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Abstract 

A treatment is given of relativistic clock synchronization 
effects due to the rotation of the Earth. Unlike other approaches, 
the point of view of an Earth fixed coordinate system is used 
which offers insight to many problems. An attempt is made to 
give the reader an intuitive grasp of the subject as well as to 
provide formulae for his use. Specific applications to global 
timekeeping, navigation, VLBI, relativistic clock experiments, 
and satellite clock synchronization are discussed. The question 
of whether atomic clocks are ideal clocks is also treated. 
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RELATIVISTIC EFFECTS OF THE ROTATION OF THE 
EARTH ON REMOTE CLOCk SYNCHRONIZATION 

INTRODUCTION 

The precision of global timekeeping is approaching the level where one 
should consider the relativistic effects of the rotation of the Earth on remote 
clock synchronization. This paper will treat such effects, both mathematically 
and heuristically, to provide the precise time user with both rigorously derived 
formulae and, hopefully, an intuitive grasp of the causes underlying these form- 
ulae. This paper will also attempt to cover the subject as completely as possi- 
ble in order to provide a unified reference which wi l l  allay the user's qualms 
about the'relevance of some effects as well as allow him to correct for others. 

HOW IDEAL ARE ATOMIC CLOCKS? 

In analyzing the effects of the Earth's rotation on clock synchronization, we 
will assume all clocks are ideal clocks. We should, therefore, consider first 
whether the most accurate clocks available to the precise time user, atomic 
clocks, deviate significantly from ideal behavior. 

t 

Velocity Effects 

In atomic clocks, a moving atom is interrogated by in phase electromagnetic 
fields at two or more points.6 For various reasons, depending on the device, the 
first order doppler shift due to atomic motion in the device is cancelled out; only 
the second order doppler shift due to atomic motion effects the frequency of the 
clock. This shift is given by:2 

where fa is the atomic transition frequency in the atom's rest frame, f, is the 
clock's frequency in its rest frame, and v,  is the relative velocity of the atom 
with respect to the clock. If (1) is true when the clock is in motion as well as at 
rest, one can ignore the effect of the muving atom, and treat the clock as ideal. 
(1) has been shown to be invariant with respect to motion of the clock: and so 
in this respect an atomic clock is indeed an ideal clock. For completeness, the 
derivation showing (l) is invariant is reproduced in Appendix I. 
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Acceleration Effects I 

Only acceleration effects common to all atomic clocks will be considered 
here. For acceleration effects due to individual clock designs, the reader is 
referred to the manufacturers' literature? Since the Earth rotates with angular 
frequency u , an atomic clock fixed on the Earth will obeerve its atomic transi- 
tion frequency from this same rotating frame. In this non-inertial, rotating 
frame, the atomic transition frequency may appear altered. This would cause 
the clock to deviate from ideal behavior. The question of ideal behavior, there- 
fore, reduces to the question of whether rotational acceleration will cause the 
atomic transition frequency to alter. 

To determine the rotational effects on an atomic transition frequency, we 
must determine the effects of rotation on the energy levels of an atomic system. 
This is accomplished by examining the Hamiltonian of an atomic system in a 
rotating frame. ~n a rotating frame, a system's Hamiltonian is given by:4 

where H, is the non-rotating Hamiltonian, z is the angular frequency vector, 
and F' is the total angular momentum. Atomic clocks operate in low magnetic 
fields where ? is a good quantum number? Therefore, if 2 is parallel to the 
magnetic field, the energy levels of the atomic system are shifted by: 1 

where the quantum states are given by th,e quantum numbers F and M. One can 
also show that, if 2 is perpendicular to F (see Appendix II): 

where uz is the angular Zeeman frequency. Since atomic frequency standards 
run on transitions in which M for the initial and final states is zero: there will 
be no frequency shift in these transitions caused by the rotation of the clock, and 
thus again an atomic clock behaves like an ideal clock. 
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EFFECTS OF UNIFORM MOTION ON REMOTE 
CLOCK SYNCHRONIZATION 

Einstein Light Signal Synchronization 

Before discussing the more complicated effects of the rotation of the Earth 
on clock synchronization, it is instructive to consider the effects of uniform 
motion. The basis for our discussion will be the Lorentz transformations:2* 

xv t -- 

Y' = Y  2' = z 

where the primed system is moving with velocity v parallel to the x coordinate. 
These transformations are derived from the principal of the constancy of the 
velocity of light, and from a definition of clock synchronization (Einstein syn- 
chronization) based on a light source emitting pulses an equal distance from the 
two remote clocks2 (see Figure 1). From (2), one can see that, to an observer 
moving with velocity v in the x direction, two remote clocks synchronized by 
Einstein synchronization will be out of sync by: 

where x is the x component of the separation between the clocks. 

The significance of (3) is that it is path independent. If one were to set up 
a ftglobaltf network in a flat, special relativistic space with Einstein synchro- 
nization, even though, to a moving observer, this network will appear out of sync, 
it will be out of sync in a self-consistent manner independent of the paths used 
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CLOCK 1 CLOCK 2 

Figure 1. EINSTEIN SYNCHRONIZATION: IF CLOCKS 1 AND 2 RECEIVE LIGHT 
PULSES AT THE SAME TIME THEY ARE SYNCHRONIZED 

for synchronization allowing one to ignore the effect; all the moving observer 
need do to restore synchronization is to apply (3). 

1 

Synchronization by Slowly Moving Clocks 

Now let us consider remote clock synchronization by another, often used, 
method, by slowly moving a clock between the two remote clocks (see Figure 2). 
In this method, the moving clock, G, is synchronized to clock C slowly moved 
with velocity E along some arbitrary path, P, to clock C2, and then used to syn- 
chronize C2. Of course while c, is moving, it will be doppler shifted as given 
by (1). To first order, its frequency compared with the frequency of C1 will be 
given by: 
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MOVING CLOCK 

Figure 2. SYNCHRONIZATION BY SLOWLY MOVING CLOCK 

.. 
which will cause CM , when it reaches Cz, to differ from C, by: 

A t  = - I, 2c? €2 dt ,  

Since the line element along P is given by: 

this becomes: 
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which goes to zero a8 E goes to zero. Thus, in the rest frame of C, and C ,  , 
the clocks C, and C, will be synchronized. 

Now let us consider this slow clock synchronization from the point of view 
of a moving observer (see Figure 3). Let C, and C, be moving with velocity 
with respect to  this observer whose clock, C, , reads time t. For simplicity 
let C,, CM, and C, be synchronized to zero when C, leaves 6,. 

Figure 3. SYNCHRONIZATION IN MOVING FRAME 

The frequency of C, is given in terms of Cots  frequency by (1) (v2 replaced 
by (? + which to lowest order in E will yield: 
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This means that now A t  is given by: 

But along P' , to lowest order in E : 

di = Z d t ,  

so to lowest order in E : 

A t  = - l, 
Again letting E go to zero, we obtain: 

2 ' di 

iz 
C* 

Since 7 is independent of position, i f  v is in the x direction, we again obtain 
(3) : 

so synchronization by slowly moving clocks is equivalent to Einstein light syn- 
chronizations in flat, special relativistic space. 

CLOCK SYNCHRONIZATION ON THE ROTATING EARTH 

For the proper treatment of clock synchronization on the rotating Earth, 
both the presence of gravitational fields and the non-uniformity of the motion 
necessitate the use of general relativity. Both the behavior of clocks and the 
propagation of light signals, in general relativity, is completely defined by the 
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proper time line element metrically decomposed in terms of a suitable coordi- 
nate system. lo * l1 Thus to describe clock synchronization on the rotating 
Earth, all we need derive is the proper time line element given in terms of 
Earth fixed coordinates. 

For our starting point in deriving the proper time line element, we shall w e  
the Schwarzchild line element for a point gravitational source in non-rotating 
spherical coordinates (r, B , 4' ) :  

- - 1 r2 s in2  Od+'2 - (c2 + 2U)-' dr2 

C 2  

Where: 

) This, to accuracy sufficient for our purposes, will properly describe the effects 
of the Earth's gravitation. To go to Earth fixed coordinates, we use the 
transformation: 

to obtain the desired form of the proper time line element: 

(d+2 I- 2ud4dt) - (c2 + 2U)-l dr2 - r2  sin2 B 

C2 

where, UT, the total gravitational potential in the rotating frame, is: 

1 
2 

uT = u - - r 2 d  sinz B 

(Note that UT contains the centrifugal potential). 
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Synchronization by Slowly Moving Clocks 

Consider, now, the consequences of (5) for synchronization by slowly moviqg 
clocks. For a clock moving along a differential path (at, dr,  de, d+), in the limit 
where 

goes to zero, to lowest order, (5) yields: 

dT= 1+- dt  ( 1:) 

For a finite path, P, this becomes: 

A r =  -6u-' dt  
C2 

-5 I, r2 s i n 2  ed+ 

where A r  is the difference between the slowly moving clock and a coordinate 
clock. 

Equation (7 )  has two terms both of which are path dependent. The first tew 
is the usual gravitational red shift term which has been described elsewhere12* l3  
except that, in this case, the centrifugal potential is included as part of the gravi- 
tational potential. The second term is analogous to (3) in the uniform motion 
case except that, now, the time difference accrued by the slowly moving clock is 
path dependent. To see this more clearly, consider the following heuristic 
derivation. 

Let us set up a non-rotating system of clocks to view our Earth clocks as 
ehown in figure 4. These non-rotating clocks are a l l  placed at the same 
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NON-ROTATING 
CLOCK SYSTEM 

Figure 4. SYSTEM TO MEASURE ROTATIONAL E f  FECT 

gravitational potential, so they all run at the same rate, and can be synchronized 
to a clock at the north pole. If our clock system is placed at the same gravita- 
tional potential as a slowly moving clock on Earth, one of our system clocks can 
locally view the slowly moving clock, so special relativity can be used. l1 The 
local system clock sees the Earth clock doppler shifted by: 

and also sees the synchronization error given by (3) for a slowly moving clock: 

Using this and the fact that our system of clocks will be red shifted from a 
coordinate clock by: 

A f  - U - - - ,  
f c 2  
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we obtain for the slowly moving clock on Earth: 

- r 2 u s i n 2  0d&, 
c2 

where dt is the coordinate time interval. This equation is precisely that given 
by (6) .  

Light Synchronization 

For the general relativistic case, the dependence of proper lengths on the 
coordinates complicates the definition of Einstein light synchronization. To 
simplify analysis, therefore, let u s  redefine light synchronization as shown in 
Figure 5. In this new definition, clock 6, sends a light pulse to C, , and records 
the time he sends it. When C, receives the light pulse, he immediately returns 
another pulse Over the same path, P, and records the time of arrival of the first 
pulse. C, now receives the second pulse, and measures the time difference be- 
tween the transmission of the first pulse and the reception of the second pulse, 
A t .  From this time, C, determines the propagation time, A t/2, which C 2 can 
transmit to C, along with the time C 
synchronize to C1. 

sent the first pulse. This enables Cz to 

In order to analyze the relativistic effects of rotation on this form of syn- 
chronization, all we need use is the line element (5)  and the fact that for light 
propagation (in vacuo) : 

dr = 0 

These together with a path, P, parametrically described by (r(X), 8 (A),  +(A)) 
defines light propagation in terms of the. quadratic equation: 

Adt2 + B (3) dA dtdh + C (g, E,  g) dX2 = 0 

Solving for dt, one obtains: 

-B f U'k2 - 4AC dA 
2A 

d t  = 
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P 

2- WAY COM MU N I CAT I ON 
OVER THE SAME PATH 

Figure 5. NEW LIGHT SYNCHRONIZATION DEFINITION 

which for a finite path becomes: 

= J” -B* JB2 - 4AC dX 
2A 

4 
Notice that there is an ambiguity of sign in (8). This occurs because along 

P, light can propagate in two directions, from P(A,) to P( A,) and vice versa. 
The presence of the B term causes the propagation time for light traveling in 
opposite directions to differ by: 

or 

d$ 
r2 s in2  6 A t p  = - 2~ 
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But from our light synchronization definition, this will introduce a synchroniza- 
tion error of: 

a t  =- 
2 

or: 

a4 (9) 
r2 s i n 2  e 

At = - I, c2 + 2u, 

where at is defined in terms of a coordinate clock. To lowest order, (9) reduces 
to: 

A t  = -- r2 s i n 2  Bd+ 
C2 "I 

which is the same as the second term in (7 ) .  

In order to obtain some insight into the reasons for the time difference given 
by (lo), consider the following heuristic derivation from the point of view of a 5 

non-rotating frame as shown in Figure 6. In Figure 6, two clocks, C, and C ,, 
rotating with the Earth and separated by a small distance L, light synchronize 
along a straight line. In the time, t, it fakes for the light to travel from C, to 
C,, C, will move: 

- 4  wrL AI, = vot = 3- s i n  8 
c 

where L = ct has been used. This will introduce a change in path given approxi- 
mately by: 

t a t  ALZ - L 

or: 

AI, = -- wr2 sin2 sa$ 
C 
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Figure 6. ROTATIONAL ERROR FOR LIGHT SYNCHRONIZATION 

\ 

i' 

which corresponds to a change propagation time: 

wr2 
C2 

A t  = -- s in2  On+ 

For a light signal going from C, to C, , we would, similarly, obtain a change 
in propagation time as described by (ll), but with the opposite sign. As viewed 
by a coordinate clock, therefore, C ,  and C,  would be out of synchronization as 
given by (11). For a general light path, P, we can break the path down into N 
infinitesimal straight line segments, and repeatedly use (11) to obtain: 

A t  =-E Jr. r2 sin2 Bd+ 
C2 

which is the same as (10). 
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Rotational Frequency Effects 

Equation 9 shows that a clock on Earth has its frequency shifted from a co- 
ordinate clock by: 

where: 
1 
2 

U, = u - - r 2 d  sin2 6 

This is different from other formulations ''I l2 in the inclusion of the centrifugal 
potential as part of the gravitational frequency shift term. This centrifugal effect 
has even been ignored entirely by some authors>2 
term in one form or another is important to obtain the proper operating frequency 
since the centrifugal term contributes a fractional frequency difference of 1.2 X 

Inclusion of the centrifugal 

between a clock at a pole and one at the equator. 

Because of this centrifugal term, however, on the surface of the Earth, one 
can ignore variations in clocks caused by the gravitational shift. If the Earth's 
surface was a rigidly rotating fluid, the surface of the Earth would be defined by: 

U T = c o n s t a n t  

since a static fluid cannot maintain shear stresses. But sea level by definition 
is the surface of a static fluid; therefore, all clocks at sea level run at the same 
frequency. This means that, so far as the gravitational red shift is concerned, 
to obtain a consistent system of clocks, all one need do is to correct the frequency 
of a clock for deviations from sea level (at the fractional rate of 1.09 X 

km near sea level). 
per 

The fact that clocks at sea level al l  run at the same rate, however, is of little 
comfort if the user has a rigidly mounted clock, and sea level changes as a func- 
tion of time. Tidal forces due to the Sun and the Moon cause such a time depend- 
ent change of sea level. A s  shown in Appendix m, these forces lead to frequency 
shifts given by: 

B 

= - 2.69 x 1O-l' c o s 2 ( w t )  
f 
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= - 5. 8sX 10-17 cos2 @t) 
Moon 

APPLICATIONS 

Global Timing Networks 

We have shown that for remote synchronization on the Earth, there is a path 
dependent synchronization error given by (7) for slow clock synchronization and 
(9) for light synchronization. This path dependent effect can cause discrepancies 
of as much as 0.2 psec for differing synchronization paths. (The maximum effect 
occurs in synchronizing two clocks on opposite sides of the Earth on the Equator 
along paths going in opposite directions around the equator.) To set up a self- 
consistent timing network, one must either set up the synchronization network as 
shown in figure 7 or  make corrections for (7) or (9) in all remote synchronization. 
For future reference, let us call this form of synchronization coordinate synchro- 
nization, and call synchronization in which (7) or (9) are not corrected for link 
synchronization. 

PRIMARY CLOCK ON POLE 

SYNC H RON I ZATION 
ALONG LONGITUDE 
LINES 

Figure 7. COORDINATE SYNCHRONIZATION NETWORK 
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Since we have also shown that clocks at sea level all run at the same rate, 
to obtain coordinate time from a sea-level, coordinate synchronized global tim- 
ing network, all we need do is offset the network's frequency by: 

where Up is the Newtonian gravitational potential at the pole. 

Relativistic Timing Experiments 

There are two basic groups of relativistic timing experiments involving 
moving clocks, those that involve only two clocks, and those that involve moni- 
toring the moving clock with remotely synchronized clocks. The first type of 
experiment is detailed in Figure 8. In this type of experiment, a moving clock, 
C,, is compared with a clock on the Earth, C,, before and after C, makes a 
trip around a closed path, P. One can see from (7) that, even for a slowly mov- 
ing clock always in the same gravitational potential, there will be different re- 
sults depending on the path. 

CLOSED 
PATH 

STATIONARY 
CLOCK 

Figure 8. TWO CLOCK EXPERIMENT 
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The Hafele-Keating experiment 15 is a classic example of this type of exper- 
iment. In this experiment, sets of clocks which traveled around the world equa- 
toriaUy in opposite directions were compared with the U. S. N. 0. Master Clock 
before and after each trip. Different results were obtained for the westerly ver- 
sus easterly moving clocks. Qualitatively, this can be seen as a result of the 
part of (7)  given by: 

which for the same P will give A t ' s  of opposite sign depending on the sign of 
dd, . 

The second type of experiment involves remotely synchronized clocks as 
shown in Figure 9. In this type of experiment, a clock, C,, is moved along 
a path, P , between two remotely synchronized clocks, Cl and C2 , and 
compared with them. Here the results depend on which type of synchronization 
is used. For example, if we let the synchronization path, (&Is path, C, ,and 
C2 all be along the same latitude, we let VM , CM"s ground velocity, be constant, 
and we keep C, at ground level, for coordinate synchronization, we obtain: 

I 
f 

MOVING CLOCK 

1 SYNCHRON IZATlON 

Figure 9. EXPERIMENT INVOLVING REMOTE SYNCHRONIZATION 
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where 
this result depends on the direction of TM with respect to 
Keating experiment does. If we use link synchronization for the same experiment, 
we obtain: 

is the rotational velocity of the Earth at the latitude chosen. Notice 
just as the Hafele- 

1 rM - r 2  - - - - [v," + vi1 
r1 2c2 

which is independent of the direction of JM and qe. This is because the synchro- 
nization error between C, and 6,: 

just cancels the cross terms in (13). 

For the two examples just given, the link synchronization case is the only 
one which has a special relativistic analogue; there are no cross terms just as . 
would be true in special relativity. However if one tries to extend this analogue 
to the Hafele-Keating experiment, one gets into trouble. Treating the Hafele- 
Keaking experiment special relativistically, leads one to the absurd consequence 
that the stationary clock is out of synchronization with itself. This occurs be- 
cause a special relativistic treatment implies a flat space in which it would be 
impossible to return to the same clock by continuously moving in the same 
direction; the Hafele-Keating experiment, as well as all experiments of the 
first type, have no special relativistic analogue! 

Global Radio Navigation 

Radio navigation systems such as Loran4  and Omega utilize precise timing 
to determine theuser's p~sition.'~' l6 By measuring the propagation delay for 
timing signals broadcast from fixed system traqmitters with a portable clock, 
the user can determine his distance to the system transmitters, and thus de- 
termine his position. Rotational synchronization errors can introduce errors in 
the navigation system through two sources. First, i f  the fixed transmitters use 
link synchronization, timing errors can be introduced. These errors can be 
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removed by using coorclinate synchronization. Second, since the mer is generally 
moving around, his clock will develop a cumulative synchronization error given 
by (7). This error can only be removed by a continuous path dependent correction 
of the users clock. This error, however, would be typically less than 0 , lp  s if the 
user coordinately resynchronized his clock every time he traveled half way around 
the Earth, and so would lead to a navigation error of less than 100 ft. 

For ultra precise navigation, the user could use the following method which 
does not rely on a precise onboard clock. In this method, the user monitors three 
fixed stations simultaneously. From the measured propagation delays he could 
then solve for three unknowns, his coordinates 8 , and 4, and his clock error, A t .  

Very Long Baseline Interferometry 

Very long baseline interferometry has been suggested for both purposes of 
remote time syn~hronization,~~ and navigation."The basic technique is outlined 
in Figure 10. Two remote stations on Earth, A and B, monitor a stellar radio 
source, record the results with timing marks from their local clocks, and later 
cross-correlate their result9 to determine A t .  For the purposes of remote time 
synchronization, e and s are known, and A t is used to synchronize clocks A and 
B. Since a non-rotating radio suurce is used, clocks A and B will be coordinately 
synchronized. For navigation, clocks A and B are synchronized, and A t  is used, 
together with a knowledge of 0, to determine 8.  If A and B are link synchronized, 
there will be a timing error A t '  given by (7) or  (12) which will produce an error 
in s: 

cat' 
sin e ss =- 

With A t typically less than 0 .I P s, typically: 

3om 8 s C -  
s i n  9 
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RADIO 
SOURCE 

Figure 10. V L B I 

Satellite Clock Synchronization 

The most accurate form of remote synchronization by satellites is in the 
two way timing mode" as shown in Figure 11. In this mode radio signals are 
bounced or transponded off the satellite in both directions. Time synchroniza- 
tion is determined by the light synchroniz&on method outlined in the previous 
section, so there is a synchronization error with this method given by (9). If 
uncorrected, this would lead to synchronization errors typically on the order of 
0.1 p s  or  less. 

For satellites carrying an onboard clock, (7) seems to indicate that there 
would be a frequency shift given by: 

This is not true because the satellite's finite velocity introduces other terms 
from (5) which cancel (12). To see this, consider the satellite from a non- 
rotating frame tts viewed by a clock at the north pole where there are no 
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CLOCK 

rotational effects. 

Figure II. SATELLITE TWO-WAY TIMING 

The frequency difference between the pole clock and the 
satellite clock is given by: 

where Us and Up are the gravitational potentials at the satellite and-at the pole 
respectively, and GT is the satellite's velocity relative to the non-rotating frame. 
For a circular orbit, vT is a constant, and so Af/f  would just be a constant. 
Since for coordinate synchronization, all Earth clocks would be synchronized to 
the pole clock, Af/f would be a constant with respect to them also, precluding 
the possibility of any terms of the form of (12). 

The difference between a moving satellite carrying a clock, and a moving 
ship o r  awplane carrying a clock is that the motion of the ship or  airplane is 
simple (nearly uniform) with respect to the Earth, but the motion of the satellite 
is simple with respect to a non-rotating frame; as viewed from a non-rotating 
frame, the ship or airplanels motion is directly affected by the rotation of the 
Earth; whereas the satellite's motion, one of free fall ,  is not influenced by the 
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rotation of the Earth. Formally both a rotating frame and a non-rotating frame 
are equally correct for analyzing relativistic problems; the choice between them 
is a subjective matter governed by simplifications o r  clarifications one frame or 
the other wil l  bring to the solution of the particular problem of interest. 
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APPENDIX I 

An idealized picture of a moving atomic clock is shown in Figure 1-1. In a 
moving observer's frame, the atom whose transition is being monitored is mov- 
ing with velocity vT. AS the atom passes two clocks, C1 and C, , which are 
synchronized in their rest frame, and which are moving with velocity vc , the 
atom's clock, Cay is interrogated by C, and C,. When the clock is at rest, C, 
and 6, see C, doppler shifted by (1). We must prove that this is also true to 
our moving observer. 

Let C, , C,, and the observer's clock, C o, all be synchronized to zero when 
C, passes C 1. Using the Lorentz transformations given by (2) , when Ca passes 
Ca , in terms of observers time, to, Ca and C, will read: 

I 
where xo is the position of 6 ,  when C, passes C,(C, at x = 0 when C, passes 
Cl). Using the fact that: 

xo = V T t O  

and (I-1), ~e obtain: 

r n 

iz C2 

But in terms of v, and vc , where va is the velocity of Ca with respect to C, 
and C, , vT is:2 

- VI3 + v, 
vT - 

va vc 
1 +- 

C* 

420 



Using this and (I-Z), after some algebraic manipulation, we obtain: 

which is the same as (1). 

ATOM 

ATOMIC CLOCK 

OBSERVER 

Figure 1-1. IDEALIZED ATOMIC CLOCK 
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APPENDIX 11 
3 

If 2 is perpendicular to F, the Hamiltonian becomes: ' 
H = s  + A H  

where: 

and: 

since:' 

AH = - h w  - (F+ + F,) 
2 

F* = F, f iFy 

(FM I(F+ t FJ~ FM+I> = y l i ' ( ~  t 1) - M(M + I )  (H-1) 

and all other matrix elements are zero, there is no first order perturbation con- 
tribution to the energy levels.' The next highest perturbation contribution to the 
energy levels is the second order term:* 

using this and (I-1), one obtains: 

where wZ is the angular Zeeman frequency: 
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APPENDIX III 

To determine the effects of the tidal forces due to the Sun and the Moon on 
the frequency of a clock, consider the following derivation outlined in Figure ILL-1. 
A t  a point on the Earth, two sets of potentials caused by the Sun or Moon are at 
work, the gravitational potential: 

GM 
R 

-- 

where M, and R are the mass and the distance respectively to the Sun or the 
Moon, and the accelerational potential caused by the Earth's motion around the 
center of mass of the Earth-Sun or Earth-Moon system: 

where Rf is the distance to the center of mass, and wo is the angular velocity 
of the Earth revolving Bround the Sun or Moon. The total potential from these 
effects, then, is: 

Expanding in a power series about the center of the Earth (center of mass), and 
noting that, at the center of the Earth, the gravitational and accelerational forces 
must cancel, one obtains, to lowest order, a varying term given by: 

where Ro is the distance of the center of the Earth to the Sun or Moon, and r is 
the radius of the Earth. This yields a frequency shift: 

A f  - 3GMr2 
2c2R,3 

- - - - cos2 at 
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ACCELERATION GRAVITATION 

TO SUN 
OR MOON 

Figure 111-1. EFFECT OF TIDAL FORCES 

Substituting the relevant quantities for the Sun and the Moon, one obtains: 

424 


