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ABSTRACT

A plasma strong turbulence, weak coupling, theory is applied to
the problem of cosmic ray pitch angle scattering in magnetostatic
turbulence. The theory used is a rigorous generalization of
Weinstock's "fesonance-broadening" theory and contains no ad hoc
approximations. A detailed calculation is presented for a model of
"slab'" turbulence with an exponential correlation function. The-
results agree well with numerical simulations. The rigidity
dependence of the pitch angle scattefing coefficient differs from that
found by previous researchers. The differences result from an
inadequate treatment of particle trajectories near 90° pitch angle

in earlier work.

Subject headings: cosmic rays-hydromagnetics-plasmas



I. INTRODUCTION

Central to the problem of understanding the origin of cosmic
rays is the difficulty of computing the motion of charged particles
through regions of strongly turbulent electromagnetic fields that
characterize interstellar and interplanetary space. The basic
problem is to compute a spatial diffusion coefficient starting
from knowledge of the statis._~al properties of the electromagnetic
turbulence. To do this one needs a valid kinetic theory that
describes particle motion in strongly turbulent tields. 1In general,
such a theory is not available. 1In this paper, we are interested
in the speciél‘circumstance in which the cosmic ray distribution
neither modifies the fields With which it interacts, nor undergoes
Coulomb collisions with other particles. The first partially
successful efforts to develop such a kinetic theory (Jokipii 1966;
Roelof 1966; Hall and Sturrock 1967; Hasselmann and Wiberenz 1968)
made‘use of the quasilinear approximation (v., e.g. Rowlands, Shapiro,
and Shevchenko 1966). In this approximation, it is assumed that the
deviation of a particle's trajectory from its helical motion in the
mean magnetic field is small becapse the stfength of the fluctuatiop
field is assumed to be weak. It is then possible to compute a pitch
angle scattering coefficient D“, that describes particle diffusion
in turbuleﬁt‘magnétic fields (y is the cosine of the particles'
pitch angle with respect to the mean magnetic field). Frovauvone
can compute a spatial diffusion coefficient (Earl 1974). In this
paper we will discuss only the derivation’of the pitch angle scattering

coefficient, D .
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Recently, several aspects of the quasilinear approximation have
been questioned (Klimas and Sandri 1973; Jones, Birmingham and Kaiser
1973c; Kaiser, Jones and Birmingham 1973;’V01k 1973). The difficulties with

quasilinear theory are associated with the behavior of particles with
pitch angles, g, nar 11/2, where either DH (u =10) = 0 (when the
fluctuation fields cannot mirror particles to first order); or D“§u=0)
o () [when first order mirroring forces do exist (Fisk, Goldstein,
Klimas, and Sandri 1974; Goldstein, Klimas and Sandri 1975; also
cf. Lee and VB1lk 1975)].

In the past two years, several attempts have been made to improve
quasilinear theory (Jones, Kaiser and Birmingham 1973a,b; V81k 1973;
Owens 1974). Owens' work replaces two of the nonlinear terms that
are dropped in quasilinear theory with a constant. This results
in a small amount of scattering at § = m/2, which is insufficient to
explain the significant scattering through § = 1/2 observed in
numerical simulations of the problem (Kaiser 1974). VYlk 1973 modified
quasilinear‘theory by incorporating a better treatment of the particle
orbits. He recognized the importance‘of magnetic mir#ofing (particle
trapping) effects in his- description of'the scattering. His approach
is similar to that of Dupree (1966, 1967) for eléctroStétic furbulence.
Histresults are also in ratﬁer poor agreement with the numerical simula-
tions (Kaiser 1974). This apparently results from a breakdown in

several of the simplifying approximations made in his analysis.



The most successful theoretical effort to date to improve
quasilinear theory is that of Jones, Kaiser and Birmingham (1972a,b).
Their analysis is motivated by the nonlinear (electrostatic)
turbulence theory of Weinstock (1969). Jones, et al. (1973a,b)
introduce the concept of partial averaging whick znables them to
include mirroring effects in a physically plausible way. The basic
approximafion made by Jones, et al.(1973a,b) is to introduce the
propagator'Up, which describes the motion of particles through
the partially averaged field. They axgue, buf do not prove, that
Up provides a useful approxiﬁation to UA’ the exact propagator in
Weinstock's theory. (A mathematical definition of UA is given in
§11). The results of these computations appear to agree nicely with
the three numerical simulations presented by Kaiser (1974). However,
both the simulations and the theoretical analysis are presently being
revised (Kaiser, private communication).

The analysis presented in this paper is a derivation that starts
with the Vlasov equation and proceeds in a rigorous mammer. The
particle trajectories that are computed are more general than those
in previous work. We show that these higher order correctidns are
necessary to obtain a good approximation to DH at (4 near zero. OQOur
analysis follows the ideas of Weinstock (1969), Piran-'(1972) and
Ben-Israel, Piran, Eviatar and Weinstock (1975). These latter two
papers are generalizations of Weinstock's weak coupling electrostafic

turbulence theory to include electromagnetic effects. As shown

below, this generalization is mnot a trivial exercise, and it is not



surprizing that the results of VBlk (1973) are quantitatively in-
accurate. Ig is not necessary to introduce partial averaging or
any other heuristic ideas in the analysis that follows. The results
shown in §V are in good agreement with the simulations that are
preseitly available for comparison.

In the next section we outline the theoretical framework of the
turbulence theory under the fundamental assumption that the coupling
is weak (Kadomstev 1965). Much of the general theory has been developed
by Piran (1972) and Ben-Israel, et al. (1975) and we will not repeat
their detailed formulation here. The general theory leads to equations
that cannot be solved without limiting one's attention to specific
models of wave turbulence. One such model of interest for the problem
of cosmic ray pitch angle scattering, is homogeneous ''slab" mgénetostatic
turbulence with an exponential correlation function. ;

Because cosmic ray velocities are typically much greater than the
phase velocities of the magnetohydrodynamic waves that scatter them,
the magnetostatic approximation should be very well satisfied. This
is equivalent to dropping the Maxwell 'curl" equations in the analysis.
In confining our attention to "slab" turbulenée, we consider only
magnetic fluctuations that vary along the direction of the mean magnetic
fiel&. This greatly simplifies the analysis. Waves observed in the
intefplanetary medium near i AU are thought to be predominantly Alfvén
waves propagating along the mean field direction. A magnetostatic slab
model approximates this situation quite well. The specific examples

computed below are limited to an exponential correlation function for



the turbulence. This is done to compare this theory with numerical
simulations of this problem that have thus far been confined to an
exponential correlation function (Kaiser 1974). Generalization to
other correlation functions and to isotropic turbulence is straight-
forward and will be considered in future papers.

Section III is devoted to a detailed calculation of Du(u = 0)
valid to second order in the strength of the fluctuation field, All
nonlinear terms are included except those that are proportional to the
fluctuation in the parallel mementum. They are expected to be un-
important for the reasons discussed below.

In section 1V, we estimate‘Du at all values of y. 1In doing
so, we neglect most terms that are proportional to the deviations of the
mean of the momentum from the value expected from quasilinear theory.
The validity of this approximation is estimated by comparing the
results of section IV at |y = o with those of section III. For the
range of parameters considered, the approximation is good.

In the last section, we compare‘odr results to the simulations
and to previous theoretical work. We find that the results of
VB1k (1973) and Owens (1974) fit neither the numerical simulations
(Kaiser 1974) nor our theory. The published numerical simulations
do not cover a sufficiently wide range of paraﬁeters to distinguish
between this theory and that of Jones, et al. (1973a,b). However,
the two theories predict different dependencies on‘the parameters
of the theory. We show that the results of Jones et al. (1973a,b)

can be recovered from our analysis if we drop terms important for



particle mirroring. We conclude that our analysis contains the first

accurate evaluation of particle orbits near 90° pitch angle.

II THEORY

The derivation presented here follows, in broad outline, thé
work of Piran (1972) and Ben-Israel, Piran, Eviatar and Weinstock
(1975). We begin with the Vlasov equation, written in dimensionless

form (Klimas and Sandri 1971, 1973),

?+KF+£F+'I]£’F=O (1)
.

A

for the cosmic ray distribution function F(x,p,T). In equation (1)

T = tw where t is dimensional time and w . is the gyrofrequency of
c

the particle. 1In addition, the differential operators K, £ and &'

are defined as follows:

(@)

K = 3.@_
ox
A9
£ =-pQ— (3)
prid Bﬁ
A 9
&' =apeQ' - (4)
PR
where ﬁ = p/p,x ='5*/rg (3? is dimensional length and»rg is the
Larmor radius) and
3 AALD A
— = p(L - pp)'= = pn'— (5)
3p op dp _



The skew-symmetric tensors { and Q' aré defined as Qij- = eijk Bk
and Q' = € BTy vhere §=8/8,8" =B'/@8 E>/? and the
magnetic field is separated into a mean part, _l;o, plus a fluctuation,
B'. The small parameter is 1 = <_§'_'_l}_'>1/2/BO. The symbol < > denotes
ensemble average.

We proceed to derive a diffusion-like equation for the average
part of the distribution ‘function f = <>, We assume that Kf = 0. If
one takes the ensemble average of equation (1) and subtracts the

resulting equation from equation (1), the following relation for

£' = F - <> results:
@—'— ] 1 |
(L - K] £ = Ne's (6)

where X = K + i + NL' is the total Hamiltonian differential operator
and the operator A takes the ensemble average of everything to its
right (i.e. AF = <F>). Owens (1974) takes the nonlinear terms (1-4)
NE' on the left hand side of equation (6) and sets them equal to a
constant, &. This severe approximation results in a gross undirestima-
tion of the scattering through {4 = o.

Equation (6) can be solved formally in terms of the propagator
UA(T, To), which is defined by the following differential equation

(Weinstock 1970; Ben-Israel, et al. 1975):

9
S+ @-0X1u, (r-1) =0 @)

UA (0) =1



In writing equation (7), we used the fact that for magnetostatic
turbulence U, (T,To) = UA (T=71).

Equation (6) has the formal solution

.
£1(1) = -1 [ dan Uy (t-) £'E (D (8

To

 where we have taken £'(0)=0.

If we substitute this solution back into the ensemble average of

equation (1), we have the exact master equation for f:

>f 2 T
v £F = M° <€ J‘ dA U, (1) £ £(0) 9
TO

Because it is not possible to find an exact representation for

Uy (T-To), one procceds by finding approximations that retain as much
information as possible about the effects of the stochastic fields

on the particle trajectories. With this goal in mind, we do not
make the quasilinear approximation in which it is assumed that the
stochastic fields do not affect a particle's motion during an inter-
action.

Note that equation (9) can be rewritten as

T
g_f_ +8E=7% <& J‘ dy U, (-0 (1-4) £'> £()) (10)
T
T
(o)

An approximation to Uy (1) (1-A) can be found in terms of the

propagator U(T-To) defined by



[ +A4] U(r-1) = 0
oT

. (11)
U(0) =1
This can be written (Ben-Israel, et al. 1975):
(2= + (-0 (1-8) U(r) = -0(1-8) £'AU(T) (12)
with the formal solution
(1-8) U(T) = U, (1) (1-8) -1 J*de U, (1-0)(1-8) £'AUG) (13)

(o}

Here, and in the remainder of this paper, we take Ty = 0. To proceed,
we drop the second term on the right-hand side of equation (13). This"
approximation is valid in the limit of weak coupling (Kadomtsev 1965;
Klimas and Sandri 1973), i.e. in the limit ﬂz << 1, The representation

of U(;) is also unknown, so it is necessary to approximate U(T) in terms of the

propagator U = <U>, which satisfies the ensemble average of equation

(11):
22U = - <Hu(n)> (14)
or
[-g—; +H T () = -1 < £'U(D)> + N £V (15)
The formal solution is
'T -
G(r) = u(m + 1 [ a v(r-0) [ £'T0) - <€'v(r)> ] (16)

[}

10



Therefore, to lowest order in 1,U(T) = U(T) and equation (10) can

be rewritten as

~ .2 T -
+EETN° <8 .[‘ dy U £ £(1-)) (17)
0o

O)IOI
= |kh

To reduce equation (17) to a diffusion equation, we make the adiabatic
approximation. The nature of this approximation is to restrict
our interest in equation (17) to times T >> 1 when £(T-)) = £(7).

One now substitutes equations (3)-(5) into equation (17) and
averages over gyrophase (cf. Goldstein, Klimas and Sandri 1975).

After some manipulation, equation (17) becomes

M:-B_D é—f('r)

oT O M O (18)
where
R - \
DT =7 [an [ dp <p-08"(x) T 8'(x) 0P (19)
o o

D =Lim D
y im u(T) N (20)

- rr«-tm

In writing equation (18), we assumed that the turbulence is axially symmetric
about é. Also f(r) in equation (18) now denotes the gyrophase average
of £(t) in equation (17).

The assumption in writing equation (18) is that equation (19)
converges 7rapid1j" to Du. However, in quasilinear theory, for
particle pitch angles near 11/2, equation (19) takes an arbitrarily

long time to saturate. (For a more comprehensive discussion of the

11



adiabatic approximation, we refer the reader.to Weinstock 1970;
Jokipii 1971; Klimas and Sandri 1973; Jones and Birmingham 1974; and
Fisk, et al. 1974). A consequence of the present honlinear analysis
is that the integral in equation (19) saturates "quickiy", even for
g = 0. Thus we expect the adiabatic approximation to be a good one.
This will be examined in more detail in a future paper. The remainder
of this paper will be devoted to the derivation of DU(T)'

We proceed by writing B'(x) as a Fourier integral transform over

wave number, k. It folldws that

<B'(k) B'(K")T explik''x 1'Q'p >-=
(21)
<B'(K) B'(k") > <exp [ik''x(0\)] '0'P Q) >

This permits writing the theory solely in terms

of the two-point correlation tensor of the magnetic turbulence.

We define R(k) through the relation
3/2
<B'(® B'"(E"Y > =(2m Rk & (k+k") (22)

where R(k) is the Fourier integral transform of the two-point correlation

tensor,

R(x) = <B'(®) B'(x+1) > | (23)

12



(In writing equation (22), we have restricted ourselves to homogeneous

turbulence.) 'DH(T) can now be written as

2 T 2
DD =g Jar [ [ % e (ikw) B
(2m)

o o

(24)
QR(K) ' < P(A) exp [-ik-x(A)] >

The basic mathematical problem is that of computing the ensemble
average in equation (24). If p(T) is written as the sum of a fluctuation

A
part,‘g'(T), plus a mean part < p(T) >, then the correlation becomes

< B(T) exp L-ik'x(m)]> =< p(1) > < exp [-ik-x(7)] >

(25)

+ < S(fr)' exp(-ik'x'(7)7>

We define
() =< PO > - B,(V) (26)

A

where p (A) is the streamed velocity of the particle in the absence
o

of fluctuation fields. The propagator of this trajectory, UO(T),

satisfies
[AS—T +& U (r-1) =0 (27)

U()=1
o

The solution. is the well-known helical trajectory used in quasilinear

theory, which we can write as (v., e.g., Goldstein, Klimas and Sandri
1975).

13



Uy(1) 2 = x (1) = X~ (7) (28)

rooa J
(1) =B (1)p=p O(M) (29)
A _ A Y
u(n p=p (D =GP =pC (D (30)
g: (1) =R +Ncos T ~-QsinT (31)
A (1) =P7T + N sin T +Q (cos 7-1) (32)
Piy =865 (33)
i3 = %45 " Py 3
Equation (27) can be rewritten (Ben-Israel, et al. 1975) as
[+ MU0 =1 £'U (D) (35)
with ﬁhe solution
T
U (7)) =U(r) + 0 [ utr - ) £, (36)

(o}

The quantity Ap()) in equation (26) is unique to the magnetic
turbulence theory. In the electrostatic problem (Dupree 1966;

Weinstock 1969, 1970), the momentum trajectories do not appear

14




explicitly. The velocity dependent nature of the magnetic force
greatly complicates the computation of the nonlinear wave-particle
interaction in strong turbulence (Ben-Israel, et al. 1975). However,
some simplifications are possible for the test particle probleﬁ in
magnetostatic turbulence. For example, we will argue below that
the second term on the right-hand side of equation (25) is unimportant
in the particular examples that one can compute. We now outline the
computation of < exp -i [ k'x(A) 1> and Ap()).

Following Ben-Israel, et al. (1975) and Weinstock (1970), we
expand < exp -i LE'E(K) ] > in a cumulant expansion (Kubo 1962). To

second order we have

< expi [x()] > T exp [-ik'< x(0>-2 KDy (K] (3D

n
1]

where D3(A,A) = D;(A) =< x'(A) x'(A) > and X(A) = (1-A) x(1). [Ben-Israel,

et al.(1975) are missing the factor of 1/2 on the rhs of equation (37)].

To our knowledge, the general convergence properties of this
expansion are unknown. However, if the fluctuation, x'(\), obey
Gaussian statistics, then equation (37) is exact.

We define

il

Ax(T) = < x(T) > - ;_co('r) : (38)

where, again, subscript "o" denotes streaming by the propagator
Uo(w). Then, from equations (36), (3) (4) and (16), we find to

m?

9T 7' . A
hx() E " [ an [ dv < U(r-v)peg'
o 2 (39)

4+
& 00 20 ) >

15



Similarly,

T T - +
ap(M) TN [an [ v < B(r-v)peg' 2—5 U('v-x)ﬁ-g'-g () > (40)

o) A

To compute Ql(rr) , note that one can write

- T
U(T) = U (M) - [ & U (r) <L) >=U (N +T M) (4D
o

Then, from the definition of 21(7) and equation (41), one has

5 T A + T Ao oo
DT =2 < [ av|| uCr-v) pe" T W) || [ an Ut 2@ T ) >
o]

[o]

(42)

where the symbol.H:.]]nmans that operators within the bracket act
only on variables contained within the bracket.

. To proceed, and at the same time keep the mathematics tractable,
we will make several of the simplifying assumptions alluded to in the
introduction. The interested reader is referred to Ben;Israel, et al.
(1975) for a more geneﬁal derivation. However, Ben-Israel et al.

make an unnecessary approximation, viz., they write

a A =L 5 ' 2_8__ A 3
-a_lg,p(T) 7 [ <p(mn) >+ p"(N] 3 Po(T) (43)

The term %g Ap(T), neglected in writing equation (43), is of the same
order as Ap(T), which is kept in their analysis. We will find below

that an approximate solution can be found, including terms proportional

to BQE(T)/BS'for the special case of § = 11/2 (u = 0) in a "'slab" model.

16



We will follow Ben-Israel et al. (1975) in dropping the term

'
proportional to 56 p(7). We confine the remainder of the discussion

to the "slab" correlation function

R(W) = N 8(k IR(K))

(44)
where R(k“) is the power spectrum of the turbulence and
fak 6(k) = 2n (45)

In the following section, we develop the theory for the single

point |y = 0. This is the region in which quasilinear theory gives

the poorest approximation. It is also the case for which the most

complete nonlinear analysis can be done.

17



III. SCATTERING THROUGH p=0 IN A SLAB MODEL

An immediate consequence of restricting the discussion to p=0 in
a slab model is that Axl(¢) does not appear, Ax”(w) = 0 and the second
term in equation (25) can be shown to be proportional to p and, hence,
equal to zero., Using equationsv(24)-(26), (37) and (44)=(45), Du(r)

can be written as

T 2T ©
D,(m) = T jdx Jag jdk R(k )[cosh + p "op (M Jexpl-k “p LM /2]
n )3/ o
(46)
where
Dy =Dy -

The two quantities that must be computed are Ap () and Dl(T).
S
We outline first the derivation of Dl(T) to illustrate the techniques
used in evaluating all of the nonlinear quantities presented in this
discussion. We start with equation (42). In general, Q' can be
expressed as
' - é ' é ' n A

Q' = ELHQ-pE'-Q - QBB. (47)

In the case of slab turbulence considered here, the first term in

equation (47) is zero. Dl(T) becomes
5T T . A A
D, () =T j‘dv jdx W< T U(r-v) p.Q-8'T U(T=v) p-Q-B'> (48)
o o

One now writes the fluctuation fields as Fourier integral transforms,

and uses equations (21) and (22) to arrive at

D, (T) _-n Id Idh Id k <exp(i ke (x(T-v)-x(7=1))] VA

3/2 o
em 49)

P(T=v) *Q-R(K) QP (T=A)>

18



Substitution of R(k) from equation (44) yields

M2
Dy(m) = 95= jdv Idh jdk" R(k;) vh <exp[ikxi (v xnp (T=v) B (T-A)>
(50)
where we have used the approximation (Ben-]'.srael, et al, 1975)
K (T=v) = (1=D) o xf (v (51)

To evaluate the correlation that appears here, one must expand the

1ritegrand of equation (50) as follows

"<exp[iky ) (v-A)IB, (1-v) B (T-N)> = < (r-v)>=imp (r-A> x
<exp1k" H(V-M)> + <p!(7-v) *D! (7-0)> <explik,x! (v-2)] +
'('T'-\))exp[ik x'(v-)\) ]>4<13 (r=M)> +
<" ("'-K)exp[lk" p o )\)]>i<p (- \))> (52)

In Appendix A, we show that for p=0, only the first term in equation

(52) is expected to be important. Consequently, equation (50) becomes

D (m) = /?% J‘dv j‘d)\ ‘rdk R(k )\)}\ exp[- k" 1(\)-)\)][Q-Lo('r-v)-}-A_él(‘r-v)]

[Py, (=) + Bp (M)} (53)

Finally, we must derive an expression for Apl("'). From the definition

of Ap () (equation 26) and the identies (35) and (16), we have to d('ne)

Ap () = s fdk {d\) <0 (7-v)pe Q‘-— Te-Np-Q'- a L olA)> (54)

ap BP

In Appendix B, we show that equation (54) may be written approximately as

| -1 2 -
bp () = idx [av jdk R(k, )expl - kﬁ%l(v-x)][1+ rRLIGuSTE

[PLO('T-\))-*- bOp J_('r-v)] -C_::: \) (55)

19



The approximations involved in deriving equation (55) are discussed in
Appendix B. 1In Appendix C, a derivation of Ap"(T) is given, From that

discussion we have

2T o '
2 - = - -k
e Ap“('r)| L dex _J":k“R(k“)cosx(w M exp(-k; D, () /2]
(56)
x{2+k AN - Ax“(?\)] H

=0
where an”(w)/au is given by equation (D28).

The set of equations (53), (55) and (56) provides a complete system
of coupled, nonlinear integral equations, which in principle can be.
solved, and substituted into equation (46) for,Du(T). Unfortunately,
this system cannot be solved analytically. To solve the system
numerically, we must specialize to particular forms of the power spectrum,
R(k"). The numerical simulations developed by Kaiser (1974) are for
R(k") of the form

R(k,) = =5 (1 + €2k | (57)

Jen
where € is the ratio of the correlaticn length of the magnetic field
turbulence, hc, to rg. If we use equation (57), the integrals over k"
can be performed analytically., For these two reasons (comparison with
numarical simulations and mathematical simplicity), we ha§e confined our
numerical analysis to the particular case of equation (57). There are two

integrations over k" to perform. They are

g(r) = dk R(k ) exp- k%D ()2
j I il 1 (58)

()
= /B Bxfe [k 1H/? explp, () /€]

20



and
h(r) = [dkk “RGc Yexpl -k, D, () /2]
° (59)
2 _
= (;3115‘*)"1/2 {[2"6 /DI('\')]]'/2 - mErfc [Dl('r)IE@]l/eexp[Dl('r)/%z]}

The system of equations (46), (53), (55) and (56) can now be simplified

t
° on

5
D (1) = 41— dp [drg(\) [cos\ + cosg Ap (r)+sing 8p ()]  (60)
W em?3/2 “cE E x y

D, (7) =/E" ‘c[)'dv ‘c["d)\ g(v-)\)vk[plo('r-v) + AE.L(T-V)].EP.N (T-K)HP_@J_(T"\)]

T
(61)
=1 T T :
tp, (M =" Jar Jov go-n) {1400 apy (-2) ]w} x
(62)
[ﬁlo(ﬂ'-v) + 4p (T=v)] G;j: )
2T
ai Ap"('r) | == fdx(r-x) cosh {g(A) + Ah(A)[A- -a§--Ax"(k)]} (63)
W p=o J/2m o M =0
2T
2 ax (0] ==L [k cosh(r-MZ{g) + ) [n - 2 ax MVTF (68)
B u=o /BT o op u=o

Several additionél simplifications can be made. For the axisymmetric
turbulence considered here, the integrand of Du(*) should be independent
of ¢. From the form of equations (60)~(64), this assertion may not be
obvious. However, it can be shown numerically that this is indeed the
case., Therefore, to simplify the analysis presented here, we use the
fact that the integrand of equation (60) is independent of ¢ and

evaluate it at ¢ = O, The following time symmetries are then not difficult

to prove ' .
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Dy () = D (-7) (65)

APX('\') = APX(‘T) (66)
Ap = =A - (67
py(w) py( T) )
! =9 -

> bp, (t) = m Ap"( ™ (68)
> - N |

3 2% () T w bx, (=) (69)

Equations (60)=-(62) simplify to

2 T
= L d ’
Du('f) - £ A g(1) [cosh + A&x(l)] (70)

2T
D, (1) =E fan cosh g0 [v%/3 - M2(rP22/3)7 +
/21 o

dy (d - - - -
e ‘cj; v "j; A g(v=A) VA {Aplx(w v)[2cos(r=A) + Aplx('r h?] +

APLy(T-v)[Esin('r-kH Aply('r-K) 1} (1) |

SR TR il P 2
= dn [d -\ 14+ = -
) £ { v ) [ 5p ey (Mg
{( COS('T-\)-!-?\)\) (Ap x('r-v)\)
4cos\ L
-sin(T=y+li), Ap _(r=v)
Ly

Ap _(T-v)
1y
+s:'.n)\( )} * (72)
-Ap x('1'-\))
It
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To produce a numerical solution, one would like to transform
these equations into a system of differential equations. However, the
best that can be done with this system is to derive a set of nonlinear
integro-differential equations which can, however, be numerically
integrated using a standard Adams-Bashforth predictor-corrector technique
(Krogh 1966). In Appendix D, we outline the transformation of the system
of equations (70)=(72) aﬁd.(63)-(64) to a set of integro-differential
equations, We defer until 8§V a discussion of the numerical results of
that integration. We turn now to an appropriate derivation of the system

of equations that describes scattering at arbitrary pitch angle.

23



IV SCATTERING THROUGH ARBITRARY PITCH ANGLE - AN APPROXIMATE
CALCULATION IN A SLAB MODEL

In this section, we derive a set of approximate equationé to
describe pitch angle scattering at arbitrary pitch angles in a slab
model. Many terms proportional to Ap (r) will be dropped in this analysis
for reasons that are basically heuristic., An estimate of the validity of
the various approximations made below can be made a posteriori by com-
paring the results of §III with the results of this section. The system
of equations derived here is similar to that derived by Ben-Israel, et al.
(1975) in their discussion of ion~-cyclotron turbulence.

The equation for DM(T) is now

e T 2 ©
S | - k2
Du('r) o372 Brdx 2[)‘dqs -J:::k" R(k“)cos[ku (uh-bx, (M) ] expl k,“D; (W)/2]

[(1-4%)cosh + bp () - f»l] (73)

The first quantity we evaluate is Ax"(T), defined by equations

(38) and (39). When one uses the approximation (43), Ax"(w) becomes

2 T T
Ax, (1) = D [ ay [Pk [k' <expilk-x(t-v) + K'x(T-M)]
t 3 == -
@m~ o i ;
(74)
A , A : ‘ .

B (1) +@" () I (w20 0" (k) + 20¥ (wen) kp (r=v) LF(v-1) 0" (k) 1BN>
In writing equation (74), we have replaced ﬁ(T-v) by §O(¢-v)
evérywhere. The justification for doing this is two-fold. First, one

expects that nonlinear terms such as Ap(fT) and,g'(w)_will be less
important for p not near zero. The reasoning here is that quasilinear

theory should be a very good approximation except near y = 0. As we
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shall see in §V, the results of this section are generally in good
agreement at y = 0 with those of §III, Second, the term AX"(T) is
equivalent to a shift in the wave-particle resonance (Weinstock 1972;
Ben-Israel, et al. 1975), which is generally not the most important
term in resonant broadening theories. The most important term
characteristically is the broadening of the wave-particle resonance,
which saturates the interaction and allows particles to propagate
through 4 = 0, The resonance broadening is given by the term
exp-[kneDl(T)]. The contributions to Dl(w) from AB(T) and E'(w)
should be even less important for p # 0, where quasilinear theory becomes
a good approximation.

One now substitutes the identity (47) into equation (74) and uses
equations (22) and (44) for slab turbulence. After some rather lengthy

matrix algebra, Ax"(T) becomes

2 T Tay T 2
by (r) = L Jan fav fak, explt k [u(w=n) = ax, (v=1)]-k D) (v=A)/2} x
T O A =00

R(ks)hoos (v=h) [2u~i & (v=1) (1-%) T (75)

Because the integrand in equation (75) is basically a function of
(v=R), Ax”(w)‘can be further simplified to

2T ©
dxy(r) = =L [an Jak RCK)) exp[-kngnl(x)]cosx(T-h)e
JBmo o _
2 (76)

{ucosiy (ur - Ax, (M) ] + (1-u2)k"xsin[k”(ux - 8%, (M) ]}

Piran (1972) and Ben-Israel, et al. (1975) incorrectly write the

argument of the trigonometric functions as [uk+Ax"(k)].
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When R('k") is given by equation (57), the integrals over k” can

be performed amalytically with the result

2T
ax, (1) = =L [an(r-02[2u6(0) + (L-u%) BOY) a7
/21 o
where
6(r) = [dk R()cost coslie(uT=dx, () Jexp[-K°D, (1)/2] (78)
(o]

= - cost e?{e”Y Erfcl/z -y/2/z1+e” Erfcl/z + y/a/z]} (79

2/2n
and
H(r) = [dkR(k)krcost sinlk(ur - Ax"('r))]exp[-ngl(’r)/Q'_] (80)
o
. 2. ¢ -y y ‘
= Se/ms rcosT exp(z=){e ” Erfc[z-y/2z] -e’ Erfcl[z+y/227} (81)
with
z = D, (1) o€° (82)
y = [pr - bx, (m)1/€ ' ' (83)

To evaluate Dl(vr), one substitutes equation (44) for R(k) into

equation (49),. After some algebra, one finds

2 T T ©
D, (r)= —— [dv [dr [dk vA(1-u®)R(k,)cos(v-N)exp[i k, [u(v-h) -
1 I 1l I

/Zn o o -w
2 ,

b (v=0)] = K “D; (v=1)/2] (84)

where we have again set '1';(1-) = {;o("')‘

The double integral over time can be reduced to a single integral

so that Dl('r) becomes

26



2 " ) 3
Dl(T) = A (l-pe)'% ¢3 fde(K) +¢jdXG(h)[12x A /3]
[z S 2

A 2 3
= Jane[e™r - 27737} (85)
(o]

By differentiating Dl(T) with respect to r, and setting 7' = -r, one

can easily show that Dl(T) =Dy (r' = -r). Consequently,

2 T 3
D, (M = EL (1-®) [aren) (§ r=rPh + M /3] (86)
/2 o ‘

The reader may have noticed that although we have dropped Ap (™
in our derivations of Ax"(T) and Dl(T), we have kept a term
proportional to Ap’L('r)-p‘L in the expression for DM(T) (equation 73).
We expect that deviations of a particles momentum from the predictions
of quasilinear theory would be relatively unimportant in computing
the resonance shift (Ax“(T)) or the resonance broadening exp-[knng(T)]w
However, in computing DH(T) a contribution from AB(¢) should be important
for the following reasons: in quasilinear theory for y = 0, the
wave - particle resonance is with waves of zero wavelength, which have
zero power, Therefore, Dp = 0 at y = 0 for the slab model in quasi-
linear theory. The functions Dl(T) and Ax"(w) serve to broaden this
resonance and sh7; it away from k“ = o, This leads to a finite value
for DM at 4 = 0. In addition to the resonant effects (k“ ~ w) particles
are affected by long wavelength fluctuations (k" ~ 0) that tend to mirror
them (V8lk 1973; Fisk, et al., 1974; Goldstein, Klimas and Sandri 1975;
Lee and V8lk 1975). For k" ~ 0, neither Ax“(T) nor exp[-knng(T)]

provides significant contributions to DM. The only large nonlinear
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contribution to Du for k" ~ 0 is the term proportional to épi(w) in
equation (73). This term was dropped by Ben-Israel,et al., (1975) and
similar terms were neglected by V8lk (1973) and by Jones, et al,
(1973a,b). We will return to this point in §V. We can approximate
this term in much the same way in which Ax“(T) was computed above. 1If

one drops all factors of p'(r) and Ap(t) in the integrand of equation

(55), one can easily show tbat

Ap L(*)'s = (1-p2)c0576pl(T)

- L (87)
2 T

= - 2L (144%) cost [aN(r-M)cosh(L+tank tanr)[E()-pH(N) ]

T 0

so that

1212y T '
p () = 2llm) Jare [+ (V] - (88)
W Jon )

The equations in the system (77)-(83), (86)=(88) now form a
coupled nonlinear system of integral equations for DH(T)° velk (1973)
derives an expression similar to equation (88), but he neglects the
term equivalent to épl(h) and sets Du(u) equal to a constant when

evaluating <exp~i k“x“(7)> (equatioﬁ 37), ﬁe then finds Axn(¢)=0 and

Dl(T) = %'DuTs. We find that D1(¢) =< 73 only when v >> 1, and consequently

the magnitude of Dl(T) is generally much smaller than would be predicted
by W61k (1973). 1In general, his results do not agree with ours, nor do
they‘fit the simulations (Kaiser 1974). ‘

In Appendix E this system of integro-differential equations is
rewritten as a‘system of coupled differential equations that can be
integrated numerically using standard techniques. The results of that

integration are discussed in the next sectionm,
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V. - DISCUSSION

The equations that determine Dp, were integrated numerically and
the results are shown in figu;:es 1-5. For comparison, wé have included
in figures 1-3 the theoretical prediction of Jones, Kaiser and Birmingham.
(1973a,b), V8lk (1973) and Owens (1974). 1In all of these figures, we
have plotted EDH» to conform with the normalization used in the simulations.
[If one were to define ﬁ‘l& to be the dimensioned value of Dp.’ then
GDU»E (hc/wcrg)ﬁu.] The theoretical predictions of quasilinear theory
(Jokipii 1971) are also shown in figures 1-3. The simulation results
are taken from Kaiser (1974). Since that reference was written, the
simulation program has been subject to some revision (Kaiser, private
communication) and the simulation .results plotted in figures 1-3 may be
slightly inaccurate. Consequently, in our discussion, deviations of
~207% of our theoretical curves for GDIJJ vs. | from the simulation points
should not be considered significant.

In figures 1-3, the solid squares are the results of integrating
the complete set of equations derived in §III and Appendix D. The
solid curve results from integrating the system of equations derived in
§IV and Appendix E.

The factor of /2 in front of 1) in the figures arises from the
difference between linearly polarization turbulence (Jones, et al.
1973a,b) and the planar polarization used here. The parameter 62 of
Jones, et al. (1973a,b) is equal to /27. However this equivalence

between our axisymmetric model and the linearly polarized model used
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by Kaiser (1974) in the numerical simulations cannot be exact.
Differences arise when the phase average is performed on equation (17).

In . general, for nonaxisymmetric turbulence, there would be an additional

term in equation (18) of the form ?ir Dudig; £(t). For axisymmetric
turbulence D . is not a function of ¢ and equation (18) follows., [One

ue

cannot avoid this complication by assuming that f is gyrotropicd Jones
(private communication) maintains that the consequences of this lack
of axisymmetry in the numerical simulations is expected to be small.
We proceed below to compare our results with the simulations on the
assumption that this is indeed the case,

The results shown in Figures 1-3 indicate that quasilinear
theory is quite good for y 3 1/2, as expected. Significant
deviations from quasilinear theory are evident for y ~ 0. Here our

results are similar to those of Jones et al, (1973a,b) and Kaiser (1974).
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The predictions of V&lk (1973) are about a factor of two too high for

/2N = .3 and € = 1. The results of Owens (}97‘4) are consistently low

and will not be discussed any further here. All of tﬁese theories have
very different functional dependencies of the parameters T and € at y = 0.

Figures & and 5 show plots of EDM(U' = 0) vs. € and Tl. One can see that

e, = 1€ (89)
whereas, from the summary of Kaiser (1974) one has

GDuJKB.o: 1 (90)

eDquLK « 1%/€ (1)

GDuowmzs « ent/ (92)

The parameter dependence illustrated in equations (91) and (92)
results from the severe approximat‘ions made by Volk (1273) and Owens
(1974)., Within the context of the turbulence theory presented here, |
there appears to be no consistent way to recover the results of Volk
(1973) and Owens (1974). However, a detailed comparison between this
work and that of Jones, et al, (1973a,b) is possible. One can recover
the parameter dependence shown in equation (90) from our theory when
one uses in our analysis the approximations to the particle orbits used
by Jones, et al. (1973a,b) and Kaiser (1973) . The basic difference
between the present work and that of Jones,g_.g al, (1973a,b) is tc use a
propagator Up in place of U in equation (19) for Dp,('r)' UP is the
propagator in the partially averaged field,

Bz =B 48 @ - RG-x") o9
A Surther approximation is then made, namely, that in evaluating

trajectories in @_P, a guiding center approximation can be made (Kaiser 1973),
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One consequence of this is that UP(T) @ g{UO(T) ¢=¢+r where ¢ is the
phase angle.
The propagator ﬁ(m), on the other hand, introduces the quantity

Ap(t) through the relation

— A A

u(mp = p (1) + Ap (7) (94)

The approximation made by Jones et al. (1973a,b) that UP(T)¢A¢+T
is a fairly severe one. It is not difficult to show that such an

approximation is equivalent to a Ap’L of the form (at p = 0)

APX(T) ocos (¢ + T) (95)

Apy(w) asin (@ + 1) (96)

A
where we have chosen B to be in the z-direction (é = gz), and where
@ is an arbitrary function of T and ¢. However, Jones, et al. (1973a,b)

make the additional approximation that

a2 1 M2 5 () o7
where here

UP(T)u = p¥

U (M = Mo (98)
But because the magnitude of the momentum is a constant, one
must have

) T, &+ P (99)

(we have dropped quantities of the form 12'(T)'p'(v)>). Equations (97)-
(99) together require that o = 0 (or equivalently, &p L(T) =0). If
one sets the term & (7) = 0 in equation (88), one finds the results

L

_plotted as cpen circles in figures (4) and (5). Now, in place of
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equation (89), one has

3
=0 = e« 10
EDp(épl s W=0) « 1 (100)

We conclude then that the parameter dependence found by Jones,
et al. (1973a,b) and Kaiser (1973, 1974) results from an inadequate
approximation to the particles'vmomentum, ﬁ(T).- It remains to be shown
whether more refined calculations of orbits in the partially averaged
field would bring their theory into closer agreement with’the work
presented here., From the numerical simulations presently available, one
cannot determine the parameter dependence of D with any precision. The
published simulations are consistent with either an ﬂs or EﬂB behavior,

Several important questions remain., First, the convergence
properties of this theory have not been investigated. In the case of
electrostatic turbulence, a convergence proof has been presented by
Thampson and Benford (1973), but challenged by Orszag (1975). The
electromagnetic case is considerably more complex. Perhaps comparison
with numerical simulatiomsis the most fruitful way:to test this type
of nonlinear theory.

It is not difficult to generalize the results presented here for
different correlation functions includihg isotropic turbulence, and
this work is in progress. The exponential correlation function is a
convenient one to use for many reasons, but one should bear in mind that
it has some well-known undesirable features.

Also, the validity of the adiabatic approximation has not been
investigated in any detail in the context of this resonance - broadening

approach. It is known to fail at y = 0 in quasilinear theory, but is
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expected to be a better approximation here because the time integral
in equations (70) and (88) for DH(T) saturates quickly. These questions

are presently being investigated.
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VI CONCLUSIONS

We have presented a theory for evaluating the pitch angle scattering
coefficient for particles moving in magnetostatic turbulence. The theory
is a perturbation expansion in the strength of the magnetic field fluctua-
tions, which is equivalent to the weak coupling approximation of Kadomstev
(1965). The pitch angle scattering coefficient was defined and evaluated
assuming that the adiabatic approximation is valid. This theory is expected
to be good for weak field fluctuations (na<<l) and arbitrary particle
rigidities. [However, for slab turbulence, the high energy regime, e<<l,
is not physically interesting.] We believe the derivation to be fairly
rigorous with a minimum of ad hoc assumptions.

The theory was evaluated in detail.for the special case of a slab
turbulence model with an exponential correlation function. For p~1, we
find that quasilinear theory provides a good approximation. At u=0,
where quasilinear theory was expected to fail, this strong turbulence
theory predicts significant scattering through 90° —much of it due to
mirroring forces. At p=0, D“ was computed in detail. All of the impor-
tant nonlinear terms were retained. In that calculation (section III,
above), in addition to the weak coupling and adiabatic approximations,
it was assumed that terms proportional to pﬁ(f) could be dropped. A
test of the validity of that assumption will have to await more refined
numerical simulations. In section IV, Du was computed for arbitrary u.
There terms in Ap (T) were omitted from the analysis; except the one
term resulting from mirroring forces. The results of section IV
evaluated at u=0 compare favorably to the more exact calculation of section

IIT (ef. figs. 1-3).
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We found that eDu(u=O) < Te. A direct comparison of these results
with those of Kaiser (1973, 1974) and Jones et al. (1973a,b) showed that
their approximate evaluation of their theory neglected the term in Ap (7)
that comes from mirroring. Our theory reduces to theirs (within factors
of ~ 2) if one drops all terms in Ap,(T) in the analysis @f. figs. L and 5).
It remains to be shown whether a more accurate calculation of particle
orbits in the partially averaged field of Jores, et al. (1973a,b) and Kaiser
(1973, 1974) will bring their results into agreement with ours. The
similations presently available (Kaiser 1974) cannot distinguish between
a pitch angle scattering coefficient proportional to ns or eﬂa.

The success of this theory in matching the numerical simulations
leads to the conclusion that the weak coupling approximation is a good
one in this problem. The adiabatic approximation also appears velid,
though more extensive checks of this are possible and are in progress.
Our general conclusion is that Dp can be accurately computed within
weak coupling, strong turbulence theory, if a sufficiently good evalua-
tion of the. particles' momentum (and position) is included. We believe
that this is the first calculation of D, to do this. Generalization
to other correlation functions and other turbulence geometrics (g;g;'
isotropic) is in progress.

The author would like to acknowledge useful and stimuwlating dis-
cussiéns with Mr. Z. Piran and Drs. A, Eviatary L. A, Fisk, M. A. Forman,
F. C., Jones, A, J. Klimas, J. D. Scudder and J, Weinstock. Messrs. H.
Eiserike and C. I. Dickman are gratefully thanked for their help with

the numerical analysis.
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APPENDIX A
In this appendix we show that, for slab turbulence at p=0;-the

.following terms are approximately zero
! '
<P£ (V)‘P_L (}\)> =0 (A1)

<p¢ (v) expik x (A\)> ~ 0 (A2)

In analogy to equation (42) we immediately have

b )-pLA)> = P far fas [ 0(vnbar €ln ] -E-s) @ Tutr-s)]
p(r-5)> (a3)

Using equation (47) for Q'(x), one has

A
<pl(v)-pi(A)> = -HQOIZTOIdS <%(v-T)~éé'[§(v-7)]'QjCI(T+s)-Q- '
B'lx (A-s)] B-D (A-s)> (Al)

If one writes the fluctuation fields as Fourier transforms, and performs

the indicated matrix algebra, one finds

<pi(v)-pi(x)> = V_ fd'r fds fdkuR(ku)mf(HS) exp [-K|D; (v-7 A~ -s) /2]

<pﬁ(v-7)pﬁ(k-s)> (A5)

where we have expanded the correlation and used the fact that at pu=0,
<p| (T)>=0. In principle, it is possible to retain equation (A5), but
to do, so would significantly complicate the analysis. However, this
term is not expected to produce a significant contribution to Dy (T)
because the correlations in equation (A5) are in general evaluated at

different times. In the context of the weak coupling approximation, such
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nonlocal behavior is expected to be small, Also, the correlation
<pﬂ(v)pd(k)> is formally proportional to T, which implies that
<pl(v)-gl(h)> is 6(N*). For these reasons we arrive at equation (AL).

We return to equation (A2), which can be written as

<pi(v)expikyxy (\)> = <p,(v)expikyxy (A)> (46)
Note that
p' (v)=EU(v)-T(v)1p, (A7)

From the identity (16), we then have

v - ) A
<p_l(v)expik"x“ A)> = -T]<0Ids [U(\J-S)[&' ﬁ(s)-<£'U(S)>]pJ:ﬂ

expik|| X \)> (A8)

If one approximates U as U in equation (A8), then the second term is

clearly of higher order in T and one has
.1 . nv - N A s
<p(v)expilkyx)(X)>== -1 <0Jd'r[[U(v-T)£ Uo ('r)pJ:n expik)x) (A)> (A9)

where we have used equation (36). If we rewrite expilkjx;(X)] as U(h)expitk”xu],

and use equation (16), equation (A9) becomes

v A A _
<p, (v)expilyx) (A)> = n2<° de[[ﬁ(v-T)S'Uo (t)p J] oJ‘as T(A-s)£'T(s)

expiky x> (A10)
Following Ben-Israel,et al. (1975) we find, to lowest order in 1,
LN 2 v -— A U 1’ )\ -—
<p, (v)expikyxy (\)> == -iM® far < [[U(v-'r)g-g-gl(q')]] [ds T(x-s)
- 0 L o

ﬁ'é’j( s) k> (A11)
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2 \%) A '
-] . ' 1
~ i far [ds Rk )<expily[x) (v-r)-x] (A-5)Jskypy (v=1)p,(A-s)
Von T_° 0
6.(s)> (A12)
‘-
In the analysis presented here, we will drop any terms in pj(T).
This is equivalent to ignoring nonlocal correlations of the form <p'(T)X'(A)>.
we expect that in the context of the weak coupling approxima-
tion, nonlocal correlations between momentum and position fluctuations
should be less important than autocorrelations of fluctuation in posi-
tion evaluated at equal times [e.g. Dy (T,T)= <x'(7)x'(T)>]. For a more
comprehensive discussion of these various correlations, and their role

in determining D“(T), the reader is referred to Ben-Israel, et al. (1975).
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APPENDIX B
In this appendix we derive equation (55) for Ap,(rt). The result
of taking the Fourier transform of the fluctuation fields in equation

(54) is that

,na T T a a A
bp,(M)e—t far fav [k [ak'<explikex(r-v) ]p(7-v) Q" (&) -Clr=v)-

[2- + 3-&*?7)-6} B(r-2)-0" (&) -C (M )explik' +x(7-1)]> (B1)
op

where we have used the approximation

U = 2 u(r)=c(r) [ 25 + D (1)-v Ju(7) (B2)
P Ao (T) dp

If one substitutes the identity (L7) for Q'(k) and uses equations (22)

and (44), it follows, after some straightforward algebra, that
2 T T ot - ' ' -
Ap (T)=-ll—? an, fav fakyR(ky )<explikyxy (v-1)] p"(T-v)G?(v-l-T)
= JogJay ] foncrg,
' A
(3 pu(r-r) + digymy (1A P rII(T‘K)]'P_L(T'V)'QI ()
op. P,

L3z wutrn) + iypi (1) (35 mp(r)=(r-))} > (23)

Again, we drop terms containing pﬁ(T). Equation (55) follows immediately

when one uses the approximation (A2).

39



APPENDIX ¢

From equation (40) FTor Ap(r) we have

Apy () =T j'dk j‘dv <T(1-v) Q-2 U(v-A)D-a-B> (c1)

3P

Following the derivation of Ax)(r)given in §IV, one has

T T o
ot fay faiyR iy ) expliiyu(v-1)1-8xy (v-) 3-KG Dy (v-1) /2

-
Apj (T)—m
a5 (v=\ ) [2u-iky (1-p2 ) (v-1)] (c2)

which becomes

_2“2 T (-] ) L. 2
Apy (1) = —= [dr faR(ky)expl-KjDy (A)] (T-A) amsh

2“. (o] (o] ._é_
{20 cas [l (uh=dxy (A))T + (1= iy h s Ky (ph-Axy (1)) 1} (c3)

13

Equation (56) follows immediately.
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APPENDIX D

In the discussion belew we outline the transformation of equations

(70)-(72) and (63)-(64) to a system of integro-differential equations

that can be solved numerically. Bqguation (70) can be easily converted

into a differential equation

5u(T)E§er(T)=V—q—i—g(T)[mr(T) + bpy(1)]

21

Differentiating equation (71) yields

1.)1 (T)=—%_E—of§hw7\g(k) (12 -AT )+—$'2—1§n_ oj‘g}\ of‘c;vg(v-k)(ET-v-k)

[ap, ()P, (\)+E ap,(v)+4p, (\)

Now define

£ () = g(r) awr
fa(7) = tg(t) awT

T T “ A
fa (T) -"=°J'd)\ o‘fdvg(v-}\)AEl(w [Py (M) +8ap, (A)]

T N
£, (1) ‘=oj'g)\ oj‘d\:g(v-h) (vin)dp, (v) [Py (’\)*‘%AP.;(’-)]

with £;(0) = 0, i = 1-k. Therefore

1.)1(1') - 20 t;l'afx ()= (7)+27La (7) -4 (7)]

\er

Now cors ider

i‘a (7) =°_fg}~g()\)Ap__L(h) -%uo (T-?&)'*'O‘I‘g\)g(\)-'r)ARL(v) -%10 ()

.
+°‘rdxg<~f-x)Am<x) p,(7)

]
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(D2)

(D7)

(08)



and define
£ (1) = g(r)anr
fo(r) = re(r)hm LE5(0) = fg(0) = 0]
 (1)= Javs(r-v) i (o)
qe(T)on'gvg('r-v)APw(v)
qa(T)Eofgvvg(ﬁr-v)Apm(v)
q4(T)EoI:1Wg(T-V)ApLy(V)
so that
£3 (1) = £y ([P y(rdasr + Apy(T)inr ] +
£ ()AL ()8 7 - Ap y(T)aa ] +
@y (T)lewst + Ap (1) T4, (T)[sh 7 + ap 1y (7)]
Similerly,
£ (1) = [2rfy (1)~25 (+) 108D  (T)as + Bpy(r)sh 7] +

(218 (1)-fa(7)10Ap ()b v - &p  (T)asr] +

(D9)

(D10)

(D11)

(D12)

(D13)

(D1k)

(D15)

Cray (m)taa (1) awr + Ap k(1)) + [7qz ()4, (7)1[sh T+APJ_y(T)]

In a completely analogous manner one has

42

(D16)



2

8D (1) = Vz_ frs ey () (1 + %;Apn('r))p:()+ Tfg (1) =Lg () +£7.(T )+

+ Tio(T) +Eye(r) ]
s 725 (1) (1 + B2 dmy (7)) _ o+ 78 (1)~ ()t (7)+

+g ()4 ()] + @ (T)[1 + g; 89y (1) Do) (D17)

Aﬁw<7>=ﬁé_§= Tl 55 (7) (1 + S 8Dy (1)) L g-Ts (1) 485 (7) =25 ()
~fg (10)-fy (7)]

s Ty (r) (1 + gﬁ by (7)) _o* T8 (7)=Ee (1) 427 (1)

o (1) (N1 + & (M0 + & 4y (M]) (p28)
where

£7(r) = fs('r)g—p‘ Apu('f)\ ) (D19)

Ba(m) = (5 ()| (p20)

£ (1) = qq (T)arT=qz (7)sin 7 (p21)

fio(7) = gp (TdwsT+ay (1) 7 (D22)

Ba(r) = £ (r)[8; dmy(1)] _, (p23)

(1) = Fa(M)IS5 do(n)] _ (pls)

0

Finally
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2 api(m)) =L rreg(r)-ty (1)] (025)
i )| st 25

p=0 \2m
where
fu(r) =asr {a(r) + wn(n)lr - & ax(0)] ) (p26)
Pa(r) = Ti(T) (p27)
and
d_ roA -
- [gﬁﬁm]wo = - gﬂ Ap”('r)‘l“‘:O (D28)

The complete system of equations (D1), (D3), (D), (D7), (D9) and
(D28) can be numerically integrated using a standard Adams-Bashforth

predictor - corrector method.
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APPENDIX E
The system of equations derived in §IV can be converted to the

following set of differential equations. The derivation is straight-

forward.
. -/ i
Dy(r) = fvg_"— (1-42)a(T)[1+6p, (1)1, D,,(0)= (E1)
By (r) = MEG) trre (r)-es (1)1, Dy (0)=0 (52)
\2m
& (1) = G(r) | (E3)
& (1) = ra(r) | C(EY
Axy (T)=ﬂa— {opfre (7)-e5 (1) + (1-p®)[Teg (1)-ea (7)1} (E5)
B
& (7) = H(r) (E6)
& (1) = TH(7) (ET)

G(r) and H(T)are given by equations (78) and (80). 6p,(r) follows from
equation (86).

L}
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

FIGURE CAPTIONS
The dimensionless pitch angle diffusion coefficient €D
is plotted as a function of w. The solid square repre;ents
the solution of the set of equétions derived in §III, while
the solid line follows from the system of equations
discussed in §Iy. The parameter values are €=1, /§ﬂ=0.1.
EDM vs. y for €=2, /2N=0.15. The notation follows that
of figure 1.
GDM vs. for €=1, /21M=0.3. ' The notation follows that of
figure 1.
GDH vs, € at y=0 for /21=0.3. When the momentum deviation
terms are retained (AB(T)#O), EDu(p=0) is approximately '
proportional to € (solid circles). However, when these
momentum terms are dropped (6p1=0 in equatibn 88) one
finds that EDu(u=0) is approximately independent of €
(open circles), thus recovering the results of Jones,
et al. (1973a,b).
GDu(p=0) vs. T for €=5, GDM(€=O) is approximately
proportional to n3 whether the momentum deviation terms

are kept (solid circles) of dropped (open circles),

g
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