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ABSTRACT

In studying applications of microwave remote sensing techniques to
agricultural, hydrological, and other related problems, the soil dielectric
properties are of considerable importance. In recent years, numerous soil
dielectric constant measurements have been made. Due to the complexity of
the data acquisition procedure, however, the number of measurements in a
single experiment is usually too small to permit a systematic analysis of the
effects of the various parameters that influence soil dielectric properties.

The objective of this report is twofold: 1) to present soil dielectric
constant measurements obtained by various researchers in one publication, thereby
assisting in analysis and utilization of microwave remote sensing data and 2) based
on these measurements, to determine the dependence of the dielectric constant on
various soil parameters. Moisture content is given special attention because of its
practical significance in remote sensing and because it represents the single most
influential parameter as far as soil dielectric properties are concerned. -From the
experimental measurements collected in this report, relative complex dielectric
constant curves are derived as a function of volumetric soil water content at three
frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures
(sand, loam, and clay). These curves, presented in both tabular and graphical form,
were chosen as representative of the reported experimental data. Calculations based
on these curves showed that the power reflection coefficient and emissivity, unlike

skin depth, vary only slightly as a function of frequency and soil texture.



1.0 INTRODUCTION

The target=sensor interaction process in remote sensing is governed by the
target geometry and dielectric properties relative to the sensor parameters, At
microwave frequencies, the dielectric properties of soils are particularly important
because 1) they are very susceptible to moisture content, and 2) at incidence angles
close to nadir, the target response of vegetation=covered surfaces can be influenced
by contribution from the underlying soil . These characteristics have recently stimulated
considerable research efforts to ascertain the operational feasibility of microwave sensors
in remote soil water content determination (Appendix A).

The relationship between dielectric properties and soil characteristics has
not been dealt with systematically, partly because experimental data are presented
in a variety of sources. The purpose of this report is to analyze the behavior of
soil dielectric properties at microwave frequencies as a function of several soil

variables .

2.0 TARGET-SENSOR INTERACTION

The target response in the microwave region of the electromagnetic
spectrum can be characterized in terms of its backscattering coefficient for active
sensors (radar) and in terms of its emissivity for passive radiometers. Both quantities
are functions of the following sensor and target parameters:

Sensor Parameters

1. Frequency
2. Incidence angle

3. Polarization

Target Parameters

4. Dielectric properties

5. Roughness of the surface and of subsurface from which a
measurable radiation is reflected or emitted (relative to
wavelength)

6. Thermometric temperature of the surface and subsurface

material .



The effects of the first five parameters are explicit for either active or
passive sensors. Thermometric temperature affects the surface scattering and
emission character through its influence on the dielectric properties. Moreover,
the radiation measured by a radiometer is directly proportional to the target
thermometric temperature .

Dielectric properties of a medium influence the radar scattering
coefficient and the radiometer emissivity in two ways: a) through the Fresnel
reflection coefficient and b) by defining the effective depth in the medium
responsible for the backscattered or the emitted energy. Hence, before discussing
the.dielectric properties of soils, it might be helpful to define these wave propagation

parameters in mathematical form.

2.1 Reflection Coefficient

The Fresnel reflection coefficient r is defined for a perfectly smooth
interface between two media. It relates the magnitude and phase of the reflected
electric and magnetic fields to those of the incident fields of a plane wave. In terms
of the subject of this report, the parameter of interest is the power reflection coefficient,
R =r". If the incident wave is in air (assumed to have the some electromagnetic
properties as vacuum) and the reflecting medium is homogeneous, then R is given by
(Hidy, et al., 1972):

¢, = L= dl] 0
[(p+1)" +q7]

Lk = e+ (ukym o) ] 2
Vo Uk +p) ¢ (uky+ @) ]

where h and v are subscripts defining horizontal and vertical polarization, respectively,
- k] and k2 are the real and imaginary parts of the relative complex dielectric constant,
respectively, and 1= cos 8 where 8 is the incidence angle relative to nadir. The

parameters p and q are given by:



1/2 1/2

1 2 2 2 2
P — {16 +2= 1%+ 17 +(k]+u-1)}
1/2 1/2
1 2.2 2 2
q=T [[(k]+u-l) +k2] -(k]+u-l)}

For a smooth surface, the emissivity is defined as:

€i=]-Ri; i=zhorv 3

. Although most natural earth surfaces (excluding calm water) are not electromagnetically
smooth at microwave frequencies, the dependence of R on soil moisture (through k] and
k2) can be used as a guide in the study of the response of microwave sensors to soil

moisture .,

2.2 Skin Depth

The energy received by a microwave radiometer viewing a given target is
composed of contributions from the target surface as well as sub=surface layers.
Similarly, the backscattered energy- (in the cose of active microwave sensors) is also
depth dependent. The penetration of microwaves into a medium is defined by the

attenuation coefficient of the medium, which in turn is a function of its dielectric

properties:
k ky 2 1/2 Z:
a= 2L [—2‘— [<1+<Iif> ) -11] )
where

a = attenuation coefficient, nepers/m ;
A = wavelength, m;
k] , k2= real and imaginary parts of the relative dielectric constant of

the medium.



In the above expression, the relative magnetic permeability was assumed to be unity,
which is a good approximation at microwave frequencies for most natural surfaces
including water.

At o depth h beneath the surface, the power is related to the surface value
P(o) by:

P(h) =P(o) e-2cxh ()
At a depth & such that ad=1, PE((_::T)' =0.13. & is defined as the skin depth.
Reflections from a plane & deep by a perfect reflector will undergo additional
attenuation by the same amount, thereby arriving at the surface having o magnitude
that has been reduced to = 0.017. If the medium depth profile of k, and ko is not
a constant, then & can be defined by:

3

Iadh= 1 (6)

(o]

3.0 DIELECTRIC PROPERTIES OF SOILS

For naturally occurring substances, dielectric constant measurements in the
microwave region are usually not repeatable by different investigators (Edgerton, et
al., 1971, Ward et al., 1969). Dielectric measurements of soils require high pre-
cision and are time-consuming because of the number of factors that affect soil
dielectric behavior (Poe et al., 1971), Furthermore, since adequate techniques
are available only in the laboratory, preparation of samples for measurements in-
volves a profound disturbance of the mutual arrangements of soil aggregates. It is
not certain to what extent the laboratory-prepared samples are representative of
soils as they exist in the field. However, since no better data are available, these
measurements are continually used for interpretation of remote sensing data.

The dependence of the dielectric constant has been studied as a function of
several parameters: moisture, bulk density, soil type, temperature, and frequency.

These effects are discussed in the following sections.



3.1 Moisture

For soil dielectric constant measure ments, soil moisture is usually expressed

on a weight basis (i .e ., gravimetrically):

w
w
m = x 100 (%) 7
w WZ
where
m, = moisture content by dry weight (%);

WW = weight of water in the sample (g);
W, = weight of dry soil in the sample (g).

Lundien (1971) suggested that moisture content expressed on a volume basis may be
preferrable because data plotted against the volumetric water content m, should
haove little sensitivity to changes in bulk density or degree of soil compaction. The
value of m may be calculated using the bulk density of soil sample o and the

density of water P

Ww - 5 3
mv =-Wm ( grcn'S/Cm ) (8)

When soil moisture is expressed on a weight basis, it is possible for two soils to contain
the same water content in percent by weight while the actual amounts of water differ.
For example, a 30% moisture content represents both 0.36 g of water for bulk density of
1.2 g/cm3 and 0.54 g for bulk density of 1 .Bg/cm3 in 1 cm3 of soil. It has been

argued that the number of water molecules (i.e ., dipole moments) per unit volume
rather than the weight proportion determines the dielectric contribution of water
(Hoekstra and Delaney, 1974). Formulas for calculating dielectric constants of
mixtures are also based on volume fractions (Poe et al., 1971; Birchak et al., 1974).
Consequently, soil water should be expressed in cm3 or grams per | cm3 of soil when
related to soil dielectric properties. However, many soil dielectric constant

measurements have been presented on a weight basis only. In this report, both data

have been included.



Available studies show that the relative (with respect to vacuum) dielectric
constant of soils increases with increasing moisture content. This is to be expected
since the relative permittivity of dry soil is less than 5 while that of water can be
more than an order of magnitude larger (Figure 1). Figures 2 through 15 contain
measurements on the weight basis, and Figures 17 through 24 show dielectric constant
as a function of water expressed in grams per cm3. The data are divided according to
frequency and soil texture (i.e., relative proportions of soil particles of different

sizes). The following observations can be made.

(1) Few of the measurements were taken for moisture contents near 0 per
cent. Results of Matzler (1970, Figure 12) and Geiger and Williams
(1972,Figure 14) show a tendency toward sharp increase in the real
part of the dielectric constant k] for this moisture content range. Matzler
(1970) suggested that such increase may be due to chemical changes
resulting from addition of water, such as hydration. From the remote
sensing standpoint, these changes are not very important since under
natural conditions, dry soil always contains some water. For example,
the amount of hygroscopic water (i.e., soil water held mostly by soil

.colloids under tensions above approximately 31 atmospheres so that it

is unavailable to plants) was found to be 3.4% for a sandy soil and
16.1% for a silty cloy (Russell, 1939),

(2) At low moisture contents, k ) increases slowly (Figures 2, 4,
8, 10) or remains constant (Figures 6, 12). Lundien (1971)
and Wiebe (1971) explained this phenomenon by the adsorption
of water at the surface of fine particles; the adsorbed water
has a limited mobility (similar to water molecules bound in
ice) and consequently its dielectric constant can be as low
as 0.1 that of free water (Grim, 1968). The possibility that



108 107 10'° 10" 102
Frequency, Hz

Figure 1. The dielectric spectrum of water at two temperatures, (From
Hoekstra and Delaney (1974)).
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YUMA SAND, 1.1 GHz (LUNDIEN, 1971)
YUMA-SAND, 1.5 GHz (LUNDIEN, 1971)
SAND, 0.13 GHz (LESCHANSKII et al., 1971)
SAND, 0.3 GHz LESCHANSKII etal., 1971)
SAND, 1.0 GHz (LESCHANSKI etal., 1971)
SAND, 3.0 GHz (LESCHANSKI1 etal., 1971)
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Figure 2. Relative dielectric constant values of soil as a function
of gravimetric water content: Sand; frequency 0.13 GHz -
3.0 GHz; real port.
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Figure 4. Relative dielectric constant values of soil as a function of gravimetric water

content: Loom; frequency 0.13 GHz - 3.0 GHz; real part.
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a OPENWOOD SILT LOAM, 1.1 GHz (LUNDIEN, 1971)
a OPENWOOD SILT LOAM, 1.5 GHz (LUNDIEN, 1971)
® RICHFIELD SILT LOAM, 0.3 GHz (LUNDIEN, 1966)
o LOAM, 0.13 GHz (LESCHANSK I etal., 1971)
Y LOAM, 0.3 GHz (LESCHANSKII et al., 1971)
O LOAM, 1.0 GHz (LESCHANSKI! et al., 1971)
V LOAM, 3.0 GHz (LESCHANSKI1 etal., 1971)
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Figure 5. Relative dielectric constant values of soil as a function of gravimetric
water content: Loam; frequency 0.13 GHz = 3.0 GHz; imoginary part.
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water content: Sand; frequency 9.5 GHz - 19.4 GHz; real part,

14



a

& SAND, 9.5 GHz

O .LOAMY FINE SAND, 19.4 GHz

(LESCHANSK [ et al., 1971)
SAND, 15.8 GHz
(LESCHANSK 11 et al., 1971)

(GEIGER AND W ILLIAMS,
TO BE PUBLISHED)

[
(& -

58

= 1t o)
<

S 60

= 8

=57 o

R o

Z 4] oa

’-—

23 N

S !

o2f g

=1 9

et o

dogﬁlét : . ; ! s
a 0 5 10 15 20 25 30

SOIL MOISTURE (PERCENT BY WEIGHT)

Figure 9. Relative dielectric constant values of soil as a

function of gravimetric water content: Sand;
frequency 9.5 GHz - 19.4 GHz; imoginary part.



o ABILENE CLAY LOAM,
10.6 GHz (WIEBE, 1971)

x HOBAN SANDY LOAM,
10.6 GHz (WIEBE, 1971)

o GILA SANDY LOAM,
10.6 GHz (WIEBE, 1971)

o AMARILLO FINE SANDY LOAM,
10.6 GHz (WIEBE, 1971)

* RICHFIELD SILT LOAM,
9.4 GHz (LUNDIEN, 1966)

+ LOAM, 9.5 GHz
(LESCHANSKI1 et al., 1971)

Y LOAM, 15.8 GHz

2 - (LESCHANSKI1 et al., 1971)
V FINE SANDY LOAM, 19.4 GHz
22 r (GEIGER AND WILLIAMS,
20t TO BE PUBLI SHED)
= o® |4 SANDY CLAY LOAM, 19.4 GHz
3181 + (GEIGER AND WILLIAMS,
< TO BE PUBLI SHED)
=2 ,16 i ® g A
= 14t +y * v
<C
t/_) 12 i YX
S v
3
o 10 + 4
= 8t Va
e o *
= 6f +
= Lo g
43 +V, &
f “x
& 7
0 1 1 I i i 1 1 i )
0 5 10 15 20 25 30 35 40 45

SOIL MOISTURE (PERCENT BY WEIGHT)

Figure 10, Relative dielectric constant values of soil as a function of grovimetric water content:
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Figure 12, Relative dielectric constant volues of soil as a function of gravimetric

water content: Clay; frequency 9.4 GHz - 13.7 GHz; real part.
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soil dielectric constant is affected mostly by the loosely held
" water is of potentially great practical importonce since only

the water held with sufficiently small strength is available to

plants. These relations should affect data in Figures 2 to 14
in the following ways:

(i) The range in which kl changes slowly with in-
creasing moisture content should expand with
increasing proportion of clay porticles, Data
in Figure 8, 10 and 12 (sand to clay in texture)
indicate that this probably occurs but the meo-
surements are not sufficiently detailed to estab-
lish the trend with certainty. Considering the
range of the hygroscopic water contents between
sand and clay mentioned above, one would
expect the differences to be more pronounced.,
It should be noted that careful measurements by
Geiger and Williams (1972, Figure 14) showed
such a trend within a somewhat narrow textural
range ( loomy fine sand to sandy clay loam ).
Lundien (1971) also demonstrated this dependence

using measurements at five frequencies between

1.074 GHz and 1.499 GHz.

(ii) As the proportion of fine particles increases, the k,
curves should be shifted in the direction of higher
moisture contents and should have less steep slopes.
This is partly illustrated in Figures 2, 4, 6 and Figures
8, 10, 12, but a considerable overlap exists among

various soils.

In the measurements presented on a volume basis (Figures 17 through
24), the above trends are not as apparent. For example, k values
of Yuma sand and San Antonio clay loam near 1.0 GHz (Figure 19)

are very similar. In addition, the values of k] appear to increase
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Figure 16. Measured dielectric constant data of loamy soils as a function of
gravimetric water content around 10 GHz. Solid curves were drawn
to fit the data points and the broken curves were extrapolated.
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(LUNDIEN, 1971)
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Figure 19. Relative dielectric constant values of soil as a function of volumetric
water content: Sand, loam, clay; frequency 1.1 GHz -~ 1.5 GHz;

real part.
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Figure 20. Relative dielectric constant values of soil as a function of volumetric
water content: Sand, loam, clay; frequency 1.1 GHz - 1.5 GHz;
imaginary part,
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Figure 21. Relative dielectric constant values of soil as a function

of volumetric water content: Sand, loam, clay; frequency
3.8 GHz - 4.0 GHz; real part.
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Figure 22. Relative dielectric constant values of soil as a function
of volumetric water content: Sand, loam, clay; frequency
3.8 GHz - 4.0 GHz; imoaginary part.
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® MANCHESTER FINE SAND, 10.0 GHz
(HOEKSTRA AND DELANEY, 1974)
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Figure 23. Relative dielectric constant values of soil as a function of
volumetric warer content: Sand, loam, clay; frequency

10.0 GHz = 26.0 GHz; real part.

30



® MANCHESTER FINE SAND, 10.0 GHz
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Figure 24. Relative dielectric constant values of soil as a function of
volumetric water content: Sand, loam, clay; frequency
10.0 GHz - 26.0 GHz; imaginary part.
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faster at low water contents than in Figures 2 to 14, and the effect
of adsorbed water is not shown. Hoekstra and Delaney (1974)
concluded that within the experimental error, the relaxation of
water in sandy soils was identical to that in clay soils; this is

also evident from data from Manchester fine sand, Fairbanks silt,
and Goodrich clay (Figure 21).

To summarize, evidence regarding the effect of adsorbed
water on the soil dielectric properties is not conclusive. Results
of Lundien (1971), Geiger and Williams (1972), and Hipp (1974)
suggests that within a given set of experimental conditions, such an
effect may be shown if "proper" soils are used; the latter condition
seems necessary because the dielectric constant has been found fo
differ for two soils of the same texture (San Antonio clay loam and
Puerto Rico clay loam, 1.0 GHz, see Figure 19). The difference
between soils of various textures appears smaller if the dielectric
constant is expressed as a function of water content by volume.
Consequently, before more conclusive results become available,
the effect of adsorbed water on soil dielectric constant may be
considered negligible in the 1 GHz to 35 GHz frequency range insofar

os the interpretation of microwave remote sensing data is concerned.

Values of k] should increase for higher moisture contents and
vltimately should reach k] values of water ot the measured
frequency (Figure 1). Although soil dielectric constants are
rarely measured at moisture contents above 40 per cent, the
available data indicate trends toward the k] values of water,
An exception is measurements by Geiger and Williams
(Figures 8, 10, 14) which appear to level off at high moisture
contents.,

Figure 16 shows average curves for real and imaginary
parts of the dielectric constant based on several measurements
of loamy soils at frequencies near 10 GHz. The broken lines
were drawn by extrapolating between experimental measure~
ments and the dielectric constants of water. Assuming that

the extrapolation is realistic, it can be seen that the real
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part of the dielectric constant should increase nearly linearly
at higher soil moisture content. Lundien's (1966, 1971) and
Wiebe's (1971) measurements showed a similar relationship.
However, k | values of Geiger and Williams, Leschanskii

et al., (1971) and others tended to level off at higher moisture
contents. The discrepancy has not yet been resolved; it is
conceivable, however, that the soil/water mixing properties
and the tendency for separation at higher moisture content
could cause these differences. Another factor affecting the
shape of these curves is bulk density. As discussed in Section
3.2 , the upper portions of the curves would shift to the right

if moisture were measured in the volumetric units.

(5) The imaginary part of the dielectric constant k2 was smaller
at most frequencies than the real part and also increased monotonically
with the increasing moisture content. Two exceptions to this
trend were found, First, measurements of Geiger and
Williams (Figures 9, 11, 15) showed an inflection point and
were of the same order of magnitude as k, curves. Secondly,
data of Leschanskii et. al., (1971) obtained at 0.13 GHz and
0.3 GHz exhibited relatively high k, values for loam (Figure
5); in the extreme case (0.3 GHz, 20% moisfure)kz exceeded
k] . In contrasf,k2 values for sand were ten times smaller
under otherwise identical conditions (Figure 3). This differ-
ence was explained by attenuating effect of ions present in
the soil exchange complex; the amount of ions retained in
loam is larger than in sand, and therefore attenuation is
higher (Leschanskii et. al., 1971). The difference in attenu-

~ ation was not detected at higher frequencies (centimeter
wavelengths) because the attenuation by molecules of water
predominates there and consequently the effect of soil mater-
ial is obscured (Leschanskii et, al., 1971). Lundien (1971) also
demonstrated that conductivity (which is directly proportional
to k2 at a given frequency) increased as the proportion of

fine soil particles increased from sand to clay for frequencies between
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1.074 GHz ond 1.499 GHz. Figure 18 shows that k2 was

much higher at 0.03 GHz than at 0.5 GHz; no such difference

was detected at higher frequencies for the same soils (Figure 22),
Thus the ion exchange characteristics of soil material oppear to
offect soil dielectric properties at low frequencies. However,

the magnitude of the effect at 0.3 GHz is' more pronounced in

the data reported by Leschanskii et al., (1971) (Figure 5) compared
with Lundien's (1966, 1971). It should be noted that Hoekstra and
Delaney (1974) did not detect any ionic interaction ot 0.5 GHz.

The relotionship between the relative dielectric constant and soil moisture
has been quantified by Lundien (1971) for five frequencies (between 1.074 GHz and
1.499 GHz) in the following form: '

m, = m]— - kQ:216_ + 0.1 (grams per crﬁ3) 9)

]

3.2 Bulk Density
Campbell and Ulrichs (1969) showed that the real part of the dielectric

constant k, of rocks occupied a narrow range of values when the bulk density was
constant (Figure 25). This range expanded considerably for the same rocks when
samples with different bulk densities (constant porosity) were prepared (Figure 26).

This difference could be due to either inherent dielectric properties of the various rocks
or change in bulk density ;. Figure 27 shows that k, increases with bulk density for

a given soil type; consequently, bulk density of a given soil or rock materiol affects

its dielectric constant. The curve in Figure 27 was calculated from Krotikov's

(1962, in : Peake et al., 1966) formula:

o, \2
o = (1+ _;.) (10)

Equation (10) was also found to hold for pumice at 10 GHz (Pecke et al., 1966).
The trend shown in Figure 27is supported by results of Edgerton et al., (1971) who
noticed a decrease in dielectric constant with decreasing bulk density for low moisture

" contents,
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Figure 27. Effect of bulk density on the relative dielectric constant.
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Bulk density has an important indirect effect on the relationship between
dielectric constant and soil moisture content. Figure 28 presents some dato for
Openwood Street silt (Lundien, 1971); it is opparent that the k] values measured
for this soil can be represented adequately by a single curve regardiess of the degree
of compaction if expressed on the volume basis. When moisture contents are calculated
on the weight basis, then according to Eqs. (8) and (9), individual data points should
shift to the left (usually, p>1.0 g/cm3). This is demonstrated in Figure 28 for bulk
densities of 1.2 and 1.6 g/cm”. As a result of the shift an artificial uncertainty is
introduced into the k' versus moisture relationship. For example, k] lies between
approximately 12.0 and 14.0 for moisture content of 0.25 g/cm3 when. the scatter
dround the mean curve is taken into account. It controst, k] varies between 14.0
and 21.5 for o moisture content of 25% if bulk density of the measured sample ranges
from 1.2to 1.6 g/cm3.

The above uncertainty is included in data presented in Figures 2 through 15.

It cannot be removed unless bulk density values are also given. The intensity of
compaction added in some cases (e.g., Wiebe, 1971) is not sufficient because for a
constant compaction value, bulk density varies as a function of soil type and moisture
content; this is indicated in Figure 29 which was prepared from data by Lundien (1971).
Unfortunately, a large proportion of soil dielectric constant measurements available lacks
the bulk density information. The artificial uncertainty is introduced in a similar

manner into the k2 versus moisture relationship.

3.3 Soil Type

The term soil type was previously used in soil survey to designate a subdivision
of soil series based on the particle size distribution of the surface soil (Soil Survey
Staff, 1951), In the Comprehensive Soil Classification System employed by the U.5.D.A.
since 1965, the designation soil type has been replaced by soil phase (Soil Survey Stoff,
1960). The term soil type is still being used in the remote sensing literature. It should
be noted that the textural classes on the basis of which soil types have been defined
have not changed (Figure 30).

Results of various experiments indicate that at higher freduencies, the dielectric
constant is almost unoffected by the chemical and mineralogical composition of rocks
(Campbell and Ulrichs, 1969) or soils (Lundien, 1971) except where significant amounts
of metallic or mognetic minerals are present (Edgerton et al ;, 1971). Differences
~ among soil types observed ot these frequencies (Lundien 1966, 1971; Wiebe, 1971) have
been attributed to soil water interactions which depend on the particle size distribution.
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Figure 28, Change in relative dielectric constant due to soil moisture
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In some studies (e.g., Hoekstra and Delaney, 1974), differences between dielectric
properties of various soil types have not been observed. This topic was discussed

in some detail in Section 3.1.

At low frequencies, soil type modifies the dielectric properties by its ionic
complex characteristics. In particular, the dielectric loss increases with increasing
proportion of clay particles in the soil, due to presence of larger amounts of ions at
the exchange sites. From the measurements available, this effect appears to become

important below 0.3 GHz.

3.4 Temperature

The dielectric constant of solid soil particles is relatively independent of
temperature. For example, Compbell and Ulrichs (1969) found small differences at
35 GHz ( <1.0) between real parts of the dielectric constant of five rocks (tholeiitic
basalt, olivine basalt, quartz, aplite granite, dunite) measured at various temperatures
(Figure 31). On the other hand, dielectric constant of water may be calculated
occurately as a function of temperature (Paris, 1969). Lundien (1971) developed such
an expression based on experimental data measured ot L=band using both distilled and

tap water:

k] =88.6-0.368T1

where T is temperature in °C.

Since soil almost always contains some water (unless oven=dried), its
dielectric constant depends on temperature. This has been confirmed experimentally
by Poe et al. (1971) who observed that the real part of the dielectric constant of
dry soil exhibited no change when temperature was raised from 20°C to 60°C but

such change occurred when a small amount of water was present.

3.5 Frequency

Data presented in Figures 2to 15 indicate little difference between the
dielectric constant values of dry soils at frequencies between 0.13 GHz and 37
GHz. Lundien's (1971) measurements at five frequencies between 0.01 GHz and
1.499 GHz showed that the dielectric constant was approximately constant for
all soils and frequencies above 1.0 GHz; the values increased below approxi-
mately 0.05 GHz, 0.15 GHz and 0.45 GHz for sand, silt, and clay, respectively.
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These data are in agreement with the results measured for rocks: Campbell and
Ulrichs (1969) found that the dielectric constant values of a variety of terrestrial
rocks and minerals exhibited only small differences between two frequencies,
450 MHz and 35 GHz; materials that displayed differences tended to be the in-
homogeneous cnes (Figure 32).

It should be noted again that the above results hold for dry materials; the
dielectric constant becomes frequency dependent when water is added. Hoekstra and
Delaney (1974) presented k], |<2, and loss tangent (k2/ k]) values for asilty clay
at 15% moisture content (Figure 33). Values above 0.1 GHz represent Suffield
silty clay (Figures 17 through 24) while data at lower frequencies were obtained from
a study by Smith-Rose (1933). The dielectric loss can be seen to be small around 0.1 GHz
but increases in both directions. At higher frequencies, the presence of water causes

increase in dielectric loss. The shape of the curves ot lower frequencies will depend on

soil type.

4.0 REPRESENTATIVE DIELECTRIC VALUES

As evident from the previous section, a large number of dielectric constant
measurements by various investigators have been made. The data exhibit a scatter
which is due to both inherent soil variability and experimental error, To use these
measurements for analyzing microwave signal variations with moisture content,
however, only one representative data set is needed. Results of section 3.0 suggest
that the dielectric constant vs. soil moisture relationship should be given (i) in terms
of volumetric water content, and (ii) for various frequency/soil type combinations;
lower frequencies are more relevant because of the higher penetration depth.

Using data shown in Figures 17 through 24, average curves were drawn through
the points for both k] and k2 for three frequencies (1.3 GHz, 4.0 GHz and 10.0 GHz)
and three soil types (sand, loam, and clay). Values read off from the average curves
(Figures 34-36) are given in Table 1. The last column of Table 1 gives the primary
data source for the average curves; it shows that the three frequencies and soil types

represent a mean condition only.
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Figure 31. The Permittivity of rocks ot 35 GHz as a function of temperature
(From Campbell and Ulrichs (1969)).
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Figure 33.  Real and imaginary part of the relative dielectric constant as a function
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Hoekstra and Delaney (1974)). '
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Since the representative dielectric constant curves shown in Figure 34-36
wcre related to volumetric moisture, the large number of measurements shown in
Figure 2 through 15 could not be used. It wos of interest to determine, however,
whether the two types of dielectric values are similar for equivalent conditions.

To this end, average k] and k2 values were extracted from Figures 2 through 15 for
two frequencies (1.3 GHz and 10.0 GHz) and three soil types (sand, loom, and
clay). The average curves were based primarily on the data by Leschanskii, et al.
(1971), Lundien (1971), Wiebe (1971) ond Matzler (1970). Secondly, skin depth
was computed as a function of moisture for every frequency/soil type combination;
skin depth was used for the comparison because it reflects the effect of both k] and
k2. A comparison of the "volumetric" skin depth values to the "gravimetric" skin
depths showed, with one exception, a very good correspondence if the gravimetric
moistures were multiplied by bulk density values between 1.4 and 1.6 g/cm3. The
one exception was loam at 1.3 GHz which was located about half distance between
sand and clay based on the "volumetric" skin depth (Figure 37) but was very close
to clay if the skin depths are computed from the "gravimetric" data set. An inspection
of the original data showed that this discrepancy was due to relatively high k, values
for loam given by Leschanskii et al. (1971, see Figure 5) which resulted in a higher
attenuation (Eq. 4) and therefore smaller skin depth. Since physical properties of a
loamy soil are between those of sand and clay, it was decided that the "volumetric"
data set for loam at 1.3 GHz was adequate. The good correspondence between skin
depth values for "gravimetric" and "volumetric" data sets indicates that the valuves
given in Table 1 and Figures 34-36 are representative of the available measurements
at the three frequencies. |

Figure 37 shows skin depth as a function of moisture content, computed from
values in Table 1 for a homogeneous uniformly moist soil. The skin depth values
decrease rapidly at low moisture contents and more slowly as the moisture content
increases. There is almost an order-of-magnitude difference between the three
frequencies. To obtain some information about subsurface moisture contents, low
frequencies are clearly necessary. The magnitude of a remotely measured microwave
signal is related to the reflection coefficient (for active sensors) or emissivity (for
passive sensors) of the soil. Power reflection coefficient (Eq. 1,2) and emissivity
(Eq. 3) were calculated for normal incidence from data in Table 1. The results
(Figure 38) show a small variability due to soil type or frequeney for the cases

considered; at any moisture content, the range was less than 0.07. The reflection
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Figure 34, Representative dielectric constant values as a function of volumetric
water content for sand, loam, and clay at 1.3 GHz.
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Figure 35. Representative dielectric constant values as a function of volumetric
water content for sand, loam, and clay at 4.0 GHz.
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Figure 37.  Skin depth as a function of volumetric water content, frequency,

and soil type.
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coefficient changed from 0.08 (=11.0 dB) for a dry soil to 0.45 (=3.5 dB) at
0.45 g/cm3, an average increase of ,0082 for every 0.01 g/cms. Emissivity
changed in the opposite direction (Eq. 3). Figure 38 thus suggests that the
proportion of microwave energy normally incident on a smooth, homogeneous
uniformly moist soil which is reflected from the soil is practically independent
of frequency and soil type.
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Figure 38.  Power reflection coefficient and emissivity as a function of volumetric
water content, frequency, and soil type.
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