recommendations 

Heat Exchanger: Effectiveness = 0.80 - 0.90 

Length - 24 - 30 in. 

No. of HP's: Six 

Aluminum fin thickness: 0.032 in. 

A-9 



-LENGTH 

FINS 4CONTACT 	 CONDUCTANCE, h. 

DtHXf 


FREON-21 

500 LB/HR 

1.0 	 -,0~2,000 

0.91,000
 

X 

0.8 
cixW h, 500 BTU/H R FT2 F 

w 

x 0.7 
U
 

U. 

i
X 0.6 

0.5­

0.4 	 I I I I 1 I I 
8 12 16 20 24 28 32 36
 

HEAT EXCHANGE LENGTH-IN. 

* 	 HDR I.D.= 1.0 IN. 

* 	 FINS: 15 PER IN. (3003 AQ)ORIGINAL PAGE IS 0.006 - IN. THICK 
OF POOR QUALITY 	 0.10- IN.HIGHO 	HDR FILM COEFFICIENT= 2,000 BTU/HR FT3 OF 

Fig. A-5 Heat Exchanger Effectiveness 
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a SYSTEM S - HP HEADER TO PANEL VCHP'S 

80 * MAX LOAD (400W), MAX ENVIRONMENT (-300F) hCT(BTU/HR FT2 0 F) 

6 PANEL HEAT PIPES 
4000 

70- 2000 

02 

- 5 

40
 

500 

30 

hct 

80 

5 PANEL HEAT PIPES 

70 -2000 

LI 60 1000 

0 
O 50 

I-­

40 500 

30 

hct
 

80 

4 PANEL HEAT PIPES 

70, 2000 

LI­

1: 60 1000
 
0
 
0 

F- 50 

40 - 500 

30 I I I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

HEAT EXCHANGER EFFECTIVENESS, EHX 

Fig. A-6 Heat Pipe Radiator Performance 
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6HP1.0 
o.9- 5HP 

z 0.-4HP B0.7­

w 
w 0.86H 

I<I~ 0.76 
OL) 

.5 

I 
0.7 * 0 

* SYSTEM B- HP HEADER TO PANEL VCHP'S 

Fig. A-7 Heat Pipe Radiator Design Requirements for TROOIT = 620F, System B 

Table A-4 Category 11, Design for T R = 620F 

GHX NO. HEAT PIPES hct(TU/HRFT 2 OF) 

0.8 6 1450 
0.8 5 1360 
0.8 4 1320 
0.9 6 1310 
0.9 5 1230
 

0.9 4 1180 

CONCLUSIONS 

A 0. 032-in. thick aluminum panel with six panel heat pipes can best meet the 
requirements of the deployable HP radiator for any of the operating systems con­

sidered. The category HIpanel requires values of contact conductance (hCT) about
 
35 percent greater than the Category I panel in order to provide the same fin root
 

temperature. This is due to the addition of the HP header and clamp-on heat ex­

changer which represent additional thermal resistances and higher temperature drops. 
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DERIVATION OF EXPRESSION FOR FIN ROOT TEMPERATURE 

. Category I - Fluid Line Header to Radiator Panel VCHP's 

A-	 FLUID LOOP COUPLING TO 
RADIATOR VCHP'S 

* 4FT 

* 	 NO- { 	 ? IVCHPS 
OPERATING 

HEADER
 

t FLUID 
FREON-21 	 OUTLET 

TV 
 hcTV
 

.-
TR 	 I "L 
*V 	 T h, 

TTOU 

P 
hh 


hpTIN 

TOUT 

TLM
 
I
 

Assumption - Since the overall temperature drop across the panel is only 11OF at themaximum, the panel load is assumed to be equally distributed among the panel feeder 
heat pipes. Although the load per pipe actually varies in relation to position nearest 
the fluid inlet, the variation is small and hence ignored. 
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The heat transfer equations for category I (System A) can be expressed as follows: 

(1) 	 Heat transfer from fluid 

Q = MCp (TIN-TOUT) 

(2) Panel HP vapor temperature 

(TIN - TOUT)
 
TV = TIN e
 

(3) Heat exchanger effectiveness 

UA
 
1-e MC TIN - TOUT
 

TIN - TV
 

(4) Panel HP condenser temperature 

TC = T¥V &
 
0 h)
 c
 

(5) Panel fin root temperature 

TR = C - h
 

P P
 

Combining equations (1) thru (5): 

+(6) 	 TR = T IN - (--h 

(I)
where 

UA
 
MC
 

and 
=
U Ae AeA+ 11 

(77 )) h A + h
0o0h0 X CTACT e e 
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The construction of the fluid header consists of a nominal one Inch ID aluminum 

tube (0.125-in. wall) containing a finned annulus that serves as the flow passage. The 

annulus is 0.10-in. wide and holds 0. 006-in. thick aluminum fins at 15 fins per inch. 

These are the same type fins that were used on the VCHP header for the NASA/Hous­

ton HP Radiator (Ref. 4) and have proven performance characteristics. The heat ex­

changer parameters that were used in the analysis reflect the design Freon-21 flow 

rate of 500 lb/hr. 

The panel feeder heat pipes are made from a grooved aluminum extrusion con­

taining 27 longitudinal grooves. See Fig. 2-4 for details of the heat pipe cross-section, 

showing dimensions that were used in the tradeoff studies. The same panel heat pipe 

was used in the evaluation of all the alternative design concepts. 

The following table summarizes the design parameters that were used to deter­

mine the final expression for panel fin root temperature for system A. Values for 

heat pipe evaporator and condenser film coefficients were obtained from actual test 

data while all other parameters were calculated. 

Parameter Value Parameter Value 

he 1675 BTU/hr Ft2OF Ao 0. 08L x in. 2 

he 1530 BTU/hr Ft2 OF Ae 1.57 N Le in. 2 

h 315 BTU/hr Ft2 ° F Ac 1.57 Lc 112 

hp 300 BTU/hr Ft2OF ACT 0.262 NL e in.2 

Ap 0.970 L In. 2 
1 0.733 Cc 

1 0.391 M 500 lb/hr 

3 0.840 Cp 0.25 BTU/lb OF 

The evaporator length (Le) was varied according to the number of panel heat 

pipes in order to make maximum use of all available heat transfer area. A minimum 

evaporator length of six in. each is possible with six panel heat pipes; 7.6 in. with 

five pipes, and 10 in. with four pipes. Thus, using fewer heat pipes actually results 

in increased total evaporator heat transfer area with a corresponding benefit in tem­

perature drop. 
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* Category II - Heat Pipe Header to Radiator Panel VCHP's 

B - SINGLE FLUID HEAT PIPE (SFHP) HEADER 
TO RADIATOR VCHP'S 

OPERATING f[ j itvH s3 

OPERATING 

FREON-21 

hp 

TVf 

h 
TR'VH 

cf 

TR 
-hcH 

j&-i 

ORIGINAL PAGE IS 
OF POOR QUALITYTT 

T TIN < 

CLAMP-ON HX 

m 
U 

S aoTV 

SECTION 
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The heat transfer equations for Category II (Systems B, C and D) are expressed as 
follows: 

(1) 	 Heat transfer from fluid
 

Q =MCp (TIN-TOUT)
 

(2) HP Header vapor temperature 

TVH H= TIN (TIN TOUT)TV 

(3) Heat exchanger effectiveness 

UA
 
MC T - TOUT
E=l-e P I OU
 

TIN 
 TV 

(4) Header condenser temperature 

TCH= Q/NTV (7h 	 )C 

(5) Panel HP evaporator temperature 

-	 Q/NT =T 
ef 	 CH hCTACT 

(6) Panel HP Vapor temperature 

T 	 =T Q/N
 

vf ef ( hA)ef
 

(7) 	 Panel HP condenser temperature
 

T Q/N
T
cf vf (hA)cf 

(8) Panel fin 	root temperature 

Q/NT = 	 -

T cf hp Ap 
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6 

Combining equations 	(1) thru (8): 

Q/MCO p=ji [ 	 + 1 1Q 	 1 + ++ 1 + 

TI TIN - C (7hA)c H hCTACT(9) 	 ON (hA)ef (IhA)c f h A
 
eH
where 


MC
 
1-e P
 

and 
1 

U =A 	 AeH 1 
+ 	 + 

(7hA)0 hAI hell 

The clamp-on heat exchanger for the category IUpanels uses the same internal 

finning that was specified for the System A fluid header. The fins are 0. 006-in. thick 
aluminum, 0.10-in. wide and spaced 15 fins per inch. The panel heat pipes also use 
the grooved aluminum extrusion. (See Fig. 2-4.) 

The following table summarizes the design parameters that were used to deter­
mine the final expression for the panel fin root temperature. Once again the values 
for evaporator and condenser film heat transfer coefficients were obtained from actual 
published test data while other parameters (77,A) were calculated. 
Parameter Value Parameter Value
 

hf 1675 BTU/hr Ft2oF Ao 0. 089 L in. 2
 

CH 2400 BTU/hr Ft°F Aef 1.57 Lef in.2
 

hef 1530 	BTU/hr Ft 2OF Ae H 3.14 LeH in. 2 

hel 2000 	BTU/hr Ft2 OF A 1. 57 L in.2 

eHcf 	 cf 

h 	 327 BTU/hr Ft 2 °F ACH 3.14 Lef in 2
 

300 BTU/br Ft2°F ACT 0. 262 Lef in. 2
 

cf.33 	 M2.95Lx in. 

OH 0.216 	 A o. 970L in2 

1ef' 0.391 	 M 500 lb/hr 

no 0.820 	 CO 0.25 BTU/lbOF 
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APPENDIX B - DEPLOYABLE HEAT PIPE RADIATOR CONTROL REQUIREMENTS 

This analysis summarizes the control requirements for the deployableheat pipe (HP) 

radiator in terms of: (1) active area, (2) control gas interface location, (3) reservoir 

equilibrium temperature, and (4) reservoir volumes. 

Panel Active Area Requirements 

Proper design of the VCHP control reservoir depends upon the necessary active 

panel area required for heat rejection. There are two possible panel configurations 

and four operating extremes which scope the complete problem. Using the results of 

Appendix A, in particular Fig. A-i and eq. 9, the panel active area requirements have 

been determined. The two panel configurations analyzed were: System B-all VCHP 

feeder HP's with a single fluid heat pipe (SFHP) header and System C-VCHP header 

with SFHP feeders. Each was examined for the combinations of max/min load and 

max/min environment and the results are summarized in Fig. B-i. The corresponding 

active panel fin root temperatures are also given. 

Control Gas Interface Location 

Control gas interface positions which are consistent with the area requirements 

of Fig. B-i are given in Fig. B-2 (for System C) and Fig. B-3 (for System B). In each 

figure the required position of the interface is-indicated for the possible combina­

tions of load and environment. The condenser is fully opened for the high load, high 

environment condition and least opened for the low load, low environment case., The 

maximum required interface movement is 28 in. for the VCHP header of System C 

(Fig. B-2) and 46 in. for the VCHP feeders of System B (Fig. B-3). 

Reservoir Equilibrium Temperatures 

Ideally the equilibrium temperature of the control gas reservoir should be the 

same as the environnental sink temperature. This means an ideal reservoir temper­

ature of -30 0 F for the high environment case (fully opened condenser) and -110°F for 

the low environment case (partially closed condenser). However, in actuality the res­

ervoir temperatures that correspond to these operating extremes will be somewhat 

warmer than the ideal due to heat conduction from the condenser into the reservoir. 
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SYSTEM B VCHP FEEDER SYSTEM C VCHP HEADER 

t wi 

INACTIVE INACTIVE 

6' 

L 

I
 

Q TSINK TROOT AREA AREA NO. ACTIVE 
(WATTS) (OF) (OF) (FT 2 ) (FT) (FT 2 ) (FT) HEAT PIPES 

400 -30 62 24 6 24 4 6
 
400 -110 56.7 16.6 4.2 17.5 2,9 5
 
200 -30 49.3 13.4 3.3 14.8 2.5 4
 
200 -110 42.6 8.9 2.22 10.1 1.68 3
 

Fig. B-1 Active Area Requirements, Deployable Heat Pipe Radiator 
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Although a low thermal conductivity section is provided between the condenser and the 

reservoir to limit conduction and insure a "cold" reservoir, there still will be a small 
heat gain. The effect of this heat conduction on reservoir temperature is shown in 

Fig. B-4. At the extreme interface locations the actual reservoir temperatures were 

determined to be -19 F (for the fully opened condenser and warm environment) and 

-850F (for the partially closed condenser and cold environment). 

The heat gains that correspond to the above reservoir temperatures were calcu­

lated using the following design parameters: 

Header Reservoir Feeder Reservoir 

* 	 Reservoir heat rejection 58.5 28.26 
- 2
 

area, in.
 

* 	 Low-k section (SS) 
- tube OD, in. 0.750 0.437 

- wall thickness, in. 0.028 0.028 

- tube length, in. 2.43 2.85 

" 	 Vapor Temp, oF 

- condenser open 89 89 

- condenser closed 69 69 

Reservoir Volumes 

The required reservoir volumes for the header and feeder HP's were determined 

by using the 360/67 VCHP Interface Location Program. The program calculates the 

required VR/V c ratio corresponding to the prescribed reservoir temperatures, vapor 

temperatures, and interface locations for the extreme operating conditions. The res­

ervoir volume, VR , is then obtained from the VR/V ratio and the blocked condenser 

vapor space volume, Ve . 

Two conditions were examined: one assumed ideal reservoir temperatures (with­

out losses), and the other used the predicted reservoir temperatures which included 

the effects of heat leaks to the reservoir. The following table summarizes the results: 
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69 

Ideal 	 Predicted 

" 	 Vapor Temp, 0F 

- max 89 89 

-min 69 

* 	 Reservoir Temp, OF 

- max -30 -19 

- min -110 -85 

Header HP Feeder HP 

* 	 Blocked Condenser 

Vapor Space 

- Length, In. 28 46 

- Volume, In. 3 6.53 4.17 

* 	 VR/V 0 Ratio 

-	 Without Heat Leaks 14.7 14.7 

-	 With Heat Leaks 7.8 7.8 

8.9 	 K2.50H t .75 
+ _ 3.0 	 ~3.0 

HEADER RESERVOIR RV 	 FEEDER RESERVOIR 

The actual reservoir designs will reflect a VR/V c of eight for the feeder heat 

pipes and 12 for the header HP. Using'a larger than predicted VR/V value for the 

header will increase its control sensitivity as a VCHP (i. e., smaller vapor temper­

ature change needed for full interface movement). It will also insure that adequate 

reservoir volume remains to provide control in the event of partial artery depriming. 

Since depriming is not a problem with the feeder heat pipes (no arteries), the need for 

a larger than predicted reservoir volume is obviated. 
The resulting absolute reservoir volumes required are 78.4 in for the header 

and 33.4 in3 for each feeder heat pipe. These volumes are provided by the configura­

tions shown below, which are also consistent with the surface areas that were used to 

determine reservoir equilibrium temperatures. 

The effect of reservoir temperature variation on V /V ratio is illustrated in 

Fig. B-5. As seen, for a given 20 F evaporator control range requirement, the 

larger the variation in reservoir temperature, the larger the required VR/V c ratio. 
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APPENDIX C - HEADER HEAT PIPE PRESSURE TESTS
 

When tested as a single fluid device (ammonia) the flexible deployable heat pipe 
header achieved a capacity of 950 watts in a level orientation. However, upon subse­
quent addition of nitrogen control gas, the maximum load achieved was only, about 200 

to 300 watts (see Deployable Heat Pipe Progress Report No. 11, DHPR-il, 12-9-74). 
To gain insight into this problem, a pressure transducer was installed to record 

pressure oscillations with and'without the presence of nitrogen control gas. These 

tests were performed with in-house IR&D funds. 

The first pressure oscillation test was performed November 14, 1974, with the 

pipe in a VCHP mode level, and with the vapor bypass section installed. Results of 
this test showed that.at 50 watts, pulses ranged from 3 to 4psf (Fig. C-i) and that at 

100 watts, pulses ranged from 10 to 17psf with approximately a three second period. 

These values are high considering that the total available head in the capillary system 

is about 12psf. In the reflux mode (approximately 1 in.) the observed oscillations were 

lower, (1-2 psf at 50 watts and 6 psf at 200 watts). 

It is conjectured that these oscillations are initiated by flow instabilities in the 
diffusion zone separating the blocked and unblocked portions of the condenser. The 

oscillations may be enhanced by movement of free liquid if present in the region of the 
diffusion zone. In the reflux mode, any free liquid would run to the evaporator end and 

reduce the puddle height' ii the vicinity of the diffusion zone. This may account for 

the lower pressure osbillations. 

On 27 March 1975, pressure oscillations were taken with the pipe charged only 

with ammonia. Results of this test are presented in Table C-i along side the VCHP 
data. It is seen that at higher loads, the amplitude of the oscillations are significantly 
lower in the single fluid hode compared to the VCHP mode. It is also noticed that 

above 500 watts there was a marked increase (step change) in oscillation amplitude. 
Figures C-2 and. C-3 show pressure oscillations at 500w and 600w respectively. A 

possible explanation offered is that the increase in power level causes the condenser 

grooves to flood creating a liquid wave motion as the condensate runs down the wall. 
The liquid wave would temporarily reduce the local condensation rate. 
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0.2,PSI­.. ; -' " (28.8 PSF) 

*CHARTSPEED: 0.1 IN./SEC 

* =50W 
SVCHPHDRI1/14/74) 

Fig. C-i 

Table C-i Single Fluid and VCHP Pressure Oscillation Tests 
• ~1/1/ ~ V1P0D~ 1. 

LOAD 	 VCHP SINGLE FLUID 

(WATTS) 	 A P PERIOD, A P PERIOD, 
PSF SECONDS PSF SECONDS 

50 	 3T04 1 TO2 
100 	 10OTOl17 3
 

200 <1 0.5 

300 0. 0:5 

400 0.3 0.25 

500 0.3 0.25 

600 4 1 

700 4.5 0.7 
700* L -1 4. 0 -

PIPE BENT 780 ABOUT FLEX SECTION; ALL OTHER DATA 

WITH PIPE STRAIGHT. PIPE ORIENTATION: LEVEL. 

0-2 
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The conclusions, regarding the comparison of VCHP and single fluid test data 

are: 

(a) 	 The amplitude of the oscillations are significantly larger when nitrogen 

control gas is present in the pipe. Their magnitude is of the same order 

as the capillary head, i.e., 12 psf. 

(b) 	 In the absence of nitrogen gas smaller but still relatively large oscillations, 

e.g., 4 psf, were observed at high power levels (-700w). These 

apparently do not impair pipe petformance. 

(c) 	 It is felt that oscillations, in themselves, may not'cause artery/tunnel de­

priming but instead aggravate the growth of bubbles that already exist within 

the artery, or cause the growth of bubbles at active nucleation sites within 

the artery. The bubble growth would occur as the pressure drops, with 

liquid being expelled from the artery and draining to the bottom of the pipe. 

The liquid might then not be available during the pressure rise part of the 

oscillation, resulting in a depressed meniscus, and initiation of dry-out 

in the evaporator. 

(d) 	 No further pressure testing of the pipe is planned, and it will therefore be 

prepared for shipment to Marshall Space Flight Center as a single fluid heat 

pipe. 
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