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A Counter-Example in Linear Feature Selection Theory

D.R. Brown and M.J. 0"Malley ’

Introduction:

The linear feature selection problem in multi-class pattern recognition can
be regarded as that of linearly transforming statistical information from
n~dimensional (real Euclidean) space into k-dimensional space, while requiring
that average interclass divergence in the transformed space decrease as little
as possible,

'Divcrgcnce, as used in this paper, will be the expected interclass
divergence derived from Hajek two-class divergence as defined, for example,
in [4]. It is known [3} that there always exists a k X n matrix B such that
the transformatinn determined by B maximizes the divergence in k-dimensional
space, It is also known [3] that, if Q 1is any k X k invertible matrix,
and B 1s as defined above, then QB again maximizes the divergence in k-space.
The purpose of this note 1s.lo show that the converse of this result is false;
specificallv, we shall show the existence of two matrices, Bl and Bz, each
of which maximizes transformed divergence, which are not related in the fashion
Bz = QBl for any k X k matrix Q.

The negative resolution of this rather long standing conjecture is unfortunate
from the computational standpoint, since derivation of matrices B which maximize

transformed divergence is relatively inefficient. Several researchers have

addressed the problem of obtaining such B's ([1], [2], and [6]), but the latest



and most e’ficlent treatment known to us 48 [3]. A common error in examining
special _.ases of the problem [2] is the incorrect assumption of equality

L - m -
betwr ¢sn matrices of the forms ‘;1 (nnin’) i and B(,L.Q 1)BT. Simple

is11

examples (see [5], for instance) show this to be false, even if all 0, are

i
diagonal matrices,

In the sequel, we avoid this itfall while computing "best B's", and
assure the maximality of transformed divergence by selecting covariarice matrices
and means for which it can be shown that divergence in the transformed space
equals divergence in the original space. Since divergence is a monotone
function of dimension [4], this is sufficient to establish maximality, While
the choices of values are made with an eye toward computational simplicity,
and are thgtexore subject to the charge of impracticality, it should be noted
that the existence of inequivalent solutions in this restricted case casts
doubt that there will e;er arise a situvation, however practical, in which only

a single equivalent class of solutions may be assumed a priori,

SECTION 1 - Necessary Divergence Formulae.

Let ﬂl. ceey ﬂ‘ and Hys seey Mo be the covariance matrices and means
for m classes, where, for each 1i=1, ..., m, 91 is an n X n positive definite
m T .
matrix and My is a column n-vector, Let si - jEI (Rj + 611 611), where
61] - ui— 5 Then, assuning equal a priori probabilities, the average interclass
divergence for thesc m classes is given by:
18

D= ger(LA ') - yu@-Dn, oY



3.

wvhile, 1. B is a k X n matrix, the B~average interclass divergence 1is:
D, = %er( I, (82 311 (8s 3T) - fm(e-1)k )
B i=1"1 i ’

wvhere "tr" represents the trace function,

o : T T
Next, let e - {Be Hln: BB = 1k and (BB )ﬂ1 - Qi(ln Yo 8985 sovp B
where lk is the k X k identity matrix, and "kn is the set of all k X n

real matrices.

Observe that, for any B cf 2 (BS'IiBT)-l . mi'la'r. so that, in this case,

(2) may be rewritten as:
D, = %t-(B( ; 0 =1 )BT} - ¥m(m=1)k (3)
B i=1'1 i ,

Since g is closed and bounded in !‘Lm (regarded as Ekn) and D as a

'D
function from rﬂm into the real numbers, is continuous, it follows that this

function attains a maximum; that is there exists Boeé’ such that

nlo 2D, for all B ef.

Suppose, in addition to the above restriction, that the following condition
holds:

m
12101—181 is a positivec definite diagonal matrix, (*)

If the diagonal entries of this matrix are denoted c¢,,, seey ¢ _, then, in this
1l nn .

case, the divergence reduces *o:
n .
D= X%(L ¢y - ‘m@1)n, | (4)

Sufficient conditions that (*) holds are that each 91 is a diagonal matrix

and ui - for all 1,].

3
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SECTION 2 = Ccnditions under which D = D‘

Let A e ukn satisfy the following two conditions:

(1) Each row of A has exactly one non-zero entry and
that entry is one;

(2) k columns of A have exactly one non-zero entry,

while the remaining n-k columns have all entries equal to zero.

Any such matrix A has the .ollowing properties:
@ M =1

(b) AFA is a diagonal matrix having exactly k diagonal

entries equal to one with the remaining diagonal entries equal

to zero; A
11 T
(¢c) 4f E 1s a diagonal matrix, E = .'d , then AEA" is
' d nn
T 9 |
a diagonal matrix, AEA = °, ’ di 1,...,d1 . are ! " the
'd ’ »

i,
diagonal elements of E.

Furthermore, given any collection {d, ,, «ee, d, .} of k of the
i,1 1.k
diagonal elements of E, then there exists a k X n matrix A satisfying
conditions (1) and (2) such that AEAT is a diagonal matrix having these
values as diagonal entries in the correct order. Although the verification
of the above statements is tedious, it is straightforward, and we omit it,

Now suppose that condition (*) is satisfied, and that

Em= 1§101-181 - o » a diagonal matrix, Fix k < n; by property

(c), there exists a k X n matrix Ak satisfying conditions (1) and (2) for



5.

wvhich Ah"& is a diagonal matrix ( ’ s Where b 11° ***» bkk are

the largest diagonal entrier of E and b 2 e 2 b « Thereforo

D - %4 !1 jj-n(n-l)k], following formulae (3) and (4). Hence

*[351 byy-a(e-1k] = D 5D = 381 ¢, -a(a-1)n].

It follows from this inequality that m(m=1)(n-k) s vhere

i

351 Y90
dh+lk+1 Z see 2 dnn represent the remaining n~k diagonal entries of E,
arranged in descending order. In particular, if k = n-i, then m(m=1) = d .

Thus, since dnn S eee S dk+1k+1' it follows that DAk =D 4if and only if

-(-1) - dnn ® o0 = dk'.'lk"l.

SECTION 3 = A family of counter-examples,

To construct two k X n matrices, both of which maximize divergence
in the transform:d space, and which are not row equivalent, we proceed as

follows., Let 01. seey ﬂm be positive definite covariance matrices with equal
means, Assuming n 2 3 and 2 € k < n, we require, for each 1, that
(1)
-1 2 (1)
01 - » whexre C . is a (k=1)%(k=1) positive definite
A I
n~-(k=1)/ -

submatrix, and Z denotes the zero submatrix of appropriate dimension. By

m .
direct computation, 4t follows that 1£191 181 is a diagonal matrix of the

form:

Ug-1k-1

Z ’ LICS DD P



6.

k=1
vhere ujj >0 for each j, and hence D = ¥ [ngujj - (k=1)m(m=1)].

Let Al and Az be the following k X n matrices:

her 2 Teea 2

A *o...0 10...0 » A *lo...0 o010.,.0) °*

Clearly, both A1 and Az satisfy conditions (1) and (2) of Section 2,

and thus, by the derivation in that section, DA] - DA = D, Thus, both A1
2
and A! yield divergence which is the same as the divergence using all n

channels of information, and is therefore best possible.

Finally, we observe that Al and Az are not row equivalent. Suppose,

to the contrary, that there exists an invertible k X k matrix Q such that
Az = QAI. Then the subspace of n-space spanned by the row vectirs of Al

is equal to the subspace spanned by the row vectors of Az. However,

e " (0y00090,1,0,04.,0) 1is the ksh row of Al’ and clearly €L+l is
not in the subspace spanned by the row vectﬁrs of Az. Therefore A, and A

1 2
are not row equivalent.

SECTION 4 - Conclusions.

In this note we have given a family of examples to show that, even under
extremely strong conditions, it is not possible to assume that all matrix solutions

which maximize transformed divergence are row equivalent.
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