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PREFACE

This final report presents results of an investigation carried out at the Environ-
mental Research Institute of Michigan (ERIM) for NASA's Goddard Space Flight Cen-
ter. The work reported herein was accomplished under Task VII of Contract NASS -
91783 the objective of which was to adapt techniques existing at ERIM for application
to ERTS-1 data, to assess the practicability of these techniques by applying them to
selected ERTS-4 data, and to identify any additional problems that might be asso-
ciated with such processing of satellite multispectral scanner data. Three areas
were studied; (1) atmospheric effects; {2) signature extension; and {3) proportion
estimalion. Mr. E.F. Szajna was Technical Monitor for this contract, while Mr. G.

Grebowsky served as Scientific Monitor.

The reported work was performed within ERIM's Infrared and Optics Division,
directed by Mr. Richard R. Legault, under the supervision of Dr. Jon D. Erickson,
Head of the Information Systems and Analysis Department. A number of individuals
other than the authors participated in and contributed to various aspects of this in-
vestigation. Dr. Robert Turner provided consultation on the topic of atmospheric
effects in ERTS data. Mr, James P. Morgenstern performed some of the recognition
processing and analysis. Mr. Arthur McCleer participated in the development of the
procedure for computer-assisted correlation of ERTS data and Earth coordinate sys-
tems. Mr. Russ H. Hieber contributed to both these efforts, and provided computer
programming support and consultation throughout the investigation. Mr. James
Reyer assisted withadaptive processing. Dr. Barold Horwitz, Mr. John T. Lewis,
and Mr. J.P. Livisay assisted in the proportion estimation processing and analysis.
Secretarial assistance was provided throughout this contract period by Ms. D.
Dickerson, Ms. L. Parker, and Ms. G. Sotomayor.

Dr. Gene R. Safir and other Michigan State University personnel provided

ground-truth information.
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SYMBOLS ;‘

Es = Extraterrestizl solar irradiance ;
L = Radiance f
LI = Intrinsic radiance
Lp =  Path radiance ;
L0 = Radiance at target
m = Estimated signature mean
p = True proportion l
3 =  Estimated proportion
T =  Atmospheric fransmitiance 1
t = Time '
A = Mean level adjusted difference
# = Angle of gcan from nadir ‘
by = Solar zenith angle ;
A = Wavelength :
g = Cosine of the solar zenith angle 45
p = Target reflectance
p = Probability of rejection parameter (Sec. 5)
Py = Background albedo 3,
T = Optical thickness of atmosphere ;
= Water proportion threshold parameter (Sec. 5) :

¢ = Relative azimuth angle }

i
.
i
i
i
1
i
t
!
i
|
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ACRONYMS

Agriculture Stabilization and Conservation Se.vice
Environmental Research Institute of Michigan

Earth Regources Technology Satellite

Goddard Space Flight Center, Greenbelt, Maryland
Multiplicative and Additive Signature Correction algorithm
Mean Level Adjustment

Multispeciral Scanner

Michigan State University, East Lansing, Michigan
National Weather Service

Picture element

Supporting Research and Technology Program, Earth Observations
Division, Johnson Space Center, Houston, Texas
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IMAGE ENHANCEMENT AND ADVANCEL INFORMATION
EXTRACTION TECHNIQUES

i
SUMMARY, CONCLUSIONS AND RECOMMENDA TIONS

This report describes an investigation in which a variety of computer techniques* for pro-
cessing and analysis of remote sensor data were applied to dalafromthe Earth Resources Tect-
nology Satellite (ERTS-1). Only data from the multispectral scanner (MSS) were analyzed,
principally in digital form on computer-compatible tapes.

Advanced processing techniques developed on other NASA coniracts were applied and tested,
because conventional data processing and information extraction technigques fall short of pro-
viding the information required by the user in some applications. The three areas of the in-
vestigation were directed at factors which can seriously degrade the user's ability to extract
necessary information: (1) atmospheric efiects in received signals; (2) changes in signals as
one moves in space and time from known areas used for training recognition processors; and
(3) the relatively coarse spatial rasolution of the sensor in comparison to the size of seene

features being recognized.

Atmospheric effects in ERTS data were analyzed through both a radiative transfer model
and empirical data. it was concluded that: (1) the atmosphere has significant effects on ERTS
signals and makes major contributions to their magnitudes; {2) the major factors determining
atmospheric contributions are optical thickness (haze content) and background albedo; (3) scan-
angle-related effects are substantial in ERTS MSS data, even though the scan coverage is %60;
(4} signal variations attributable to the atmosphere can degrade recognition performance if not
corrected; (5) measurement of optical thickness is preferred over visual range measurements
u8 a2 method for characterizing atmospheric state. It is recommended that atmospheric effects
on recognition be further quantified, that effects of aerosol absorption be studied, and that addi-
ticnal efforts be expended to verify and improve existing radiative transfer models for future

use.

Methods for improving computer recognition of scene classes over large areas were

studied by the application of existing recognition processing procedures and several signature

*These techniques were developed by ERIM for the Earth Observations Division of the
Johnson Space Center of NASA under Contracts NASS-9784 and NA89-14123, as a part of the
Supporting Research and Technology (SR&T) Program,
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extension techniques which compensate for changes in signals caused by atmospheric efiects
and/or changing ground conditions. It was demonstrated and/or concluded that: (1) recognition
processing performance degrades when signatures are applied directly to areas romoved in
space or time from the training data; (2) the signature extension techniques developed earlier
at ERIM can alleviate the deleterious effects in the data and improve recognition performance
in non-local areas {several techniques were tested: mean level adjustment, adaptive processing
with a decision-directed Kalman filter, multiplicative and additive signature correciion (MASC),
and adjustment based on radiative transfer model calculations); {3) performance on field-center
pixels (picture elewents) was better than on full sections; (4) recognition performance depends
on the procedures used for training and the type and quality of ground truth information. It is
recommended that the various signature extension techniques be tested and evaloated in a more
operational context on a mere extensive Jdata base and that their sengitivity to training proce-

dures be explored.

Finally, problems related to the size of the ERTS gpatial resolution element were addressed
through the application of ERIM's proportion-estimation algorithm which operates on either
individual pixels or averaged pixels. Mig-recognition of pixels that contain mixtures of two or
more materials can cause errors in area estimation. Two area-determination applications
were studied: mapping of surface water and agricultural acreage inventory. It was demon-
strated nnd/or concluded that: {1} for surface water, the ERIM proportion-estimation algorithm
detected water bodies and identified their acreages more accurately than did other available
techniques; (2) the largest improvement was achieved on the smaller lakes and ponds which
usually were not detected by more conventional techniques; (3) the algorithm exhibited littie or
no performance improvement for the agricultural scene over that achievable by conventional
techniques; (4) the result of (3) is due in part to the availability of oniy three of the ERTS bands
and the relatively wide spectral bandwidth of ERTS, but some restrictions imposed by the
original algorithm were more clearly identified. It is recommended that recent modifications
of the ERIM proportion-estimation algorithm be fully tested and evaluated to establish their per-

formance characteristics.

2
INTRODUCTION

The state-of -the -art of remote sensing of earth resources took a giant step forward with
the launch of the first Earth Resources Technology Satellite (ERTS). This event placed in orhit
advanced sensing devices which would monitor the Earth from the vantage point of space and
which would repeatedly pass over ground points at 18-day intervals. For the firgt time the

14
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remote-sensing community had at its disposal a system which was a forerunner of operational

remote gsensing systems of the future. It was then up to that community (the users, the tech-
nique developers and the sensor developers) to quantify the characteristics of this new system,
to demonstrate its utility and to identify and develop means to overcome its limitations.

Clearly, with a new sensing system operating from a new vantage point, there was a great
deal to be learned and many problems to be solved. Not all of the problsins were unanticipated.
As a result of previous experience with the aircraft remote -sersing program of which ERIM
was a charter member, certain of the problems were identified and/or anticipated, and in fact
were being dealt with prior to the launch of ERTS.

These problems included quantifying the offects of the atmesphere cn the radiation re-
ceived at the sensor; developing data-processing techniques which would overcome the inherent
variability of the data ({thus enabling cne to take full advantage of the large-scale view of the
sensor); and devising 2 means for reducing the limitations on area measurement accuracy
caused by the relatively coarse spatial resolution of the sensors. Each of these problems had
been previously and was still being investigated by ERIM with NASA support. Candidate tech-
nigues for the solution of the latter two problems had been developed, while a radiative transfer
model had bean constructed to address the firnt.

As a part of this investigation, therefore, we undertook to utilize the available technology,
to adupt it for use on the ERTS-1 MSS data, to quantify the effects of the atmosphere on those
data, and to determine the effectiveness of the available advanced data processing and informa-
tion extraction techniques. Sections 3, 4, and 5 of this report discuss the investigation and its
results on the subjects of atmospheric effects, signature extension, and proportion estimation,
respectively.

3
ATMOSPHERIC EFFECTS IN ERTS-1 DATA

The atmosphere strongly influences ERTS-1 data. For example, the lesser contrasts in
ERTS Band 4 images, as compared with those in ERTS Band 5, are in part due to the greater
influence of the atmosphere in the shorter-wavelength channel. Differences in atmospheric
conditions within a given frame or between frames can change the spectra of received radiances,
thereby hampering image-interpretation efforts and degrading recognition processing and other
information extraction with computers.

In this section, the major factors which determine atmospheric effects in ERTS data are
discussed and illustrated with sample calculations. Methods of correcting data for atmespheric

effects are discussed primarily in Section 4.
15
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3.1 GENERAL DESCRIPTION OFA'MOSPHERIC EFFECTS

The basic equation for the total radiance received at a sensor is:

L =LT-I~Lp {1

Total 0
—_—
= Beam + Path

where L0 ig the radiance at the gurface of the target material
T is the transmittance of the atmosphere between the target and the sensor

Lp is the path radiance

The product oF is sometimes called the "beam radiance' because it represents the direct beam
of radiation from the target which reaches the sensor after attenuation by the aimosphere. Path
radiance is extraneous raciance that does not come from the target; it is scattered by atmo-
spheric constituents into the receiving beam of the sensor, either directly from the sun or after

reflection from background materials.

All quantities in Eg. (1) depend on characteristics of the atmosphere and on viewing condi -
tions. For satellite-sensed radiation, for instance, transmiitance (T) depends on N (the opti-
cal thickness of the atmosphere), 8 (the angle of scan from nadir), and ) (the wavelength of
interest). Path radiance depends un these parameters as well as on N {the solar zenith angle),
¢ (the relative azimuth angle between the solar plane and the view plane), Pg (the background
albedo), t (the time of year), and the atmospheric state, The surface radiance of the target
may be expressed in simplified form as:

Lo = Eo(f} )p (2)

where EO’ the irradiance at the surface, depends on 7, A, 90, Pg» t, and the atmospheric state,
and p is the diffuse refiectance of the target. In more complex situations, the target refiectance
depends on the solar and viewing geometries.

Atmospheric effects are difficult to measure, especially for satellite sensors. Radiative
transfer models provide a mechanism for predicting the effects of the atmosphere on ERTS
signals and exploring the sensitivity of these effects to changes in the various parameters that
determine them,

A radiative transfer model has been developed by Dr. Robert Turner at ERIM [1-6] under
the sponsorship of NASA.* This model and caleulations made with it were used under this con-
tract to study atmospheric effects in ERTS data. The model is a practical one in the sense that

*NASA Contracts NASS-9784 and NAS9-14123 under the Supporting Research and Technology
(SR&T) Program of the Earth Observations Division, Jochnson Space Center, Houston, Texas.
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it uses very little computer time as compared to other models based upon more involved math-
ematical procedures. All types of atmospheric conditions can be repreéented, from heavy hazes
with a visual range of 2 km to the pure Rayleigh atmosphere with 2 horizontal visual range of
~340 km. Auxiliary programs can be run to generate additional, non-standard conditions if
necegsary. The radiative-transi~r program will compute spectral radiances, irradiances and
transmittances in terms of view angles, sun angles, optical thickness, wavelength and time of
year. Comparisons have been made between calculations baged upon this model and those of
Coulson et al. [7] for a pure Rayleigh atmosphere and also for experimental data on sky radiance.
in all cases the agreement is very good with significant deviations oceurring only for large sun
angles (60 > BOD). The main assumptions in the model as developed so far are: (1) Lambertian
surface; (2) uniform density of the medium in the horizontal plane; (3} 2 spatially uniform back-
ground surface; and (4) no gaseous abgorption. Additional details are presented in Appendix A.

3.2 EFFECTS OF OPTICAL THICKNESS OF THE ATMOSPHERE

At the wavelengths under consideration, the optical thickness of the atmosphere is the most
important factor in predicting or estimating atmospheric effects in ERTS data. Optical thickness
(and the altitude profile of optical depth) is the basic parameter in the Turner radiative-transfer
model. It is desirable to have measurements of optical thickness for analysis of specific data
gets. But, in the absence of specific measurements and for system-related parametric calcula-
tions, one can 1 *sort to values for standard atmospheric profiles. The Turner model incorpo-
rates characterist.cs for a series of standard atmospheres, described by Elterman [8] , each of
which is associated with a specific horizontal visual range.

There are two competing atmospheric effects on remotely sensed radiation. Atmospheric
attennation of radiation emanating from the surface tends to reduce the magnitude of sensed
radiation, whereas scattering (and/or emission} from atmospheric constituents produces the

additive path radiance term.

Figure l.illustrates the dependence of both {otal spectral radiance and path radiance at a
satellite on the amount ci atmospheric haze present, as denoted by the visual range of standard
atmospheres. This figure is for 2 long wavelength of 0.95 pm (ERTS Band 7) where atmospheric
effects are less than for shorter wavelengths, but a fairly substantial path-radiance contribution
is evident. Note that, depending on the surface albedo, the radiance received from a 329, re-

flector may either increase or decrease as the visual range decreases (amount of haze increases).

. The spectral dependence of path radiance is illustrated in Figure 2. The amount of path
radiance is several times greater at 0.55 pm than at 0.95 um. The relative magnitudes of total
and path radiance at 0.55 um can be seen in Figure 3. (The dependence of these quantities on
surface reflectance is discussed later.)
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An alternative display of the information in Figure 3 is presented in Figure 4, where total
radiance is plotted versus path radiance. As before, the path radiance is greatest for the haziest

atmosphere.

The pattern of Figure 4 is found at longer wavelengths as well. Figure 5 shows that path
radiance is still a significant contributor to total radiance at 0.75 pm.

3.3 EFFECTS OF BACKGROUND ALBEDO

A striking feature in Figure 3 is the cross-over of total radiance lines for the different
amounts of haze, when the surface reflectance is varied (the observed target and surrounding
background reflectances were made equal and the view angle taken normal to the surface for
this graph). The implication is that there is a surface reflectance value at which the sensed
radiance is essentially independent of the amount of haze present in the atmosphere. For re-
flectances smaller than this cross-over value, the radiance for a hazy atmosphere is greater
than that for a clear one, while the opposite is true for surface reflectances greater than the
cross-over value. The cross-over effect is observed in Figure 4 as 2 change in sign of the

slope of those primarily horizontal lines which denote different background reflectance values,

The cross-over effect was observed in calculations for longer wavelenpgths as well (see, for
example, the results in Figure 5 for 0.75 pm). Interestingly, the cross-over region was for
surface reflectances between 10 and 129, at wavelengths of 0.55, 0.65, 0.75, and 0.95 pm under
the conditions considered. It is not known what patierns would result from calculations for
different sun positions.

The strong dependence of path radiance on the albedo of background surfaces, as evidenced
in the figures discussed above, is alse noteworthy. Background albedo can be as large a factor

as haze content (visuzl range) in determining the path radiance contributions.

3.4 EFFECTS ON SUN ANGLE (AND LATITUDE) ON ERTS DATA

ERTS passes over the continental United States in a few minntes' time on each orbit. The
sun's position relative to any one point on the Earth's surface does not change appreciably dur-
ing that time, but there are substantial changes in the local solar zenith angle at points along the
gatellite ground track. These in turn cause noticeable changes in total and path radiance quan-
tities. We here include some calculations and discussion, generated by Dr. Turner under the
aforementioned SR&T program [6], to provide 2 more complete description in this report of
aimospheric effects in ERTS data.

Calculations of beam radiance (LOT in Eq. 1) and path radiance were made for simulated
pasges of ERTS from north to south across the western part of the United States during mid-
morning hours on a clear day. Results are presented in Figure 6 for summer (21 June 1973)
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and winter (18 December 1973) passes. A minor but not negligible effect in the caleulations is
a 6 to 79 increase in exn-atmospheric solar irradiance from winter to summer, a change
caused by variations in the Earth-Sun distance,

The major effect on radiances isthe change in solar zenithangle as afunction of latitude, As
the latitude decreases the angle betweenthe nadir view angle and the solar zenithangle decreases,
resulting in a higher backward scattering of radiation and therefore an increase in path radi-
ance. The effect is more pronounced in summer than in winter because the angle is smaller.

A question arises: should one correct the gatellite data by a simple multiplicative opera-
tion using the sun angle? The answer is that it would be advisable to use another correction
procedure because the additive path radiance term, a major component of the total radiance,
is a rather complicated function of sun angie. Fer a Lambertian surface we can define an in-
trinsic radiance LI which is the radiance the surface would exhibit in the absence of the atmo-
sphere!

=B
I’n“oEs (3}

where p is the target reflectance, B, is the cosine of the solar zenith angle, and Es iz the extra-
terrestrial solar irradiance at the top of Earth's atmosphere.

Figure 7 illustrates the variation in the ratio of the radiances to the intrinsic radiance asa
function of latitude for a 5% surface reflectance. It can be seen that the ratio LB/ LI is almost
constant. It is the path radiance term that has a strong solar-angle variation, introducing a
corresponding variation in total radiance which would not be sufficiently corrected by a simple
multiplicative operation. The problem is much more severe for winter than for summer, and
the trends of the LT/ LI curves on Figure 7 have opposite slopes for the two seasons. The
curves would be flatter at longer wavelengths where the path radiance comprises a smalier
fraction of the total radiance.

3.5 EFFECTS OF SCAN ANGLE

Scan angle is another observation parameter. Large "scan-angle effects’ often have been
cbserved in airborne MSS data where scan angles much larger than the +69 of ERTS are em-
ployed. While one would not necessarily expect to find them to be of significance in ERTS data,
indications are that they can be.

The lengths of obgervation paths through the atmosphere are longer for off -nadir scan angles
than for nadir. The corresponding lower transmisaion of radiation tends to rednce signals re-
ceived from off -nadir angles. An opposite effect 15 caused by scattering (and emission) 1n the
atmosphere which adds extraneous path radiance to received signals. The relative balance
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between these two opposite effects depends on the direction of scan relative to the sun's posi-
tion. Path radiance usually dominates when the scanner looks away from the sun, while the
transmittance effect usually is greater when the scanner looks toward the sun's azimuth. In
addition to these atmospheric scan angle effects, there can be bidirectional reflectance efiects

in the surface materials observed.

Tigure 8 illustrates the scan-angle dependence of 0.55 pm total and path radianceson a
clear day. The variations, due to atmosphere alone, are as much as 89, of the minimum value
of total radiance for an 8% diffuse reflector. Percentage variations in path radiance are even
greater. The curves in Figure 8 are for different backgroundalbedos. Figure 9 presents a
graph for which visual range was the parameter varied to obtain different curves of radiance
for a fixed (B%) background albedo. Note that the visual range has little effect on total radi-

ance for scan angles toward the sun but does affect it for angles away from the sun.

Calculations for slightly different clear-day conditions were made and are presented in
Table 1. Percentage changes are calculated for wavelengths of 0.55 pm and 0.75 pm and +6°
off-nadir scan angles. Again, path radiance changes are large, and percentage changes in
tota] radiance are significant even though they are 1/2 to 1/3 of the path radiance changes.
For instance, there would be a 10% change in 0.55 pm total radiance across an ERTS frame
and over 6% in 0.75 pm total radiance.

3.6 ESTIMATES OF VISUAL RANGE

1t was noted earlier that optical thickness, the key parameter in radiative transfer calcula-~
tions, could be approximated by standard atmospheres tagged by visual ranges for some appli-
cations. Airports regularly determine and report visibility conditions, so we explored the
possible use of these readings from stations scattered throughout an ERTS frame (1033 -
15580, 25 August 1972) over southwestern Michigan. ERTS signals from water bodies located
near these stations were extracted, analyzed, and compared with predictions of signals made

using the Turner model and the airport visual range readings.

The reflectance of water is essentially zerc in ERTS Band 7, very low in Band 6, and a few
percent in Bands 4 and 5 where it depends somewhat on the depth and turbidity of the water and
the bottom color. Therefore, we believe that clear open-water signal levels in Bands 6 and 7
well represent path radiance and, in Bands 4 and 5, are still largely due to path radiance.

Calculations were made with the radiative transfer model for the sun angle, scan angle, and
vigual range that existed for each of the five stations. A zero reflectance surface was assumed
for water in Bands 6 and 7 and a 5% reflectance surface was assumed for Bands 4 and 5. The
computed spectral radiances for three different background albedos are listed in Table 2.

The right-hand column gives the maximum variation between stations, as a percentage of the

26




ERIM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

E 8 Wavelength = 0.55 pm

3 Target Reflectance = 0.08

t'ﬁ TI— Solar Azimuth Angle = 1379
o Solar Zenith Angle = 39.2°

E 6 |— Visual Range = 24 km

2

L

A 5l Path Radiani:f_‘”_—. 0.16
& —.0.08
g ) S 0.04
61—

o

20 N T I S L |

4 -4 -2 0 2 [

Towird NADIR SCAN A\IGLE (deg) Towoard

"FIGURE 8. DEPENDENCE OF RADIANCE AT SATEL-
LITE ON SCAN ANGLE, 0.55 um

8 [ Wavelength = 0.55 um
Target Reflectance = (.08
7[—Solar Azimuth Angle = 137°
Solar Zenith Angle = 399
6 |— Background Albedo = 0.08
Visual Range (km), 6.4
§}—Total Radiance, L <132
' B ems S

*=9

Path Radiance, Lp 6.4
_'/13.0

SPECTRAL RADIANCE (mW/cm2-s1um)

3.

[ 18,0
24.0

af—

1_

N [ T T I I

% -4 -2 0 2 4 6
<~ Toward NADIR SCAN ANGLE (deg) Toward —
Z

FIGURE 9. OMBINED SCAN-ANGLE AND VISUAL-
RANGE EFFECTS ON RADIANCE AT SATELLITE,
0.55 pm

27




ERIM

FORMERALY WILLOW RLUIN LABORATORIES, THE UNIVERSITY CF MICHIGAN

TABLE 1. SCAN ANGLE EFFECTS ATTRIBUTABLE TO THE ATMOSPHERE

Spectral Radiances*

Azimuth Scan Angle
(mW/cme sr-ym)

Relative Relative

to Bun to Nadir A =0.55 pm A=0.T5um

() {(8) Path 'Total Path Total

380 (-) 6° 2.51 4.70 0.98 2.78

0% 2.71  4.90 1.06  2.88

2180 6° 2.88  5.17 .17 2.96
Percent Change from One Side of Nadir to Other
Scan Angle A=0.55 um A =075 pm
Change Path Total Path Total

-6% to +8° 18.9  10.1 18.7 6.6

*Target Reflectance = Background Albedo = 8%,
Solar Zenith Angle = 390
Optical Thickness of Atmosphere = 0.3812 {for 0.55 pm
and 0.2854 for 0.75 pm.
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Percent Change from Nadir

(6= 00) Value
A=0.55pum A=0.70pm
Path Total Path Total
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e .]\.‘.’.J-

Lo ] 1
51 E,’ =
ol _ . =i
8 Q TASLE 2. MODEL CALCULATIONS OF TOTAL SPECTRAL
& ﬁ RADIANCE AT SATELLITE FROM LOCATIONS
& - THROUGHUUT FRAME 1033-15580
Sy
&
ri o]
3 & MAXTHUM
VARTATION
TARGET BACKGROUND COMPUTED SPECTRAL RADIANCE AT VARTOUS ACROSS
WAVELENGTH REFLECTANGE ALBEDO REPORTING STATIONS (mM/cn?-Sreum) FRAME
GRAND BATTLE Hax-Hin
A Py B MUSKEGON RAPIDS KALAMAZ0Q CREEX LANSING Min
{um) (%
.55 .05 .05 3.786 1,545 3,674 3.531 3.462 9.3
.10 4.172 3.837 4.151 3.945 3.857 8.7
ro .20 4.960 4.430 5.123 4.789 4.661 15.6 3
a
“ .65 .05 .05 2,540 2.514 2.600 2.517 2,485 6.2 5
.10 2,926 2.726 2.962 2.825 2.777 8.6 g
£
.20 3.506 3,153 3.694 3.449 3.368 17.1 £
.75 ¢ .10 1.074 0.815 1,222 1.045 0.981 49,9 2
I
.30 1.907 1.417 2.290 1.943 1.831 61.6 £
.50 2.759 2,030 3,386 2,863 2.700 66.8 s
Q
.95 0 .10 0.50% 0.370 0.607 0.506 B.474 64.0 g
5
.30 0.988 0.716 1.223 1.022 0.963 70.8 g
m
.50 1.474 1.065 1.851 1.546 1.459 73.8 m
REFORTING VISIBILITY (ST. MILES) . &
@ Il a.m. B/25/72 & 15 5 (Haze) 7 ] £
4
*12 NOON REEORT SINCE NONE AVATLABLE @ 11 a.m. N
z
[+]
z
[4]
>
2

e o e e s o ha L Iy LI VRN T 0y T,

E I T AT TP s LIV R S S N S TL



Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAR

minimum value for the given albedo. The variation ranges from 6 to 17% in Bands 4 and 5 and

from 50 to 749, in Bands 6 and 7. Thus, it is seen that appreciable differences can exist due to
atmospheric effects.

Empirical values in Bands 5 and 7 from lakes near four of the reporting stations are plotted
versus location along a transect from Muskegon to Kalamazco to Lansing (see Figure 10, parts
{a) and (b) respectively). Alsc on the figures are corresponding computed values extracted frum
Table 2. The agreement between the shapes of the theoretical and empirical plots is striking.
The one departure is the Band 7 value extracted from Reed Lake near Grand Rapids. This is a
small lake; we are uncertain of its condition, and it was used only because no larger lakes exist
nearby. The differences in magnitude between the two types of data are not fully understood, but
are influenced by the particular target reflectance and/or background albedo selected for calcu-
lation and plotting and the radiance calibration of the ERTS data.

From the foregoing, it would anpear thav a radiative transfer model and surface visual range
egtimates can be used to predict the general shape of variation that is present in ¥RTS data
throughout a scene. However, further analysis and examples should be used for coniirination
and to resolve the differences found between magnitudes of caleniated and empirical radiances.

A word of caution is in order regarding the use of Mational Weather Service visibility esti-
mates. Aside from the fact that they indicate only ground-level conditions, depend upon the ex-
perience of the observer, and may not adequately characterize the entire atmospheric path, one
must aleo understand the reporting procedures and be familiar with the visibility markers avail-
able at the stations of intevest, Private conversations with NWS personnel have produced the
following information: Seven miles is considered to be unlimited visibility as far as NWS and
flight controllers are concerned; longer ranges depend on the reporting station having suitable
markers at longer distances, The NWS observation manual states that "When the prevailing
visibility is more than seven miles and is alse estimated to be more than twice the distance to
the most distant marker visible, encode the vistbility as twice the distance to that marker,
rounded to the nearest reportable value, or seven miles which ever is the greater, and if the
visibility is estimated to be greater than the coded value, add a plus." Therefore, even on an
exceptionally clear day a station with restricted view (e.g., because of treeg and terrain) and
an absence of suitable markers might never report a visibility greater than seven miles, while
another might have suitable markers at 30 miles or more distance and report corresponding
values. In sum, ground visibility readings can provide useful information for analysis of ERTS
data, but one can be misled if restrictions on the reporting stations are not known and con-

sidered.

a0



E

FORMERLY WILLOW RUN LAECORATGRIES, THE UNIVERSITY OF MICHIGAN

4.0

T
MODEL CALCULATIONS FOR

DB-D.ZO. Py L. 05 '

2.0 HMEAN ERTS SIGN
T FROM LAKES

3.6

SPECTRAL RADIANCE
(mM/ cmZ+ Sits um)

1.0 -
LAXE
(IiICHIGAH) (REED LAKE) (MORROW LAKE) {LAKE LANSING)
0.0  E—— 1
GRAND -
MUSKEGON RAFIDS KALAMAZOOD LANSING

(a} Muskegon to Lansing Transect ()L‘1 =0.65 pm)}

2.0 T T

MODEL CALCULATIONS FOR
pBHD. 50, DT-O'O

1.5

fad
i)
o
o B
= 3
g ae

@ 1.04 3
-
28
EE
2 MEAN ERTS SIGHALS
«w FROH LAKES

0.3

‘nr%ﬁm’ (REED LAKE) (MORROW LAKE) (LAKE LANSING)

o.d 1 [ 1}

HUSKEGON GRAND KALAMAZOO LANSTNG
FAPIDS

(b) Muskegon to Lansing Transect (Ac =0.95 pm}

FIGURE 16, COMPARISON OF MODEL CALCULATIONS WITH RAD]-
ANCES EXTRACTED FROM ERTS DATA FOR WATER BODIES

31




whes
Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

3.7 UNTERTAINTIES IN ASSOCIATING OPTICAL THICKNESSES WITH VISUAL RANGE
READINGS

The preferred method for obtaining detailed information on atmospheric effects for a given
loeation is to measure the optical thickness directly. The reason is that one may have thé same
horizontal visual range at ground level and still experience considerable variation in optical
thickness due to varying altitude profiles of atmospheric constituents. R. Turner has made cal~
culations of the sensitivity of total radiance to such profile differences. One set of calculations

is presented here for completeness of the discussion [6].

At each of several visual ranges, the optical thickness from the standard atmosphere was
adjusted by £159 and +50%, of the optical thickness aseociated with aerosol scattering o obtain
new profiles. Total radiances calculated for these different profiles are presented in Figure 11
for 0.55 pm; corresponding path radiances are presented in Figure 12. These profiles corre-
spond to one- and two-standard-deviation variations of the profiles averaged by Elterman to
obtain the standard atmospheres used in the model. These results quantitatively indicate a
limitation that should be kept in mind when horizontal visual range estimates are used to char-
acterize atmospheres.

The model results discussed to this point have been for scattering, non-absorbing atmo-
spheres only. Investigators are also examining the effects of absorption by aerosols {Turner,
[5 and 6]} and by water vapor (Pitts, et al., [ 10]). Water vapor absorption primarily affects
ERTS Band 7, while aerosol absorption affects all bands, e..pecially the shorter wavelengths.

3.8 EMPIRICAL METHODS FOR ESTIMATING ATMOSPHERIC EFFECTS

There are empirical methods that have been used to estimate atmospheric effects in ERTS
data. One of these involves "darkest object” location. The water signal analysis discuased
in Section 3.6 is an example of this procedure.

One scans through the data to locate the darkest objects separately in each spectral band.
These objects may be surface water which has nearly zero reflectance in ERTS Band 7; in other
bands dark soil, shadowed areas, or some other dark material may be used. These signals
primarily represent path radiance, becauge the direct beam radiance from the surface is very
low. Corrections based on such darkest-object signals can be made to reduce atmospheric
effects in the ERTS data.

Application of another empirical procedure, which uses analysis of data clusters in two or
more different areas, is discussed in the context of preprocessing for vignature extension in
Section 4. Both multiplicative and additive correction factors are determined and applied to
transform one data set to the equivalent atmospheric state of another, which is then used for

training the recognition processor.
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In a study aimed at obtaining quantitative information on atmospheric effects, the ERIM

multispectral scanner wasflown on a series of multialtitude passes in synchronism with the ERTS-1
pass on25 Avgust 1872, Reflectance panels were placed on the flight line, Airborne signals from
large fields, resolvable in ERTS data, were compared to signals from the reflectance panels

and equivalent reflectance values, catled secondary standards, were assigned to these fields,
Average values were then extracted from ERTS data for each of the secondary standards and
converted to radiances. (The maximum radiance values listed in Table G.2-2, page G-14, of the
ERTS Data Users Handbook were assigned to computer-compatible-tape levels 127, 127, 127

and 63 for ERTS Bands 4, 5, 6 and ', respectively.)

Figure 13 presents plots of ERTS radiance versus target reflectance for the four ERTS bands.
bands. The daghed lineg are least-squares fits to the values obtained for the secondary stan-
dards. Also on the figures are trios of lines that represent approximate calculations made with
the radiative transfer model for different background albedos, The visual range used for these
calculations was 24 km (15 stat. mi).

The slopes of the theoretical lineg and the empirical fits agree well, but the magnitudes
differ in Bands 4 and 5 (especially in Band 4) for reasonable background albedos. The reason(s}
for these differences is not known with certainty, but there are several possibilities. (1) The
theoretical radiance values were obtained by merely multiplying band-center spectral radiances
by factors of 0.1, 0.1, and 0.3 to approximate the ERTS spectral bandwidths; more detailed spec-
tral caleulations are desirable. (2) The reflectances assigned to the secondary standards for
the empirical plots appear to be too low; higher values would improve agreement. (3) The model
might be in error, aithough checks elsewhere of sky radiance predictions have shown good agree-
ment with measurements and with exact calculations for a pure Rayleigh atmosphere. (4) The
atmospheric profile used in the caleulations was less hazy than the condition in the test area
{24 lom visual range as opposed to 13 km). {5) It is possible that the ER'TS calibrations are biaged
or we have misinterpreted the calibration procedures. Despite the differences seen, the strong
influence of the atmosphere on ERTS data has been shown in both theoretical and empirical
studies.

3.9 COMPARISON OF ATMOSPHERIC EFFECTS AND OTHER SOURCES OF VARIATION IN
ERTS SIGNALS

The preceding sections have shown the variation in total radiance {and, therefore, in ERTS
signals) that can occur because of atmospheric effects. It is of interest to compare these with
other sources of variation in ERTS signals.

One source of variation is in the differences which oceur in the calibrated outputs of the six
detector channels which make up each of the four ERTS spectral bands. In some instances,
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these differences have been seen as striping and/or banding effects on ERTS images, sometimes
referred to as "every-sixth-line effects."” Even when not particnlarly noticeable in the ERTS
images, there are detectable differences in the ¢ zital outputs on computer-compatible tapes.
We possessed two digital versions of the same frame, the second having been requested be-
eause of major sixth-line problems in ERTS Band 6. Means and standard deviations of signals
were computed for several thousand points from an agricultural scene, and points from every
sixth line were grouped to give results for each detector channel, as presented in Table 3. The
standard deviation of means varied between 0.1 and 0.6 digital counts for all but ERTS Band &,
{or which it was greater. The ratio, standard deviation + mean (called the coefficient of varia-
tlon), was cemputed for each case and varied between 0.6% and 2.2, for the three best channels.
These values agree with results of similar analyses of other data sets. Added to these more or
less systematic variations should be the random variations associated with noise in the individ-
ual channels.

Another source of variation in the signals is the variation in reflectance of the surfaces
being mapped. Signal statistics gathered for individual fields and combined to form recognition
signatures include all the noise sources discussed so far. An examination of signatures gen-
erated as part of t!:IE processing discussed in Section 4 shows coefficients of variation of 3 to 1
8% or more, depending on the characteristies of the scene class under consideration.

Presumably, there would be little random variation due to the atmosphere in a localized
area of an ERTS image in the absence of clouds. The question remains as to how great
atmosphere -induced variations might be over a larger area, (e.g., an entire ERTS frame).
Duggin [11] and others have considered the variability that could exist throughout an ERTS frame
by making measurements throughout individual days and at scattered locations. In Ref. [11],
coeificients of variation of 3.6 to 7.8 in irradiance were determined as indicators of atmao-
spheric transmittance differences throughout a frame for a given set of conditions. The graphs
pregented earlier in this section indicate changes of this magnitude, and substantially greater
can occur if the atmospheric haze levels vary appreciably from one part of the {rame to another,
Even without that variability, the radiative transfer model calculations have shown 6 to 109,
variations in total radiance from one side of an ERTS frame to another, due solely o scan-angle
effects on a relatively clear day.

Changes of the magnitnde discussed herein are sufficient to cause problems in computer
recognition over extended areas of ERTS frames unless corrections are applied.

3.10 CONCLUSIONS AND RECOMMENDATIONS
The effect of Barth's atmosphere on remotely sensed multigpectral data is by no means
simple. In this section it has been shown that a multiplicative factor involving the sun angle
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TABLE 3. COMPARISON OF SIGNAL CHARACTERISTICS ON ORIGINAL CCT AND NEW CCT
FOR FRAME 1033-15580
Each entry computed for 4800 points from an agricultural scene
DETECTOR ERTS BAND 4 ERTS BAND 5 ERTS BAND 6 ERTS BAND 7 _
GROUP  MEAN STD. DEV. MEAN STD. DEV. MEAN STD. DEV. MEAN STD. DEV. -

1 new 25.56 2.21 18.14 3.54 44.23 8.50 24.90 4.45

old  24.52 2.17 17.28 3.44 45.07 6.56 24.90 4.45

2 new  24.82 2.00 17.35 3.63 43.91 6.28 25.20 4.46

old  25.78 1.98 17.62 3.59 44.29 6.33 95.20 4.43

3 new  24.985 2,07 17.38 3.59 43,28 6.17 25.37 4.55

old  25.20 2.08 17.44 3.65 43.24 5.98 25,37 4,52

4 new 25.38 1.98 17.35 3.74 40.24 9.86 95.49 4.78
old  25.38 1.91 17.48 3.76 43.73 6.06 95.49 4.78 3
z
5 new  25.77 2.23 17.52 3.72 44.09 8.63 25.24 4.73 2
old  25.77 2.23 17.52 3.72 17.76 18.78 95.24 4.73 p
£
6 new  25.62 2.07 17.78 3.86 522 6.47 25.70 4.66 2
old  25.58 1.91 17,51 3.58 45.25 6.78 25.71 4.63 2
z
g
g
New Old New O1d New old Hew Cld 3
Mean of 25.35 25.37 17.59 17.48 43.50 39.80 25.32 25.32 g
Meaﬂs (m) - 14 . . o . . - 'E
I
Std. Dev. 0.41 0.57 0.25 0.11 171 10.9 0.27 0.27 g
of Means (s} z
Ratio, s5/m 1.6% 2.2% 1.4, 0.6% 3.9% 27.29, 1.1% 1.1%, g
*Anomalous value due to bad detector channel, Group 5. E
g
[
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alone is not likelytobe sufficient for the correction of space data for recognition processing over
large areas, This is especially true for conditions of light haze in which multiple scattering

is of lesser importance and the scattering proportions of the atmosphere depend strongly upon
the anistropic character of single scattering by an aerosol particle. The resulting angular vari-
ations in the data depend upon the angle between the viewing direction and the solar beam as
well as other guantities such as spatia} variations in atmospheric turbidity throughout a region

covered by an ERTS frame.

it also has been shown that significant changes can occur in total radiance at the satellite
due to atmosphere~related scan angle effects across an ERTS frame, amounting to 5 to 109 of
the total radiance on a clear day.

it has been shown that the relationship between total spectral radiance, surface reflectance
and visual range is rather involved. The background surface albedo was shown to be a major
determinant of path radiance, being comparable to haze content for many situations. There does
appear to be a narrow range of reflectance values for which the total radiance is nearly inde-

pendent of haze content,

It has been demonstrated that a measurement of horizontal visual range near the surface
can be a rather poor indicator of atmospheric state and that optical thickness is a much better

meagure, although it is more difficult {o obtain.

Variations attributable to atmospheric effects in ERTS data can be as large or larger than
thoge due to sensor noise and surface reflectance variations within well defined classes of

ground cover,

Unresolved differences were found between radiances obtained by applying the published
calibration constants to ERTS-1 MSS data and those calculated with the radiative transfer model.

Finally we conclude, in conjunction with results presented in Section 4, that a signature ex-
tension algorithm can be used to correct muitispectral data for variable atmoepheric effects.
One must be 'ca.ret'ul, however, in the specificatiun of the relevant parameters on which signature

extension transformations are based.

It is recommended that additional studies be made to further quantify the effects of
atmosphere-related variability in ERTS signals on multispectral recognition. In particular,
it would be desirable to relate signal changes directly to changes in recognition performance.
Algo, more effort should be devoted to effects of absorption by aerosols, especially for remote
sensing in the vicinity of urban areas. Finally, additional effort should be expanded to verify
and/or improve current radiative transfer models to make them more valuable in future studies
and applications of satellite remote sensing.
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4
RECOGNITION PROCESSING AND SIGNATURE EXTENSION

Computer recognition of muitispectral scanner signals provides an automated method for
interpretation of remote sensor data and a potential capability for conducting operational surveys
of large areas. Multispeetral scanner {MSS) data can be processed by computers which have
been trained to recognize the spectral characteristics of various classes of ground cover found
in a scene. The spectral characteristics of each ground-cover class are usually described by
statistical parameters {a mean vector and a variance-covariance matrix) of the MSS signals,

a description called the "recognition signature” of the class. The training of the recognition
computer normally entails an extraction of signal statistics and a correlation of these with known

types of ground cover in a "training” area.

Recognition carried oul on data collected in the same locale as the data used for training is
termed "local recognition.” 'Non-local recognition” occurs when areas distant in time and/or

space from the training area are recognized,

When large areas are surveyed from space, there exists a high probability that environ-
mental and observational conditions will change from day to day, frame to frame, or even within
a frame. Resulting changes in signal levels received from each class of ground cover can re-
sult in degraded machine recognition performance and reduced gquality of other extracted in-
formation. One way to combat such changes is to have available substantial amounts of ground-
truth information from throughout the survey area; however, this can be expensive. Another
way is to adjust the signafures and/or data in non-local areas to counteract the effects of the
changes [12]. We use the term "signature-extension techniques" to describe methods and pro-
cedures that are used to obtain improved non-local recognition processing and, thereby, more

efficient, accurate and effective area survey information.

4,1 AFPROACH

There are many situations in which signature extension is required and many techniques
{for extending signatures. Twc situations are considered in this report: (1) extengion of signa-
tures between areas on a given day and (2) extension of signatures from one day to another for
the same area. Four different methods of signature extension were applied. Three of themin-
clude adjustment of signature means, based on: (1) average signal values in the two areas; (2)
the time -and-space dependent characteristics of signals recognized as each of the classes
(adaptive processing); 2nd (3) theoretical calculations based on a radiative transfer {atmospheric
effects) model and ground-based optical depth measurements. The fourth method performs
multiplicative and additive transformations of the signature means and scales the dispersion

matrices.
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Three different data sets are considered in this section. The first (25 August) is over a
test area in Michigan, th. test site to which processing efforts on this contract were primarily
devoted; the second (21 Aupust) and third (10 and 11 June) are in neighboring states. Some re-
sults obtained at ERIM under the previously noted NASA SR&T contract are presenced in addition
to those obtained under this contract, to provide a more complete characterization of the po-
tential of advanced techniques for processing ERTS data. Consequently, all techniques were
not applied to each data set,

In the first part of each analysis, training procedures were used to establish signatures.
Then, generally after local recognition was performed, non-local recognition without signature
adjustment was performed and followed by use of one or more signature-extension techniques.
Results were always obtained for field-centers, but in some ingtances they were obtained for

full sections that contained several fields and boundaries.

4,2 DISCUSSION OF RECOGNITION AND SIGNATURE EXTENSION METHODS

Local recognition was carried out for each of the sites using the ERIM linear decision rule.
With this rule [13], the distribution of signals from each signature is assumed to be multivariate
normal. The signal space is partitioned by a series of linear discriminants, which implement a
pairwise decision rule to decide to which class the pixel belongs. Then, a quadratic calculation
is made to determine whether the observation is sufficiently likely to have come from that class
fo be assipgned to it; if not, it is rejected and assigned to a null class. A thresghold value corre~
sponding to a 0.001 probability of false rejection was used for the results presented here. This
rule has performed with accuracies comparable to conventional quadratic decision rules, with

a susubstantial saving in computer time.

Non-local recognition was carried out between pairs of sites by applying the local signatures
from one site to the other without any adjustment of either signatures or data. Substantial de-
creases in recognition accuracy irom local levels were noted. After various signature exten-

sion technigues were applied, improved results were obtained.

4.2.1 SIGNATURE EXTENSION BY MEAN LEVEL ADJUSTMENT
The mean level adjustment (MLA) procedure used is one whirh adds constants to the means
of recognition signatures from one area for use in another area. The constant is determined

for each channel from the difference in average signal values of the two areas.

The ML A procedure isbased ontwo assumptions. Thefirst isthat some overall, constant, addi-
tive change has occurred inthe spectral characteristics of all classes ingoingfrom one areatothe

next, such as a change in atmospheric conditions affecting path radiance. The second assumption,
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implicit in the procedure for computing the adjustment, is that the two areas have identical per-

centages of each type of ground cover preseut. If there is a constant difference between the two
areas, this method should be able to make a good adjustment and give recognition accuracies
approaching the local recognition results.

Mathematically, the procedure can be expressed as fullows:

N i

— i<
my =mp*+A,g

A (4)

A
where m

A

m;a is the corresponding signature mean for area B

is the estimated signatnre mean for area A in channel i

i . . i i i i
A alp 18 the mean level adjustment difference (u A “B)’ where ;1 A and Hg are aver-
ages of data values aver specified portion(s) of each area.

4.2.2 SIGNATURE EXTENSION BY ADAPTIVE PROCESEING

The second signature extension method employed was adaptive processing with a decision-
directed Kalman filter developed at ERIM by Dr. Robert Crane [14], following earlier work by
Dr. Frank Kriegler, et al. [15]. Tu this method, the means of recognition signatures are adjusted
in response to the signal values of pixels that are recognized as each particular class. The ad-
justments are small dynamic adaptations to changes in the signals from each ground cover, as
opposed to the single discrete shift of MLA. This method, like the mean-~level -adjustment pro-
cedure used, keeps the covariances constant as the means shift, The use of constant covariance
simplifies the algorithm substantially and is not unreasonable for data sets which span a mod-

erate amount of change in scene conditions.

The Kalman filter method of adaptive processing is a more subtle method than mean level
adjustment and is more likely to improve recognition accuracies in areas where recognition does
fairly well. There are several ways in which adaptive processing might be applied to a data set,
depending on the nature of changes between the training area and non-local areas of interest.
First, one might process data continually from the training area to the non-local area, adapting
along the way. Second, one might jump directly to the non-local area and let the gignatures
adapt to the new conditions, provided differences are not too great. This method is used when the
intervening areas differ from the training area and non-local area of interest. Third, one might
proceed as with the second method, after first making an adjustment to get the signatures into a
closer correspondence withthe non-localarea (e.g., after first performing a MLA operation).

The first twe methods were examined in this study.

Th= first way represents the optimum situation, providing the non-local areas covered are

composed of the same ground covers as are found In the training area. An important condition
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for succeasful adaptive processing is that unique signatures represent all ground covers present.
A common problem to all adaptive methods is that a signature could adapt to the false alarms

of a ground cover for which no signature exists and be "captured" by the other cover. A cap-
tured signature would not only give many false alarms but might adapt to such an extent that it
could no longer recognize the ground cover it was meant to recognize.

There are parameters of the Kalman filter that can be adjusted between repea‘ed procesg-
ing trials. Two were varied in this investigation. Bldetermines the updating rate, which con-

trols the speed with which signaturec are allowed to adapt. Values of 9, are related to the num-

1
ber of data points (or number of lines of fixed length) that would be processed before a signature
mean approach a new value following a step change in the crop signais. 82 controls the inter-

action between the means of the various signatures.

4.2.3 SIGNATURE EXTENSION BY MULTIPLICATIVE AND ADDITIVE SIGNATURE
CORRECTION (MASC)

The MASC {Multiplicative and Additive Signature Correction) algorithm for signature ex-
tension was recently developed at ERIM by Dr. Robert Henderson {16} under the previously identified
SRE&T contract. With this algorithm, a signature correction transformation is determined for
extending signatures from one site to another. The transformatiun applies both a multiplicative
and an additive correction term to each signature to more accurately reflect changes that ccecur
between data sets than is possible with a simple additive correction. For example, the MASC
correction {or transforming signature means of one crep from one site, W, for uge in anothey

gite, F, is:

A i, (5)
Mp=2p|w™w * °rlw
where m;v is the mean value for the crop in chanpel i for area W
i
and bFEW
‘for transforming W signatures to F conditions

a.%,lw are the multiplicative and additive sorrection coefficients, respectively,

AR

mg is the adjusted signature mean value in channel i for use inarea F

The factors {a;,|w ] are also uged to scale the signature variance -covariance matrices.

While the transformation coefficients {ai, bi} could be determined from radiometric and
atmogpheric measurements made in the two sites at the time of data collection, such measure-
raents are not usually taken. Alternatively, these coefficients can be based on the results of un-
supervised pixel -by-pixel data clustering procedures in the two sites of interest. The clusters
are paired between sites and used in conjunction with a linear regression program which com-
putes the coefricients. Tt is not necessary to identify the ground cover classes associated with
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the various clusters, because they are paired according to their relative signal values. Further-
more, it is not necessary that the proportions of the cover classes be the same, although
ideally the same cover clagses should be present in both sites.

4.9.4 SIGNATURE EXTENSION BY ATMOSPHERIC CORRECTION

Given information on the differing atmospheric states and viewing geometries of two data
sets, one can use a radiative transfer model to compute differences in path radiances and trans-
mittance for use in signature corrections. For the data set considered in this report, photom~
eter readings were available with which to compute optical thicknesses for the atmosphere on

two days over the pame site.

4.3 RECOGNITION OF DIFFERENT AREAS ON SAME DAY

Recognition capabilities were analyzed for two data sets with three of the four signainre ex-
tension technigues. The analyses of these two data sets are presented and discussed separately,
beginning with the 25 August set and ending with the 21 Aupgust set.

4.3.1 DATA SET FROM 25 AUGUST 1972

Recognition results obtained with the various procedures are presented, following descrip-
tions of the ERTS data set, ground truth, training procedures, and a special procedure developed
for pixel selection.

4.3.1.1 Data and Ground Truth Descriptions

The major data set for this contract was collected by ERTS-1 on 25 August 1972 over

Eaton, lonia, and Clinton Counties in Michigan {Frame 1033-15580). These counties are in the
vicinity of Lansing, Michigan, and the test sites are primarily agricuitural in nature, The
primary test site wasa 3 x 11 km (2 =7 mile) area in Eaton County, Michigan, in which exten-
sive field observations had been made. Ground-truth information also was available for the
surrounding area and in Clinton and Ioria Counties, through Agricultural Stabilization and
Conservation Service (ASCS) Records, photointerpretation of low-altitude aerial photography
{collected on the same day as the ERTS pass by the ERIM C-47 aireraft) and high-altitude aeriat
photography (collected on 15 Septeraber 1872 by the NASA RB-5T aircraft), Areas 3 x 3 km

(2 x2 mile) in size were analyzed in Clinton and Jonia Counties.

The above sites and data were used in commen with another RRTS-1 investigation (MMC -
321, NAS5-21834, Michigan State University {(MSU), East Lansing, Michigan} in which ERIM
participated as a subcontractor, carrying out recognition processing and analysis. Most of the
ground truth information was provided by MSU. Both local recognition and non-local recognition
without signature extension techniques were carried out cooperatively between the two contracts

and have been reported eartier [17, 18], but are summarized in this report for comparison with
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signature extension results. Also, a procedure for correlating ERTS MSS pixels (picture ele~
ments) with analysis areas specified on aerial photographs and/or topoéraphic maps for use
both in training and in evaluating recognition results was developed under jolnt support of the
two contracts (see Section 4.3.1.3). The probiem is partly due to the size of ERTS resolution
elements. The fields in the sites are relatively small in terms of the number of ERTS pixels
that can be found that represent resolution elements entirely within field boundaries. Yet they
are typical of those in much of the country, so this procedure should be useful for many other
investigations.

The FRTS-1 MSE data for 25 August were found to have anomalous values in every sixth
line of Band 6, s0 Band 6 was omitted from our recognition processing of those data.

4,3.1.2 Tralning Procedures
Training for local recognition of the 2 x 7 mile area in Eaton County was performed by

extracting signal statistics from 58 of the largest fields in the ground-truth area (some outside
the _ x 7T mile area) and analyzing them with a signature clustering procedure. Based on this
analysis and knowiedge of the crops present, statistics for 23 of the fields were combined into
12 recogpition signatures for the five major classes of ground cover: corn, soybeans, trees,
bare soil, and senescent (or senescing) cover. The last category included field beans, alfalfa,
and grasses. Later, for both adaptive processing and the proportion estimation processing
discugsed in Section 5, groups of these 12 signatures were combined to form fewer signatures
to represent the major classes.

Training for local recognition in Ionia and Clinton Counties were gomewhat different from
that in Eaton County, because of differences in ground truth and crop types present. Whereas
the specles of most flelds in Eaton County were identified, many fields in the Ionia-Clinton
site were called "senescent vegetation” by the photointerpreters. TField beans, for example,
were not noted as being present in Jonia-Clinton, although they were one of the prominent crops
in the Eaton site. A seven-signature set was defined for the five major classes in the Ionia-
Clinton site, using a representative sample of the available fields in each class. In conirast to
the Eaton site, small fields were used as well as large ones; half of ail fields in a class, up to
a maximum of ten, were used to form the recognition gignature.

4,3.1.3 Pixel Selection
Recognition results were evaluated both for field-center pixels only and for larger areas
that contained many fields, the boundaries between them, and roads and farmsteads. In the early
stages of selecting field-center pixels, it was found that purely manual techniques were inadeguate
and inconsistent. Therefore, the previously mentioned computer-asgisted procedure for select-
ing and assigning pixels to specific fields was developed. Details of the procedure are presented
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in Refs. [19-21]. In brief, the procedure utilizes an empirical map transformation derived by

least sguares calculations from a local network of control points in and around the area of
interest. This transformation is used to warp Earth coordinates to match ERTE coordinates,
effectively computing the location of each pixel, so pixel assignments are made without any
movement or interpolation of ERTS data values. Anotherfeature of the procedure is a capa-
bility to define inset distances away from polygonal boundaries of fields so as to exclude

boundary pixels which represent more than one type of surface cover.

4.8.1.4 Results for Local Recognition and Non-Local Recognition Without Signature
Extengion

Results for local recognition and non-local recognition without signature extension are
presentad for comparison with the signature extension results discussed in succeeding sections.
The local results were generated cooperatively with the previously mentioned Michigan State
University ERTS-1 contract.

4.3.1.5 Recognition Results for Signature Extension by Mean Level Adjustment

In Section 4.2.1, two assumptions of the MLA procedure are listed, The validity of these
assumptions was checked on the 25 August data set. Then recognition results were obtained

both for field centers and for full sections.

Check of Assumptions. Of the two assumptions, the second, that percentages of ground

coverg are identical in the areas used to determine the adjustinents, was easily checked with

the aid of complete ground truth for both areas. Table 4 gives the ground truth percentages

for four of the major ground covers in the areas used to compute two different mean level ad-
justments. These four ground covers have roughly the same proportions in the two sites but
account for only half of the total area, the rest consisting mainly of senescing vegetaion, brush,
home sites and urban areas. Considering these other ground cover types, the two areas differ

in that the Ionia-Clintoa 2 X 4 mile area includes part of the village of Westphalia while the
Faton 2 X 7 mile area is bisected by the Thornappie River with its brushy, tree-lined banks.
Becauge the two areas do not meet the ideal of identical proportions of the various ground covers,
cover percentages were calculated twice. The first set of percentages (MLA -1} is based on all
the gections in the two areas; and there is fairly close agreement for the ground covers shown,
with the exception of trees. The second set of ground truth percentages displayed in Table 4
(MLA-IT) was calculated by omitting those sections which contributed to the differences between
the two areas. In Clinton County, the gection containing the village of Westphalia was omitted
from the calculations. In Eaton County, two sections through which the Thornapple River passes,
and an exceptionally brushy section were excluded. These deletions gave closer agreement
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TABLE 4. PERCENTAGES OF VARIOUS GROUND COVERS IN AREAS
USED TO COMPUTE MEAN LEVEL ADJUSTMENTS

Percentages In Percentages In
Areas Used For Areas Used For
Mean Level Adjustment I Mean Level Adjustment U
Ground Eaton Tonia~Clinton Eaton Ionia-Clinton
Cover County* Counties** County Countiesgt
Corn 28 a0 a1 30
Soybeans 5 & ]
Trees 10 6
Bare Soil 8 i0 10 i0
Total 24 51 52 51
*2 x 7T mi area TExcludes brushy sections
*x2 x 4 mi area IZ!"‘_.xr:ludes urban area
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between the percentages for all ground covers except soybeans. The overall percentages were

algo improved.

Regarding the agsumption of some overall, constant difference, it can be noted that on
25 August 1972 there was a frontal weather system passing through Michigan; parts of the area
covered by the ERTS frame were cloud covered. Airport visibility readings varied throughout
the frame which suggests that, aithough neither the Faton or Ionia-Clinton area were cloud

covered, there could well have been a difference in atmospheric conditions over the two areas.

The average signal valuesfor the Ionia~Clinton and Eaton County areas are shown in Table 5.
The values were higher in the Ionia-Clinton area for all three channels. The differences, Ai’
between the signal values of the fwo areas {Ionia-Clinton minus Eaton) were added to eachof the
Eaton recognition signatures means and subtracted from the Ionia-Clinton recognition signature
means. The two adjusted signatures sets created in this way were then used for non-local rec-

ognition.

To study how sensitive the mean level adjustment method is to differences in the ground
cover coraposition of two areas, average signal values were recalculated, omitting those areas
which were known to contribute to the differing percentages in the two areas. The new average
signal values for the Ionia-Clintor area {Table 6) are almost identical to thoge in the previous
table. The absence of the village did not alter the average values for any channel, because
there were a substantial number of dark trees within and near the village, which ofiset the
brighter signals from homes and roads of the village in the first two bands.

The averages did change, however, in Eaion County when the brushyareas were omitted
from the calculations, so the adjustments between the two areas depend on which sections are
used to compute the average signal values. The differences, Ai’ in Table 6 are slightly lower
than those calculated using all sections for Bands 4 and 5 but are higher for Band 7. These
changes are consistent with a lower proportion of healthy green vegetation in the remaining
Eaton sections. Adjusted signatures based on either or both of these tables should give better
results for non-local recognition that unadjusted signatures, but it would be expected that local
signatures would give the best recognition results.

Tield Center Recognition Results with Mean Level Adjustments, Non-local recognition re-

sults obtained for field centers in the two areas using two different sets of mean-level-adjusted

signatures are summarized* in Table 7. Percentages of correct recognition of field-center

*More resulis are presented later in this section, and Appendix B contains complete rec-
ognition performance matrices.
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TABLE 5. AVERAGE SIGNAL VALUES USED
TO COMPUTE MEAN LEVEL ADJUSTMENT 1

Average Signal

Difference
Band Ionia~Clinton* Eaton** {ai)
4 26.89 25.38 1.52
5 15.09 17.53 1.56
6 Not Used
7 26.62 25.39 1.23

*2 x 4 mi area

**2 x 7T mi area

TABLE 6. AVERAGE SIGNAL VALUES USED
TO COMPUTE MEAN LEVEL ADJUSTMENT II

Average Signal

Diiference
Band Ionia-Clinton* Eaton** {ap)
4 26.90 25.45 1.45
5 18.10 17.68 1.42
& Not Used
7 26.62 25.25 1.36

*Excludes urban area (Westphalia §)

**Excludes brushy sections (Benton 6, Chester 12, and
Roxand 24)
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TABLE 7. NON-LOCAL AND LOCAL RECOGNITION RESULTS SHOWING
EFFECTS OF USING MEAN-LEVEL~ADJUSTED SIGNATURES

Percent Correct Recognition for Various Signature Sets

Eaton County Arsa Ionia-Clinton Area
Signatures: grlriiia- 1.C I-C ‘ Eaton  Eaton

True nton MLA-I MLA-II Iocal BEaton MLA-I MLA-II Local
Clazs

Corn 57.0 64.2 64.9 77.0 57.3 61.3 67.0 7.4
Soybeans 66.7 74.5 74.5 88.2 92.6 88.9 88.9 85.2
Trees 93.3 73.3 76.0 88.0 55.3 91.5 B9.4 81.2
Bare soil 80.6 7.8 75.0 917.2 100.0 86.3 88.7 94.3
Senescent 61.6 86.8 86.0 78.3 64.0 55.0 59.2 76.5
Ave, over points 63.1 72.9 73.1 79.9 64.4 64.0 68.1 79.4
Ave, over plots 63.3 78.1 78.4 78.5 64.1 60.1 63.9 75.6
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pixels are given for {lve classes, as well as overall percentages averaged both over pixels and
over plots (defined field centers). Overall local recognition accuracies were approximately
80% in both areas, but non-local recognition accuracies with non-adjusted signatures fell to

63 to 649;.

Both mean level signature adjustments improved overall non-local recognition results by
about 109, for Ionia-Clinton signatures in the Eaton area. Improvements were not as great in
the Tonia-Clinton area, being only +49% for MLA -II and slightly negative for MLA-I. As just
discussed, MLA-I was based on signal averages over all sections while, for MLA-II, sections
containing scene cover types that were not common to hoth were excluded.

Upon examining the results for the individual ground covers, it is apparent that they do not
mirror the overall results. The trend for each of the ground covers is the same in most cases
for both adjusted signature sets, and the following remarks apply fer either set, except when

otherwise noted.

In both areas, mean level adjustment improved corn recognition, although the recognition
results are still reduced as compared to local recognition results.

Soybeans and bare soil were well recognized in the Ionia-Clinton area regardless of the
signature set used. In fact, bare soil recognition is best {or the unadjusted Eaton County signa-
ture set. Soybeans and bare soil were not 25 well recognized using non-local signatures in the
Eaton County area as they were in the lonia-Clinton area. Both sets of adjusted lonia-Clinton
signatures porduced an 8% increase in soybean recognition, compared to that with unadjusied
signatures, but bare soil recognition decreased slightly, with the second set of adjusted signa-
tures giving the lowest recognition accuracy. Local signatures gave the best results for both

ground covers.

In the Ionia-Clinton area, approximately 909, of the trees were recognized with adjusted
Eaton signatures. This accuracy is slightly greater than the local recognition result of 879, and
much greater than the 55% obtained for non-local recognition with unadjusted signatures. Local
recognition accuracy for trees in Eaton County was as high as that in the Ionia-Clinton area but
the unadjusted non-local signatures gave higher results than did local signatures. Use of the
adjusted signatures resulted in reduced recognition accuracies.

For the senescent cover class, the Eaton County area had a higher recognition accuracy
with adjusted signatures than with either unadjusted non-local or local signatures. On the other
hand, the Jonia-Clinton area had lower recognition accuracy with the adjusted signatures than
with unadjusted non-local signatures. In each area, non-local signatures gave a reduced rec-
ognition aceuracy compared to local sigpatures.
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Tables 8 and 9 give information about two ways of evaluating incorrectly recognized pixels.
(See Appendix Bfor complete tables of recognition results.) Missed detections refer to those
pixels of a ground cover which are not recognized by its signature. False alarms are those
pixels which are recognized by a particular signature class but do not belong to that class.

Table § indicates which classes account for 109 or more of the missed detections of each
other class. In the Ionia-Clinton area, 210% of corn pixels were misclasslfied as senescent
cover by all signature sets; corn pixels also were misclassified as trees by the two adjusted
signature sets. In Eaton County, the senescent cover signatures were responsible for missed
corn detections by all of the signature sets except the unadjusted non-local. In this area, corn
was also misclassified as trees by the unadjusted non-local and the 1ocal signature sets. Soy-
pean missed detections never reached the 109 level for any signature class in the Jonia-Clinton
area, but in Eaton County 2109 of soybeans were misclassified as a senescent cover by all
signature seta except the local set. Trees tended o be recognized as corn by the Eaton County
signature sets in all cases, but trees never had a significant number of missed detections when
an fonia-Clinton signature set was used. Bare soil was misclassified as senescent cover when
mean-level -adjusted signature seis were used in either area and by the unadjusted non-local
signature set in Eaton County. In the Ionia-Clinton area, the senescent cover class was mis-
classified as soybeans and bare soil for all signature sets and also was misclassified as corn
when the first mean-level-adjusted signature set was used. In Eaton County, only the unad-
justed non-local signature set had a significant amount of the senescent cover class misclassified

as corn.

The false alarms, displayed in Table 9, are expressed as percentages of the total number
of field-center pixels evaluated for each area. Corn signatures have relatively low percentages
of false alarms, all well below 5% except the unadjusted non-local signature set in Eaton County
(7.49%). Both soybeans and bare sotl signatures always gave very low percentages of false alarms
in Eaton County, but they display differing patterns in the Ionia-Clinton area. Here, bare soil
continues to have a relatively low false alarm rate ranging from 1.3% for the local signatures
to 5.3% for the unadjusted non-local set. The soybean signature retains a low (4.49%) false
alarm rate with the local signatures, hut the non-local signature sets have higher percentages
ranging from 7.0 to 8.6%.

The tree signatures produced highly variable false alarms. For the Ionia-Clinton area, the
local and the unadjusted non-local signatures have low percentages of false alarms in Table 8.
The same is true for both mean level adjusted signature sets in Eaton County; but the adjusted
gets in the Ionia-Clinton area have high false alarms rates, 11.8% for 1 and 8.9%, for II. The
local Faton County signature set has 5.6% false alarms, but the non-local set incorrectly rec-
ognized over 209 of the total number of pixels as trees.
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TABLE 8. SIGNATURE CLASSES ACCOUNTING FOR 109, OR MORE OF THE
MISSED DETECTIONS OF ANOTHER GROUND COVER CLASS

Eaton County Area Ionia-Clinton Area
Signatures: :;r}ia- 1-C I-C Eaton Eaton Im'lia-

,IN infon MLA-I MLA-II Eaton Eaton MLA-I MLA-I Clinton
Class

Corn T 1’ v T,V v T,V T,V Vv
Soybeans v v \J - - - - -
Trees - c c C C - - -
Bare soil v \' v - - v v -
Senescent C - - - 5,B C,5,B 5,B S

Key: C = Corn, § = Soybeans, T = Trees, B = Bare soil, V = Senescent vepetation

TABLE 9. FALSE ALARMS FOR EACH RECOGNITION CLASS, EXPRESSED AS
PERCENTAGE OF ALL FIELD-CENTER PIXELS IN AREA

Eaton County Area Ionia-Clinton Area
Ionia~ 1-C i-C Eaton Eaton Ionia-
Signatures: .. " R - B :
Recognition Clinton MLA-Y MIA-II Eaton Eaton MLA-1 MLA-II Clinton
Class

Corn 7.4 2.0 2.1 3.6 2.9 4.4 3.4 2.3
Soybeans 0.8 0.9 0.9 1.4 8.2 8.6 7.0 4.4
Trees 20.4 2.9 1.6 5.6 0.1 11.8 8.9 3.7
Bare soil ’ 0.9 1.5 1.5 2.1 5.3 3.8 3.8 1.3
Senescent 3.8 19.6 17.8 6.6 18.9 6.6 6.6 7.5
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In comparison to the other ground cover classes, the senescent cover class consistently
hag fairly high numbers of false alarms. The percentages range from 6.6% for both mean-level-
adjusted signatures to 18.99, for the unadjusted non -local signatures in the lonia-Clinton area.
The local set has 7.5% false alarms. in Eaton County, the non-local signature set has the
lowest percentage of false alarms (3.6%) for the senescent cover class, while the local signa-
ture set has 6.6%. Both of the mean level adjusted signature sets have high percentages of

false alarms for senescent covers, 19.69 for I and 17.8% for IL.

Full -Section Recognition Results With Mean Level Adjustments. Recognition results for

the MLA procedures were also tabulated for full sections, and the proportion of each class in
each section was calculated. Table 10 gives both ground truth proportions and proportion esti-
mates ohtained by using the 1ocal, the unadjusted non-local, and the first MLA recognition
signature sets. These results are based on all the pixels in each section, ineluding boundary
pixels, farmsteads and roads, not just on field-center pixels. The ground truth proportion of
the senescent covers was not calculated in the Eaton County area and is, thus, omitted from
Table 10. Composite proportions and the RMS error are also presented for each ground cover
in both areas. The method uged for calculating the RMS error is indicated in a footnote of
Table 10.

As would be expected, the local recognition proportions generally come closest to the
ground truth proportions for both areas and have the lowest RMS error. Mean-level -adjustment
resulis appear to be slightly better than non-adjusted results. The direction of the errors in the
estimates for both non-local signature sets tend to be the opposite for the two areas; for ex-
ample, the bare soll estimates are higher than the ground truth proportions in the lonia~Clinton

area and lower Eaton County.

4.3.1.6 Recognition Results for Signature Extension by Adaptive Processing

Eaton County recognition signa.ures were used with adaptive processing to determine if
non-local recognition accuracies in the Tonia-Clinton area could be improved. In an attempt fo
avoid possible problems with signature capture, a seven-signature set was formed from the 12

signatures by combining redundant ground cover signatures.

Approach. Cur first adaptive processing with the combined Eaton signatures in the Ionia-
Clinton area was started locally in the Eaton County area and continued to and through the

ionia~Clinton area.

in a second application, processsing with the Eaton County signatures began directly in
the Ionia-Clinton & rea. The second method was used because the interval between the two areas
included part of the Looking Glass River and large tracts of brushy and uncultivated land. Be-

cause there were no distinct signatares for these types of ground cover, it was believed that

54




ERIM

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

Table 10 . FULL-SECTION RECOGNITION RESULTS FOR THE
EATON AND IONIA/CLINTON AREAS

CORN TREES BARE SOIL SOYBEANS SENESC. VEG.

SECTION GT |LR |NLR [MLA [GF|LR [NLR |MLA IGT|LR [NLR (MLA |GTILR NLR 'MLA [GT|LR |NLR |MiA
EATON CO.

019 24 1% (29 9 6f 4 |13 2 5] 8 2 2 |16]14 |11 |11 54 |44 |75
030 32131 (38 |20 8] 8 b 6 (11} 8 8 |10 31 2 2 2 51 |28 38
031 20 J20 (29 15 (14| 9 (18 8 118(19 (12 {14 133 2 2 49 36 |59
R24 12 {22 |24 (13 |l4; 9 |16 8 8L 8 7 (15j14 (13 |12 40 |35 535
R25 33 129 |36 (22 o 2 |10 1 8] 6 4 4 [11]15 |11 |11 48 36 |60
R36 26 123 (34 |12 8 4 |11 3 110{15 8 7 61 7 4 5 52 |42 |72
col 18 j21 (28 9 31 6 |13 4 4 8 2 1 6| 4 4 3 61 51 |81
c12 19 {34 |37 [22 [21}12 |23 7 41 4 1 0 0] 4 2 2 48 137 {67
C13 39 133 (41 |31 1812 (20 g 12|10 3 3 201 a 0 45 [32 |56
C24 41 132 (38 |15 1l 3 |11 1 (1212 7 8 6| 4 4 4 49 (36 70
BO6 42 138 |27 [34 7|14 {35 7 4( 7 3 2 of 3 2 2 36 |30 |53
BO7 20 |38 (44 |34 3115 (27 a 3l 4 2 13 01 9 1 0 43 {22 52
Bl8 23 |27 (26 (21 (1O 8 |18 3 3(10 4 3 o] 1 X 0 54 |48 |70
B19 41 138 (35 (20 41 4 |18 2 3 4 2 2 2] 2 4 3 52 |41 (72
COMPOSITE |28 [29 (33 |20 ([iof 8 (18 81 9 5 5 51 5 4 4 49 (37 |64
EATON

RMS ERROR#¥* 7.9|10.8(12.7 6.1{10.2] B.2 3.4 3.8/ 3.6 2.4{ 2.1 2.1

IONIA CO.

Pl 25 20 (17 |21 3 5 2 pA1 127 8 119 113 6| 8 |10 |11 [47[57 {43 |51
P2 24 21 (12 |20 31 2 0 6 J20f15 |35 26 0| 3 5 6 |50|54 |41 |46
P11 42 129 (23 (32 5| 5 1 i3 71 4 |14 3 0] 1 5 5 (43|59 138 |55
P12 28 23 (17 |21 61 7 3 {15 515 {15 |12 31 & |12 (12 5152 {33 |40
CLINTON CO.
W3 26 121 (10 |24 5| 2 1 Jie 6] 5 26 |12 2] 5 7 7 |42|81 |41 |56
Wé 32 {28 (25 |18 gl 7 2 5 [14]10 21 |18 71 7 7 7 31|45 |45 |50
W7 30 123 {20 |22 [1i5(10 0 |16 6] 5 {19 [l 7] 3 3 5 136{535 |52 |45
COMPOSITE |30 j24 |18 |23 6| 6 2 |12 [)0; 7 |21 (14 51 5 7 8 {43155 |52 {42
IONIA~-CLINTON

RMS ERROR | 6.7|12.4] 8.0 2.4{ 6.7 7.1 3.1012.2] 4.9 2.81 4.4] 4.5 13.6110.9]10.0
*GT = GROUND TRUTH MLA = MEAN LEVEL ADJUSTHMENT OF NON-LOCAL SIGNATURES

LR = LOCAL RECOGNITION HLR = NON-LOCAL RECOGNITION WITHOUT ADJUSTMENT

** Error

RMS/CROP

N=No. of Sections

(p,-P
Bt

ORIGINAL PAGE IS
OF POOR QUALITY]

N
/i )2

N im

pi=Ground Truth Proporticn ﬁi=Recognized Preportion
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signature capture might be a problem while processing through this interval between the two
areas. The potential for this problem was increased because, although one area was due north
of the other, the non-north-south track of the ERTS satellite required a widening of the range
of data points processed on each scan line. Thus substantial areas for which ground truth was
not available, and which did not necessarily have the same composition as the areas of interast,
were included. As a control for use in the analysis of resulfs, the Iunia-Clinton signatures

were used as starting signatures for local adaptive processing in the Ionia-Clinton area.

While processing with the Kalman filter, different values were used on repeated trials for
two of its parameters, 8, and 92. Three different values of the update parameter 8, were used,
corresponding to approximately 60, 190, and 600 lines. (The total area processed was ~ 550
lines.) Signature capture becomes more likely the more rapidly updating occurs. The slower
the updating rate, the less the signatures change, until eventually the point is reached where no

changes oecir.

The signature interaction parameter, 92, is usually set at zero so that the signatures may
adapt with complete independence with respect to one another. Since attempts at altering 92
gave greatly decreased recognition aceuracies, only results with 92 set at zero are reported.
For a complete discussion of the Kalman filter method of adaptive processing see Ref. [13].

Field-Center Recognition Results with Adaptive Processing. Recognition results for adap-

tive processing with a Kalman filter are presented in Table 11 for three values of the update
parameter 91. Results are for the Ionta~Clinton area with {a) adaptation of the Ionia-Clinton
signatvres, (b} adaptation of Eaton County siznatures within the Ionia-Clinton area only, and
{c) adaptation of the Eaton County signatures, starting in Eaton County, continuing through the
interval separating the two areas and through the Ionia-Clinton area itself. Table 12 gives the
number of false ale.rms for ei.ch ground cover class and each variation of adaptive processing
used. The number of unclassified pixels is listed beneath the false alarms so that the total is
the total number of pizels which were not correctly identified. A table giving signatures pri-
marily responsible for missed detections is not included for adaptive processing because the
missed detections are essentially the same as for non-local recognition with unadjusted signa-
res (Table B): the various adaptation parameters did affect the percentages of pixels assigned

to the various categories.

The best recognition results were obtained with an updating rate which requires ~190 lines
to come close to the new value of the signature mean after an abrupt change. Adaptation at this
rate gave a slight improvement when the Ionia-Clinton signatures were used. When Eaton
County signatures were adapted within only the Ionia-Clinton area, recognition results were
greatly improved as compared to the unadapted. However, much of this improvement is due

to the correct classification of pixels which were unclassified by the unadapted signatures.
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TABLE 11. ACAPTIVE RECQOGNITION RESULTS. Correct recognition in
Innia~Clinton field centers {%).

Eaton Signatures
Adapted Only Within the Adapted from
Ionia-Clinton Signatures Ionia~Clinton Area Eaton County
Adaptive Update
Adaptive Update Interval (Lines) Adaptive Update Interval (Lines) Interval {(Lines)
True Class Unadapted* ~600 ~190 ~60 Unadapted* ~600 ~190 ~60 ~190 ~ 60
Corn 77.4 7.8 T8.1 1754 64.0 64.0 64.0 51l.2 45.5 7.1
Soyheans 85.2 85.2 B85.2 85.2 85.2 85.2 BbH.2 85.2 B5.2 66.7
Trees B7.2 B7.2 87.2 B9.4 51.1 51.1 51.1 44.7 44,7 19.1
Bare soil 94.3 94.3 94.3 92.5 100.0 100.0 100.0 100.0 100.0 100.0
Senescent 76.5 i I Y & R B 51.9 82.3 83.1 804 80.8 78.8
Av, Over
Points T9.4 80.0 B80.1 178.8 62.1 737 740 67.0 64.6 44.7
Av. Over
Plots 75.6 7.1 77.3 176.0 §0.2 71.4 717 67.2 65.4 47.7

*Conventional Rencghition
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TABLE 12. FALSE ALARMS WITH ADAPTIVE PROCESSING FALSE ALARMS
{(No. of pixels)

Faton Signatures
Adapted Only Within the Adapted from
fonia-Clinton Signatures Ionia-Clinton Area Eaton County
. N?' of True Adaptive Update Interval (Lines) Adaptive Update Interval {Lines) I}:!?:I?\ESE(E&%%E

Recognition Pixels
Class in Class Unadapted* ~600 ~19C ~60 Unadapted* ~600 ~190 ~60 ~190 ~60
Corn 207 16 17 17 16 22 22 0 23 23 19
Soybeans 217 30 30 30 32 13 13 13 13 12 7
Trees 47 25 24 24 35 1 1 1 0 0
Bare soil 53 g9 15 15 14 32 32 32 39 39 49
Senescent 260 51 51 50 48 111 112 112 151 168 303
Unclassified 10 80
Total 141 137 136 145 259 180 178 226 242 378

*Conventional Recoghition
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The adaptive processing method classified all pixels. When the Eaton County signatures were
adapted beginning in Eaton County, greatly reduced recognition accuracies resulted from the
fastest update rate (update interval of 60 lines). Apparently the signatures of the senescent cover
class shifted so that they captured muchof the corn and almost all of the tree pixels. The other
update interval used (190 lines) gave a result slightly better than the unadapted result. A slower
update rate was not used, although it should have been less sensitive to the atypical scene con-
ditions between the training area (Eaton) and the test area (Joniz-Clinton); a very long update
interval would give results comparable to the unadapted recognition performance with non-local

signatures.

4,3.1.7 Discussion of Results

To summarize, local recognition of field centers averaged 809, correct in both Eaton and
Ionia-Clinton areas, while non-local recognition fell to 63-649%, correct without the use of s.gna-
ture extension techniques. Mean level adjustments of signature means improved the non-local
recognifion performance, making up 3/5 and 1/4 of the difference between nor-local and local
performance in Eaton County and Ionia-Clinton Counties, respectively. Adaptive processing
produced only 2 very slight improvement in Ionia-Clinton local recognition, but it im proved
non-local recognition performance substantially over that achieved with mean-level adjust-
ment (2/3 as opposed to 1/4 of the difference between local and non-adjusted non-local per-
formance) when adaptation started in the Ionia-Clinton area. Results were poor when adaptation
started in Eaton County, apparently because of signature wander in an intervening brushy, un-

cultivated area.

There are some interesting differences between performance of the various techniques
on individual crops in the two areas. Corn recognition was about the same in both areas
for each technique. Soybean recognition was the same locally in the two areas, but decreased
with non-local signatures in Eaton County while increasing in Ionia-Clinton. Patterns of rec-
ognition performance for trees, bare soil and senescent cover were quite variable and not easily
generalized.' If anything, when a particular technique was better than another for one crop in
one area, it generally was poorer for the same crop in the other area. With MLA, soybeans,
trees and bare soil were better recognized in Ionia-Clinton than in Eaton {by 10 to 209;), while
recognition of the senescent cover class was 309, higher in Eaton County. The notable results
of non-local adaptive processing in Ionia-Clinton were excellent performances on senescent
vegetation and bare soil, but a poor performance on trees. Corn and senescent cover were the
classes with the greatest number of pixels {see Table 13). Since corn recognition was similar
for all techniques, performance on the senascent vegetation class had a large impact on the

comparative overall performance.
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TABLE 13, PERCENTAGE OF FIELD-CENTER PIXELS IDENTIFIED
AS FEACH GROUND COVER, ACCORDING TC AVAILABLE

GROUND TRUTH
Eaton County Toniaz-Clinton
Corn 51.4 43.4
Soybeans 5.9 3.9
Trees 8.7 6.9
Rare Soil 4.2 7.7
Sanescent Cover 29.9% 38.0
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The results obtained in the two areas highlight the importance of the training step in multi-

spectral recognition. Different training procedures and different numbers of signatures were
used in the two areas, and they were based on ground truth data collected in different ways, as
discussed in Section 4.3.1.2. The major differences lie in the ground covers comprising the
senescent cover class. Because of extensive field visits, a more detailed deseription of ground
covers was available for Eaton County than for Ionia-Clinton, for which photointerpretation
provided muchof thedata, Four recognition signatures were used for senescent cover in Eaton
County and three in Ionia-Clinton; yet, after adjustment, the Ionia-Clinton signatures performed
better in Eaton County than vice versa. As will be discussed later in thig section, the sizes,
shapes, and locations of the signature patterns varied between sites.

Mean-Level Adjustment. To examine the premise that a constant adjustment exists for

each channel which can convert the signatures from one arez for accurate recognition in an-
other area, the signatnre means for six classes in Eaton County were plotted in Figure 14
against thoge in the Ionia-Clinton area. For simplicity in plotting, a signature set which com-
bined duplicate signature types was used for the Eaton County means. (The signatures labeled
"grass"” were omitted since they are basically different in the two areas, the Eaton signature
being based on a single field and the Ionia-Clinton including a variety of field types.} A 45° line
wag also plotted as a reference. For ERTS Bands 4 and 5, the 1.4 count adjustment in means,
as indicated for MLA-II in Table 6, appears to be a reasonable estimate for all ground covers
except bare soil. However, mean-level-adjusted bare soil recognition was always higher than
overall recognition, due in part of the fact that in Bands 4 and 5 none of the other signature
means are close to that of bare soil {see Fig. 14).

The plotted signature means for Band 7 are scattered, but for four of six ground covers
Eaton County signature means have higher values than the corresponding Ionia-Clinton means,
even though both calculated averages indicated the opposite, The signatures for senescent
vegetation and soybeans are the only two that lie on the other side of the 450 line, with that for
senescent vegetation being higher. It would appear that "'senescent" vegetation in Ionia -Clinton
was less senescent and more healthy than that in Eaton County. No consistent, additive differ-
ence seems to exist between the two areas for Band 7. This probably accounts for the fact that
recognition accuracies obtained using mean level adjusted non-local signatures did not come

closer the matching the local vatues,

The differences in the recogsition signatures from the two areas are displayed in Figure 15,
¥or each signature, the mean and an ellipse which represents the distribution in two channels
for a x2 value of 1 are plotted; plots are presented for Bands 5 vs 7 and 4 vs 7. The Eaton
County plots, Figures 15(a) and (c), show 12 signatures: two corn, two trees, two soybeans,
two bare soil, two field beans, cne grass and one alfalfa. Figures 15(b) and (d) display the seven
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signatures from the Ionia-Clinton area: corn, trees, soybeans, bare soil, grass, alfalfa, and
senescent vegetation. The greater the size of an ellipse, the greater is the variability of the

class.

Because it is a composite class of various kinds of dying vegetation, and because different
stages are likely to exist within the same {ield, the senescent cover class has a great deal of
variability. Inthe Eaton County area, the two fieid bean signatures and the signatures for
alfalfa and grass were used to define the senesecent cover class. In the Ionia-Clinton area the
senescent cover class is also a composite including the alfalfa and grass signatures as well as
the senescent vegetation signature. Thus the senescent cover classes are not based on the
same things in the two areas. The lonia-Clinton signature for senescent vegetation exhibits more
variability than the Eaton County signatures for field beans since it probably includes a variety

of crop types.

Other observations can be made reparding the signature ulots. Bare soil has two modes
in Eaton County, one similar to the soil in Ionia-Clinton and the other substantially brighter in
Bands 4 and 5. Also, the grass signatures are very different, for reasons already noted, both
in location relative to the other signatures and in size. The Ionia-Clinton recognition signature
for grass was formed by combining signatures from many fields including pastures, oats, wheat,

hay, grass and weeds.

To determine whether or not the differences in the two grass recognition signatures were
responsible for the different non-local recognition patterns with MLA, the percentages dis-
played in Tables 14 and 15 were calculated. Table 14 compares the percentages of pixels
falsely recognized as soybeans and bare soil for all flelds belonging to the senescent cover class
with corresponding percentages for the subset of grass fields. Table 15 then compares the per-
centages of soybean and bare soil pixels recognized by all the senescent-cover-class signa-
tures to the percentages falsely recognized by the grass signatures alone. The gross signa-
fures did not falsely recognize any bare soil pixels (Table 15). However, a large portion of
the senescerit-cover pixels misclassified as bare soil were from grass flelds. These misclas-
sifications were largely due to recently harvested oat fields which at that time were mostly bare

soil and were recognized as such.

Both area sipnature sets show an interactionbetween soybeans and the senescent cover class.
The adjusted Eaton County soybean signatures recognize approximately 209 of the senescent cover
pixels inlonia-Clinton. Of the pixels so misclassified, 639 are grass pixels, The Ionia-Clinton
adjusted signature set misclassified very few senescent pixels as soybeans, but 259, of the soybeans

were falsely recognized by the senescentcover signatures. Of these, almost half were recognized
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TABLE 14. MISCLASSIFICATIONS OF ENTIRE SENESCENT VEGETATION
CLASS AND THE GRASSES WITH MEAN-LEVEL-ADJUSTED
SOYBEANS AND BARE SOIL SIGNATURES

Recognized as Soybeans Recognized as Bare Soil
Area Signatures o, all Sen. Cover %, Grass o, All Sen. Cover 9, Grass
Eaton
Ionia County 1 22.3 14.2 10,0 1.3
Clinton Eaton
County II 18.1 115 10.0 7.3
Ionia
Eaton Clinton I 2.7 0.4 5.0 4.3
County Ionia
Clinton II 2.7 0.4 5.0 4.7
TABLE 15. FALSE ALARMS OF SOYBEANS AND BARE-SCIL
PIXELS WITH MEAN-LEVEL-ADJUSTED SENESCENT -
VEGETATION CLASS AND GRASS SIGNATURYES
% of Soybeans %, of Bare Soil
Recognized by Recognized by
Sen. Cover Grass Sen. Cover Grass
Area Signatures Class Signature Class Signature
Eaton
lonia County 1T 3.7 0 13.2 0
Clinton Eaton
County 11 3.7 0 11.3 0
. Ionia
Eaton Clinton 1 25.5 11.8 16.7 0
County Ionia
Clinton T 25.5 11.8 19.4 0
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by the grass signature. The adjusted Eaton County grass signature recognized none of the soy-

bean pixels, and very few soybeans were falsely recognized by the senescent cover signatures.

To summarize the foregoing analysis, the difference in the grass signatures of the two
areas does not account for the differences in recognition of the senescent cover and soybeans
classes with the two signature sets. Basically, the same trend is seen in grass as is seen in
the entire class, but the grass signature only accounts for approximately half of the errors.
Between senescent cover and bare soil, the grass signature is responsible for none of the
missed detections of bare soil, and most bare-soil false alarms are due to recently harvested
oat fields which probably should be called bare soil at the time. The difference in the amount
of bare soil falsely recognized as senescent cover in the two areas isa result of the greater
variability of the Ionla-Clinton senescent vegetation signature in comparison to the Eaton County

field beans signatures.

Adaptive Processing. Adaptive processing improved recognition accuracies in the Ionia-

Clinton area with both the Ionia-Clinton signature set and the Eaton County sigpature set. When
processing with the Eaton set began in Eaton County and continued adapting through the Ionia-
Clinton area, the recognition results were poor. Apparently, the brushy, uncultivated land
around the Looking Glass River and possibly the brushy area within the 2 x 7 mile Eaton County

area itself were responsible for the capture of one or more signatures.

Comparison of conventional processing results with results obtained with adaptive pro-
cessing is complicated by differences between the two methods. Conventional methods usually
classify with a threshold, in this case 0.001 probability of false rejection, to exclude pixels with
wild values and ground covers for which there are ro signatures. The adaptive processing
method classifies every point although the point may be too far from the mean of the signature
to affect the adapting significantly. This difference between the two methods had considerable
effect in this case. Table 12 shows that 10 pixels were unclassified using the Jonia-Clinton
signatures, and 80 pixels were not classified when the Eaton County signature set was used.
The latter represents over one quarter of the pixels which were not correctly recogiized by
the conventional method. Because such a large portion of the incorrectly recognized pixels are
really unclassified pixels, much of the improvement seen with adaptive processing may he due
to the forced classification of all pixels, The conventional recognition accuracies, which are
based on percentages of all pixels, would probably improve if processing were done without a
threshold.

The results do show that adaptive processing with the updating rate representing the 190-
line interval does improve recognition accuracies. It is not very liltely that all 80 unclassified

pixels would be correctly classified if there were 1o tnreshold; and thus, {alse alarms should
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increase. Table 12 shows, however, that even with the threshold, the number of false alarms

for conventional processing is 179 (= 259 - 80) compared to 178 for adaptive processing.

4.3.2 DATA SET FROM 21 AUGUST 1973

The 21 August data set is also agricultural in nature, consisting of two ground-truthed
sites (F and W) separated by approximately 240 km (150 miles). The ERTS data collection
date was 21 August 1973. Ground truth was obtained by ground observation for training data
and by photointerpretation for test data.

Training was carried out only for site W. The signatures were obtained by combining sta-
tistics from several fields in each ground cover class. Only field-center pixels were con-
sidered. Five signatures were defined: corn, soybeans, quarry, pasture and trees. The re-
sulting signatures were transformed for non-local recognition in the other site (F) by use of
the MASC algorithm described in Section 4.2.3.

To cbtain the signature-extension coefficients, clustering was performed on data ~.m
twenty 0.8 x 0.8 km areas in each site. The coefficients determined by the MASC procedure for

transforming site W signatures for use in site F are presented in Table 16.

The final recognition categories were corn, soybeans and other. Recognitions with pasture,
g b

quarry, and tree signatures were assigned to the "oiher"” class, along with unclassified pixels.

When untransformed signatures from site W were appliad to data from s:i= F, 240 km
away, an overall recognition accuracy of only 28% war achieved for the 155 ground-truthed
fietds (1366 field-center pixels) in the site {see Table 17). Recognition of the major crops was
agpecially poor, only 1.7¢ for corn and 10.0%, for soybeans.

Greatly improved results, with an overall average of 80% correct, were obtained for site F
through the MASC transformation of site W signatures. As shown in Table 18, corn and soy-
bean recognition improved to 83% correct. These results are comparable to those obtained

using local signatures on site F.

Two poinis are illustrated by this example. First, there are data differences that can cause
subsfantial degradation in recognition performance for areas scattered throughout one or two
ERTS {rames on a given day. Second, sighature extension procedures can adjust for these
differences, at leasi under the condition of this exampls. The differences in signatures here
are believed to ke due primarily to atmospheric ana illumination differences between the two

sites.
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TABLE 16. SIGNATURE TRANSFORMATION
COEFFICIENTS FOR 21 AUGUST DATA,
AS DETEEMINED BY THE MASC PRCCEDURE

Multiplicative Additive
Data Coefficient Coefficient
Channel (apiw) bg|w)
1 2.15 -22.449
2 2.23 -12.841
3 G.78 13.156
4 0.87 2,48¢

Notes: (1) Data channels 1-4 correspond to ERTS
Bands 4-7, respectively.

(2) The MASC transformation is:
1{1\1i = ai mi + bi
F-Flw'w ™ "Flw

{8) Sites W and F are separated by approxi-
mately 240 km (150 mi).
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TABLE 17.

TRUE CLASS
CORN
SOYBEANS
OTHER
TOTAL

AVERAGE OVER POINIS

TABLE 18
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KON-LOCAL RECOGNITION RESULTS FOR 21 AUGUST DATA
USTNG UNTRANSFORMED SIGNATURES

RO. PIXELS RECOGNIZED AS:

HO. NO. %

PLOTS PIXELS  CORRECT CORN SOYBEANS OTHER
43 356 L.7% 6 - 350
66 549 10,0% - 55 494
46 461 70.9% 126 8 327

155 1366 132 & un

28.4%

NON-LOCAL RECOGNITION RESULTS FOR 21 AUGUST DATA

USING MASC-TRANSFORMED SIGNATURES

TuE CLASS
CORN
SOYBEANS
OTHER
TOTAL

AVERAGE OVER POINTS

EO., PIXELS RECOGNIZED AS:

NO. NO. b
PLOTS PIKELS CORRECT CORN  SOYBEANS  OTHER
43 356 83.4% 297 33 26
66 549 83.2% 28 457 64
46 461 72.2% 110 18 333
155 1366 45 508 423
79.6%
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4,4 RECOGNITION OF SAME AREA ON DIFFERENT DAYS

When the same physical area is viewed on two successive days at the same time of day
with no change in ground conditions (e.g., no rainfall), the major source of differences in signal
levels is the intervening atmosphere. There are likely to be changes in the amount of atmo-
spheric haze present on the two days. Also, it was shown earlier that a change in viewing
geometry from one side of the ERTS frame to the other will introduce changes in signals even

if the atmosphere is the same on both days.

It is difficult to find a data set which meets evaluation needs of substantial ground truth,
atmospheric measurements, and differing amounts of haze on two successive days. One set
meeting these criteria was available through a study being conducted under the previously
referenced NASA SR&T program.

Signatures for trees and crops extracted from data collected on one day (Day 1) were
applied to data from the preceding day {Day 2) over the same area. Recognition was substan-
tially lower than with the Day 2 signatures applied to the same Day 2 data. Therefore, two
signature extension techniques were applied to Day 1 signatures and recognition results deter-
mined with each. The first signature extension technigue was a mean level adjustment pro-
cedure similar to that described earlier in Section 4.2.1. The second technique used adjustments
based on photometer readings made on the two days at the time of the ERTS passes {see Sec~
tion 4.2.4). These readings were used to calculate an optical depth at each wavelength for each
day. The Turner radiative-transfer model was then used to compute total radiance and path ra~
diance guantities for those optical depths and observation geometries. Signature adjustments
based on these model caleulations were applied to the Day 1 signatures and recognition pro-

cessing was performed on Day 2 data.

To illustrate the results, the following example of tree recognition is given. First, an area
that was ~lassified as 1009 trees on the first day was found and outlined on a recognition map.
When the Dav 1 signatures were applied to the Day 2 data, only 879, of the pixels were correctly
classified ag trees (symbol § on Figure 16a). Then the signatures were adjusted by an amount
determined by subtracting the mean level of signals over a larger nearby area on Day 1 from
t1. » mean levels computed for the same area on Day 2. A different adjustment was made for
each channel. The adjusted signatures were used in the classifier and the classification per-

centage increased to 779 (Figure 16b).

With signature adjustments based on the model caiculations, 887, of the pixels in the area

were classified as trees, as shown in Figure 16c.

The ahove example is one of the more dramatic cases ocbserved but, nevertheless, is in-

dicative of the trend. The centers of a toial of 27 wooded areas were delineated and tested.
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As shown in Table 19, the average classification accuracy fell from 96% to 88%, with no ad-
justment of the signatures. The two signature extension techniques increased the correct clas-

sification accuracies to 929 and 91% respectively.

Results for field-center pixels of ten wheat fields also are presented in Table 19. Here,
again the accuracy fell from 87% to 659, with no adjustment, and rose to 719, and 789 for the

two types of signature extension procedures.

4,5 CONCLUSIONS AND RECOMMENDATIONS

ERTS-1 muitispectral scanner data have been used to achieve reasonably high (807,
correct) field-center recognition accuracies for agricultural crops on a local basis, i.e., with
testing performed in the vicinity of training fields. It has been shown that recognition per-
formance degrades when the signatures are applied directly to other areas displaced in space

or time from the training area.

It has been demonstrated that signature extension technigues, previously developed at
ERIM, can be applied to improve non-local recognition performance above that achievable

without them. Several signature extension techniques were examined.

The first technique, mean level adjustment of signatures, produced some improvements
although it was shown to be somewhat sensitive to the proportions of various ground covers in
the areas used to determine adjustments. Also, it was found that one additive adjustment per
channel did not produce an optimal match between local signatures and adjusted ron-local

signatures.

An example of the application of the multiplicative and additive signature correction
(MASC) algorithm was presented which indicated a substantial improvement over the simple

mean-level correction algorithm.

A different concept, that oi adapting the means of the recognition signatures on the hasis
of decisions.made along the flight track, was also tested. It performed best when adaptation
was started in the non-local area, because atypical scene conditions existed in the region be -

tween training and test areas.

Finally, in the case studied, a radiative transfer model used in conjunction with ground-

based measurements of optical thickness was shown to be capable of alleviating some of the d:

leterious effects of the atmosphere on multispectral recognition of non-local areas.

Recognition for full sections, as opposed to field centers, were examined only for unad-
justed and mean-level -adjusted signatures. The results were not as encouraging as for field
centers. Recognition was complicated by the presence of pixels which represented mixtures
of two or more materials. Substantial number of such pixels were present in the data due to

the relatively small size of fields in the area.
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TABLE 19. SUMMARY OF CLASSIFICATION RESULTS FOR
ONE AREA VIEWED ON TWO SUCCESSIVE DAYS

‘Wheat ' Trees

: , : 9 Correct %, Correct
Signatures Data Set {10 Test Areas) (27 Test Areas)
i)ay’l . e Dayl Y .88
Dayl ' Day 2 - 65 88
‘Day 1 Adjusted*. . Day2 . 71 82

. *Empirical mean level adjustment ‘
_ **Theoretical level ad]ustment (photometer plus model}
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It was noted that training is & very important step in yaulispectral xsecugnit'i"on and that -

- recognition results for major crops depend on the adequacy and representativeness of signa- -
tures generated for other types of grmmd covers as well ag for the major erops themselves,
_The class of senescing and senescent vegetatmn was quite variable in the time. penod analyzed :

and signatures with substantially different characteristics resulted from the use of both ground

: truth data of d1£ferent quallty, and different trami.ng procedures- '

: .On the basis of the results reported and discussed herein it is recommended tha.t the '

ada.ptive, MASC, and radmtwe-transfer—“mdel sxgnature extension techmques be tested and

-eva.luated ina more operational conte:'t on 4 more extenswe dats base, Alao, it i is I‘eenm-— .

o ;mended that the sensxtwity of these techniques to various methods of establishmg vecogmtmn -
'51gnatures be explored, €., to study whethiey it is better to have multxple modes for eachi

'_ ground cover clags or to. reduce the number by combmmg some of the modes. A related prohlem
that should be investigated is the establishment of criteria for determmmg how much trammg
data are required to obtam various levels of performance ina gwen apphcatmn. . '

5
PROPORTION ESTIMATION .

_ A thu'd aspect of this ERTS invest;gatmn dealt with the test and evaluatxon* of advanced
data. processmg and information extraction techmques whose purpose was to accuratelg determine *
the ground area- encompassed by featires m the scene ag viewed by the ERTS-1 mulhspectral

- scanner.

5.1 DESCRIPTION OF THE PROPORTION ESTIMATION PROBLEM |
" Clearly, there 15_'3. serious problem in accurately determining the acreage of featires -
smaller than the instantaneous field of view of the ERTS scammer. In addition, problems exist e
even for larger featuves since many of the ERTS MSS resclution elements, which view an in- -
stantaneous ground path 79 meters on a side, overlap the boundaries hetween these a.nd admmmg
'features.: As a result, the radmtion represented in those plxels isa mixture of rad:atlon TR
flected from two or more ma.tenale.. ' '

“#The techniques to e tested Lere were initially conceived and developed at ERIM under
NASA Contract NAS9-9784 and are being further developed and tested under NASA Contract
. NAS9-14123. = Both contracts are administered by the Earth Observatmns Divxsion, NASA o
Johnson Space Center, Houston. Texds. - ' : : S
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The effect of simuitaneously viewing two materials on the radiation reﬂeeted is 111u5r-
“trated in Figures 17 and 18, In Figure 17 the reflectance spectra are depzcted for coynand .
bare soil as they would appear individually, If the sensor were to s1mu1taneoue,y view both
corn and bare sotl, the effective retlectance spectrum would be quite different. This is shown
in Flgure 18 for the combinations 20%, corn - 80% bare soil and 50% corn - 509 bare soil..
These spectra are simply weighted combmatmns of the pure spectra. of Fzgure 17T and could
represent the effect of vxewmg ad]ommg corn and bare soil fields in & smgle pi}.el

Smce the exgnals generated in such pL?EIs are not charactemstm of any one material, the

uge of conventional multispectral recogmtxon processlng technigues will result in the improper -

classzfzce.t;on of those pixels. Therefore, the overall area assigned to each material claes in -

a scene dould be semously in error. In ERTS date at least 25% of the pixels covermrr a square .

- field of 50 acres [20 heciares] will overlap its boundaries.) Such errors, if not etiminated or
accounted for, could eermusly degrade the utmty of ERTS MSS data for apphca.tione such as the
‘Large Area Crop Inventory Experiment (LACLE) whxch is being undertaken 3omt1y by NASA. .

~ Natfonal Oceanic and Atmospheric Administration. (MDAA), and the United States Depa.rtment af -

Agrzculture (USDA) to demonstrate present- day capabilities for using remotely sensed data to
axd in estimatzng the producthty of wheat over large areas. : '

5.2 DESCRIPTION OF AN APPROACH TO PROPORTION ESTIMATION

Recogmzmg that problems of accurate acreage estuna.tmn were: hkely to e:ust 1n the future, :

ERIM, with NASA's support, began to develop special proeessmg,and mformation e}.traction :
technigues in the early 1970's [22-28]. In general, such'techniques take advantage of the fact
© that the radzatmn emanating from each scene element is detécted simultaneously in several
spectral ba.nds. This offers the possibility for classifying and aceurately estumating the pro-
_ portions of materials in.a scene in which many samples are made up of mixtures of materlals.

2 “Phe initial method developed at ERIM, which was tested and evaluated durmw this mvesttgatton, :

is briefly descmbed in the following paragraphs. Additional details are presented in Appendix C.

Assume that a data set oompnsed of two spectra,l channels, "‘1 and 32' contains three pure -

and umque materials-—~A B, and C. This sltuatwn can be depicted as in Flgure 19, where the
signature means for the three materials are shown in two~-dimensional signal’ space. The sig~ -
. - nature simplex is the geometric figure formed by the 1ines connecting each pmr of signafure
. means. in the nondegenera.te case, each pure signature is a dxstmct vertex of this s‘implex. It
an unknown scene element’ consists of portions of all three materials, the sipnal generated by

- that seene element X, lies wﬂ:hm the sunplex. An estimate of the proportion of eacht pure ma-. .
' ter:el constxtutmg the unitnown elemenl: is obtained hy drawing a fine from & vertt.x through the '

: engnal io ke claesiﬁed to the oppemte leg of the. e1mp1ex. The fraction of the .’une hetween the

e -

o A ey e e gy
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FIGURE 19. GECMETRIC INTERPRETATION OF MEANS OF

SIGNATURE MIXTURES. In the case iliustrated, the unknown,

X, is a combination of three pure materiais {A, B and C) which
form the vertices of the signature simplex.
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crossover point and opposite side defines the proportian of the corresponding vertex material

in the unknown. For the case illustrated in Figure 19, the unknown happens to lie at the centroid
of the triangle, and its composition would be in the ratio of 1/3, */3, and 1/3 of materiale

A, B, and C, respectively. Cases requiring other geometric interpretations are shown in Fig-
ure 20. Figure 20a illustrates the occurrence of an unknown, Y, on the edge of the signature
simplex. In this case the unknown would be coniprised of only materials A and C. Figure 20b
shows an unknown, Z, which lies completely outside the simplex. In this case, the unknown is
said to be comprised of materials A and C in the proportion determined by {inding the point in
the simplex closest to the unknown. If the unknown, Z, were quite distant from the signature
simplex (described in terms of a x2 distance), the algorithm will designate the unknown as an

alien object or, in other words, an object composed of none of the zimplex materials.

Although the above description has been limited to three pure and unique materials in two-
dimensional signal space, the concept is easily expanded to situations where many object ma-
terials exist in spectral hyperspace. In applying the algorithm, however, it is necessary to ob-
serve two operational constraints. First, at least n - 1 spectral channels of information are
required to satisfactorily estimate the proportions of n materials. Secondly, if the signatures
for the materials in a mixture are similar or if one of them comes too close to a weighted
average of the others, the estimates of the proportions may be poor. The latter condition is
illustrated by Figure 21. Figure 2la shows a valid signal simplex for three signatures and two
chapnels of data. Here covariance matrices interpretable in terms of loci of constant prob-
ability are shown. Figure 21b is a nearly degenerate signature simplex in which the vertex of
one signature h. . come close to the weighted average of the other two signatures. A measure
of what is "'too close” is dependent upon the size and shape of the unit contour ellipsoid about

the vertex, or more specifically upon the signature covariance matrix.

In many applications, proportions for each data point may not be required. For these cases,
a reduction in computation time can be achieved by averaging all non-alien data points and then
carrying out a single computation of the propertions of the objects appearing in the entire
averaged region. This approach is not only much faster, but also provides the possibility for
improved accuracy, since averaging would reduce the effect of the variability of sensor signals
caused by the natural variation of the radiation received irom any object class in the scene. In

addition, the effects of random noise would be reduced.

As a part of the continuing investigations under Contracts NAS9-9784 and NAS9-14123, we
have developed and begun testing modifications and improvements to the above approach for
proportion estimation. (Other investigators {30-33] have also recently begun examining the pro-
portion estimaticn problem.) One serious restriction imposed by our initial approach was that

at least n - 1 spectral channels of information were required to satisfactorily estimate the
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Al—-hv-

(a) The unknown, Y, lying on the margin of the signature
simplex is a mixture of materials A and C.

m

A.l_.-

{b) The unknown, 2, lying outside the signature simplex

is a mixture of materials A and C. If Z were too distant
from the simplex, it would be declared an alien object.

FIGURE 20, GEOMETRIC INTERPRETATION OF ESTIMATE
(SPECTAL CASES)
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(a) Signature Simplex with Unit Contour A m
Ellipsoids

(b} Nearly Degenerate Signature Configuration 1

FIGURE 21. GEOMETRIC CONFIGURATIONS FOR THREE SIGNATURES
AND TWOQO SPECTRAL CHANNELS
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proportions of n materials. A recent modification {34] permits many more materials to be
considered by assuming that, in a realistic scene, no more than four materials would appear
within a single pixel. This is especially important for the ERTS MSS and tts four spectral

bands.

A more recent modification aiso takes advantage of the characteristics of surrounding

pixels to help identify the most likely constituents of the central pixel.

5.3 TEST AND EVALUATION OF AN ERIM PROPORTION ESTIMATION TECHNIQUE

For the test and evaluation of ERIM proportion estimation techniques it was decided to
examine two application disciplines: water and agriculture. These two disciplines represent
tests of varying difficulty. The accurate estimation of ground area covered by water is less
difficult since water exhibits high contrast with most backgrounds in the spectral regions
covered by the ERTS MSS. In fact, it has been suggested [35] that a universal algorithm using
two of the ERTS MSS spectral bands can be used to detect (but not necessarily accurately esti-

mate the acreage of) all bodies of water 10 acres or larger in size.

The problem of accurately estimating the acreage of selected agricultural crops is much
more difficult. This task is complicated by the variability of spectral characteristics of crops
from field to field and during the growing seasor, the similarity in spectral characteristics of
many crops, and the broadband spectral coverage of the ERTS MSS.

5.3.1 PROPORTION ESTIMATION FOR WATER
The goal of this test was to determine how accurately we could estimate the surface area
of a number of lakes and ponds in a small portion of an ERTS frame. The region selected for

processing is shown in Figure 22, a black -and-white aerial photograph of that region.

Using an enlargems 1t of this photo, the surface area of the water bodies was determined.
Two methods, dot grid ind planimeter, weve used to determine area; the results were cali-

brated by assuming a on2 mile separation between the section line roads apparent in the photo.

For purposes of comparison, the data were processed using twa approaches in addition to
the multi-channel proportion estimation algorithm. One of these was the conventional recopgni-
tion algorithm in which each pixel was assimned to one and only one class. In the other approach,
proportions were estimated using only one ERTS MSS band. In processing the data the f{irsi
step was the establishment of training signatures for the major object classes in the scene,

The primary scene components in this case were water, trees and soil. A number of pixels
containing pure samples of ‘each of these classes were located and the mean signal vector and
associated covariance matrix were determined for each class. Since there were some data
quality problerivs with ERTS Band 6, onty Bands 4, 5and Twere used to establish signatures and

for the ensuing processing. 84
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FIGURE 22. TEST AREA FOR PROPORTION ESTIMATION FOR WATER
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Having established the signatures, the three processing algorithms (multi-channel propor-
tion estimation, single-channel proportion estimation, and conventional' recognition) were applied
to the data. In order to meaningfully compare the results generated using these algorithms, it
was necessary to identify the thresholds which would be used in each. These threshold or pa-
rameter values would affect the trade-off between the detection rate and the false alarm rate.
For this comparison, it was Jecided to utilize those parameter values which eliminated water
falge alarms in the scene (i.e., no non-water pixels would be classified as water} while at the

same time maximizing the detection rate.

The multi-channel proportion estimation algorithm used for estimating water acreage de-
pends upon the values used for two parameters. One of these parameters, p, is called the prob-~

ability of rejection; the other, 7, is the water proportion threshold.

The purpose of the probability of rejection parameter p is to eliminate those signals repre-
senting pixels that contain insignificant coverage by a combination of water, bare soil and veg-
etation, or to eliminate signals representing pixels that contain significant coverage by com-
binations of other object classes. The probability of rejection parameter p operates as follows.
If a signal x is not within a probability contour that contains (1 - p) of the sampies for a signa-
ture of some mixture of water, bare soil and vegetation, then the proportion of water estimated

for the pixel represented by the signal x is taken to be zero.

The objective of the other parameter, the water proportion threshold 7, is to eliminate
small proportion estimates of water for pixels which, in reality, contain no water. This pa-
rameter operates as follows. A tentative proportion estimate B of water is made for the pixel
1n question. If p is less than 7, then the estimated proportion of water is taken to be zero. If

p is greater than or equal to T, then p is taken as the estimated proportion of water.

Figure 23 gives the operating characteristics of the proportion estimation algorithm for
this data set as functions of the probability of rejection and the water proportion threshold.
The plots shown in this figure were determined as follows. All the pixels in the scene wero
classified bslr photo -interpretation into two classes: class W if they contained some water, or
class G if they contained no water. The total amount of water surface area estimated for the
pixels in class G, divided by the area of those pixels, was taken as the false alarm rate. The
total amount of water surface area estimated for pixels in class W divided by the actual (as
determined by photo-interpretation) surface area of water in class W was taken as the detec-

tion rate.

From the figure we see that for 7 =0.4 or greater, the false alarm rate becomes zero, re-
gardless of the probability of rejection p. For a specific value of p, we may increase the de~

tection rate by decreasing 7, but the penalty is an increased false alarm rate. Examination of
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the operating characteristics indicated that the combination of parameter settings withp =0
and 7= 0.4 yields near-optimum results: detection rate = 90.249, and false alarm rate = 0.
This detection rate is based upon agsigning to each pixel an area equal to 79 X 57 m.

The single-channel proportion estimation algorithm operates similarly to the multichannel
proportion estimation algorithm, with probability of rejection parameter p and water proportion
threshold parameter 7. In single-channel proportion estimation, the p parameter was used to
eliminaie those signals which represented pixels containing insignificant coverage by a combina-
tion of water and vegetation (using the initially developed proportion estimation algorithm pro-
portions, may be estimated for only two classes when using a single channel). Because the
water signal level in ERTS Band 7 was lower than all others in the scene, a value of zero could
be used for the parameter p without causing false alarms, Therefore, the results given in
Figure 24 are for p = 0 and varying values for the parameter 7. We see that as T deereases the
detection rate increases, with a penalty of in-reased false alarm rate. A false alarm rate of

zero is achieved for rvalues of 0.6 or greater.

For conventional recognition the parameter 7does not enter into the calculation, since each
pixel is classiiied as either containing water (100%) or net (09%). The value of p, however, does
need to be determined. It was found that the occurrence of false alarms was independent of p
therefore, the value of p which maximized the detection rate was selected.

Before describing the test results, we present here a brief discussion of the areas which
were asgigned to each pixel. The ineirntaneous field of view of the ERTS MSS is 79 x 79 m but,
since the data are oversampled along the scan direction, there is overlap in the ground pateh
covered by successive samples. Therefore, in order that calculations of the total area of an
ERTS frame do not exceed the actual area viewed in that frame, a smaller effective gize has
been uged in the gcan direction, However, for the problem being aidressed here, where the
area for only one class in the scene is being estimated, one needs to consider the actual ground
area viewed by each pixel. In other words, if a pond smaller than 79 X 79 m is contained within
one pixel and that pixel is estimated to contain 509 water, ‘he estimated area of the pond is
50% of 79 x 79 m and not 509; of some smaller effective area. I this same pond was seen in
the overlap area of two successive pixels it would be inaccurate to use the 79 X 79 m area for
each pixel since some portion of the pond would be counted twice.

in order to account for problems of this sort, three separate pixel sizes were used in com-
puting estimated area. If the pixel containing some portion of water in excess of the threshold
value fell between two pixels on the same scan line which were also identified as containing
water, the pixel size for area estimates were assumed to be 79 ¥ 57 m {the size was computed

based on the 100-nautical-mile frame size and number of samples per scan line). "Water”
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pixels with one "water™ neighbor along the scan line were assumed to be 79 x 68 m and "'water"
pixels with no "water"' neighbors were assumed to be 79 x 79 m.

Water Test Results: Using the three processing algorithms described earlier, three water

classification maps were generated. These are shown in Figures 25, 26, and 27 for the multi-
channel proportion estimation, single-channel proportion estimation, and conventional recogni-
tion algorithms, respectively. The first two maps are printed with symbols whoge density |s
related to the proportion of water estimated in each pixel while the conventional recognition
map includes only a single symbol where water was detected implying that the entire ground
area viewed in those pixels is covered with water.,

Upon comparing Figures 25 through 27 with the aerial photograph in Figure 22, it is clear
that the shape of the water bodies was maore accurately reproduced on the multi -channel pro-
portion estimation map and that more of the small bodies of water are detected on thig map,
In fact only one of the bodies of water was totally undetected.

In order to compare the area estimation results achieved on individual water bodies using
the three algorithms, we present Figure 28. Here we plot on the vertical axis the ratio of area
as measured from the photograph to the area determined by automatic processing. On the
horizontal axis we plot the shape factor which we define as a constant times the area divided
by the perimeter of the water body. Shape factor is used rather than area since water bodies
with small shape factors (because of large perimeters or smali size) can be expected to be legs
accurately estimated than those with large shape factors. This expectation is borne out on ex-
amining Figure 28, which shows that the spread in accuracy for the three methods is small for
water bodies having large shape factors (relatively fewer boundary pixels} and generally in-
creases for smaller shape factors.

The area-estimate accuracies are better using the muiti-channel proportion estimate
algorithm in almost every case. There are a small number of cases in which the area ig
slightly overustimated; however, it is possible that the areas measured from the aerial photo -
graph were somewhat low. In general, the results using the conventional recognition algorithm
were much inferior, especially for wezter bodies with smaller shape factors.

A summary of the results for the entire test site is shown in Table 20. Here we see that
97% of water measured from the photograph was detected using the multi -channel] proportion
estimation alporithm while only about 859, wag detected using the other two algorithms. Thig
difference would have been greater if fewer large fakes existed in the scene.

We have shown that, for this example, more accurate water surface area estimates are

achieved by using multi -channel proportion estimation.
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TABLE 20. SUMMARY OF WATER AREA ESTIMATION RESULTS

Fractional Pixel Whele Pixel
Procedures Procedure

3-Channel 1-Channel Conventional
Photointerpretation Proportion | Proportion | Recognition
°| Estimation | Estimation

Number of Water

Bodies Detected 19 18 17 13
Total Water

Area (Meters?) 1,041,938 1,006,739 892,118 879,120
Perzentage cf

Photointerpreted 100% 97% B6Z 8427
Area
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The multi-channel proportion algorithm described above was found to be useful by Mr.
Edgar A. Work Jr, of ERIM as a part of another ERTS investigation (USDl 14-16-0008-715)
where water acreage determination was involved. The purpose of this investigation was to
assist the U.S. Fish and Wilglife Service of the Department of the Interior In demonstrating
the utility of remote sensor data for monijtoring the breeding habitat of migratory waterfowl
in the glaciated prairies. The results of Mr. Work's efforts are described in References
[33-39].

9.3.2 PROPORTION ESTIMATION FOR AGRICULTURE

Having demonstrated that the multi-channel propertion estimation algorithm generated
accurate water area estimates, attempts were undertaken to establish the utility of the algo-
rithm for the agricultural discipline. With the limited resources availabie. only one agri-
cultural data set could be examined under this contract. The ERTS data set examined was the
one gathered in late August 1972 over Eaton, lonia, and Clinton Counties in Michigar which was
described in Section 4.3.

Because of the aforementioned difficulty with Band 6 of the ERTS MSS only three spectral
bands were available, thereby limiting the number of signatures that could be used to four with
the then available proportion estimation algorithm. Based on the importance of each ground cover,
the acreage of each, and their spectral separation, four signatures {(one each for corn, field
beans, soybeans, and bare soil) were generated by combining signatures from among the orig-

inal twelve generated for Eaton County.
The spectral separability of the resulting signatures is shown below in Tabla 21.
TABLE 21. SIGNATURE SPECTRAL SEPARABILITY

Separability 6 units

Signature of Standard Deviation
Corn 0.59
Field Beans 0.26
Soybeans 0.75
Soil 1.06

The separability shown represents the distance in units of standard deviation from each crop
signature mean to the hyperplane formed by the remaining three crop means. These values
then are a measure of the degeneracy of the signature configuration as previously illustrated
in Figure 21. In this case the values, especially for field beans, were quite low indicating even
before any actual proportion estimation that the results were likely to be less accurate than
desired, As a contributing factor to the lack of signature spectral separability, not only was
one of the four spectral bands not useful due to ncise, but two of the remaining three bands

(4 and 5) exhibited a high degree of correlation. As a result, very little additional information
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for discriminating between the ground covers would have been lost had either of these bands
not been available. {Webelieve that the broad spectral coverage of the ERTS-MSS bands con-
tributes to these discrimination difficulties.)

Agriculture Test Results: Using ERTS Bands4, 5 and 7, and the signatures for corn, field
beans, soybeans and bare soil, the proportion estimation aigorithm was applied to data from

each of fourteen sections (1 x 1 mille areas) and to the data from the set of all fourteen sections.
Two approaches were used in the application of the proportion estimation algorithm. In the
first approach the pruportions of the above ground covers were calculated for each non-alien
pixel in the area being studied (each individual section and the collection of all sections), These
proportions were then aggregated to determine the proportions of the ground covers for each
area. In the second approach only one calculation of proportions was carried out for each area
since the non-alien pixels forming each area were combined by averaging to effectively form

a single pixel fur each area. This second approach was less time consuming and it was believed
that the results might be more accurate since the effect of some of the variations were being
reduced by averaging.

The results of the tests are shown in Figure 29, 1In this figure we plot A which is defined
as the absolute value of the difference between the true and estimated proportion. The maxi-
mum, mean, median and minimum section A and the combined area A are plotted for each
ground cover and for both the pixel-by-pixel (P} and average pixel (A) approach.

The minimum section A's for both appreaches were very small with only the minimum
section A for soybeans and the averaging approach exceeding 0.01. The maximum section A's,
however, ranged from 0.099 to 0.189 with the range for pixel-by-pixel being 0.099 to 0.165 and
the range for averaging being 0.144 to 0.189. The mean and median A’s for each crop were
quite similar, the difference being somewhat larger for the averaging approach. The values
from crop to crop were also similar, ranging from 0.035 to 0.083. Overall, for the individual
sections, the results for the pixel-by-pixel approach were more accurate than those generated
by the averaging approach.

The combined section results are similar in nature, with the range of A's for the pixel-by-
pixel approach being 0.00 to 0.05 and for the averaging approach ranging from 0.041 to 0.08.
In every case the combined section A's were {sometimes significantly} less than or equal to
the mean A of the individual sections.

It appears that the proportion estimation algorithm produced relatively accurate results
even for the situation tested here where the sighatures were not ideally separated. These re-
sults, however, are not very different and in some cases are inferior to those generated using

more conventional recognition algdrithms. it is clear that the accuracy of the result improves
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with an increase in the size of the arca {i.e., number of pixels) considered. The fact that the
averaging technique generated somewhat inferior results was disappointing and may be related
to this particular data set. Should this be true the averaging approach, because of its economy
of computation, would certainly be the most‘practical approach for large area inventories where

it was only necessary to know the proportions of crops in a large area and not their location.

Results achieved in applying the proportion estimation algorithm to an agricultural appli-
cation by another ERIM ERTS investigator were significantly more accurate [40]. In this case
the problem was to accurately estimate the acreage of rice in a region where large rice fields
were separated by irrigation ditches. Boundary pixels containing portions of rice and ditch were
being misclassified by conventional recognition technigues with a resulting loss of acreage esti-
mation accuracy. When the EHIM proportion estimation algorithm was applied to the boundary
pixels much improved results were achieved. The acreage accuracy increased from 84.49,
to 99.8%.

5.4 CONCLUSIONS AND RECOMMENDATIONS

In the beginning of this section we described the problem of proportion estimation asso-
ciated with data gathered by coarse spatial resolution sensors such as the MSS of ERTS-1.
We then described an approach to the solution of this problem which was developed at ERIM.
The test and evaluation of this approach was described for two problems; the estimation of the
proportion of water in a scene and the estimation of the proportion of agricultural crops ina

scene.

For the estitaation of the proportion of water in an ERTS scene we showed that the ERIM
algorithm did a more accurate job of both detecting water bodies and identifying iheir acreage
than other available techniques. As might be expected, the largest improvement was achieved
on the smaller lakes and ponds which in most cases were totally undetected by more conventional
techniques. Improvements were also achieved for the larger hodies of water, especially with
regard to the accurate duplication of their shape ona digital map printout.

The acruracy in estimating proportions of various ground covers in an agricultural scene
using the ERIM proportion estimation algorithm exhibited little or no improvement over that
achievable using more conventional recognition algorithms. While this result was disappointing
it was not totally surprising since only three of the four bands of ERTS data available for this
test were of sufficient quality tg/ be used, thereby reducing the overall spectral differences be-
tweon the ground covers in a situation where the spectra were already similar. Nevertheless,
the effect of some of the restrictions imposed by this original ERIM proportion estimation

alporithm were more clearly identified.
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In recent months, as a result of the information made available through this and other in-
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'vestigations carried out at ERIM, the proportion estimation algorithm has been modified. The
modifications have eliminated some of the restrictions and limitations formerly imposed and
it {5 our expectation that improved proportion estimation accuracies should be possible, We

recommend that the modified ERIM proportion estimation algorithms be fully tested and eval -
uated to adequately establish their performance characteristics.
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CONTAMINATED ATMOSPHERES AND REMOTE SENSING

Robert E. Turner®*

Environmental Research Institute of Michigen
P. 0. Box 618, Ann Arbor, Michigan

Abatract

The effects of absorption and multiple scattering of
radiation by Earth's atmosphere, especislly under hazy condi-
tions, significantly diminish one's ability to recognize
terrain features in the processing of multispectral remote
sensing data. As a result, it is desirable that an atmospheric—-
radigtive-transfer model be used to account for these
systematic atmospheric variations. The radiative-transfer
model presented here is used to describe the radiation field
in a realistic atmosphere composed of aerosol particles which
can scatter and absorb radiation by varying amounts. ising
Mie scattering theory in conjunction with empirical results
on basic atmospheric constituents, a detailed analysis was
made to determine the single-scattering albedo vertical
profile for various atmospheric states. The results of this
study clearly show that the refractive index of aerosol
particles is an important factor which should be taken into
congideration in the processing of multispectral data.

Introduction

One of the most important aspects of the remote sensing
of Barth's surface is the discrimination between specific
targets and backgrounds. The multispectral method 1s one way
of performing the discrimination, that is, ome analyzes the
radiatfon received in several wavelength intervals and assumes
that surface features possess sufficiently different reflec-
tance properties in those intervals such that a unique

* Regsearch Physicist, Infrared and Optics Division

100

C —2— PRECELING PAGE BLANK NQT FILMED



Z FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

spectral signature exists for a class of objects. This multi-~
spectral method has been applied successfully to a number of
applicationsls2 in the fields of agriculture, geology,
foreatry, hydrology, atmospheric sclence, and oceanography to
name just a few.

Besides the natural or intrinsic variability in the
surface features of interest, there is a variation due to the
atmosphere. As the sensor passes over different regions of
the atmosphere the aerosol component may change or the sun
angle may change depending upon the orientation of the air-
craft or spacecraft. These and other systematic variations
can bias the intrinsic data which are truly representative of
the objects on the surface. For this reason it is necessary
to have a model wbich can account for these systematic varia-
tions and to generate algorithms which can be used to correct
the data.
~ Previous studies3»%s5 have resulted In an atmospheric-
radiative-transfer model which has been used to caleculate the
natural radiation field in a plane-parallel, homogeneous,
atmosphere bounded by a uniform Lambertian surface. The
modél, however, excluded absorption by gases and aerosols
whereas the improved version presented here includes the
effects of aerosol absorption and absorption by the gas ozone
in the visible part of the spectrum.

The Radiative Transfer Model

The spectral radlance received by a downward directed
sensor at some point either within or outside of the
atmosphere is given by the simple equation

Lp = I3T +1g @)

in which L 1is the total spectral radiance at the sensor, L

is the spectral radiance at the surface, T is the spectral
transmittance from the surface (target) to the sensor, and

L, 1s the spectral path radiance, i.e., the radiance along

tge path connecting the target to the sensor as a result of
radiation scattered and emitted by the atmosphere. Assuming
some knowledge of the atmospheric state and the surface condi-
tions one should be able to calculate all of the quantities

in Eq. (1).

The general equation which is used to describe the
transfer of radiation in a horizontally homogeneous, plane-

parallel, scattering, absorbing, and emitting atmosphere is
given by :
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L uo(r) 2rl _
wgT " L(t,u,¢) - 7 Io J_lp(1,u.¢.u‘.¢‘)h(r,u‘.¢’)du‘d¢‘

mu(r) -r/uo IR -
- Eot p(T s by-hab ) = [1mu (DB (2)

where the first term on the right hand side of the equation is’
. the diffuse radiance at optical depth Tt in,a direction
specified by the nadir view angle 8(= cos ") and azimuth angle
¢1_.Ihe second term represents the radiation scattered from a
direction (1”,¢”) into the direction (u,¢) with an angular
distribution determined by the single-scattering phase

function p(T,u,¢,u",¢"). The third term is the source term
for singly-scattered solar radiation, i.e., vadiation which

48 scattered once from the solar direction (u ,¢_) into the
direction (u,¢) with an extraterrestrial solar irradiance E .
The last term is the contribution due to thermal emission by
the atmosphere with a Planck radiation function B(t). A

very important quantity in the above equation is the single-
gcattering albedo @ (t), a dimensionless number which indicates
the amcunt of scattering. If w (1) = 0, there is no scattering
and all of the diffuse radiance®is due to thermal emission. On
the other hand, if w_(t) = 1, there is no absorption and all

of the diffuse radia®ion arises from multiple scattering. For
values of w (1) between zZero and one there is a combination

of scattering and absorption. If we confine our attention to
the visible and near infrared part of the spectrum, then the
contribution from thermal emission is negligible and we can
drop the last _temrm in Eq. (2). Using a modified two-stream
approximation3’5 an approximate solution was found for the
integro-differential equation of transfer for the case of
homogeneous atmospheres, i.e., those in which w_(1) and
p(t.u.¢,u‘,¢‘) are independent of optical depthor. The results
of the analysis of this equation will be presented in the last
gection of this paper, but it is first necessary that we
calculate the pertinent atmospheric optical parameters.

The Atmospheric State
Guees

The major permanent gas components of our atmosphere are
molecular nitrogen, oxygen, and argon, none of which absorb
much radiation in the visible and near infrared portion of the
2lectromagnetic spectrum. The wost important abscrbers of
radiation in the near infrared are ozone, water vapor, and

102



ERIM
Z FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY &F MICHIGAN

carbon dioxide, whereas in the visible it is the ozone Chappuis
band in the range 0.440 um to 0.74 um which is of importance.

' The maximum concentration usually occurs at an altitude of
23 km.

Aerosols

Embedded in the gaseous atmosphere is a semi-permanent
suspension of liquid and sclid particles called an aerosol.
The particles arise from a variety of natural and anthro-
pogenic sources such as, volcances, forest fires, dust storms,
sea spray, industrial smokestacks, and automobile exhaust.
From such varied sources the particles coalesce, evaporate,
and condense to produce a distribution of shapes, sizes, and
composiiions. The shape of liquid particles is probably that
of a sphere whereas solid particles may have any shape what-
ever. However, for a collection of particles in random
orientations we can probably assume that the scattering effect
is approximately the same as that for_a collection of spheres,
The sizes of particles range from 107/ cm to 104 em with an
approximate Gaussisn type distribution. Several hazes have )
been suggested by Deirmendjian® and Junge?, each characterized
by a specific particle sjize distribution function. The

-composition of aerosols can vary from pure water to highly
‘absorbing soot-like particles. We shall denote the composition
by the complex refractive index m(A), i.e.,

m(d) = @ () - in,(0) )

If the imaginary part, m,(1) 1is zero the paxticles do not
absorb any radiation, bug for values of o, > 0.1 the absorp-
tion carn be quite important.

Single-Scattering Albedo

Knowing the complex refractive index, the scattering,
absorption, and total (extinction) cross sections can be
calculated by using the standard Mie formulas, and, by
selecting a particular size distribution one can calculate the
absorption, scattering, and extinction cocefficients as a
function of wavelength A, refractive index m()), size distribu-
tion 8, and altitude z. Thus, we have

a(i,m,5,2) = O.R(K;Z) + QA(Asmaasz) (4)
5(1:111.8.2) - BR(A:Z) + BA(lnmszz) (5)

c(A,mys,2) = kg(A>2) + x, (Aym,8,2) (6)
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for the volume absorption, scattering, and extinction coef=~
ficients respectively. The first term on the right hand
side of Eqs. (4), (5), and (6) represents the coefficient
for the Rayleigh (pure gas) situation and the second term
represents the corresponding aerosol coefficient, Now,
defining an absorptivity parameter f as

B, (A,m,8,2)
£=l- L Gmen <

and the single-scattering albedo w, as

SR(A,Z) 4 BA(A’mislz)

mo(l,m.s.z) - wOom,o.2) (8)
we get the followling expression for w
£8,0,2)-(1-Dap(A,2)
mo(l,m,s,z) = T Oom,5.2) +1-f (9)

It should be noted that if there is no aerosol absorption then
£ = 0 and if there is complete aerosel absorption, f = 1,
These extreme conditions are i1llustrated in Fig., 1 for a
wavelength of 0.60 um. The values of the total extinction
coefficients, x(A,m,s,z) were tzken from tables by
Elterman!? in which k(},m,s,z) s given in terms of wave-
length, altitude, and visual range. With no aerosocl absorp-
tion the albedo decreases with altitude due to ozone
absorption but only by a significant amount above an altitude
of 10 km. With complete aerosol sbsorption, the albade
increases rapidly as we go wp through the lower troposphere
but it decreases as we reach the ozone layer.

By varying the complex refractive index we can see the
effect of ever increasing aerosol absorption. This is
illustrated in Fig. 2 for a very hazy atmosphere. The
m, = 0.01 case corresponds to a2 small amount of aerosol
agsorption and one can see that the albedo 1s rather large,
especlally near the surface. For the m, = 1.0, f.e., strong
aerosol absorption, the albedoe is much less. It should also
be noted that there is a strong wavelength dependence
particularly for the upper part of the atmosphere where ozone
absorption is significant. .
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‘FIGURE 2. ALTITUDE PROFILE OF THE SINGLE-SCATTERING ALBEDO
FOR HMAZE L. Visual Range = 2 km, complex
refractive index m = 1.5 - 1m2.
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Phase Functions

Tables of the single-~scattering phase function have been
caleulated for different refractive indices. The effect of
varylng the amount of aerosol absorption is easily seen in
Fig. 3. For the strong absorption case, the phase function
i8 more anisotropic than in the other cases and the back-
scattering (X = 180) is much less.

Atmospheric Radiation

Using an average single-scattering albedo and the single~
scattering phase functions in the atmospheric radiative-
transfer model we calculated the spectral radiance for various
combinations of refractive indices, wavelengths, altitudes,
sun angles, surface reflectances, and view angles.

Figure 4 depicts the path radiance and the total {path
plus attenuated surface) radiance for a moderately hazy
atmosphere. It should be noted that the non-absorption case
glves a radiance almost twice that of the strong absorption
case. In Fig. 5 we see the same situation for a very hazy
atmosphere and in this case the ratio of the radiances is
about eight. In both cases the size distribution of the
aerosol particles was that corresponding to a general contin-
ental haze, called haze L.

The altitude dependence of radlance for no aerosocl
absorption and strong aercsol absorption is illustrated in
Fig. 6 for a moderate haze. The radiance increases uniformly
and approaches an asymptotic value at an altitude of about
30 km. Figure 7 depicts the same situation except that the
atmosphere has more haze. In the latter case it is interest-
ing to note that in the strong absorbing aercsol the total
radiance first decreases with altitude and then gradually
increases. This 1s due to the fact that the transmission loss
13 greater than the increase as a result of multiple scatter-
ing. However, a9 we go to greater altitudes the path radiance
dominates and always causes an increase with altitude. The
change in path radiance as a function of altitude for various
refractive indices is illustrated in Fig. 8 for a very hazy
atmosphere. As the amount of absorption increases the path
radiance decrsases, especially for the case of m, > 0,01,
i.#2., for moderate absorption. Beyond m, & 0.10, the effect
of an increase in the refractive index has is less noticeable.

The total spectral radiance at an altitude h is given
by
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SCATTERING PHASE FUNCTIONS, picos X)
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0 ATTERING ANGLE {deg)

FIGURE 3. SCATTERING PHASE FUNCTIONS AS CALCULATED FROM MIE
THEORY FOR HAZE L - COMPLEX REFRACTIVE INDEX
me= 1.5~ :I.mz. Wavelength = 0,55 um
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FIGURE 4. Dependence of Path Radiance and Total Kadiance on

Wavelength for Haze L. Altitude=1 km, Solar
Zenith Angle = 30°, Nadir Angle=0°, Visusl
Range=23km, Target Reflectance=0,10, Background
Albedo=0,10, Refractive Inder m=1.5-1m2
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FIGURE 5. DEPENDENCE OF PATH RADIANCE AND TOTAL RADIANCE ON
WAVELENGTH FOR HAZE L ~ VISUAL RANGE = 2 lkm.
Altitude = 1 ko, solar zenith angle = 30°, nadir
angle = 0°, target reflectance = 0.1, background
alhedo = 0.1, complex refractive index m = 1.5

-mz.
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LT(A,h,m.s,v,eo,e.qs.p.F) = L,(A,h,m,8,V,0,,8,0,7)

+ LP(A,h,m,a,V. 90.9.¢,'b")

where L, and are the attenuated and path radiances
reapectéVely. L. is the radiance at the surface attenuated
up to the altituée h of the sensor. The quantity m is
refractive index, s 1s the atmospheric state parameter which
describes a particulate size distribution, V i1s the horizontal
visual range at the surface, 60 is the solar zenith angle,

8 1s the nadir view angle, ¢ is the azimuthal angle, and

p and T are the target and background reflectances respect-
ively. 1In Fig, 9 is illustrated the three radiances for a
“slean", 1.e., non—absorbing aerosol atmosphere and for a
"eontaminated" or strongly absorbing aeroscl atmosphere.
Here we see clearly the effect discussed earlier. The
transmission lecss causes a large decrease in the attenuated
radiance with insreasing altitude whereas just the opposite
effect occurs for path radiance. In a "clean" atmosphere
the path radiance does not increase fast enough to overcome
the loss due to trarsmission, especially at low altitudes,
but for contaminated atmospheres the path radiance increase
is more rapid.

Finally, the effect of varying the view anglz is
1llustrated in Fig. 10. A sensor is imagined to be located
at an altitude of 2 km scanning the surface in the plane of
the aun. As expected, the increasing amount of absorption
causes a decrease in the path radlance and in approximately
the same relative way regardless of the amcunt of absorption,

Conclusions

In this study of the natural radiation field in Earth's
atmosphere, the atmospheric optical parameters, single-
scattering albedo, and the single-scattering phase function
were modeled in order to simulate the conditions for con-
taminated atmospheres. This was done by varying the imaginary
part of the particulate refractive index which is indicative
of the aerosol absorption. All degrees of atmospheric haze
were studied, from a very heavy haze, characterized by a
visual range of 2 km, to the clearest conditions possible,
i.e., a pure Rayleigh atmosphere.
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FIGURE 9. DEPENDENCE OF PATH RADIANCE, ATTENUATED RADIANCE
AND TOTAL RADIANCE ON ALTITUDE FOR NO ABSORPTION
AND HEAVY ABSORPTION. Wavelength = 0.55 um, solar
zenith angle = 30°, nadir view angle = 0°, target
reflectance = 0.1, background reflectance = 0.1,
visual range = 2 km.
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The results show that by increasing the amount of
absorption the radiance decreases, although in s non-linear
way, i.e., eventually complete absorption is reached.
Furthermore, the variation of radiance with altitude and view
\angle 1s essentially the same as for the non-absorption case.

The question naturally arises as to what value of
complex refractive index does one choose in the analysis of
multispectral data. For "clean" water type aerosols, the
refractive index in the visible and near infrared region is
real and equal to ~ 1.34. On the other hand, for contaminated
air filled with various amounts of silicate and soot-like
particles the refractive index may be 1.55 -~ 0.1 1, with
considerable variation in the imaginary part. 1In actual
practice, therefore, one should conduct i. situ sampling
of the atmosphere, i.e., perform measurements of particulate
composition and size distribution using radiometric techniques
or collect air samples and perform laboratory measurements to
determine refractive index. If the complex refractive index
is known, along with the approximation size distribution, and
the horizontal visual range, then ome can relate measured
radiances to the calculated ones and thereby develop techniques
for the removal of atmospheric variations from multispectral
data.
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Appendix B
DETAILED RECOGNITION PERFORMANCE MATRICES

B-1 Ionia and Clinton Counties Recognition with Eaton County Signatures

B-2 Ionia and Clinton Counties Recognition with Mean Level Adjusted I
Eaton Signatures

B-3 Ionia and Clinton Counties Recognition with Mean Level Adjusted II
Eaton Signatures .

B-4 Jonia and Clinton Counties Recognition with Ionia-Clinton Signatures

B-5 Eaton County Recognition with lonia-Clinton Signatures

B-6 Eaton County Recognition with Mean Level Adjusted I Ionia-Clinton
Signatures

B-T Eaton County Recognition with Mean Level Adjusted II Ionia~-Clinton
Signatures

B-8 Eaton County Recognition with Eaton County Signatures

B-8 Jonia and Clinton Counties Recognition with Ionia-Clinton Signatures
Admapped at an Adaptation Rate of Approximately 190 Lines

B-10 Tonia and Clinton Counties Recognition with Eaton County Signatures

Admapped at an Adaptation Rate of Approximately 190 Lines
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TABLE B-1. ERTS STGNATURE EXTENSION, UNADJUSTED EATON SIGNATURES

APPLIED TO IONIA AND CLINTON COUNTY DATA.(12 SIGNATURES,
7 CLASSES, 0.001 THRESHOLD.)

PERCENTS OF TCTAL NUMBER CF PCINTS IN EACH CLASS

BY CLASSES CF PLOTS ARG CLASSES OF SIGNATURES

PCINTS IN CLASS ASSeC
STGNATURES. . e mmmm— e e mm o FRCH

NR.  NR. CORN SENESC SOY ALFA TREES CRASS SOIL NOT RIGHT WRCNG RIGHT wRCNG  GTHER

CLASS PLCTS PCINT . VEG. BEANS CLASC  [GF ALL)  (OF CLASD) CLASS
CORN 37 295 57.3 40.7 .3 o3 Lok W€ 5T.2 42.7 57.2 42.7 5.2
SENESC. VEG. 49 258 .8 49.6 21.3 12.8 1.6 14.0 .0 &4.C 26.0 €4.C 36.C 30,6
SOYBEANS 6 27 3.7 3.7 92.6 W€ G246 Ted S2.8  Teh  Bab
DECID.TREES 7 47 36.2 4.3 2.1 2.1 55.3 W€ 55.3 44.T 55.3 44.7 .2
BARE SOIL 11 53 100.0 <0 1CC.C .0 1€0.C C 5.7

110 €80

AVG. OVER PCINTS
AVG. OVER PLOTS

OVER CLAS BY PCINT
OVER CLASS BY PLGT

73.8 26.2 T13.B 2¢.2 1G.C
69.2 10.B 6S.2 AC.E
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CLASE
CCRA
SCYBEAMS
TREES

HarRE SCIL

TABLE BE-2. ERTS SIGNATURE EXTENSION, MLA-I EATON SIGNAYURES
APPLIED TO IONWIA AND CLINTON COUNTY DATA.
(12 SIGHATURES, 7 CLASSES, 0.001 THRESHOLD.}

FFRCENFS CF T{TAL

NUMGEER CF PCINIS IN

EACKH CLALS

BY CLASSES CF PLCTS ANC CLASSES CF SIGhATLRES
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TABLE B-3. ERTS SIGNATURE EXTENSION, MLA~II EATON SIGNATURES

APPLIED TO IONIA AND CLINTON COUNTY DATA.
(12 SIGNATURES, 7 CLASSES, 0.001 THRESHOLD.}
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TABLE B~4. ERTS LOCAL RECOGNITION, UNADJUSTED IONIA-CLINTON
SIGNATURES APPLIED TO TONIA AND CLINTON COUNTY DATA.
(7 5SIGNATURES, 5 CLASSES, 0.001 THRESHOLD.)
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TABLE B~5. ERTS SIGNATURE EXTENSION, UNADJUSTED IONIA-CLINTON

SIGNATURES APPLIED TO EATON COUNTY DATA.

(7 SIGNATURES, 5 CLASSES, 0.001 THRESHOLD.)
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TABLE B-&.

¢ IGNATURES APPLIED TO BATON COUNTY DATA,

{7 SIGNATURES, 5 CLASSES, 0.001 THRESHOLD.)
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TABLE B-7. ERTS SIGNATURE EXTENSION, MLA-IT IONIA-CLINTON
STGNATURES APPLIED TO EATON COUNTY DATA.
{7 SIGNATURES, 5 CLASSES, 0.001 THRESHOLD.)
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TABLE B-8. ERTS LOCAL RECOGNITION, UNADJUSTED EATON
SIGNATURES APPLIED TO EATON COUNIY DATA.
(12 SIGNATURES, 7 CLASSES, 0.001 THRESHOLD.)
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NR .
CLASS PLGTS
CURN 37
SUYBEANS &
TREES 6
BARE SOIL 10

SENESC. VEG. 48

TABLE B-~9. ERTS SIGNATURE EXTENSION, ADAPTATION OF IONIA-CLINTON

SIGNATURES WITHIN IONIA AND CLINTON COUNTY DATA.
(7 SIGNATURES, 5 CLASSES, ADAPTATION INTERVAL ~190 LINES.)

PERCENTS OF TOTAL NUMBER OF POINTS IN EACH CLASS

BY GLASSES OF PLOTS AND CLASSES OF SIGNATURES
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TABLE B-10. ERTS SIGNATURE FEXTENSION, ADAPTATION OF EATON COUNTY
SIGNATURES WITHIN IONIA AND CLINTON COUNTY DATA.
(7 SIGNATURES, 5 CLASSES, ADAPTATION INTERVAL 190 LINES.)
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Appendix C
DESCRIPTION OF PROPORTION ESTIMATION PROCEDURE

In this appendix, which contains exerpts from Refs. 23 and 29, theoretical methods are de-
veloped for determination of the mixture of materials in the IFOV of a multispectral sensor when
the radiation received by the sensor is composed of radiation from several object classes. In
Section C.1, a mathematical model is formulated which relates the signature of a mixture of ma-
terials in the IFOV to the signatures of the constituent materials. The mathematical model is
used in Section C.2 to determine the maximum likelihood estimate of the proportions of the vari-
ous materials occurring in the IFOV, given an observed data point. The question of uniqueness
of the estimate is also discussed, The detection of alien objects is dealt with in Section C.3.
Finally, in Section C.4, the problem of estimating mixtures of materials is related to the more
usual problem of identifying the material when it is assumed that the IFOV contains a singie
object class.

C.1 MODEL FOR SIGNATURES OF MIXTURES

When the IFOV of a multispectral scanner is large in contrast to ize structure being scanned,
a single resolution cell may contain a number of different object cl=zases. Suppose the scanner
has m spectral channels and that the signature of object class i, where 1=1i <n, is represented
by an m-dimensional Gaussian distribution with mean A, and covariance matrix Mi‘ If the pro-
portion of object clags i in the resolution cell is Py and p = (pl, .y pn), then let the signature

of this combination of classes have mean Ap and covariance matrix Mp.

To find expressions for Ap and Mp, consider the following model. If the resolution cell
contains elements only of object class i, assume that it contains N, elements of this type. With
each of these elements, associate a random variable with mean A’; and covariance matrix M'.l‘.

Thus, we have
A =NA?
1 1 1

1f we assume statistical independence of these Ni random variables, we have also
- *
M.1 NiMi

Now, if the proportion of the resolution cell covered by elements of object class i is Py then the
number of elements of this type in the resolution cell is piNi' Thus,

= * =
Ay~ ZpiNiAi ZpiAi
T ;
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If we assume that the random variables associated with elements from different object classes

are also statistically independent, we have

= * =
M, =) pNMY Z,piMi
T i

Since the pure signatures are taken to be Gaussian, the distribution associated with proportion
vector, p, is also Gaussian. As derived above, its parameters are given by

Ay =) P
T

My =) P
i

These formulas for A_and M_ constitute our model for signatures of object-class combinations
in terms of the signatures of the individual object classes. This model assigns a signature to
each mixture of the n materials. The formula for the mean of a mixture may be interpreted
geometrically, If Al’ Az, and A3 are the means of the pure materials, then the mean of each
mixture lies in the triangle A1A2A3 (convex hull of Al’ Az, andA3, which we often refer to as
the signature simplex). In Fig, C.2, A'is the mean of the signature assigned to the proportion
vector (1/3, 1/3, 1/3). It is the centroid of the triangle. A" is the mean of the signaiure
assigned to the proportion vector (0, 1/2, 1/2). It is the midpoint of line segment AgAg.

C.2 ESTIMATION OF PROPORTIONS

The model for the signature of a mixture is now utilized to estimate the mixture of materi-
als in the resolution cell corresponding to the signal generated by a multispectral sensor. If
the =ignal is represented by an m~-vecior y, then the maximum likelihood procedure leads to

choosing a proportion vector, p, which minimizes

-1
Flp) = fn |Mp| + Q =AMy - Ap>

subject to the constraints that p be p proportion vector, i.e.;
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Here |M| denotes the determinant of the matrix M; M'1 denotes the inverse of M; <u, v> is
the inner product of the vectors u and v; and y and Ap are taken as column vectors. F{p) is,
except for a constant, the negative of the natural log of the Gaussian density function with mean
Ap and covariance matrix Mp evaluated at the point y.

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHAIAN

C.2.1 ESTIMATION OF PROPORTIONS IN SPECIAL CASES

Consider the special case {Case 1) where the M, are all equal, (e.g., M, = M). HMis
positive definite, it can be factored into

M =1Lt

where L. is a triangular matrix, and T superscript means transpose. If we define

z=L'1y

B=L_1A 1=si=sn
i i

B =1Lla

P p

it is easy to show (see Ref. 29) that the maximum likelihood estimate of p minimizes

aor= e -3,

over all proportion vectors p. Here ||ull denotes the norm of the vector u. This minimization
problem has a simple geometric iaterpretation. We want tofinda p such that B_ is the point

in the convex hull of the Bi’ 1=i % n, which is closest to z, as illustrated in Fig. 4. Each point
in the triangle B1}3233 {convex hull of the points Bl’ BZ’ and BS) has a unique representation in

the form

3

Pha

i

where p is a proportion vector, Bpo is the point in the triangle closest to z and pP is the

required estimate. For this examgle

p? =0.33, 0, G.67

A more inclusive special case occurs when the Mi are all scalar multiples of some commaon
matrix M (Casze 2). If o? is defined by

2 s <
Mi_UiM 12isn
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then the maximum likelihood estimate of p minimizes

- % llz-zlP
Ihi(p).-mﬂ.nwp+Wp A Bp

over the set of proportion vectors p, where

¥p© Zpi i

and m ig the number of spectral channels.

C.2.2 UNIQUENESS OF ESTIMATES

When the covariance matrices Mi are scalar multiples of each other, the objective function Hip)

is quasi-convex [41]. Then the maximum likelihood estimate of p is unique, when the (m +1) -

dimensional vectors (1, Ai)’ 1 =1i=n, are linearly independent.

Estimates are not necessarily unique in the general case under this condition. However, if
the covariance matrices are small, then estimates are almost unique. To be more precise, let
r be a small, positive number, and let

M =rM
pr P

and

-1
= < - -
Fo.r niMy 1 Qy- Ay, MLty Ap>

then

-1
rF__=mrinr+rinlM +<-A M -A>
o r+rin| Pl y- Ay D {v p)

As r becomes smaller, er r is approximately
. 1

-1
R=<-—A,M -A>
; Y- AL Ml - Ay

But this function is convex and is minimized by 2 unique p, from which we may conclude that if
the covariances are small enough, Rp will approximate F_. Thus, the uniquze p which minimizes
Rp will be close to any p that minimizes Fp' As a result, all minimizing p's of F(p) will be :

close to each other and therefore will not be a source of significant error in the estimate.
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FIGURE Cl. GEOMETRIC INTERPRE TATION OF MEANS OF SIGNATURES
OF MIXTURES

FIGURE C2. GEOMETRIC INTERPRETATION OF ESTIMATE (SPECIAL CASE)
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C.3 ESTIMATION OF PROPORTIONS IN PERSPECTIVE

The solution to the problem of estimating proportions of materials in the IFOV is the logical
extension of the solution of the problem of identifying the material, when it is assumed that the
{FOV contains only one type of material. The procedure in the latter case is essentially to
maximize the likelihood of the given data point with respect to the signatures of a finite number
of possible materials. The mixture model assigns signatures to all the mixtures of a finite
number of materials and maximizes the likelihood of a data point over this infinity of possibili-
ties. Conceptually, therefore, the solutions are similar. However, the computation of the esti-
mate of the proportion vector is more complicated than the determination of the most likely

material from a limited number of alternatives.

C.4 DETECTION OF ALIEN OBJECTS

Estimating proportions of unresolved objects from a signal y is based on the assumption
that the signal comes from a pixel which contains a mixture of materials. These materials
are represented by known signatures that constitute the pure signature set. If the pixel should
contain % material not represented in the signature set, significant additional error in the esti-
mate of proportions may result. The amount of this error depends upon the proportion of these
alien materials and the geometric relationship of their signatures to those in the pure signature
set. Those materialg occurring in a scene but not represented in the pure signature set are
referred to as alien materials or alien objects. Procedures have been designed to reduce the
error resulting from the presence of alien objects. These procedures take the form of thregh-
olding tests —hence the designation "alien object threshold."

One might attempt to avoid the alien object problem by votaining signatures for all materials
present inthe scene. This approachis usually impractical because of the large number of mate-
rials present and the impossibility of obtaining definitive signatures for many of them. An alterna-
tive is to use essentizlly a chi-sqguare test as in cenventional recognition processing. Some modi-
fications are necessary when averaging procedures are also employed.

The current mixtures program contains improved orocedures for dealing with alien objects.
These procedures can be described most easily in terms of the pure signature set and signals
after a linear transformation has been employed, After this transformation, we assume that
the i-th material in the pure signature set has mean Ai’ and its covariance matrix is the identity.
Now given a signal (data point) y from a pixel with unknown proportions of various materials,
the estimate A of the proportion is obtained as follows, Let Z denote the point in the signature
simplex closest to y. Then Z may be represented in the form

A
Z = Ax
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where/?\t is a proportion vector and is taken as the estimate of proportions in the pixel repre-
sented by the signal y. In order to apply an alien object test, we ask, "What is the probability
that we would have observed the signal with value exceeding y if the true proportion of the pixel
was ,)L\?" Assuming Gaussian signature distributions, this amounts to a chi~-square test with n
degrees of freedom, where n is the number of spectral channels used. The level of significance
is determined by a value x(z), which is the alien object threshoid, I

lty - 2112 = Ity - af1%> X2

then the estimate fails the chi-square test; we then say that the pixel contains significant
amounts of alien materials and make no estimate of proportions for the pixel in question, If
the estimate passes the test, we accept it as the estimate of proportions of materials in the pixel

in question.
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