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The present report contains the results of an investigation of ESSA

VII Satellite radiation data for use in long--term earth energy experiments,

performed under Langley Research Contract No. NAS1-11871 for the National

Aeronautics and Space Administration.

This research study, performed by Drexel University, is one part of

a much larger effort by several institutions, including Colorado State

University, Virginia Polytechnic Institute and State University, Link

Temco Vought as well as cognizant personnel at NASA Langley Research Center.

This team is studying satellite systems for performing long-term earth radi-

ation balance measurements over geographical areas, hemispheres" and the

entire earth for periods of 10 to 30 years. A major portion of the total

effort is responsive to the AAFE proposal, and the proposed LZEEBE system

(house and Sweet, 1973).

This investigation was conducted to provide necessary design, data

for use in developing the LZEEBE system. ESSA VII satellite employed

plate and cone radiometers to measure earth albedo and emitted radiation.

Each instrument had a black and white radiometer which discriminated the

components of albedo and emitted radiation, and is identical in most

respects to the proposed black and white balloons of the LZEEBE system.

Earth measurements were made continuously from ESSA VII for ten, months.

The express purpose of this investigation is to obtain the ESSA VII

raw data and process it to a point where it can be further analyzed for:

. development of long-term earth energy experiments

* document climate trends

It addition to satisfying the immediate requirements of the contrac-

tual statement of work, the research effort has included other areas of
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FOREWORD (Continued)

investigation. This report is one of three companion reports which together

constitute the final report of phases I and II of subject contract. The two

other reports are entitled; "Steady-State Solution to the Conduction Problem

of a Spherical Balloon Radiameter," published as NASA CR 132624, and "Our

Contaminated Atmosphere - The Danger of Climate Change," published as NASA

CR-132625.

Gratitude is extended to several NASA/LaRC personnel for their en-

couragement, interest, stimulating discussins and suggestions provided

during the present investigation. Among these scientific personnel are

included: Messrs. Georg, Sweet (technical. monitor), Charles Woerner

and Jack Cooper.
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_i INTRODUCTION

Radiation balance measurements from satellites are worthwhile scien-

tific experiments to perform. The radiation balance, defined,as the dif-

ference betweeu absorbed solar radiation and emitted thermal radiation at

the outer boundary of the earth-atmosphere system, is the source of power

that drives the atmospheric heat engine. Temporal and geographical dis-

tributions of this net heating and cooling produce a inroad spectrum

of weather events. For example, long-term changes in the global radia-

tion balance result in climatic variations. Heating in equatorial re-

gions and cooling in polar regions cause thermal contrasts at the surface

and in the atmosphere which produce seasonal changes. The radiation

baiagce is one diabatic component of atmospheric motion which influences

general circulation patterns over time scales of several weeks. Geogra-

phical distributions of the radiation balance may affect the development

of smaller scale features such as synoptic and mesoscale weather events.

Observations of the global distribution of this differential heating and

cooling at tht outer boundary of the atmosphere represent valuable scien-

tific information.

The net rate of radiant power gain for an area element of the earth

on a specified time scale is determined by the relation:

Qn == Hs - (Wr + We) = (1-A) Hs - We	 (1)

where the parameters.are shown schematically in Figure 1. All symbols

in equation (l) and others to follow are defined in the List of Symbols

in the front matter of this report.

When integrated over the earth, Q. describes the radiant energy ex-

change between the planet earth and space. This quantity is determined
-.E
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I
!	 by the fluxes of incoming solar electromagnetic radiation, H s , reflected

solar radiation r , and emitted Long'-wave radiation, We , crossing a

horizontal element of area just outside the earth's atmosphere (P = 0).

f	 Representative values of these fluxes are% 1353 w/m 2 for H0 , 240w/m2

for We, and about 400w/m2 for W  at a location where cp = 0. Other
f
f	 possible radiant power sources such as the fluxes of particle radiation

and of electromagnetic radiation from the moon and all other stars, and

the heat flux from the earth's interior are comparatively small.

Satellite experiments are designed to measure the following:

The infrared radiant exitance, We , and

a The planetary albedo, A; where A Wr/Hs.

Satellites offer an ideal platform from which to perform radiation

balance measurements owing to their locations outside the outer boundary

of the atmosphere. In addition, polar orbiting satellites provide mea-

surement coverage of the entire earth, but at nearly the same local time

during the day or night.

Notwithstanding the above attractive possibilities of performing

radiation balance measurements from satellites, certain desirable appli-

cations of the data are somewhat elusive. Problems such as the frequency

and geographical distribution of sampling, spatial resolution of the mea-

surements, and experimental accuracy pertain to both the design of experi-

ments and the scientific applications of the data. As Moller and Raschke

(1969) have pointed out, high accuracies of the components in equation (l)

may be required. For example, if the global mean net radiation is 0.7

watt/m2 and an accuracy of 20 percent is desired, the global means of tie

and (Hs - r) are required to within an accuracy of 0.3 percent.

3



Obtaining these accuracies and properly sampling the earth both tem-

porally and with sufficient spatial resolution are exceedingly diffi-

cult, even with highly sophisticated instrumentation and a multiple

satellite system.

The foregoing discussions involving the applicability and associ-

ated problems of observations from satellites has been presented so that

the radiation balance measurements from ESSA weather satellites can be

viewed in proper perspective. Instrumentation on these satellites pro-

_

	

	 vide observations of Wr , We and an estimate of the difference (H s - Wr).

The radiometers have broad-band spectral and low-resolution spatial
F	 i

characteristics. The parametric measurements of radiant power density

i=
at satellite altitude involve an integrated average of irradiances from

the earth viewed area, as influenced by the optical characteristics of
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	 the radiometers and the rotation of the satellite. These measurements

can be scaled to any arbitrary reference spheroid to account for varia-

tions in satellite altitude. They are useful in the study of the global

radiation balance and can probably be employed effectively in studies

related to general circulation patterns.

The major objective of the current research effort is to obtain

ESSA VII raw data and process it to a point where it can be further

analyzed for the development of long-term earth energy experiments and

documentation of climate trends. Specific tasks in this regard are out-

lined in the following statement-of--work:

1. Obtain ESSA VII tapes from NESS/NOAA.

2. Develop computer software to preprocess the data tapes.



preflight calibrations and apply the results to the raw data.

4. Perform color corrections to the white detectors.

5. Correlate plate and cone measurements.

6. Perform an error analysis.

7. Develop a statistical technique for performing co-spectrum and
cross-spectrum analyses.

S. Insure that magnetic tapes can be processed with ZRC computers.

9. Evaluate the accuracy of inflight methods for calibrating
radiometers and color constants.

10. Provide guidelines for system design and flight operations of a
proposed satellite system for measuring the long-term earth energy
budget.

It should be emphasized that the procedures discussed in the follow-

ing sections of the report find direct application to the balloon radio-

meters of the LZEEBE system. In fact, the geometrical viewing considera-

tions of a spinning flat plate on ESSA VII are more complicated than the

omai-directional spherical geometry of LZEEBE.

A description of ESSA VII radiometers is presented first before

discussing processing aspects of ESSA VII data. This is followed by a

description of preflight instrument calibration and then a new method

for inflight calibration of shortwave color constants, developed ex-

pressly with the LZEEBE system in min4 using ESSA VII data. Comments

concerning the correlation of cone and'plate measurements follow the

above sections. Preliminary conclusions concerning system design and

flight, operations of measurement systems conclude the main text of the

report.

5



i

i

ESSA VII INSTRT3MMATION

Historically, the measurement concept employed on LZEEBE and ESSA

VII satellites issimilar to earlier instrument packages flown. on Explorer

VII satellite and TIROS III, IV and VII satellites (Suomi, 1958; Suomi,

1961). Two radiometers having different optical surface properties are

used to discriminate the upwelling earth flew into its shortwave, W  and

longwave, We components. Exposure of both radiometers to direct solar

irradiance provides additional information concerning the magnitude of

(Hs - W r ) in equation (1). Employing various combinations of these mea-

surements, it is also possible to determine the earth's albedo and the

radiation balance parameter, providing assumptions concerning the angular

variation of earth radiant exitance are made.

Measurement theory for calculating the above parameters from tele-

metry data has been discussed by several authors (Suomi, 1961; Weinstein

and Suomi, 1961; Bignel.l, 1962; House, '1965; MacDonald, 1966; Suomi, et.

al., 1967; Vouder Haar, 1968; House, 1968; House, 1970). These mathema-

tical techniques apply to either mirror-backed hemispherical radiometers,

flux plate radiometers (both mounted on a rotating satellite frame of

reference) and isolated, omni-directional spheres of the LZEIESE system.

The following discL.661on of this section ipcludes the radiometer

construction and viewing characteristics of ESSA VII instrumentation,

and the general equation of absorbed irradiance on a unit detector area.

i
^.J
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RADIOMETER CONSTRUCTION ANDS VIEWING CHARACTERISTICS

A detailed description of the instrument package on ESSA weather

satellites has been presented in detail by Nelson and Parent (1967).

Briefly, the experimental configuration involves a set of four radio-

meters on each of two opposite sides of the satellite where each de-

tector is connected electrically in series with its mate on the other

side. The detector arrays are mounted on the circumference of the

cartwheel satellite, perpendicular to the spin axis which is normal to

the orbital plane (see Figure 2). The temperatures of the detectors

and housings supporting the detectors are the measured signals at the

spacecraft.

Each detector alternately views the earth and space during a rota-

tion. Since the rotational period is relatively slow, about once every

6.5 seconds, a single detector would have a modulating signal of about

1°C  to 30C  in phase with the rotational period. Since the integrating

time of a temperature observation is relatively short compared to the

rotational period, the thermal variation magnitude is significant in

terms of earth flux calculations. However, the design of the experi-

ment is such that the matched detector on the opposite side compensates

for the modulating signal. As a result, the measured signal (temperature)

is treated as being independent of the-spacecraft's rotation and is

interpreted as an average temperature over the time span of the rota-

tional period.'

Each of the two opposing arrays contain four flux plate detectors

which are thermally isolated from the spacecraft as effectively ag possi-

ble. Two of the four detectors in an array are exposed to a hemisphere

7
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field-of-view (Figure 3a) whereas the other two detectors are located

at the apex of highly reflecting cones (Figure 3b). For convenience,

i
	 these radiometers are referred to as "plate" and "cone" radiometers,

respectively.

Each detector pair has different optical surface properties in order

` to discriminate the radiation balance components. One surface is painted

black which has the property of being equally sensitive to both shortwave

and longwave radiation. The other detector of the pair is an anodized
-4

aluminum or "white" surface which has the property of reflecting short-

wave radiation and absorbing longwave radiation. Both of the cone and

plate radiometers have black and white optical surfaces.

ABSORBED IRRADIANCE ON A UNIT DETECTOR AREA

During the course of a satellite orbit, between one and three sources

of irradiance may be absorbed by the radiometers. If the satellite is iri the

earth's shadow(nighttime mode} only one source is present, We . Just before

ingression into,and egression from,, the earth's umbra (calibration mode) two

sources are present, W e and Hs . During the remainder of the orbit (day-

{	 time mode) all sources are present, We , Hs and Wr.

Since the instrumentation employed on ESSA VII comprise radiative

i	 equilibrium bolometers, all absorbed irradiances during the satellite or-

bit are balanced by an equal radiant power loss per unit detector area Wd.

The general mathematical expression for this balance is

a  Fe We + as Fs Hs + a  Fr 
W 
	 W  _	 (2}

i	 The three terms to the left of equation (2) comprise longwave emitted,

direct solar and reflected shortwave irr.adiances, respectively.

€11
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Figure 3. Expanded view of ESSA VII plate radiometer components (a) and
the radiometer with cone optics (b) . . Taken from Nelson and .
Parent (1967).
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For the plate radiometers on ESSA VII, the first terns applies during

nighttime mode, the first two terms apply during calibration mode near

satellite ingression and egression, and all three terms apply during

daytime mode observations. On the other hand, the optics of the cone

radiometers shield the detectors from direct solar irradiance. Thus,

only the first and third terms of equation (2) apply during the day-

time mode.

It should be clearly emphasized that some rather drastic assump-

tions are being made when equation (2) is applied to real radiation ba-

lance measurements. It is assumed that the optical properties of the

detector over both the broad shortwave and longwave regions of the

spectrum can be approximated by average absorptivities a  or a  and cue,

respectively. For this to hold, the o tical surfaces must have uniform

s ectral response over both broad-band re ions since spectral irradiances

in both regions vary as a function of wavelength. If this is not the

case, some error will be introduced into the calculated radiant power

densities We and Wr.

A second major assumption is incorporated in the use of the shape

factor F. The shape factor is a geometric term coupling all the angular

absorbing properties of the detector configuration as well as assuming

knowledge of any angular characteristics of the earth radiation field

impinging on the detector. Certainly, the shape factor will vary both

in time and geographical location, especially F r which incorporates the

anisotropic reflecting properties of the earth and atmosphere. The

validity of both assumptions concerning constant absorptivifies and

shape factors should be investigated in depth in future research efforts

11
1
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Returning again to equation (2), the radiant power loss by a unit

detector area Wd is expressed as

"d = oT4 + M(T)T + R(aT4 _ QT c4)
	

(3)

T is the measured temperature of the radiometer and T  is the case tem-

perature supporting the radiometer. These two temperatures are tele-

metered to earth. The mass constant M(T) and the case radiation con-

stant R are subjects of infli.ght and Preflight calibration procedures,

respectively, to be discussed in sections to follow.

PROCESSING ESSA VTI RAVY DATA

One of the major accomplishments during this investigation was the

successful processing of 20 reels of ESSA VII raw data. It required

about nine months of effort to overcome many unexpected pecularities in

the data format. Certainly the documented format was far different than

that which was really on the reels of tape, especially the positioning

of end-of--file indicators. Many times these would occur in the middle of

a satellite readout or there would be two or three end-of-file indicators

at the end of each readout. One cannot appreciate the exasperation of

processing data until he has attempted it himself.

Part of the data processing effort included the development of tables

which convert raw counts from the satellite to appropriate calibrated

temperatures. In order to accomplish this task,hundreds of calibration

points were plotted for each radiometer and case. Smooth curves were

drawn through the average trend of these points. In soma cases, there

were obvious errors in the calibration data. All such points which were

12
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completely inconsistent with the other data were discarded.

Details of the software used in processing the ESSA VII data are

presented in Appendix A. The processed data are stored on 20 computer

tapes in FORTRAN readable format which can be utilized on any computing

system. Copies of these data are available from Drexel University upon

request.

During the data processing, each satellite readout is analyzed for

bad data and consistency with orbit ephemeris. The status of each read-

out was listed, independent of writing information on the new tapes, so

that a formal documentation of data quality is available for future pro-

cessing. For example, if a readout was found to be inconsistent with the

ephemeris, the processing of that readout was terminated and an appropi-;

-ate note of termination was printed on the data quality documentation

listing. Then processing of the next readout was started.

A tabulation of ESSA VII data available for future processing is pre-

sensed in Table 1. Useful data are available during the period 3 Sept.

1968 22 June 1969. Evidently there was a problem with the tape recorder

during the latter stages of data acquisition. There were several mis-

matches of observations and ephemeris information, starting on tape #1018.

Tape 41019 has only 4 days of data. There is an eleven day gap in data

between the end of 411019 and the start of tape 41020 which contains the

past eight days of data.

The detailed information presented in Table II tabulates specific

readouts that were judged not suitable for future processing and also

accounts for gaps in the data. Each tape covers about a period of one

half month. There were several bad readouts on the first tape #1001 and

on tapes 41015 - 41020. The record shows that data recovery d iminished

13





Jul

18

32

45

60

76

91

106

121

137

152

168

183

197

211

227

242

257

272

28.8

303

LS
Numbers

'nd Began End

32 231 400

45 400 570

60 570 758

76 750 954

91 954 1146

106 1146 133+.

121 1334 1521

137 1521 1722

152 1722 1910

168 1910 2110

183 2110 2298

196 2298 2458

211 2462 2645

227 2645 2843

241 2849 3029

257 3035 3222

272 3222 3409

288 3409 3611

292 3611 3655

310 3797 3888

15

TABLE 1

Available ESSA VII Satellite Data

E	 _^

Tape ID Calendar Dates

1001 3 Sept. - 17 Sept. 168

1002 17 Sept. - 30 Sept. '68

kj 1003 30 Sept. - 15 Oct. 168

1004 15 Oct.	 -- 31 Oct. '68

j 1005 31 Oct. - 15 Nov. '68

1006 15 Nov. - 30 Nov. '68

f 1007 30 Nov. - 15 Dec. 168

1008 15 Dec. - 31 Dec. '68
i 1009 31 Dec. - 15 Jan. '69

1010 15 .Ian. - 31 Jan. 169

-	 € 1011 31 ,Tan. - 15 Feb. '69

1012 15 Feb. -- 2$ Feb . 169

1013 1 Mar. - 15 Mar. 169

1014 15 Mar. - 31 Mar. '69

j 1015 31 Mar. - 14 Apr. 169

} 1016 15 Apr. - 30 Apr. '69

1017 30 Apr. -- 15 May 169

1018 15 May - 31 May 169

1019 31 May -	 4 June 169

1020 15 ,Tune - 22 June '69

E	 i

i
E



I	 Tape TD	 Julian Day Orbits Status of Data
Inconsistent	 Missing

Number of
Lost Orbits

1001	 20
e

254-258 x 2

_	 22 270-274 x 4

22 278-282 x 4

22 282-287 x 5

26 328-332 x 4

28 353-357 x 5

29 366-370 x 4

30 370-374 x 4

31 384--388	 x 1

j 31 388-391 x 3

1002 37 462-466	 x 4

43 537-541 x
I

4

a	 1003 53 668-674 x 6

54 684-689 x 5

1004 62 779-783 x 4

64 804-813 x 9

65 817-821 x 4
I

75 946-950 x 4

1005 79 988-991 x 3

87 1096--1102 x 6

1006 100 1255-1259 x 4

104 1304-1309 x 5

1007 106 1334-1338 x 4

110 1376-1380—
120 1509-1513

1008 125 1571-1576 x . .5

126 1580-1582 x 2

136 1705-1709 x 4

1009 143 1798-1801 x 3

I	 ;, 145 1826-1830 x 4

f .t
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j TABLE 2 - continued

1.
Tape ID Julian Day

- --
Orbits Status of Data Number of

Inconsistent Missing Lost Orbits

1010 157 1973-1977 x 4

a 168 2102--2105 x 3

1011 173 2173-2175 x 2

182 2285-2289 x 4
3

!. 1012 1.89 2371-2374 x 3

' 192 2410-2415 x 5

1013 199 2503-2507 x 4

1014 218 2731--2737 x 6

223 2798-2801 x 3

` 1035 230 2879-2884 x 5

231 2891-2897 x 6

234 2941-2947 x 6

' 236 2960-2962 x 2

-" 238 2979-2991 x 12

239 3004--3006 x 2

241 3029-3035 x 6

1016 242 3041-3046 x 5

244 3061-3063 x 2

246 3080-3085 x 5

248 3104-3110 x 6

249 3117--3122 x 5

249 3126-3129 x 3

253= 3167--3172 x 5

253 3176-3179 x 3

254 3188-3197 x 9

ii	E 1017 257 3225-3228 x 3

258 3238-3242 x 4

4 261 3267=3272 x 5

266 3335--3338 x 3
ti	 E 268 3367-3373 x 6

1018 274 3439--3443 x 4
279 3489.3492 x 3

^..	 a: 17



l .' TaR a ID	 Julian Da	 Orbits Status of Data Number of	 1
Inconsistent Missing Lost Orbits

279	 3498-3504 x 6

€ 280	 3504-3505 x 1

i 283	 3542--3548 x 6	 !

'-} 285	 3573-3576 x 3
1

287	 3598-3601 x
I

3	 I

288	 3605-3611 x 6

1019	 292	 3655-3797 x 142

1020	 304	 3806-3810 x 4

307	 3849--3851 x 2
i

---`

i
i

309	 3880--3882 x 2	 s

Summary of Data Recovery

s

e'	
-; First Orbit - 9231

I,
Last Orbit	 - #3388

i
- Total Possible Number - 3657 Orbits

'^	 I
61 Inconsistent Orbits

l...J

376 Missing Orbits

3

i
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PREFLIGHT INSTRUMENT CALIBRATION

Several constants must be known in equations (2) and (3) before

calculations of earth radiation parameters can be accomplished. These

include the average broad-band absorptivities in equation (2),and long-

wave emissivity, mass and case radiation constants in equation (3). All

of these terms in the equations should be determined prior to launch and

then checked thru inflight calibration procedures. However, in the case

of the ESSA VII radiometers, the only preflight laboratory calibration

which took place was enough data to determine the case radiation constants

for the cone and plate radiometers. In addition to this information, data

concerning the longwave optical properties of the black and white radio-

meters can be used to establish a  and s.

Results of the investigation concerning the absorbing and emitting

properties of the ESSA radiometers as well as the computation of the case

radiation constants are presented in this section of the report.

LONGWAVE COLOR CONSTANTS

As a first approximation, the longwave absorptivities and emissivities

are computed from theoretical models using available spectral absorptance

measurements of the sensors' surfaces. It should be emphasized that these

measurements may be somewhat different in absolute magnitude than the ab-

sorptance properties of the flight models. However, it is reasonable to

^,.	 assume that the gross variation. of the absorptances with wavelength is

x

^similar; it is thi3 variation that is being evaluated here.

Equations for computing absorptivities and emissivities are as

follows:

fl

19^S ! I
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a(J1} N(l) dA

ae	 =	
50p

(4)

N(A) dh

and

504

f

e(X) B(T, X) dX

{ ills	 ^ (5);..'
5ap

^ B (T, X) dA

where from Kirchoff's Law, e(a)	 a(X).	 It is implicitly assumed here in

f
the calculations that the observed spectral ab.sorptances of each surface

t .f
are valid for all temperatures of the detectors. 	 This, in fact, may not

be a valid assumption and should be investigated further.

t
When computing absorptances using equation (4), it is necessary to

-^ specify the variation of the earth flux with wavelength.	 A simple model

is assumed which states that the variation. in N occurs only in the atmos-

pheric window region, between 8 and 13 microns.	 All other wavelengths

.	 ^
emit at a constant temperature of 216.6°K which is the tropopause tempera-

,....}

ture of the Standard Atmosphere. 	 This model grossly simulates the spectral

emitting properties of the earth-atmosphere system. 	 However, the results

here agree with the correlation.of nighttime plate observations presented
t

later.	 In mathematical terms, this model. states:

NM
	 B(216.60K,a) for X < 8p and X > 1311.

(6)
. B(T,A) for 8p ` A 5 13p

3i

i^
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Calculations of the absorptivities and emissivities were performed

for a variety of temperatures and simulated earth fluxes using equations

(4) thru (6), and using the spectral absorptance data in Figure 4. The

results of these calculations are presented in Figures 5 and 6 for the

black and white radiometers, respectively. These results are plotted in

terms of equivalent black body temperature which would correspond to the

detector temperature in the case of emissivity, and the equivalent black

body temperature for the longwave radiant exitance for the absorptivities.

It is evident from these results that broad-band optical properties

may vary significantly with temperature, even for the black paint. The

uncertainties in this conclusion are the unknown variation of the spec-

tral absorptances with detector temperature and the true character of the

spectral absorptance curve beyond a wavelength of 25 microns. One cer-

tainty here is that proper calibration of the spectral 2r02erties of opti-

cal  surfaces are im ortant to the success of an future instrumentation

such as the LZEEBE satellite system.

in order to process ESSA VII radiation data, some selection of long-

wave optical properties must be made from the information contained in

Figures 5 and 6. In this regard, it is reasonable to select color con-

stants for the nighttime and daytime mode of calculations. These selected

values are presented in Table 3. It will be shown later that the selection

of longwave color constant is consistent with nighttime observations (see

section concerning correlation of plate and cone measurements).

POWER EXCHANGE BETWREN RADIOMETER AND CASE

Preflight laboratory calibration data were available which provide

information for determining case radiation constants for all radiometers

21
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TABLE 3

Langwave Color Constants for ESSA VII Radiometers

Mode-
Radiometer ae Nighttime en	Daytime 

e sd

;4hite Plate .80 .74 .76 0.97

Black Plate .94 .92 .94 0.98

L White Cone .80 .75 .75 1.00

l Black. Cnne .94 .93 .93 1.00

sf

F

LI

L»--- ..

LI

f
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UT  - oT4 + R(aT4 -

n

Solving for the case radiation constant yields

N_

_e 4

R - 
(aT4	 oT- 

en 
s )

(aT4 o-T4)
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on ESSA VII. The calibration procedure consists of placing the flight

version of the sensors in an enclosed vacuum chamber whose walls are main-

taiued at a constant temperature. For all practical purposes, the chamber's

surface is assumed to emit as a blackbody since its surface is painted

black, and its area is large compared to the area of the sensor's surface.

The chamber is maintained at a cold temperature (around --65 00) and its

heat capacity is quite large compared to that of the sensor. Thus, the

chamber maintains a known radiation field within the confines of the en-

closure.

The sensor's case is heated electrically, and both the sensor and

LA	
mount temperatures are monitored. These temperature data and the chamber

LJ

	
temperature provide the available information for calibrating the sensor

system.

The case radiation constant can be computed from an expression de-

veloped from equations (2) and (3) . Since the radiant field within the

enclosure is assumed to be black body, radiation, the irradiance on the

radiometers is aT4 where Ts is the temperature of the source (i.e., the

chamber). In radiative equilibrium, power lost by the radiometer back to

the chamber is Wd . Equating these two components gives the expression
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	 Incorporating longwave color constants listed in Table 3, calculations

of case constants were performed using equation (8). The results of

1L these calculations are presented in Table 4.

i	 1	 4

f^.

1

TABLE 4
i

Case Radiation Constants for ESSA VII Radiometersz

L{
. Radiometer Case Constant R (no units)

White Plate 0.075

Black Plate 0.054

.^
I

White Cone 0.36

Black Cone 0.33

1

1	 -3	 -
L
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!	 INFLIGHT CALIBRATION PROCEDURESVii. t^s#

The previous section of the repor' _ discussed the determination of

the longwave absor tivities and emissivitLes, and the case radiation

constants for ESSA VII radiometers. Two parameters remain to be deter-

{	 rained - the mass constants and the shortwave color constants. These
i

parameters are best determined in the space laboratory where there is a

t
hard vacuum and the best possible source of shortwave irradiance, the sun.

•1

f_	 The observational data themselves are used to determine the magnitudes of

a.	
these parameters, utilizing the sun as a calibrating source of shortwave

radiation.

The accurate determination of the shortwave color constants and the

accurate monitorin g: of anv chaaRes in their values are of utmost impor-

tance to the confidence in ESSA VII data as well as the observational

integrity of the LZEEBE system. This statement cannot be emphasized too

many times. Therefore, every effort should be exerted to perfect the

inflight calibration procedures.

Data utilized for these purposes are acquired during thermal tran-

sitions at ingression cool -down and egression warm-up of the radiometers

exposed to direct solar radiation. At these particular locations of the

satellite orbit, reflected earth radiation W  can be neglected. Thus,

the only sources of irradiation are ii
s	 e
and W	 If accurate calculations

of We can be determined at times ,just before ingression and/or just after

egression, it is possible to determine the radiometers' response to short-

wave irradiance by subtracting the W e magnitude from the observations.

Thus, the radiometers can be calibrated, using the sun as the source, if

the longwave earth term can be determined.



}	 I

In order.to perform the above shortwave calibration procedure, it

is essential that the mass constants of the radiometers must be accurately

known so that magnitudes of We can be calculated during thermal transi-

tions. The goals then of inflight calibration procedures are to accom-

plish three things:

r accurate measurement of We during thermal transitions.

t frequent calibration of shortwave color constants.

• periodic calibration of mass constants.

A considerable amount of effort was directed to this end, using ESSA

VIZ data. Needless to say, several rather sophisticated approaches were

tried but did not return good results. In.the end, a simple approach

turned out to be the best procedure. This approach is presented below.

CALIBRATION OF MASS CONSTANTS

Consider first the radiative balance equation just before ingression

or after egression, i.e., calibration mode,

Ec Fe We + es 
Fs Hs = aT

4
 + M(T)T + ROTS -- aTC )	 (9)

When the spacecraft passes into the earth's umbra, Hs is zero, and the

equation takes on the form typical of nighttime calculations.

se Fe We = 
OT  + M(T)T + R(oT4 - aT4)	 (l0)

If the terms in equation (10) are arranged in the following manner where

aT4 = aT4 + R(aT4 - aT4 )

Clz)

aTi = M(T)(- + 
e 

F W
^,	 t	 e e

This equation has the form of a straight line, y = Clx + CO.

29



In this regard, the slope of the straight line C 1 is the mass constant

and the intercept C C is the longwave earth term. This suggests that

thermal transition data should be plotted on linear graph paper as CTi4

vs. (-^). By analyzing the characteristics of this plotted function it

is possible to establish the magnitude of the mass constant for the ra-

diameter. Furthermore, changes in the slope of the function would sug-

gest a variable mass constant.

Unfortunately life is not this easy. Implicit in the above discus--
a

sion is the assumption that the longwave tars se Fe W did not change

during the thermal cool-down. This would be true if the satellite were

stationary for about 6 minutes during cool -down. In real operation, low

altitude spacecraft move about 1300 km ground track during this transi-

tion. As a general rule the earth term will not be constant during the ac-

quisition of cool-down data. As a result, this will lead to distortions

of the straight lane equation discussed in equation (11). If a straight

line were fit to the observed data through regression techniques, the

functional distortions would manifest themselves in terms of slope changes.

In order to obtain a better understanding of the problem Luther

(;)rivate communication) provided ingression cool-down data for a simu-

lated. LZFBBB balloon. The data are idealized in that the balloon has a

uniform temperature at any time during thermal transition; however, his

data are similar to measurements received from BSSA VII satellite. Three

cases were analyzed with different longwave gradients during cool-down.

In the control case, tae was constant, i.e., We = 0. In the other two

cases, We = + 0.2 (watts/m2)/sec.

30



The results of the analysis of simulated balloon data are presented

in Figure 7 where the normalized radiant power is plotted as a function of

(-T). It is evident from this plot that the data where the longwave earth

term was constant appears as a straight line. When there is a significant

gradient in the earth term the function is concave downward for W e <0, and

concave upward for We >0. In other words, longwave s a.dients during cool-

down distorted the linearity of the function. In addition, the average

slopes of the functions increased for W e <0, and decreased for We >0.

Analysis of simulated data such as this was a tremendous help in under-

standing observations from ESSA VII satellite.

Based upon these results, it was decided to filter the cool-down data

from ESSA VII and select only those cool--down functions which exhibit li-

nearity. In fact, such a linearity criterion could be i.ncorporatdd in the

electronics logic aboard the spacecraft in order to select useable cali-

bration data. These data selections were further verified by examining

the cone temperature data during the same temperature transitions.

A similar procedure as outlined above can be followed in analyzing

warm-up data during satellite egression. For these data, the variable

term affecting functional linearity is still associated with longwave

earth radiation. There is also a large constant associated with direct

solar irradiation (see equation 9), which results in a large value for the

intercept value C0 in.a curve--fit of the data. The slope of the line in

a linear curve-fit of the egression is still related to the mass constant.

A selection of data was taken from filtered ingression and egression

cases throughout the 10 month period of ESSA VII measurements.
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Each of these cases was fit with a straight line, and then the data

. I	 were plotted on one graph in a normalized fashion as shown in figure 7.

jj
	 Ingression and egression data were treated separately.

t A detailed. study of the data showed that a . smooth curve drawn

i through the mass of points stall exhibited a change in slope during

both the cool- -down and warm-up. transitions. This change in slope is

attributed to a variable mass constant. A cross plot of T vs. T was

generated from the data in order to relate the variable mass constant

G	 in terms of radiometer temperature. The results of all this effort are

presented in Figure 8 where the mass constants are plotted as functions
1	 ^;

t	 4	 ;

of plate temperatures. As can be seen from the graphs, the mass con-

stants are no longer constant, but linear variables increasing as a func-

tion of radiometer temperature. A more appropriate name for M(T) might

be the "mass term."

The uncertainties of each of the points are indicated in Figure 8.

The vertical uncertainty in mass term magnitude is based on the ability

to determine the slopes of the ingression - egression data discussed in

the previous paragraph. The horizontal uncertainty in temperature is

based on the scatter of points in the cross plot of T vs. T.

t	 It should be mentioned here in a historical sense that there were

L...!	 several fruitless attempts to determine any significant variations in the

mass constant as a function of temperature. The key to the solution of

the problem was data filtering, i. e., selecting only those cases that

exhibit linearity and thus some assurance that the longwave earth radia-

tion term was constant during thermal transitions.
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The problem of calibrating shortwave color constants rests primarilyf	
a

1...	 on the ability to calculate accurate longwave earth terms €e F e Lde

during the thermal transition. Since accurate values of the mass term

F	 were established in figure 8, it follows that accurate values of the

shortwave color constants can be calculated.

During the course of this portion of the investigation, numerous,

sophisticated approaches were attempted with littla results. After a

careful examination of the failures of other approaches, the simplest of

procedures seemed to work best.

The concept of the procedure is presented in Figure 9. The solid

points are the radiant power densities associated with an ingression

L_.'	 cool--down of the black plate on ESSA VII. The assumed time of ingres-

sion is indicated on the graph. There is a two minute time interval

following this time which is a period of solar contamination, i.e., the

sun's disc i g setting beneath the viewed horizon of the earth at satellite

altitude. This time period is associated with the penumbra of the earth's

shadow. Before this period daytime mode calculations are appropriate (see

equation 9) - after this period, nighttime mode calculations are used (see

equation 10). The middle time of this 2 minute period is defined as the

time of calibration (see teat the bottom of Figure 9).

The last four daytime mode calculations (first four solid points on

^- Y

q ^

graph) are used to extrapolate the trend of observations forward in time

over a one minute period to the time of calibration. In a similar manner,

the first four computed longwave earth terms (see first four open points

at bottom of graph) are used to extrapolate the trend line of the longwave

35



N1GN7^
MODE

400

MODE	

eWe

BLACK PLATE COOLDOWN

ORBIT 3.507 ESSA ^7I

3SO

N

I^-.300

wGREsstoNI
04

X250
z
W

0~

^z00.
0n-
I-z
0 1.5 0
Q
CL'

PERIOD OF SOLAR

CONTAMINAT ION

d 
Fs H

100

0

• a

5O
	 n	 C

SUCCESSIVE OBSERVATIONS EVERY 30 SEC
Figure 9. Concept of shortwave color constant calibration procedure.

(see text for description) }

36



term backwards in time to the time of calibration. The computed magni-

tudes of these two trend line extrapolations at the precise time of cali-

bration are subtracted from each other. The resulting magnitude of radi-

ant power density constitutes the response of the black plate solely to

direct solar irradiation. In the example shown in Figure 9, the follow-

ing magnitudes arise from this procedure:

as F H + ice F W = 402.5 watts/m2
c d s s	 e d e e

E	
2n } ee Fe We = 59.3 watts/m

d	 n
	

1
1

Thus, the solar term becomes

«$ Fs R
s = 343.2 watts/m2

d

The solar term is indicated on the graph in Figure 9 at the time of Cali-

I	 .
bration.

The above procedure works even better for egression warm-up data .

since the radiometer approaches an equilibrium temperature more rapidly

than in the case of cool-down.

Determinations of the solar term from consecutive cool-down, warm-up

thermal transitions indicates differences of magnitudes of less than one

j

	

	 watt/m2 on the average. Good agreement such as this leads one to have

confidence in the shortwave calibration procedure and in the determina-

tion of mass constants.

s.._.?	 ANALYSIS OF ERRORS

The question always arises as to the accuracy of the inflight calibra--

j	 Lion procedures. This pertains to both the absolute accuracy of the Cali-

. i
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brations as well as determining the change in the solar terms of each
t

radiometer. It should be pointed out that the absolute temperature ac-

curacies of the observations are not considered in the evaluation of

the calibration procedure since they are assumed to be correct.

Without question, the accuracy of the inflight calibration proce-

dure depends on the accurate determination of the mass term in figure 8.

Within the uncertainties of the points }dotted on the graph, one can de-

termine a radically different change in mass term with temperature sim-

ply by changing the slope of the line, and still remain within the un-

certainties indicated. However, such a change will produce inconsis-

tencies in the solar terms between ingression and egression thermal

transitions. Thus, it is possible to set the slope of the mass term

change with temperature with some certainty, based solely on inflight

data.

Another aspect of the evaluation of the curves in Figure 8 which

pertain to calibration accuracies is the translation of the curve up or

doim, a bias change, without affecting the slope of the curve.,, This

adjustment truly affects the absolute a^curacy of the solar term ob-

servations within the uncertainty of the points on the graph. This

uncertainty amounts to + 2 mass term units for the black plate and + 3

units for the white 1 t	 Th '	 t t	 1	 b	 + 1ep a e.	 ^s uncer aan y rsu is ^n a out a - watt

uncertainty in the solar terms of each of the plate radiometers. The

only way to reduce thisy y	 error is to consider hundreds of cases in order

to drive down the random uncertainty of the mass term determinations.

Such an approach is certainly feasible.



When one considers other errors related to the accurate determina-

tion of shortwave and longwave earth fi.uxes such as the spatial sampling

problem, the evaluation of shape factors for the anisotropic reflection

problem, and the assumption of constant broad-band absorptivities, one

quickly concludes that these problems are larger in magnitude thii.n the

errors associated with inflight calibration of shortwave color constants.

It is estimated that these other problems are in the one to two percent

error range, whereas, the inflight calibration uncertainty on the order

of one watt/m2 , or a fern tenths of a percent error.

It is concluded from the discussion in this seztion of the report

and from the investigation of the inflight calibration problem that

valid shortwave calibrations can be obtained solely from inflight data

with a sampling frequency every 30 seconds.
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CORREILATION OV PLATE AND CONE!T-AS['pX,.%-1.NTS

Correlations of plate and cone measurements during nighttime mode

operation give considerable insight as to the relative longwave optical

characteristics of the radiometers. During the nighttime mode, the pair

of plate radiometers, and the pair of cone radiometers view identical

longwave irradiance fields, By imposing this boundary condition, it is

possible to evaluate the relative ae /E ratios of the white and black opti-

cal. surfaces.

In a similar manner, correlation of plate and cone measurements give

information concerning the ielative geometrical viewing properties of the

two radiometer types. It must be remembered in the latter case, however,

that the cones absorb longwave irradiance from a restricted portion of

the earth viewed area. Thus, the boundary condition that the cones and

plates view the same irradiance field does not hold exactly, but is a rea-

sonable approximation for the mean of many observations.

Correlation of plate and cone measurements from ESSA VII were per-

formed during this investigation for many observations throughout the ten

month period of useful satellite data. Typical correlations for a selec-

tion of these data are shown in Figures 10 and 11.

The correlation of the white plate radiometer with the black plate

radiometer is shown in Figure 10 where the white power density is plotted

on the ordinate vs. black power density on the abscissa. By plotting the

measurements in this manner, the slope of

`

 the linear regression line through

the points is equal to the ratio of ae 	 e	 The slope
E ) white ( E blackI

of the line for the data in Figure 10 indicates a magnitude of (1.06).
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This result suggests that the/s) w
 ratio of the white plate is roughly

e

6 percent larger than a similar ratio for the black plate. 	 Referring to

the values of longwave optical properties presented in Table 3, the com-

puted ratio for white vs. black plate, using nighttime values,is 1.058 in

...4 magnitude, in good agreement. with the correlation of nighttime observations

i'..._.4
presented in Figure 10.	 Thus, one has confidence in the longwave optical

pro perties developed in the section on preflight instrument calibration,
3

even though a crude model was employed for the upwelling spectral irra-

{
diance from the earth.

.

.	 .-=
1

It is noted further from the correlation in Figure 10 that the stare
9

dard error of the estimate is 0.4 watts/m 2 ,that is, about 68% of the points

i--..1
..

fall	 within	 + 0.4 watts/m2 of the line.	 In order to interpret this re-

{
salt in terms of W	 earth flux values, a multiplier of approximately 4 ise

appropriate, giving a + 1.6 watts/m 2 standard error.	 This magnitude of un-

certainty is rather large, about 0.7% of the average W e magnitude.	 In fact,

this uncertainty is larger in magnitude than the errors in the solar terms

of each radiometer discussed in the previous section. 	 The reason for this

uncertainty is the point to emphasize here. 	 It is due to the fact that

the spectral absorbing properties of the optical surfaces are not uniform

across the longwave, broad-band spectrum.	 This point is easily understood

by considering the observed spectral absorptance properties of the anodized

aluminum "white" sample shown in Figure 4.

l As mentioned earlier in this section, the correlation of plate and cone
t

s measurements gives information concerning the relative geometrical viewing

properties of the two radiometer types.	 In this regard, it is assumed that

the optical properties of the black paint or anodized aluminum sur-aces.are

42
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the same - certainly a reasonable assumption. An example of this correla-

tioa is presented in Figure 11 where the black plate observations are

plotted as a function of concurrent black cone radiant power densities.

A linear regression line was computed for these data, in a manner similar

to the results in Figure 10. The slope of this lane has a different in-

terpretation than in the plate correlation. The slope is related to the

ratio of shape factors for the plate and the cone radiometers, i.e.,

slope = (Fd plate/(Fd cone . This ratio is 0.72 for the data shown in

Figure 11.

The results in Figure 11 have further engineering design implications

concerning the LZEEBE system. The standard error of the estimate for the

data shown in Figure 11 is + 1.1 watts/m2 . When this uncertainty is in-

terpreted in terms of We, a variation of about + 4.4 watts/m 2 is'obtained.

Similar uncertainties were obtained in a prior study by House (1968) when

he correlated the change in plate observations vs. the corresponding change

in cone observations, utilizing ESSA III data. This magnitude of uncertainty

is greater than 1% of the We irradiance field. Therefore, it is concluded

that auxiliary, longwave gradient detectors would not have significant value

in defining the lon wave earth term during inflight calibration of shc,-twave

color constants. In fact, the error in the plate - cone correlation is

larger than the uncertainty in the inflight calibration procedures developed

in the last section.

STUDY CONCLUSIONS RELATED TO LZEEBE SYSTEM CONSIDERATIONS

An attempt should be made here . at the end of this report to summarize

the conclusions of the investigation and how these conclusions relate to

the engineering design and flight operation of the proposed LZEEBE system.
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It may be recalled that the major objective of this effort was to

obtain ESSA VII raw data and process it to a point where it can be fur-

ther analyzed for the development of long-term earth energy experiments

and documentation of climate trends. It is felt that this objective was

accomplished during the reporting period. Data recovery during the 10

month observation period of ESSA VII was about 90% efficient. Certainly

there is an abundance of useable observations for future investigations.

Data are stored on 20 reels of computer tape in a FORTRAN readable format.

A considerable amount of effort was spent in developing successful

preflight and inflight calibration procedures for determining critical

constants required for the future calculation of radiation balance para-

meters. Even though these procedures pertain to ESSA VII radiometers

they find direct application to the balloon radiometers of the LZEEBE

system. In some ways the ESSA VII data reduction problem is more compli-

cated than that for the LZEEBE system since a spinning flat plate has a

more complicated geometry than an omni-directional sphere.

Specific conclusions of this st!idy and their relationship to engi-

neering design and flight operations of the LZEEBE system are outlined

below:

ENGINEERING DESIGN CONSIDERATIONS -- LZEEBE SYSTEM

Optical Constraints

detectors should have uniform spectral response to both the
shortwave and longwave broad-band spectral regions.

knowledge of the spectral absorbing properties of optical
surfaces must be known between about 0.2 microns to about
50 microns or longer wavelengths, if possible.

the variation in spectral absorbing properties must be known
for the expected ranges of radiometer temperatures and for
the above spectral, region.
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white optical surfaces like anodized aluminum and teflon
• backed with aluminum have inferior longwave optical pro-
perties compared to i)aint binders.

white paints with binders similar to the black paints may
• be preferred to the above materials provided the shortwave
optical degradation is not too severe.

Geometrical Constraints
i

knowledge of t'Ae angular absorbing properties of the opti-
cal surfaces with wavelength is desirable to develop accu-
rate geometric shape factors.

optical surfaces should be exposed to direct solar irradiance
• uniformly, if possible, so that any changes in optical proper-
ties will be the same over the balloon's surface area.

Other Considerations

crude longwave gradient detectors will not provide the deeded
• accuracies of earth radiation gradients during thermal transi-
tions - however, these detectors may be useful in determining
rough satellite orientation to solar radiation.

all physical and optical properties of the balloon radiometers
• should be known prior to launch - this enhances the value of
inflight calibration results.

FLIGHF OPERATIONS - LZEEBE SYSTEM
Data Sampling Time Frequency

Type of Observation or Calibration Time Interval of Performance

We and W 	 (daytime mode) 30 to 120 sec 30 to 120 sec

We (nighttime mode) 30 to 120 sec 30 to 120 sec

We (calibration mode) 30 sec 30 sec

Mass term calibration M(T) 30 sec all orbits - analyze
filtered orbits

Calibration of solar term 	 es
(s	 ^s Hs )

30 sec all orbits - analyze
ingression & egreLoion filtered orbits

Albedo calculation A system independent over time period-
(use W 	 averages) of data analysis

/as^	 os^---Calibration F H - 30 sec all orbits -- cross check
s s _

}	 - with solar term calibra-
e / a	 \ ae t b tions

j
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APPENDIX A

COMPUTER SOFTWARE FOR PRELIMINARY PROCESSING

OF ESSA VII SATELLITE DATA

i

i
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DESCRIPTION OF THE MAIN PROGRAM

A two block approach is used in the processing of all data. The main

program calls the input procedure and it is from there that all of the

data is read in. Data is read from the CDC tapes one block (25 lines)

at a time and assembled into the two arrays ORBIT and SENSOR. These two

arrays are then passed back into the main program. There are always two

blocks of data in storage at any one time. Differences in angles and

count values are computed in order to perform the necessary counts to

temperature conversion, and as the last lines of each block are processed

some overlap into the next block is necessary. Upon completion of all

work on a block, that block (consisting of the finished ORBIT and SENSOR

arrays) is written onto tape and the next block of data is read in. This

approach reduces the total amount of time needed since computations on

each block are being performed at the same time that the previous block

is being written. Parts A and B of the main program segment are there-

fore identical and control is passed to either part depending upon which

particular block is being processed.

The first loop in PARTA (down to label PHILA) determines the day--night

position of the satellite and adds 1024 counts onto the black plate day-

time count values. Bad rows are skipped. The satellite position logic

is as follows. The principle testing point was the zenith angle (column 5

of ORBIT array). Experience showed that the day-night transition occurred
f
4

within a window of zenith angle values ranging roughly from 120 to 128 de-

grees, with the angle increasing in going from day to night and decreasing

from night to day. If the zenith angle was less than 115 degrees, daytime

was assumed, and 1024 counts were added onto the black plate values. All

other lines with zenith angles greater than 115 degrees were subject to
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further testing. Ensuing tests requ.4red 1) the sense of direction of

the zenith angle (either increasing or decreasing) and 2) the gradient

of the black plate count values. Actual processing indicated the need

for one additional test because in some readouts bad data occurred in the

transition zone and the change from day to night (or vice versa) was not

detected. A third variable was computed, the absolute difference between

the black and white plate count values. These two values agree quite well

during the nighttime observations and they'differ greatly in daylight. If

this difference was less than 100 counts then night was assumed. Finally,

if white plate counts ran greater than 350, then daytime was assumed. On

testing any one good line of data, if the succeeding line contained a

black plate count value of 9999 then the line being tested was replaced

with 9999 since the black plate gradient and other variables could not be

computed. This results in the loss of some good data but the generally
7

good condition of the data makes this loss negligible. 	 The program segment

from the label PHILA to the label IOWA performs all of the above operations

using the last lanes of one block and the first lines of the succeeding

block.	 The segment from the label IOWA to the label ELM works en the first

. column of SENSOR array which contains the reference resistor count as well

as the mount count values.	 Again bad data lines are skipped and since the

r count values of these sensors do not fall below 400 any values below 400

have 1024 added to them. 	 The segment from label PBY to label. ILL converts

count values to temperatures for the black and white plates and cones. All
^ ^_

count values are adjusted using the reference resistor count (all counts
3 j

are multiplied by .994 for ESSA 7). 	 Since the temperature tables had to be

split into two parts of 1000 and 500 lines, count values had to be tested

i
and converted to temperatures using the appropriate table. 	 In order to

-

.i
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safeguard against a stoppage in program execution due to negative count

values (count values are a parameter of the temperature table arrays) any

count values exceeding the acceptable limits were automatically set to a

value of 500. This would effectively place a temperature of 0.00 at that

location. An inspection of the temperature tables shows that no tempera-

ture of exactly 0.00 can exist in the data. Therefore, in performing aay

additional processing of this data a test for zero temperatures on all

seven sensors should be made. Appearance of these zero values will indi-

cate original data which were out of the temperature tables range. The

program segment from label TBX to label NH uses the above procedures to

convert mount count values to temperatures. The remaining lines from

label *1 to label PARTB write the finished data onto tape, write end of

file on tape,.increments the record counter, and reads in a new block of

data via an input statement. PARTB comprises the rest of the program and

is identical to PARTA.

INPUT PROCEDURE DESCRIPTION
`I

The input procedure is used to read in new data from the input tapes,

screen the data, and set up the ORBIT and SENSOR arrays which are passed

back into the main program. The twenty eight work documentation headings

as well as most of the.end of files are also written onto the output tape

from this procedure. When a readout is finished and an end of file written,

--	 the record counter in the main program is set to zero and the input proce-

dure. is called again. There are two read statements in this procedure

Labelled MINN and ONT respectively. MINN is executed when the record

counter is zero and it is used to read in the initial input files consis-

ting of the twelve word label as well as the twenty eight word documenta-

tion headers. Upon writing the twenty eight word heading control is

passed back to the main program, the record counter is incremented, and. the
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input procedure is called again. Now data will be read in from the read

statement labelled ONT as Long as the record counter is not zero. Also

notice the two statements before the label ONT. These two statements ef-

fectively skip the first twenty five lines of each readout (when REC=1)

for reasons which are stated later. The program segment from the label

MINN to the label THRTY is probably the most difficult part of the entire

program. As end of file and parity problems were encountered, it was ne-

cessary to revise this section continually. The logic shown is a combi-

nation of that which was needed for routine execution of the program and

that which was needed to cover any abnormalities which arose. Initially,

the final twenty five line record of each readout was partially filled

with anywhere from five to twenty five lines of data (in groups of five
a

lines) while the rest of the lines in the record were filled with zeros

(it was possible for this last record to be completely filled as it turned 	 +

out). This incomplete record was being used initially to indicate the end

1

of a readout but the program was eventually modified in order not to rely on
t

this. As a result of the change though, the last partially filled record

of each readout was not written onto the output tape. The third line before

the label OAHU checks the satellite height. If zero, this would signal the

end of a readout. The variable X would be set to one and this variable

along with E would be passed back into the main program where it was tested.

The segment from the label OAHU to the label FIVE sets up the ORBIT array,

checking the condition of each line of data and replacing bad Itnes with

9999. The loop from label FIVE to label SIX sets up the black and white

plates and cones data in the SENSOR array, and subtracts 1024 from any count

values which are greater than 1024. The loop from the label MAUI to the

label SSP performs the same operations for the mount counts and the refe--
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rence resistor count. The next program segment from label SSP to label

OKLA was a later addition to the program. Errors in time were detected

and they showed up in the zenith angles of the day night transition zones.

These errors were found to cause as much as a nine degree discrepancy in

the subpoint latitude. This made it necessary for every readout to be

checked for this problem. As stated, Record one of each readout is always

skipped since experience showed that data in this record were often ill

conditioned and were eliminated anyway. It was decided to allow the mecha-

nics of the data system settle somewhat, before this time testing would

be performed. As a result, Records three thru nine were tested for this

possible error in time. These seven records yield 175 lines of data and

this corresponds to approximately 85 minutes of orbit time. In checking

for this error, particular attention is paid to the transition zones and

one of the tested records will most certainly contain such a zone. Speci-

fically, the test is as follows. If the zenith angle (called D in this

segment) is less than 119 degrees then the satellite should be in the sun.

White plate counts should then be greater than 350. If these counts are

less than 350 a time error is indicated along with the record number where

it was detected. This indication appears in the printed output log. The

file is immediately closed on the output tape and the rest of the readout

is skipped. If the zenith angle is greater than 132 degrees then the satel-

lite should be in darkness and again the white plate counts are tested.

Here, if these count values are greater than 350 a time error is recorded

as before. Since this test had to be added to the program, partial readouts

now occur on the output tapes. These partial readouts can be skipped by

noting the skipped orbit numbers in the printed log and then bypassing these

orbits during further data processing. In a very general way, this is all
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that the input procedure does. The remaining segments of the procedure

are composed of the end of file and parity action labels. There is only

one remaining test to be discussed. Tape number lb of the ESSA 7 series

contained a readout consisting of approximately one 25 line record. A

test was devised which would determine approximately how far along into

the data the program had progressed.. It was necessary to determine

rather roughly the orbit number of the last readout on each tape. This can

be done rather easily if the satellite launch date as well as the beginning

and end date of each tape are known. For the ESSA 7 tapes these dates

were written on each of the input tape boxes.
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1. 25 lines processed and
writte . onto tape.
(Part A)

3. 25 lines processed and
written onto tape.
(fart B)

it 25 lines
read in.
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SIXTH:	 I*f..4-'i;

1 tj	 tvrHUti n1T.A6 F14 S 11 i ► EFk/ i
IF A	 ,C e IMLN :;I) TO SLXIH cL`+t
IF L '•.•4i. e THLNv sU M ORE ELSE

1

	

	 G t 74L U 1 !it, N 60 T 1 1 r I Rb r I: LSL

VW I JI t rtF- L s 0 LI 01 To hbE N$'.1K, F r h l;
It X F 14 ? fHEr, (..) Tj) hIXTH R.SE
iF E E:)L 2 fllE v, U0 TIl Uric: L LS1-

P R I A :

r"U!c Jol l tlRu 23 111)
Ht.h1N

L A [it:L •,.I- Q.iS1t<,SCttsI,ITTcl'NILA+PUttT^

It A6LNbd4LJr 1 J L 4L 0.1) (HEN '10 TO lriWA ELSE
°rIf AbFl4t)lJrcLJ,2; FQI.	 )95,U NEE ,ail TO PHILA ELSE

!F Aii w bLTc.1J4J LSS ' ll ).0 fHFN GU FU PITT ELSE
It AbEN SU,tLJ+1,21 F , )L )999.0 THLN U 	 TO CHSTR ELSE;
6EI-TAF (- w^L^tSU1^E.1+1 r?J`45LNVS4)H1J,rJ;
N )ELAN, i%- Adrtc)I rCJ+1	 €JR01T1'.1p41
DE;t_TAUe ncibLASEivSkJ#?EJr21 — ASFNSLJiIL J, IJ );
It' M 1 tiL L I HLiq r;t1 To SCH ELSE.
It UtLIAF tlf4 1 1 l r l.f) I'HEN '1<-1 Ubl. uU T I J ;•1U:
A .bE.trti I•!IJ2JF ASFNVSM?EJr2J + 10.e4.lf;
G O T! f e i 1 

-,o 
A;	 €}RIGI'AW PAGE 13r,:i: IF UtL t al.s L5S 1^)rl,..t1 1 HEN ;4t-3 ELbE 60 TO NI IT ;	

OF POOR ^G^u O 1 1.1 wHILA;
r;,,-rbTN:	 h+,t K<-J 1HRij 4 00 45Fr4a(NLJrKJ<- 999,).'J;

iti.J TLl '"IiILAi
5C14:	 1J• b1 j , 4LOLLA-)^i) ,ifrt 'I IHEN GO FU PHILA ELSE:

LE UELTAt LSb `"100,1 r"EN M(-f) ELSE UU TO PUNT;
Ufl Id OHILA;

PUR1: I1 Abr-N JrJliLJ,11. .Gf!t 35a.Q THEN r44-0 FLbE GIJ TO NtIILA;
^rI T(1 t 1 ILK:
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^,	 !_	 l__	 I	 I	 I	 l
A S	 !a 0	 r-	 J>	 I It L J p 2 1 + 1 1) 2 4

L A 	 A 3	 4 J 4 1

^JA U

A ar uj ^:i 0 4	 0 fu :4Y ELbL

l i	 Al I	 l r i f 4	 J L	 1	 0 1HF I i'.J Ti: 
At 
6 EJ.SE

	T 	 FIJ 3jt).6 	 ELSE

RL	 "

t, L	 4f 	i 	 fA 1 J tl 6 1	 L	 4 1

— AS'- 1vaiJR L ?4 P 1

!)t: !i Ft.

L I	 •I<-	 L..SF 111) TO OGHs

45 L	 1-1 L 2 ,, p e	 A St lz,011124,421 + 1044600*

ts 0	 11'	 vy;

11,xti I 1h 11 t- L I A o L;S b 1, .1 ,) J i I I r- -4 P1 A i	 'LSF 13J To ALd,*

JtjjF I­ 	 1W K (- kJ I H fl U 4 ,71 ') A S E Na L) Q L' 2 4 P K + 9999. u

Ll

SC H 	1	 b1 1,x f4LL1LLANU) %TIC — 1 ["HFN uU TU NY LLSE

F ULLI 0 LSS — 10(7. I THEj 4+rl Lt_^E U0 TO ALD;

I u rVI

ITR	 44-0 FLbE GO TO WY;-A LIJ	 I^ AbEASURL24ol I G	 3!.)O.,f) THEJ^ 1

u (i Tu riY;

4 Y	 AbEiib(I q t iJ 4 b I+ I]

U hr	 0 I -IRU 4 1) 1

I_A FA L t 11 X L L ;I

+

r A t) L L!, U 11 L	 1 r01	 L 0 0- T H N	 Y E L ! E'

F Ll I"	 I 4eL	 f	 j .4 1) iq

I	 -X 999-),II rticil UU TI; FL11 ELbE

S) 14.)U.0 IHE. ,, ULJ T;i ONX EL6E

GI]

jt%x: f, 5t 	 A.jFijb0R(H+j oil + IU24.1d;

Y	 F ki f- 	I C U	 r

U I 1^

L A L L b!_A p 11 d 1 ' p I i L

t of	 4 S U I I J I	 i f 'I I	 s 9114

I F L'I S L 0 L 0 1 H E rf il W TLY FLbL

IF	 i,) ^_-JL d	 I'm1'" 1,4	 j, I TLJ ILL FL St.

	

I S ,Tf-, lu0000	 HFN GO TO )Ljl ELSE

A L i	 I ci I J J	 T L	 i J J

5 1 . t-1 L; t 	 A	 u t( L I o, j I	 I L) 11 0

it	
^ ^j	

-50IS ')rte .1ul; THP ,; LTa(	 ;'I SL 3U T 0 At:;

iL	 L I J J c- T I f	 J I

E

TLL -	 LA D

ORIGINALPAGIO$
T L X	 0	 13 T H t i ki 4	 j i )CQRov I
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r

FOR 1+2 Trtttu 1+ tltl

'	 CTJ^ A5^ JStl1t L r+I r 7) T T oES .994;i
Ir LTS L4L U (11 1.4 oil I(1 N A Fl.5E

IF 415 E 1L. h FhC"a u-i To r111 E' ! _SE
4	 Tr CTS :Ttc iouo.{) rri:.V G11 T;1 LA ELSE

A.iEIYSW?LP+1r+)14- TLC, I3,I+3];
uU TU rl:i:

t A: GT5t- AS+;Nai)ttLN+I,'J1~lti+]U.l;
IF C l :i	 f t `.rut's T I "'V C F5 N 5 0J 	Gi! TO WU;

v,'lJi A6L.iV)0 LP+i.,Ulr TIiCT6,I+31;

^	 rJy! FNU;
E V^J;

(^R1 -f L.(ilF. x .KET,%F0t1 L+U THKU 14 00 LFD1j J*-U THRU h DO A0R4iTCI.J1"
H U't	 TH Rt1 z DU- ASLN5 r1RI I.K]) 3;

IF. X wE'1 1 I'tiE,4 Gin TO STE ELSt -..._.._tlUS.E-(-jT 
► * 3 )

uO TEJ SIXTti;
SfE= - kF-C+ kL:C + 1;

INPUT ( ►EEC • A0HU I T , ASFNSUR , E, X ) :
IF X E;41. 2 THEN GU TO SIXTH FLSL

IF E E-IL 2 fmEi4 Gt'1 TO 1.14E EL51-:R
—PXRTT
	 _

FoR J+ U THN U 2 3 DO
bE,G1t4

LABEL r3C.:ir1.kJAL5.r1+1:iTsH5fN,51);

IF J5E l4S ltt L J. 1 J '_ ,}L t1 • U TH'714 1111 I+) U,>V1 EL;sL
IF 	 F-. l 999, ] rHEN GO 1'0 SU ELSE
IF (i(1+t+1 1 F 1 J.4 J LSa 11)-0 F:W4 UU TO HSTN ELSE
IF Li 51 `w5tlitLJ+i.21 r 131. 9999.() THEN GU TO DALS ELSE.
DEL I`Ar l+ d J LiJSUtt[J+1.?3 "b3E:-4SL1RLJ ► ZI;
11EI.W46+ hLJRL117(J+1, 41 - H,)1M1TLJ.4);
UL:t,Tatl^ AiSb(riuFWSJFtF .J.:?1"y;il't]SllijCJ.1]):
1 h rt V,4L 1 THE ,, GJ TO AUS F r LSE
IF DELTAF 11FR luri,o THEN	 ELSE= LIU TO 5A;
t9AtNb,p+ LJ•?J(- HSF'L430R1Jr27 + 1024.0;
60 1- it

SA:	 IF itlrl. fAu Lba 110.0 fHFN moo ELSE bu TU HS'TN;
itt) 711 St.);

--	 D4LSi -_hl')R 1(*: U TrHii 4 110 dSEN,[URCJ.K7+ 51999.11;
Gt) It) SO;

11,JaT:	 IF S 1C114(t)Et♦ AA6) :aTt( "1 THEN u{) TO SU ELSL
J O t.LT IA} L.SS °1 40. ,] THE d 0+0 UziE lit] 1'0 r3(;;
JG I'll 50;

HC: IF IJSE_NSCIKQJ.13 r,T,i 35[1.0 THEN 14+0 EL SE u0 TO 517;
(ifl	 ft. I ' jtr;

HSTIV: +35L'4bAHLJ.2J + RSi'14SURCJ,27 + 1424.0;
SII: ti5ENS?14LJ•51N-4:

kErU;

I1' hbL , a:,tlt 1?_4,? 1 COL 9999.0 THCE 4 6U TO SAC ELSE
t	 __ It rill+ d1 'fL24F'4l LaF3 1) 9.0 T HEN 611 TO CAL ELSE

i If ASCNb(1t(I.0pe3 FQ1 9999oU THEN GO TU AHN ELSE
VVLTAf F AZ:)ENSURC0.?7 - HS0N6IML24.2l;
I)L1.Ktrt;# 4U1?0I	 ORIGINAL
DLLIAot- HtsSl +I :rE ivStllt(2a,17^tisF'l^5URL^^+.9 ^>;	 OF POOR
If	 F. LOL. i THLN fill 1'1`1 W ACO F" hF.

11• 0 LT-J' UI R 1011 •'1 Tttl la tl +l ELtP1: uU TU At3l;

k'SL SUFti;?4•eI t tJSLIISilRI24.?1 + ,024. U;
I.-..	 U 	 Ilr 5,,C;

^LEI : i f Ift- L i Au Laa ? t1U.0 1 HEN Mi-} E LSE GI] TU CA,Lt

I
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Go 10 smc;
 1 4	 -Kfii;-_ 	tt	 rct•0	 It4t?U

...^i	
i?^1	 Fi5F 5111i(.^4.t~lt•	9999	 0;

Gil	 Ta	 SAC;
r^ —

_
-- WACO- -1r "SiGf!	 )ELA1 C%^	 UTri	 "1	 THFIV	 ti q T Il	 SAG	 ELSE

IF	 ULLTO	 L55-10060	 THEN rlrp	 E SE UU TO SASK;
G0 'TU	 Sa%;

SASE :	 IF	 UbF NSURL24, 13	 "TH	 35U.()	 THE.14 M4-0	 ELSE	 u0	 lb	 0AC;
GU	 7Li	 Sant.;

CAL,:	 tJSE.NSr1 1-tL'C4,*2JF	 k-1F IbUP(?4i-? 1	 +	 1024,10;_ .__ 
.$AG :	 idSLNb(Jtt I ^^ r 5 J fh4,

I15V,:	 FUt(	 Lft1	 T HHU	 14	 011

L AbF L	 SS. I) E 1VV;

1't-	 5	 x	 i_;. ---- TF ._
USE:NS[TKCN+1r^)7	 FtJL	 OsU	 THEN	 uC1 TO AYS ELSE

F UP	 1+2 THRU 4 DO

`	 # IF	 uSEvj5oR1V+IoU1	 FUL	 9999.(1	 THEN af. TO DENV ELSC
,..	 _ __._	 -

1h b	 Eha	 []EtCt'	 t,01	 LSS	 1 4 00 *
0	

THEN UU T11 bS ELSE
GO T O UENV;
HS:1+tSC11^LF'+I rl^a4 	t3	 J'I SURLP+I.nJ	 + 1U2 t4c.t	 i

,..; pENV:	 LN D;

_	
WYS : `F0 I	 1 k H U 2n Ili]

-.	 HEUIN
_.-- LABEL -VA rVts%SFi .r .1 NO, bo;

Fbkt	 .► F1	 T'Httu .,4
	

on
bEUINC.^ .^4. ^Et'^'ilttLIrJ I	 1 Ti^iEb	 .9^3^#:
IF'	 CTS	 LUL.	 U	 THF.t^	 r;O	 TO	 At^I'Z	 ELSE

t. I F " CTS' LUL	 H	 THE ^i	 (^I:, 	TO	 i l^u	 Ft SE
IF	 CTS	 tiTtc	 1000,,0	 THEN	 U0	 T11	 VA	 ELSE._..__	 LS SEN -S uR 	I. JJ t	 T'L CTS r J] i
G U	 1 LI	 c+ ► ^ 5 rt ;
CT'5f USENSURCI ► .J7	 "	 1U(1 0&0;

- IF	 CTS	 :?F;	 50U	 THIN	 CTS,	 t'l.5(:	 CU	 1'0	 8H;
fiP., 	 135ENS(JIt G 1,J)t-	 TIEC1S.JJ;

-.' WASH:	 END;
w_

Nfa:	 -'ENpi

AFII7 :	 . F[iiK	 Kt•b	 THRU	 4	 110
BEGIN

i LAUEL	 Lit(L.ELAPITN;

x.h}

FUR	 I(-','	 1 h HU	 4	 Url
uF.u1h

{ CTS+ bW SuHLPklrr;J	 TIMES	 „994;
--- IF - CT'

..S	
F OL	 U	 TNLN	 (i(?	 111	 CUL11	 EL5E

IF	 US	 ILL	 H	 TttFry	 u(1	 Tu	 FLN	 FISE
'IIJLNIF	 CTS	 t^'I^.	 i0u0.fr	 Li Lt	 T1r	 OP,L	 ELSE

'Ct•, S E N S Cl re 1 F' } I r U J e	 l (:1 S , 3	 3 1; poop.Go TO FlA;
^.^`

'CTb^	 tsSE(rbURLP+T,I)1-1000,j()p
s IF CTS 0P SUO THFN CTS4-50U ELSE Go TO TT'N;
r TTN;	 bSEN5t1-,E1- -I ► 01F	 11 E C T S	 I+31 _...
p

F' -E A :	 'E A b
L NU

_...CUL{J:	 Wti 11E_1 O f r	 PKEY, .F QI R	 1(-0	 THPU	 24	 OU	 [FOR	 J+Q T1iRU	 b .D-0	 HURBITL.J.JJ3_r	 .._.
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^T _1 i
F u ti K * 0 1 H N t I C-i U U t 15 L N (I H I I o K I I

KF(; 1 Tl,Lr^ un -tff SE'Cuia) F'LSL
CLUSE((11,-,

(Aj 11 1

lit: E

CL I, SE it

IF X EwL. 3 THFii	 FLSF

L No

k K lj kb k I LTELILD z.	 0-	 COMPI'LATLON TIME	 25 SLCUNDS,
c.

luv) TOTAL SLbmii iT Slit:	 !171 W011.05; DISK SIZE	 ul SE(jo; NU, fl ums bL65

^_._: URE STUPAGE EFUL1010i	 686:) WURUS.

U),IL.IAHY F-ENIFY t-EQUIRLP	 0 "Upf"N'

ANU-IMAGES PNUCEbSLD	 !):,Of

F ^^

U0000/LINE	 7313d?U5EP=PH3144ltL0MPILL L)CHAREU/fH3144 XALGGL	 KUhrlio bILL

L3L OU"-( 1 (1 1 L I Nt.	 731ioYUSLP=PH3144;L0l4t'1(.L uLrAF, Lw/PHJ14A )(AL60L	 *KUHtIp BILL
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