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A NONLINEAR THEORY OF COSMIC RAY PITCH ANGLE DIFFUSION

IN HOMOGENEOUS MAGNETOSTATIC TURBULENCE

by



A plasma strong turbulence, weak coupling, theory is applied to

the problem of cosmic ray pitch angle scattering in magnetostatic

turbulence. The theory used is a rigorous generalization of

Weinstock's "resonance-broadening" theory and contains no ad hoc
t	

approximations. A detailed calculation is presented for a model of

"slab" turbulence with an exponential correlation function. The

results agree well with numerical simulations. The rigidity

dependence of the pitch angle scattering coefficient differs from that

found by previous researchers. The differences result from an

inadequate treatment of particle trajectories near 90 0 pitch angle

in earlier work.	 i
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I. INTRODUCTION

Central to the problem of understanding the origin of cosmic

rays is the difficulty of computing the motion of charged particles

through regions of strongly turbulent electromagnetic fields that

characterize interstellar and interplanetary space. The basic

problem is to compute a spatial diffusion coefficient starting

r	 from knowledge of the statis,_^.al properties of the electromagnetic

turbulence. To do this one needs a valid kinetic theory that

describes particle motion in strongly turbulent tields. In general,

such a theory is not available. In this paper, we are interested

in the special circumstance in which the cosmic ray, distribution
G.

neither modifies the fields with which it interacts, nor undergoes

Coulomb collisions with otherarticles. The first partiallyP	 P	 Y

,Successful efforts to develop such a kinetic theory (Jokipii 1966;

Roelof 1966; Hall and Sturrock 1967; Hasselmann and W iberenz 1968)

made use of the quasilinear approximation (_v., e.g. Rowlands, Shapiro,

and Shevchenko 1966). In this approximation, it is assumed that the

deviation of a particle's trajectory from its helical motion in the

mean magnetic field is small because the strength of the fluctuation

field is assumed to be weak. It is then possible to compute a pitch

angle scattering coefficient Dµ , that describes particle diffusion

in turbulent magnetic fields ( 4 is the cosine of the particles'

pitch angle with respect to the mean magnetic field). From D^ one

can compute a spatial diffusion coefficient (Earl 1974). In this

paper we will discuss only the derivation of the pitch angle scattering

i
coefficient, Dµ.
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Recently, several aspects of the quasilinear approximation have

been questioned (Klimas and Sandri 1973; Jones, Birmingham and Kaiser

1973c; Kaiser, Jones and Birmingham 1973; Volk 1973). The difficulties with

quasilinear theory are associated with the behavior of particles with

pitch angles, e, nar 17/2, where either Dµ (µ = 0) = 0 (when the

fluctuation fields cannot mirror particles to first order), or Dµ(µ=0)

« 6(µ) [when first order mirroring forces do exist (Fisk, Goldstein,

Klimas, and Sandri	 1.974; Goldstein, Klimas and Sandri 1975; also

cf. Lee and Milk 1975)].

In the past two years, several attempts have been made to improve

quasilinear theory (Jones, Kaiser and Birmingham 1973a,b; Milk 1973;

f Owens 1974).	 Owens' work replaces two of the nonlinear terms that

are dropped in quasilinear theory with a constant. 	 This results

in a small amount of scattering at 6 = 17/2, which is insufficient to

explain the significant scattering through 0 = TT/2 observed in

numerical simulations of the problem (Kaiser 1974). 	 Milk 1973 modified

quasilinear theory by incorporating a better treatment of the particle

orbits.	 He recognized the importance of magnetic mirroring (particle

trapping) effects in his-description of the scattering. 	 His approach

is similar to that of.Dupree (1966, 1967) for electrostatic turbulence.

His results are also in rather poor agreement with the numerical 	 simula-

tions (Kaiser 1974).	 This apparently results from a breakdown in

several of the simplifying approximations made in his analysis.;

a
3	 _
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The most successful theoretical effort to date to improve

quasilinear theory is that of Jones, Kaiser and Birmingham (1973a,b).

Their analysis is motivated by the nonlinear '(electrostatic)

turbulence theory of Weinstock (1969). Jones, et a'. (1973a,b)

introduce the concept of partial averaging which enables them to

include mirroring effects in a physically plausible way. The basic

approximation made by Jones, et al.(1973a,b) is to introduce the

propagator Up , which describes the motion of particles through

the partially averaged field. They argue, but do not prove, that

Up provides a useful approximation to UA , the exact propagator in

Weinstock's theory. (A mathematical definition of U  is given in

§II). The results of these computations appear to agree nicely with

the three numerical simulations presented by Kaiser (1974). However,

both the simulations and the theoretical analysis are presently being

revised (Kaiser, private communication).

The analysis presented in this paper is a derivation that starts

with the Vlasov equation and proceeds in a -rigorous manner. The

particle trajectories that are computed are more general than those

in previous work. We show that these higher order corrections are

necessary to obtain a good approximation to D at µ near zero. Our
µ

analysis follows the ideas of Weinstock (:1969), Piran • (1972) and

Ben-Israel, Piran, Eviatar and Weinstock (1975). These latter two

papers are generalizations of Weinstock's weak coupling electrostatic

turbulence theory to include electromagnetic effects. As shown

below, this generalization is not a trivial exercise, and it is not

4
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surprizing that the results of Vblk (1973) are quantitatively in-

accurate. It is not necessary to introduce partial averaging or

any other heuristic ideas in the analysis that follows. The results

shown in §V are in good agreement with the simulations that are

presently available for comparison.

In the next section we outline the theoretical framework of the

turbulence theory under the fundamental assumption that the coupling

-is weak (Kadomstev 1965). Much of the general theory has been developed

by Piran (1972) and Ben-Israel, et al. (1975) and we will not repeat
}

their detailed formulation here. The general theory leads to equations

that cannot be solved without limiting one's attention to specific

models of wave turbulence. One such model of interest for the problem

of cosmic ray pitch angle scattering, is homogeneous "slab" magnetostatic

turbulence with an exponential correlation function.

Because cosmic ray velocities are typically much greater than the

phase velocities of the magnetohydrodynamic waves that scatter them,

the magnetostatic approximation should be very well satisfied. This

is equivalent to dropping the Maxwell "curl" equations in the analysis.

X

In confining our attention to "slab" turbulence, we consider only
	

j

 magnetic fluctuations that vary along the direction of the mean magnetic
4

field. This greatly simplifies the analysis. Waves observed in the

interplanetary medium near 1 AU are thought to be predominantly Alfv6n

waves propagating along the mean field direction. A magnetostatic slab

model approximates this situation quite well. The specific examples

computed below are limited to an exponential correlation function.for

5
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the turbulence. This is done to compare this theory with numerical

simulations of this problem that have thus far been confined to an

exponential correlation function (Kaiser 1974).. Generalization to

other, correlation functions and to isotropic turbulence is straight -

forward and will be considered in future papers.

Section III is devoted to a detailed calculation of Dµ(4 = o)

valid to second order in the strength of the fluctuation field. All

nonlinear terms are included except those that are proportional to the

fluctuation in the parallel mementum. They are expected to be un-

important for the reasons discussed below.

In section IV, we estimate-Dµ at all values of 4. In doing
i

so, we neglect mostterms that are proportional to the deviations of the

j	 mean of the momentum from the value expected from quasilinear theory.

The validity of this approximation is estimated by comparing the

4
results of section IV at 	 o with those of section III. For the

'I
	 range of parameters considered, the approximation is good.

In the last section, we compare our results to the simulations

and to previous theoretical work. We find that the results of

Milk (1973) and Owens (1974) fit neither the numerical simulations

(Kaiser 1974) nor our theory. The published numerical simulations

do not cover a sufficiently wide range of parameters to distinguish
IR

between this theory and that of Jones, et al. (1973a,b). However,

ff
	 the two theories predict different dependencies on the parametersi

of the theory. We show that the results of Jones et al. (1973a,b)

can be recovered from our analysis if we drop terms important for

'	
6,
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particle mirroring. We conclude that our analysis contains the first

accurate evaluation of particle orbits near 900 pitch angle.

II THEORY

The derivation presented here follows, in broad outline, the 	
x

work of Piran (1972) and Ben-Israel, Piran, Eviatar and Weinstock

i

	 (1975). We begin with the Vlasov equation, written in dimensionless

i
form (Klimas and Sandri 1971, 1973),

aF+KF+£F+ ^S_'F =0	 (1)

for the cosmic ray distribution function F(x,p,T). In equation (1)

T tm where t is dimensional time and m e is the gyrofrequency of
c

the particle. In addition, the differential operators K, Z and Z'

are defined as follows:

s
K =P.a	 (2)

aX

A a
_p.Q. —

	
(3)_	 a

' =-p•^' 
afl	

c4>	
s

where A = E/p,x = x /rg (x is dimensional length and rg is the

Larmor radius) and

a	 AAa - Aa— P(I PP) *;p = Pn ' P_	 ('5)
a^

_I
i

A

l
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The skew-symmetric tensors Q and Q' are defined as 11
	 = Eijk Ok

and D'	 = E i3k 0 ' k where	 = B /Bo , ^' = B' /^' 'B''>1/2 and the
ij
	 0

magnetic field is separated into a mean part, B o , plus a fluctuation,

B.	 The small parameter is 	 _ <B' -B'> l/2 /B .	 The symbol < > denotes
0

i

ensemble average.

We proceed to derive a diffusion-like equation for the average

part of the distribution function f = 4'>. 	 We assume that Kf = 0.	 If

one takes the ensemble average of equation (1) and subtracts, the

resulting equation from equation (1), , the following relation for

1: ' 	 F	 -<F> results:

[aT + (1 - A)X] f' _ -1,9"f	 (6)

where .^L( = K + 9, +	 is the total Hamiltonian differential operator

and the operator A takes the ensemble average of everything to its

right	 i.e. AF = -<F>).	 Owens (1974) takes the nonlinear terms (1-A)

on the left hand side of equation (6) and sets than equal to a
A -

constant, a. 	 This severe approximation results in a gross undirestima-'

tion of the scattering through µ = o.

Equation (6) can be solved formally in terms of the propagator

UA(T, To), which is defined by the following differential equation

(Weinstock 1970; Ben-Israel, et al. 1975):

[aT + (1 - A)X] UA (T - To) = 0	 (7)

A (0)	 1
a
x

8



In writing equation (7), we used the fact that for magnetostatic

turbulence U (T,T ) = U (T-T ).A	 o	 A	 o
E

Equation (6) has the formal solution

a

T

f '(T)	 dA UA ( T-A) V f (A)
TO

where we have taken f'(o)=0.

If we substitute this solution back into the ensemble average of

equation , (1), we have the exact master equation for f:

T

aT 
+ If	 2 ez	 (' dX 

UA 
( T-X) £'> f(?,)

To

Because it is not possible to find an exact representation for

UA (,r —ro), one proceeds by finding approximations that retain as much

information as possible about the effects of the stochastic fields

(8)

(9)

on the particle trajectories. With this goal in mind, we do- not

make the quasilinear approximation in which it is assumed that the

stochastic fields do not affect a particle's motion during an inter-

action.

Note that equation (9) caz1 be rewritten as

fr
adX+ Zf = 12 < .'J 

T

	 UA (
T-X) (1-A) -9 '> f(X)	 (10)

T 
i

An approximation to UA (T) (1-A) can be found in terms of the

propagator U(T-To) defined by

9



[a- +X] U(T-To) = 0
aT

	

	 (11)
U(o) = 1

f	
This can be written (Ben-Israel, et al. 1975):

i

[^- + ( 1 -A)Y] (1-A) U(T) _ -1(1-A) VAU(T) 	 (12)
aT

i

i

with the formal solution

	

(I-A) U(T) = U (T) (1-A) -^ TdX U (T-^,)(1-A) VAU(X)	 (13)A	 A
'	 0

^lf
i

Here, and in the remainder of this paper, we take To = 0. To proceed,

E=	 we drop the second term on the right-hand side of equation (13). This'

4! approximation is valid in the limit of weak couplingpp	 p g (Kadomtsev 1965;

Klimas and Sandri 1973), i.e. in the limit 2 « 1. The representation

j4	 of U(T) is also unknown, so it is necessary to approximate U(T) in terms of the

propagator U N>, which satisfies the ensemble average of equation

(11)'

a'T U(T)	
- <){ U(T)> 	(14) j

i r	 or

[a.T 	 U(T)	 VU(T)> + VU(T ) 	 (15)

C '	 The formal solution ist

T

	

u(T) = U(T) + f da U(T-X) C VU(a) - -X'U(a)> ]	 (16)

i	 0

10



Therefore, to lowest order in 	 U(T) and equation (10) can

be rewritten as

aT 
+ Zf _ 12 ^  J

T
 dX U(X) V> f(T-A)	 (17)

0

To reduce equation (17) to a diffusion equation, we make the adiabatic

approximation. The nature of this approximation is to restrict

our interest in equation (17) to times T » 1 when f(T-A) 	 f(T).

One now substitutes equations (3)-(5) into equation ( 17) and

averages over gyrophase (cf. Goldstein, Klimas and Sandri 1975).

After some manipulation, equation ( 17) becomes

M T) = a D a f( T )	 (18)
aT	 aµ µ aµ

where

.r

2	 21

D^(T) = 2^ ITaa f do -<P'^2'@.'(X) U(a) @^(x) •^'p>	 (19)
0	 0

D = Lim D ( T)	 ( 20)
µ	 µ

T.4Co

In writing equation (18), we assumed that the turbulence is axially symmetric

about A. Also f(T) in equation (18) now denotes the gyrophase average

Of f (T) in equation (17) .

The assumption in writing equation (18) is that equation (19)

converges 'rapidly" to Dµ. However, in quasilinear theory, for

particle pitch angles near Tr/2, equation ( 19) takes an arbitrarily

long time to saturate. (For a more comprehensive discussion of the

I

11
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adiabatic approximation, we refer the reader.to  Weinstock 1970;

Jokipii 1971; Klimas and Sandri 1973; Jones and Birmingham 1974; and

Fisk, et al. 1974). A consequence of the present nonlinear analysis

is that the integral in equation (19) saturates "quickly", even for

4 = 0. Thus we expect the adiabatic approximation to be a good one.

This will be examined in more detail in a future paper. The remainder

of this paper will be devoted to the derivation of D
4
 (T).

We proceed by writing a'(x) as a Fourier integral transform over

wave number, k. It folldws that

A
<=@^(k) @^(k')U expllk^'x	 1 .2 - P 	 > _	 4

(21)

< ^'(k) @'(k') > <exp [ ik' •x(X)l 'Q- p (A) >

a

This permits writing the theory solely in terms

of the two-point correlation tensor of the magnetic turbulence.

9

We define R(k) through the relation

3/2
@^(k) @^(k') > _ (2Ti) 	 R(k) S (k+k')	 (22)

where R(k) is the Fourier integral transform of the two-point correlation

tensor,

R(r) _ < @'(x) '(x + r) }	 (23)
1

12
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(In writing equation ( 22), we have restricted ourselves to homogeneous

turbulence.) Dµ(T) can now be written as

t

..i

	

2	 T	 21T

Dµ(T) _ , 2 f d^ f d^ f A exp (ik • x) p

	

(2TT)	 o	 0

P(a) exp r-ik•x(X) I >

The basic mathematical problem is that of computing the ensemble

average in equation (24). If p(T) is written as the sum of a fluctuation

A
part, p'(T), plus a mean part < p(T) >, then the correlation becomes

< p(T) ex  [-ik • x(T)I > _ < P(T) > < exp [-ik • x( T)I >
(25)

+ < P(T) exp[-ik•x'(T)]>

We define
}

	

ARW = < pw > P'OM	 (26)

where p (X) is the streamed velocity of the particle in the absence
0

of fluctuation fields. The propagator of this trajectory, U
0 (T),

satisfies

+	 1 
Uo(T-To)
	 0	 (27)

aT

U ( 0) = 1
o

The solution.is the wellAnown helical trajectory used in quasilinear

theory, which we can write as (v,, e.g., Goldstein, Klimas and Sandri

1975)

13
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^^

k

x
3

xUo(T)	 = Xo(T) _ x-ro(T) (28) 

+
10 (T)(T)'P	 P'	 T) (29)

i

Ex;

E

+A^
U0 T)P = P0 ( T)_^ ( T)^P = P	 (T) (30)

tl

(T) = P + N cos T T (31)(31)
r
FE

(T) = PT + N sin T + Q (cos T-1) (32)

t'
P ij ° ^iRj (33)

0.
.j Ni	 = Sij - P ii (34)

E ^ I

j
3

Equation (27) can be rewritten (Ben-Israel, et al. 1975) as

a 
+ Y 1 U (T)_	 VUo(T)C 

(35)
6T	 0

It
j

t' with the solution

T
U( ,r) = U(T) + 11	 da U(T - a) VUOM (36)0

i
o

J 	 ,

{ The quantity OP(X) in equation (26) is unique to the magnetic

turbulence theorT.	 In the electrostatic problem (Dupree 1966;

Weinstock 1969, 1970), the momentum trajectories do not appear

14
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explicitly. The velocity dependent nature of the magnetic force

greatly complicates the computation of the nonlinear wave-particle

interaction in strong turbulence (Ben-Israel, et al. 1975). However,

some simplifications are possible for the test particle problem in

magnetostatic turbulence. For example, we will argue below that

the second term on the right-hand side of equation (25) is unimportant

in the particular examples that one can compute. We now outline the

computation of < exp -i [ k'x(a) ] > and Qp(X).

Following Ben-Israel, et al. (1975) and Weinstock (1970), we

expand < exp -i ['h-2S(X) ] > in a cumulant expansion (Kubo 1962). To

second order we have

exp-i L-x(?,)] > = exp [- _'< x(X)> - 2 k'D 1(X)'hJ	 (37)

where D l (?,,A) = Dl(A) = < x'(X) 2i(X) > and x(X) _ (1-A) x(x). [Ben-Israel,

et al. (1975) are missing the factor of 1/2 on the rhs of equation (37)].

To our knowledge, the general convergence properties of this

expansion are unknown. However, if the fluctuation, x'(%), obey

Gaussian statistics, then egeation (37) is exact.

We define

Qx(T) = < x(T) > - xo (T)	 (31

where, again, subscript "o" denotes streaming by the propagator

,
U

ao
(T). Then, from equations (36), (3) (4) and (16), we find to

(J (^2)	
-

	

T	
T'

	 -

AX(T)	 -^2 J -dX ^' dv < U(T-OP-0 .

	

o	 X	
(39)

	

a -I	 -

J



y

	

op(T) =X12 fTd% f Tdv < u( T °v) p • S2' • a¢ U(v-^)P•^^ ,^+(^,) >	 (40)

o

To compute D 1(T), note that one can write

_	 T	
2

U( T) U0( T ) - ,^ dA U0( T -^) < VU(X) > U0(T) +^(^l) (41)
0

Then, from the definition of D
1 
(T)and equation (41), one has

T	 -F	 rT 	 +
D l(T) = ^2 < dv U(T-v) P •^''^ (v) J dA U( T °^) P'^^'o^ (X)

o —	 o	 —

(42)

d
a	 where the symbol ^ ^ means that operators within the bracket act

1
only on variables contained within the bracket.

To proceed, and at the same time keep the mathematics tractable,

we will make several of the simplifying assumptions alluded to in the

introduction. The interested reader is referred to Ben-Israel, et al.

(1975) for a more general derivation. However, Ben-Israel et al.

make an unnecessary approximation, viz., they write 	
A

a^ P (T) = a¢ C < P(T) > + P' (T) — a$ P0 (T)	 "(43)

The term 
a 

Ap(T), neglected in writing equation (43), is of the same
i

order as Op(T), which is kept in_their . analysis. We will find below

that an approximate solution can be found, including terms proportional

to app(T)/6p
,
 for the special case of 6 = TT /2 (µ = 0) in a "slab" model.

_16
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We will follow Ben-Israel et al. (1975) in dropping the term

proportional to aP P(T)- We confine the remainder of the discussion
to the "slab" correlation function

R(k) = N 5(k )R(k
11
)	 (44)

where R(k) is the power spectrum of the turbulence and

Sdk 6(kl) = 2Tr	 (45)

In the following section, we develop the theory for the single

point µ = 0. This is the region in which quasilinear theory gives

the poorest approximation. It is also the case for which the most

complete nonlinear analysis can be done.



^r

1

i

III. SCATTERING THROUGH p =O IN A SLAB MODEL

An immediate consequence of restricting the discussion to p=0 in

a slab model is that Ax (T)does not appear, Ax 11 ( T) = 0 and the second

term in equation (25) can be shown to be proportional to p and, hence,

equal to zero. Using equations (24)-(26), (37) and (44)-(45), Dp(T)

can be written as

r

2Dµ (T)	 11	 f d% Sdo f dk 11 R(k U ) [cosk + p	 2I • Ap^(^) ]exp [ -k 11 D1 ( k ) /2]

(2TT)
3/2 o	 o -^	 —

(46)

i

where

D1(X)	 Dl 11 II M

The two quantities that must be computed are Ap1 (T) and D1(T).

We outline first the derivation of D1 (T) to illustrate the techniques

used in evaluating all of the nonlinear quantities presented in this

discussion. We start with equation 42	 Inq	 ( ) .	 general, SZ' can be

expressed as

In the case of slab turbulence considered here, the first term in

equation (47) is zero. D l (T) becomes

T T

Dl	 2 fdv J dA v	 U(T-v) p•Q. ft' T U (T-v) p . Q.P , >	 (48)
0 0

One now writes the fluctuation fields as Fourier integral transforms,

and uses equations (21) and (22) to arrive at

Ir

Dl (T) =-112	fdv fdX Id3k -<exp[i k•(x(T-v)-x(T-^))] v^
(20 3/2 o 0

(49)

A ( T-v)-n•R(k).n•p (T-^)

18
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Substitution of R(k) from equation (44) yields

2D1 (T) =	 ^ f dv J d% J dk 11 R(k l ) vX <exp[Yk l x' (v-^)]P ( T-v) •p (T-^)>
'O	 o	 - ao	 I	 I II	 1	 1

(50)

where we have used the approximation (Ben-Israel, et al. 1975)

xll (T-v) - x0 ( T-X) n xl{ (v- X)	 (51)

i^
	

To evaluate the correlation that appears here, one must expand the

integrand of equation (50) as follows

•Cexp[ik ll Xll (v-A) ]p1(T-v) • Pi ( T-h)> _ '(pl('r- v) >1'<pl(T-A> x

expik ll x^l (v-A)> + <pi(T-v)'Pl(T- 	 •texp[ikllxll(v-^)] +

,(P-v) exp [ ik 1 X ^ (V-	 1>1^<pl(T-^)> +

l(T-
A)exp[ikllXll(v ^`)]>+<Pl( T-v)? (52)

In Appendix A, we show that for µ=0, only the first term in equation

(52) is expected to be important.	 Consequently, equation (50) becomes

2	 T	 T	 CO

Dl (T)	 ^- fdv fd% ^'dk ll R(k tl )v% exp[-k2D1(v- ^)] [ A l o(T-V)+^A (T-V)]
37Tr	 o	 o	 -00

'[Pol(T-^) + ^pl(T-)} (53)

a

Finally, we must derive an expression for Ap l ( T ).	 From the definition

of Apl (T) (equation 26) and the identies (35) and (16), we have to d(12)

T	 T

6p 1(T) = '712 fdh ^dv'<U (T-v)p•^' • a U(v-X)P..g • A pl oM > (54)
o	 ap	 by

In Appendix B, we show that equation (54) may be written approximately as

2 T	 T CO

6P	 (T) _	 f	
r

d% J dv f dk R(k ) exp[-k% (v-h) ][1+ a Ap (T-X) I—	 l	 II	 II	 1	 6P	 I7 err o	 -^	 211 =o

[p	 0(T-v)+ Dp ^(T-v)] • lsi (1^) (55)
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The approximations involved in deriving equation (55) are discussed in

Appendix B. In Appendix C, a derivation of Ap 11 (T) is given, From that

discussion we have

aAP 	 _ ^- f d% J dk 11 R(k 1,)cosX(T-A) exp[-k2DIM/2]
µ	 µ=o V 'Zfr o -CO

(56)

x {2+k2A[X- (aµ AXII ( X )] } I
 P=O

where aAX 11 (T)/aµ is given by equation(D28).

The set of equations (53), (55) and (56) provides a complete system

of coupled, nonlinear integral equations, which in principle can be

solved, and substituted into equation (46) for D (T). Unfortunately,

this system cannot be solved analytically. To solve the system

numerically, we must specialize to particular forms of the power spectrum,

R(k ll ). The numerical simulations developed by Kaiser (1974) are for

R(k ll ) of the form

R(k ll ) _ -2E (1 + E2k112)-1
	 (57)

—2Tr

where E is the ratio of the correlation length of the magnetic field

turbulence, X c , to rg . If we use equation (57), the integrals over kll

can be performed analytically. For these two reasons (comparison with

numerical simulations and mathematical simplicity), we have confined our

numerical analysis to the particular case of equation (57). There are two

integrations over k 	 perform. They are

m

g (T) = J dk R(k ) exp-k2D (T)/2Ii	 II	 II 1	 (58)

err Erfc [ 2Ê "]1/2 exp[Dl(T)/2E2]
;3



and
I

!(	 h (T) = ('dk k 2R(k ) exp[ -k 2D (T) /2
J	 ll	 II	 II	 II	 1	 ]i	 o	 (59)

j4 -1/2 7E2	1/2	 D (T)	 1/2	 2
It	 _ (2TrE)	 {[2	 /Dl (T)]	 - TrErfc [ l /2E2 ]	 exp[D1 (TWE ]}
^I

The system of equations (46), (53), (55) and (56) can now be simplified

to
217

2	
r

Dµ (T) _ ^— 3/2 J do jd%g(%) [cosh, + coso Lp x(T)+sinO Apy(T) ]	 (60)
(2Tr)	 o	 0

D (T) _ ^-- f dv f d^ ;(v-%)vk[p o(T -v) + Ap (T-v) ] • [P o ( ,r-%)+ap (T-X) ]
1	 ^ o 0	 1	 -d	 1	 —y

(61)

2 T T
ppl (T) _ -^- f d% dvg(v-%) {1+[aµ6P ( T-X)] _ x

o	 µ-o

(62)

a AP (T)) =-^- fd%(T-k) cosX {g(%) + Xh(%)[^- a 
Axll(k)]}	

(63)
µ	 µ=o ,/'7Tr o	 µ	 µ=o

a

a
Ax (T)^ _ -^- jd^ cosA(T-^) 2{g(A) + Xh(%) C% - a Ax MI)	 (64)

µ	 11	
µ 

=	 µ	 II
o	 Tr o

	

3^	 µ=o

Several additional simplifications can be made. For the axisymmetric

turbulence considered here, the integrand of D (?) should be independent
µ

of 0. From the form of equations (60)-(64), this assertion may not be

obvious. However, it can be shown numerically that this is indeed the

case.. Therefore, to simplify the analysis presented here, we use the

fact that the integrand of equation (60) is independent of 0 and

evaluate it at 0 = 0. The following time symmetries are then not difficult

to prove	
i



r	 j

k

D' (T)	 D ( -T)	 (65)

	

N	 1	 1

Apx (T) = APx (- T)	 (66)
FI

	

E	 ppy(T)	 Apy(-T)	 (67)

	

`	 a AP (T) = a L1p (- ,r)	 (68)

	

f	
aµ	 II	 aµ	 II

aµAx
ll ( T) =	 aµ Ax

ll (-T)	 (69)
f 	

_i

	

r ,	 ,

	

j 	 Equations (60)-(62) simplify to

2 T

	

kl	
Dµ (T)	 fdA g(X) [cosA + aplXMI	 (70)

T o

D (T) _ ^-- TdX cosX g (X) [T3 /3 - X/2 (T2 -%2/3) +

V7T

2 T T

	

it	 fdv fdX g(v-X) vX [Ap x (T-v)[2cos(T-X) + tip x ( ,r-X)] +	 I

	

i	 V G T ' o	 o	 l	 1
r^

AplY (
T-v)[2sin (T-X)+ Oply (T-X)]} (71)

	

{1	 APlx(T)	
2 TT	41	

= -
n

1-^
r

 JdX fdv g (V-X) [1+ aµ Opll(T-%)]µ=o
Aply(T)	 J G' I oi

	

coS(T—V+X)	 AP X(T—v)

	

}?	 +cos%	 1

	

{i	 sin(T-v+%)'	 pply(T-V)

	

i	 Ap y(T —v)
E	

+sink	 (72)
-&P x ( T-v)I

I
s

i

I
b	 r	 22
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To produce a numerical solution, one would like to transform

{	 these equations into a system of differential equations. However, the

best that can be done with this system is to derive a set of nonlinear

int,egro-differential equations which can, however, be numerically

integrated using a standard Adams-Bashforth predictor-corrector technique

(Krogh 1966). In Appendix D, we outline the transformation of the system

of equations (70)-(72) and (6,3)-(64) to a set of integro-differential

equations. We defer until §V a discussion of the numerical results of

that integration. We turn now to an appropriate derivation of the system

of equations that describes scattering at arbitrary pitch angle.

5

i

1

{

k
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IV SCATTERING THROUGH ARBITRARY PITCH ANGLE - AN APPROXIMATE
CALCULATION IN A SLAB MODEL

In this section, we derive a set of approximate equations to

describe pitch angle scattering at arbitrary pitch angles in a slab

model.. Many terms proportional to Ap (T) will be dropped in this analysis

for reasons that are basically heuristic. An estimate of the validity of

the various approximations made below can be made a posteriori by com-

paring the results of §III with the results of this section. The system

of equations derived here is similar to that derived by Ben-Israel, et al.

(1975) in their discussion of ion-cyclotron turbulence.

The equation for D
w 

(T) is now

2	 T	 2Tr
Dµ (T) _ ^— 3/2 10, sdo fdk^ i R(k11)cos [k(P%-Ax^l(]^)] exp[-k2Dl(X)/2]

(2TT)	 o	 o -00

A

[(1-p
2
)cosX + Ap 1 W pl]	 (73)

The first quantity we evaluate is Ax ( T), defined by equations

(38) and (39). When one uses the approximation (43), Ax (T) becomes

Ax
11 (T) _	

-3 fdX 
.ldv 

Id3k Id3k' <expi[k•x(T-v) + V. x(T-X)]

	

(2Tr) o	 rn

(74)

Po (T-v) •^' (k) •+(v-A) •S^' (k') + i.^(v-%) •moo (T-v) 	 ^!+(v-^) •^ (k ^) ] •^>

In writing equation (74), we have replaced p( T-v) by po(T-v)

everywhere. The justification for doing this is two - fold. First, one

expects that nonlinear terms such as Ap(T) and p' (T) . will be less

important for p not near zero. The reasoning here is that quasilinear

theory should be a very good approximation except near p = 0. As we

24



shall: see in §V, the results of this section are generally in good

agreement at p = 0 with those of §III. Second, the term Ax 11 (T) is

equivalent to a shift in the wave-particle resonance (Weinstock 1972;

Ben-Israel, et al. 1975), which is generally not the most important

term in resonant broadening theories. The most important term

characteristically is the broadening of the wave-particle resonance,

which saturates the interaction and allows particles to propagate

through p = 0. The resonance broadening is given by the term

exp-[k li 
2
D1 (T)]. The contributions to D 1 (T) from pp(T) and p'(-r)

should be even less important for p # 0, where quasilinear theory becomes

a good approximation.

One now substitutes the identity (47) into equation (74) and uses

equations (22) and (44) for slab turbulence. After some rather lengthy

matrix algebra, px ll (T) becomes

Ax ll (T) _ - 7 f d% f dv f dk11 exP[,i k 11 1P (v-X) - Ax 11 (v-A) ]-k112D1(v-X)/2} x
3 T o X -60

R(k 11 )?,cos (v-A) [2p-i k11(',-X) ( 1 -µ2 ) ] }	 (75)

Because the integrand in equation (75) is basically a function of

(v X) ' 
Ax11(,r) can be further simplified to

2 T	 Co

Axll(T) _ -^— fdX fdk11R(k11) exp[-k112D1(A)]cosX(T-X)2

	

o- _ o	 2	 (76)

[2pcos[k ll (µA	 AX 11 (A))] + (1-µ2)k 11Asin[k11(P% - Ax

Piran (1972) and Ben-Israel, et al. (1975) incorrectly write the

argument of the trigonometric functions as [µx+&x110)]

25
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k

WhAn R (k ll ) is given by equation (57), the integrals over k

be performed analytically with the result

2 T
Ax (T) _

	

	 fdA(T-X)2[2µG(J^) + (1-µ2) H(X)]	 (77)
/2T-' 0

where
co

	

.,	 G(T) = sdk R (k)cosT cos [k(µT-Ax ll (T))]exp C-k2D1 ( T)/2]	 (78)
0

1T COST ez {e-y Erfc[fz -y/2fz]+ey Erfc[fz + y/2,fz])	 (79)
{ 2/77

and

2H(T)	 jdkR (k)kTcosT sin[k (µT - Ax ll (T))]exp [ -kD1(T)/2]	 (80)

	

{	 o

= 2^ ,^ rcosT exp(z2 ) ( e-y Erfc[z -y/2z] -ey Erfc [z+y/2z]) (81)

with

z	 Dl (T)/2E2 	(82)

y = CµT - Ax ll (T)]/E	 (83)

{

To evaluate D (T), one substitutes equation (44) for R(k) into
1

equation (49). After some algebra, one finds

2 T T
D1 (T) = T— fdv fd% fdk

ll y
X(l-µ2)R(k ll )cos(v-A)exp[i kii Cµ(v-%)

/2—TT o o -co

t
Ax 	 /2]	 (84)

where we have again set p(T) = po(T)

	

f	 The double integral over time can be reduced to a single integral

so that D1(T) becomes

4
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Dl (T) _ ^_ (1-µ2){3 T3 fdAG(X) + fdNG(X)CT2A - x`3/3]
,/'TTr	 -T	 -T

Ir

SdXG(X)[T2A - X3/3])	 (85)

o

By differentiating D l (T) with respect to T, and setting T' _ -T, one 	 e

can easily show that D l (T)	 D1 (T' = -T). Consequently,

2	 T	 3

Dl ( I ^— (1-µ2) J dAG(A) [3 T3-T2^ + A /3]	 (86)
v, 2Tr	 o

The reader may have noticed that although we have dropped Ap (T)

in our derivations of Ax (T) and D
l 
(T), we have kept a term

11proportional to ApI(T)•p l in the expression for Dµ (T) (equation 73).

We expect that deviations of a particles momentum from the predictions

of quasilinear theory would be relatively unimportant in computing

the resonance shift (Ax(T)) or the resonance broadening exp-[k^I2Dl(T)]•

i

However, in computing D (T) a contribution from pp(T) should be important

for the following reasons: in quasilinear theory for p = 0, the

wave-- particle resonance is with waves of zero wavelength, which have

zero power. Therefore, D = 0 at = 0 for the slab model in quasi- 	 a
µ

linear theory. The functions D
1
 (T)and Ax (T)serve to broaden this

'resonance ands r'_ it away from k _ CO. This leads to a finite value 	 g

for Dµ at = 0. In addition to the resonant effects (k 	 particles

are affected by long wavelength fluctuations (k N 0) that tend to mirror

them (Volk 1973; Fisk, et al. 1974; Goldstein, Klimas and Sandri 1975;

Lee and Volk 1975) . For k 	 0,	 2
neither Lx 11 	 nor 

exp[-k11 
Dl (T) ]

provides significant contributions to Dµ . The only large nonlinear

i
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contribution to Dµ for k 	 0 is the term proportional to Ap 1 (T) in

equation (73).	 This term was dropped by Beri-lsrael,et al. ( 1975) and

similar terms were neglected by V81k (1973) and by Jones, et al.
x

(1973a,b).	 We will return to this point in §V.	 We can approximate

this term in much the same way in which Ax
11
( T) was computed above. 	 If

one drops aft factors of p'(T) and Ap(T) in the integrand of equation

(55), one can easily show that

Ap	 Q0 - P	 = (1-µ2)cosTSp^(T)
1	 (87)

2 2
	

2	 T
-^ (1-µ) co 

ST fdA(T-X) cosk ( l+tanX tanT )[G(X)-µH(N)]
E V	 Tr	 o

so that

D (T) = 2^2(1-I^2) J dXG(k)[1+Sp (A)]	 (88)
µx 3 7	 o

FThe equations in the system (77)-(83),	 (86)-(88) now form a

coupled nonlinear system of integral equations for Dµ (T).	 Volk (1973)

derives an expression similar to ,equation (88), but he neglects the

term equivalent to 6p ( X)and sets Di (µ) equal to a constant when

evaluating -<exp -i k x 	 (equation 37) .	 He then finds Lx 	 and
i3	 3D1 (T) = 
3 D

µT .	 We find that Dl(T) « T 	 only when T >> 1, and consequently

the magnitude of Dgn	 is generally much smaller than would be predictedl(T)

; b	 Volk	 1973.	 Iny	 (	 )	 general, his results do not agree with ours, nor do

they fit the simulations (Kaiser 1974).

n In Appendix E this system of integro -differential equations is

rewritten as a system of coupled differential equations that can be

integrated numerically using standard techniques. 	 The results of that

ii integration are discussed in the next section.
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V. DISCUSSION

The equations that determine Dµ were integrated numerically and

the results are shown in figures 1-5. For comparison, we have included

in figures 1-3 the theoretical prediction of Jones, Kaiser and Birmingham.

(1973a,b), Vdlk (1973) and Owens (1974). In all of these figures, we

have plotted ED  to conform with the normalization used in the simulations.

[If one were to define	 to be the dimensioned value of Dµ , then

EDµ	c/wcrg)Dµ.] The theoretical predictions of quasilinear theory

(Jokipii 1971) are also shown in figures 1-3. The simulation results

are taken from Kaiser (1974). Since that reference was written, the

simulation program has been subject to some revision (Kaiser, private

communication) and the simulation results plotted in figures 1-3 may be

slightly inaccurate. Consequently, in our discussion, deviations of

^20% of our theoretical curves for ED
µ 

vs. p from the simulation points—

should not be considered significant.

In figures 1-3, the solid squares are the results of integrating

the complete set of equations derived in §III and Appendix D. The

solid curve results from integrating the system of equations derived in

§IV and Appendix E.

The factor of f2 in front of 1) in the figures arises from the

difference between linearly polarization turbulence (Jones, et a1.

1973a,b) and the planar polarization used here. The parameter E 2 of

Jones, et a1. (1973a,b) is equal to f2'. However this equivalence
— —

between our axisymmetric model and the linearly polarized model used

^i
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by Kaiser (1974) in the numerical simulations cannot be exact.

Differences arise when the phase average is performed on equation (17).

In general, for nonaxisymmetric turbulence, there would be an additional

term in equation (18) of the form -2— D a f(T ). For axisymmetric
aµ µO aO

turbulence DPO is not a function of 0 and equation (18) follows. [One

cannot avoid this complication by assuming that f is gyrotropiC4 Jones

(private communication) maintains that the consequences of this lack

of axisymmetry in the numerical simulations is expected to be small.

We proceed below to compare our results with the simulations on the

assumption that this is indeed the case.

The results shown in Figures 1-3 indicate that quasilinear

theory is quite good for w - 1/2, as expected. Significant

deviations from quasilinear theory are evident for µ N 0. Here our

results are similar to those of Jones et al. (1973a,b) and Kaiser (1974).

k'
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The predictions of VUlk (1973) are about a factor of two too high for

f211 — .3 and E = '1. The results of Owens (1974) are consistently low

and will not be discussed' any further here. All of these theories have

very different functional dependencies of the parameters and E at µ = 0.

sFigures 4 and 5 show plots of ED (p = 0) ys. E and	 One can see that

ED c 1 E	 (89)
µ

whereas, from the summary of Kaiser (1974) one has

!	
ED JKB « 113	 (90)

I	 µ

EDµALK 0C1
4 /E 	 (91)

EDµ WENS « E' 4 / ( 1+14 )	 (92)

The parameter dependence illustrated in equations (91) and (92)

results from the severe approximations made by V'dlk (1973) and Owens

(1974). Within the context of the turbulence theory presented here,

there appears to be no consistent way to recover the results of Volk

(1973) and Owens (1974). However, a detailed comparison between this

work and that of Jones, et al. (1973a,b) is possible. One can recover

the parameter dependence shown in equation (90) from our theory when

one uses in our analysis the approximations to the particle orbits used

by Jor_es; ,et al. (1973a,b) and Kaiser (1973). The basic difference

between the present work and that of Jones,et al, (1973a,b) is to use a

propagator Up in place of U in equation (19) for Dµ (T). Up is the

propagator in the partially averaged field,

^p (x,x`) 	 + P` (x) • R(x-x ` )	 (93)

A Eirther approximation is then made, namely, that in evaluating

trajectories in Pp, a guiding center approximation can be made (Kaiser 1973).

30
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One consequence of this is that U p (T) 0 V. U (T) O=O+T where 0 is the0

phase angle.

The propagator U(T), on the other hand, introduces the quantity

AP , (T) through the relation

V(T)'P = Po (T) + pP (T)	 (94)

The approximation made by Jones et al.	 (1973a , b) that Up T)( +T

is a fairly severe. one.	 It is not difficult to show that such an

approximation is equivalent to a ppl of the form (at µ = 0)

Apx (T) = acos (0 + T)	 (95)

Apy (T) = asin (0 + T)	 (96)

where we have chosen Pto be in the z-direction {^ = e ), and where
z

a is an arbitrary fiinction of T and 0.	 However, Jones, et 21. ( 1973a,b)

make the additional approximation that

(l_µ*2)1/2_ (1-µo2)1/2_ p
ol00	 (97)

_s

where here
t

Up (T)µ = µ*
r
5	 U0(T)µ = µ0	 (98)

s

But because the magnitude of the momentum is a constant,one

must have

(Vi'µ*2) N [P	 (T) + AP	 (T) ]2	 (99)01

(we have dropped quantities of the form 'tp` (T)•p' (T)>).	 Equations (97)-

(99) together require that a = 0 (or equivalently, 6p 	 = 0).	 If1 (T)

one sets the term 5p (T) = 0 in equation (88), one finds the results
1

plotted as omen circles in figures (4) and (5). 	 Now, in place of
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equation (89), one has

EDµ (Spl = 0, µ=0) oe 13	 (100)

We conclude then that the parameter dependence found by Jones,

et a1. (1973a,b) and Kaiser (1973, 1974) results from an inadequate

A
approximation to the particles' momentum, p(T). 	 It remains to be shown

whether more refined calculations of orbits in the partially averaged

field would bring their theory into closer agreement with the work

presented here. From the numerical simulations presently available, one

cannot determine the parameter dependence of D µ with any precision. The

published simulations are consistent with either an 11 3 or E,3 behavior.

Several important questions remain. First, the convergence

properties of this theory have not been investigated. In the case of

electrostatic turbulence, a convergence proof has been presented by

Thompson and Benfordi(1973), but challenged by Orszag (1975). The

electromagnetic case is considerably more complex. Perhaps comparison

with numerical simulations is the most fruitful way•to test this type

of nonlinear theory.

It is not difficult to generalize the results presented here for

different correlation functions, including isotropic turbulence, and

this work is in progress. The exponential correlation function is a

convenient one to use for many reasons, but one should bear in mind that

it has some well-known undesirable features.

Also, the validity of the adiabatic approximation has not been

investigated in any detail in the context of this resonance - broadening

approach. It is known to fail at µ = 0 in quasilinear theory,-but-is
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expected to be a better approximation here because the time integral

in equations (70) and (88) for D
P
 (r) saturates quickly. These questions

are presently being investigated.

a

a

a
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VI CONCLUSIONS

We have presented a theory for evaluating the pitch angle scattering

coefficient for particles moving in magnetostatic turbulence. The theory

is a perturbation expansion in the strength of the magnetic field fluctua-

tions, which is equivalent to the weak coupling approximation of Kadomstev

(1965). The pitch angle scattering coefficient was defined and evaluated

assuming that the adiabatic approximation is valid. This theory is expected
i

to be good for weak field fluctuations (t<<I) and arbitrary particle

rigidities. [However, for slab turbulence, the-high energy regime, a«1,

is not physically interesting.] We believe the derivation to be fairly

rigorous with a minimum of ad hoc assumptions.

The theory was evaluated in detail for the special case of a slab

turbulence model with an exponential correlation function. For p/-1, we
{

a
find that quasilinear theory provides a good approximation. At p=0,

where quasilinear theory was expected to fail, this strong turbulence

theory predicts significant scattering through 9CP —much of it due to

mirroring forces. At p=0, D µ was computed in detail. All of the impor-

tant nonlinear terms were retained. In that calculation (section III,

above), in addition to the weak coupling and adiabatic approximations,
P
r,

r	 it was assumed that terms proportional to pil(T) could be dropped. A;rk

test of the validity of that assumption will have to await more refined

numerical simulations. In section IV, Dµ was computed for arbitrary 4.

There terms in AP (T) were omitted from the analysis; except the one

term resulting from mirroring forces. The results of section IV

evaluated at p=O compare favorably to the more exact calculation of section

III (cf. figs. 1-3)•

U. `
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We found that eD,(µ=0) « I?e. A direct comparison of these results

with those of Kaiser (1973, 1974) and Jones et a1. (1973a,b) showed that

their approximate evaluation of their theory neglected the term in Al2 (T)

that comes from mirroring. Our theory reduces to theirs (within factors

of N 2) if one drops all terms in Ap ,i (T) in the analysis tf.figs. 4 and 5).

It remains to be shown whether a more accurate calculation of particle

orbits in the partially averaged field of Jones,et al. (1973a,b) and Kaiser

(1973, 1974) will bring their results into agreement with ours. The
i

simulations presently available (Kaiser 1974) cannot distinguish between
r

k	 a pitch angle scattering coefficient proportional to T3 or c'

G

j

	

	 The success of this theory in matching the numerical simulations

leads to the conclusion that the weak coupling approximation is a good

one in this problem. The adiabatic approximation also appears valid,

j

	

	 though more extensive checks of this are possible and are in progress.

Our general conclusion is that Dµ can be accurately computed within

weak coupling, strong turbulence theory, if a sufficiently good evalua-

tion of the particles' momentum ,(and position) is included. We believe

that this is the first calculation of Dµ to do this. Generalization

to other correlation functions and other turbulence geometrics (e.g.

isotropic) is in progress.

The author would like to acknowledge useful and stimulating dis-

cussions with Mr. Z. Piran and Drs. A. Eviatar;; L. A. Fisk, M. A. Forman,

F. C. Jones, A. J. Klimas, J. D. Scudder and J. Weinstock. Messrs. H.
r

Eiserike and C. I. Dickman are gratefully thanked for their help with
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APPENDIX A

In this appendix we show that, for slab turbulence at µ=i•-the

.following terms are approximately zero

<pi (V)-p!  	 0	 (Al)

<Pl (v) expik11Xll 	 > —'- 0
	 (A2)

In analogy to equation (42) we immediately have

<Pl M-P.L(%)> = -1^a _IdTOfds EU(V-T)p•Qt•C(T)

•p(X-S)> 	

v 	 1i	

(A3)

Using equation (47) for 0 1 (2S), one has

V k	 a	 p
<^l(V)•PI(^)> _ -1^a 0fdTO fdS <p(V-T)•p^^[X(V-T)]• S^ •e l(T+S)•S^•

If one writes the fluctuation fields as Fourier transforms, and performs

the indicated matrix algebra, one finds

212 v

<21( v ) -R, W>^f2rr^fdr Sds f^	 ^IIR(kll(T+s) exp C-kIIDi(v-T,X-s)/2]

<p11 ( v -T)pl^ (%-s)>	 (A5)

where we have expanded the correlation and used the fact that at 4=0,

<pp(T)>=O. In principle, it is possible to retain equation (A5), but

to do,so would significantly complicate the analysis. _However, this

term is not expected to produce a significant contribution to D1(T)

because the correlations in equation (A5) are in general evaluated at

different times. In the context of the weak coupling approximation, such
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nonlocal behavior is expected to be small. Also, the correlation

<p ll (v)P II (X)> is formally proportional to If, which implies that

<pl(v)•pi(^)> is (§(1^g ). For these reasons we arrive at equation (Al).

We return to equation (A2), which can be written as

<g.L( v ) expik Il x ll ( X )> _ < ĵ (v ) expik ll x ll (X)>	 (A6)

i
Note that

i

	a	 g'(v)=[U(v)-UM ]P I 	(A7)

From the identity (16), we then have

v.

%' ( v ) expik ll xll (X)> _ -j< fd s U(V-S)CZ
,
 U(s)-<S'U(s)>]pl^

expik ll x ll (X)>	 (A8)

If one approximates U as U in equation (A8), then the second term is

clearly of higher order in it and one has

	

^	 v

4j v )expik ll x ll  	 o^dTrU(v-T)Y'Uo (T)P l] expikll xll ( X )>	 (A9)

t

q	 (	 )	 p C it ll ( ) ]	 ( )	 P' C II IIwhere we have used equation 36	 If we rewrite ex i k x X as U ^ ex i k x ],
i

and use equation (16), equation (A9) becomes

	

4	 V

pl( ) expikllxll (^`)> - 1 Of dT U(V -T)Z UO ( T )Pl ,J

expikll xil>	 (A10)

Following Ben-Israeli et al. (1975) we find, to lowest order in

<p'i(v)exp kllXll (^)> ^. _i^a o fdT < T U(v-T}g•^•16 (T)To fas 7(X -s)

A.n.^t(S).k'	
(all)
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A

k

1

1 v p%ds R
_i12
 T	 k <e ik x r v-T x r X-s	 r

2n 
t of

d
. of	

( II) xP IIC ^^(	 )- II(	 )]skpPll(v-T)^,.(^-s)

•^il(s )> (Al2)

r-

In the analysis presented here, we will drop any terms in pjl(T).

This is equivalent to ignoring nonlocal correlations of the form <g'(T)'(X)>.

we expect that in the context of the weak coupling approxima-

tion, nonlocal correlations between momentum and position fluctuations

should be less important than autocorrelations of fluctuation in posi-

tion evaluated at equal times [ e.g. D1 (T,T)= <x'(T)x'(T) >]. For a more

comprehensive discussion of these various correlations, and their role

in determining D µ(T), the reader is referred to Ben-Israel, at al. (1975).
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APPENDIX B

In this appendix we derive equation (55) for Q( T).	 The result

of taking the Fourier transform of the fluctuation fields in equation

(54) is that

4
2	 T	 T	 /0

Ap- (T)_	 _3	 fek fd?k'<exp[ik•x(T-v)]p(T-v)• Cl '(k')•C(T-v)o fCIXjdv

4
(2Tr)

[^—A	 + n•,Dfi(T)•0, P(T-X)-0'(k')•(;i(%)exp[i,z'•x(T-%)]>	 (Bl)
I

^p

where we have used the approximation

U(T) 6	
s.

^	
^	

s
	

U(T)=C(T) •[6 ̂  + n-e(T).v]U(T)	 (B2)

cr	 6pb ( T )	 6p

If one substitutes the identity (47) for 0 1 (k) and uses equations (22)

and (44), it fol,.ows, after some straightforward algebra, that

2	 T	 T	 °°	 -	 r
d%,fdv^dkliR(kll )<exp[ikllxll (v-A)] fp ' (T-v:)V (v-X-T)

2Tr
s

'C6^ pll (T-X) + ik il p ll ( T -X )^ ^ r ll (T-% ) -pl(T-v) Zt (X)
t 6pl	 6pl

.[	 p ll (T-),)	 + ikllpll (T-k)(	 rll ( T—h) - (T-v))} >	 (B3) j

s Again, we drop terms containing pil(T). 	 Equation (55) follows immediately
i

k' when one uses the approximation (A2).

f

}

{
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APPENDIX r

From equation (40) for Ak(T) we have

Ap ll (T) _ ^a J dX Sdv <U(T-v)p•Q•L U(v-X) A C0>	 (Cl)
o

Following the derivation of Axll(T)given in §IV, one has

2	 T	 T	 Co

Ap il (T)	 ofd`, fdv jdkllR(kll)exp(ikll[p(v-X)]-Axll ( v-% )*1-kII Dji (v-%)/2)

^^ets ( v-7O[2µ-ikll (1-µs ) (v-%)]	 (C2)

which becomes

_2T2 T	 m	
8

Apil (T) _	 .. f C1% Sdkil R ( kll ) eXA[-kll D, (%)] ( T-k ) aV%
o 

2
_a

(2µ aV[kli (w%-Axll (%))] + (1-µ? )k11X sIn[kli (pX-Axl) (7))])	 (C3)

Equation (56) follows immediately.

_	
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APPENDIX D

In the discussion below we outline the transformation of equations

(70)-(72) and (63)-( 64 ) to a system of i.ntegro-differential equations

that can be solved numerically. Equation (70) can be easily converted

into a differential equation

Dµ( T )=a D,(T) = Tr g(T)[. (T) + APX(T)a	 (Dl)
2TT

Differentiating equation (71) yields

	

2 a	
T	

a	 2	 T T
Di( T ) =-r 

27
fdXw Xg ( X )(T -AT)+ a fd% fdvg(V-X)(2T-V-X)

0
	 V-2-TT °	 0

Now define

fl ( T ) = g ( T ) PVT	 (D3)i

fa ( T ) = tg ( T ) WT	 (D4)

f3 (T) = of dX f dvg ( v-% ) AEl(v) • C p b (%)+JAPl(%)]	 (D5)

T T
f4 (T) = faa SdVg (v-%) (v+%)Apl(V) -CPS (%)4APl(1)1 	 (D6)

o

n
with fi (o) 0. i 1-4. Therefore

Dl ( T ) = V-2TT C T3fl (T)-Tfa(T) +2Tf3(T)-f4(`f)]	 (D7)
V

Now corn idea

fY	 T	 T

3 (T)=OJ d^g(^) Apl(^) • P to (T -A)+ f dV$(V-T)Apl (V) •p- (T)

+f dxg(T-x)Ap,^(x)'Pl(T)	 (D$)

o
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I

and define

f6 ( T ) = g(T)tT

i6 (T) = Tg(T)SIn T., L fs ( 0 ) = fe (0) = o]

T

9i (T)=;dVg(T -V)Apy,(V)

rT
q2 ( T ) =

eJ 
dVg(T-V)Ap-LY(V)

T

q3( T )= Idvvg(T-V)Ap.L,(V)

T
q4 (T)=- fdVVg(T-V)Qply(V)

so that

f3 ( T ) - fl ( T )C Ap y,( T )aU T + Ap^y(T-)S1nT ] +

fs ( T )C OP,ix( T ) Sln T - ^pyy(T 'r ] +

q l ( T )[aVT + Qp,(T)]4g 2 (T)[Sln T + Ap , y(T)]	 (D15)

Similarly,
z

i4 (T) = [2Tfl (T)-f2 ( T )][ Ap ( T )W T + Ap ly (T)Sln T] +
Ix

C2Tf5 ( T ) —fs( T )]C AP (T)Sln T	 Ap (T)CWT]	

J

CTgl ( T ) 4g3 (T)I[aVT + APlX( T )] + [ Tq2 (T)-4q4 (T)][S^ T+Qp-LY (T)]	 a
a

(Dl6)

In a completely analogous manner one has
;1



2	 r_--
AP^X (T) =	 -^	 u'T[fl(T)(1 + µ API,(T))	 Tfs(T)-f6(T)+f7.(T)+

2Tr	 µ 
=0+

+ f]o(T)+f,2(T)]

-sin T[ -f5 ( T ) ( 1 + 
µ APII (T) ) µ Tfl (T)-f2 (T)+fe (T)+

=0+

+fg (T)+fu(T)] + ql ( T )[ 1 + µ AP II (T) µ=0) (D17)

Aply(T)=-.—	 (aVT[fs (T) (1 + 
^µ API, (T) ) µ_0-Tfl (T)+f2 (T)-fg (T)

2n

-fg (10) — flu ( T)^

-SIn T[ fl (T) (1 + 
	

Apll (T) ) µ_0+ Tf6 (T)-f6 (T) +f7 (T)

+flo ( T ) +f12 ( T )] +	 2 ( T )[1 
+ L 

APII ( T ) ] ) (D18)

where a

f7 (T)	 f6 ( T ) L APII (T) (Dl9)=PO

f8 (T) = f, (T)^ APU (T)I_
µ	 I

(D20)
µ -0

w fg ( T )	 _ ql ( T )a T-92 ( T ) sIn T (D21)

f30( T )	 (T)C	 T+q1 ( T ) SIn T (D22)

f11(T)	 = fg ( T )[	 AP II (T)lµ (D^3)

a

f	 =0

f32(T)	 = f7o( T )[7 APII (T)] µ
_0 (D24)

!	 Finally

43

^ 	
ff



r

µ 
APil (T.)	 [Tf33(T)-f2} (T)]

µ=0 -
V2—Tr

where

ff (T) = casT {g(T) + Th(T)[T - L oX (T)J	 }

(W5.)

(D26)
cgµ	 II	 µ=0

f14( T ) = Tf73( T )	 ( D^7)
0
t

and

gT [ ^µX	 ]µ=0	 ^µ Apil(T).^
µ=0	

(D28)

The complete system of equations (Dl), (D3) 1 (D4), (D7), (D9) and

(D28) can be numerically integrated using a standard Adams-Bashforth

predictor - corrector method.

i

i
4k
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APPENDIX E

The system of equations derived in §IV can be converted to the

following set of differential equations. The derivation is straight-

forward.

Dµ( T ) =2- 1 	 (1-µs)G(T)C1+6p, (T)], Dµ(0) =0	(El)
2Tr

Di ( T) = 4 
2 (1-e) 

TCTel ( T ) -e2 ( T)J, DI(0)=O	 (E2)
2n

el (T) = G (T)	 (E3)

e2 (T) = TG(T)	 (E4)

A jj (T)=-?-TL- (24CTe1 (T)-e2 (T)1 + (1-µ2 )C?e3 (T)-e4 (T)13 	 (E5)2TT

Tj

f
;3(T) = H ( T )	 (E6)

e4( T ) = TH( T )	 (E7)

G(T) and H(T)are given by equations (78) and (8o). 6P 1(T) follows from

equation (86).

F

i
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FIGURE CAPTIONS

Figure 1. The dimensionless pitch angle diffusion coefficient EDµ

is plotted as a function of µ. 	 The solid square represents

the solution of the set of equations derived in §III, vrhile

the solid line follows from the system of equations

discussed in §IV. The parameter values are E=1, 1'2^=0.1.

Figure 2. ED	 vs. µ for E=2, V'2-^=0.15.	 The notation follows that
µ —

of figure 1.

Figure 3. ED	 vs. for E=1, /22'p=0.3.	 'The notation follows that of
µ —

figure 1.

Figure 4. ED	 vs. E at µ=0 for r2^=0.3.	 When the momentum deviation
µ —

terms are retained (Ap(T)#0), EDµ (µ=0) is approximately

proportional to E (solid circles). = However, when these

momentum terms are dropped (6p 	 in equation 88) one.L=O

finds that ED	 is approximately independent of E
11

(open circles), thus recovering the results of Jones,

et al.	 (1973a,b).

Figure 5. ED µ(µ=0) vs. ^ for E=5.	 EDµ (E=0) is approximately

proportional to X13 whether the momentum deviation terms

are kept (solid circles) of dropped (open circles).
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