
# **General Disclaimer**

# One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)



# DEVELOPMENTS IN CONVECTIVE HEAT TRANSFER MODELS FEATURING SEAMLESS AND SELECTED – DETAIL SURFACES, EMPLOYING ELECTROLESS PLATING

| (NASA-CE-144364) DEVELOPMENTS IN CONVECTIVE                                 | N75-29356 |
|-----------------------------------------------------------------------------|-----------|
| HEAT TRANSFER MCDELS FEATURING SEAMLESS AND                                 |           |
| SELECTED DETAIL SURFACES, EMPLOYING                                         |           |
| ELECTRCIESS FLATING (ITV Aerospace Corp.)<br>101 p HC \$5.25 CSCI 20E G3/34 | Unclas    |
|                                                                             | 31985     |
| BY C. J. STALMACH , Jr.                                                     |           |

30 June 1975

# TECHNICAL REPORT 2-57110/5R-3227

Prepared under Contract No. NAS9-13692 by Vought Systems Division LTV Aerospace Corporation Dallas, Texas

For

National Aeronautics and Space Administration

#### FORWARD

This report covers the program conducted under contract No. NAS9-13692 with NASA, Lyndon B. Johnson Space Center. The contract time span was November 1973 to June 1975 during which time the contract was dormant for approximately six months (October 1974 to April 1975) awaiting availability of government furnished model under CCA No. 1.

The contract objective was to develop improved methods of fabricating heat transfer wind tunnel models. The program was divided into a Phase A, development of concepts, and Phase B, fabrication of an Orbiter model applying Phase A experience. Phase A experiments included evaluation of a plated slab model concept and feasibility study of plating controlled roughness on a model surface. Based on NASA technical priorities and cost estimates of Phase B options, a Change Order, CCA No. 1, was issued October 3, 1974 which directed the remaining funds to the selective plating of scaled heatshield tiles on an existing Orbiter model.

Dr. Winston D. Goodrich, NASA-JSC program technical monitor, provided valuable suggestions and encouragement which are greatly appreciated. Many other individuals provided assistance; particular recognition and thanks are given to:

Dr. Richard N. Claytor, Consultant on electroless plating
Mr. Jim M. Holland, laboratory co-worker
Mr. William K. Lockman, NASA Ames, for tunnel tests of Phase A Models
Mr. Howard MacKay, Shipley Company representative, for suggesting the ECAN process

Mr. Thomas C. Pope, for computer studies of instrumentation concepts

# TABLE OF CONTENTS

| LIST OF SYMBOLS                                                                                     | vii |
|-----------------------------------------------------------------------------------------------------|-----|
| SUMMARY                                                                                             | 1   |
| INTRODUCTION                                                                                        | 2   |
| PROGRAM OBJECTIVES                                                                                  | . 4 |
| New Model Methods                                                                                   | 4   |
| Selective Plating of Controlled Roughness                                                           | 4   |
| MODEL DEVELOPMENT PROGRAM                                                                           | 5   |
| Trade Studies                                                                                       | 5   |
| Technique Development                                                                               | 9   |
| EVALUATION OF PLATED SLAB MODEL                                                                     | 13  |
| Wind Tunnel Test Program                                                                            | 13  |
| Evaluation Results                                                                                  | 15  |
| APPLICATION STUDIES                                                                                 | 18  |
| Orbiter Model Requirements in Tunnel B                                                              | 18  |
| Recommended Efforts                                                                                 | 18  |
| SELECTIVE PLATING HEATSHIELD TILE ROUGHNESS                                                         | 20  |
| Specifications                                                                                      | 20  |
| Technique Development                                                                               | 20  |
| Model Results                                                                                       | 21  |
| CONCLUSIONS AND RECOMMENDATIONS                                                                     | 22  |
| REFERENCES                                                                                          | 23  |
| TABLES                                                                                              | 24  |
| Έταμβαρα το                                                     | 48  |
| FIGURES                                                                                             |     |
| APPENDIXES                                                                                          | 76  |
| I. Bibliography                                                                                     | 76  |
| II. Computer Routine for the Analysis of Two-Dimensional<br>Conductive Heat Transfer, by T. C. Pope | 82  |

# LIST OF SYMBOLS

| A        | Area                                                                                     |
|----------|------------------------------------------------------------------------------------------|
| <b>b</b> | Thickness of metallic skin                                                               |
| erfc     | Complementary error function, $\sqrt{\pi} \int_{\beta}^{\infty} e^{-\lambda^2} d\lambda$ |
| C, Cp    | Specific heat at constant pressure                                                       |
| h, H     | Aerodynamic heat transfer coefficient                                                    |
| k, K     | Thermal conductivity                                                                     |
| M        | Free-stream Mach number                                                                  |
| P        | Pressure                                                                                 |
| q, Q     | Heat transfer rate                                                                       |
| R        | Radius, or free-stream Reynolds number                                                   |
| S        | Surface Distance                                                                         |
| T        | Temperature                                                                              |
| t        | Time                                                                                     |
| β =      | $\frac{h\sqrt{t}}{\sqrt{\rho CK}}$                                                       |
| ρ        | Density                                                                                  |
| λ        | Dummy variable of integration                                                            |
| u<br>u   | Micro-                                                                                   |

PRECEDING PAGE BLANK NOT FILMED

#### DEVELOPMENTS IN CONVECTIVE HEAT TRANSFER MODELS FEATURING SEAMLESS AND SELECTED - DETAIL SURFACES, EMPLOYING ELECTROLESS METALLIC PLATING

#### By C. J. Stalmach, Jr. Vought Systems Division LTV Aerospace Corporation Dallas, Texas

#### SUMMARY

Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy is deposited on the plastic surface that provides a hard. uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A set of stringent model objectives were met except that maximum surface smoothness and maximum operating temperatures were demonstrated independently but not simultaneously. Plated epoxies with nominal 15 microinch RMS surface withstood approximately 350°F temperature and with nominal 60 microinch RMS surface withstood 550°F (which is approximately the limit for the epoxy material). The plated slab model demonstrated good data accuracy in the tunnel test. Further development effort is justified for electroless plated semi-infinite material and thin-skin calorimeter approaches.

A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale Orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose is to assess heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

#### INTRODUCTION

During the aerothermodynamic development of the Space Shuttle Orbiter the need for improved methods of fabricating heat transfer models of contoured geometries was again apparent. Model/instrument demands were increased by the geometry, and high structural strength and resistance of the surface to particle damage were required by high Reynolds number hypersonic tests.

Problems with conventional machined thin-skin calorimeter models include the difficulty of instrumenting tight quarters such as leading edge radii and the inaccuracy of the measured heat transfer distribution in such areas caused by lateral heat conduction in the skin. Accessibility requirements for welding thermocouple wires to the skin inner surface implies high cost of machining and joints in the model surface. Local roughnesses from mechanical joints and attachment hardware influence the heating results, particularly at conditions near natural boundary layer transition.

Use of temperature-sensitive, phase-change paints applied to plastic models provides valuable data on heating distribution, however not without shortcomings. The optical recording of the melt-line progression causes this method to have inherent problems in providing quantitative data at all discrete model locations of interest over the surface of a contoured body. The paint layer also adds surface roughness that may influence the results. The surviability of the plastic models is often marginal to the temperature and particle environment of hypersonic wind tunnels.

This program evaluated promising new fabrication concepts of heat transfer models that employ an electroless deposition of a metallic alloy to the model surface. Electroless plating is a means of depositing metal through controlled autocatalytic chemical reduction. An electroless deposition of metal was discovered in 1844 by Wrentz, improvements (resulting in a patent) were accomplished by Roux in 1916, however the process was not practical until about 1946 when Brenner and Riddell developed a controllable autocatalytic reduction process (Refs. 1, 2, 3). Since electrical current is not involved in the deposition, the surface of non-conductors such as plastics may be plated by seeding the surface with a catalyst. The growth of the deposit originates from multitudinous point sources (catalytic centers) on the surface. On a properly prepared surface, the number of nuclei is so large that growth proceeds as a plane front parallel to the original surface. Thus electroless plating produces a plate of uniform thickness wherever the solution may reach, including blind holes and sharp corners that give problems in conventional electroplating. Most of the electroless nickel alloys contain phosphorous which results in a very hard plate comparable to chrome. Hardness and abrasion resistance can be increased further to about Rockwell C70 by heat treatment at 750°F. The nickel phosphorous alloy has very low thermal conductivity which can be used to great advantage in models that have high surface temperature gradients. Shipley Company, in its Niculoy 22, improved the ductility of the alloy while retaining hardness with the addition of one percent copper.

The inherent properties of electroless plating that are of particular importance to fabricating heat transfer models are: (1) uniform plate thickness regardless of the surface contour, (2) seamless coating over many materials including plastics or combinations of surface materials, (3) abrasion resistance, (4) low thermal conductivity and (5) automatic formation of thermocouple junctions when plated to surfaces equipped with thermocouple wires. An outstanding feature discovered during this study is that a high output, repeatable thermocouple junction results when the chosen electroless alloy (Niculoy 22) is plated to a single (constantan) wire. The one-wire junction greatly improves the accuracy and cost of instrumentation.

A Phase A effort studied several model/instrument fabrication ideas employing electroless plating. A plated, semi-infinite slab approach was chosen for laboratory and wind tunnel evaluations. In this method epoxy models are cast with constantan wires protruding at desired model locations. Two layers of electroless nickel totalling approximately 0.0015-inch thickness are applied. The ends of the wires are polished flush to the first layer surface so that the second layer provides a continuous skin over the surface. Such models provide accurate data in a hypersonic tunnel to maximum surface temperatures of approximately 550°F. Experimental evaluations of two other concepts and further refinement of the reported method are recommended.

Phase B effort began with application studies of Phase A results to current Orbiter test requirements. The chosen Phase B hardware product was to modify an existing Orbiter model to simulate the surface roughness resulting from heatshield tiles that may be misaligned in surface height during normal manufacturing and assembly practice. A selective electroless nickel plating procedure was used to precisely raise the randomly selected scaled tiles above the mean of the lower surface of a 0.0175-scale Orbiter model. This model is scheduled for test by NASA in the AF AEDC Tunnel F in the fall of 1975 where the same model was previously tested in a smooth surface configuration. The use of selective electroless plating to provide precise control of surface detail on wind tunnel models has significant application potential.

This report describes the model/instrument concepts studied, wind tunnel evaluations of one method and tables of the electroless plating procedures applied in this effort.

#### PROGRAM OBJECTIVES

#### New Model Methods

The objective for Phase A and part of Phase B was to develop techniques for fabricating aeroheating models that: (1) have a minimum of surface joints, (2) reproduce very closely the surface contours of the hardware, (3) have a smooth surface finish suitable for boundary layer transition studies, (4) are instrumented with thermocouple wires which can be predictably located, (5) possess hard surfaces that have good resistance to abrasion by particles normally encountered in hypersonic facilities, (6) have sufficient structural strength to withstand hypersonic flows at high dynamic pressures, (7) permit customizing the sensor sensitivity to the model location and the facility conditions, (8) allow instrument placement anywhere on the model surface, (9) are effective in measuring local heat transfer in areas of high temperature gradients, (10) can be fabricated in less time than conventional machining methods, and (11) can be fabricated at costs not to exceed conventional machining methods.

The technical characteristics (1-9) were demonstrated in varing degrees of success for the plated slab, model/instrument method evaluated. Detailed grading relative to the above list will be presented later. The item giving the most difficulty for the chosen approach was item (3). The surface smoothness objective was met, however with a reduction of temperature resistance of the plate bond to the substrate. Certain objectives are more sensitive to the choice of model/instrument concept. The troublesome objective may be better met by other methods to be discussed. Cost objectives (10-11) remain as expected benefits once the model techniques are fully developed. Test results indicate merits and potential of electroless plated model methods that justify further evaluation.

#### Selective Plating of Controlled Roughness

The objective of Change Order CCA No. 1 was to simulate the roughness of random misalignment of heatshield tiles that may exist on the lower surface of the Orbiter by selective electroless plating of tiles on an existing scaled model of the Orbiter.

This objective was met completely by plating the specified pattern and height on a 0.0175-scale stainless steel model. This successful application should encourage further uses of this method to control surface detail in aerothermodynamic models.

#### MODEL DEVELOPMENT PROGRAM

The development of improved methods of heat transfer modeling was begun with a review of past experiences in the literature. After the review a list was composed of promising concepts. A semi-infinite slab method employing an electroless nickel skin was chosen for laboratory development based on analytical, previous experience and cost considerations. After evaluating several fabrication procedures, sample models were made and evaluated in a hypersonic wind tunnel. Fabrication refinements after the tunnel test and cursory experiments with other concepts completed the development portion of the effort.

#### Trade Studies

Library Research. - Requests were issued to Defense Documentation Center and NASA Scientific and Technical Information Facility for computer literature search, including limited distribution references, from the period 1965 to the request date of September, 1973 for the following subjects:

> Electroless Plating of Plastics Casting of Wind Tunnel Models Heat Transfer Measurements

The results of the computer searches and private searches are presented in Appendix I, after screening for applicability. The bibliographies are not exhaustive but should be representative of the work published during this period that best applies to the subject effort.

No evidence was found in the literature of any previous attempts to use electroless plating in fabricating a heat transfer model (except for the author's preliminary work (Ref. 4)). Review of instrumentation developments was very helpful in both stimulating and culling design concepts for this program.

Model/Instrument Concepts. - Three instrumentation approaches that have the potential of meeting the program objectives are:

> Calorimeter Gardon Semi-Infinite Material

Example sketches of how these instrumentation approaches may be incorporated into a jointless heat transfer model are shown in Figure 1.

A method of measuring temperature with the electroless nickel skin at each point that it plates to a wire is shown for each of the concepts. The one-wire method contributes significantly to meeting the objectives, therefore one of the first laboratory experiments was to assess the thermocouple characteristics of the plate and various wire alloys. It was found that Shipley's electroless nickel Niculoy 22 plated to constantan wire provided an excellent thermocouple as shown in Figure 2. The Niculoy/constantan output is similar to the copper/constantan output which may be due to the one percent copper contained in the Niculoy 22 alloy. The thermcelectric characteristics of

Niculoy and its improved ductility and surface smoothness resulted in it being the primary plate material evaluated in the laboratory experiments.

The calorimeter approaches of Figure la include a free-standing, thinskin shell shown as Style A. The advantages of a shell plated by the electroless method compared to machining or electroforming include: (1) plating to one wire rather than welding of two wires, (2) jointless surface, (3) uniform plate thickness (inherent for electroless, difficult in electroplating and machining), (4) harder surface than heat treated stainless steel and (5) lower thermal conductivity. Several fabrication approaches appear feasible. For one example, a replica of the model could be cast with a low melting temperature alloy such as Cerrotru (a product of Cerro de Pasco Corporation). The casting would include the thermocouple wires and sting/model adapter. After plating, the replica would be melted and removed leaving a thin-skin, free-standing shell plated to the support and wires.

Style B provides sensitivity adjustment for long run facilities with a slug that is cast in an insulative substrate. A thin electroless nickel plate provides a jointless surface.

Style C would be more suitable for short run duration tunnels where a thin skin is desired for sensitivity and where high dynamic pressures require a solid backing except for local areas. The air gap reduces heat losses to the substrate at the sensor location for a short run time.

Style D is an attempt to thermally isolate a slug calorimeter from the substrate using an air gap.

Air spaces could be achieved by suitable placement of a low melting temperature material into the mold prior to puring the casting material. The disposable material would extend to the rear of the model to permit removal after the plating operation. Wax or Cerrotru wires are example materials and electroless plating was demonstrated for both. Hard "file-awax" was plated after first polishing the surface with boron nitride.

A Gardon gage (Ref. 5) is a steady state instrument that has been successfully used in heated blowdown tunnels (Ref. 6). The measurement required is the delta temperature from the center of a thin disc to its outer edge. The disc edge is cooled by a heat sink. Figure 1b shows possible ways to use this instrument with electroless nickel to form an instrumented, seamless model for use in long run duration tunnels.

Style A could make use of a machined steel model in which short constantan tubes are placed. The sleeve would contain a small constantan wire cast into its center, using a material such as Cerrotru. After plating, the Cerrotru would be melted and drained. The model could be cast with Gardon gages for Styles A, B, and C. Style C reduces the complexity of melting and removing materials, however the substrate under the disc needs to be addressed for effects on sensor accuracy.

Two classes of semi-infinite material gages incorporating electroless plating are shown in Figure 1c. The plated slab of Style A is similar to the cast models used for the phase-change paint method except that for the plated slab the surface temperature is measured with thermocouple wires that are joined to a thin metal skin during deposition of the skin.

Variations in material property have been experienced when fillers are used in epoxy castings (Ref. 7, for example) whereas the thermal properties are known and repeatable for thermocouple wire. The wire gage concepts shown as Styles B and C attempt to either isolate a wire from the substrate (Style B) or use a substrate that has thermal properties similar to the wire. The wire gages measure heat transfer using the surface thermocouple output and the wire material properties. The material in Style C may be cast or machined steel. For a steel model, the wire would have a thin electrically insulative coat. The electroless nickel would form the thermocouple junction and provide a seamless fourface. Style C employing a steel model should give results similar to the coaxial gage (Ref. 8) and has the advantages of requiring only one thermocouple wire per junction and exhibiting a continuous surface.

Analytical Heat Flow Study. - An analytical program was conducted to assess the effects of the geometric and thermal property variations on the design and accuracy of the various model/instrument concepts. A twodimensional computer routine was programmed (Appendix II) and representative results are given in Figures 3 through 8. The input heating condition shown in these figures represents a flow condition in the NASA Ames 3-1/2 Foot Hypersonic Wind Tunnel. The one inch diameter hemisphere represents the model size chosen for the Phase A test. Properties of the candidate materials are given in Table I. Some property values were assumed based on literature values for similar materials.

Effects of an air gap around a wire is indicated in Figure 3. The air gap locally increases the plate temperature which increases the temperature of the plate over the wire. The wire was not isolated by the gap because of the heat conduction in the plate. (Perfect isolation of the wire would approach the case shown for the infinite wire diameter). For these initial computer runs, the electroless plate properties were not known and therefore a pure nickel plate, 0.0015-inch thick, was assumed. As shown in Table I, the conductivity of nickel is over an order of magnitude preater than electroless nickel. Although electroless nickel would provide better isolation than indicated in Figure 3, a high degree of isolation with practical skin thickness does not appear likely. The results of Figure 3 and fabrication complexity eliminated all design concepts involving air gaps early in the study.

After the runs of Figure 3, the computer routine was refined to include calculation of the temperature at the interface between the plate and wire (or substrate if a wire was not present). Niculoy 22 had been chosen as the plate material and its properties were incorporated in the routine.

Figures 4 and 5 show effects of wire and plate dimensions for low and moderate conductivity substrate materials. The low conductivity of Isochem's Novimide results in a steep temperature rise, more than desired for application in a heated blowdown tunnel (Figure 4). The high thermal expansion of this material also often caused failures in the plate during laboratory evaluations and therefore Novimide 700/55 was not evaluated further. The Novimide material could prove advantageous in areas of low heat transfer and short run duration tunnels.

The results shown in Figure 5 for Emerson Cuming's Stycast 2762FT indicate that such a material coupled with practical electroless plate thickness and wire diameter will provide reasonable temperature histories for a plated slab gage in the designated NASA Ames facility. The effects of a 0.001-inch plate and a 0.003-inch diameter wire are noted as being small and essentially constant after the time interval required to insert the model into the test stream (~1/2 second). Larger wire diameters around 0.032-inch may be used as semi-infinite wire gage if the Niculoy plate is sufficiently thin as indicated for the 0.00025-inch case in Figure 5.

Figure 6 shows calculated temperature distributions in the materials after 2.5-seconds of heating. It is observed that the temperature along the axis of the 0.003-inch constantan wire that is cast within a Stycast substrate and topped with a 0.001-inch Niculoy plate is similar to the temperature distribution of the pure Stycast substrate.

Figures 7 and 8 were prepared to examine the possible use of Niculoy plate as a thin-skin calorimeter (Figure 1a). As discussed in Reference 8, a calorimeter gage will exhibit a straight line for the relation of Figure 8 up to the time that conduction errors become significant. The 0.003-inch diameter thermocouple wire had a negligible effect on the calorimeter gages. A 0.010-inch thick plate backed by Novimide (a very low conductivity substrate) indicates conduction errors after about a half second of heating. Figure 8 indicates that a thin skin calorimeter supported by a low conductivity substrate may be employed in a short run duration tunnel such as a hotshot type, however a "free-standing" shell (i.e. a thin shell held by minimum contact with support structure) would be more suitable for heated blowdown facilities. 2

Grading of Concepts. - Funding considerations necessitated an early judgement as to which one of the model/instrument concepts of Figure 1 would best demonstrate the program objectives in a hypersonic wind tunnel. The above discussed library and computer studies, predicted availability of required materials and fabrication complexities were used to help anticipate relative grades for the model/instrument concepts. Table II presents the grading results and indicates that the plated slab gage of Figure 1c had the highest anticipated relative grade (8.8 out of 10). Laboratory work from this point concentrated on developing and testing this model/ instrument method.

The anticipated grade for the plated slab concept was lowered as shown in Table II after completion of the experiments because the substratematerial/plating-procedure combination did not fully meet the projected results. Table II will be reviewed further when discussing recommendations.

#### Technique Development

Initial Material/Technique Evaluations. - After review of vendor information and initial laboratory evaluations, the following materials were chosen and proved to be adequate to meet the described needs of this study:

- (1) Molds Requires a castable material that faithfully reproduces the surface of the master or sub-master models. The mold must maintain diminsional accuracy while high temperature plastics are being cured in the mold and must permit release of the cured plastic replica. Silastic J by Dow Corning was chosen.
- (2) Sub-master model Requires a castable material that faithfully reproduces the surface of the master model and that can be readily drilled to locate each thermocouple station. (Sub-master is not required if surface drilling is permitted on master model or pattern). Epocast 11B, an iron-filled room temperature epoxy by Furane Plastics was chosen.
- (3) Model Skin Requires a smooth, hard, ductile and uniform plate that is suited for plating of plastics and that forms a reliable thermocouple junction with a standard wire. Niculoy 22 electroless alloy by Shipley was chosen. Desired improvements would be a plating solution that operates at a lower temperature and exhibits lower plating stress than the chosen alloy.
- (4) One-wire thermocouple Requires a sensitive, repeatable output from a standard thermocouple wire joined to an electroless plate. Niculoy 22/constantan junction proved to be quite adequate (Figure 2).

Sensitize Smooth Plastics Nickel Plate (SSPN). - Table III lists three representative plating procedures used in the initial laboratory evaluation of the candidate substrate materials of Table I. Because of the objective of a smooth surface, chemical etching of the plastic surface was only briefly evaluated in these initial experiments. A concentrated effort was made to obtain sufficient plate adherence to a smooth plastic surface through use of cleaners, ultrasonic agitation and wetting agents. Light sanding of the surface with wet 400 to 600 grit paper was added to the procedure to break the high gloss of the castings. The polishing improved adherence while retaining a sufficiently smooth surface. Several variations of the procedures were evaluated including  $\varepsilon$ , room temperature bath suggested by Feldstein (Ref. 9) and baking of the deposited palladium catalyst prior to nickel plating.

Evaluation of the casting and plating results for the SSPN procedure brought the disappointing results shown in Table IV. The three hydraulicsetting refractories evaluated exhibited surfaces considered too rough for this study. LO-XA125 by Duramics is the most promising of those evaluated and should be reconsidered if extreme temperature service is required. Large volume castings with hard surface molds produced an acceptable surface;

however small volume castings in RTV molds did not. The plating adherence to the refractories was good.

The Novimide 700/55 material plated the best of the plastics evaluated in the SSPN procedure, followed by Stycast 2762FT. None, however, had adequate adherence to survive the heating in a hypersonic facility.

The SSPN development was terminated and emphasis directed to an innovative aluminum transfer method discovered during this study.

Aluminum Transfer Zinc Aid Nickel Plate (ATZN). - Significantly improved plating bonds to epoxy substrates were achieved and with a very smooth plated surface by use of an aluminum transfer casting method followed by a Zinc Aid and nickel plating procedure summarized as follows:

- (1) Aluminize the RTV mold surface by lightly rubbing "leafy" aluminum powder into the surface with cotton and blowing away all excess not adhered to the mold
- (2) Insert the thermocouple wires into the holes cast in the mold
- (3) Pour the epoxy (or other castable plastic) into the mold
- (4) Aluminum layer is bonded to the epoxy casting while curing
- (5) Remove the casting from mold, aluminum film is transferred to the casting
- (6) Post cure casting
- (7) Clean and condition surface for plating
- (8) Plate surface and exposed wires to 2/3 of plate thickness
- (9) Clip and polish wires to plated surface
- (10) Reactivate plate (Shipley 1424)
- (11) Plate to final thickness

Smooth nickel and copper electroless platings were achieved with all of the epoxy materials evaluated. Oven tests demonstrated however that the temperature resistance of the plate-to-epoxy bond is sensitive to the material composition and plating procedure. The material should have a coefficient of thermal expansion near that of the plate material. The cast material should develop a high bonding strength to the inner surface of the aluminum powder without wetting the outer aluminum surface.

Table V shows the material samples that were cast, plated and evaluated in an oven. Stycast 3070 material proved best in the "as received" mixture and thus was used as the base material with which optimization with additional fillers was attempted. Optimization of the plating procedure was also conducted and resulted in the procedure for depositing the first layer of electroless nickel shown in Table VI. The best material/plating combination of those evaluated for the ATZN process is indicated in Tables V and VI. This optimum combination will normally survive an oven test of 350 F. Most other combinations would exhibit diamond-pattern wrinkles in the plate when cooled from 350°F because of inadequate bonding and high compressive stress in the plate. Additional improvements in the basic metallic film transfer concept is certainly possible.

Personnel within the local (Dallas) and home offices of Shipley Company were interested in assisting in this program and were supplied sample castings for their independent evaluation. Their study suggested an etch process that will be dicussed next.

Etch, Catalyst, Accelerator, Nickel Plate (ECAN). - The mechanical strength of the plate attachment to a plastic is greatly increased if the surface is slightly porous to permit the plate to mechanically latch into these pores. Certain materials, such as the ABS plastics used extensively for plated plastics in industry, have a constituent that is readily removed by etching. The contorted, tiny tunnels become plated in the electroless process and securely lock the plate to the surface. Unfortunately the ABS plastics do not have the temperature resistance required in this study. Most epoxies do not etch readily and generally develop a rough, pitted or grainy surface.

It was discovered at Shipley that an etched surface of Stycast 3070 castings was more suitable for plating than normally considered for epoxies, possibly explained by the calcium carbonate powder filler. Calcium carbonate reached by an acid will be dissolved leaving random, fine-grain voids in the epoxy surface. Oven evaluation demonstrated that the Phase A ECAN process of Table VI would permit plated Stycast 3070 to withstand temperatures up to 550°F. This exceeds the quoted limit temperature for the epoxy material. The surface was not nearly as smooth as the ATZN process, however.

Wind tunnel test models were fabricated and evaluated for both ATZN and ECAN processes as will be discussed. After the tunnel test an optimization study was conducted to improve the surface smoothness of the ECAN process. This resulted in the Phase B ECAN plating procedure of Table VI and an optimum material of those evaluated in Table VII. The surface condition is very sensitive to the temperature, dwell time, and degree of nitrogen agitation of the Shipley PM-930 solution. The etch process partially exposes the fine glass fibers in the optimum material which provides additional "roots" for the plating. The Phase B ECAN process produced improved surface smoothness compared to Phase A ECAN but the surface is not as smooth as the ATZN process.

Nickel Transfer to Epoxy Cast (NTEC). - Another approach to obtain a smooth plated surface on an epoxy substrate is to first plate the skin and then cast the epoxy into the shell. The bond strength of an epoxy cured to a plate may be greater than the adherence obtained by plating to a smooth surface. Futhermore, the bond would not be subjected to the plating stresses of the plate. The approach was not fully exploited, however some effort was given to the following ideas with promising results. The primary problem was casting a Cerrotru surface free of air bubbles.

- (1) Internal plating Cast a female mold with a disposable material that has a smooth surface and that plates well, such as Cerrotru. Insert the thermocouple wires into the cast holes. Plate internal surface with electroless nickel to about half to two-thirds the final plate thickness. Pour epoxy into model cavity and cure. Post cure the epoxy to a higher temperature which will also melt away the Cerrotru mold. Polish the thermocouple wires to the surface. Chemically clean and activate the surface. Plate skin to final thickness.
- (2) External plating Cast a male replica including the thermocouple wires with a disposable material that has a smooth surface and that plates well, such as Cerrotru. Plate the surface to about two-thirds the final plate thickness. Polish the wires to the surface, activate and plate the surface to the final plate thickness. Cast around the outer surface of the model with a disposable material such as plaster of Paris. Melt and drain the Cerrotru, chemically clean the inner surface and pour epoxy into the cavity. After final curing of the epoxy, the plaster becomes brittle from the oven temperatures and can be broken away from the plate.

<u>Free-Standing Thin-Skin Nickel Plate (FTSN).</u> - A brief laboratory evaluation was given to the free-standing, thin-skin calorimeter model as depicted by Style A of Figure 1a. This concept is given a high anticipated rating in Table II. The generation of the uniform thickness shell would be similar to that discussed for the NTEC process except that a thicker shell is required (0.005 to 0.020-inch depending on facility conditions) and the shell would be supported at minimum number of contact points. The support could be joined to the skin during the plating process or later bonded to the skin for maximum isolation.

A feasibility experiment was conducted by plating Niculoy 22 to a thickness of 0.012-inch on a contoured piece of Cerrotru material. The Cerrotru was melted and drained and the inner plate surface was cleaned with caustic soda. The resultant free-standing contoured shell is strong, hard, uniform thickness, smooth and continuous.

The primary difficulty experienced with this process was casting the Cerrotru free of surface air bubbles. Cerrotru casting was attempted in the Silastic molds used for the epoxy castings and the hot metal appeared to cause an out-gassing in the RTV material.

#### EVALUATION OF PLATED SLAB MODEL

Results of the development program were evaluated continuously and had a daily effect on the course of the development. The major evaluation of the semi-infinite slab method, however, was accomplished by subjecting sample instrumented and non-instrumented models to M = 7.32 tunnel flow in the NASA Ames 3-1/2 Foot Hypersonic Wind Tunnel.

#### Wind Tunnel Test Program

<u>Models.</u> - The two model geometries of Figure 9 were tested in the wind tunnel. The hemisphere cylinder provides ease of comparison to existing data and theory. The flat face cylinder geometry provides a good assessment of the instrumentation accuracy in areas of high surface temperature gradients and assessment of the particle resistance of the plate. A master thinskin model was machined for each shape out of 17-PH stainless steel. The steel models served as mold masters from which the epoxy replicas were derived. The steel masters were instrumented and tested simultaneously with the plastic models to help gauge the data effectiveness of the plastic models.

Table VIII lists and briefly defines the Phase A test models. Figure 10 shows the models prior to shipment to the test facility.

<u>Test Procedure.</u> = Two master models and eight plastic models were tested simultaneously by using the mount shown in Figures 10 and 11. The shadowgraph of Figure 12 and oil flow patterns on the centerbody confirmed that the model assembly was in fully started flow. Eight runs were conducted at M = 7.32 at a nominal total temperature of  $1500^{\circ}$ R. The test began at low Reynolds number (0.8 x 10<sup>6</sup> per foot) and progressed to 4.0 x 10<sup>6</sup> per foot which exceeded the target value for the evaluation of 3.6 x 10<sup>6</sup> per foot.

The models were inserted into the flow stream and then retracted after about two seconds. Digital temperature data from the models were recorded on magnetic tape. Notes and photographs were made of a visual inspection of the models after each run (Table IX). Models whose plating wrinkled or otherwise failed were replaced during the model inspection.

<u>Data Reduction</u>. - The data reduction procedure for the plated semiinfinite slab model is rather simple if sphere data are obtained and used to determine the thermal property of the substrate-plate-wire combination. The data reduction made use of the semi-infinite slab solution as expressed by Jones and Hunt (Ref. 10):

$$\overline{T} = 1 - e^{\beta^{2}} \operatorname{erfc}_{\beta}$$

$$\overline{T} = \frac{T_{w} - T_{i}}{T_{aw} - T_{i}}$$

$$\beta = \frac{h\sqrt{t}}{\sqrt{oCK}}$$

For simplicity, assume  $T_{aw} = T_{m}$ . The effects of this assumption and the effects of the plate and thermocouple wire on the in-depth heating of the substrate are lumped into the material property term  $\sqrt{\rho_{CK}}$  which is determined from a plastic hemisphere model for which the heat film coefficient, h, is known from measurements with the master model. This effective  $\sqrt{\rho_{CK}}$  term is then applied to determine h for the flat face cylinder test model. The flat face model was fabricated in the same manner and encountered a similar range of heating as the hemisphere model.

The step-by-step procedure followed:

- (1) Establish h for a sphere in the test conditions using the master sphere model (Table X, Average values shown in Figure 13)
- (2) Determine temperature-time data for the plastic models
- (3) Plot temperature-time data (See Figures 14 and 15 for examples)
- (4) Determine the effective time zero  $(t_i)$  and initial wall temperature  $(T_{ui})$  (Figures 14 and 15)
- (5) Calculate T at selected times
- (6) Determine  $\beta$  from  $\overline{T}$  (Ref. 10)
- (7) For the plastic sphere models determine  $\sqrt{\rho CK}$  at each station and time by using the measured values of h obtained with the master sphere model
- (8) Plot  $\sqrt{\rho CK}$  as a function of  $\sqrt{t}$  for all model positions, all times and all runs for a given sphere model (Figure 16)
- (9) Calculate h for the flat face plastic models using the faired values of  $\sqrt{OCK}$  from a sphere model composed of the same materials

The relation of  $\sqrt{\rho_{CK}}$  to  $\sqrt{t}$  was suggested by Reference 7. An attempt was made to more closely define the  $\sqrt{\rho_{CK}}$  term by relating it to a second term. It appears that the term  $\beta$  can be related to  $\sqrt{\rho_{CK}}$  for selected times as is indicated in Figure 17. The Figure 17 faired values are within ±10% of the Figure 16 fairings. The Figure 16 fairings were used in the data reduction.

Data reduction of the flow conditions and heat transfer rates for the thin-skin master models were provided by NASA-Ames. Millivolt-time digital data were also provided for the plastic model thermocouples.

<u>Tunnel Data.</u> - Evaluation data from the tunnel test began with notes on model survivability as shown in Table IX. Thermocouple data from selected ECAN and ATZN models were reduced and the results are given in Tables X and XI and Figure 18. The averaged stagnation values for the hemisphere and flat face master models were in excellent agreement with theory as noted in Table XI. The plastic model data compare well with the master flat face model data and expected distribution as shown in Figure 18. The surface of the ECAN Model CC was rougher than the ATZN Models G and I. The ATZN models generally failed after one or two runs, however. The sensitivity of the fairing of  $\sqrt{\rho CK}$  on the comparison was examined. Calculations of h for Model CC were made for the lower fairing of Figure 16. The results are presented in Table XI and are 8% lower.

The increasing value for / OCK as time approaches zero in Figure 16 is attributed to the influence of the wire and plate (review also Figure 5). The indicated influence is independent of the local geometry. Checks were made to see if using the experimentally determined / OCK (that combined the wire, plate and substrate properties) resulted in any time dependency in the calculated values of the film coefficient, h. The coefficient was calculated at each model station for several selected times between the interval 0.1 to 1.75 seconds. The calculations were found to agree well with the average and did not indicate a time dependency. Further proof of the validity of the data procedure is given through the good agreement of the computer prediction of temperature to the measured temperature shown in Figure 14. The average experimental value of  $\sqrt{OCK}$  at time one second was input in the routine for the substrate property. The routine assumes the value to be constant. The average experimental value of h was also a constant computer input. The effects of the wire and plate on the thermocouple temperature are taken into account in the routine through thermal balance of the finite elements of the various materials.

The slope of the material property  $\sqrt{\rho CK}$  with time after about one second (where the wire and plate effects become negligible) are comparable with results for a similar substrate material without a plate or wire (Ref. 7). The reduction of the substrate value of  $\sqrt{\rho CK}$  can explain why the predicted temperature in Figure 14 falls below the measured for times greater than one second.

Figures 14 and 15 indicate the agreement in temperature measurements between the new Niculoy/constantan and standard copper/constantan thermocouples. Stations 002 and 012 are both located thirty degrees from stagnation but along different rays. The agreement was particularly good for the smoother models such as Model BB of Figure 15 and the ATZN models.

#### Evaluation Results

The combined laboratory and tunnel results for the plated slab method are compared to the technical program objectives. The plastic modeling research did not extend through a phase B model and therefore the cost objectives (10 and 11) remain as expected benefits.

<u>Compliance with Objectives</u>. - Combined laboratory and tunnel results demonstrate that the plated slab concept fully meets the following program objectives:

- (1) No surface joints
- (2) Good surface detail reproduction
- (4) Accurate instrument location
- (6) Sufficient strength
- (8) Instrument placement anywhere
- (9) Effective in areas of high thermal gradients

The plated slab possesses a very hard surface that is resistant to particle damage and therefore meets in principal the model objective number (5). However, particle damage did occur in the pebble-bed heater facility used in this evaluation. Figure 19 shows post-test magnified views of the flat face of ECAN Model CC compared to the heat treated (190,000 psi) flat face of the master Model A. Both models were subjected to all eight runs in the hypersonic tunnel and both were still providing data without any loss of instrumentation. Figure 19 and Table IX indicate particle damage resistance of the ECAN models is comparable to a heat treated stainless steel model. The softer copper coating of the ATZC process had more severe particle damage as noted in Table IX.

The customization of sensor sensitivity, objective (7), was restricted to materials that provided good plate-to-substrate bond strength. The best materials for bond strength fortunately also provided good data sensitivity. Areas of low heating impose less demand on the plate bond and therefore less restriction on the choice of materials for increased sensitivity (if required).

Data accuracy (not listed as a specific objective) obviously must be adequate if the plated slab concept is to be practiced. The tunnel results of this preliminary test proved that this model method will provide accurate data. Further improvements in accuracy can be expected as material, process and data reduction improvements are made. Discovery of the Niculoy/ constantan thermocouple greatly enhances the data accuracy and overall attractiveness of this modeling approach.

Problem Areas. - A smooth surface finish (objective (3)) could be provided, however, for marginal operating temperatures. The principal problem area was finding an acceptable compromise between surface smoothness, plate hardness and maximum operating temperature of the model.

Figure 20 is a photograph comparing the surface smoothness of master, ATZN and ECAN models. The smoothness of ATZN models are considered addquate for applications involving natural hypersonic boundary layer transition. Figure 21 shows magnified views of the ATZN surfaces compared to the master and the aluminum transfer film. Note that polishing marks of the master are reproduced in the plated plastic models which attests to the faithful reproduction of surface detail of this process. The thicker plate of Model M shows some pores caused by hydrogen bubbles forming on the surface during plating. This problem can be reduced by better control of the nitrogen agitation in the plating scluttion. The ATZN process in the current state of development is restricted to maximum temperatures of about 300 to 350°F. This maximum is based on both oven and tunnel evaluations. One ATZN model, Model F, failed after run four and experiencing a stagnation temperature exceeding 500°F (Table IX). The ATZN models generally fail in the cool-down process when the compressive stress in the plate overcomes the bond strength of the plate. The compressive stress results from the deposition process and from the difference in coefficient of thermal expansion of the plate and substrate.

An aluminum transfer method that meets both the temperature and surface smoothness requirements is ATZC. The difference of ATZC with ATZN is that an electroless copper (Shipley CP-74) is deposited rather than nickel. The CP-74 copper alloy is harder than pure copper and plates smoothly, although not as glossy as Niculoy 22. Table IX shows that Model V with the ATZC process survived all eight runs at stagnation temperatures exceeding  $650^{\circ}$ F without a temperature induced failure. The bond strength of the electroless copper is not considered to be higher than electroless nickel, therefore the lack of wrinkling is assumed to mean lower plating and thermal expansion stresses exist at the interface. Nickel coatings over the copper, ATZCN, failed whereas ATZC did not. The ATZC models were not instrumented; however no problems in obtaining data with the ATZC process are expected. Valid one-wire/plate thermocouple of copper/constantan should be possible. The ATZC method lacks particle resistance.

The surface finish of ECAN models are shown in Figures 20 and 22. Model CC represents the roughness of the Phase A ECAN models, and Model FFF represents the improved surface finish obtained in a Phase B optimization study conducted after the tunnel test. Table IX shows the ECAN models generally survived all eight runs at stagnation temperatures exceeding 650°F. Oven tests (where the models were heat soaked and cooled to progressively higher temperatures) generally caused local plate blistering in ECAN models when cooling from 550°F. The manufacturer's rating of Stycast 3070 is 500°F. Therefore, the ECAN demonstrated operating temperatures exceeding the plastic substrate rated temperature.

Models AA and CC provided valid heating data for the model geometries of this study in spite of the undesirable roughness. The improved surface finish of Phase B ECAN may prove adequate for many model applications, however further improvements should be sought.

#### APPLICATIONS STUDIES

The Phase A development results indicate applications and modeling concepts that justify further effort. Some of the recommended effort may have progressed within a Phase B of this contract except that a reassessment of priorities directed the remaining funds to the selective plating effort to be described.

#### Orbiter Model Requirements in Tunnel B

Phase B was begun with the intent of fabricating a 0.0175-scale model of the Orbiter with the improved ECAN process and test in the AF-AEDC Tunnel B. The Phase A tests in the NASA-Ames facility were conducted at heating conditions exceeding Tunnel B at its maximum Reynolds number. The model insertion mechanism is not as rapid in Tunnel B as is possible in the NASA-Ames 3-1/2 Foot Hypersonic Tunnel. Figure 23 shows the computer prediction of maximum temperatures that are expected for Orbiter and hemisphere models during the nominal five to seven second insertion time of Tunnel B. The shown extrapolations were made to conserve computer time. Considering the temperature predictions, Phase A results, and the lower particle contamination of Tunnel B, it appears Phase B ECAN models could be tested successfully in Tunnel B. The "durability" factor of safety for the models would be essentially one, however, unless: (1) the operating temperature of the plated slab model is increased through improvements. (2) the insertion time of the facility is decreased, or (3) the test is conducted in the Mach 6 capability of the facility. If the model insertion time in Tunnel B could be reduced to the nominal two seconds of the Ames facility then the ECAN models could be used with confidence of survival in Tunnel B and the smooth-surface ATZN models would have a fair probability of survival.

\*

÷.

#### Recommended Efforts

Based on the difficulty in finding a substrate-plating combination for the plated slab method that meets both the smoothness and temperature criteria, the "grade" in Table II was reduced for the plated slab approach. Further material and process studies could raise this grade and should be conducted because of the attractiveness of this method if the material problem is solved.

Review of Table II and Figure 1 indicates that the semi-infinite wire concept Style C and calorimeter concept Style A currently have the highest predicted ratings. Laboratory and tunnel evaluations of both are recommended.

The wire gage would be easily evaluated with an existing model machined from 17-4PH stainless steel or similar material. Instrumentation holes would be filled with a length of constantan wire that has a coating of electrical insulator. The surface would be plated with Niculoy 22 to provide a smooth, jointless surface and establish Niculoy/constantan thermocouples at each sensor location. The material property term  $\sqrt{\rho CK}$  of constantan differs from 17-4 stainless steel by only one percent (Table I) which should result in good accuracies. This approach is not suitable for areas of high thermal gradients where the material conduction would quickly distort the surface heating distribution.

The free-standing thin-skin calorimeter (FTSN) concept requires more laboratory development. The electroless plated thin-skin heat transfer model has several advantages over machined or electroformed models that make it worthy of development. The concept also has application to dynamic stability testing where low model inertia and freedom from energy absorbing structural joints are important. A successful material-technique optimization for the FTSN process would also permit fabrication and evaluation of the NTEC process that could conceivably help the plated slab method pass all of the objectives.

#### SELECTIVE PLATING HEATSHIELD TILE ROUGHNESS

The feasibility of electroless nickel providing a controlled surface roughness on wind tunnel models was demonstrated during Phase A. This process promised an accurate assessment of heatshield heating on the Orbiter as affected by misalignment of tiles resulting from manufacturing. This assessment is important to current NASA project and therefore, the remaining contract effort was devoted to this task.

#### Specifications

The specifications for simulating misaligned heatshield tiles on the lower surface of the Orbiter were:

- Tile Pattern The herringbone tile pattern planned for the centerline portion (as defined in Rockwell drawing VL70-399043) will be used over the total area of interest
- (2) Tile Area of interest Begin tile pattern 2% length aft of nose, covering the lower orbiter area up to the tangent line of the chines and wing leading edge, extending rearward to 80% length of the model
- (3) Selection of Tiles to be Raised Random selection of tiles to provide 25% of raised tiles in the tile area of interest. The plated tile pattern will be symmetrical about the longitudinal centerline (instrumentation is located only on one side of centerline)
- (4) Tile Size All selected tiles will be plated to within 0.0009 to 0.001 inch height. The tiles are 0.105 inch square for the 0.0175-scale model

#### Technique Development

A positive-resist method of selective electroless nickel plating was chosen. Development tasks included a negative of the plating pattern and customization of the selective plating method for the material, geometry and specifications of this effort.

A negative was generated by first accurately drawing all of the lower Orbiter tiles existing on one side of centerline to 0.04167-scale with a Gerber computer driven drafting machine. A table of random numbers (Ref. 13) was used to designate which 25% of the tiles would be raised. The tiles and the selection are shown in Figure 24. The selected tiles were covered with 0.250-inch flat black tape on the drawing and then photographic processes were employed to provide a 0.0175-scale negative of the plating pattern with symmetry about the longitudinal centerline. The basic steps of the selective plating process are:

- (1) Clean surface
- (2) Apply resist
- (3) Expose and develop resist
- (4) Activate exposed surface
- (5) Electroless plate exposed surface
- (6) Remove resist

The process used for the subject model is given in Table XII. The nickel strike improved adhesion to the polished stainless surface. Two coats of resist were necessary for it to endure the activation and relatively long plating time. A vacuum bagging technique was used to tightly hold the negative over the model surface during resist exposure. The model is shown in Figure 25 with the exposed and baked resist prior to the activation and plating steps.

#### Model Results

The plating of simulated heatshield tile roughness on a scaled model was successfully accomplished. Figure 26 is a photograph of the completed model. This existing model had a welded nose section and weld fills. Weld heat-lines became vivid during the mild etching of the activation process as shown; however, they did not cause any surface roughness. The plated pattern duplicates the negative with good fidelity. The plated height is within the requested tolerance; the plate surface is bright and the tiles are well adhered.

NASA has scheduled a test in the AF AEDC Tunnel F where this same model was previously tested in a smooth-surface condition.

This demonstration of controlled roughness suggests application of the technique to provide special model surface details in other aerothermodynamic requirements.

#### CONCLUSIONS AND RECOMMENDATIONS

- 1. A plated slab concept demonstrated the technical model objectives in varying degrees of success. Objectives such as a jointless surface and accurate placement of instruments were readily achieved. Good surface smoothness and model operating temperatures to the limits of the substrate material were demonstrated individually but not simultaneously.
- 2. The plated slab concept may be applied to hypersonic wind tunnel models if the maximum, momentary surface temperature is restricted to approximately 500°F for the ECAN and 300°F for the ATZN processes.
- 3. Experimental results indicate that further development work is required and justified for two modeling methods employing electroless nickel: (1) semi-infinite material and (2) free-standing thin-skin calorimeter
- 4. Controlled surface roughness was successfully accomplished on a scaled wind tunnel model using a selective electroless plating method. Selective electroless plating is an effective method for providing special surface details on wind tunnel models.
- 5. This research resulted in four innovations considered as new technology items: (1) a plated slab model method of measuring convective heat transfer. This method is a new approach for obtaining highly instrumented, seamless-surface models regardless of external geometry, (2) a one-wire Niculoy/constantan thermocouple that is formed during electroless plating of the model surface. This instrumentation improves accuracy and cost and makes practical the plated slab model concept, (3) an aluminum transfer procedure whereby a thin layer of aluminum powder is bonded to the plastic surface during the casting process. The film is readily plated with electroless nickel or copper to excellent surface brightness and with temperature resistance up to 350°F for nickel and 550°F for copper coating and (4) selective electroless plating of scaled surface detail on aerothermodynamic models. The use of photo resist and selective electroless plating (or etching) to control surface roughness on wind tunnel models is considered a new application of an existing technology.

- Brenner, A.: History of the Electroless Plating Process. Symposium on Electroless Nickel Plating, ASTM Special Technical Publication No. 265, 1959, pp. 1-2.
- Gorbunova, K. M. and Nikiforova, A. A.: <u>Physicochemical Principles</u> of <u>Nickel Plating</u>. National Science Foundation Publication TT63-11003, 1963, translated in Jerusalem from a publication by the Institute of Physical Chemistry, Academy of Sciences of the U.S.S.R., 1960.
- 3. Goldie, W.: <u>Metallic Coating of Plastics</u>. Electrochemical Publications Limited, Middlesex, England, Volume 1, 1968.
- 4. Stalmach, C. J., Jr.: Plating Methods for Thin-Skin Heat-Transfer Models. LTV Aerospace Report 2-59700/2R-2986, February 1972, Rev. A May 1972.
- Gardon, R.: An Instrument for the Direct Measurement of Intense Thermal Radiation. <u>The Review of Scientific Instruments</u>, Vol. 24. No. 5. May 1953.
- 6. Hube, F. K.: An Experimental Method for Determining Heat Transfer Distributions on Blunt Bodies at Hypersonic Mach Numbers. AF AEDC-TR-69-20, June 1969.
- Matthews, R. K., Eaves, R. H., Jr., and Martindale, W. R.: Heat-Transfer and Flow-Field Tests of the McDonnell Douglas-Martin Marietta Space Shuttle Configurations. AF AEDC-TR-73-53, April 1973.
- Trimmer, L. L., Matthews, R. K., and Buchanan, T. P.: Measurement of Aerodynamic Heat Rates at the Von Karman Facility. International Congress on Instrumentation in Aerospace Simulation Facilities, September 1973.
- Feldstein, N.: Two Room-Temperature Electroless Nickel Plating Baths - Properties and Characteristics. RCA Review, Princeton, N. J., June 1970.
- Jones, R. A. and Hunt, J. L.: Use of Fusible Temperature Indicators for Obtaining Quantitative Aerodynamic Heat-Transfer Data. NASA TR R-230, February 1966.
- 11. Zoby, E. V. and Sullivan, E. M.: Effects of Corner Radius on Stagnation-Point Velocity Gradients on Blunt Axisymmetric Bodies. NASA TM X-1067, March 1965.
- 12. Jones, R. A.: Heat-Transfer and Pressure Distributions on a Flat-Face Rounded-Corner Body of Revolution with and without a Flap at a Mach Number of 8. NASA TMX-703, September 1962.
- 13. Selby, S. M.: Standard Mathematical Tables. The Chemical Rubber Company, Cleveland, Ohio, 16th Edition, 1968.

| Material<br>(Trademark & No.)        | Thermal Conductivity<br>X 10 <sup>l</sup><br>(Cal)(cm)/(sec)(cm <sup>2</sup> )(°C) | Specific<br>Gravity | Specific Heat<br>Cal/gm<br>°C | Maximum Surface<br>Temperature <sup>o</sup> C | Thermal Expansion<br>Coef.x10 6/°C | Tensile<br>Strength<br>PSI       | Flexural<br>Strength<br>PSI | Compressive<br>Strength<br>PSI                                                                                                                                                                                                      | Shrinkage<br>Linear, 5              |
|--------------------------------------|------------------------------------------------------------------------------------|---------------------|-------------------------------|-----------------------------------------------|------------------------------------|----------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 2762 FT                              | 32.0                                                                               | 2.1                 | .2                            | 300                                           | 38                                 | a dina series<br>Provinsi series | 18,500                      |                                                                                                                                                                                                                                     |                                     |
| Stycast 3070                         |                                                                                    |                     |                               | 260                                           | 20                                 | 9,000                            | 16,000                      | 12,000                                                                                                                                                                                                                              |                                     |
| 1095                                 | 4.48                                                                               | . 80                |                               | 260                                           | 40                                 |                                  | 4,200                       |                                                                                                                                                                                                                                     | NIL                                 |
| 2850 KT                              | 103.3                                                                              | 2.8                 |                               | 200                                           | 29                                 |                                  | 16,000                      |                                                                                                                                                                                                                                     |                                     |
| Eccobond Paste 99                    | 40.3                                                                               |                     |                               | 230                                           | 32                                 |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| Solder 58C                           | 241.                                                                               |                     |                               | 260                                           | 32                                 |                                  | 9,700                       |                                                                                                                                                                                                                                     | and the                             |
| Novimide 700755                      | 5.0                                                                                | 1.94                |                               | 540                                           | 64                                 | 10,300                           |                             | 18,000                                                                                                                                                                                                                              | .05                                 |
| LO-XA 125                            | 40.0                                                                               | 1.80                |                               | 1260                                          | 1.20                               |                                  |                             | 4,000                                                                                                                                                                                                                               | .00                                 |
| Thermo-Sil 120                       | 14.8                                                                               | 1.88                |                               | 1650                                          | .81                                |                                  |                             | 5,000                                                                                                                                                                                                                               | .10                                 |
| Kaolite 2200                         | 5.68                                                                               | .90                 |                               | 1200                                          |                                    |                                  |                             | 700                                                                                                                                                                                                                                 | .3                                  |
| Air (Standard<br>Atmosphere at Rest) | •57                                                                                | .00123              | .24                           |                                               |                                    |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| Quartz                               | 34.0                                                                               | 2.2                 | .18                           | 1100                                          | .56                                |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| Wax (Nominal)                        | 6.0                                                                                | •9                  | .69                           | 120                                           |                                    |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| Electroless Nickel<br>(Literature)   | 105 to 135                                                                         | 7.85                |                               | 890                                           | 13.                                |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| (RCA)                                |                                                                                    |                     |                               | 1240                                          |                                    |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| (Niculoy 22)                         | 135*                                                                               | 8.20                | .13*                          | 1000                                          | 13.5                               |                                  |                             |                                                                                                                                                                                                                                     |                                     |
| Nickel (200)                         | 1819 to 1600                                                                       | 8.89                | .13                           | 1450                                          | 15.3 to 13.5                       | 48,000                           |                             | la parte de la composición de la compos<br>La composición de la c |                                     |
| Stainless S. (17-4PH                 | ) 430                                                                              | 7.78                | .13                           | 1400                                          | 10.8                               | 145,000                          |                             |                                                                                                                                                                                                                                     | $f_{i,j} = e_{i,j} f_{i,j} e_{i,j}$ |
| Chromel                              | 460                                                                                | 8.73                | .107                          | 1430                                          | 13.1                               | 95,000                           |                             |                                                                                                                                                                                                                                     |                                     |
| Constantan                           | 506                                                                                | 8.92                | .094                          | 1220                                          | 14.9                               | 80,000                           |                             |                                                                                                                                                                                                                                     |                                     |

TABLE I PROPERTIES OF MATERIALS CONSIDERED FOR MODEL AND INSTRUMENTATION

\* Measurement not available; value shown assumed for computer program

ORIGINAL PAGE IS OF POOR QUALITY

- AP.

### TABLE II GRADING OF MODEL/INSTRUMENT CONCEPTS

EMPLOYING JOINTLESS ELECTROLESS NICKEL SURFACE

|                                                                                                                                                                                                                                                                                                                                        | PGRM        |     |     | ORIME |              |           | GARI      |     |     | SEM        | I-INFI<br>CO | NITE<br>NCEPT |           | IAL       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|-------|--------------|-----------|-----------|-----|-----|------------|--------------|---------------|-----------|-----------|
|                                                                                                                                                                                                                                                                                                                                        | OBJ.<br>NO. | A   | В   | С     | D            | A<br>CAST | A<br>MACH | В   | Ċ   | A*<br>ATZN | A*<br>ECAN   | В             | C<br>CAST | C<br>MACH |
| MODEL/INSTRUMENT FABRICATION<br>Model Fabrication<br>Instrument Fabrication<br>Availability of Suitable Materials<br>Reproduction of Surface Detail<br>Ease of Instrument Placement                                                                                                                                                    | 2<br>8      | 7.8 | 6.6 | 6.4   | 5.6          | 5.6       | 7.6       | 5.0 | 6,0 | 8.4        | 8.4          | 6.2           | 6.8       | 8.4       |
| ELECTROLESS PLATING (To Required Thickness)<br>Lack of Joints<br>Lack of Mold Lines, Localized Roughness<br>Overall Surface Smoothness<br>Process Complexity                                                                                                                                                                           | 1<br>1<br>3 | 8.8 | 6.8 | 7.3   | 6.8          | 6.8       | 9.5       | 6.8 | 6.8 | 7.5        | 7.3          | 6.8           | 7.3       | 8.5       |
| ACCURACY OF DATA<br>Suitable Theory to Process Data<br>Calibration or Property Determination<br>Heat Loss/Gain Errors with Time<br>Influence of Model Raiii<br>(Thermal Gradients)<br>Instrument Effect on Surface Temp. Dist.<br>Instrument Effect on Surface Roughness<br>Customize Sensor Sensitivity<br>Accuracy of Inst. Location | 9<br>7<br>4 | 8.3 | 5.6 | 6.8   | 5.5          | 7.3       | 7.3       | 7.3 | 5.9 | 8.6        | 9.1          | 6.3           | 7.9       | 7.8       |
| MODEL/INSTRUMENT DURABILITY<br>High Pressures and Vibrations<br>Particle Impingement<br>Surface Temperature Rise                                                                                                                                                                                                                       | 6<br>5      | 9.0 | 6.7 | 8.7   | 6.7          | 4.3       | 5.0       | 4.3 | 8.0 | 5.0        | 6.7          | 4.3           | 6.7<br>   | 9.3       |
| AVG. GRADE OF MAJOR HEADINGS                                                                                                                                                                                                                                                                                                           |             | 8.5 | 6.4 | 7.3   | 6 <b>.</b> 2 | 6.0       | 7.4       | 5.9 | 6.7 | 7.4*       | 7.9*         | 5.9           | 7.2       | 8.5       |

NOTES: (1) Refer to Figure 1 for concepts; Text for objectäves.

25

(2) Grading criteria: 1 = poor or very difficult

5 = acceptable or difficult

10 = excellent or simple

(3) Each major heading grade is an average of subheading grading.

(4) Grading is conjectured, based on library and computer studies and general experience to date.
 The \* columns include laboratory and wind tunnel experience on samples (anticipated ~ 8.8 prior to recent experience)

# TABLE III

| REPRESENTATI | E PLATING | PROCEDURES  | FOR |
|--------------|-----------|-------------|-----|
| SENSITIZED   | SMOOTH PL | ASTICS (SSP | N)  |

| P | Process |   | Solution                                 | Temperature | Time                      | Agitation      |
|---|---------|---|------------------------------------------|-------------|---------------------------|----------------|
| 1 | 2       | 3 |                                          |             | (Min.)                    | -0-            |
| 0 | 0       | 0 | Sand with wet 400 to 600 grit paper      |             |                           |                |
| 0 | 0       | 0 | Xylene                                   | RT          | 10                        | Ultrasonic     |
| 0 | o       | 0 | Shake off                                |             |                           |                |
| 0 | 0       |   | Alconox                                  | RT          | 10                        | Ultrasonic     |
| 0 | 0       |   | Rinse water + spray                      | RT          | 1                         | Ultrasonic     |
|   |         | 0 | Hydrolyzer (Shipley)                     | 140         | 5                         |                |
|   |         | 0 | Rinse water + spray                      | RT          | 5                         |                |
|   |         | 0 | Neutralizer, PM-950<br>(Shipley)         | 110         | 3                         |                |
|   |         | ο | Rinse + spray rinse                      | RT          | 2                         |                |
| 0 |         |   | Sensitizer (Stannum<br>Chloride)         | 120         | <b>1</b>                  | Ultrasonic     |
|   | 0       | 0 | Catalyst 9F (Shipley)                    | RT          | 5                         |                |
| 0 | ο       | 0 | Spray rinse                              | RT          |                           |                |
| 0 |         |   | Activator (Palladium<br>Chloride)        | 120         | 1                         | Ultrasonic     |
|   | 0       | 0 | Accelerator PM-960<br>(Shipley)          | RT          | 2                         |                |
| 0 | 0       | 0 | Spray rinse                              | RT          |                           |                |
| 0 |         |   | Repeat Sensitizer and<br>Activator steps |             |                           |                |
| 0 | 0       | 0 | PM-980 Nickel (Shipley)                  | RT          | 5                         |                |
| 0 | 0       | 0 | Spray rinse                              | RT          |                           |                |
| 0 | o       | o | Niculoy 22 (Shipley)                     | 195         | <b>As req'd</b><br>~ 10 μ | N <sub>2</sub> |
|   |         |   |                                          |             | inch/min.                 |                |
| 0 | 0       | 0 | Rinse water                              | 195         | 2                         |                |
| 0 | 0       | 0 | Spray rinse (optional)                   | RT          | 1                         |                |

### TABLE IV

# EVALUATION OF CANDIDATE SUBSTRATE MATERIALS WITH SSPN (TABLE III) PLATING PROCEDURES

| Material<br>(Trademarks)                                                    | General Casting<br>Characteristics | Air Pores,<br>Roughness                   | Hardness               | Comp <b>atability</b><br>With Waxed Wires | Plating<br>Results |
|-----------------------------------------------------------------------------|------------------------------------|-------------------------------------------|------------------------|-------------------------------------------|--------------------|
| Stycast 2762FT<br>3070<br>1095<br>2850KT<br>Eccobond 99                     | X<br>X                             | ø<br>ø<br>ø<br>x                          | \$\$<br>\$<br>\$<br>\$ |                                           | x<br>x             |
| 58C<br>Novimide<br>700/55-F18<br>700/55-F19<br>700/55-P19<br>700/55-F18/P19 | x<br>g<br>g<br>g                   | \$<br> <br> <br> <br> <br> <br> <br> <br> | Ø<br>-                 | -<br>x<br>x<br>x<br>x                     |                    |
| 10-XA 125<br>Thermo-Sil 120                                                 | -<br>x                             | x<br>x<br>x                               |                        |                                           | ø                  |
| Kaolite 2200                                                                | X                                  | x                                         | x                      |                                           | ø                  |

grading (relative, based on the samples evaluated and not to be considered an absolute conclusion)

27

øø excellent good

X

fair marginal

unsatisfactory

(blank) not evaluated

## TABLE V

### MATERIAL SAMPLES EVALUATED WITH ATZN PLATING PROCESS

|                           |                                  | \$                                          | UBSTRATE MATERIAL                 |                           |                         |
|---------------------------|----------------------------------|---------------------------------------------|-----------------------------------|---------------------------|-------------------------|
| Filler<br>Material        | Emerson Cuming<br>Stycast 2762FT | Emerson Cuming<br>Stycast 3070<br>+% Filler | Furane<br>Epocast 21<br>+% Filler | Shell<br>828<br>+% Filler | Dow<br>438<br>+% Filler |
| None                      | 0                                | Ο                                           | 0                                 | 0                         | 0                       |
| Graphite                  |                                  | 2, 3, 4*, 5, 8,<br>16                       | 20,40                             |                           |                         |
| 1/16" Long Fiber<br>Glass |                                  | 2, 4, 6, 8, 12,<br>18                       | 18, 35, 44                        |                           |                         |
| PVA Fibers                |                                  | .625, 1.25                                  |                                   |                           |                         |
| Quartz                    |                                  | 4, 8, 11, 22                                | 44, 51                            | 79                        | 24                      |
| Aluminum                  |                                  | 8, 16                                       | 116                               |                           |                         |

SUBSTRATE MATERIAL

\* Considered best with the ATZN process

## TABLE VI

4

29

PLATING PROCEDURES FOR ALUMINUM TRANSFER (ATZN) AND ETCHED SURFACE (ECAN) PLASTICS

| ATZN<br>* | Phase A<br>ECAN | Phase B<br>ECAN<br>** | Solution                     | Temperature<br>(°F) | Time<br>(Min.) | Agitation                                        |
|-----------|-----------------|-----------------------|------------------------------|---------------------|----------------|--------------------------------------------------|
| 0         |                 |                       | Xylene                       | RT                  | 10             | Ultrasonic                                       |
| 0         |                 |                       | Shake off                    |                     |                |                                                  |
| 0         |                 |                       | Alconox                      | RT                  | 10             | Ultrasonic                                       |
| 0         |                 |                       | Rinse water + spray          | RT                  | 1              | Ultrasonic                                       |
| 0         |                 |                       | 10% Nitric Acid              | RT                  | 1              | Ultrasonic                                       |
| 0         |                 |                       | Zinc Aid                     | RT                  | 1/2            |                                                  |
|           | ο               |                       | Concentrated Sulfuric Acid   | RT                  | 25             |                                                  |
|           | Ο               |                       | Rinse water + spray          | RT                  | 2              |                                                  |
|           | ο               |                       | Etch PM-930 (Shipley)        | 140                 | 5              | N <sub>2</sub>                                   |
|           |                 | ο                     | Etch FM-930 (Shipley)        | 150                 | 7              | N <sub>2</sub>                                   |
|           | ο               | ο                     | Rinse water                  | RT                  | 2              |                                                  |
|           | ο               | ο                     | Rinse water + spray          | RT                  | 2              | and<br>An an |
|           | ο               | ο                     | Neutralizer PM-950 (Shipley) | 110                 | 5              |                                                  |
|           | 0               | 0                     | Rinse water + spray          | RT                  | 2              |                                                  |

# TABLE VI (CONTINUED)

| ATZN<br>* | Phase A<br>ECAN | Phase B<br>ECAN<br>** | Solution                        | Temperature<br>( <sup>°</sup> F) | Time<br>(Min.)     | Agitation  |
|-----------|-----------------|-----------------------|---------------------------------|----------------------------------|--------------------|------------|
|           | O               | o                     | 25% Hydrochloric Acid           | RT                               | 1                  |            |
|           | 0               | o                     | 5-2-1 mix catalyst 9F (Shipley) | RT                               | 3                  | Ultrasonic |
|           | o               | ο                     | Rinse water + spray             | RT                               | 2                  |            |
|           | Ο               | ο                     | Accelerator FM-960 (Shipley)    | 105                              | 2                  | Stir       |
| ο         | 0               | o                     | Rinse water + spray             | RT                               | 1                  |            |
| 0         | o               | 0                     | Niculoy 22 (Shipley)            | 195                              | As req'd<br>~ 10 μ | N2         |
| O         | 0               | O                     | Rinse water                     | 195                              | inch/min.<br>2     |            |
| 0         | 0               | 0                     | Spray rinse (optional)          | RT                               |                    |            |

\* Optimized for Stycast 3070 + 4% graphite with bonded aluminum powder on surface

\*\* Optimized for Stycast 3070 + 4% glass fibers

# TABLE VII

# MATERIAL SAMPLES EVALUATED WITH ECAN PLATING PROCESS

|                           | Substrate                                    | Material              |
|---------------------------|----------------------------------------------|-----------------------|
| Filler<br>Material        | Emerson Cuming<br>Stycast 3070<br>+ % Filler | Dow 431<br>+ % Filler |
| None                      | Ο                                            |                       |
| Graphite                  | 4,6                                          | 6, 16, 32             |
| Boron Nitride             | <b>4 1</b>                                   |                       |
| 1/16" Long<br>Fiber Glass | 4*, 8, 12                                    |                       |
| Quartz                    | 8                                            |                       |
| Calcium<br>Carbonate      | 2, 4                                         |                       |
| Aluminum                  | 4, 16, 32                                    |                       |
| Copper                    | 4, 16                                        |                       |
| Carbolized Iron           | 4, 16, 32                                    |                       |
| Pure Iron                 | 8, 16                                        |                       |
|                           |                                              |                       |

\* Considered best with the ECAN process

### TABLE VIII

### ONE INCH DEVELOPMENT MODELS

A. PHASE A

| FLAT<br>FACE | DOME<br>FACE | SUBSTRATE<br>MATERIAL | INSTRU-<br>MENTED | SKIN<br>MATERIAL   | SKIN<br>THICKNESS | PLATE<br>PROCESS | TUNNEL<br>TESTED | FABRICATION<br>REMARKS                                  |
|--------------|--------------|-----------------------|-------------------|--------------------|-------------------|------------------|------------------|---------------------------------------------------------|
| A            | B            |                       | Yes               | 17-4 PH            | .03 (Nom)         | Machine          | Yes              | Master Models, 4.8 to<br>9.8 rms                        |
|              | С            | Stycast 3070          | Yes               | Ni 22-9-M          | .001              | ATZN             | No               | Isolated wrinkle on cylinder, void                      |
|              | D            | 3070 + 2% Gr.         | Yes               | Ni 22-9-0          | .0015             | ATZN             | No               | Blistered, void                                         |
|              | E            | 3070 + 3% Gr.         | Yes               | Ni 22-9-M          | .001              | ATZN             | Yes              | ОК                                                      |
|              | F            | 3070 + 4% Gr.         | Yes               | Ni 22-9-M          | .0015             | ATZN             | Yes              | .001 + .0005, OK                                        |
| G            |              | 3070 + 4% Gr.         | Yes               | Ni 22-9 <b>-</b> M | .0015             | ATZN             | Yes              | .001 + .005, surface<br>11 to 20 rms                    |
| H            |              | 3070 + 4% Gr.         | Yes               | Ni 22-9-M          | .003              | ATZN             | Yes              | .002 + .001, 2 piece mold                               |
| Ι            |              | 3070 + 4% Gr.         | Yes               | Ni 22-10-N         | .0015             | ATZN             | Yes              | .0005 + .001, No Agita-<br>tion Plate Rougher<br>than G |
| J            |              | 3070 + 4% Gr.         | No                | Ni 22-9-0          | .001              | ATZN             | No               | Al. dull, plate spotty,<br>One Blister, <u>void</u>     |
| ĸ            |              | 3070 + 4% Gr.         | No                |                    |                   | -                | No               | Al. dull, did not<br>plate, <u>void</u>                 |
|              |              |                       |                   |                    |                   |                  |                  |                                                         |

## TABLE VIII (CONTINUED)

| FLAT<br>FACE | DOME<br>FACE | SUBSTRATE<br>MATERIAL     | INSTRU-<br>MENTED | SKIN<br>MATERIAL     | SKIN<br>THICKNESS | PLATE<br>PROCESS | TUNNEL<br>TESTED | FABRICATION<br>REMARKS                                          |
|--------------|--------------|---------------------------|-------------------|----------------------|-------------------|------------------|------------------|-----------------------------------------------------------------|
| L            |              | 3070                      | No                | NI 22-9-0            | .001              | ATZN             | No               | OK                                                              |
| M            |              | 3070                      | No                | NI 22-9-0            | .0035             | ATZN             | No               | .003 + .005, face loo<br>after plating, surface<br>12 to 33 rms |
| N            |              | 3070 + 2% Gr.             | No                | Ni 22-9-0            | .001              | ATZN             | No               | Al. dull, spotty pla<br>Question                                |
| 0            |              | 3070 + 3% Gr.             | No                |                      | -                 |                  | No               | Al. dull, did not<br>plate, void                                |
| P            |              | 3070                      | No                | CF-74 +<br>Ni 22-9-M | .001              | ATZCN            | Yes              | .0008 + .0002, Al.<br>dull, plate spotty,<br>Question           |
|              | Q            | 3070 + 2% Gr.<br>+ 2% Gl. | No                | Ni 22-9-M            | .001              | ATZN             | No               | Al. dull, plate<br>spotty, Question                             |
|              | R            | 3070                      | No                | CP-74                | .001              | ATZC             | Yes              | OK                                                              |
| NOTE:        | New RTV      | Molds were used           | l for subs        | equent non-inst      | rumented model    | s to solve       | dull Al.         | problem                                                         |
|              | s            | 3070 + 4% Gl.             | No                | Ni 22-9-M            | .0015             | ATZN             | Yes              | Plate spotty                                                    |
|              | <b>T</b>     | 3070 + 2% Gr.<br>+ 2% Gl. | No                | Ni 22-9-M            | .0015             | ATZN             | Yes              | Plate spotty                                                    |
|              | U            | 3070 + 4% Gr.             | No                | CP-74<br>+ Ni 22-9-M | .00125            | ATZCN            | Yes              | .001 + .00025, OK                                               |
|              |              |                           |                   |                      |                   |                  |                  |                                                                 |

TABLE VIII (CONTINUED)

| FLAT<br>FACE | DOME<br>FACE | SUBSTRATE<br>MATERIAL | INSTRU-<br>MENTED | SKIN<br>MATERIAL | SKIN<br>THICKNESS | PLATE<br>PROCESS | TUNNEL<br>TESTED | FABRICATION<br>REMARKS                 |
|--------------|--------------|-----------------------|-------------------|------------------|-------------------|------------------|------------------|----------------------------------------|
|              | V            | 3070 + 4% Gr.         | No                | CP-74            | .001              | ATZC             | Yes              | ОК                                     |
| W            |              | 3070 + 4% Gr.         | No                |                  |                   |                  | No               | Did not plate, surface<br>13 to 25 rms |
| x            |              | 3070 + 4% Gr.         | No                | Ni 22-9-M        | .0005             | ATZN             | Yes              | ок                                     |
| Y            |              | 3070 + 4% Gr.         | No                | Ni 22-9-M        | .002              | ATZN             | Jes              | OK                                     |
|              | AA           | 3070                  | Yes               | Ni 22-9.5-N      | .0015             | ECAN             | Yes              | .001 + .0005, surface<br>like CC       |
|              | BB           | 3070 + 4% Gr.         | Yes               | Ni 22-9.5-N      | .0015             | ECAN             | Yes              | .001 + .0005, not as<br>rough as CC    |
| CC           |              | 3070                  | Yes               | Ni 22-9.5-N      | .0015             | ECAN             | Yes              | .001 + .0005, surface<br>70 to 140 rms |
| DD           |              | 3070                  | No                | NI 22-9.5-N      | .003              | ECAN             | Yes              | .0015 + .0015,<br>surface like CC      |
|              | EE           | 3070                  | No                | NI 22-9.5-N      | .003              | ECAN             | No               | .0015 + .0015,<br>surface like CC      |
|              | FF           | 3070                  | No                |                  | -                 | -                | No               | Did not plate, surface<br>10 to 17 rms |
|              |              |                       |                   |                  |                   |                  |                  |                                        |

## TABLE VIII (CONTINUED)

B. PHASE B

| FI AT<br>FACE | DOME<br>FACE | DATE<br>CAST | SUBSTRATE<br>MATERIAL | INSTRU-<br>MENTED | SKIN<br>MATERIAL | SKIN<br>THICKNESS | PLATE<br>PROCESS | TUNNEL<br>TESTED | FABRICATION<br>REMARKS            |
|---------------|--------------|--------------|-----------------------|-------------------|------------------|-------------------|------------------|------------------|-----------------------------------|
|               | FFF          | 9/16         | 3070 + 4 Gl.          | No                | N1 22-9.5M       | .001              | ECAN             | No               | Surface improved,<br>40 to 78 rms |
|               | GG           | 9/16         | 3070 + 4 G1.          | No                | Ni 22-9.5M       | .001              | ECAN             | No               | Surface like FFF                  |
| HH            |              | 9/16         | 3070 + 4 G1.          | No                | Ni 22-9.5M       | .001              | ECAN             | No               | Surface like FFF                  |
| II            |              | 9/16         | 3070 + 4 G1.          | No                | Ni 22-9.5M       | .001              | ECAN             | No               | Surface like FFF                  |
|               |              |              |                       |                   |                  |                   |                  |                  |                                   |

### Footnotes for Table VIII

| N1 22-<br>CP74 - | Niculoy 22, Nickel Alloy by Shipley<br>Copper Alloy by Shipley       |
|------------------|----------------------------------------------------------------------|
| 9-0              | 90% strength, old solution                                           |
| 9-M              | 90% strength, old and new solution mixed                             |
| 10-N             | 100% strength, new solution                                          |
| Gr               | Graphite, powder                                                     |
| .G1              | Glass, chopped fibers                                                |
| ATZN             | Aluminum Transfer cast process with Zinc Aid, Nickel plate procedure |
| ATZC             | Aluminum Transfer cast process with Zinc Aid, Copper plate procedure |
| ATZCN            | ATZC with Nickel plated over the copper                              |
| ECAN             | Etch, Catalyst, Accelerator treatment of plastic with Nickel plate   |

С С TABLE IX Model Surviability Results M = 7.32 Tests

| Run<br>NO.                          | hS <sup>*</sup><br>BTU<br>Ft <sup>2</sup> -Sec- <sup>0</sup> R | MAX.<br>Model<br>Temp. at<br>$\theta=30^{\circ}$ , F | Tinser-<br>tion<br>Time<br>Sec.                                | Mount<br>Posi-<br>tion | Model<br>Letter | Model<br>Condition After<br>Run                                   |
|-------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|------------------------|-----------------|-------------------------------------------------------------------|
| 1                                   | .020                                                           |                                                      | 2                                                              | 1                      | В               | go::                                                              |
|                                     |                                                                |                                                      |                                                                | 2                      | A               | goc∂                                                              |
|                                     |                                                                |                                                      |                                                                | 3                      | AA              | goo                                                               |
|                                     |                                                                |                                                      |                                                                | 4                      | CC              | good                                                              |
| n dia 5<br>Martina<br>Martina dia 4 |                                                                | 355                                                  |                                                                | 5                      | BB              | good                                                              |
|                                     |                                                                |                                                      |                                                                | 6                      |                 | good                                                              |
|                                     |                                                                |                                                      |                                                                | 7                      | <b>H</b>        | good                                                              |
|                                     |                                                                |                                                      |                                                                | 8                      | F               | good                                                              |
|                                     |                                                                |                                                      |                                                                | 9                      | G               | face wrinkled after run                                           |
|                                     |                                                                |                                                      |                                                                | 10                     | Е               | face wrinkled after run                                           |
| 2                                   | .028                                                           |                                                      | 1                                                              | 1                      | В               | <pre>{slight particle abrasion {at stagnation on all models</pre> |
|                                     |                                                                |                                                      | an an an an traithe an athr<br>a 1975 an ann an Stàitean an An | 2                      | Α               |                                                                   |
|                                     |                                                                |                                                      |                                                                | 3                      | AA              |                                                                   |
|                                     |                                                                |                                                      |                                                                | 4                      | CC              |                                                                   |
|                                     |                                                                | 395                                                  |                                                                | 5                      | BB              |                                                                   |
|                                     |                                                                |                                                      |                                                                | 6                      | I I             | face loose after run                                              |
|                                     |                                                                |                                                      |                                                                | 7                      | Н               |                                                                   |
|                                     |                                                                |                                                      |                                                                | 8                      | F               |                                                                   |
|                                     |                                                                |                                                      |                                                                | 9                      | DD              |                                                                   |
|                                     |                                                                |                                                      |                                                                | 10                     | V               |                                                                   |

### TABLE IX Model Surviability Results M = 7.32 Tests

| Run<br>No. | hS <sup>*</sup><br>BTU<br>Ft <sup>2</sup> -Sec- <sup>O</sup> R | MAX.<br>Model<br>Temp. at<br>0=30°, F | ***<br>Inser-<br>tion<br>Time<br>Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mount<br>Posi-<br>tion | Model<br>Letter | Model<br>Condition After<br>Run                                |
|------------|----------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|----------------------------------------------------------------|
| 3          | .034                                                           |                                       | en en <b>l</b> a factoria de la composición de la comp | 1                      | В               | (particle abrasion                                             |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                      | Α               | Zmore noticeable                                               |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                      | AA              | (on all models                                                 |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                      | CC              |                                                                |
|            |                                                                | 445                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                      | BB              |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                      | U               | particle pitting more appar-<br>ent due to copper under nickel |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                      | H               | wrinkle and spalling on face                                   |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                      | F               | two fine cracks in plate from particle pits                    |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                      | DD              |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                     | V               | particle pitting more appar-<br>ent on copper                  |
| 4          | .040                                                           |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                      | В               | particle pitting continues                                     |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                      | A               | fon all models                                                 |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                      | AA              |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                      | CC              |                                                                |
|            |                                                                | 490                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                      | BB              |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                      | U               |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                      | Y               | most of plate on face lost                                     |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                      | F               | some spalling of plate on face                                 |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                      | DD              |                                                                |
|            |                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                     | v               |                                                                |

3 L TABLE IX Model Surviability Results M = 7.32 Tests

| Run<br>No.        | hS <sup>*</sup><br>BTU<br>Ft <sup>2</sup> -Sec- <sup>o</sup> R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX.<br>Model<br>Temp. at<br>$\theta=30^{\circ}$ , F | Inser-***<br>tion<br>Time<br>Sec. | Mount<br>Posi-<br>tion | Model<br>Letter    | Model<br>Condition After<br>Run                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|------------------------|--------------------|------------------------------------------------------------------------|
| 5                 | .038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 2                                 | 1                      | В                  | particle pitting very noticeable                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 2                      | А                  | particle pitting very noticeable                                       |
| n gana.<br>Tinang |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 3                      | AA                 | some particles penetrating plate,                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 4                      | CC                 | local damage only some particles penetrating plate,                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 4                      | UU I               | local damage only                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 540                                                  |                                   | 5                      | BB                 | practically no particle penetra-                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 6                      | IJ                 | tion, very little abrasion<br>face area very pitted and rough          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | Ŭ                      |                    |                                                                        |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 7                      | X                  | most of plate on face lost                                             |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 8                      | T                  | plate peeling at stagnation area                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 9                      | DD                 | two small blisters and a crack<br>in plate on face, very little        |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | 10                     | v                  | particle penetration<br>most particles penetrating                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   |                        |                    | through plate and deep into                                            |
| 6                 | .043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 2                                 | 1                      | $\mathbf{B}^{(n)}$ | substrate<br>pitted, rough face                                        |
|                   | •0+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                   | 2                      | A                  | pitted, rough face                                                     |
|                   | an a the second s |                                                      |                                   | 3                      | AA                 | hit by a large particle leaving                                        |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | <b>,</b>               |                    | a crater and local plate damage,<br>fine cracks in plate at stagnation |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                   | <b>1</b>               | CC                 | particle pitting of plate notice-<br>ably increased                    |

# TABLE IX Model Surviability Results M = 7.32 Jests

| Run<br>No.    | hs <sup>*</sup><br>BTU<br>Ft <sup>2</sup> -Sec- <sup>0</sup> R | MAX.<br>Model<br>Temp. at<br>θ=30°,°F | ***<br>Inser-<br>tion<br>Time<br>Sec. | Mount<br>Posi-<br>tion | Model<br>Letter | Model<br>Condition After<br>Run                                             |
|---------------|----------------------------------------------------------------|---------------------------------------|---------------------------------------|------------------------|-----------------|-----------------------------------------------------------------------------|
| 6<br>(Cont'd) | .043                                                           | 615                                   | 2                                     | 5                      | BB              | two small blisters in plate<br>near stagnation                              |
|               |                                                                |                                       |                                       | 6                      | U I             | fine cracks in plate in addi-<br>tion to heavy pitting                      |
|               |                                                                |                                       |                                       | 7<br>8                 | P<br>R          | wrinkles in plate on face<br>stagnation area blue and pur-<br>ple from heat |
|               |                                                                |                                       |                                       | 9                      | DD              | more cracks in plate, particle penetration low                              |
|               |                                                                |                                       |                                       | 10                     | v               | stagnation area blue and pur-<br>ple from heat                              |
| 7             | .039                                                           |                                       | 2                                     | <b>1</b>               | В               | no apparent change (except more particle hits)                              |
|               |                                                                |                                       |                                       | 2                      | <b>A</b>        | no apparent change                                                          |
|               |                                                                |                                       |                                       | 3                      | AA              | no apparent change                                                          |
|               |                                                                |                                       |                                       | 4                      | CC              | no apparent change                                                          |
|               |                                                                | 560                                   |                                       | 5                      | BB              | no apparent change                                                          |
|               |                                                                |                                       |                                       | 6                      | <b>U</b>        | most of plate on face lost, peeled back                                     |
|               |                                                                |                                       |                                       | 7                      | S               | local spalling and blistering of plate on face                              |
|               |                                                                |                                       |                                       | 8                      | R               | no apparent change                                                          |
|               |                                                                |                                       |                                       | 9                      | DD              | cracks in plate increased, lost<br>a spot of top coat of plate              |
|               |                                                                |                                       |                                       | 10                     | v               | no apparent change                                                          |

|            |                                                                |                                                | M                                     | = 7.32 Tests           |                          |                                                                                                                                                                                           |
|------------|----------------------------------------------------------------|------------------------------------------------|---------------------------------------|------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run<br>No. | hs <sup>*</sup><br>BTU<br>Ft <sup>2</sup> -Sec- <sup>0</sup> R | MAX.<br>Model<br>Temp. at<br>$\theta$ = 30°, F | ***<br>Inser-<br>tion<br>Time<br>Sec. | Mount<br>Posi-<br>tion | Model<br>Letter          | Model<br>Condition After<br>Run                                                                                                                                                           |
| 8          | .040                                                           | 470                                            | 2                                     | 1<br>2<br>3<br>4<br>5  | B<br>A<br>Ar<br>CC<br>BB | {no apparent change in any<br>of models                                                                                                                                                   |
|            |                                                                |                                                |                                       | 6<br>7<br>8<br>9<br>10 | -<br>-<br>-<br>V         | models in mounts 6-9 removed<br>and mount rotated 90° so that<br>position 5 is top, an objec-<br>tive of run was to get best<br>shadowgraph view of shock<br>system on each type of model |

TABLE IX Model Surviability Results M - 7 22 Monto

**.**\*:

Measured value on Model B, 1.0 inch diameter hemisphere Measured on Model BB, 30° off stagnation, 1.0 inch diameter hemisphere; this model mounted such \*\* that it was first into and last out of flow, maximum temperature reached during retraction cycle. \*\*\* Delta time between beginning of insertion to beginning of retraction

£

|    | Run<br>No. | P <sub>T</sub><br>Psia | T<br>oR<br>R | Re <sup>/ft</sup> 6<br>x 10 <sup>-6</sup> | Model<br>Face &<br>Type | Model<br>T/C                     | S/R                          | Twi<br>oR<br>t = 0               | $\begin{array}{c} Q\\ \underline{Btu}\\ \widetilde{ft}^2-sec\\ t=0 \end{array}$ | h<br>Btu<br>ft <sup>2</sup> -sec- <sup>o</sup> R | h<br>h <sub>s</sub> Flat            | h<br>h <sub>s</sub> Sphere       |
|----|------------|------------------------|--------------|-------------------------------------------|-------------------------|----------------------------------|------------------------------|----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|----------------------------------|
|    | 1          | 202.8                  | 1548.7       | .813                                      | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 562.0<br>560.4<br>559.0<br>557.2 | 19.494<br>17.185<br>8.907<br>2.083                                              | .01976<br>.01738<br>.00906<br>.00210             |                                     | 1.0<br>.8796<br>.4585<br>.1063   |
|    |            |                        |              |                                           | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 563.0<br>563.2<br>562.8<br>561.9 | 11.491<br>12.854<br>12.888<br>1.137                                             | .01166<br>.01304<br>.01307<br>.00115             | 1.0<br>1.1184<br>1.1209<br>.0986    | .5901<br>.6599<br>.6614<br>.0582 |
|    |            |                        |              |                                           | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 552<br>552<br>552<br>552<br>552  |                                                                                 | .01189<br>.01628<br>.01446<br>.00136             | 1.0200<br>1.3962<br>1.2401<br>.1166 |                                  |
|    |            |                        |              |                                           | Flat<br>ATZN            | 1012<br>1002<br>1003<br>1004     | .50<br>.50<br>1.146<br>3.092 | 545<br>545<br>545<br>545<br>545  |                                                                                 | .01399<br>.01283<br>.01256<br>.00139             | 1.1998<br>1.1003<br>1.0772<br>.1192 |                                  |
| 41 |            |                        |              |                                           | Flat<br>ATZN            | G012<br>G002<br>G003<br>G004     | .50<br>.50<br>1.146<br>3.092 | 540<br>540<br>540<br>540         |                                                                                 | .01374<br>.01328<br>.01256<br>.00151             | 1.1784<br>1.1389<br>1.0772<br>.1295 |                                  |

| Run<br>No. | P <sub>T</sub><br>P <b>sia</b> | °R<br>R | Re/ft_6<br>x 10 | Model<br>Face &<br>Type | Model<br>T/C                     | S/R                          | Twi<br>oR<br>t = 0               | $\frac{g}{Btu}$ ft <sup>2</sup> -sec<br>t = 0 | h<br><u>Btu</u><br>ft <sup>2</sup> -sec- <sup>0</sup> R | <u>þ</u><br><sup>h</sup> s<br>Flat  | h<br><sup>h</sup> s<br>Sphere    |
|------------|--------------------------------|---------|-----------------|-------------------------|----------------------------------|------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------|
| 2          | 399•3                          | 1561.1  | 1.5 <b>7</b> 9  | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 572.4<br>570.6<br>569.1<br>567.1 | 27.800<br>24.713<br>13.217<br>2.901           | .02812<br>.02495<br>.01332<br>.00291                    |                                     | 1.0<br>.8873<br>.4737<br>.1035   |
|            |                                |         |                 | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 573.5<br>573.9<br>573.4<br>570.9 | 15.977<br>18.283<br>18.129<br>1.672           | .01619<br>.01852<br>.01836<br>.00169                    | 1.0<br>1.1448<br>1.1346<br>.1044    | .5754<br>.6587<br>.6528<br>.0601 |
|            |                                |         |                 | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 555<br>555<br>555<br>555<br>555  |                                               | .01797<br>.02347<br>.01916<br>.00171                    | 1.1099<br>1.4500<br>1.1834<br>.1056 |                                  |
|            |                                |         |                 | Flat<br>ATZN            | . 1012<br>1002<br>1003<br>1004   | .50<br>.50<br>1.146<br>3.092 | 550<br>550<br>550<br>550         |                                               | .01957<br>.01777<br>.01658<br>.00172                    | 1.2088<br>1.0976<br>1.0241<br>.1062 |                                  |

Ł

|                                                          |                        |                |                               | M = 7.32,               | AMES 3-1/2                       | 2 FOOT HI                    | PERSONIC                         | TUNNEL                                                                                             |                                                         |                                     |                                      |
|----------------------------------------------------------|------------------------|----------------|-------------------------------|-------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|--------------------------------------|
| Run<br>No.                                               | P <sub>T</sub><br>Psia | 5 <sub>R</sub> | Re/ft_6<br>x 10 <sup>-6</sup> | Model<br>Face &<br>Type | Model<br>T/C                     | S/R                          | Twi<br>°R<br>t = 0               | $\begin{array}{c} Q\\ \underline{Btu}\\ \mathbf{ft}^2 - \mathbf{sec}\\ \mathbf{t} = 0 \end{array}$ | h<br><u>Btu</u><br>ft <sup>2</sup> -sec- <sup>0</sup> R | h<br><sup>h</sup> sFlat             | h<br>h<br>Sphere                     |
| <b>3</b><br>1011<br>1011<br>1011<br>1011<br>1011<br>1011 | <b>599.</b> 2          | 1597.8         | 2.277                         | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 566.7<br>564.2<br>562.0<br>559.7 | 34.666<br>31.005<br>16.614<br>3.663                                                                | .03362<br>.02999<br>.01603<br>.00352                    |                                     | 1.0<br>.8920<br>.4848<br>.1047       |
|                                                          |                        |                |                               | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 568.2<br>568.4<br>568.0<br>567.8 | 20.205<br>22.769<br>22.471<br>2.007                                                                | .01962<br>.02212<br>.02182<br>.00195                    | 1.0<br>1.1274<br>1.1121<br>0.0994   | .5836<br>.6579<br>.6490<br>.0580     |
|                                                          |                        |                |                               | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 555<br>555<br>555<br>555<br>555  |                                                                                                    | .02250<br>.02916<br>.02375<br>.00257                    | 1.1468<br>1.4862<br>1.2105<br>.1310 |                                      |
| 4                                                        | 850.2                  | 1616.3         | 2.638                         | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 580.1<br>577.2<br>574.6<br>572.2 | 41.390<br>36.959<br>19.783<br>4.462                                                                | .03994<br>.03556<br>.01899<br>.00427                    |                                     | 1.0<br>.8902<br>.4754<br>.1069       |
|                                                          |                        |                |                               | Plat<br>Mäster          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 581.7<br>581.6<br>581.1<br>582.9 | 24.153<br>26.840<br>27.025<br>2.446                                                                | .02335<br>.02594<br>.02611<br>.00237                    | 1.0<br>1.1112<br>1.1183<br>.1014    | . 5844<br>. 6494<br>. 6536<br>. 0593 |
|                                                          |                        |                |                               | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 570<br>570<br>570<br>570<br>570  |                                                                                                    | .02616<br>.03452<br>.02802<br>.00294                    | 1.1203<br>1.4784<br>1.2000<br>.1259 |                                      |

<u>ت</u>

| Run<br>No. | P <sub>T</sub><br>Psia | T<br>OR | R/ft<br>x <sup>e</sup> 10 <sup>-6</sup> | Model<br>Face &<br>Type | Mođel<br>T/C                     | S/R                          | Twi<br>R<br>t = 0                | $\frac{g}{\text{Btu}}$ $\frac{ft^2-\sec}{t=0}$ | h<br><u>Btu</u><br>ft <sup>2</sup> -sec- <sup>0</sup> R | h<br><sup>h</sup> s <b>Fla</b> t   | h<br><sup>h</sup> s <sub>Sphere</sub> |
|------------|------------------------|---------|-----------------------------------------|-------------------------|----------------------------------|------------------------------|----------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------------------|---------------------------------------|
| 5          | 848.0                  | 1562.4  | 3.349                                   | Dome<br>Master          | B001.<br>B002<br>B003<br>B004    | 0<br>.524<br>1.047<br>1.571  | 569.3<br>566.7<br>564.3<br>561.9 | 37.940<br>33.929<br>18.471<br>4.356            | .03821<br>.03407<br>.01850<br>.00435                    |                                    | 1.0<br>.8917<br>.4844<br>.1138        |
|            |                        |         |                                         | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 571.6<br>571.7<br>571.4<br>571.4 | 23.230<br>25.222<br>24.720<br>2.318            | .02344<br>.02546<br>.02494<br>.00234                    | 1.0<br>1.086<br>1.064<br>.0998     | .6135<br>.6663<br>.6527<br>.0612      |
|            |                        |         |                                         | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 560<br>560<br>560<br>560         |                                                | .02268<br>.03025<br>.02680<br>.00286                    | .9676<br>1.2906<br>1.1433<br>.1220 |                                       |
| 6          | 997.1                  | 1617.7  | 3.709                                   | Dome<br>Master          | 5001<br>9002<br>9003<br>9004     | 0<br>.524<br>1.047<br>1.571  | 571.7<br>568.8<br>564.8<br>561.5 | 45.142<br>40.320<br>22.032<br>5.293            | .04316<br>.03844<br>.02092<br>.00501                    |                                    | 1.0<br>.8906<br>.4847<br>.1161        |
|            |                        |         |                                         | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 573.0<br>574.6<br>573.7<br>573.1 | 26.626<br>29.240<br>28.759<br>2.725            | .02540<br>.02803<br>.02755<br>.00261                    | 1.0<br>1.0999<br>1.0808<br>.1024   | .5905<br>.6495<br>.6383<br>.0604      |
|            |                        |         |                                         | flat<br>Ecan            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 550<br>550<br>550<br>550         |                                                | .02462<br>.03347<br>.03039<br>.00340                    | .9693<br>1.3177<br>1.1965<br>.1339 |                                       |

ŧ

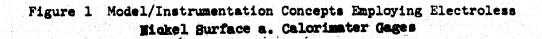
| Run<br>No. | P <sub>T</sub><br>Psia | <del>Г</del> Т<br>С | R <sub>e</sub> /ft<br>x 10-6 | Model<br>Face &<br>Type | Model<br>T/C                     | S/R                          | <sup>Î</sup> Wi<br><sup>O</sup> R<br>t = 0 | $\frac{Btu}{ft^2-sec}$<br>t = 0     | h<br>Btu<br>ft <sup>2</sup> -sec- <sup>c</sup> R | h<br>h <sub>s</sub> Flat           | h<br><sup>h</sup> sSpher         |
|------------|------------------------|---------------------|------------------------------|-------------------------|----------------------------------|------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------------|----------------------------------|
| 7          | 848.0                  | 1549.3              | 3.397                        | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 575.8<br>573.5<br>570.3<br>567.6           | 37.658<br>33.625<br>18.381<br>4.421 | .03871<br>.03445<br>.01877<br>.00450             |                                    | 1.0<br>.8900<br>.4849<br>.1162   |
|            |                        |                     |                              | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 577.4<br>578.9<br>577.9<br>576.9           | 22.666<br>24.805<br>24.338<br>2.297 | .02332<br>.02556<br>.02506<br>.00236             | 1.0<br>1.0961<br>1.0744<br>.1013   | .6023<br>.6602<br>.6471<br>.0610 |
|            |                        |                     |                              | flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 558<br>558<br>558<br>558<br>558            |                                     | .02287<br>.02995<br>.02753<br>.00296             | .9807<br>1.2843<br>1.1805<br>.1269 |                                  |
| 8          | 846.7                  | 1415.9              | 3.952                        | Dome<br>Master          | B001<br>B002<br>B003<br>B004     | 0<br>.524<br>1.047<br>1.571  | 563.9<br>564.1<br>562.2<br>560.3           | 34.131<br>30.320<br>16.431<br>3.870 | .04006<br>.03559<br>.01924<br>.00452             |                                    | 1.0<br>.8647<br>.4674<br>.1098   |
|            |                        |                     |                              | Flat<br>Master          | A001<br>A002<br>A003<br>A004     | 0<br>.50<br>1.146<br>3.092   | 561.2<br>559.9<br>557.1<br>553.9           | 20.044<br>22.155<br>21.896<br>2.045 | .02342<br>.02588<br>.02550<br>.00237             | 1.0<br>1.1053<br>1.0888<br>.1012   | .5845<br>.6461<br>.6364<br>.0592 |
|            |                        |                     |                              | Flat<br>ECAN            | CC012<br>CC002<br>CC003<br>CC004 | .50<br>.50<br>1.146<br>3.092 | 547<br>547<br>547<br>547                   |                                     | .02271<br>.02965<br>.02778<br>.00306             | .9697<br>1.2660<br>1.1862<br>.1307 |                                  |

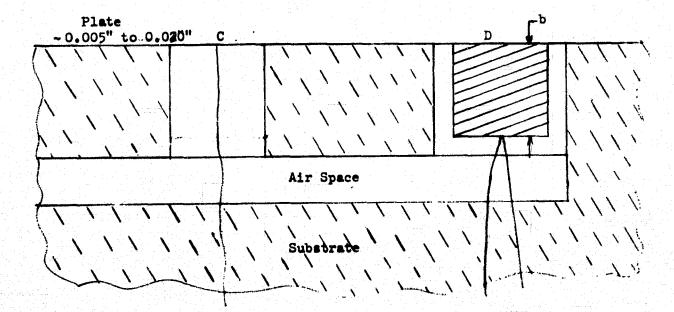
| Model Face<br>and Type | -Model<br>T/C    | S/R   | h<br><sup>h</sup> s<br>Sphere | h<br>s<br>Theory | h<br>h<br><sup>S</sup> Flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Runs<br>Averaged |
|------------------------|------------------|-------|-------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                        |                  |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Dome                   | B001             | 0     | 1.0000                        | 1.020***         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-8              |
| Master                 | B002             | •524  | .8864                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                        | B003             | 1.047 | .4767                         |                  | (1,1) = (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1 | -                |
|                        | B004             | 1.571 | .1097                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Flat                   | A001             | 0     | •5906                         | 1.011****        | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-8              |
| Master                 | A002             | .50   | • > > > 0 0                   | I. VII           | 1.1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1=0              |
|                        | A003             | 1.146 |                               |                  | 1.0990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                        | A004             | 3.092 |                               |                  | 0.1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                        |                  |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Flat                   | CC002 &<br>CC012 |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| ECAN                   | CC012            | •50   |                               |                  | 1.2034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-8              |
|                        | CC003            | 1.146 |                               |                  | 1.1937*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                        | CC004            | 3.092 |                               |                  | 0,1240*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| _                      |                  |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Flat                   | CC002 &<br>CC012 | .50   |                               |                  | 1.1057**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-8              |
| ECAN                   | CC003            | 1.146 |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-0              |
|                        | CC004            | 3.092 |                               |                  | 1.093**<br>0.1141**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                        | 0004             | 3.092 |                               |                  | 0.1141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Flat                   | 1002 4           |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| ATZN                   | 1012             | •50   |                               |                  | 1.1516*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-2              |
|                        | I003             | 1.146 |                               |                  | 1.0874#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                        | 1004             | 3.092 |                               |                  | .1127*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                        |                  |       |                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Flat                   | G002 &           |       |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| ATZN                   | <b>G012</b>      | .50   |                               |                  | 1.1587#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
|                        | G003             | 1.146 |                               |                  | 1.0772*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                        | G004             | 3.092 |                               |                  | .1295 <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |

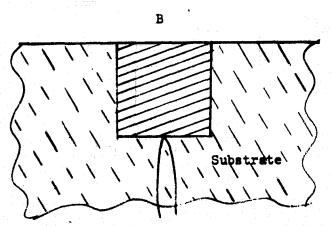
■ Using mid fairing of VPCK

**\*\*** Using lower fairing of  $\sqrt{\rho CK}$  (See Figure 16)

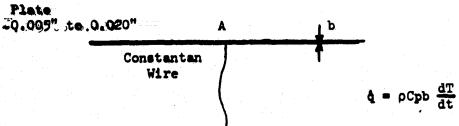
\*\*\* Fay-Riddell theory (Calculated each run by NASA Ames)


Zoby-Sullivan theory, Ref. 11


#### TABLE XII SELECTIVE PLATING PROCESS ON STAINLESS STEEL MODEL


| Solution or Treatment                               | Temperature<br>(°F) | Time**<br>(Min.)                  |
|-----------------------------------------------------|---------------------|-----------------------------------|
| * Nickel Chloride Plate                             | 140                 | Strike Coat                       |
| Preheat in Oven                                     | 175                 | 60                                |
| Clean 1424 (Shipley)                                | 165                 | 12                                |
| Water Rinse and Spray                               | RT                  |                                   |
| Dry in Oven                                         | 175                 | 30                                |
| Resist AZ111 (Shipley)                              | RT                  | Dip                               |
| o Air Dry                                           | RT                  | 30                                |
| • Resist AZ111 (Shipley)                            | RT                  | Dip<br>(Opposite End First)       |
| Air Dry<br>H<br>Resist AZ111 (Shipley)<br>Airdry    | RT                  | 30                                |
| S Cure in Oven                                      | 175                 | 60                                |
| Expose Pattern Through Negative                     | RT                  | 15                                |
| With Ultraviolet Lamps<br>Develop AZ-303A (Shipley) | RT                  | 10                                |
| Water Rinse and Spray                               | RT                  |                                   |
| Bake in Oven                                        | 400                 | 60                                |
| Preheat Model                                       | 200                 | 60                                |
| Activate 1424 (Shipley)                             | 165                 | 13                                |
| Water Rinse and Spray                               | 165                 | 2                                 |
| Plate Niculoy 22 (Shipley)                          | 195                 | As Required<br>∼10 µ in./min. *** |
| Remove Resist 1112A (Shipley)                       | 170                 | 60                                |
| Water Rinse and Spray                               | RT                  |                                   |

\* Optional, Depending on Plate Thickness Required


- \*\* Approximate Times; Actual Times Dependent on Specific Condition, i.e. Model Size, Light Intensity, Resist Thickness, etc.
- \*\*\* Two Coats of Resist Will Withstand Activation and Plating to Approximately 0.001 Inch Thickness











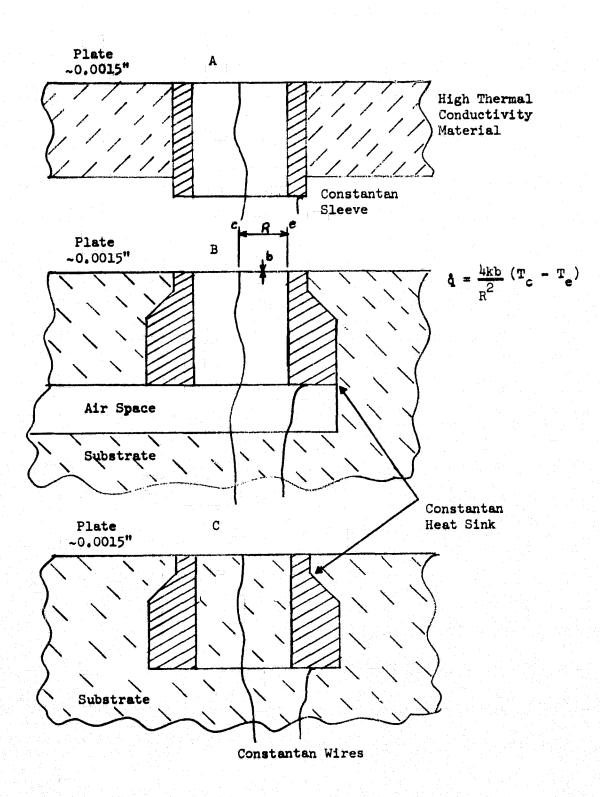
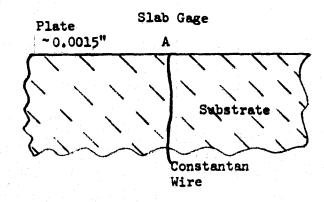
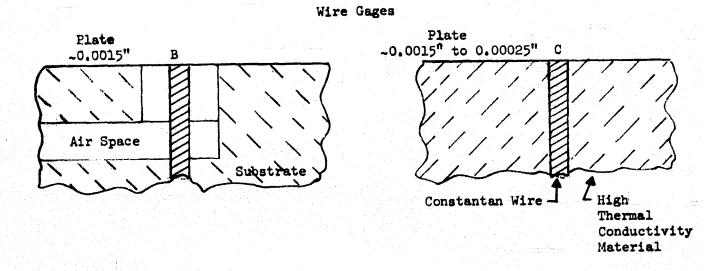
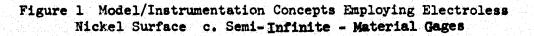
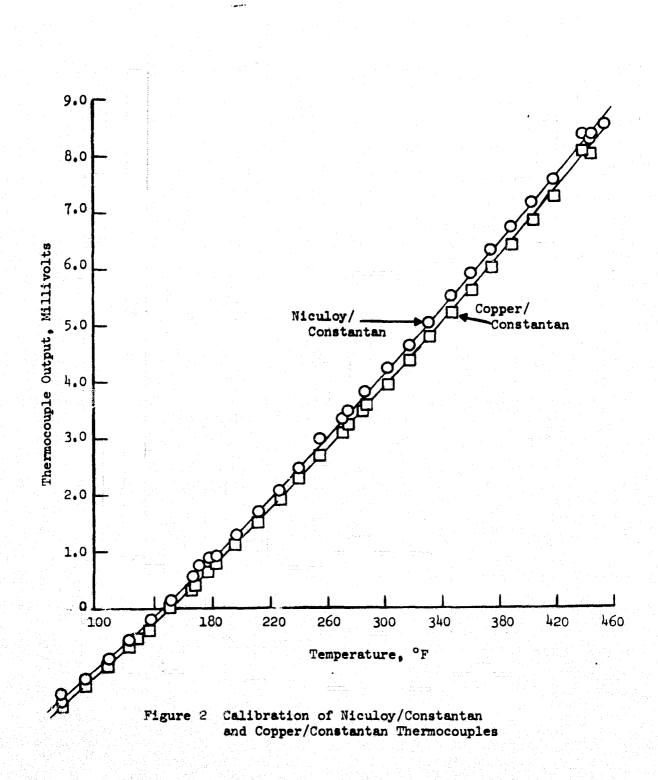
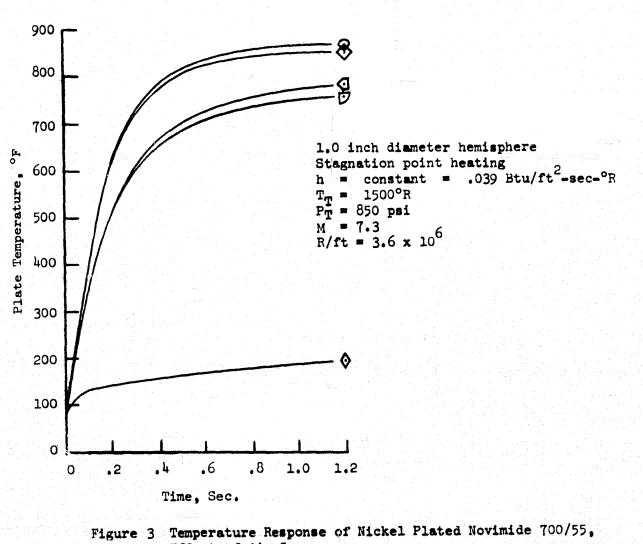
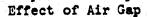






Figure 1 Model/Instrumentation Concepts Employing Electroless Nickel Surface b. Gardon Gages




h = 
$$\frac{\beta \sqrt{\rho ck}}{\sqrt{t}}$$
  
 $\frac{T_{w} - T_{i}}{T_{aw} - T_{i}}$  = 1 -  $e^{\beta^{2}} erfc \beta = \overline{T}$ 




الديني الموتي ويرتبعوا

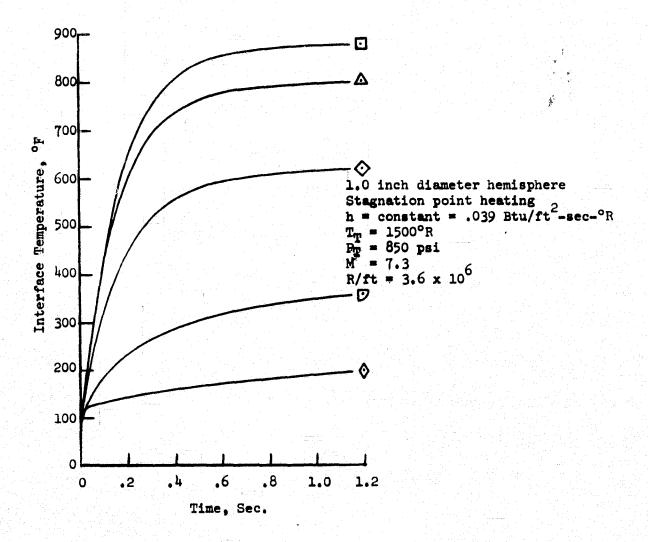
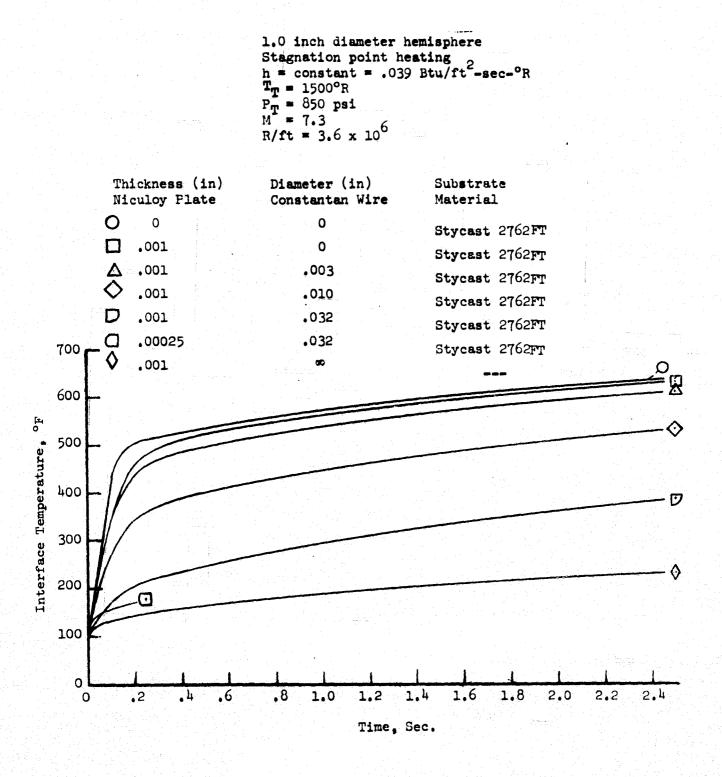
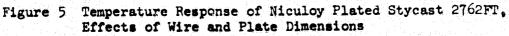
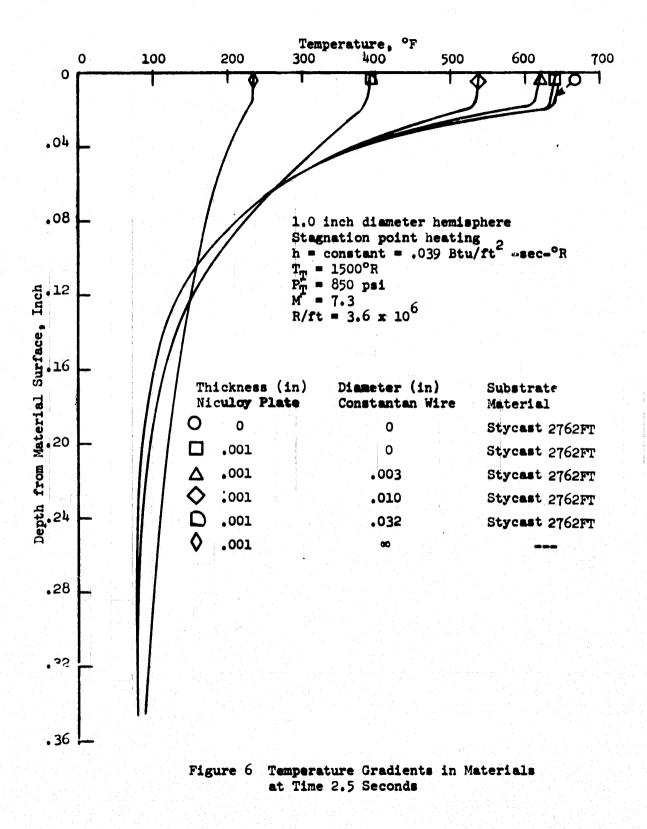


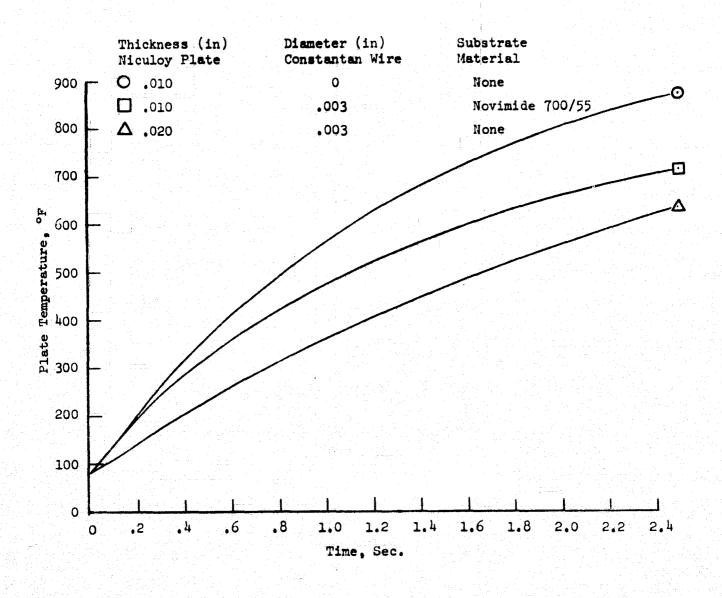
|                   | ckness (in)<br>kel Plate | Diameter (in)<br>Constantan Wire | Air Gap (in)<br>Around Wire            | Substrate<br>Material |
|-------------------|--------------------------|----------------------------------|----------------------------------------|-----------------------|
| $\diamond$        | .0015                    | .010                             | 0                                      | Novimide 700/55       |
| $\mathbf{\nabla}$ | .0015                    | .010                             | .010                                   | Novimide 700/55       |
|                   | .0015                    | .03125                           | 0                                      | Novimide 700/55       |
| D                 | .0015                    | .0325                            | .01625                                 | Novimide 700/55       |
| $\diamond$        | .0015                    | Ø                                | •••••••••••••••••••••••••••••••••••••• |                       |

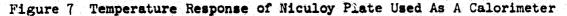




|              | Thickness (in)<br>Niculoy Plate | Diameter (in)<br>Constantan Wire                                                                                                                                                                                                    | Substrate<br>Material |
|--------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|              | .001                            | он салаан байлаан байла<br>Салаан байлаан б | Novimide 700/55       |
| Δ            | .001                            | .003                                                                                                                                                                                                                                | Novimide 700/55       |
| $\diamond$   | .001                            | .010                                                                                                                                                                                                                                | Novimide 700/55       |
| Q            | .001                            | .032                                                                                                                                                                                                                                | Novimide 700/55       |
| $\mathbf{Q}$ | .001                            | <b>2</b>                                                                                                                                                                                                                            | <b>***</b>            |



Figure 4 Temperature Response of Niculoy Plated Novimide 700/55, Effect of Wire Diameter








1.0 inch diameter hemisphere Stagnation point heating  $h = \text{constant} = .039 \text{ Btu/ft}^2 \text{-sec-}^{\circ} \text{R}$   $T_T = 1500^{\circ} \text{R}$   $P_T = 850 \text{ psi}$  M = 7.3 $\text{R/ft} = 3.6 \times 10^6$ 





1.0 inch diameter hemisphere Stagnation point heating h = constant = .039 Btu/ft<sup>2</sup>-sec-°R  $T_{m}$  = 1500°R  $B_{m}$  = 850 psi M<sup>4</sup> = 7.3 R/ft = 3.6 x 10<sup>6</sup>

Ż

1

27

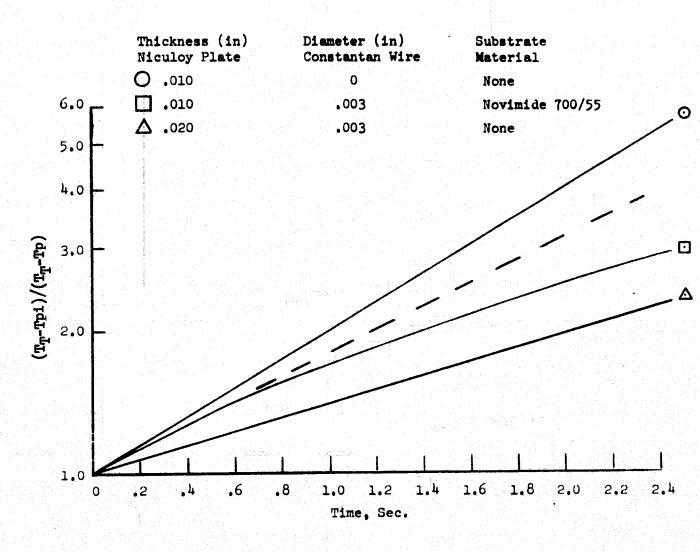
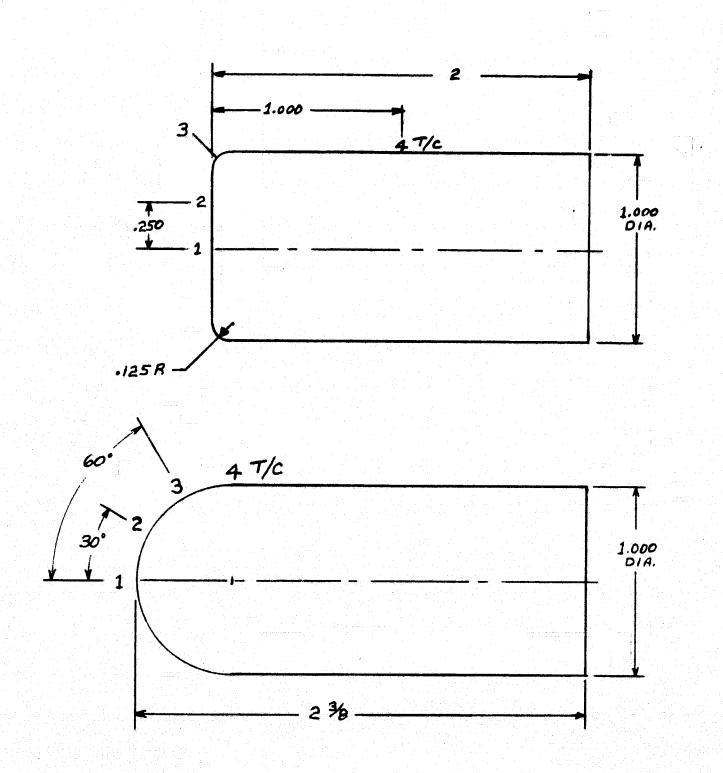




Figure 8 Effect of Substrate and Wire on Calorimeter Temperature History



### Figure 9 Geometry and Thermocouple Locations of Development Models

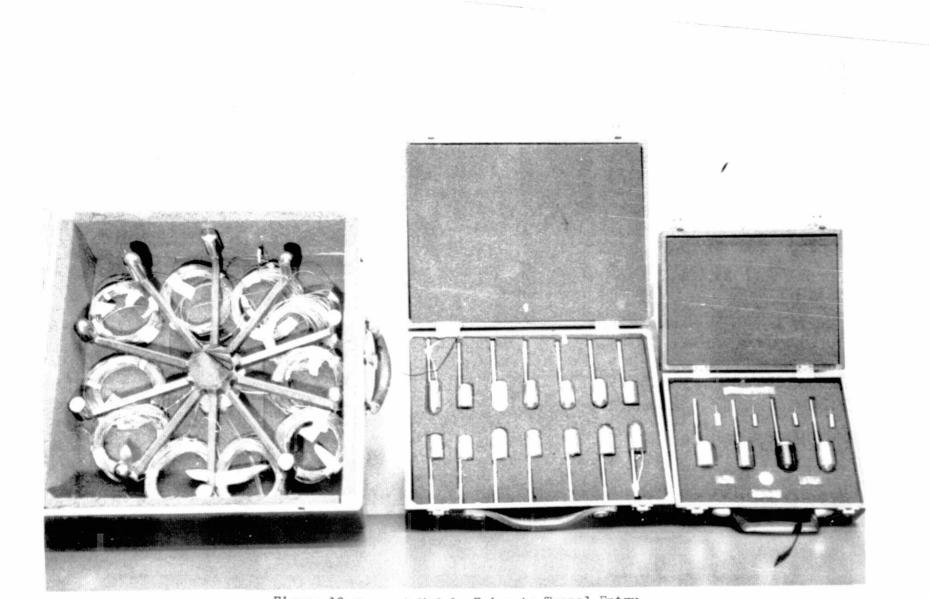



Figure 10 Phase A Models Prior to Tunnel Entry

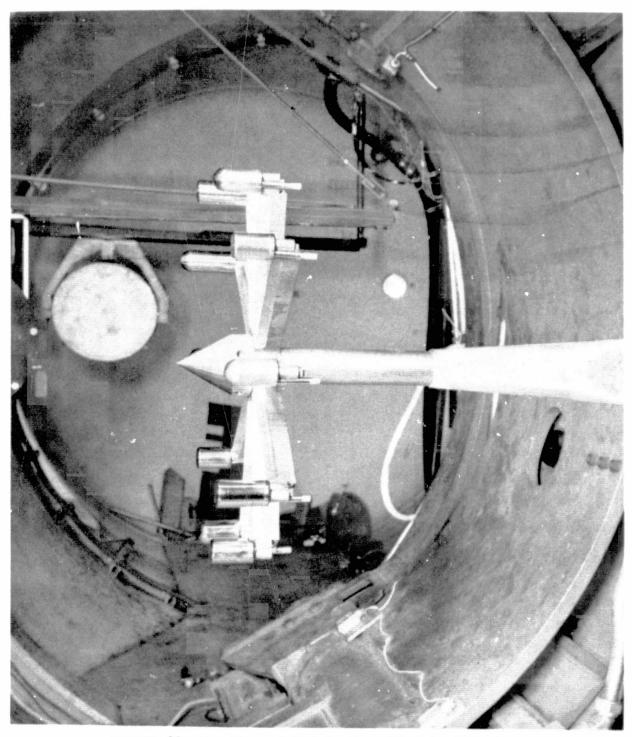



FIGURE 11 Ten Phase A Models Installed in NASA Ames 3-1/2 Foot Hypersonic Wind Tunnel

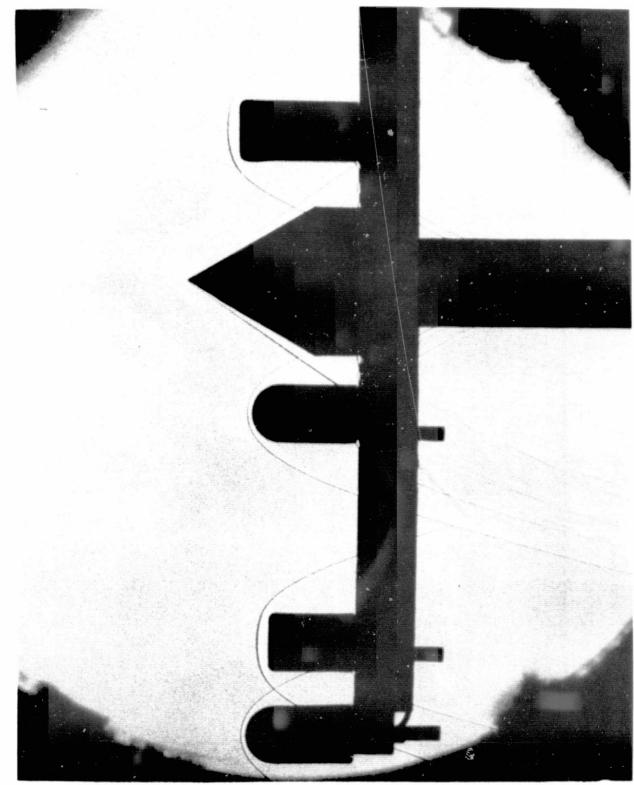
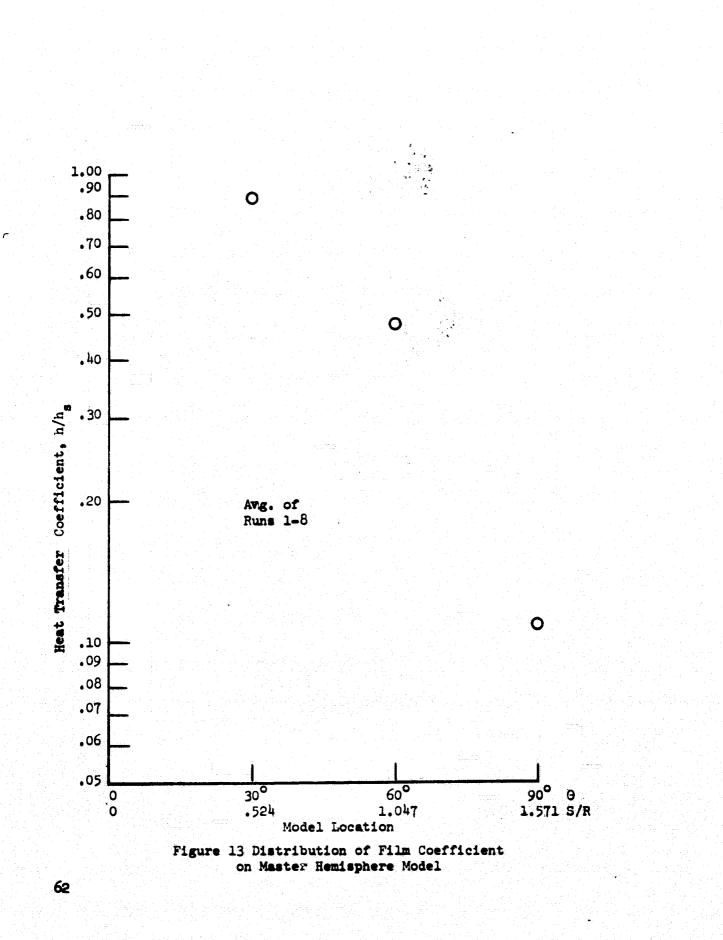




Figure 12 Phase A Models Being Tested at M = 7.32





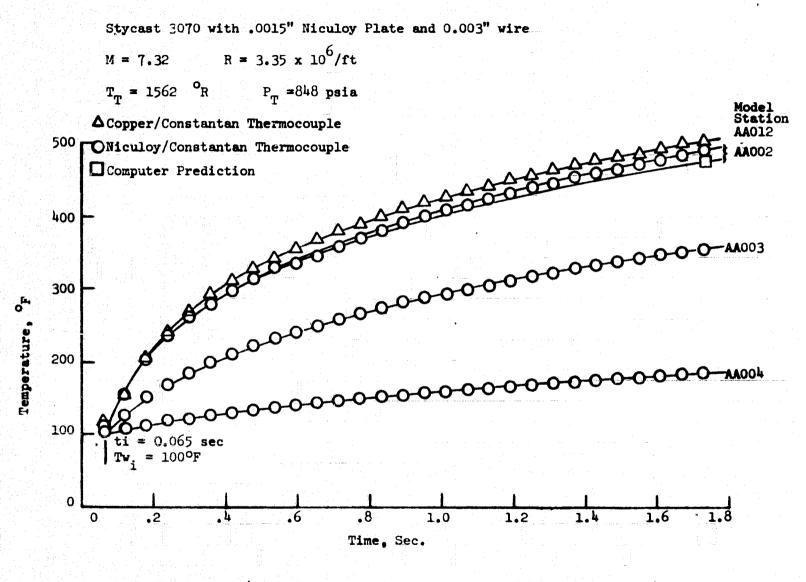



Figure 14 Temperature History of Model AA Hemisphere, Run 5

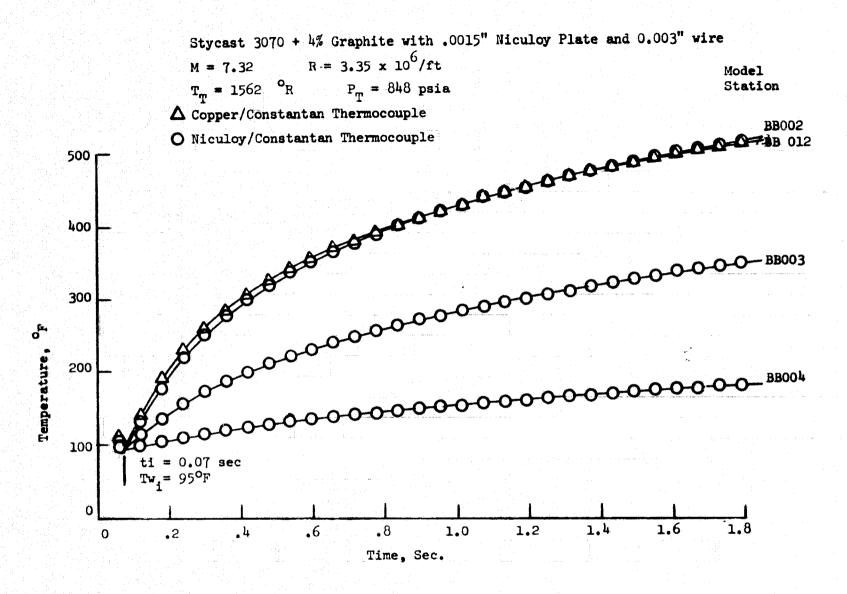



Figure 15 Temperature History of Model BB Hemisphere, Run 5

۰.

Stycast 3070 with .0015" Niculoy Plate and 0.003" wire for all Runs 1-8, M = 7.32 Ranges: .8 x 10<sup>6</sup> < R/ft < 4.0 x 10<sup>6</sup> 202 < P<sub>T</sub>, Psia < 1000 1415 < T<sub>T</sub>, <sup>6</sup>R < 1618

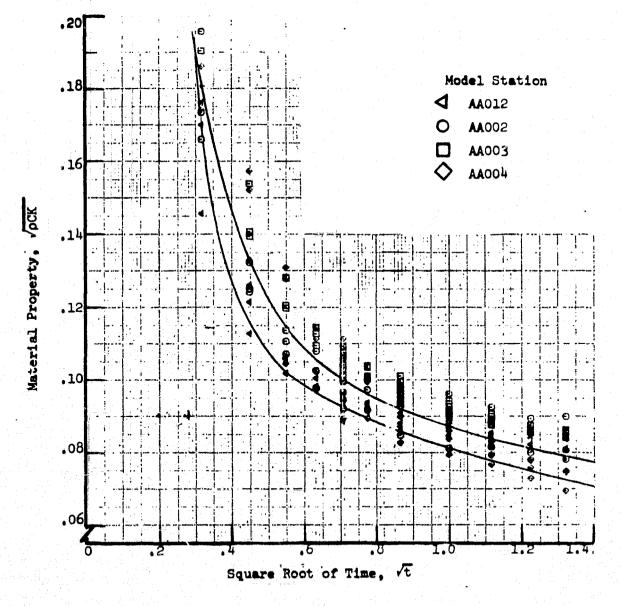
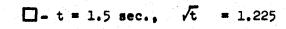




Figure 16 Material Property of Model AA Hemisphere

Stycast 3070 with .0015" Niculoy Plate and 0.003" wire for all Runs 1-8, M = 7.32 Ranges: .8 x 10<sup>6</sup> < R/ft < 4.0 x 10<sup>6</sup> 202 <  $P_T$ , Psia < 1000 1415 <  $T_T$ , <sup>o</sup>R < 1618 O-t = .5 sec.,  $\sqrt{t}$  = .707



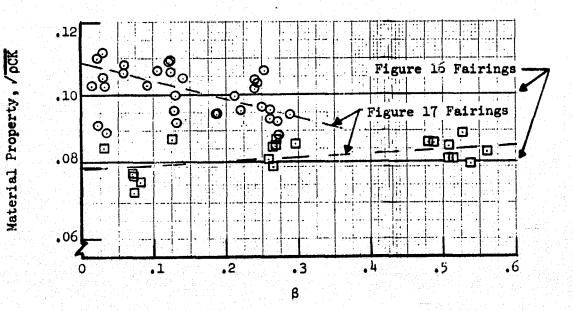
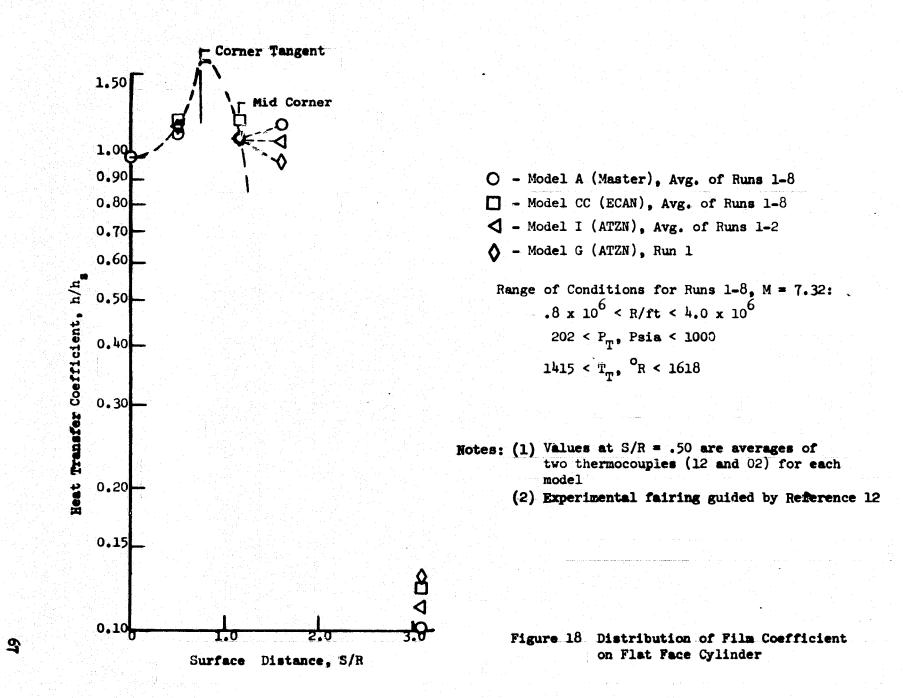
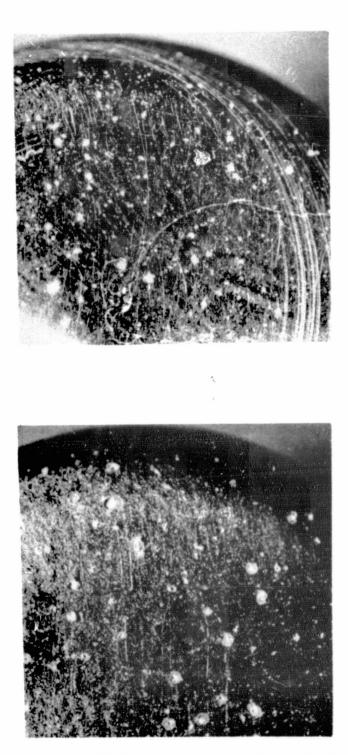





Figure 17 Material Property of Model AA as Function of  $\beta$  at Selected Times





Model A Steel Master Flat Face 8 x Magnification

\$

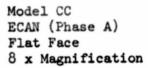



FIGURE 19 Comparison of Particle Damage Between Steel and Plated Epoxy Models After Eight Tunnel Runs

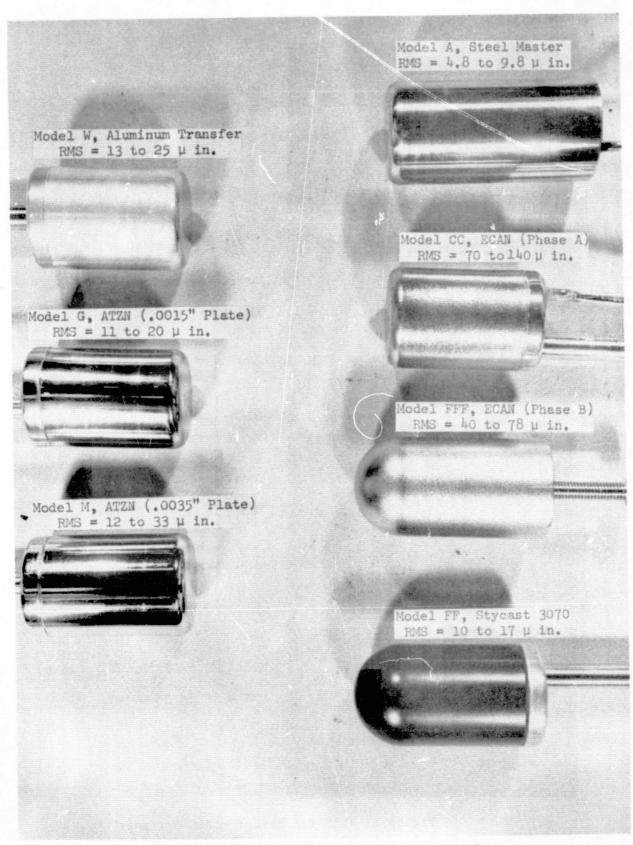
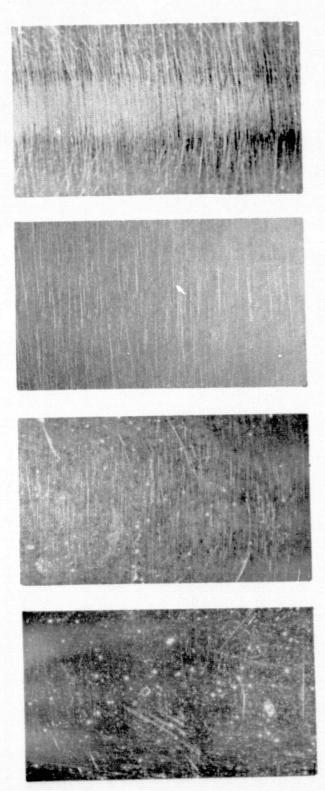
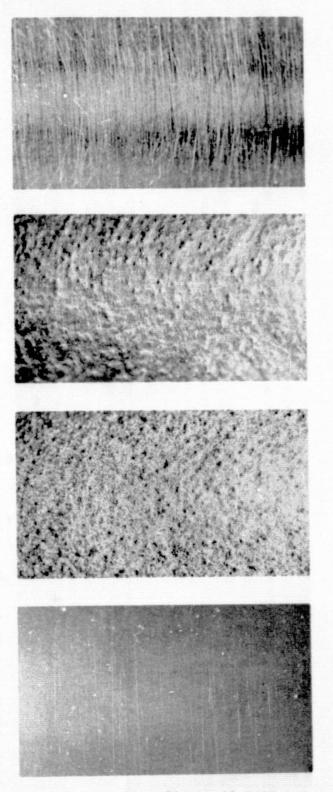




Figure 20 Representative Development Models




Model A, Steel Master 8 x Magnification RMS = 4.8 to 9.8 µ in.

Model W, Aluminum Transfer 8 x Magnification RMS = 13 to 25  $\mu$  in.

Model G, ATZN (0.0015" Plate) 8 x Magnification RMS = 11 to 2ύ μ in.

Model M, ATZN (0.0035" Plate) 8 x Magnification RMS = 12 to 33  $\mu$  in.

Figure 21 ATZN and Master Model Surfaces



Model A, Steel Master 8 x Magnification RMS = 4.8 to 9.8 µ in.

Model CC, ECAN (Phase A) 8 x Magnification RMS = 70 to 140 µ in.

Model FFF, ECAN (Phase B)  $8 \times Magnification$ RMS = 40 to 78  $\mu$  in.

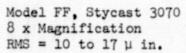



Figure 22 ECAN and Master Model Surfaces

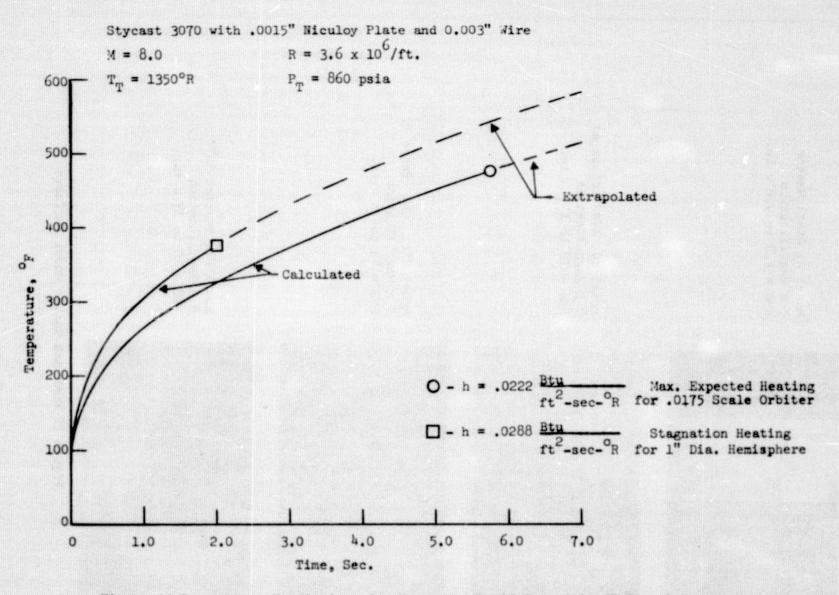



Figure 23 Temperature Predictions for Epoxy Models if Tested in AF Tunnel B at Maximum Reynolds Number

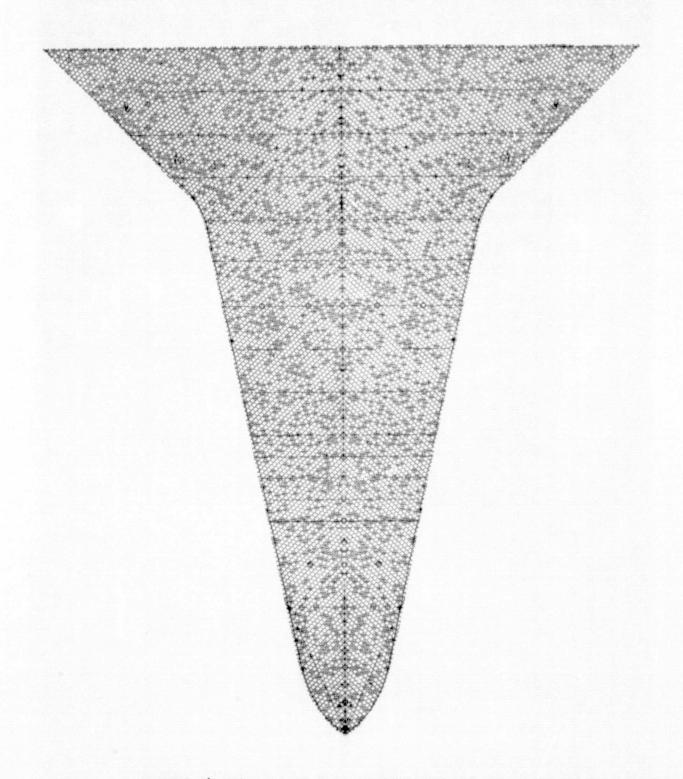
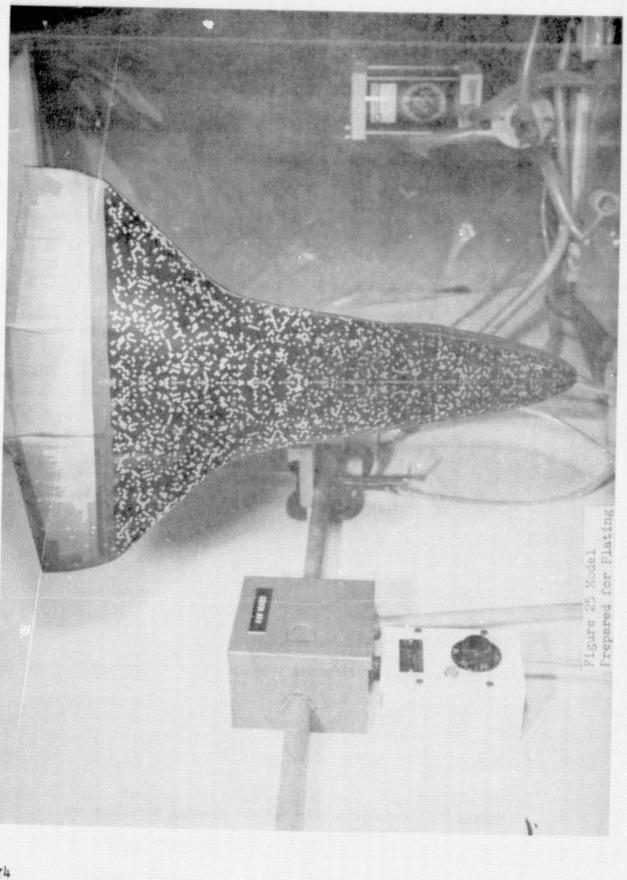




FIGURE 24 Heatshield Tile Pattern Showing Selection of Raised Tiles



ORIGINAL PAGE IS OF POOR QUALITY

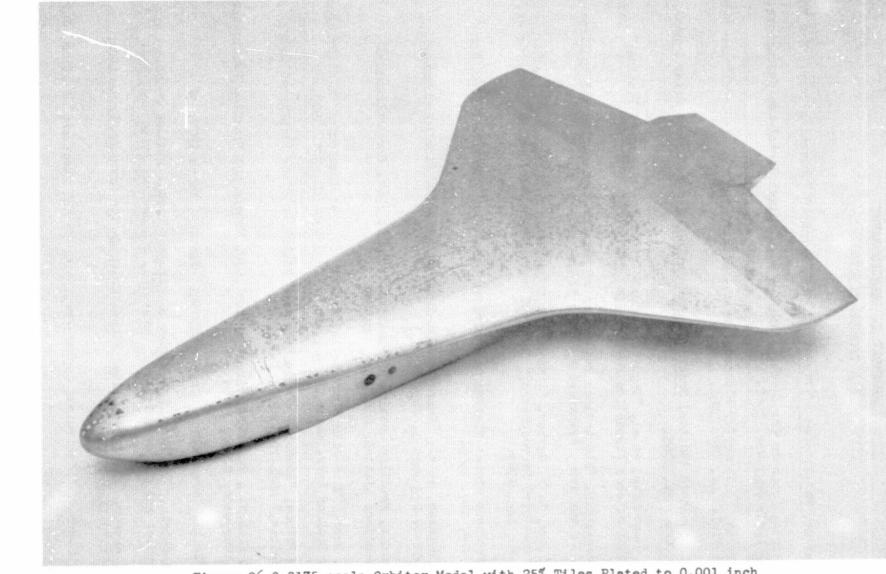



Figure 26 0.0175 scale Orbiter Model with 25% Tiles Plated to 0.001 inch

75

ORIGINAL PAGE IS OF POOR QUALITY

### APPENDIX I. BIBLIOGRAPHY ELECTROLESS PLATING

- 1. H. Narcus, Metallizing of Plastics, 1960, Reinhold Publishing Corp., New York.
- 2. L. Serota, "Science for Electroplaters Electroless Nickel-Non Conductors," Metal Finishing, Oct. 1962.
- 3. L. Serota, "Science for Electroplaters Electroless Nickel-Disposition Rate," Metal Finishing, Dec. 1962.
- 4. F. A. Lowenheim (Editor) Modern Electroplating, 2nd Ed., John Wiley & Sons, Inc., New York, 1963.
- 5. K. M. Gorbunova, et al, "Physicochemical Principles of Nickel Plating," National Science Foundation Publication, TT63-11003, 1963.
- 6. F. Pearlstein, "Electroless Deposition of Metals Principles and Applications," Dept. of the Army, Frankford Arsenal, Report A68-11, March 1968.
- L. E. Fox, B. V. Gerber, "A Method of Copper Plating Glass and Plastic (Styrene-Type) Microspheres," Chemical Research & Development Laboratories, TM-5-20, Dec. 1965.
- 8. "Electroless Nickel Plating on Stainless Steels and Aluminum," NASA Brief 66-10479, Nov. 1966.
- 9. Vern Hopkins, et al, "Improved High-Temperature Solid Film Imbricants," AFML-TR-67-223 Part 1, July 1967.
- 10. W. Goldie, Metallic Coating of Plastics, Vol. I, 1968, Electrochemical Publications Limited, Middlesex, England.
- 11. E. L. Hebb, "Thin-Film Electric Initiator: 1. Fabrication of Cu/Ni Bridges," Harry Diamond Labs, Wash., D. C., Proj: DA-1-L-01300, Nov. 1968.
- 12. D. E. Prince, "Adhesion of Electroplated Nickel to Fiber Reinforced Epoxy Composites," AFML-TR-69-282, Jan. 1970.
- 13. Metal Finishing Guidebook Directory for 1970, Metals and Plastics Publication, Inc., Westwood, N. J., 1970.
- 14. F. O'Neill, "Advances in Electroforming," Plating, March 1970.
- 15. N. Feldstein, "Two Room-Temperature Electroless Nickel Plating Baths -Properties and Characteristics," June 1970, RCA Review, Princeton, N.J.
- 16. J. H. Weaver, "Electrodeposited Nickel Coatings for Errosion Protection," AFML-TR-70-111, 1970.
- 17. R. L. Coombes, "Electroless Copper Preplating on ABS Plastics," Plating, July 1970.

- 18. N. Feldstein, "Selective Electroless Plating Techniques: A Survey," Plating, August 1970.
- 19. J. B. Burhawitz and V. H. Emerson, "Plating Methods, A Survey," NASA SP 5114, 1972.
- 20. D. J. Butler, "Improved Corrosion Protection for Solid Rocket Propulsion Systems," North American Rockwell Corp., Vol. 4, April 1973.
- 21. "Uniformly Thick Nickel Shells Produced by Vapor Deposition," Nickel Topics, Vol. 26, #1, 1973 by International Nickel Co., Inc.
- 22. E. W. Turns and J. W. Browning, "Properties of Electroless Nickel Coatings on High Strength Steels" Plating, May 1973.

#### CASTING OF WIND TUNNEL MODELS

- 1. "Selected Casting Techniques," NASA SP-5044, April 1965.
- 2. J. A. Payne, "Techniques and Facilities for Aeroelastic Modeling," Royal Aircraft Establishment, TR 68227, Sept. 1968.
- 3. J. A. Payne, "The Manufacture of Aeroelastic Models Using Glass Reinforced Plastics," Royal Aircraft Est. TR 71101, May 1971.
- 4. W. G. Dean and L. F. Connor, "A Study for Development of Aerothermodynamic Test Model Materials and Fabrication Technique," prepared under Contract NAS 1-9983 by Lockheed Missiles and Space Company.
- 5. C. E. DeRose and L. Yee, "Techniques for Producing Wind-Tunnel Heat Transfer Models," NASA Tech Brief B72-10349, NASA Ames Research Center, December 1972.
- 6. W. J. Gander, Brochure on Grumman Model Design and Fabrication Using Electroformed Nickel, June 1973.
- 7. Donald J. Collins, "An Inexpensive Technique for the Fabrication of Two-Dimensional Wind Tunnel Models," Rev. Sci. Instrum. Vol. 44, No. 7, July 1973.

#### HEAT TRANSFER INSTRUMENTATION

- 1. H. S. Carslaw and J. C. Jaeger, <u>Conduction of Heat in Solids</u>, Clarendon Press, 1950.
- 2. M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, 1951.
- 3. M. W. Rubesin, "The Effect of an Arbitrary Surface-Temperature Variation Along a Flat Plate on the Convective Heat Transfer in an Incompressible Turbulent Boundary Layer," NACA TN 2345, April 1951.
- 4. R. Gardon, "An Instrument for the Direct Measurement of Intense Thermal Radiation," The Review of Scientific Instruments, Vol. 24, No. 5, May 1953.
- 5. R. J. Conti, "Heat-Transfer Measurements at a Mach Number of 2 in the Turbulent Boundary Layer on a Flat Plate Having a Stepwise Temperature Distribution," NASA TN D-159, Nov. 1959.
- 6. J. C. Westkaemper, "An Analysis of Slug-Type Calorimeters for Measuring Heat Transfer From Exhaust Gases," AEDC-TN-60-202, Nov. 1960.
- 7. H. D. Baker, et al, <u>Temperature Measurement In Engineering</u>, Vol. I and Vol. II, John Wiley and Sons, Inc., 1961.
- 8. R. J. Conti, "Approximate Temperature Distributions and Streamwise Heat Conduction Effects in the Transient Aerodynamic Heating of Thin-Skinned Bodies," NASA TN D-895, Sept. 1961.
- 9. D. R. Burnett, "Transient Temperature Measurement Errors in Heated Slabs for Thermocouples Located at the Insulated Surface," Journal of Heat Transfer, Nov. 1961.
- 10. R. L. Ledford, "A Device for Measuring Heat Transfer Rates in Arc-Discharge Hypervelocity Wind Tunnels," AEDC-TDR-62-64, May, 1962.
- 11. E. T. Meleason and G. L. Burke, "Experimental Determination of Conduction Errors in Aerodynamic Heating Test Date," ASRMDF-TM62-37, FDL, Wright-Patterson Air Force Base, Ohio, June 1962.
- 12. J. W. Kurzrock, "Selection of Surface Thermometers for Measuring Heat Flux," Cornell Aero Lab, Report No. 124, Feb. 1963.
- 13. J. L. Lindsey and C. J. Stalmach, Jr., "Heat-Transfer-Rate Measurement Using a Thin-Continuous-Skin Technique in a Hypervelocity Wind Tunnel," Chance Vought Corporation Report 2-59740/3R-445, Feb. 1963.
- 14. E. A. Laumann, "Determining Aerodynamic Heating Rates Using Calorimetric Models in the Jet Propulsion Laboratory Hypersonic Wind Tunnel," Jet Propulsion Laboratory TM 33-121, March 1963.

- 15. W. D. Harvey, "Continuous Skin Construction Techniques for Fabricating Models for Aerodynamic Heat-Transfer Studies Involving Very Small Transient Heating Rates," Presented at Instrument Society of America 20th Annual ISA Conference and Exhibit, October 1965.
- R. A. Jones and J. L. Hunt, "Use of Fusible Temperature Indicators for Obtaining Quantitative Aerodynamic Heat-Transfer Data," NASA TR R-230, Feb. 1966.
- 17. J. W. Reece, "Nonlinear Effects Due to High Heat Flux in Thin Film Thermometry and Means for Their Compensation," Proceedings of the 2nd International Congress on Instrumentation in Aerospace Simulation Facilities, August 1966.
- 18. C. R. Spitzer, "A Comparative Performance Analysis of Pyroelectric Heat-Transfer Sensors for Use in Hypersonic Impulse Facilities," Proceedings of the 2nd International Congress on Instrumentation in Aerospace Simulation Facilities, August 1966.
- 19. D. N. Kendall, et al, "Semiconductor Surface Thermocouples for Determining Heat Transfer Rates," Proceedings of the 2nd International Congress on Instrumentation in Aerospace Simulation Facilities, August 1966.
- 20. P. Czysz and D. Kendall, "Testing Technology Advances Associated with Development of an Arc Heated Impulse Tunnel," AIAA Paper 66-759, Sept. 1966.
- 21. E. O. Doebelin, <u>Measurement Systems: Application and Design</u>, McGraw-Hill, 1966.
- 22. D. S. Bynum, "Instrumentation for the AEDC/VKF 100-in. Hotshot (Tunnel F)," AEDC-TR-66-209, Jan. '67.
- 23. K. L. Ledford, W. E. Smotherman and C. T. Kidd, "Recent Developments in Heat-Transfer-Rate, Pressure, and Force Measurements for Hotshot Tunnels," AEDC-TR-66-220, Jan. 1967.
- 24. L. Bogdan, "Instrumentation Techniques for Short-Duration Test Facilities," Cornell Aeronautical Laboratory, Aerosciences Div. Report No. WTH-030, March 1967.
- 25. C. T. Kidd, "A Theoretical and Experimental Analysis of Slug Calorimeter Heat Losses for Continuous and Impulse Wind Tunnel Heat Flux Measurements," AEDC-TR-67-66, August 1967.
- 26. E. A. Laumann, "Determining Aerodynamic Heating Rates Using Calorimeter Models in the Jet Propulsion Laboratory Hypersonic Wind Tunnel," Jet Propulsion Laboratory TM No. 33-121.

- 27. P. A. Czysy and D. N. Kendall, "Improved Methods in Wind Tunnel Technology," McDonnell Co. Engineering Laboratories, Report F938, 15 April 1968.
- 28. W. P. Dixon, "Precise Head Transfer Measurements with Surface Thermocouples," Presented at 8th Annual Conference on Thermal Conductivity, Purdue University, October, 1968.
- 29. E. H. Schulte, E. O. Puromen, W. P. Dixon, "Calibration Apparatus for Surface. Thermocouples," International Congress on Instrumentation in Aerospace Simulation Facilities, 1969.
- 30. F. K. Hube, "An Experimental Method for Determining Heat Transfer Distributions on Blunt Bodies at Hypersonic Mach Numbers," AEDC-TR-69-20, June 1969.
- 31. Jean Maulard, "Calibration Method Used at ONERA for Hotshot and Shock Tube Heat Transfer Transducers," International Congress on Instrumentation in Aerospace Simulation Facilities, 1969.
- 32. E. H. Schulte and R. F. Stahl, "A High Heat Flux Sensor Employing Semiconductors," International Congress on Instrumentation in Aerospace Simulation Facilities, 1969.
- 33. J. P. Chevallier, J. Ponteziere and A. Betremiux, "Calorimeter Method of Heat Flux Measurement in Wind-Tunnels," Office National D'Etudes Et De Recherches Aerospatiales, Note Technique No. 159 (1970).
- 34. L. B. Garrett and J. I. Pitts, "A General Transient Heat-Transfer Computer Program for Thermally Thick Walls," NASA TM X-2058, August 1970.
- 35. <u>Manual on the Use of Thermocouples in Temperature Measurement</u>, ASTM Special Technical Publication 470, American Society for Testing and Materials, August 1970.
- 36. J. L. Hunt and J. I. Pitts, "Application of Phase-Change Technique to Thin Sections with Heating on Both Surfaces," informal information presented at Supersonic Tunnel Association, March 1971.
- 37. D. D. Pollock, The Theory and Properties of Thermocouple Elements, ASTM Special Technical Publication 492, American Society for Testing and Materials, Phil. Pa., May 1971.
- 38. "Test Facilities Handbook (9th Edition)" Arnold Engliteering Development Center, July 1971.
- 39. C. B. Johnson, "High Reynolds Number Turbulent Heating to Two Simplified Shuttle Configurations," in NASA TM X-2507 Space Shuttle Aerothermodynamic Technology Conference Vol. II - Heating, Feb. 1972.
- 40. H. L. Seegmiller and G. G. Mateer, "Effects of Roughness on Heating and Boundary-Layer Transition," in NASA TM X -2507, Space Shuttle Aerothermodynamics Technology Conference, Vol. II - Heating, Feb. 1972.
- 41. J. J. Bertin, et. al., "Aerothermodynamic Measurements for Space Shuttle Configuration in Hypersonic Wind Tunnels," in NASA TM X-2507, Space Shuttle Aerothermodynamics Technology Conference, Vol. II - Heating, Feb. 1972.

- 42. D. L. Compton, "Convective Heating Measurements by Means of an Infared Camera," in NASA TM X-2507, Space Shuttle Aerothermodynamics Technology Conference, Vol. II - Heating, Feb. 1972.
- 43. D. A. Throckmorton, "Heat-Transfer Testing Procedures in Phase B Shuttle Studies With Emphasis on Phase-Change Data Improvement," in NASA TMX -207, Space Shuttle Aerothermodynamics Technology Conference, Vol. II -Heating, Feb. 1972.
- 44. C. J. Stalmach, Jr., "Plating Methods for Thin-Skin Heat-Transfer Models," LTV Aerospace Corp., VSD Report 2-59700/2R-2986, Feb. 1972, Rev. A, May 1972.
- 45. R. K. Matthews, et. al., "Heat-Transfer and Flow-Field Tests of the McDonnell-Douglas-Martin Marietta Space Shuttle Configurations," AEDC-TR-73-53, April 1973.
- 46. C. E. Rogers, et.al., "A Thermal Mapping Technique for Shock Tunnels and a Practical Data-Reduction Procedure," AIAA Paper 72-1031, Spet. 1972.
- 47. Stone, et. al., "Factors Affecting Phase-Change Paint Heat-Transfer Data Reduction with Emphasis on Wall Temperatures Approaching Adiabatic Conditions," AIAA 72-1030, Sept. 1972.
- 48. D. L. Schultz and T. V. Jones, "Heat-Transfer Measurements in Short-Duration Hypersonic Facilities," AGARD -AG-165, February 1973.
- 49. L. L. Trimmer, R. K. Matthews and T. D. Buchanan, "Measurement of Aerodynamic Heat Rates at the Von Karman Facility," International Congress on Instrumentation in Aerospace Simulation Facilities, Sept. 1973.
- 50. R. K. Matthews, "Aersthermal Mapping and Photographic Data Processing at AEDC," In mational Congress on Instrumentation in Aerospace Simulation Facilities, 15.
- 51. S. C. Metcalf, "An Evaluation of Heat Transfer Measurement Techniques for use in a Low Density Tunnel," Aerodynamic Dept., RAE Farnborough, presented at 40th Semi-Annual STA Meeting, Sept. 1973.

#### Appendix II

#### Description of a Computer Routine for the Analysis of a Two-Dimensional Conductive Heat Transfer

By: T. C. Pope

A simplified heat transfer routine has been developed for the analysis of two-dimensional conductive heating in a body comprised of as many as four materials. The heat source for the system was conductive heating, represented by  $\hat{Q} = HA \left( T_{\substack{\text{adiabatic}\\ \text{wall}}} - T_{\substack{\text{wall}}} \right)$ , to which one side of the body was

exposed. Although the routine was coded for a specific problem, it is adaptable and can be used for other applications involving conductive heating.

The program was developed under NASA contract NAS9-13692 for the purpose of determining the effects of the geometric and thermal-property variations which could be affected in the design of heat transfer instrumentation. The basic configuration is illustrated in Figure 1 and consists of a thin, metallic film to which a wire is butted to the backside; the remainder of the backside volume consists of a low-conductivity substrate and, if desired, an air gap around the wire.

Since the problem was two-dimensional, the model configuration was sliced in half and divided into finite elements as shown in Figure 2. (The arrangement and number of elements in this figure, 4 by 10, is for illustrative purposes only; the routine is capable of handling 11 by 44 elements if computation time is not a consideration.) A single element is shown in Figure 3 and the various conductive areas are defined. The two-dimensional elements which were modeled in the computer routine are illustrated in Figure 4 with the areas designated and the heat flow sign convention defined.

By modifying the three-dimensional elements of Figures 2 and 3 to the twodimensional form of Figure 4, the model matrix becomes that of Figure 5. The dimensions of the elements may be varied; however, with the present arrangement the first two layers have a width of half the wire diameter and a depth or thickness equal to the film thickness; the remaining layers have the same width and a thickness of 0.05 inches. The program is a finiteinterval computation of the heat balance equation given in Figure 4 for each of the elements. The incremental heat conduction is calculated from

#### (thermal conductivity)(conduction area)(temperature difference between elements)(time increment) (conduction length)

for each of the four heat flux components. The temperature increment for each element is caluclated from

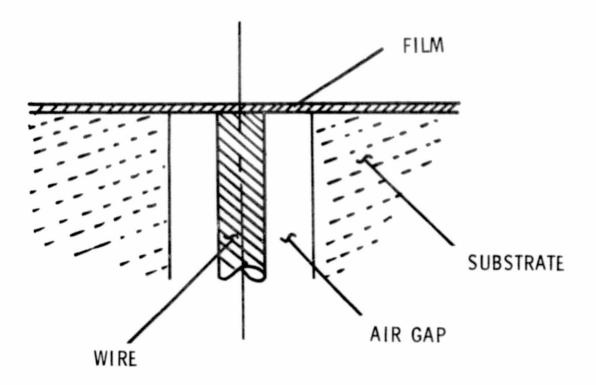
(heat stored)

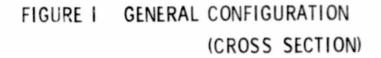
(specific heat)(density)(element volume)

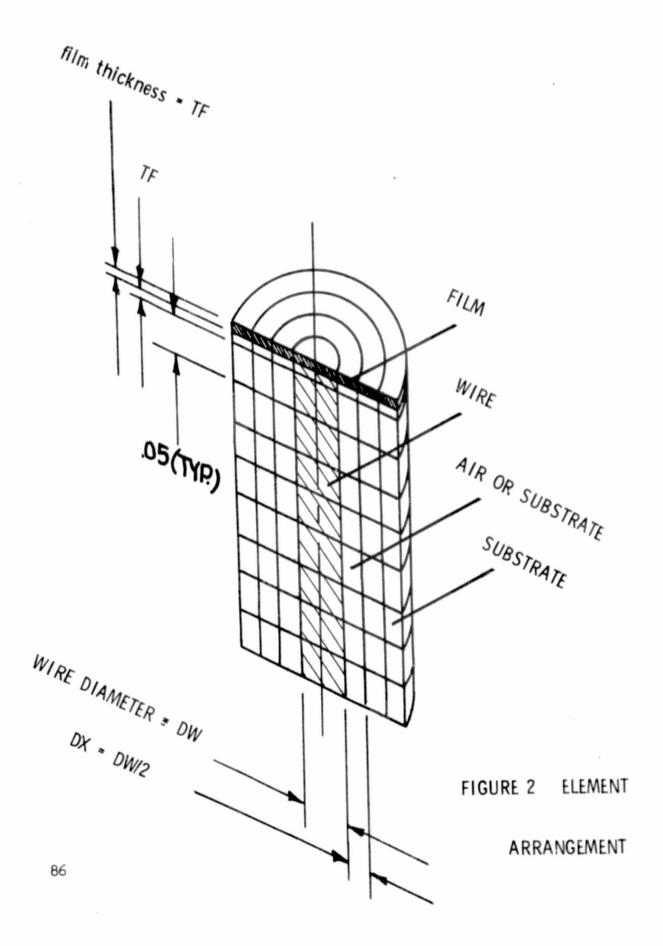
The boundary conditions slightly alter the heat balance equation in Figure 4. For instance, for elements on the surface (the first layer) Q<sub>1</sub> would be replaced by HA (T<sub>adiabatic</sub> -T<sub>wall</sub>). Similarly, the sides and bottom are wall

adiabatic boundaries so that the appropriate Q in each case would be set to zero. The selection of the time increment is most important from two aspects not related to accuracy. If the increment is too small, the computer time can become prohibitive. If the time increment is too large, the computed temperatures will begin to oscillate, rather than continuously rise, and subsequently diverge. An estimate of the magnitude of the largest increment that can be used. and divergence avoided, is given by

## (specific heat)(density)(element thickness)<sup>2</sup> thermal conductivity


The above expression must be evaluated for each material and the minimum value obtained selected for use.


With regard to the simplification of the routine it should be noted that radiation has been neglected in the heat balance equation. Similarly, corrections for joints (interfaces between materials) have been omitted. This was done because of the ill defined joints which would probably exist and the complexity which would be required in establishing the model matrix for the routine. Finally, in the runs that were made with an air gap separating the wire from the substrate, convection was ignored.


The results which were generated for the aforementioned contract are difficult to check. Thus, to provide some verification of the routine and procedures upon which it was based, a classical, constant-property, semiinfinite-slab problem was run, and a series of hand calculations were made using the information presented in <u>Temperature Response</u> <u>Charts</u> by P. J. Schneider @ 1963, John Wiley & Sons, Inc. A comparison of these results is shown in Figure 6. The agreement between the two methods at 3 seconds (the problem termination time) was within 0.1°F. This extremely small difference is particularly impressive or perhaps fortuitous since in the course of this solution the computer performed 30,000 finiteinterval approximations without the benefit of extended precision. This feature was not available due to the limitation of the storage capacity.

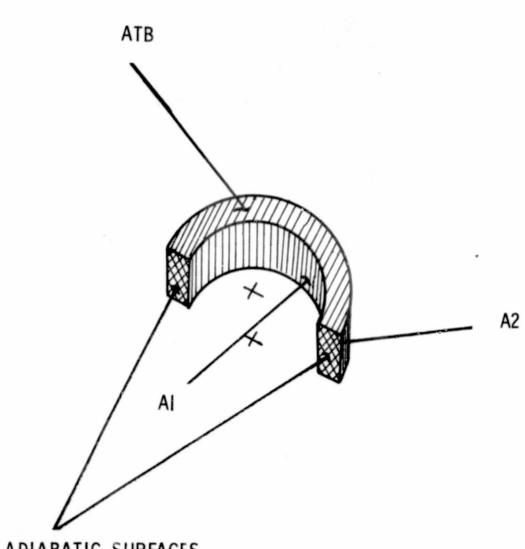
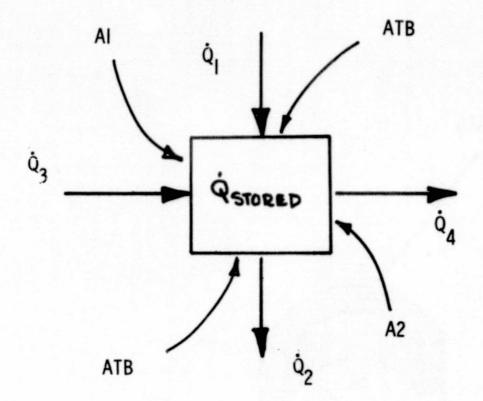
Other applications of the routine may be effected by varying the material properties and element dimensions as desired. Cases ranging from the basic semi-infinite homogenous slab to the more complex four-material problem can be handled.

Enclosure 1 defines some of the more prominent terms used in Enclosure 2, a listing of the FORTRAN program. A sample of the output format is given in Enclosure 3.







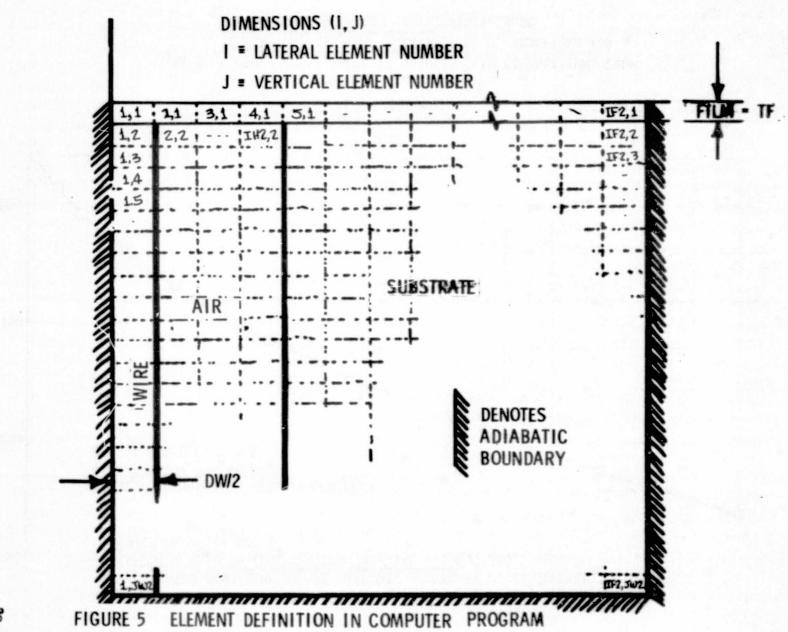




FIGURE 3 DEFINITION OF AREAS ON TYPICAL ELEMENT



$$\dot{q}_{\text{STORED}} = \dot{q}_1 - \dot{q}_2 + \dot{q}_3 - \dot{q}_4$$

FIGURE 4 TWO-DIMENSIONAL VERSION OF TYPICAL ELEMENT AND HEAT FLUX SIGN CONVENTION



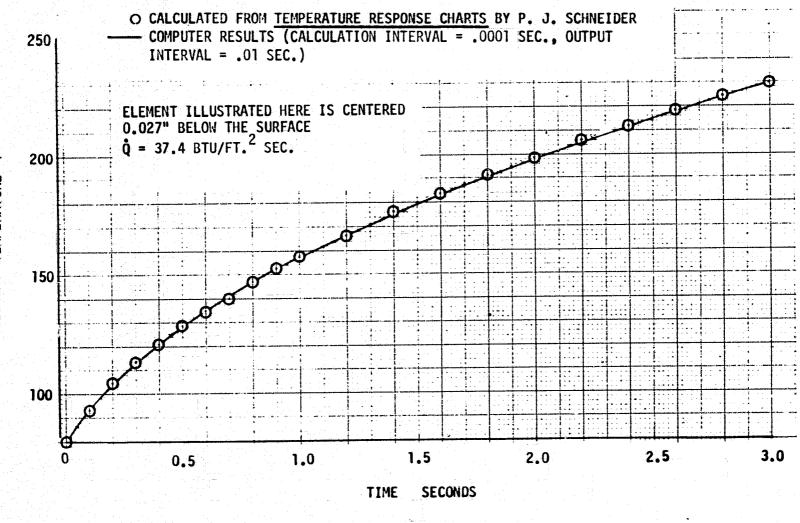



FIGURE 6 COMPARISON OF COMPUTER RESULTS WITH CALCULATIONS FROM <u>TEMPERATURE RESPONSE CHARTS</u> BY P. J. SCHNEIDER FOR A HOMOGENOUS, CONSTANTAN SEMI-INFINITE SLAB

.\*

ELEMENT TEMPERATURE "F

| CPA, CPF,<br>CPS and CPW     | specific heat of air, film, substrate and wire, respectively,<br>BTU/lb. F          |
|------------------------------|-------------------------------------------------------------------------------------|
| DENA, DENF,<br>DENS and DENW | density of air, film, substrate and wire, respectively, 1b./ft.3                    |
| DIR                          | wire diameter, in.                                                                  |
| DX                           | DW/2, the width of an element, in.                                                  |
| DYF                          | the height of elements in the first two layers, in.                                 |
| DYW                          | the height of elements in layers below the first two layers, in.                    |
| H                            | heat transfer coefficient, BTU/ft. <sup>2</sup> sec. <sup>O</sup> F                 |
| I                            | lateral element number (see Figure 5)                                               |
| IF2                          | the number of elements in the horizontal plane (see Figure 5)                       |
| J                            | vertical element number (see Figure 5)                                              |
| JW2                          | the number of elements in the vertical plane (see Figure 5)                         |
| KA, KF, KS<br>and KW         | thermal conductivity of air, film, substrate and wire, respectively, BTU/ft. F sec. |
| TAW                          | adiabatic wall temperature, <sup>o</sup> F                                          |
| TF                           | film thickness, in.                                                                 |
| T(I,J)                       | temperature of element(I,J) <sup>o</sup> F.                                         |

Enclosure 1 - Definition of Some Terms Used in Program

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enclosure 2                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| · REAL KF, KA, KH, KS, K(11,44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 1 of 3                              |
| DIFENSION $T(11, 44), TeVG(11), DEN(11, 44), ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CP(11,44), pTE(11),                      |
| 101(11,44), C2(11,44), C3(11,44), C4(11,44),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| $2 \qquad A1(11,44), A2(11,44), ANET(11,44)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| 11 = .039<br>1 = .040.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| $T_1 = .001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| 1) L = 0 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| $\frac{1}{10} = \frac{1}{10} \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| DYF=TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| $\overline{1}$ I $i_1 \in = ()$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| $I \subset I = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| (1)(1)(1)(1)(1)=1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| 1)11 100 I=1, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 1(0) T(1, J) = 80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| $\frac{CP}{A=.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| $\frac{0.164}{0.000} = 0.000038$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| KA = .0000038 $KF = .0009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| DENF=515.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| CPF=.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| 0Em9=556.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| CPH = . ()94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| Ku= . 00337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| UPS=.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| $015 \times S = 1.31.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| KS=.0002132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| IFZ=7<br>JFZ=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| J = 2 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| 1S = 112 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| 1 / = Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| (1) = .0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| (1, 11)  J=1, J+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| $1 \in 1  I = 1, I \in Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| $(1^{2}(1, j) = (1^{2})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| $\frac{(1+1)(1+1)(1+1)}{(1+1)(1+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| $\frac{110 \text{ K}(I,J)=\text{KF}}{100 \text{ I}11 \text{ J}=2,20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
| $\frac{1}{111} \frac{1}{1} $ |                                          |
| (P(1+J)=CP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| $\frac{O(I+J)}{O(I+J)} = O(E^{N}A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| 111 K(1, J) = KA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| Du 112 J=2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| DU 112 I=1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| $CP(I_{j}J) = CPI_{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| $\frac{11-16}{1}\left(1,J\right)=11E^{11/4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| $\frac{112}{112} \times (I, J) = KH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| $\frac{1113  J=2, 20}{1011  113  I=IS, IF2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an a |
| 111 JUD 1 - J 07 J - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| /* 35 / T 11 m /* 12 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| CP(I+J)=CPS $DEM(I+J)=DEMS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| $\frac{1}{113}  K(I,J) = 0 E^{NS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| $\frac{1}{13} \times (I, J) = 0 E^{MS}$ $\frac{1}{13} \times (I, J) = KS$ $\frac{1}{15} = 1 \cdot 1 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACR B                                    |
| )EN(I,J)=DENS<br>113 K(I,J)=KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAGE IB                                  |

\*\*\*

. . .

•

• • • • • •

. . . . .

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \frac{1}{122} \times 10[1] = 3.14 [ k = 0.2 \text{ MeV} (2.8 + [-1])/2.7 (142,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enclosure 2 (Con't.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} (11, 1) = 1, 1 \leq $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mage 2 01.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} r_{2}(1, j) \geq s_{1}(1, j) \in \mathbb{N}^{2}(1, j) \in \mathbb{N}^$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 0.1(1, i) = 1/2, \cdots, (1, i) . (11, i) / i/VV \\ 0.2(1, i) = 1/2, \cdots, (1, i) . (11, i) / i/VV \\ 0.2(1, i) = 1/2, \cdots, (1, i) . (11, i) / i/VV / 1/2. \\ 0.0 10 1 = 1/7, i/7 \\ 1.0 1 = 1/7 \\ 1.0 1 = 1/7 \\ 1.0 1 = 1/7 \\ 1.0 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} c_{2}(1, j) = 12, \cdots, (1, i) - 1(1, i) / 0x \\ c_{3}(1, j) = 12, \cdots, (1, i) + 2(1, j) / 0x \\ let (1, j) = 12, \cdots, (1, i) + 2(1, j) / 0x \\ let (1, j) = 12, l + 12, l + 12 \\ let (1, j) = 12, l + 12, l + 12 \\ let (1, j) = 12, l + 12, l + 12 \\ let (1, j) = 1, l + 12, l + 12 \\ let (1, j) = 1, l + 12, l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{l} C_{3}(1, d) = 12 \cdot r_{1}(1, d) + r_{2}(1, d) PX \\ (F) & U(1, d) = 1 + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{2} + r_{1}(1, d) + r_{2} \\ (U(1, d) = 1 + r_{2} + r_{1}(1, d) + r_{2} + r_{2} + r_{2} + r_{2} + r_{2} + r_{2} \\ (U(1, d) = 1 + r_{2} \\ (U(1, d) = 1 + r_{2} \\ (U(1, d) = 1 + r_{2} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 0.0 \ 151 \ 1=7,7^{\circ} \\ 0.0 \ 151 \ 1=7,172 \\ 1F(3-2)157,155,156 \\ 155 \ 0.0 \ 157 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D) 151 1=1,172<br>1F(3-2)157,155,156<br>155 DYM=.05<br>GU 10 157 OPROR QUALTY<br>157 A1(1,J)=3.141630X80/PW(1-1)/144.<br>A2(1,J)=3.141630X80/PW(1-1)/144.<br>C1(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1/J)WM<br>C2(1,J)=12.*K(1,J)*ATE(1,J)*ATE(1)AM<br>C2(1,J)=12.*K(1,J)*ATE(1,J)*ATE(1)AM<br>C2(1,J)=12.*K(1,J)*ATE(1,J)*ATE(1,J)*ATE(1,J)*ATE(2,J)<br>C335 FURMAT( 5=20.6)<br>00 932 J=1.20<br>932 WHTE(6,9331K(1,J), DEN(2,J),DEN(3,J),DFM(4,J),DFM(4,J),DFM(4,J),<br>ATE(6,9331K(1,J),T(2,J),AT(3,J),AT(4,J),AT(5,J),AT(4,J),<br>ATE(6,9331A(1,J),AT(2,J),AT(3,J),AT(4,J),AT(5,J),AT(4,J),<br>ATE(6,9331A(1,J),AT(2,J),AT(3,J),AT(4,J),AT(5,J),AT(4,J),<br>ATE(6,9331A(1,J),AT(2,J),AT(3,J),AT(4,J),AT(5,J),AT(4,J),<br>ATE(6,9331A(1,J),AT(2,J),AT(3,J),AT(4,J),AT(5,J),AT(4,J),<br>ATE(6,9331C(1,J),AT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(5,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(2,J),CT(3,J),CT(4,J),CT(4,J),<br>ATE(6,9331C2(1,J),CT(1,J),CT(2,J),CT(1,J),CT(1,J),CT(1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \frac{1F(J-2)157, 155, 196}{156} \\ \frac{156}{60} \frac{10}{10} \frac{157}{156} \frac{10}{157} \frac{10}{157}$                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 157 \ \text{DYWe, 05} & \text{ORIGINAL PAGE IS} \\ \text{GU 10 157} & \text{ORIGINAL PAGE IS} & \text{OF POOR QUALIX} \\ 157 \ \text{Al } (I, J) = 3.141 \text{Gen} \text{Sen} (1 + 3)/144. & \text{OF POOR QUALIX} \\ \text{A} (2I, J) = 12.4 \text{K} (I, J) \approx 1/1/44. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/1/144. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4/4. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 12.4 \text{K} (I, J) \approx 1/1/4. & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 1/2.0 & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 1/2.0 & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 1/2.0 & \text{OF POOR QUALIX} \\ \text{C} (I, J) = 1/2.0 & \text{OF POOR QUALIX} \\ \text{C} (I) = 0.4 \text{C} (I, J) & \text{OF POOR QUALIX} \\ \text{C} (I) = 0.4 \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I) = 0.4 \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I) = 0.4 \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I) = 0.4 \text{C} (I, J) & \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OPOR QUALIX} \\ \text{C} (I, J) & \text{OF OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OPOR QUALIX} \\ \text{C} (I, J) & \text{OF OF ORIGH (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I) & \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I, J) & \text{OF OR QUALIX} \\ \text{C} (I) & \text{OF OR QUALIX} \\ \text{C} (I) & OF OF OR $                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 156 DYM=.05<br>157 Al(1, J)=3.1416*NIX#0(P*X(1-1)/144.<br>Al(1, J)=2.*K(1, J)*A(1, J)/DY<br>C3(1, J)=12.*K(1, J)*A(1, J), CP(2, J), CP(3, J), CP(4, J), CP(5, J)<br>D0 932 J=1, 20<br>934 MRITE(6,933)A(1, J), DEN(2, J), DEN(3, J), DEN(4, J), DEN(5, J), ME*(4, J).<br>D1 PSN(7, J)<br>D1 935 J=1, 20<br>935 WRITE(6,933)A(1, J) +A(2, J), A1(3, J), A1(4, J), A1(5, J), A1(4, J),<br>D1 936 J=1, 20<br>937 WRITE(6,933)A(1, J) +A1(2, J), A1(3, J), A1(4, J), A1(5, J), A1(4, J),<br>D1 936 J=1, 20<br>937 WRITE(6,933)A(1, J) +A1(2, J), A1(3, J), A2(4, J), A2(5, J), A2(4, J),<br>D1 937 J=1, 20<br>937 WRITE(6,933)C2(1, J) +C2(2, J), C2(3, J), C2(4, J), C2(5, J), C2(6, A),<br>D1 937 J=1, 20<br>937 WRITE(6,933)C2(1, J) +C2(2, J), C2(3, J), C2(4, J), C2(5, J), C2(6, A),<br>D1 941 J=1, 20<br>A(1 94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORIGINAT PAGE IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 157 A1(1, J)= 3. 1416×11×11/1×11/144.<br>A2(1, J)=3. 1416×11×11/1×11/144.<br>C1(1, J)=12. *K(1, J)*Y1(1, J)/DY<br>C2(1, J)=12. *K(1, J)*Y1(1, J)/DY<br>C3(1, J)=12. *K(1, J)*Y1(1, J)/DY<br>151 C4(1, J)=CP(1, J)*DF*(1, J)/DY<br>151 C4(1, J)=CP(1, J)*DF*(1, J)/DY<br>934 FURMAT( $5E20.6$ )<br>932 WHITE(6,933)DEV(1, J). CP(2, J). CP(3, J), CP(4, J), CP(5, J)<br>101 934 J=1.20<br>934 WHITE(6,933)DEV(1, J). DEV(2, J). DEV(3, J), DEV(4, J), DEV(5, J), DEV(6, J).<br>102 935 J=1, 20<br>935 WHITE(6,933)DEV(1, J). DEV(2, J). DEV(3, J), K(5, J). K(6, J)., V(7, J)<br>103 935 J=1, 20<br>935 WHITE(6,933)A1(1, J). T(2, J). K(3, J), K(4, J). K(5, J). K(6, J)., V(7, J)<br>101 934 J=1, 20<br>937 WHITE(6,933)A1(1, J). A1(2, J). A1(3, J), A1(4, J). A1(5, J). A1(4, J).<br>1A2(7, J)<br>1D1 937 J=1, 20<br>937 WHITE(6,933)A2(1, J). 2(2, J). A2(3, J). A2(4, J). A2(5, J). F2(6, H).<br>1A2(7, J)<br>1D1 937 J=1, 20<br>937 WHITE(6,933)C1(1, J). C1(2, J). C1(3, J). C1(4, J). C1(5, J). C1(6, H).<br>1A2(7, J)<br>1D1 939 J=1, 20<br>937 WHITE(6,933)C2(1, J). C2(2, J). C2(4, J). C2(5, J). C2(6, H).<br>1C(7, J)<br>1D1 939 J=1, 20<br>937 WHITE(6,933)C2(1, J). C3(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C2(7, J)<br>1D1 941 J=1, 20<br>20 0HITE(6,933)C3(1, J). C3(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C2(7, J)<br>1D1 941 J=1, 20<br>20 0HITE(6,933)C3(1, J). C3(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C3(7, J)<br>1C3(7, J)<br>20 0HITE(6,933)C3(1, J). C4(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C3(7, J)<br>20 0HITE(6,933)C3(1, J). C4(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C3(7, J)<br>20 0HITE(6,933)C3(1, J). C3(2, J). C3(3, J). C4(4, J). C4(5, J). C4(6, h).<br>1C3(7, J)<br>20 0HITE(6,933)C3(1, J). C3(2, J). C3(3, J). C3(4, J). C3(5, J). C3(6, h).<br>1C3(7, J)<br>20 0HITE(7, J)<br>20 0HITE(7, J)=DT*(HAATF(1)*(TAN-T(1, 1))-<br>20 (1, 2)*(T(1, 1)-T(1, 2)).<br>20 0HITE(7, J)=DT*(HAATF(1))*(TAN-T(1, 1))+<br>20 (1, 2)*(T(1, 1)-T(1, 2)).<br>20 0HITE(7, J)=DT*(HAATF(1))*(TAN-T(1, 1))+<br>20 0HITE(7, J)=DT*(HAATF(1))*(TAN-T(1, 1))+<br>20 0HITE(7, J)=DT*(HAATF(1))*(TAN-T(1, 1))+<br>20 0HITE(7, J)=DT*(HAATF(1))*(TAN-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{l} & A2(1, J) = 3.141 \ A \approx 19 \ \% (I + 0 + 17 \ I + 4 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UF FOUR QUALLER,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{l} Cl(1, J) = 12, *K(1, J) * F((1)/DYW \\ C2(1, J) = 12, *K(1, J) * A(1, J) / DY \\ C3(1, J) = 12, *K(1, J) * A(1, J) / DY \\ 151 C4(1, J) = CP(1, J) * DF (1, J) * AF_D(1) * DYW/12. \\ 933 FORMAT( 5E20.6) \\ 00 932 J = 1, 20 \\ 932 WRITE(6, 933) CP(1, J) + CP(2, J) + CP(3, J) + CP(4, J) + CP(5, J) \\ 00 934 J = 1, 20 \\ 934 WRITE(6, 933) DEN(1, J) + DEN(2, J) + DEN(3, J) + DEN(4, J) + DEW(5, J) + DEW(6, J) \\ 101 935 J = 1, 20 \\ 935 WRITE(6, 933) DEN(1, J) + U(2, J) + DEN(3, J) + DEN(4, J) + DEW(5, J) + DEW(6, J) \\ 101 935 J = 1, 20 \\ 936 WRITE(6, 933) A1(1, J) + U(2, J) + A(3, J) + A(4, J) + A(5, J) + A(6, J) + (7, J) \\ 101 937 J = 1, 20 \\ 936 WRITE(6, 933) A2(1, D) + A(2, J) + A(3, J) + A(4, J) + A(5, J) + A(6, J) + (7, J) \\ 101 937 J = 1, 20 \\ 937 Vs(TTE(6, 933) A2(1, D) + A(2, J) + A(3, J) + A(4, J) + A(5, J) + A(6, J) + (7, J) \\ 101 937 J = 1, 20 \\ 937 Vs(TTE(6, 933) C2(1, J) + C2(2, J) + C2(4, J) + C2(5, J) + C2(6, a) + (107, J) \\ 101 938 J = 1, 20 \\ 939 VRITE(6, 933) C2(1, J) + C1(2, J) + C1(3, J) + C1(4, J) + C1(5, J) + D(6, A) + (102(7, J) + D(6, G)) + C2(7, J) \\ 101 940 J = 1, 20 \\ 001 040 J = 1, 20 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{l} C2(1, J) = 12, *K(1, J) \times 1(1, J)/DY \\ C3(I, J) = 12, *K(1, J) \times 2(1, J)/DX \\ 151 C4(1, J) = CP(1, J) \times DFN(1, J) \times AFD(1) \times DYN/12. \\ 933 FORMAT( 5E20.6) \\ 00 932 J = 1, 20 \\ 932 WR 1TE(6, 933) CP(1, J) + CP(2, J) + CP(3, J) + CP(4, J) + CP(5, J) \\ 01 934 J = 1, 20 \\ 934 WR 1TE(6, 933) DEN(1, J) + DEN(2, J) + DEN(3, J) + DEN(4, J) + DFN(5, J) + DEN(6, J) + DEN(7, J) \\ 01 935 J = 1, 20 \\ 936 WR 1TE(6, 933) A(1, J) + V(2, J) + RV(3, J) + K(5, J) + K(6, J) + K(6, J) + (7, J) \\ 01 935 J = 1, 20 \\ 936 WR 1TE(6, 933) A(1, J) + V(2, J) + RV(3, J) + K(4, J) + K(5, J) + K(6, J) + (7, J) \\ 01 937 J = 1, 20 \\ 937 WR 1TE(6, 933) A(1, J) + A1(2, J) + A1(3, J) + A1(4, J) + A1(5, J) + A1(6, J) + (14, 17, J) \\ 01 937 J = 1, 20 \\ 937 WR 1TE(6, 933) C1(1, J) + C1(2, J) + C1(3, J) + C1(4, J) + C2(5, J) + C2(6, a) + (12(7, J) + C1(7, J) + C1(7, J) \\ 01 939 J = 1, 20 \\ 938 WR 1TE(6, 933) C1(1, J) + C1(2, J) + C1(3, J) + C2(4, J) + C2(5, J) + C2(6, a) + (12(7, J) + C1(7, J) + C1(7, J) \\ 01 939 J = 1, 20 \\ 030 WR 1TE(6, 933) C2(1, J) + C2(2, J) + C2(4, J) + C2(5, J) + C2(6, a) + (12(7, J) + C1(7, J) + C1(7, J) + C1(7, J) + C1(7, J) \\ 01 949 J = 1, 20 \\ 01 940 J = 2, JF2 \\ 01 940 J = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} C_{3}(1, J) = 12 \cdot & \times (1, J) \times 2(1, J) / DX \\ 151 C_{4}(1, J) = CP(1, J) \times DF^{1}(1, J) \times Af_{D}(1) \times DY^{1}/2 \cdot \\ 935 FORMAT( 5E20.6) \\ \hline D0 932 J = 1, 20 \\ 932 MRITE(6, 933) CP(1, J) \cdot CP(2, J) \cdot CP(3, J) \cdot CP(4, J) \cdot CP(5, J) \\ \hline D0 934 J = 1, 20 \\ 934 MRITE(6, 933) DEN(1, J) \cdot DEN(2, J) \cdot DEN(3, J) \cdot DFN(4, J) \cdot DFN(5, J) \cdot DFN(6, J) \cdot \\ \hline 1DEN(7, J) \\ \hline D1 935 J = 1, 20 \\ 935 9RITE(6, 933) A(1, J) \cdot D(2, J) \cdot K/3, J) \cdot K(4, J) \cdot K(5, J) \cdot K(6, J) \cdot (7, J) \\ \hline D1 935 J = 1, 20 \\ 936 \times RITE(6, 933) A(1, J) \cdot D(2, J) \cdot A(3, J) \cdot A(4, J) \cdot A(5, J) \cdot A(6, J) \cdot (7, J) \\ \hline D1 937 J = 1, 20 \\ 937 \times RITE(6, 933) A(2(1, J) \cdot D(2, J) \cdot A(3, J) \cdot A(4, J) \cdot A(5, J) \cdot A(6, J) \cdot (7, J) \\ \hline D11 937 J = 1, 20 \\ 937 \times RITE(6, 933) A(2(1, J) \cdot D(2, J) \cdot A(3, J) \cdot A(4, J) \cdot A(2(5, J) \cdot PZ(6, J) \cdot (7, J) \\ \hline D11 937 J = 1, 20 \\ 937 \times RITE(6, 933) C2(1, J) \cdot D(2, J) \cdot C1(3, J) \cdot C1(4, J) \cdot C1(5, J) \cdot PZ(6, J) \cdot (7, J) \\ \hline D11 938 J = 1, 20 \\ 938 V \times RITE(6, 933) C2(1, J) \cdot C2(2, J) \cdot C2(3, J) \cdot C2(4, J) \cdot C2(5, J) \cdot C2(6, e) \cdot \\ 1C2(7, J) \\ \hline D11 941 J = 1, 20 \\ O(0 0 0 0 0 H RITE(6, 933) C2(1, J) \cdot C3(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ 1C2(7, J) \\ \hline D12 942 J = 1, 20 \\ O(0 0 0 H RI TE(6, 933) C3(1, J) \cdot C3(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ 1C2(7, J) \\ \hline D14 94 J = 1, 20 \\ O(0 0 H RI TE(6, 933) C3(1, J) \cdot C3(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ 1C2(7, J) \\ \hline D14 94 J = 1, 20 \\ O(0 H RI TE(6, 933) C3(1, J) \cdot C3(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ \hline D15 94 \times H RI TE(6, 933) C4(1, J) \cdot C4(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ \hline 1C = (7, J) \\ \hline D14 94 0 = 1, 20 \\ O(0 H RI TE(6, 933) C3(1, J) \cdot C3(2, J) \cdot C3(3, J) \cdot C3(4, J) \cdot C3(5, J) \cdot C3(6, e) \cdot \\ \hline D16 96 0 D = 2, F2 \\ \hline D16 90 0 O M C [(1, 1) = DT \times (H \times AT (1) (H \times T (H - T(1, 1)) - C1(1, 2) \times (T(1, -1) - ((-1, 1))) \\ \hline H = C1(1, 2) \times (T(1, 1) - T(1, 2)) - C3(1+1, 1) \times (T(1, -1) - T(1+1, 1)) \\ \hline H M 22 = M 2 - 1 \\ \hline D10 800 2 = 2, J M 2 \\ \hline D2 \\ \hline D2 0 R D (I = 2, I F 2 \\ \hline D2 \\ \hline$                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 151 C4(1, J)=CP(1, J) × DFF ([, J) × AFb(1) × AYU/12.<br>935 FORMAT( 5F20.6)<br>D 092 J=1,20<br>932 WRITE(6,933) CP(1, J), CP(2, J), CP(3, J), CP(4, J), CP(5, J)<br>D 034 J=1,20<br>934 MRITE(6,933) DFN(1, J), DEN(2, J), DEN(3, J), UPFN(4, J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 933 FORMAT( 5E20.6)<br>D0 932 J=1,20<br>934 WRITE(6,933)CP(1,J).CP(2,J).CP(3,J).CP(4,J).CP(5,J)<br>00 934 J=1,20<br>934 WRITE(6,933)DEN(1,J).DEN(2,J).DEN(3,J).DEN(4,J).UF*(5,J).UF*(6,J).<br>10E*(7,J)<br>109 935 J=1,20<br>935 WRITE(6,933)A1(1,J).V(2,J).K(3,J).K(4,J).K(5,J).K(6,J).X(7,J)<br>101 937 J=1,20<br>937 WRITE(6,933)A2(1,J). 2(2,J).A1(3,J).A1(4,J).A1(5,J).A1(6,J).<br>101 937 J=1,20<br>937 WRITE(6,933)A2(1,J). 2(2,J).A2(3,J).A2(4,J).A2(5,J).72(6,).<br>102(7,J)<br>101 938 J=1,20<br>939 WRITE(6,933)C2(1,J).C2(2,J).C2(4,J).C1(5,J).C1(6,).<br>102(7,J)<br>101 939 J=1,20<br>939 WRITE(6,933)C2(1,J).C2(2,J).C2(4,J).C2(5,J).C2(6,).<br>102(7,J)<br>101 941 J=1,20<br>940 URITE(6,933)C2(1,J).C3(2,J).C3(3,J).C3(4,J).C3(5,J).C3(6,A).<br>102(7,J)<br>101 941 J=1,20<br>940 WRITE(6,933)C4(1,J).C4(2,J).C3(3,J).C3(4,J).C3(5,J).C3(6,A).<br>102(7,J)<br>103 941 J=1,20<br>940 URITE(6,933)C4(1,J).C4(2,J).C3(3,J).C3(4,J).C4(5,J).C4(6,A).<br>103(7,J)<br>941 WRITE(6,933)C4(1,J).C4(2,J).C3(3,J).C3(4,J).C4(5,J).C4(6,A).<br>104 WRITE(6,933)C4(1,J).C4(2,J).C3(3,J).C3(4,J).C4(5,J).C4(6,A).<br>105(7,J)<br>104 00ET(1,1)=DT*(H*ATF(1)*(TAN=T(1,1))-<br>11(1,2).*(T(1,1)=T(1,1))-<br>11(1,2).*(T(1,1)=T(1,2))-C3(1+1,1)*(T(1,1)=T(1+1,1))-<br>11(1,2).*(T(1,1)=T(1,2))-C3(1+1,1)*(T(1,1)=T(1+1,1))-<br>11(1,2).*(T(1,1)=T(1,2))-C3(1+1,1)*(T(1,1))-<br>11(1,2).*(T(1,1)=T(1,2))-C3(1+1,1))+(1(1,1)=T(1+1,1)))<br>100 802 J=2,JWZ2<br>00 802 J=2,J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and an and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DD 932 J=1,20<br>932 MRITE(6,933)CP(1,J).CP(2,J).CP(3,J).CP(4,J).CP(5,J)<br>DO 934 J=1,20<br>934 WRITE(6,933)DEN(1,J).DEN(2,J).DEN(3,J).DEN(4,J).DEN(4,J).DEN(6,J).<br>1DEN(7,J)<br>1DEN(7,J)<br>10) 935 J=1,20<br>935 WRITE(6,933)A(1,J).V(2,J).K(3,J).K(4,J).K(5,J).K(6,J).N(7,J)<br>10) 936 J=1,20<br>937 WRITE(6,933)A(1,J).V(2,J).A1(3,J).A1(4,J).A1(5,J).A1(4,J).<br>1A1(7,J)<br>1A1(7,J)<br>1A1(7,J)<br>1A2(7,J)<br>937 WRITE(6,933)A2(1,J).Z(2,J).A2(4,J).A2(4,J).A2(5,J).V(4,J).<br>1A2(7,J)<br>0) 938 J=1,20<br>939 WRITE(6,933)C1(1,J).V1(2,J).C1(3,J).C1(4,J).C1(5,J).V1(4,J).<br>1C1(7,J)<br>10) 939 J=1,20<br>939 WRITE(6,933)C2(1,J).C2(2,J).C2(3,J).C2(4,J).C2(5,J).V2(6,A).<br>1C2(7,J)<br>0) 941 J=1,20<br>940 WRITE(6,933)C3(1,J).C3(2,J).C3(3,J).C3(4,J).C3(5,J).V3(6,A).<br>1C3(7,J)<br>041 WRITE(6,933)C3(1,J).C3(2,J).C3(3,J).C3(4,J).C3(5,J).V3(6,A).<br>1C3(7,J)<br>041 WRITE(6,933)C3(1,J).C3(2,J).C3(3,J).C3(4,J).C3(5,J).V3(6,A).<br>1C3(7,J)<br>041 WRITE(6,933)C3(1,J).C3(2,J).C3(3,J).C4(4,J).C4(5,J).V3(6,A).<br>1C3(7,J)<br>041 WRITE(6,933)C3(1,J).C3(2,J).C3(3,J).C3(4,J).C4(5,J).V3(6,A).<br>1C4(7,J)<br>1C4(7,J)<br>1C4(7,J)<br>1C4(7,J)<br>052 J=2,Z<br>P00 GANGT(1,1)=DT*(H%ATF(1)*(TAN=T(1,1))=<br>C1(1,2) *(T(1-1,1)-T(1+1,1))<br>JM22=JM22<br>D0 B02 J=2,JM22<br>D0 B02 J=2,JM22<br>D0 B02 J=2,JF2<br>P00 GANGT(J,J)=C1(T,J) *(T(T,J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 932 MRITE(6,933) CP(1, J) · CP(2, J) · CP(3, J) · CP(4, J) · CP(5, J)<br>100 934 J=1, 20<br>934 WRITE(6,933) DEM(1, J) · DEM(2, J) · DEM(3, J) · DEM(4, J) · DEM(5, J) · DEM(6, J) ·<br>102 935 J=1, 20<br>935 WRITE(6,933) K(1, J) · '('2, J) · K('3, J) · K('4, J) · K('5, J) · K('6, J) · N(', J)<br>101 936 J=1, 20<br>936 "RITE(6,933) A1(1, J) · A1(2, J) · A1(3, J) · A1(4, J) · A1(5, J) · A1(6, J) ·<br>101 937 J=1, 20<br>937 931 J=1, 20<br>937 931 J=1, 20<br>937 931 J=1, 20<br>938 J=1, 20<br>938 J=1, 20<br>939 931 J=1, 20<br>930 941 J=1, 20<br>940 941 J=1, 20<br>941 941 941 941 941 941 941 941 941 941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} & 0 & 0 & 934 & j=1,20 \\ & 934 & \text{MRITF(6,933)DEN(1,J),DEN(2,J),DEN(3,J),DEN(4,J),DEN(5,J),dEN(6,J), \\ & 1 & 1 & 0 & 0 & j=1,20 \\ & 935 & \text{JEL20} \\ & 935 & \text{JEL20} \\ & 936 & \text{JEL20} \\ & 937 & MRITE(6,933)A1(1,J),A1(2,J),A1(3,J),A1(4,J),A1(5,J),A1(6,J), \\ & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>934 WRITE(6,933)DEN(1,J),DEN(2,J),DEN(3,J),DEN(4,J),DEN(5,J),DEN(7,J)<br/>1DEN(7,J)<br/>(b) 935 J=1,20<br/>935 WRITE(6,933)A(1,J),P((2,J),K(3,J),K(4,J),K(5,J),K(6,J),∧(7,J)<br/>1DF 936 J=1,20<br/>936 WRITE(6,933)A1(1,J),A1(2,J),A1(3,J),A1(4,J),A1(5,J),A1(6,J),<br/>1A1(7,J)<br/>DEN(937 J=1,20<br/>937 WRITE(6,933)A2(1,J),Z(2,J),A2(3,J),A2(4,J),A2(5,J),P(2(6,J),<br/>1A2(7,J)<br/>DEN(938 J=1,20<br/>938 WRITE(6,933)C1(1,J),P(1(2,J),C1(4,J),C1(5,J),C1(6,J),<br/>1C1(7,J)<br/>DEN(938 J=1,20<br/>939 WRITE(6,933)C2(1,J),C2(2,J),C2(3,J),C2(4,J),C2(5,J),C1(6,J),<br/>1C2(7,J)<br/>DEN(941 J=1,20<br/>940 WRITE(6,933)C3(1,J),C3(2,J),C3(3,J),C3(4,J),C3(5,J),C3(6,A),<br/>1C2(7,J)<br/>940 WRITE(6,933)C3(1,J),C3(2,J),C3(3,J),C3(4,J),C3(5,J),C3(6,A),<br/>1C3(7,J)<br/>941 WRITE(6,933)C4(1,J),C4(2,J),C3(3,J),C4(4,J),C4(5,J),C3(6,A),<br/>1C4(7,J)<br/>169 U×ET(1,1)=DT*(H*ATP(1)*(TAW-T(1,1)) - C1(1,2) *((((((((((((((((((((((((((((((((((((</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P(4,J), (P(5,J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{10\text{E}N(7, \text{J})}{(\text{h}) 935 \text{ J=1}, 20}$ (h) 935 J=1, 20<br>936 WRITE (6,933) K(1, 4) + V(2, \text{J}), K(3, \text{J}), K(4, \text{J}), K(5, \text{J}), K(6, \text{J}), N(7, \text{J})}{(\text{h}) 936 \text{ J=1}, 20} 936 WRITE (6,933) A1 (1, J) + A1 (2, J) + A1 (3, J), A1 (4, J), A1 (5, J) + A1 (6, J),<br>101 937 J=1, 20<br>937 WRITE (6,933) A2 (1, J) + 22 (2, J), A2 (3, J), A2 (4, J), A2 (5, J), A2 (6, J),<br>101 938 J=1, 20<br>938 WRITE (6,933) C1 (1, J) + 12 (2, J), C1 (3, J), C1 (4, J), C1 (5, J), (11 (6, 1, 1)))<br>101 938 J=1, 20<br>939 WRITE (6,933) C2 (1, J) + C2 (2, J), C2 (4, J), C2 (5, J), (16, 1, 1))<br>101 940 J=1, 20<br>940 WRITE (6,933) C2 (1, J) + C2 (2, J), C2 (4, J), C2 (5, J), C2 (6, A),<br>1C 2 (7, J)<br>101 941 J=1, 20<br>940 WRITE (6,933) C3 (1, J) + C3 (2, J), C3 (3, J), C3 (4, J), C3 (5, J), C3 (6, A),<br>1C 3 (7, J)<br>941 J=1, 20<br>940 WRITE (6,933) C3 (1, J) + C4 (2, J), C3 (3, J), C3 (4, J), C3 (5, J), C3 (6, A),<br>1C 3 (7, J)<br>1A9 UBET (1, 1)=DT*(H*ATF(1)*(TAW-T(1, 1)) - C1 (1, 2) *(1(1, +)))<br>1A9 UBET (1, 1)=DT*(H*ATF(1)*(TAW-T(1, 1)) + C2 (1, -1)*(T(1, -1, 1)) + ((+, +)))<br>1A0 1=2, 1F2<br>P00 UBET (1, 1)=DT*(H*ATF(1)*(TAW-T(1, 1)) + C2 (1, -1)*(T(1, -1, 1)) + ((+, +)))<br>1-C1 (1, 2)*(T(1, 1)-T(1, 2)) - C3 (1+1, 1)*(T(1, -1)) + ((+, +))))<br>JW 202 JW2-1<br>D0 802 J=2, JW22<br>D0 802 J=2, JW22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{111934 J=1, 20}{024 JETTER 022 ADENUAL ADDENUAL ADDENUAL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. INCALL IN AND IN ACTURED AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (h) 935 J=1,20<br>(c) MRITE (6,933)K(1,1), F(2,J), K(3,J), K(4,J), K(5,J), K(6,J), $(7,J)$<br>(f) 936 J=1,20<br>(g) MRITE (6,933)A1(1,J), A1(2,J), A1(3,J), A1(4,J), A1(5,J), A1(5,J), A1(5,J), A1(5,J), A1(5,J), A1(5,J), A1(7,J)<br>(g) MRITE (6,933)A2(1,J), A2(2,J), A2(3,J), A2(4,J), A2(5,J), F2(6,J), A2(7,J)<br>(g) MRITE (6,933)A2(1,J), A2(2,J), A2(3,J), A2(4,J), A2(5,J), F2(6,J), A2(5,J), A2(7,J)<br>(g) MRITE (6,933)C1(1,J), A1(2,J), A1(4,J), C1(4,J), C1(5,J), A1(5,J), A1(5,J), A2(5,J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J/ (UFM(4, J) ( (IFM(D, J) ( UFM(D, J) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 935 \ \mbox{WRITE}(6,933)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} \text{(h)} 936 \ J=1,20 \\ 936 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{110 \ 757 \ J=1; 20}{C25 \ MUTTEL2 \ O22 \ VI1 \ (V \ V22 \ V12 \ V1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1 \times K = 1 \times K + 1 \times $ |
| $\begin{array}{c} 936  \mbox{ wr} ITE(6,933)A1(1,J) & \mbox{ algorithm} (2,J) & \mbox{ algorithm} (4,J) & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9019N129J19N109019N11901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 1A1(7,J) \\ \hline 010 937 J=1,20 \\ 937 \sqrt{3}TE(6,933)A2(1,J) + 2(2,J),A2(3,J),A2(4,J),A2(5,J),A2(6,J), \\ 1A2(7,J) \\ \hline 010 938 J=1,20 \\ 938 \sqrt{8}KTE(6,933)C1(1,J) + 1(2,J),C1(3,J),C1(4,J),C1(5,J),C1(6,J), \\ 1C1(7,J) \\ \hline 010 939 J=1,20 \\ 939 \sqrt{8}KTE(6,933)C2(1,J) + C2(2,J),C2(3,J),C2(4,J),C2(5,J),C2(6,A), \\ 1C2(7,J) \\ \hline 010 940 J=1,20 \\ \hline 010 01 L(1,1) + 1(1,1) + 1(1,1)) \\ \hline 010 10 12,1F2 \\ \hline 010 00 2 I=2,1F2 \\ \hline 010 802 I=2,1F$                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A116.11.0115.11.0116.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} \text{hit} 937 \ \text{J=1,20} \\ 937 \ \forall \text{RITE}(6,933) \text{A2}(1,1), \forall \text{A2}(2,1), \text{A2}(3,1), \text{A2}(4,1), \text{A2}(5,1), \forall \text{A2}(6,n), \\ 1 \text{A2}(7,1) \\ \text{Dit} 938 \ \text{J=1,20} \\ 938 \ \forall \text{RITE}(6,933) \text{C1}(1,1), \forall \text{L1}(2,1), \text{C1}(3,1), \text{C1}(4,1), \text{C1}(5,1), \forall \text{L1}(6, n), \\ 1 \text{C1}(7,1) \\ \text{Dit} 939 \ \text{J=1,20} \\ 939 \ \forall \text{RITE}(6,933) \text{C2}(1,1), \text{C2}(2,1), \text{C2}(3,1), \text{C2}(4,1), \text{C2}(5,1), \text{U2}(6,n), \\ 1 \text{C2}(7,1) \\ \text{Dit} 940 \ \text{J=1,20} \\ 010 \ 941 \ \text{J=1,20} \\ 010 \ 940 \ \text{J=1,20} \\ 940 \ \forall \text{RITE}(6,933) \text{C3}(1,1), \text{C3}(2,1), \text{C3}(3,1), \text{C3}(4,1), \text{C3}(5,1), \text{C3}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C3}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C3}(4,1), \text{C3}(5,1), \text{C3}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 941 \ \forall \text{RITE}(6,933) \text{C4}(1,1), \text{C4}(2,1), \text{C3}(3,1), \text{C4}(4,1), \text{C4}(5,1), \text{C4}(6,n), \\ 1 \text{C3}(7,1) \\ 1 \text{B0} \text{B0} \text{C1}=2, \text{IF2} \\ \text{PO} \ \text{DM} \text{BO} \text{C1}=2, \text{IF2} \\ \text{PO} \ \text{DM} \text{BO} \text{C1}=2, \text{IF2} \\ \text{DO} \ \text{BO} \text{C1}=2, \text{IF2} \\ \text{DO} \ \text{BO} \text{C1}=2, \text{IF2} \\ \text{PO} \ \text{DM} \text{ET}(1,1)=\text{D7}(1,1) \\ \text{C1}(1,1)=\text{D7}(1,1), \text{C1}(1,1), \text{C1}(1,1), \text{C1}(1,1), \text{C1}(1,1)) \\ \text{C1}(1,1,1)=\text{D7}(1,1) \\ \text{BO} \ \text{BO} \text{C1}=2, \text{IF2} \\ \text{PO} \ \text{DM} \text{C1}(1,1)=\text{D7}(1,1) \\ \text{C1}(1,1)=\text{D7}(1,1) \\ \text{C1}(1,1)=\text{D1}(1,1) \\ \text{C1}(1,1)=\text{D1}(1,1) \\ \text{C1}(1,1)=\text{D1}(1,1) \\ \text{C1}(1,1)=\text{D1}(1,1) \\$                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL (T+0/9AL()90/9AL(090/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 937 \ \forall \forall \exists TE(6,933)A2(1,d) & \forall (2(2,J),A2(3,J),A2(4,J),A2(5,J),C2(4,d), \\ 1A2(7,J) \\ 011 \ 938 \ J=1,20 \\ 938 \ \forall \forall \exists TE(6,933)C1(1,J),C1(2,J),C1(3,J),C1(4,J),C1(5,J),C1(6, ), \\ 1C1(7,J) \\ 0.1 \ 939 \ \exists J=1,20 \\ 939 \ \forall \forall \exists TE(6,933)C2(1,J),C2(2,J),C2(3,J),C2(4,J),C2(5,J),C2(6,e), \\ 1C2(7,J) \\ 001 \ 941 \ J=1,20 \\ 0(1 \ 940 \ J=1,20 \\ 0(1 \ 1,1) = DT*(H*ATP(1)*(TAW-T(1,1)) - C1(1,2) \ *(1(1,1) \\ 1-(1,2) \ *(1(1,1) - T(2,1))) \\ 0(1 \ 940 \ J=1,20 \\ 0(1 \ J=2,1E2 \\ 0(1 \ 0(1 \ J=1,2) \ J=1,20 \\ 0(1 \ J=2,1E2 \\ 0(2 \ 0(1 \ J=2,1E2 \\ 0(2 \ 0(1 \ J=1,2) \ J=0T*(1,1) \ J=1,20 \\ 0(1 \ J=1,2) \ J=0T*(1,1) \ J=0T*(1,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 1 \land 2(7, J) \\ (h) 1  938  J=1, 20 \\ (g) 4  \forall RTTE(6, 933)C1(1, J)  (f)(2, J), C1(3, J), C1(4, J), C1(5, J), (f)(4, J), C1(5, J), (f)(4, J), C1(7, J)) \\ (h) 1  939  J=1, 20 \\ (g) 4  \forall RTTE(6, 933)C2(1, J)  C2(2, J), C2(3, J), C2(4, J), C2(5, J), C2(6, e), c) \\ (f) 1  f(2(7, J)) \\ (f) 1  g) 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2 (4.1) . A2 (5.1) . r2(6.1) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} \text{i)} (1 \ 93\text{R} \ J=1,20 \\ \hline 93\text{F} \ \neg \text{KITE}(6,933)(C1(1,J),(1(2,J),C1(3,J),C1(4,J),C1(5,J),(1(6, N, N, N, N))) \\ 1 \ 1 \ \text{CI}(7,J) \\ \hline 0,1 \ 939 \ \text{J}=1,20 \\ \hline 939 \ \neg \text{KITE}(6,933)(C2(1,J),C2(2,J),C2(3,J),C2(4,J),C2(5,J),C2(6,n), \\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME 1- FU F FACI 270 / J. Clift 4: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} 93F \rightarrow RITE(6,933)C1(1,J) \cdot C1(2,J), C1(3,J), C1(4,J), C1(5,J), C1(6,J), \\ 1C1(7,J) \\ 0,0 939 J=1,20 \\ 939 \rightarrow RITE(6,933)C2(1,J) \cdot C2(2,J), C2(3,J), C2(4,J), C2(5,J), C2(6,a), \\ 1C2(7,J) \\ 0,0 940 J=1,20 \\ 0,0 940 J=1,20 \\ 940 \rightarrow RITE(6,933)C3(1,J) \cdot C3(2,J), C3(3,J), C3(4,J), C3(5,J), C3(6,a), \\ 1C3(7,J) \\ 941 \rightarrow RITE(6,933)C4(1,J), C4(2,J), C3(3,J), C4(4,J), C4(5,J), C3(6,a), \\ 1C3(7,J) \\ 941 \rightarrow RITE(6,933)C4(1,J), C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(a,a), \\ 1C4(7,J) \\ 169 \rightarrow RITE(1,1) = DT*(H*ATF(1)*(TAW-T(1,1)) - C1(1,2) = (1(1,1)) \\ 1-C1(1,2) - C3(2,1)*(1(1,1) - T(2,1))) \\ 101 B00 I=2, IF2 \\ PD0 \ CaveT(I,1) = DT*(H*ATF(I)*(TAW-T(I,1)) + C2(I, 1)*(T(I-1,1) - 1((1,1))) \\ 1-C1(I,2)*(T(I,1) - T(I,2)) - C3(I+1,1)*(T(I,1) - T(I+1,1))) \\ JW22 = JW2 - 1 \\ DD B02 J=2, JW22 \\ DD B02 I=2, IF2 \\ PO2 \ QMET(I,J) = DT*((C1(1,J) + C1(1,J) + C1(I,J)) \\ POB = POT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = PT = PT = (C1(1,J) + C1(I,J) + C1(I,J)) \\ POB = PT = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 1C1(7, J) \\ 1), 1 & 939 \ J=1, 20 \\ 939 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(1 (4.1) \cdot (1 (5.1) \cdot (1 (5.1)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} \text{(b)} \ 939 \ \text{J=1,20} \\ \hline 939 \ \text{IRTE(6,933)C2(1,J),C2(2,J),C2(3,J),C2(4,J),C2(5,J),C2(6,*),} \\ \hline 1C2(7,J) \\ \hline \text{(b)} \ 941 \ \text{J=1,20} \\ \hline \text{(c)} \ 940 \ \text{J=1,20} \\ \hline \text{(c)} \ 1C3(7,J) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,J) \ C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(6,*) \\ \hline \text{(c)} \ 1C3(7,J) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,J) \ C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(6,*) \\ \hline \text{(c)} \ 1C3(7,J) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,1) \ C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(6,*) \\ \hline \text{(c)} \ 1C3(7,J) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,1) \ C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(6,*) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,1) \ C4(2,J), C3(2,1) \times (1,1) \ C4(2,J) \\ \hline \text{(c)} \ 1C3(2,1) \times (1,1) \ C4(2,J), C3(2,1) \times (1,1) \ C1(1,2) \ C1(1,2) \ C1(1,2) \ C1(1,2) \ C1(1,2) \ C1(1,1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~ · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 939  \forall R ITE(6, 933)  C2(1, J)  ,  C2(2, J)  ,  C2(4, J)  ,  C2(5, J)  ,  C2(6, n)  , \\ 1  C2(7, J) \\ 0  IIC  941  J = 1  ,  20 \\ 0  IIC  940  J = 1  ,  20 \\ 940  IR ITE(6, 933)  C3(1, J)  ,  C3(2, J)  ,  C3(3, J)  ,  C3(4, J)  ,  C3(5, J)  ,  C3(6, \wedge)  , \\ 1  C  G(7, J) \\ 941  \forall R ITE(6, 933)  C4(1, J)  ,  C4(2, J)  ,  C3(3, J)  ,  C4(4, J)  ,  C4(5, J)  ,  C4(6, \wedge)  , \\ 1  C  G(7, J) \\ 941  \forall R ITE(6, 933)  C4(1, J)  ,  C4(2, J)  ,  C3(3, J)  ,  C4(4, J)  ,  C4(5, J)  ,  C4(6, \wedge)  , \\ 1  C4(7, J) \\ 1  C4(7, J) \\ 1  C4(7, J) \\ 1  C9  GN  C1(I, I) = DT  K  (H^{\times} \wedge TP(1)  K  (IAW - T(I, I)) - \\ 1  C1(I, 2)  C3(2, 1)   K  (T(I, I) - T(I, 2)) \\ 1  C1(I, 2)  C3(2, 1)   K  (T(I, I) - C1(I, 2)) \\ C1(I, 2)  C3(I, I)  I  C1(I, I)  C1(I, I)  C1(I, I) \\ I  C1(I, I)  C3(I, I)  C3(I, I)  C3(I, I)  C4(I, I) \\ I  C1(I, I)  C1(I, I)  C1(I, I)  C1(I, I)  C2(I, I)  C4(I, I, I)  C4(I, I, I)  C3(I, I)  C4(I, I)  C4(I, I, I)  C4(I, I)  C4(I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \frac{1(2(7, J))}{0(1.941 J=1, 20)} \\ \frac{1}{0(1.940 J=1, 20)} \\ \frac{1}{0(1.940 J=1, 20)} \\ \frac{1}{0(2.000 WR1TE(6, 933)C3(1, J) \cdot C3(2, J), C3(3, J), C3(4, J), C3(5, J), C3(6, h), f(2, G), f(3, J))}{1(2.000 WR1TE(6, 933)C4(1, J), C4(2, J), C3(3, J), C4(4, J), C4(5, J), C4(h, h), f(2, H),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2(4, J), (2(5, J), (2(6, n)),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} \text{(b)} 941 \ \text{J}=1,20 \\ \text{(c)} 940 \ \text{J}=1,20 \\ 940 \ \text{(HR1TE(6,933)C3(1,J)+C3(2,J),C3(3,J),C3(4,J),C3(5,J),C3(5,A),} \\ 1C3(7,J) \\ \hline 041 \ \text{(HR1TE(6,933)C4(1,J),C4(2,J),C3(3,J),C4(4,J),C4(5,J),C4(6,A),} \\ 1C4(7,J) \\ \hline 169 \ \text{U}+\text{ET}(1,1)=\text{DT}+(\text{H}+\text{A}+\text{T}+(1)+(TAW-T(1,1))-(C1(1,2)) \\ \hline 1-T(1,2))-C3(2,1)+(T(1,1)-T(2,1)) \\ \hline 101 \ \text{B}00 \ \text{I}=2,\text{IF2} \\ \hline \text{POD} \ \text{G}\times\text{ET}(1,1)=\text{DT}+(\text{H}+\text{A}+\text{T}+(1)+(TAW-T(1,1))+C2(1,1)+(T(1-1,1)-1)((,1)) \\ \hline 1+C1(1,2)+(T(1,1)-T(1,2))-C3(1+1,1)+(T(1,1)-T(1+1,1))) \\ \hline \text{J}H22=\text{J}H2-1 \\ \hline \text{DO} \ \text{B}02 \ \text{J}=2,\text{J}H22 \\ \hline \text{DO} \ \text{B}02 \ \text{J}=2,\text{J}H22 \\ \hline \text{DO} \ \text{B}02 \ \text{J}=2,\text{J}H2 \\ \hline \text{CO2} \ \text{O}\text{H}\text{ET}(1,\text{J})=\text{DT}+(())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())+(-())+(-())) \\ \hline \text{H}(1,1,1)=\text{DT}+(())+(-())+(-())+(-())+(-())+(-())+(-())+(-())) \\ \hline \text{H}(1,1,1)=())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+(-())+($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 940 $\forall R   TE(6,933) C3(1,J) \cdot C3(2,J), C3(3,J), C3(4,J), C3(5,J), C3(6,A),$<br>1C3(7,J)<br>941 $\forall R   TE(6,933) C4(1,J), C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(A,A),$<br>1C4(7,J)<br>169 $\Box AET(1,1) = DT*(H*ATP(1)*(TAW-T(1,1)) - C1(1,2) *(T(1-1,1)))$<br>169 $\Box AET(1,1) = DT*(H*ATP(1)*(TAW-T(1,1)) + C2(1,1))$<br>101 $BOO   I=2, IF2$<br>800 $\Box AET(1,1) = DT*(H*ATP(1)*(TAW-T(I,1)) + C2(1,1)) *(T(1-1,1)-T(1,1)))$<br>1-C1(1,2)*(T(1,1)-T(1,2)) - C3(I+1,1)*(T(1,1)-T(1+1,1)))<br>1-C1(1,2)*(T(1,1)-T(1,2)) - C3(I+1,1)*(T(1,1)-T(1+1,1)))<br>JW22=JW2-1<br>DO $BO2   I=2, IF2$<br>BOD $BO2   I=2, IF2$<br>C1(T,J) $*(T(T,J)-T(1,J))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 1C 3(7, J) \\ \hline 041 & \exists \exists \exists E(6, 933) C4(1, J), C4(2, J), C3(3, J), C4(4, J), C4(5, J), C4(J, J), C4(J, J), C4(J, J), C4(J, J), C4(J, J), C4(J, J), C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3(4.J),(3(5.J),(3(6.4)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 941 & \exists x   TE(6,933) C4(1,J), C4(2,J), C3(3,J), C4(4,J), C4(5,J), C4(6,A), \\ 1C4(7,J) \\ 169 & GSET(1,1) = DT*(H*ATP(1)*(TAW-T(1,1)) - C1(1,2) & \approx (+(+,+)) \\ 1-T(1,2)) - C3(2,1)*(+(+,1)) - T(2,1)) \\ D1 & B00 & I = 2, IF2 \\ \hline 800 & GSET(I,1) = DT*(H*ATP(I)*(TAW-T(I,1)) + C2(I,1)*(T(1-1,1)-+((+,1))) \\ 1-C1(I,2)*(T(I,1)-T(1,2)) - C3(I+1,1)*(T(I,1)-T(I+1,1))) \\ JW22 = JW2 - 1 \\ DD & B02 & J = 2, JW22 \\ DU & B02 & I = 2, IF2 \\ \hline 802 & GNET(I,J) = DT*((-C1(T,J)) & \approx (T(T,J) - T(I,J)) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1(4(7, J))}{169 \text{ GAET}(1, 1) = \text{DT}*(\text{H}*(\text{TP}(1)*(\text{TAW}-\text{T}(1, 1))) - C1(1, 2) \approx (1(1, 1))}{1-\Gamma(1, 2)) - C3(2, 1)*(1(1, 1) - T(2, 1)))}$ $\frac{1-\Gamma(1, 2) - C3(2, 1)*(1(1, 1) - T(2, 1)))}{100 \text{ BOO} I = 2, IF2}$ $\frac{800 \text{ GAET}(I, 1) = \text{DT}*(\text{H}*(\text{TT}(I))*(\text{TAW}-\text{T}(I, 1)) + C2(I - 1)*(1(1-1, 1)) - 1((+, 1)))}{1-C1(I, 2)*(\text{T}(I, 1)) - T(I, 2)) - C3(I+1, 1)*(\text{T}(I, 1)) - T(I+1, 1))}$ $\frac{1+C1(I, 2)*(T(I, 1)) - T(I, 2)) - C3(I+1, 1)*(T(I, 1)) - T(I+1, 1)))}{1+C2(I - 1, 2) + C2(I - 1, 2)}$ $\frac{1+C1(I, 2)*(T(I, 1)) - T(I, 2)) - C3(I+1, 1)*(T(I, 1)) - T(I+1, 1))}{1+C2(I - 1, 2) + C2(I - 1, 2)}$ $\frac{1+C1(I, 2) + C2(I - 1, 2)}{1+C2(I - 1, 2) + C2(I - 1, 2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4(4, J), (4(5, J), (4(k, t)),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1-T(1,2)-C3(2,1)*(T(1,1)-T(2,1))}{D(1,2)-C3(2,1)*(T(1,1)-T(2,1))}$ $\frac{1-T(1,2)+T(1,1)+T(1,1)+T(1,1)+C2(1,1)*(T(1-1,1)-T(1,1))}{1-C1(1,2)*(T(1,1)-T(1,2))-C3(1+1,1)*(T(1,1)-T(1+1,1)))}$ $\frac{1-C1(1,2)*(T(1,1)-T(1,2))-C3(1+1,1)*(T(1,1)-T(1+1,1)))}{JW22=JW2-1}$ $\frac{1-C1(1,2)*(T(1,1)-T(1,2))-C3(1+1,1)*(T(1,1)-T(1+1,1)))}{D(1,2)+2}$ $\frac{1-C1(1,2)*(T(1,1)-T(1,2))-C3(1+1,1)*(T(1,1)-T(1+1,1)))}{D(1,2)+2}$ $\frac{1-C1(1,2)*(T(1,1)-T(1,2))-C3(1+1,1)*(T(1,1)-T(1+1,1)))}{D(1,2)+2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(1(1,2)) \approx (1(1,1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} \text{III} & \text{BOO}  I=2, IF2 \\ \text{POO}  \Omega \sim \mathbb{E} I(I,1) = \text{UT} * (\text{H} * A \text{T} (I) * (\text{TAW} - \text{T} (I,1)) + C2 (I , 1) * (\text{T} (1 - 1, 1) - 1 ((, 1))) \\ 1 - \text{U1} (I,2) * (\text{T} (I,1) - \text{T} (I,2)) - C3 (I + 1, 1) * (\text{T} (I,1) - \text{T} (I + 1, 1))) \\ \text{JW22= JW2-1} \\ \text{DO}  802  J=2, JW22 \\ \text{DO}  802  I=2, IF2 \\ \text{OO}  802  I=2, IF2 \\ \text{OO}  \text{ONET} (I,J) = \text{DT} * ( C1 (T,J) * (\text{T} (I,J - 1) - \text{T} (I,J)) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 800  0.8 \leq \overline{I(1,1)} = UT * (H * AT : (I) * (TAW - T(I,1)) + C2 (I , 1) * (T(1-1,1)-i((,1))) \\ 1 - U1(I,2) * (T(I,1) - T(I,2)) - C3(I+1,1) * (T(I,1) - T(I+1,1))) \\ JW22 = JW2 - 1 \\ DD  802  J = 2, JW22 \\ DD  802  J = 2, JW22 \\ DU  802  I = 2, IF2 \\ W02  QNET(I,J) = DT * ( C1(T,J) & *(T(I,J-1) - T(I,J)) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1-(1(I,2)*(T(I,1)-T(I,2))-C3(I+1,1)*(T(I,1)-T(I+1,1)))}{JW22=JW2-1}$ DD 802 J=2,JW22<br>DU 802 I=2,IF2<br>$\frac{1-(1(I,1)-T(I,1))}{W02} = 0T*((I,J) + (T(I,J)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2(1, 1)*(1(1-1, 1)-1(1, 1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JW22=JW2-1<br>DD 802 J=2,JW22<br>DU 802 I=2,IF2<br>202 QNET(I,J)=DT*( (1(T,J) *(T(T,J-1)-T(I,J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{1-(1+1)} = \frac{1}{1-(1+1)} = \frac{1}{1-(1+1)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DD 802 J=2, JW22<br>DD 802 I=2, IF2<br>202 DNET(I, J)=DT*( (.1(T, J) *(T(T, J-1)-T(I, J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Y & T B F J X Z Y L F F T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DU 802 I=2, IF2<br>BOZ DNET(I, J)=DT*( (1(T, J) *(T(T, J-1)-T(I, J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 202  ONET(I, J) = DT*( (1(T, J)) *(T(T, J-1) - T(I, J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *(]([.]-])-]([.])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,我们们就是你们的,你们们就是你们的,我们就是你们的你们,你们就是你们的你们。""你们,你们们就是你们的你们,你们们不是你们的你们,你们们不是你们的你们,你们们不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-OTITAO. Start 119401 HILLARD (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- (1) No surface joints
- (2) Good surface detail reproduction
- (4) Accurate instrument location
- (6) Sufficient strength
- (8) Instrument placement anywhere
- (9) Effective in areas of high thermal gradients

The plated slab possesses a very hard surface that is resistant to particle damage and therefore meets in principal the model objective number (5). However, particle damage did occur in the pebble-bed heater facility used in this evaluation. Figure 19 shows post-test magnified views of the flat face of ECAN Model CC compared to the heat treated (190,000 psi) flat face of the master Model A. Both models were subjected to all eight runs in the hypersonic tunnel and both were still providing data without any loss of instrumentation. Figure 19 and Table IX indicate particle damage resistance of the ECAN models is comparable to a heat treated stainless steel model. The softer copper coating of the ATZC process had more severe particle damage as noted in Table IX.

The customization of sensor sensitivity, objective (7), was restricted to materials that provided good plate-to-substrate bond strength. The best materials for bond strength fortunately also provided good data sensitivity. Areas of low heating impose less demand on the plate bond and therefore less restriction on the choice of materials for increased sensitivity (if required).

Data accuracy (not listed as a specific objective) obviously must be adequate if the plated slab concept is to be practiced. The tunnel results of this preliminary test proved that this model method will provide accurate data. Further improvements in accuracy can be expected as material, process and data reduction improvements are made. Discovery of the Niculoy/ constantan thermocouple greatly enhances the data accuracy and overall attractiveness of this modeling approach.

<u>Problem Areas.</u> - A smooth surface finish (objective (3)) could be provided, however, for marginal operating temperatures. The principal problem area was finding an acceptable compromise between surface smoothness, plate hardness and maximum operating temperature of the model.

Figure 20 is a photograph comparing the surface smoothness of master, ATZN and ECAN models. The smoothness of ATZN models are considered adequate for applications involving natural hypersonic boundary layer transition. Figure 21 shows magnified views of the ATZN surfaces compared to the master and the aluminum transfer film. Note that polishing marks of the master are reproduced in the plated plastic models which attests to the faithful reproduction of surface detail of this process. The thicker plate of Model M shows some pores caused by hydrogen bubbles forming on the surface during plating. This problem can be reduced by better control of the nitrogen agitation in the plating solution.

Enclosure 2 (Conit.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EIRIUSUIT & LOOMI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $152 \text{ ATO}(I) = 3.1416 \times 1000 \times 1000 \times 10000 \times 100000 \times 100000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1144. Page 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(11) \frac{1}{15} (1 = 1 + 1 + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $h_1(I,J) = 3.1416*01/*07F*(I-1)/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>1</u> 4 6 4 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r2(1,J)=3.1416*DX*DYF*I/144.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $C1(I,J) = 12.80 \times (I,J) \times TB(1)/DY$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $C_{Z}(J,J) = 12(I,J) = 1(I,J)/U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C3(I,J)=12.*X(I,J)**X(I,J)/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 150 C4(I,J)=CP(I,J)*C= (I,J)*ATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (J)*5YF/12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UU 151 J=2,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DU 151 I=1,JF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IF(J-2)157,155,156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 155  DYH=.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GU TU 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORIGINAL PAGE IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 156 DYM=.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OF POOR QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 157 A1(I,J)=3.1416*DX*D(W*(I-1)/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A2(1, J) = 3.1416*11/*10Y*1/144.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1(I,J)=12.*K(I,J)*ATB(I)/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{C2(I,J)=12.*K(I,J)*/1(I,J)/U}{C2(I,J)=12.*K(I,J)*/1(I,J)/U}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $C3(I,J) = 12 \cdot K(I,J) \times A2(I,J)/D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 151 C4(I,J)=CP(I,J)*DFb([,J)*ATD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)*DY9/12•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 933 FORMAT( 5E20.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00 932 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 932 WRITE(6,933)CP(1,J),CP(2,J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>CP(3, J), CP(4, J), CP(5, J)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DD 934 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 934 WRITE(6,933)DEN(1,J), DEN(2,J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ), DEN(3, J), DEN(4, J), DEN(5, J), DEN(6, J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1DEM(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ()) 935 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 935 NRITE (6,933) K(1, 1) + 1(2, J) + K(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3, J), K(4, J), K(5, J), K(6, J), K(7, J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DH 936 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 936 WRITE(6,933)A1(1,J), 1(2,J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1(3, J), A1(4, J), A1(5, J), A1(6, J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1A1(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DD 937 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 937 WRITE(6,933) A2(1,J), 2(2,J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #2(3, J) • A2(4, J) • A2(5, J) • #2(6, J) •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1A2(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1)11 938 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 938 WRITE(6,933)C1(1,J)+C1(2,J),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1(3, J), (1(4, J), (1(5, J), (1(6, J), (1(6 |
| 1C1(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00 939 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{100 \ 439 \ 5-1,20}{939 \ 9KITE(6,933)C2(1,J),C2(2,J)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (212.1).(214.1).(215.1).(214.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02139019021-9019021390190210911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1C2(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ()() 941 J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sqrt{10940}$ J=1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3(3,J),C3(4,J),C3(5,J),C3(6,a),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1C 5(7, J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3(3, J), C4(4, J), C4(5, J), C4(6, 4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 104(7,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 169 $A = ET(1, 1) = DT * (H * ATE(1) * (TAW - 16))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-T(1,2)-C3(2,1)*(1(1,1)-T(2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,1)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UI) 800 I=2,IF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 800 QMET(I,1)=UT*(H*ATE(I)*(TAW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T(1,1) + C2(1,1) * (T(1-1,1) - ((,1)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-C1(I,2)*(T(I,1)-T(I,2))-C3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I+1,1)*(T(I,1)-T(I+1,1)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JW22= JW2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DD 802 J=2, JW22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DO 802 I=2, IF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | τ, J) *(T(T, J-1)-T(I, J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{1-C1(1, J+1)*(1(1, J)-1(1, J+1))}{1-C1(1, J+1)*(1(1, J)-1(1, J+1))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 TO 1 ( 1 9 QT 1 7 7 1 1 ( 1 9 0 7 - 1 ( 1 9 0 4 ) 7 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enclosure 2 (G                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -T(I.J))-C                                                                                                       |                | T(I,J) - T(I+1,                                                                                                  | J))) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dave 3 of 3                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11) + T(1, J) = 2                                                                                               |                | C1(1,J)                                                                                                          | *(T(1,J-1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10:00 Set 2                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -C1(1,J+1)                                                                                                       |                |                                                                                                                  | C3(2,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *(1(1,J)-1(2,J)))                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DU 806 I=1                                                                                                       |                | 1                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                | ,JH2 )*(T(I,                                                                                                     | JW2-1)-T(I, JW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ))                                                                                                               |
| · Contraction of the local division of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                                | C2(1+1.J       | W2) *(T(I,                                                                                                       | JH2)-T(I+1,JH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ())                                                                                                              |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                | C3(I+1,J       | 1W2) *(T(I,                                                                                                      | JW2)-T(1+1, JW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )))                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111 813 J=2                                                                                                      |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOFT(11,J)                                                                                                       |                | +C1(11,                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-1) - i \cdot (11, 1))$                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2(11,J)*                                                                                                       | (T(10, J) - T) | (11, J)) - C1(11)                                                                                                | ,J+1) ×(T(11,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                | (11)*(TAU-T(1<br>(11,1)*(T(10,                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1(11,2) *                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HU 803 J=1                                                                                                       |                | (11,1)~(1(10)                                                                                                    | 1/-/(11,1//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DO 803 I=1                                                                                                       |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                | ,J)/C4(1,J)                                                                                                      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IF(T(1, J-2                                                                                                      |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J '2= J''2+1                                                                                                     |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTINE                                                                                                          |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I=(J=12)                                                                                                         | 833,833,83     | 34                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J-2=12                                                                                                           |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONTINUE                                                                                                         |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $TI \cdots F = TI \cdots F +$                                                                                    | 01             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICT=ICT+L                                                                                                        |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICT=0<br>10RITE(6,49                                                                                             | ) The F        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FURMAT(///                                                                                                       |                |                                                                                                                  | al na mila na milalan da ara da mana ana ana an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1).) 45 J=1,                                                                                                     |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                | 2, J), T(3, J),                                                                                                  | (4,J), 1(5,J), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (6, J), (7, J)                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FUREAT(5X,                                                                                                       |                | and the second | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +)+) 2000 I=                                                                                                     | 1, IF2         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T \wedge M G (I) = (T)$                                                                                         | (I,1) + T(I,   | 2))/2.                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | ()1)TAVG(1)    | , TAVG(2), TAVO                                                                                                  | (3), (AVG(4), );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W(4(5), 1 - W(4(5)),                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 AMG(7)                                                                                                         |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FURNAT(/,5                                                                                                       |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\underline{I} \mapsto \cup CH = \underline{I} \mapsto \cup C$                                                   |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+(1PUCH=2<br>1-20 CH=0                                                                                          | (1) 2499, 250  | 12,2502                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101() TF(5,24                                                                                                    | 0.01 1.02      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| and the second se | FORMAT(15)                                                                                                       | 961542         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111 2500 J=                                                                                                      | 1. 142         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRITE (5.26                                                                                                      | ()])TIME,1(    | (1, J), T(2, J),                                                                                                 | (3, J), i(4, J), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5, J), ((, J), ((, .)                                                                                           |
| 24(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | .4)            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 24.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHATINDE                                                                                                         |                |                                                                                                                  | and the second state of th |                                                                                                                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | second second size and the strength second | ())169,169,    | 970                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOP                                                                                                             |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121800                                                                                                           |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  | OBIOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  | ORIGINAL PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                |                |                                                                                                                  | OF POOR QUALIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                |                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |

# OUTPUT FORMAT

# ALL VALUES EXCEPT TIME ARE TEMPERATURES (<sup>0</sup>F) OF THE ELEMENTS

| TĘ              |                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------|
| TF              |                                                                                                            |
|                 | 0.2496625758E 01                                                                                           |
| V FILM          | 0.5388E 03 0.6051E 03 0.6241E 03 0.6318E 03 0.6354E 03 0.6370E 03 0.6377E 03                               |
| 1 1st SUB-LAYER | 0.5355E 03 0.5996E 03 0.4163E 03 0.6260E 03 0.6295E 03 0.6311E 03 0.6317E 05                               |
|                 | 0.3378E 03 0.3369E 03 0.3367E 03 0.3367E 03 0.3367E 03 0.3367E 03 0.3368E 03 0.3368E 03                    |
| 4               | 0.1201E 03 0.1771E 03 0.1761E 03 0.1756E 03 0.1754E 03 0.1753E 03 0.1752E 03                               |
|                 | 0.1110E 03 0.1094E 03 0.1089E 03 0.1087E 05 0.1085E 03 0.1085E 03 0.1084E 03                               |
|                 | 0.8791E 02 0.8734E 02 0.8715E 02 0.8706E 02 0.8701E 02 0.8699E 02 0.6698E 02                               |
| .050" (TYP. OF  | 0.8166E 02 0.8149E 02 0.0144E 02 0.81415 02 0.0146E 02 0.8139E 02 0.8139E 02                               |
| REMAINING       | 0.8025E 02 0.8015E 02                    |
| LAYERS)         | 0.5372E 03 0.6024E 03 0.6212E 03 0.6289E 03 0.6324E 03 0.6341E 03 0.6347E 03                               |
| LATERSI         |                                                                                                            |
|                 | WIRE $\rightarrow$ SUBSTRATE $\rightarrow$ DW/2 $\rightarrow$ DW/2 $\rightarrow$ DW/2 $\rightarrow$ (TYP.) |
| 95              | AVERAGE TEMP. OF FILM & IST SUBLAYER                                                                       |