NAVSTAR: GLOBAL POSITIONING SYSTEM AN EVOLUTIONARY RESEARCH AND DEVELOPMENT PROGRAM By: Col. B. W. Parkinson U.S. Air Force Space and Missile Systems Organization #### ABSTRACT The Global Positioning System has recently been renamed the NAVSTAR Global Positioning System. It was known as System 621B or Defense Navigation Satellite System, and within the Navy it was known as TIMATION. NAVSTAR represents a combination of the concepts that were known as TIMATION and those known as System 621B into a Joint Program. This combination was directed by Secretary Clements on 17 April 1973. A DSARC review was held on the 13th of December and a final decision was made to approve this program on the 22nd of December by Secretary Clements. NAVSTAR is a multiservice program (See Figure 1) with the Joint Program Office at SAMSO which is proceeding into its Phase I Concept Validation Program. I would like to describe the system and the Concept Validation Program with you at this time. The current status of satellite navigation systems within DOD is described in Figure 2. The existing operational system is called TRANSIT. For a host of reasons, it does not satisfy a broad base of users (See Figure 3). Particularly, anyone with dynamics in their positioning or navigation problem. Therefore, we are motivated to move ahead to a Global Positioning System that potentially can eventually replace TRANSIT and serve a host of other users as well (See Figures 4 and 5). The initial operational capability would be achieved in about 1984. The Phase I Program incorporates the efforts of the Naval Research Laboratory, with their Navigation Technology Satellites (NTS), NTS-1 and NTS-2. The Joint Program Office will develop prototype Navigation Development Satellites (NDS) that will be described later. The basic system capability is three dimensions of position, three dimensions of velocity and very precise system time. I'd like to now discuss that systems concept which consists of a Space Segment, a ground based Control Segment, and the User Segment (See Figure 6). The operational system would ## GPS ORGANIZATION | ~ | |------------| | GEI | | U | | • | | Z | | < | | Σ | | | | Σ | | < | | œ | | 0 | | 0 | | 8 | | ᄱ | | . I | | 늬 | | 4 1 | | O | COL B. W. PARKINSON ## DEPUTY PROGRAM MANAGERS GILBERT LTC S. W. AIR FORCE AFLC O. BYRNE MAJ R. LTC P. WEBER ARMY MR P. E. FREY DEFENSE MAPPING AGENCY MARINE CORPS NAVY LTC J. BARRY CDR W. G. HUBTON FOR ADDITIONAL COPIES OF THIS DOCUMENT OR ADDITIONAL INFORMA- TION CONTACT GPS PROGRAM CONTROL (SAMSO/YEC). SAMSO/YEC AUTOVON 833-2737 WORLDWAY POSTAL CENTER LOS ANGELES CA 90009 P O BOX 92960 TELEPHONE 643-2737 (AREA CODE 213) F ## DOD NAVIGATION SATELLITE SYSTEMS OPERATIONAL GPS OBJECTIVES - PRECISE GLOBAL NAVIGATION CAPABILITY 3 DIMENSIONAL LOCATION # THE NEED FOR A UNIVERSAL NAVIGATION SYSTEM UNIVERSAL PERFORMANCE INCREASE EFFECTIVENESS & CAPABILITY LOWER COST REDUCE PROLIFERATION OF POS/NAV SYSTEM[S] FI G 3 ## AIRCRAFT NAVIGATION AVIONICS | | , | | | | | | | | | | - | | | | | | | | | | | | |------------|----------|---|------|----|-----------|----|------|-----|-----|-----|------|-----|------|----------|-----|------|-----------|---------|------|-------|-----------------|--| | | VOR | × | | × | × | × | × | × | × | × | × | × | | | × | × | × | | | | <u>@</u> | | | <u>8</u> | 9 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | | × | × | × | × | (23) | | | NAVIGATION | ILS | × | × | × | × | × | × | × | × | × | × | × | | | × | × | × | × | - | | (23) | | | ~ | LRN | | × | × | × | | × | × | × | × | × | × | | × | | | FEW | | - | | (10) | | | | TCN | × | | × | × | × | × | × | × | × | × | × | × | × | × | × | | × | | | 6) | | | AIRCRAFT | TYPE | - | 7/VD | 29 | 90 | 7A | C119 | 123 | 124 | 130 | C136 | 141 | #C/E | F4D/RF4C | 201 | F104 | 35 | F106A/B | FIII | DV10A | NO. DIFF. TYPES | | # NAVIGATION AVIONICS COSTS FIG 5 deploy three planes of satellites in circular, 10,000 nautical mile orbits with an inclination of 63°. Each plane would contain eight satellites. This deployment insures that at least six satellites are continuously in view from any point on the earth. The Master Control Station would be located in the United States with four monitor stations located on United States territory. The user equipment classes would satisfy a host of DOD users and will also be offered to the civilian community. We expect the spacecraft weight to be 800 pounds, with 300 watts endof-life power. It would employ a dual-frequency pseudorandom noise navigation signal. For general use, only the primary NAV signal at 1600 MHz would be used. The basic tracking technique for the Control Segment is one-way tracking. A unique feature of the system is that the satellite employs an atomic spaceborne clock. We are projecting an operational clock of about 10^{-13} seconds per second drift rate. This is the state-of-the-art for cesium clocks as exemplified by the Hewlett-Packard Laboratory standards. The basic system technique is described in Figure 7. The Control Segment tracks the satellites and predicts their future position as well as the future behavior of these clocks. It periodically uploads that information into the satellite's memory. The satellites continuously transmit their signal which is a spread-spectrum L-Band signal with a 10 MHz chipping rate and a 20 MHz bandwidth. If a user has a clock which is synchronized to these satellite clocks, he can measure the time difference between transmission and reception. This is then multiplied by the speed of light to find the range. Thus, contact with three of these satellites would determine three spheres and his location would be at the intersection of those three speres. fortunately, the assumption of the user's synchronized clock would be very expensive. To satisfy that problem, he listens to a fourth satellite, thereby giving him four pieces of information from which he derives three coordinates of position and one coordinate of time. This really represents synchronizing his very crude, by flight qualified atomic standards, crystal-based clock. So the basic technique of listening to four satellites to derive the user's coordinates is more economically attractive. The orbital configuration for the operational system is depicted in greater detail in Figure 8. There will be three orbital planes, each inclined approximately 63° to ## System Technique PSEUDO-RANGING TO FOUR SATELLITES ## ORBITAL CONFIGURATION 10-13 CLOCK STABILITY OPERATIONAL 450 WATTS 24 SATS 300 LBS SPACECRAFT CONFIGURATION SAME SAME SAME ONE WAY TRACKING 10-12 CLOCK STABILITY NAV SIGNALS -1200 MHZ -1600 MHZ 400 WATTS 800 LBS PHASE 1 6 SATS the equator. The 24 satellites will have an orbital period of 12 hours. This will give a minimum of six satellites in view continuously at all global locations and on the average there will be 8 or 9 satellites in view. Approximate upper bounds on the satellite weight and power as well as other spacecraft parameters are listed on the right. The baseline global positioning system will rely on Master Stations in the United States only (See Figure 9, 10 and 11). The Master Station and computing facilities will be located at one of several alternative locations, each of which already has a computing facility or a spacecraft control and telemetry system. During the first phase of development, overseas Monitor Stations would be used to help develop the worldwide ionospheric model. We don't require the accurate clocks in any of these applications. It's cheaper for everyone to simply listen to four satellites. In fact, the user who knows his altitude can get by with just listening to three satellites, and again, he doesn't have to have an accurate clock. Even a user with a cesium clock would get out of synchronization by the end of a week. That is, the navigation function would be somewhat impaired, if the requirement was for 100 foot accuracy. If that's not a problem, he can get by with a three-channel receiver, for example, and at a potential cost saving. On the other hand, it may be to your advantage to listen to all four satellites and synchronize your cesium clock to a world-wide standard. The six user classes that we project in the operational system are portrayed in Figure 12. These are the major classes with the cost of user equipment for unit buys in thousands of dollars. Class A is for the dynamic user in a potentially high jamming environment that demands the ultimate in precision. The two parellel definition efforts that we undertook have estimated the costs to be between \$28,000 and \$29,500. Class B is for the high dynamic user. Class C is an interesting class. Here we're addressing low acquisition cost with Low Life Cycle cost as well. The range we now project for a complete piece of Class C user equipment is \$15,000 to \$16,000. Class D is for surface vehicles. Class E is a man-pack which also has applications for FIG 10 16.3 - 15.2 CLASS C 1000 UNIT BUY DOLLARS IN \$1,000 **GPS User Classes** 25.6 - 17.6 CLASS B CLASS E 29.5 - 28.0 CLASS A FIG 12 18 2 - 16.3 22.1 - 16.3 self-navigation of satellites. It also has application to the midcourse guidance of missiles because it is small, light weight and rugged. Class F is for submarines. Further consolidation efforts seem possible with savings to DOD by reducing logistic requirements. In Figure 13 is shown the expected system accuracy for the mature operational system. Fifty percent of the time in the horizontal plane it is 16 feet; and in the vertical plane it is 20 feet. These figures are the result of extensive simulations by The Aerospace Corporation in Los Angeles, The Analytical Sciences Corporation in Massachusetts as well as the Naval Weapons Laboratory, who have performed analysis of the TRANSIT program. In fact, we intend to use the Naval Weapons Laboratory orbit determination in our ephemeris determination. This is an unclassified system except for two aspects. The measured performance capability of the full-up system would be Confidential. The quantitative evaluation of survivability/vulnerability will be Secret. The projections I'm showing you are not classified. We have done our best to make this system as unclassified as we can. It makes it a lot easier to develop the system. As soon as the first person gets a piece of user equipment, the capability of the system would be pretty obvious. We didn't see much point in needlessly over classifying it. The characteristics of the system I've described are very interesting, (See Figure 14) giving accurate three-dimensional position as well as velocity. The velocity is considerably better than a foot a second. These accuracies are available as a world-wide common grid. As a result of having the pseudo-random noise transmission, the system has the ability to be made secure and have a good anti-jam capability. It is passive with a continuous readout system available instantaneously to every user. It is unsaturable and therefore can service any number of users. We are also addressing life cycle cost very early in the development. We have had a Deputy Program Manager for Logistics since the beginning of this program, and our efforts in that direction I think are significant. The applications are very wide ranging from precision weapons delivery through search and rescue, (See Figure 15). # EXPECTED GLOBAL POSITIONING SYSTEM ACCURACY | | HORIZONTAL | VERTICAL | |-------------|------------|----------| | 50% OF TIME | 2 m | m/ | | 90% OF TIME | 8m | 10m | # UNIVERSAL POSITIONING SYSTEM CHARACTERISTICS ● ACCURATE 3 DIMENSIONAL POSITION & VELOCITY WORLD WIDE COMMON GRID ● SECURE/AJ CAPABILITY PASSIVE & ALL WEATHER OPERATION • REAL-TIME CONTINUOUS **UNSATURABLE** • LOW LIFE CYCLE COST • SYSTEM • USER # GLOBAL POSITIONING SYSTEM APPLICATIONS ### MISSIONS - TROOP MOVEMENT • LAND - CONVOY - MOBILE ARTILLERY ARMOR - GEODESY #### • SEA - PATROL - PASSIVE RENDEZVOUS TASK FORCE OPERATIONS HARBOR CONTROL #### • AIR - CLOSE AIR SUPPORT - * TACTICAL DEPLOYMENT • FERRYING - REFUELING - RECONNAISSANCE APPROACH/LANDING ### **●** SPACE • SPACE VEHICLE POSITION SATELLITE EPHEMERIS ## SPECIAL OPERATIONS - INTELLIGENCE - RANGE INSTRUMENTATION ## SPECIAL USES - ARTILLERY SURVEY - **FIRE SUPPORT** - TROOPS IN CONTACT - CLANDESTINE FORCES - PILOTAGE - BUOY/SHOAL/REEF LOCATIONS • BEACH HEAD - MISSILE INITIALIZATION/INERTIAL BLIND/VISUAL AIDED BOMBING - MIDCOURSE GUIDANCE UPDATE - CARP/HARP - BARE BASE ● RPV/RCV - SPACE TRANSPORTATION SYSTEM SATELLITE TRACKING - PASSIVE ELINT - PHOTO RECCE/MAPPING - TARGETING - SENSOR IMPLACEMENT - COR/WEAPON SYSTEM TEST SCORING We recently briefed the Commandant of the Coast Guard and some of his staff, and they suggested some additional applications that we had not previsouly considered. In the area of pilotage they were very interested in the man-pack. They suggested that the harbor pilot arrive onboard ship with a man-pack which gives him both position and velocity. He can take it to the bridge and simply read out the coordinates of the ship as it is coming into the harbor and thereby be able to navigate in fog or darkness without any difficulty. There is an application in Anti-Submarine Warfare (ASW) in which the Navy is very interested. Now, I want to briefly describe the results of the Holloman Test program (See Figure 16). Holloman tests were conceived as a simulation of the satellite system. Four L-Band pseudo-random noise spread-spectrum transmitters were placed on the desert floor. The mobile calibration station was also placed there which has the same function as a tracking station, but it was only tracking the clock in this case, because of course, the transmitters weren't moving. We placed two competing types of receivers in a C-135 and overflew this complex. We recorded their inputs and then compared that with the location of the airplane as determined by the White Sands Missile Range Tracking complex. The comparisons that you see in Figure 17 are comparisons between NAVSTAR-indicated aircraft location and the location as assessed by the White Sands Missile Range Tracking complex. The test simulates satellite-type geometry from about 40 to 120 seconds on the graph. I have three axis of data, up, north and east. Again, it is a 3-D system - zero to fifty feet. To show that these weren't simply pathological results, here is the cumulative distribution as a percent of time. Errors were measured through this area navigation test for each of the competing receivers (See Figure 18). Ninety percent of the time, the Magnavox receiver on all three axis was within about 15 feet and 90 percent of the time the Hazeltine receiver was within about 22 feet. This is a summary of the test results which demonstrated performance of both continuous and sequential receivers. I didn't show you the velocity comparison, but it demonstrated accuracies which were better than a foot per second. We also ran a USER EQUIPMENT DEFINITION AND EXPERIMENTS PROGRAM HOLLOMAN AFB - WHITE SANDS MISSILE RANGE #### HAFB FLIGHT TEST POSITION RESULTS AREA NAV #### **CUMULATIVE DISTRIBUTION OF POSITION ERRORS** second series of tests which were called our ILS tests. In this test we were flying approaches to the runway as shown in Figure 19. For this ILS purpose, our position accuracy is better than 5 feet (See Figure 20). One of the more important results here is engineering feedback to the next generation of receiver design. The major test results are summarized in Figure 21. The Holloman Tests verified the system error budget through actual flight tests. Both continuous and sequential receivers were demonstrated. The continuous receiver simultaneously receives the navigation signals from four satellites; the sequential receiver listens to the satellites one at a time. Accuracies better than 15 feet in position and 1 FT/SEC in velocity were achieved. The most significant result is that data is already available to feed into user equipment design improvements. The first phase of this program to arrive at a Global Positioning System is a Concept Validation Phase (See Figure 22). Its objectives are four-fold: to be certain that the basic concept is sound; to make such adjustments in that concept as necessary to get to the best design; to pin down the system cost, both for the user considering life cycle cost, and the cost of overhead; and, to demonstrate the military value in selected operations demonstrations. The method of achieving these objectives will also evolve into the operational system (See Figure 23). This will be done using prototype operational satellites deployed in operational orbits with five satellites developed by the Global Positioning System Program Office. For the sixth satellite, we're relying on the Naval Research Laboratory to put up a follow-on experimental satellite (NTS-2) which would also have our signal structure on board. By timephasing these six satellites to arrive over the test area, we get up to three hours of good geometry. This permits very good development tests for the receivers we will be The Master Control Station will be a prototype of the Operational Master Station. The Monitor Stations, which are really no more than a piece of user equipment, would be prototypes of the operational system as well. have a program for developing user equipment for all the user classes shown. It's an orderly phased approach that #### HAFB FLIGHT TESTS TYPICAL ILS RESULTS 11 STATE FILTER SOLUTION WITH INITIALIZATION TEST RESULTS HOLLOMAN NAVSAT SIMULATION/INI - **DEMONSTRATED PERFORMANCE OF BOTH CONTINUOUS & SEQUENTIAL RECEIVERS** - **CONTINUOUS RECEIVER ACCURACIES** • ENGINEERING FEEDBACK TO THE DESIGN • AREA NAV POSITION: LESS THAN 15 FELT · ILS VELOCITY: LESS THAN I FOOT/SECOND POSITION: LESS THAN 5 FEET ## GPS VALIDATION PROGRAM OBJECTIVE PROVIDE INFORMATION TO MAKE THE NEXT DECISION - VALIDATE THE GPS CONCEPT ■ VALIDATE THE PREFERRED DESIGN - DEFINE SYSTEM COSTS - DEMONSTRATE MILITARY VALUE first goes through advanced development models and then proceeds into engineering development. The orbital configuration by phases evolves into our total capability as shown in Figure 24. Phase I has the five satellites that I've just described, with a sixth one from the Naval Research Laboratory. Phase II, which would begin with a DSARC II decision, augments these satellites out to three satellites in each of three rings. Fully operational spacing time phases arrival over the test area, and gives us a full operational test for about eighteen months. the end of that period, which would be about 1981, we reposition these satellites, spacing them uniformly in their orbits giving us a world-wide, continuous, limited operational capability. That means that there is a line of position available for anyone at all times instantaneously. As a matter of fact, eighty percent of the time, the user who knows his altitude can get a complete fix. This is a very significant capability, and I think makes a real step forward in terms of the program legacy. In Figure 25 is shown the program schedule by calendar year. The first evolutionary step was approved with DSARC I in It is a Concept Validation Phase, with the user December. equipment split into two broad categories: the low-cost user (which is designated as Class C) and the more sophisticated classes. In Phase I the low-cost receiver will progress into a prototyping status. The sophisticated user will be lagging slightly, still being in the development status during Phase I. In 1978 we complete development test and evaluation. The satellites to support it are the six that I've just described. The Ground Control Segment moves forward as a prototype. Our system capability, initially, would be ground testing using a simulated satellite complex we developed at Holloman Air Force Base and then proceeding on with periodic 3-D capability as the four satellites arrive over our test area. Phase II is the system validation phase. The low-cost equipment will be in production so it is available for the world-wide limited operational capability in 1981. The more sophisticated classes would be brought forward to the prototype status, i.e., just before production; they could be called preproduction models. IOT&E, initial operational tests, will be carried out using those user models. Six additional satellites will give us nine and allow for spares. These would actually be production, Block-1 satellites. Phase II (b) #### GPS PROGRAM SCHEDULE Three-dimensional testing would occur for about eighteen months, then the limited operational capability would be implemented by respacing the satellites using the onboard propellant capability. A favorable decision at DSARC III would move ahead with full production of the system, achieving initial operational capability in 1984. All user equipments would be in production at this point, and we would complete our operational test and evaluation. In Figure 26 is shown some of the future test work that will be ongoing during Phase I. The demonstration of performance, through the demonstration of selected operational missions, Naval surface vessels are certainly included. All along the Air Force has had user command participation. I've asked my Navy Deputy to insure that we also get Navy user command participation in the design and overseeing the results of these initial tests, because we feel it is quite important. There's an application for replacing range instrumentation and the accuracies available are equivalent to roughly the kinds of accuracies expected from very sophisticated ranges. Furthermore, you're not pinned down to a single geographic area. You could achieve these accuracies anywhere. Then you have two options, you could either telemeter back that position or your could record it on tape for later recovery via some other technique. That application is clear. It would be premature to do it during Phase I. ## SPECIAL FEATURES DT&E AND LIMITED 10T&E PHASE 1 - EARLY DEMONSTRATION OF PERFORMANCE - . DEMONSTRATION OF OPERATIONAL MISSIONS COORDINATE BOMBING APPROACH LANDING NAVIGATION AERIAL REFUELING ARMY LAND OPERATIONS NAVAL SURFACE VESSELS SPECIAL TECHNIQUES ANTIJAM AND VULNERABILITY USER COMMAND PARTICIPATION