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ABSTRACT

For various applications in fluid dynamics, one can assume

" that the total temperature is constant. Therefore, the

energy equation can be replaced Ly an algebraic relation.

The resulting s2t of equations in the inviscid case is analyzed
in this paper. It is shown that the system is strictly
hyperbolic and well-posed for the initial value problem.
Boundary conditions are described such that the linearized
system is well posed. The Hopscotch method is investigated

and numerical results are nresented.
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1. INTRODUCTION

The Navier-Stokes equations in two space dimensions con-
tain four differential equations: the momentvm equations, the
crntinuity equation and the energy equation. For certain
apr ‘cations, the energy equation can be substituted by the
as tion that the total temperature is constant, without
much loss of accuracy, see [8). The resulting system for two

space dimensions is then in non-dimensionalized form:

1 1 _ "
u, + uu, + vuy + pra IoRe [4(ULx)x 2(uvy)x+3(u(vx+uy))yl

b

. | _
v, +uv, + vvy + 5Py = §E§E[4{“vy)y 2(uux)y+3(u(vx+uy))x]

(l.l)pt + pux 4 up, + pvy + vpy = 0
' L =T+ u2 + v2 (total temperature constant)
P = RpT
clT3/2
u:-——-—-—
T+C2
R, Cl' C2 and the Reynolds number Re are given constants.

In order to obtain good numer:ical solutions to the
initial--boundary-value problem for the system when the
Reyno.lds number is large, we must require that the inviscid
equations (Re + =) are well posed. 1In this paper an analysis

of the linearized version of *he system is presented. The



characteristic speeds are no longer the same as for the com-
plete inviscid Navier-Stokes equations, but the system is well
pcsed for the pure initial value problem. The analysis of the
mixed initiel-boundary-value problem shows that great care must
be taken to obtain a well posed problem. If at a subsonic in-
flow boundary, v and one of the variables u and p are
specified, the equations are not well posed near the transonic
point; v and a combination of u, v, p corresponding to an
ingoing characteristic must in such a case be specified.
Several numerical experiments have been done for this sys-
tem by Rudy et al. [8]. One method used by :-hem was the
Hopscotch scheme, see (3], [4]). The application of this
scheme to the viscous terms is simplified if the function

values at the middle point in the approximation of u__, v

XX XX

are taken at time level n in both sweeps. It is shown in
section 4 that this simplification irtroduces a stability
limit on At. However, for high Reynolds numbers, it is more
dissipative than the original method.
2. THE PURE INITIAL-VALUE PROBLEM

In this section we will first show that the linearized
inviscid equations are strictly hyperbolic. After elimination
of the variables p and T, the linearized system can be
written in the form

w, + wa + Bwy =0,

where

~ ~ o~
w = (varR)T '



A = 0 u 0
p 0 u

- -
v 0 0

B = |-2Rv (1-2R)v  c2/p

L 0 p v
c? = rR(1-u?-v?),

u,v,p now considered to be known functions. To prove strict
hyperbolicity we must show that the eigenvalues of Aw, + Auw,
2

are real and distinct for all real Wye Wy with wi + wy = 1.

An easy calculation shows that these eigenvalues are given by

Al = uml + vwz

A = (1- RNum +vw, »/ RT (uw +Vm ) +C (mZ:;§
2,3 2 1 2

All eigenvalues are obviously real, and since R # 0, ¢ # 0,
they are also distinct for mi‘+ wg =1,

The complete inviscid Navier-Stokes equations are
symmetric hyperbolic, i.e., the corresponding matrices A and
B can be symmetrized by the same similarity transformation,
see [9]). This is not the case for the system considered here.
With the notation, a, = Rut/R2u2+c2, the eigenvectors of A

-

arc the column vectors of



-p -p 2vp

If A and B can be symmetrized by the same similaritv
tréinsformation, then we can diagonalize A by an orthogonal

transformation, and ther~fore B stays symmetric.

Therefore S—1 Af is diagonal, and
- Rvaz cza_ al
ey i 3 T IR
- 1 Rvaz cza+
S "BS=vI- - 5 =Rva_
a, Ru c* 2R
2 2
Ra+(a+-Ru) Ra_(a+"Ru) "
1 c 02 -

which is not symmetric. The eigenvectors in S can be

permuted, but that does not effect the symmetry of s 1ps.

Furthermore, each eigenvector can be scaled by different

factors. This corresponds to a similarity transformation

1

of S""BS by a diagonal matrix. It is easily shown that it

1BS by such a transformation,

is impossible to symmetrize §
and therefore A and B cannot be symmetrized simultaneously.

The variable ¢ defined by c2 = RT would for the non-
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dimensionalized system correspond to the local speed of sound.
However, the eigenvalues of A are u, (1-R)u2c/q+ﬁ;§7;i These
are not the same as the eigenvalues of the corresponding A
for the complete Navier-Stokes equations, since the latter

are u, u *+ c. We note that these are obtained if terms of
order R and smaller are neglected. (R is 1/7 for air.)
Luoking at the velocity component in the x-direction, a super-
sonic state is most naturally defined as a state for which all
the eigenvalues of A have the same sign. Therefore, we will

define a state as subsonic if the condition
(2.1a)  (1-R) |u| < /R2u+c?

is fulfilled, and superscnic if the condition

(2.1b)  (1-R) |u| > /R%u?+c?

is fulfilled. (2.la) can also be written (1-2R)u2 < c2, or
equivalently -

(2.2) 1%5 ulsv? < 1.

3. WELL POSEDNESS OF THE MIXED INITIAL-BOUNDARY VALUE PROBLEM

In this section we will investigate the effect of the

boundary conditions, and we assume the p.soblem to be defined



on the domain 0 < x < », = ®» < y < ®, 0 < t . We begin with
a brief discussion of the one-dimensional case,

Assume that the system w_ + wa = 0 is transformed to

t
diagonal form

¢t + A¢x =0, A = diag(Al,l A

2' 3) .
Then it is well known that the problem is well posed if the

boundary conditions can be written on the form

0X(0,t) = LetI(0,t) « g(t) ,

I (i)

where ¢ contains those variables ¢ which correspond
to positive 1,;, and ¢II contains the remaining ones, see e.qg.

[6]. Using the same notation as in Section 2, we have in

our case A, =u, A\, =u-a_, A, =u-a, . and
™~ ~ -
\")
~ ~ 2A
$p = =a_nU - 2RvpV + c'R
~ ~ 2’\
~ a,pU + 2RVpV - c"R J
- & ' 1 (2) (3) 1
U] | wmrammm 0 )
" - g le ¢(1)
= 2v (1) S 1 (2), 1 ,(3)
n M h':£'¢ - §T§::ﬁ;7(;: ¢ "+ a, ¢ )J
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For supersonic flow (defined by (2.1b)), all three variables
ﬁ, G, ﬁ must be specified if u > 0 (inflow), and no
boundary condition should be given if u < 0 (outflow). For
subsonic inflow, the boundary conditions must be such that

¢(1)' ¢(2) (3)

geneous term. If we want to specify two of the physical

can be expressed in terms of ¢ and an inhomo-

variables, we see that V must be one of them. Either one

-~

of U and R can then be chosen as the other specified
(2) occurs with a nonzero
coefficient. For the same reason, either one of U and

~

R can be specified for subsonic outflow.

variable, since for both of then ¢

The two-dimensional problem is much more difficult to
analyze. The energy method does not work, since the system
cannot be symmetrized, and therefore we must use the theory
by Kreiss [5]. Since part of the calculations are technically
complicated, we give here a summary of the wellposedness
proofs; the details are given in the Appendix.

The wellposedness is determined by the behavior of the
solutions to the system

~

(3.2) Aw, + (sI+iwB) w = 0,

-

which is obtained by a Laplace transformation with respect
to t and a Fourier transformaticn with respect to y. The
solutions to (3.2) consist of components of the type e‘ixwi
where Ky is a solution of Det(C) = 0, C(x)zAx + sl+iuB

B, K, %
(or of the type X i 2 ml for multiple roots xi}.



With the notation a = s+iwv, the kis are defined by:

Ky = a/u

{3.3) oxz + 2u[(1l-R)a=Rviw]k + uz-ZQRVim+C2w2;O,
2,3 2,3
where v = (1-2R)u2-c2. The corresponding vectors v; are
given by
uiw x2'3(u+xz’3u)
4’1 = o ' 4’2'3 - iW(Q+K2’3u)
ZQR(uziw+va)/c2' p(wz—xg,w)

Note that a = tuw if and only if x, = +w and therefore
Ky = xz. In this case however, wz is the nullvector, and we
have only two linearly independent vectors wl, ¢3. If
Ky = Ka,it is also clear that there are only two linearly
independent vectors wl, wz.

Let M be the class of vector functions ; satisfying
(3.2) and with ;eLz(O,m) for Re s > 0. The problem is well
posed if there is no nontrivial ;cM satisfying the homo-

geneous boundary conditions for any s with Re s > 0. (If

there is such a nontrivial solution for a purely imaginary s = 8,

then S, is called a generalized eigenvalue.) We will now inves-

tigate this condition for the different cases.



-

Supers=onic Inflow

In this case there are three linearly independent solutions

belonging to tho.m). and we begin with

Case 1: Ky # Ky 7 K # 1
The general solution is
s v, K. X K.X
wix) = Ee' )l y, *ne"2 Yy, + e 3 Y, ,
where £,n,t are scalars. The condition for having nontrivial

solutions satisfying w(0) = 0 is

Det(¢1-¢2,¢3) < 0.

A lengthy calculation (see the Appendix) shows that

(3.5) Det (¥y,¥piby) = VK mky) o® tudut=a")”,
Y.

and it never vanishes because Ky # Ky and moreover,

a = * uw only if Ky = Ky »
Case 2: Ky = Kg # K4

The general solution is

wix) = (%1 +5xw1)e“1x+n¢3e‘3“ ,

where

(3-6) C(Kl)ml " - Aﬁwl .
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The condition K 1=K implies a = * uw and K =tw. w(0) =

implies w == ry.. When substituting this into (3.6), we
1 3

from the first and the last equation

(3.7a)  nlcysw) 2=pig

(3.76)  nlkytw)? = [-pi-2Rpu(uitv)/c®]E,

which contradict each other if £#0, n#zo.
Case 3: Kl¢x2=x3 .

The general soluticn is

~ K1 X K,x
wix) =£w1e 1 +($2+nxw2)e T e

where

In the same way as above, we obtain two equations

corresponding to (3.7):

(3.9a) iwupn=af

(3.9h) apn=-uiwf .

0

obtain



-1l -

These lead to the case uz-uzwz, which corresponds to

‘1"‘2' and this is a contradiction.
Case 4: K =Ko=K,

In this case we must have a=tuw, vx=%w, and from (3.3)
we get vek=-u[(l-R)a-Rviw]. The imaginary part of the
equation yields v=0 and tne real part yields u=0.

This completes the proof of wellposedness for supersonic

inflo

Supersconic Outflow

This case is trivial, since all k's have positive real
part for Re s > 0, and no boundary conditions should be

given.

Subsonic Inflow

In this case there are only twc linearly independent

solutions belonging to Lz(o,m). The general solution is

>

Ky X KX
(3.10) w = Ee w1+ne wz i if ‘1"2

and

>

(2.11) W= (31+gx¢1)e+wx if k)=«
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where § is defined by (3.6).
With the assumption that U and V are specified, we get

immediately the condition for a nontrivial solution
(3.12) (um2+ax2}(u+x2u) = 0 if Kl#xz

Since by assumption u+x2u#0, we obtain the equivalent con-
dicion u=-uw2/r2. With this a-value inserted into (3.3), we
obtain an equation for xzxzfiw:

(3.13) (x%+1) (vk®-2Ruvk+u?) = 0 .

~

Since r=ti, a=tuw corresponds to K =Kor the critical k-values

are

(3.14) ; = u(th/szz-v)/v

The subsonic condition is e;utvalent to v < 0; therefore, both

k-values are real. The courresponding a-values

~

(3.15) a=aiw =

. iw
thJRivz-v

are purely imaginary. This means that the only nontrivial
solution corresponds to 5S¢ = (a-v)iw. With a=aiw+d, §>0, we
want to see if the corresponding x satisfies Rex<0. 1In that

case we have a generalized eigenvalue s=s and the problem is

ol
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not well posed in the s~onse of Kreiss (5]. In the Appendix

it is shown that Re k¥ < 0 if
(3.16) (1-R)(u2+v2) > R.

Unfortunately, this condition can be fulfilled even if the
subsonic condition (2.la) is satisfied, provided that 2R<l.
Therefore, we have proved that the problem is not well posed
for example with a transonic boundary, because there is
always some part near the transonic point where (3.16) is
fulfilled if v#0.

It remains to treat the case with double roots K1=Ky0
when the solution hus the torm (3.11). A straightforward
calc lation (see the Appendix) shows that the condition for
a nontrivial solution leads to the trivial case u=v=0.

Another natural choice of boundary conditions would be
the specificiation of G and ﬁ. Assuming x1¢z2, the condition

for a nontrivial solution is

(3.17)  c%a(w?-kd)-2riw(u?ivtva) (atuky) = 0 .

Solving this equation for mz-xg and inserting that into

(3.3) gives (since a+ux2f0)
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(3.18)  (1-2R)uax,=2Ru’w’-a’ .
With the expression for Ky defined by this equation inserted
into (3.17), we obtain

2 2 2 2 2

(3.19) (a?-uu?) [c?a?-4R%u?viw (1-2R) a-4R%u

a=tuw corresponds to K =K,¢ SO the critical a-values are

given by the zeros of the second factor:

(3.20) a=2Rum(;uv(l-2R)it /-véﬁi(l-ZR)szuzvz)/cz

From (3.18) it is easily seen that ReK2 > 0 if Rea>o

and |a|2<2Ru wz. But tais inequality follows immediately
from (3.19), where the magnitu’e of the constant term in the
second factor equals czlaiz. Hexce, the critical a-values

(giving Rex2<0) must be imaginary, and this is the case when

2 2
l;R u2+(1+ u (l;ZR) R)V2 > 1.
C

A perturbation calculation shows that there is a generalized
eigenvalue in a neighborhood of the transonic point. The

above analysis show:s that wco must resort to the specification

(1) (2)

of the characteristic variables ¢ and ¢ (see the

definition (3.1).) Following the same lines as above, we

w® (c®- (1-2R)u?) ] =0.
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arrive for Klﬂxz at the final equation (stated in terms of
a this time) for a nontrivial solution:

2

(3.21) (a2-u?) (2Rviw (u-a.)a. a-valw?) = 0
+1 8, +

az=tuw is ruled out by the assumption xlfx and the remaining

2!
critical a-value is, therefore,

va -~

+ i
iw = aiw .

(3.22) a = - EEVTG:EIT

A perturbation celculation shows that the condition Re k<0 for
a=aiw+d,6>0, is equivalent to the supersonic condition.
The multiple root case leads to no new restriction on

u, v, and, therefore, we have a well posed problem.

Subsonic Outflow

For this case only one variable should be specified and

A KX
the solution to (3.2) always has tle form w = fe 3 Vqe Since

a+x3uf0, the only possibility for a nontrivial solution with

U specified is Ky = 0. This corresponds to the a-value

as(th¢c2+R2v2)iw=uim. Substituting a=aiw+é into (3.3), we

obtain after dropping second order terms in § and «x



:/REVE+C:
1/R:v2+c2 - R(th/R'vzzzz)

Since sz is always less than (1-R)/h2v2+02 if 2R < 1, we

see that ¢>0 if 6>0, and wellposedness is proved.

For R specified, the condition for a nontrivial solution

is Ky=tw. It is enough to investigate the case v =-w,0w>0.

From (3.3) we obtain the corresponding a-values a,=uw,a

5=
((1-2R)u+2Rvi)w which both have negative real parts. This
proves the wellposedness.

Let us finally mention that for a subsonic outflow
boundary it is often difficult to specify accurate values for
the variable u or p. In that case one could think of using
numerical boundary conditions that approximate the condition
aw’/ax’=o, r>0, i.e., vanishing derivatives of some order is
assumed for all the variables. However, it is easily proved
that this leads to a non weylposed problem for all r > 0.

Since the derivative boundary condition applies also to the in-
going characteristic variable, it is sufficient to study the
scalar equation ¢t+l¢x=0, A>0. After transformation the

general solution is ¢=exp(-s/A)Y, and the condition for a non-

trivial solution becomes
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(-s/A)F = o.

Therefore, s = 0 is a generalized eigenvalue.

4. THE HOPSCOTCH METHOD

Using the notation u? = uljAx,nAt), the Hopscotch method

(see [3), [(4)) is defined by

(4.1) u;+1 = u? + Lug , j+n even
(4.2) u?+1 = u? + Lu2+1, j+n odd

where L 1is a difference operator. Assuming j+n even and

combining equation (4.1) with

we obtain immediately the two equations

4.3 B+l | 2yl - o071
( ) uJ 2uJ uJ
j+n even
n+l n=1 n
. ‘ = u, 2L,
(4.4) uJ “3 + Lug

Similar.y for j+n odd, we combine equation (4.2) with
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to obtain
n+l n=1 n+l n=-1
= + + o
I T uy )
1 n = —-—--At n — n ¥ > -
If L is defined by Luj Asrx (ujrl uj-l)' the extra

pvlation formula (4.3) is valid with u? replaced by Lu?, and
we get
(4.5) uttl o gl 2Lu”, j+n odd.

] J J
Therefore, the Hopscot:h scheme for the model equation u =Au,
is equivalent to the Leap-frog scheme at every point, provided
that the first time level for the latter one is generated by

(4.1) and (4.2). The stability condition is the CFL-condition

where p(A) is the spectral radius of A. For the equation

= ; i n_ , At n _,n _n
uy Auxx and with L definea by I..uj = A(A477(Uj+1 2uj+uj_l).

then, as pointed out in [3], the scheme is equivalent to the

DuFort-Frankel scheme

4.7 n+l _ n-1 . 2At L0 _ ntl_n-1,.n
( ) uj uJ ?Z;;i (uj+1 uJ uJ “3—1)
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with u; defined by (4.1), (4.2). Accordingly it is uncon-

ditionally stable. In order to avoid the solving of a system
of eguations to obtain un+1 at each time step, Au? + can be
replaced by Aug. If only the steady state solution is wanted,
the inconsistency with the time dependent problem thereby
introduced if of no importance. However, we will show that a
stability limit is imposed on At by this modification.

For the scalar equation ut=ouxx, the modified method is

defined by
n+l_

(4.8) uj j+A(uj+1 2u +uJ l)' j+n even

(4.9) u?+1 u?+A(u?:i -2uj+ ?*i). j+n odd,

where ) = -9525 . Proceeding along the same lines as above,
(Ax)

we derive the extrapolation formula corresponding to (4.3):

(4.10) 2(1-k)u§ = u?+l + (1—2A)u?-1 , j+n even.

Using this we then obtain an equation containing function

n n*l
values uj:l' uj only:

(4.11) ug+1=2l(l M (], +u ._1)+(1-A)2u?-1 , j+n even.

A trivial calculation shows that the von Neumann condition for

(4.11) is
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(4.12) A <1,

and the unconditional stability is lost. With ug,l, ug‘l

given, the equation (4.10) defines u; assuming A < 1,

We also want to investigate the dissipative properties
for small A-values, which correspond to large Reynolds
numbers in (l1l.1). The eigenvalues of the amplification matrix
for the original Hopscotch method are denoted by 2z, and for

the modified version by z. They satisfy the equations
(1420) 2% - 4daz - 142X = 0
z2-4a (1-1)az-(1-22)2 = o,

where a= cos (wAx). The solutions to these equations are,

after expanding the square roots ana dropping 0(A3) terms,

z=2Aa (1-1) + (1-2A+222(1+a2))

2

z=2)a (1-20)+222a+ (1-2a+222 (14a2)-222)

It is clear that if a#l, a#-1, then |z| < |z], Accordingly,
the dissipation is larger for the modified scheme, except

for the lowest and the lighest frequency, where both schemes

have no damping at all.
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There is also another way to look at this difference,.

From (4.8) and (4.9) we can for even j+n derive an equation
on the form

n+l_ n-1 n _ n+l_n-1 n n+l_ n
uj uj +2A(uj+l uj uj +uj_l)+2)\(2uj uj)
The last term represents the deviation from the original
Hopscotch scheme, and it is an approximation to 2AAtut.
Accordingly, the equation

g
Up = 1% Yxx

is approximated by the modified scheme, and the dissipation

coefficient is obviously larger for ) < 1.

5. NUMERICAL EXPERIMENTS

The syster (1.1) has been solved by Rudy et al. [8])
using several numerical methods. For the high Reynolds
numbers used there, we consider the system as a singular
perturbation of the inviscid hyperbolic system. The choice
of boundary conditions should therefore be made based on
the analysis in section 3.

When the experiments in [8] were made, only the one-
dimensional analysis had been performed. Therefore, all the

experiments were made with u and v specified at subsonic
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inflow boundaries. As we have seen in Section 3, this  ives
rise to a non wellposed two-dimensional problem for tranzonic
speeds at the boundary. However, for the actual boundary data,
the condition (3.16) for a non wellposed problem was never
satisfied at any grid point. In this section we will present
results for another set of data, where condition (3.16) is ful-
filled for the whole subsonic boundary.

Figure 1 shows the computational domain and boundary data
initially. 1In the neighborhood of the transonic point B the
data were chosen in a way such that they were smooth on tne
whole line AC.

The boundary conditions on the line BC werc

n+1

5.1 v.. =§,
( ) 0j j

n n n+l n n _n+l 2,n _n+l_
(5.2) 8 03P03%3 ~ 2RV03P03V04 *(€T) o405 =94

)

The outgoing characteristic variable ¢(3 was defined at the
boundary by using linear extrapolation. At the upper
boundary the analogous formulas were used. On AB every
variable was specified, on EF linear extrapolation was used,
and on the symmetry line AF we used the conditions
uyﬂpyﬂo,v=0. This set of boundary conditions will be denoted
by B.C.l.

The scheme was also run with the subsonic inflow

n+1

boundary condition (£.2) replaced by the condition uoj = hj
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1

and where p:; was defined by extrapolation. This set will be

denoted by B.C.2. 1In both cases the conditions

|un+1—un| < 10”25t |u"|
(5.3) [vV*oyP| < 1072t "
'pn+1_pn| < 10-2At|pn|

were checked. For the Hopscotch scieme an artificial viscosity

term approximating 0.1At((Ax)2yxx+(Ay)2Y Y} was included in

Y
the equation for p. A 20x60 grid was used, and At=.019,
Re=80,625. Figure 2 shows the pressure p after 500 time
steps when conditions (5.3) were first fulfilled for B.C.1l.

It is seen that the pressure is far from being a constant in
both cuses; B.C.2 produces very Jarge and oscillating p-values.
There are no oscillations for B.C.l. Figure 3 shows the
pressure after 1300 steps. ch.l gives a smooth and almost
constant pressure profile. Figure 4 shows the results from
B.C.2 after 1700 steps when the conditions (5.3) were first

satisfied, and also after 2800 steps. Oscillations are still

present in the whole subsonic region.
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APPENDIX

Proof of (3.4)

The eigenvector wl is found directly by applying
a
C(- G)wl = 0.

However, since we don't have the explicit form of Ky and Kao

the derivation of wz and w3 will be more involved. Let

o
Wz = (61062163)
and substitute it into
C(K2)¢2 = 0

to get with K=K,
2

c
[a+(1-2R)xu161-2va62+ E—Kéa = 0

and
c2
-2Ruiw61+(u+xu—2Rviw)52 + Y iw 63 = 0

Eliminating 62 from the last two equations yields

{(a+(1—2R)+u}(a+xu—2Rvim)—4R2uvin}61

C Cz
+ {E—K(a+xu-2kviw) o E—Zvaiw}63 = 0,

We use now (3.3) to get the exgression

2
2.2 2 _ e
c (k" =w )61 s~ K(a+zu)63

and therefore,

= (a+ku), 6, = %ﬂ(xu+a) . 63 = - (k“=w).

o=

61 2
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Derivation of Equation (3.5)

We start with

det (V) ,¥,.¥,)

. i 3
iwu —5(u+n2u) —E(Q+K3u)
iw iw
a E—(G+K2u) —a(a+n3u)
22%(u21w+v0) mz-xg mz-K§
c

Expanding the determinant around the first column yields

det (Y ,0yib3) = (K2-K3){(K3+K2)[-202w2au+2Ruu(viaw-uzwz)l

4 2.2 2.3

(A1) + (K3-K2}[-C_w u“-a‘c +2Ru2(viaw-u2m2)]

- 02u2m4—a2c2w2+2Ru2(viuw-uzmz)}.
We use now the characteristic equation (3.3) in order to

get

(A2) K.+, = = 2u[(1-R)a=2Rviw]/v

and

2 2

(A3) KoKq = (a2+c w =2Rviwa) /v .
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After using (A2) and (A3) in (Al) we get

det(¢10¢2r¢3) - V(Gz-wzuz) Zcz(Kz-Ks)

Derivation of inequality (3.16)

With ¥ and a defined by (3.14) and (3.15) respectively,

™

we insert a = aiw + § and k = kiw + € into (3.3). Dropping

terms of order 62, e and cz, we obtain

)

€ = =3 .
-e+c2+R(u2+u2)

clo

where 0 = uz(l—R) + 02 - Rva. Since u > 0, ¢ is negative
for § > 0 if and only if one of the inequalities 1 < 0 or

(A4) 0 > c2+R(u+a?)

+a
hold. With z = - v/(Rv)2, the inequality 0 < 6 is equivalent
to

[t § b} 5 (1RO, § € 8 <,

(1-/1+22 1-V/1+z

v

But since v < 0 and z > /I+z - 1, this inequality can never
be fulfilled.

The inequality (A4) is equivalent to

~

(l-R)a2 - Rva + v > 0 ,
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which by the definition of a« and 2z and after division by

-V (>0) can be written in the form

z(1-R) + 1 -150.

(1:/I+z52 1+/1+z

After multiplying by (lt-’l+z)2 we obtain Rz + 1 < Vl+z ,

which gives the inequality

1-2R
2<—R'i-—-.

Using the definition of 2z, v and c2 we get the inequality (3.16).

The case K1=¥Ko for subsonic inflow, U, V specified.

Denoting the elemen<. of wl by ayray,aq, the last two

equations of (3.6) are

2

: c” , - 2
(AS) -2Ruia1 2Rv1a2+-3— iag = + ug
- 2Ru2 :
(A6) +a,+ia.= - (uizv) g
1 2 c2

For a1=a2=0, (A6) implies £=0 for u#0, and from (A5) we then

get a3=0, and there is no nontrivial solution.
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The case with V and R specified

With a=aiw+é and k=xiw+e, we get from (3.3) dropping 62,

2

6§ €6 and ¢ order terms

AOA

(A7) & - u(l=R)k+a-Rv

-

8
u

-v% - (1-R)a+Rv

From (3.20) we have

a = 2Ru(Ruv(1—2R)t/il-ZR)2R2u2v2+vc2)/c2

-~

and the corresponding « from (3.18)

(1-2R)uka = = 2Ru2 - uz.

Since |a| < Rv and sign ¥ = - sign a, the numerator in (A7)

~

is negative if v > 0 and a > 0. Therefore ¢ < 0 at the
transonic point v = 0, and by continuity also in a neighbor-
hood.

The case with Characteristic Variables Specified

With a defined by (3.22), the corresponding ¥ is given

by

~ va

2
(A8B) K=x2/im = = 2Ruv

2 * v
2Rv(u—a+)
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With a=8+aiw and k=c+riw we have (A7). Since sign k sign

-~

a = - gign v. it is sufficient to investigate the case v < 0.

For wellposedness we want to prove e¢>0 which is equivalent to
-vk/u - (1-R)a + Rv > 0,

Using the a - and ¢ - values defined by (3.22) and (A7) we get

2

2R uvz(u-a+)2

a, vl

(A9) (1-R)ulu-a | < [v]| + ;
But it is easily seen that the subsonic condition is equivalent
to the condition (1-R)ulu-a | < |v|, and therefore (A9) is al-
ways satisfied.

For Ky=Ko and with the notation w-(al,az,a3)T, we get

i 1)

from the condition V=¢ =0 on the boundary, that a2=0 and

3 .
cza = % (uzpi + igg—ﬂ(uitv))ﬁ i

3 c
The condition for a nontrivial solution satisfying ¢(2)=0
on the boundary, becomes
2Ra u 2.2
2RV (.a +2Ru) ¢ (1- — +3Ru, Lo
2 - 2 2 '

c c c

and this cannot be satisfied since all terms of the imaginary

part have the same sign.
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