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ABSTRACT

A class of multistage decision tree classifiers is
proposed and studied relative to the classification of
multispectral remotely sensed data. The decision tree
classifiers will be shown to have the potential for improving
both the classification accuracy and the computation
efficiency. To explain these advantages, the problem
of dimensionality in pattern recognition is discussed
in some detail; two theorems on the lower bound of logic
computation for multiclass classification are also
derived. After introducing the method of uniquely
speclfying the decision tree structure, several approaches
to the design of decision tree classifiers are discussed.
Both interactive and automatic approaches are iucluded.
Emphasis of the discussion is placed on the automatic
approach, i.e., the optimization approach. In this
approach, two design strategies will be introduced: one
focuses on designing classifiers with higher accuracy, the

other on designing classifiers with optimal "overall



performance". Finally, experimental results on real
data are reported, which clilearly demonstrate the useful-

ness of decision tree classifiers.



CHAPTER 1

INTRODUCTION

1.1 The Decision Tree Classifier

The objective of this study is to develop a class of
decision tree classifiers for multivariate and multiclass
classificaticn, The practical application of the proposed
classifier is also investigated for pattern recognition
problems encountered in multispectral remote sensing [1,2],
where the data is gathered in digitized form in several
spectral bands over a particular area of the earth under
observation; the purpose of classification is to obtain
information about the types of ground coverage in that area.

The conventional approach to multivariate and multiclass
classification would be to perform tests on the-unknown
pattern* against all classes using a particular feature
subset and then assign the unknown to one of these classges.
The decision tree [3] approach classifies the unknown
through a hierarchical decision procedure. That is, if
after a decision is made, the outcome is not a terminal
one, another decision will be made until a terminal
decision is reached. This terminal decision determines

to which class the unknown sample being tested belongs.

*In this work, the terms pattern, datum, and sample are
" used interchangeably.



In classifying multispectral remotely sensed data,

a typical example of the decision tree is shown in Fig. 1.1,
where an unknown datum (a ground resolution cell) is
classified into the class water or bare soil through only
one stage of decision (i.e. these two classes would be
terminal decisions), however for the unknown to be classi-~
fied into other vegetation classes it takes several stages
of decision. In feature space, the idea of the multistage
decision tree approach is to partition the feature space
step by step, as shown in Figure 1.2. Here the circled
numbers indicate the order of the decision boundaries to
partition the feature space. These two figures are two
simple examples to illustrate the functioning of the
decision tree classifiers. More complex and realistic
decision trees will be constructed in later chapters.

The reason to pursue this investigation of the decision
tree approach is based on the advantages this approach may
have. Three major advantages have been found, namely, the
higher accuracy, higher efficiency and more meaningful
interpretation of the classification scheme.

The obstacle to implementing the decision tree classi-
fier is mainly the difficulty in designing the classifier
structure. To find solutions to the design problem and to
test their usefulness thus become the major work in

developing the decision tree classifiers.
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Figure 1.1 An Example of Decision Tree in Classifying
Agricultural Data.
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Figure 1.2 Feature Space Partitioning by Multistage
Decision Tree.



1.2 A Review of Related Work

The decision tree classifier is just one type of
multistage classifiers. A multistage (multileveled or
layered) classifier can be defined as a classifier which
may use more than one decision functiop in a sequential
manner to classify an unknown sample into a class. The
decision function {as will be used in later discussions)
is defined as the mathematical formulation of a decision
rule for simple or multi-hypothesis test. Classifiers
which have only one decision function, such as the
maximum likelihood classifier, are called single-stage
classifiers.

Most of the literature of pattern recognition deals
with single-stage classifiers and different types of
discriminant functions., For a broad understanding of
various pattern recognition techniques, the reader may
refer to the books by Duda and Hart [4], by Fununaga [5]
and by Meisel [6], also to the survey papers by Fu and Swain
{7)], by Ho a. 4 Agrawala [8], by Kanal [9], and by Nagy [10].
For multispectral pattern recognition problems, a very
complete survey has been reported by Nagy [2].

For the particular case of multistage classifiers,
the research work reported can be summarized into three
categories. They are the sequential probability ratio
test, the decision tree method and the perceptron methcd.

Some important features of these methods will be briefly



introduced in the following paragraphs.

The application and generalization of Wald's sequential
probability ratio test (SPRT) [ll] for pattern recognition
are described in the book by Fu [12]. In this method,
observations are taken in a sequential manner. After taking
each observation, a decision is made; and this decision
determines whether the unknown sample is classified or
another observation is necessary for classification. This
sequential method is very useful for many practical problems
where the observations are sequential in nature, and the cost
of taking measurements is considered important.

A brief introduction to the decision tree method has
been given in the beginning of this chapter. Decision tree
cl-gsifiers so far reported in the literature are of the
binary tree type [13,14], i.e. at each stage of decision
there are only two possible outcomes.

Perceptron theory results from the study of neuro-
dynamics. The engineering application of perceptron
theory can be found in the books by Minsky and Papert [15],
and by Nilsson [16]. A perceptron is a multiple-input
threshold logic unit. A layered perceptron machine (as
discussed in the book by Minsky and Papert) then consists
of several level of perceptrons.

These three methods so far discussed are three important
families of multilevel classifiers. Other proposals

{17,18,19] can generally be fitted into, or considered as



a generalized form, of one of these three methods. A class
of multistage decision logic worth mentioning is the
decoding trees, e.g. Ref. [20,21]. These are in the form
of binary trees, and are being studied extensively in the
area of digital communication and information theory.

Since the nature of this class is different from those
classifiers where the received signals are physical
observations of unknown samples instead of predesigned
codes, the application context is somewhat different.

The sequential method and the decision tree method
have the similarity that different featurs sets can be used
in later stages of decision in order to reach a final
decision. The third method above is very distinct in
this aspect, because new features are formed by a
manipulation (linear combination with threshold) of the
old features. The distinction between the sequential and
decision tree methods is also clear. Considering the
generalized sequential method {(GSPRT {12]), the features
are used in a sequential manner, and the number of
possible decisions (which correspond toc the classes retained
for further consideration) for each stage can be varied
according to different samples. For the decision tree
method, the sets of features used along a decision path
can be different from those of another path, and the
number of possible decisions at each particular stage in

a decision tree is fixed.



As far as the design procedure is concerned, for the per-
ceptron method, the values of the coefficients (of linear
combination) are usually obtained by learning, as proposed
by Nilsson [l16). However, analytiéal procedures such
as linear programming and extrema séeking can also be
found in literature {22,23]. For the sequential method,
the mathematical programming approach [24] is popular.
Slager and Lee [25] proposed the game tree search approach
to orxder features in implementing the sequential method.

For the decision tree method, early work by Mattson and
Damman [13] laid the basic background for designing the
tree structure. Meisel and Michalopoulos [14] suggested

‘a two step approach to solve the design problem: the first
step involved decision boundaries of a single variable

to be found by a nonparametric method, while at the

second step, dynamic programming was used to arrange these
decision boundaries (or functions) into a binary tree
decision-making structure.v Both approaches have the draw-
back that the types of iree structures and discriminant
functions arc highly restricted (they must be binary tree
structure with linear discriminant functions). Thua

for the purpose of efficiently designing a good decision
tree which is general enough to handle multivariate and
multiclass data (for which nonlinear discriminant functions
are usually involved in classification), several approaches

to the design will be proposed in this report.



1.3 Summary of Contents and Contributions

In Chapter 2, the advantages of the decision tree
classifier are discussed. Three major advantages
are included; they are to improve the classification
accuracy, to improve the computational efficiency and to
provide convenience in applications.

In Chapter 3, the structure of the decision tree
classifier and a method of its representation are specified.
Notations adopted from graph theory are introduced for clearer
explanation.

In Chapter 4, several approaches to design decision
tree classifiers are proposed. Briefly, they ave: the histo-
gram approach, the sequential cluvstering approach and the
optimization approach.

In Chapter 5, experimental results on real and simu-
lated data are demonstrated. Finally, Chapter 6 concludes
the whole st'idy. Some analytical and experimeatal details
are placed in Appendices, for the purpose of reducing
disgression.

Since the application of the decision tree classifier
to multispectral remote sensing data is emphasized, the
assumption of multivariate normal data distributions which
is often a reasonable assumption for remote sensing data [1.2]
will be constantly used in later derivations involving

data distributions.



The major contributions of this study are summarized
as follows:

1) The derivation of several theoretical results on
computation complexity for optimal classification, both
feature and logic complexities considered.

2) The search approach to the design of decision tree
classifiers, which includes two procedures for two different
goals of decision tree optimization: one being the
maximization of accuracy, another the maximization of "overall
performance®.

3} The development of a nonsupervised clustering
procedure which is easy to use and effective in determining
the associativity of points in clusters (when completely
separable clusters can not be found).

Indeed, using a decision tree approach within the

context of the multispectral remote sensing probklem is new.
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CHAPTER 2

NEED FOR A DECISION TREE CLASSIFIER

Several needs or potential advantages of the class
of decision tree classifiers will be discussed in this
chapter, through decision theoretical, computational
efficiency, and application users' considerations. These
nreeds stimulate the investigation of the decision tree
classifier, and are discussed to some detail for the
purpose of understanding what can be achieved by a decision

tree classification procedure.

2.1 Decision Theoretical Considerations

The first need for the decision tree classifier originates
from the dimensionality problem [Ref. 1,26,27; summarized
in Ref. 4, pp. 66~73] which can be described as follows:
there may be some feature subsets which are more effective
than the complete set. In other words, the dimensionality
problem implies that the error frequency for multivariate
clagsification may not be a monotonically decreasing func-
tion of variable dimensionality. In two class classifications,
the problem calls for an effective method for feature
selrction in which the optimal feature subset can be selected

out of the complete feature set. For multiclass (more than
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two classes) classification the situation is even more
complicated. This is because optimal feature subsets for
different subsets of classes may be different. Therefore,
a conventional procedure which uses only one feature subset
in all tests may not be optimal., The decision tree classi-
fier which has the ability to classify different class
subsets by using different feature subsets certainly has
the potential to improve the classification accuracy.

The theoretical evidence for the dimensicnality
problem will be discussed, because of its importance

to the selection of optimal dimensionality for classification.

2.1.1 The Dimensionality Problem

The dimensionality problem has been studied by many
researchers [27) - [34]. To seek an understanding of this
problem is important because the fact contradicts one's
initial impression that in estimation, prediction or
classification of stochastic systems the higher the
observation dimensiornality the better would be the results.
And a solution to the problem or the need to obtain a
reliable method to predict the optimal dimensionality
is urgent. For multispectral remote sensing, such a
solution will not only provide optimal feature selection
for ground data processing but will also help in the
selection of channels in designing on board sensor systems.

Generally speaking, the dimensionality problem is

attributed to the insufficient number of training samples.
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Error involved in density estimatlon accumulates as feature
dimensionality increases, and if the accumulation of error
is faster than the increase of separability, the
dimensionality problem occurs. Among those reported work:
the early work of Hughes [28] and its later devaelopments
[29] - [32] can be thought of as an approach to the explana-
tion from a neonparametric peint of view. This is similar
to the explanation of the relationship between error rate,
the size of the training set and the width of Parzen's
window function [35) in a nonparametric classification
approach. The explanation given by Wacker and Landgrebe
[34] is of another nonparametric case, where the Euclidean
distance measure is used for discrimination. And assuming
a fixed signal-to-noise ratio in ecach dimension, it has
been shown that the ratio of the means of between and
within class distances decreases monotonically with
dimensionality.

Consider the problem involved in parametric classifica-
tion schemes. Allais [27] first derived the mean performance
of the least square linear classifier. TFor the class of
maximum likelihood classifiers with multivariate normally
distributed data, not much work concerning the dimensionality
problem has been reported yet. TFor the purpose of having a
closer look, some derivations have been made here, which
provide some quantitative explanation to the dimensionality

problem in this particular circumstance.
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Estimation of probability densities is involved in
many practical classification problems. Agsuming
data of each class are of multivariate normal distribution,
the statistical parameters may then be estimated in the

following manner:

-~ 1 n
M=z ] X (2.1a)
=1
n
~ - -.-]_‘.u. B -o\ -l\ T
o= ey ji:l(xj M) (X4 -H) (2.1b)

where X, is a m~dimensional column vector with m the feature
dimensionality, and n is the number of training samples.
According to these parameters, the estimated conditional

probability ﬁ(x|wi) for a given class ws is expressed as:

P(X|og) = NO, £,) (2.2)

where N(.,+) denotes the multivariate normal density
functions and suffix 1 is added to the gquantities in Egq. 2.2
to indicate the class designation of the estimated paraﬁetera
With the assumption of zero-one loss function and equal a
priori probabilities, based on these estimated density
functions, the Bayes decision rule for minimum risk can

be written as:
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g (X) = Min g, () — Xecu (2.3)
k 1sisN * k
where éi(x) = —logﬁ(xlwi) (2.4)

and N is the total number of classes to be classified.
Again, a hat is used for the quantity éi(x) to indicate
that it is also an estimated quantity. Since the true value
of gi(x) gives the optimal result for classifying unknown
samples, any deviation of §i(x) from gi(x) certainly
degrades the result. The total amount of degradation
expressed by the increase an error rate in N-class classi-
fication is bounded above by the sum of degradations of (g)
two-class classifications each being a class pair of the N
classes to be classified [33].

Considering the degradation for two-class classifica-
tion, the variance of the difference ¢f true and estimated
likelihood ratiosr,, and r;, will be examined first,

where the ratios are defined as follows:

P(Xlwl)
rip = log (2.5a}
P(X|w,)
. ﬁ(x|wl)
r o = log = (2.5b)
The mean square error of rg is expressed as
visr) = E, [(£],-F;,)°] (2.6)

X, 0
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where the sguared quantity is averaged over the distributions
of sample points X and the estimated parameters given in

Eq. 2.1. With the assumption given by Eq. 2.7

n; =n, =n (2.7a)
n >m {2.7b)
Iy = 22 (2.7c)

vhere n; is the number of training samples for class w;
and m is the feature dimensionality, an approximation of
Viar] in Eq. 2.6 is evaluated and is shown in Eg. 2.8 (the
detailed derivations are placed in Appendix A)

viar] = [2n° + 20m+ 200+ 14D+ 1+ 0(L) (2.8

n

where n is given by Egq. 2.7a,D is the divergence of two
multivariate normal distributions, which is expressed as

1

-1 _-1. .1 T,o=~1l .-1

Eg. 2.8 is an approximate expression. If the variances

zi are known, the exact problem-averaged expression for

Viar] is as follows:

viar]. . Sm+ 2D + 2m - 3m

£i=2i 2n 2n

(2.10)
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From both Eq. 2.8 and 2.10, it is noted that the problemn
averaged variance of Ar increases with dimensionality m.
However, as m increases, with more features the class
separability does not decrease. This implies that classifi-
cation accuracy may be improved as m is increased; never-
theless it is also clear that the dimensionality problem
occurs if the first effect overrides the second. An
expression for approximating the overall inference of these
two effects is given by Eg. 2.11 (which is an exact expres-
sion for the case with equal covariances Ly = Igs and
is a rough approximation otherwise as explained in

Appendix A}

(2.11)

where ¢ is the error rate for two-rlass classification,
D is the Divergence given by Egqg. 2.9 and erf(x} is

expressed as follows:

NjR

4 1 -
erf(x) = J ———a “do (2.12)
N Tl

Simulated data sets which were generated with z, =12,
have been used to test the validity of Eg. 2.11, and the
results are g:7en in the beginning of Chapter 5.

The dimensionality problem in real classification problems

will also be shown in that chapter.
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2.1.2 pPiscussion

The existance of the dimensionality problem for pattern
recognition with multivariate normal distributions is
explained in the previous subsection. The remaining ques-
tion is how to find optimal feature subsets for different
¢lass subsets. Although Eg. 2.9 and 2.11 have shed
light on the theoretical prediction of optimal dimension- ‘
ality, practical difficulties still exist.

Basically there are two difficulties: One is that
the divergence value "D" calculated from the estimated
parameters by using Eq. 2.9 is not always close to its
true value. Although Eg. 2.la and 2.lb are expressions for
unbiased estimators for the mean and covariance matrix,

Eg. 2.9 is not an unbiased estimator for D. And the
deviations can be large; some experimental results are
shown in Chapter 5.

The second difficulty is that in the case with
unequal covariances, Egq. 2.1l is not a good approximation
of the error probability. It is known from past experience
in multispectral pattern recognition, that in classifying
a pair of spectral classes based on a limited number of
training patterns the effective number of spectral features
can be four or less, and this number will be used for
maximum feature dimensionality in most of the experiments J

given in Chapter 5.
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2,2 Computation Efficiency Consideration

As often cited, an advantage of the multistage decision
procedure (cited in several reports. [12,13,14])
is higher computation efficiency. These multistage pro-
cedures reduce either the number of measurements or the
number of tests necessary to reach a terminal decision.
Ar an example, it has been shown [36] that for a two-class
classification the sequential probability ratio test (SPRT)
[11,12] with a fixed stopping boundary (specified by a given
error rate) is optimal in the sense of minimizing the average
number of measurements. It should be mentioned that this
does not apply to the generalized seguential method (GSPRT)
for multiclass classification., 1In a decision tree procedu-e
the feature subset used at each stage can be designed
according to the class separability at that stage. For
different patterns to be classified, the seguences
of feature subsets used may not be the same (following
different paths in a decision tree). Thus the use of
features can be more flexible than in the sequential
method, making the decision treerprocedure more favorable
than the sequential method as far as optimal use of feature
complexity is concerned.

Looking at the economic aspect of classification of
multispectral data, after they are gathered, cost of
computation is the major expense involved, The problem

then is reducing this cost without trading off (loosing)



19

optimal classification results. Since this ﬁannot be
achieved simply by reducing the number of features of an
optimal classifier, the only alternative is to try to
reduce the number of tests.

Two theorems on the lower bound of the number of tests
required for optimal classification results have been de-
rived and they will be given later in this section.

Now for a closer look at the definition of the
term "test". In multiclass classification, a test is defined
as a comparison of the likelihood functions (or discriminant
functions) of a pair of classes. According to this
definition, in a conventional maximum likelihood procedure
for N class classification, the number of tests required
to classify a pattern would be N-1, since N-1 comparisons
are involved. Actrally, with the same amount of classifi-
cation error the number of necessary tests on the average
can be reduced. The lower bound on the number of tests is
given by the following two theorems:

Theorem 2.1 Assuming P, is the probability that a

pattern belongs to class Wy and that successive patterns
are statistically independent, for N-class classifica-
tion, the expected number of tests E[U] necessary to
classify an unknown pattern correctly satisfies:

N
> _
E[U] 2 iglpi J'ngpi (2.13)
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Before proving Theorem 2.1, Lemma 2.1 will be stated
first.

Lemma 2.] If each class designation of a sample can be

uniquely specified by m binary bits, then there exists

a seguence of m tests to classify a sample into one of

those classes.

The proof of this Lemma is as follows: In each test
the outcome can be one of the two possibilities, thus
the result of a test can be represented by a single binary
bit. After a sequence of m properly designed tests per-
formed on a sample of unknown class, the result is a m-bit
word of class designation, so the unknown sample is
classified.

With the above Lemma, Theorem 2.l can pe proved with
relative ease. Notice the right hand side of Eqg. 2.13
is the entropy H [Ref. 37, p. 50] of class information,
which according to Shannon's theorem on source coding
[Ref. 37, p. 54; Ref. 38, p. 43] equals the average
number of bits per source letter (with length of
sequence approaching infinity) required to specify a seguence
of letters efficiently (only one source sequence can be
assigned to each code sequence). With Lemma 2.1 we know
the effective average number of tests to classify a
sample is H, i.e. EIU] = H. Since H is for the most

efficient coding, this leads to the fact that E[U] can not



be less than H for correct classification. Thus, E[U]
must be greater than or equal to H for correct classifica-
tion, and this proves Theorem 2.1,

If one is willing to sacrifice accuracy to gain
efficiency (by means of reducing the rumber of tests),
for a given error rate, the theoretical limitation on test
efficiency is provided by the following theorem:

Theorem 2.2 Assuming P, is the probability that a

sample belongs to class W, s and that successive
samples are statistically independent, for N-class
classification, the expected number of tests
necessary to classify a sample of unknown class with
expected errpor rate e(Z 1 - Max Pi) satisfies:

1=isN

N
E[U] 2 Max [-H_~ ] P; log, P, 1 (2.14)
P(i,J) e i=1

subject to the constraint e S

N
with H_= - ) P(i,j) log, P(i]J) (2.15)
£ 1,3
N
and E= } P(i,3) (2.16)
1,3
i#]

where P(i,3i) is the probability of joint occurrence
that sample X belongs to class j but is classified into

class i, and P(ilj) is the conditional probability
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of the joint occurrence stated above.

The proof of this theorem is as follows: Notice the
right hand side of Eq. 2.14 is by definition the rate-
distortion function [Ref. 37, p. 112; Ref., 38, p. 444}
with 0-1 distortion measure. Since this is the minimum
rate for source coding with a given distortion measure
which in our case corresponds to ¢ in Eq. 2.16, the number
of tests which equals to the code rate according to Lemma
2.1 then can not be less than this minimum rate. Thus
Theorem 2.2 is proved.

The theorems stated above are the theoretical limita-
tion of the number of tests for multiclass classification.
In practical problems these lower bounds usually can not
be attained, However, from these theorems it is clear
that the class of decision tree classifiers has the
capability of achieving these limits®. An example is
shown in Fig. 2.1, where the efficiency of a decision
tree procedure is compared with the efficiency of a one
stage conventional procedure. As one may observe in this
ideal case the lower bound on the number of tests is
achieved by the decision tree procedure. For real cases,

besides the fact that some classes can be classified by

#Phis statement is true if U*, the lower bound of E[U], is
greater than or equal to one. If U* is less than one, a
type of block classification schemes which classify
several samples together will have the possibility of
achieving these lower bounds, but this scheme will not
be Jdiscussed in this report.
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o,
P =5
Wy W3
P, =. 25 Py= .25
E[u]= I.5=U*
W, Wy W
P=5 P=25 Pp=.25
E [u] =2 s U*

Figure 2.1 A Hypothetical Example Illustrating the
Clas~’ “icatiur Efficiency of the Decision
Tree - proach.
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using a lower number of features, the reduction of tests
is also expected in a decision tree procedure. This
shows guite clearly ovwe of the advantages of the decision

tree classifier,

2.3 Application Oriented User's Consideration

Using digital computer techniques to analyze remotely
sensed data has been referred to as the "numerically-
oriented systems" approach [39]), which together with the
"image oriented systems" approach make up the two major
trends in analysing remotely sensed data. Using the image
oriented approach, in determining the extent, location |
and/or condition of the resources, one tends to follow a
kind of logical hierarchy. An example is cited from the
work by Hoffer [40]; it is shown in Fig. 2.2.

Upon applying this concept to the numerically oriented
approach, a multistage classifier such as the decision
tree classifier will be more desirable than a one~stage
conventional classifier, Not only is a multistage classifier
more efficient, but it is also more £lexible in adapting
the concepts of the image~oriented approach.

Once an objective and nonsupervised design procedure
for a multistage classifier is obtained, some feedback from
the numerically-oriented approach to the image-oriented
approach can be expected. For example information gained

in the numerically-oriented approach, such as the separability
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studies in different spectral and temporal circumstances
and the choice of effective decision hierarchy structures,
can be helpful to the image oriented users.

Through the above discussions, it is clear that the
decision tree classifiers provide the users a better
approach to classification than the conventional one stage
approach. It is better in the sense that it can be more

accurate, and/or more efficient.
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CHAPTER 3

THE DECISION TREE CLASSIFIER

Before discussing the details of the decision tree
classifier, it 1s desirable to define the term “tree".
Applying the terminologies of graph theory, a simple definition
of "tree" is stated as 'a connected graph* without cycles’
[41]. Or according to Nilsson [498], a tree is a graph each
of whose ncde has a unique ascendant node, except for the
starting node which is called the root node. A tree
thus defined has the property that a path from the root
node to any given node is unique. In pattern recognition,
the decisior tree procedure corresponds to the partitioning
of the feature space into different regions by a fixed
ordering of the decisions. The property of a tree
mentioned above is desirable because it implies that the
mapping of a decision to its associated region in feature
space is unigue and the reverse is also true. Other useful

terms are "terminal node" and "nonterminal node". A

*Strictly speaking, a "graph" G(N,C}) is a set of elements N
and a collection C of unordered pairs {(a,b) of elements of
N. An elements of N may be called a "node" or "vertex"
of the graph, while the pair (a,b) is called an "arc" or
"edge" of the graph. Other notations like "cycle" and
"path" are also defined in Ref, [41].
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terminal node is one that has only one ascendant node, while
a nonterminal node has both ascendant and descendant nodes.
In the decisicn tree classifier, a terminal ncde corres-
ponds to a terminal decision i.e. the decision-making pro-
cedure terminates and the unknown being classified is
assigned to the class of that node. However, a nonterminal
node is an intermediate decision; another stage of decision
will be made and its immediste descendant nodes represent
the possible outcomes of that decision.

Using these concepts, the classification in a decision
tree procedure follows a path in the tree, which starts
from the root node and ends at a terminal node.

To specify a decision tree uniquely, two sets of
information are necessary. One set tells how the non-
terminal and terminal nodes are linked while the other
specifies the decision functions of all the nonterminal
nodes. For a tree with a simple structure, such as a
binary tree with univariate linear discriminant functions
for nonterminal nodes, a set of n-tuples (which is a combined
description of the above two sets of information) can be used
to specify it uniquely [14]. For cases where the tree
structures are complex, i.e. the number of immediate
descendant nodes of a nonterminal node is not fixed, and
also where the decision functions are complicated, e.g. they
may be multivariate and quadratic, it is desirable to treat

these two sets of information separately. The method to
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characterize this information will be discussed in the

following section.

3.1 Tree Structure Information

By assigning different symbols to nonterminal and
terminal nodes, the tree structure can be coded into
a string. The rule for encoding is breadth first, from
left to right and then top to bottom. The reason for
following the rule of breadth first is because in describing
each decision function (of each nonterminal node) in a
decision tree, it is convenient to pack the statistics
parameters (which correspond to probability densities associ-
ated with the immediate descendant nodes) together, and
the rule of breadth first serves this purpose.

Two sets of symbols will be used for coding to
represent the terminal and nonterminal nodes respectively.
They are {¢; and {Ni}. In the first set, there is only the
svmbols "¢"; all terminal nodes are represented by it. In
the second set, there are many symbols; each symbol "Ni“
is associated with a value i (integer greater than one)
being equal to the number of immediate descendant nodes
that the nonterminal node has.

A simple example is shown in Fig. 3.1, where the symbol
"9;' (the subscript isused to indicate its relative position in 8)
stands for a terminal node, and the numbers stand for the

nonterminal nodes. The string S8 which is the encoding of
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(#7 (;bs qbg 9b10
$=3232 ¢ b,y bg 4 Dy PP PPio

Figure 3.1 A Tree with Its String.
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the tree according to the rule of breadth first is shown
at the bottom of Pig. 3.1.

When a tree structure is given, its associated string
S can be found; from this string S, an identical tree
structure can be reconstructed by a left to right scanning
of the string: Each symbol of the string corresponds
to a node of the tree. For the firsi symbol, a root of the
tree is formed, and a number i (i=3 in the example) of
descending branches are drawn from the root. Place the
next successive i symbols at the ends of those branches.
If there are additional nonterminal nodes in the strirg
(represented by nonterminal symbols), corresponding numbers
of descending branches will be drawn from them. This step

repeats, i.e. place symbols at ends of branches (following

the rule of breadth first) and draw branches for nonterminal

nodes, until no more symbols are left in the string. For

computer processing, after a left to right scanning of the

string "S%, a set of arrays are generated wh'ch tell how the

_nodes are linked.

It has been found that the set of strings "S" which are

codes of tree structures, with the rule for coding described

earlier, form a context free langyuage (The definitions
of language and grammar can be found in many books dealing
with formal languages and automata theory, e.g. Ref.

[42]). Two relevant theorems are stated below:
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Theorem 3.1 The set of strings which are codes of

node structures of *rees, and are coded by following
the rule described above with symbol set {¢,N;},
forms a context free language L(G). The associated

grammar G is given below:

G = {VN' VT" P, S}

with VvV, = {8}

P: S-+N.S*
1

8«4

where Ni and i have been introduced earlier, and gt

is a string of i consecutive "S".

Proof: The first production rule implies that when a
nonterminal symbkcl N, is generated, i other new symbols
(represented by $) are also generated and are placed
to the right of N, . This leads to the fact

that in the tree renconstruction as described earlier,
when a nonterminal node (corresponding to Ni) is
constructed, there are i symbols always available as
immediate descendant nodes. Since this is true for

all nonterminal nodes, and the second production

rule does not change length of the string,
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every nonterminal node Nj has j immediate descendant
nodes (represented by j symbols in S) and every ncde
(except tle root) has an ascendant node. Thus each
string of L{(G) can be used to reconstruct a tree

and is equivalent to the tree. That is, the set of

language L(G) is identical to the set of codes for tree

structures. And according to the production rules, L(G)

is context free. This proves the theorem.

Theorem 3.2 The corresponding pushdown automaton M

which accepts this set of strings L{G) in Theorem 3.1

is
M= [{ag}, {¢,N;}, (2}, 8, q5, 2, V]
with  6: 6(qqy,$+2) = {{qg,e)}
$(agiN,,2) = {(ag,2"))

where 27 is i consecutive Z's in the pushdown

stack.

Proof: The grammar G, of the language L(Gl) accepted
by M can be derived [Ref. 42, p. 76] to have the

production rules:
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P].: S—" [qorthol

[qO:Z:qO] + ¢

[qo; quO] + Ni [qortholl

Equat.ing the symbol [qo,z,qol to 8, the above production

rule P1 is identical to the production rule P of

grammar G in Theorem 2.1, and also Vi Vo of G;are

the same as VN’ VT of G. This leads to the statement

that qlis equivalent to G, thus the theorem is proved.

-~

These two theorems also imply the one~one correspondence
of a tree structure and a string. Briefly, this is because
both the grammar G and the automaton M described above are

deterministic.

3.2 Decision Function Information

For classifying remotely sensed data, as mentioned
previously in Chapter 1, the maximum likelihood classifier
with normal density functions will be used. The classi~-
fication scheme then is parametric; for each stage the
decision function can be uniquely specified by a set of
statistical parameters. The parameters represent the density
functions of various classes, and they can be estimated
from a set of training samples. In a sequence of decision
stages the original densities of the classes are always

used, in splte of the fact that certain classes have been
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partitioned in earlier stages (and more than one terminal
node refers to each of those classes). The reason for
not updating the original statistics for partitioned
aata is to maintain the decision boundaries of the conven-
tional one stage maximum likelihood classifier which is
considered Bayesian optimal for a zero-one loss function.
In case an outcome of a decision corresponds to a collec-
tion of classes, the pooled statistics of some of these'
classes may be used in the parametric decision function
of the succeeding stage.

With the decision function for all the nonterminal
nodes described along with the string which gives the
structure of the nodes, the decision tree procedure is

completely and uniquely specified.
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CHAPTER 4

APPROACHES TO THE DESIGN OF THE DECISION TREE CLASSIFIER

Several approaches to the design of an effective deci-
sion tree classifier will be discussed in the following
sections. In the histogram approach and sequential cluster-
ing approach, interaction with the analyst 15 necessary
to design a good decision tree structure. The optimiza-
tion approach is the most sophisticated but the least
amount of interaction is needed. For the purpose of maxi-
mizing the accuracy (when the dimensionality problem might
occur) or the overall performance, two design procedures
will be introduced in the sgsection on the optimization

approach,

4.1 The Histogram Approach

The strategy of the historgram approach to decision
tree design is very basic and is similar to the method in
the paper of Mattson and Damman [13]. The approach can be
described as follows: The histogram of training data of
all classes is plotted on each feature dimension with the
same scale. By observing the histograms one can find
decision boundaries (or threshold values) to partition those

classes into several groups. If a group contains more than
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one class, the same procedure is repeated until all classes
are uniquely classified. When this state is achieved the
design is complete.

A simple example is illustrated in Fig. 4.1, where a
decision tree classifier is constructed for three classes
with three features. For multispectral data, coincident
spectral plots* too can be another source of information
from which the decision tree classifier can be designed.

In these plots the means and standard deviations of all
classes (assuming each class of data is of normal distri-
bution) are plotted with the same scale, so that the decision
boundaries (or threshold values) can be observed. An

example of the coincident spectral plot is shown i1 Fig,

4.2 where a character indicates the class and locates

the mean of that class with respect to that dimension.

For the five classes shown in this figure, a two stage
decision tree procedure is designed. A single feature

{f4} is used for the first stage; class, {A! and (D!}

are two representative classes for two groups. In the second
stage, since no single feature can separate the classes in
two groups satisfactorily, a maximum likelihood classifier
with all features wiil be uszd for tzrminal classificaticn.

When the maximum likelihood procedure is used at each

*Output of the statistics processor of LARSYS [43), a
software system for remote sensing pattern reccanition.
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Figure 4.1 A Simple Example of the Histogram
Lpproach to Design a Decision Tree
Classifier.
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stage, a decision rule can be specified by a feature
subset and a c¢lass subset, assuming the statistics for all
classes are given., A set up of the clLassifier designed for
digital computer application is shown in Fig. 4.3.

The performance of the classifier designed by this
approach is subject to the experience of the designer, yet
this approach provides a convenient and basic method for

designing a decision tree classifier.

4.2 The Seguential Clustering Approach

In the sequential clustering approach, a decision
tree is designed through successive stages of clustering.
Actual class information is necessary to determine whether
the training samples have been properly clustered into the
required information classes. The class information of the
multispectral remotely sensed data, usually referred to as
"ground truth" irs generally represented by two dimensional
maps (e.g. USGS Topographic Maps'! and aerial photographs.
The cluster maps (results) obtained from the computer are
compared with the conventional maps of photographs and
this is where human interaction is involved.

An example of the procedure for this approach is
illustrated in Fig. 4.4. Here a scene is first clustered
into three classes A. B and C., After this result (clustering
map) is compared with the ground truth map, class A, C are

further clustered into three and two subclasses
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Figure 4.3 Input/Output Set Up of Decisi»n Tree
Procedure with Histogram Approach.
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Figure 4.4 Multistage Clustering of a Geographic Area.

Figure 4.5 WNode Structure of the Decision Tree
Classifier Designed in Fig. 44. ‘



respectively. Corresponding to this sequence of cluster-
ing, the structure of the decision tree classifier is
shown in Fig. 4.5,

It is common for the first cluster map to have some
mixture classes. Further subdivision of these subclasses
allows +hem to be grouped together to provide the correct
classes. Through this interactive approach, multistage
clustering of a given area can lead to conformity with the
map or photograph.

By utilizing the clustering algorithm [43] of LARSYS,
the probability densities of the classes and subclasses can
be approximated by multivariate normal distributions. The
remaining classification problems thus become parametric.
The maximum likelihood decision rule can easily be incor-~
porated in the decision tree designed to classify unknown
samples., Consequently, it is required that after each
stage of clustering, the statistics of the clusters be
calculated. These statistics will be necessary to specify
the discriminant functions in the decision tree procedure,
The set up of the decision tree procedure designed by this
approach for digital computer implementation is shown in
Fig. 4.6. This set up differs slightly from the previous
one {(Fig. 4.3) in the sense that each decision function is
directly represented by the statistics of the classes (or

clusters) to be classified.
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Figure 4.6 Input/Output Set Up of Decision Tree
Procedure with Sequential Clustering
Approach.
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Although in the above discussion nonsupervised cluster-
ing is used to obtain the structure of each stage of classi-
fication, the supervised training method can also be used.
For two dimensional imagery data, the spatial properties of
the classes would be a major cetermining factor as to
which method would be more appropriate.

Another major advantage of this approach is that after
observing the classification results, if there is need for
a certain class to ke reclassified, this approach can be
used to construct a multistage classifier which is used to
claggify data again; a change in the results will be observed
only in those samples classified in that particular class.
Thus, the advantage of the multistage classifier -z
the conventional one stage approach, where the classification
results of other classes may also be changed by the addition

of unrelated subclass to the classifier, is obvious.

4.3 The Decision Tree Optimization

The study in this section is aimed at a systematic
approach to design a good decision tree classifier. The
nature of the design problem would be very similar to that
of the histogram approach introduced earlier. With sets
of training samples of known classes being given, the design
procedure will construct a good decision tree to classify
unknown samples into these classes. The method described

in the first section provides the fundamental idea of how to
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solve this design problem. However, what is left unanswered
is the question of how good the designed tree is when com-
pared to other alternatives.

With the generality of the tree structure already
digscussed in Chapter 3, even for a small number of classes
and features, numeroug different tree structures can he
constructed. Suppose there are m nonterminal (or decision)
nodes in a given node structure and n features are available
for c.assification. For each =onterminal node, 2" -1 feature
subsets can be used for the decision function. Thus, for
this given nodes structure, (2°-1)™ = 2™ gifferent
arrangements for the decision functions can be found. For

the total number of possible trees N, we shall have:

K .
N = § 20T
i=1

where K is the number of different nodes structures, and my
is the numbar of nonterminal nodes in the i-th nodes struc-
ture. Although N is not explicitly evaluated in an exact
expression (because the values of K and m are not determined),
ifs value evidently can be very large.

The above consideration generally prevents the practice
of constructing and evaluating all possible structures. For
the purpose of having a systematic approach to design a
"good" decision tree structure, methods of optimization

are considered.
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4.3.1 Objective of the Decision Tree Optimization

The objective of the decision tree optimization, as a
result of the discussion in Chapter 2, would be to improve
either the classification accuracy or the computational
efficiency or both. The simultaneous optimization (maxi-
mizing) of both the accuracy and the efficiency would be
impossible, because according the theorems in Section 2.2,
for any gi-en accuracy a bound on efficiency has to be
satisfied. That is, a solution which maximizes both the
accuracy and the efficiency without constraint simply
does not exist. 1In trying to achieve the goal of maximiz-
ing just the accuracy, the decision tree procedure will be
useful only if the optimal dimensionality is less than the
feature dimensionality (because of the dimensionality prob-
lem discussed in Section 2.1). However, in many cases a
user is willing to sacrifice some accuracy in order to
gain efficiency, even if the dimensionality problem may not
occur for maximum feature dimensionality. In these cases,
the amount of tradeoff between accuracy and efficiency
would be entirely up to that user.

With the above considerations, difference in the
performance criteria leads to two different approaches to
optimize the decision trees. One tries to iraximize the

accuracy and another the "overall performance".

I
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4,3.2 The Accuracy Oriented Design Approach

4.3,2.1 A Class of Binary Tree Classifiers
A class of binary trees will be designed for the

purpose of maximizing the classification accuracy. In a
binary decision tree, each nonterminal node has exactly
two immediate descendant nodes. For our special purpose
this corresponds to a test of likelihood for a pair of classes
using the optimal feature subset for that pair of classes.
If the dimensionality problem (described in Section 2.1)
does not occur for maximum dimensionality, the optimal feature
subsets for all class pairs will be the same, i.e. the complete
set. Hence the binary tree procedure is equivalent to the
conventional one stage procedure which also performs series
of tests to make a final decision. If the dimensionality -
problen does occur for maximum dimensionality, the optimal
feature subsets for different class pairs can be different.
In this case, the binary tree procedure is not equivalent
to the conventional procedure.

An illustration of the binary tree procedure is shown
in Fig. 4.7 for classifying an unknown into four classes
{ml,mz,wB,w4}. In this figure the class of a terminal node
is the final decision, and £(i,j) denotes the optimal feature
subset used in the decision function for classifying classes
wy and wj.

From this example it is clear that for N-class classi-

fication N-1 tests are necessary to reach a terminal
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decision. Therefore, the decision rule of the
binary tree procedure for optimal classification can be
formally defined as follows: In a optimal binary tree
procedure, to reach a terminal decision for N-class classi-
fication, a sequence of N-1 tests are performed; in each
test a Baysian decision rule is used to classify a pair
of classes (i.e. to discriminate one class from
another), and the class rejected in the test is
excluded from consideration in further tests.

The mathematical formulation of the binary tree procedure
is also sho.n below:

Assuming D is the optimal decision function (with equal
a priori probability and 0-1 loss function) for testing class

pair g and wyr and @ is the decision of D, we have

0 = D(wi,wj) (4.1)
w, if r,.2z21

with a=41 1] (4.2)
mj otherwise

P(x]wi)

|

where (4.3)

i] P(xlmj)

is the likelihood ratio for two classes wg and mj.

With £ and D defined above, the binary tree procedure can

be put in the recursive form:
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Lol
n

D{wi,ui_l) i=2, ..., N {4.4)

with 91 = wy

where N is the number of classes. The recursive formula
of @, starts with 0,7 and 4y is the final decision which
determines to which class the unknown sample belongs.

A block diagram of the multistage decision procedure
as described in Eq. 4.1 to Eq. 4.4 is shown in Fig. 4.8.
There is no need to encode and store the entire tree
structure with the method described in Chapter 3. When
probability densities of all classes are estimated, the
necessary information to specify the binary tree decision
procedure uniquely would be the optimal feature subsets
for all class pairs. Thus, the key step in designing
the binary tree decision procedure is to find the optimal
feature subsets for all class pairs based on the estimated
statistics. Maximizing the Bhattacharyya distance [45,46]
can be a reliable method for feature section. Some

experimental results will be shown in Chapter 5.

4.3.2.2 Discussion

For the decision procedure described above, the
classificaticn accuracy is maximized since the optimal
feature subsets are used for discriminating pairs of classes.
The efficiency is generally lower than a conventional
procedure using the same feature dimensionality because

more conditional probabilities have to be calculated for Eg.
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Tree Procedure.



4.3. If feature subsets for all class pairs are different
the number of conditional probabilities calculated is twice
the number normally calculated using only one feature subset.

If D is in fact the optimal decision function for
classifying two classes, then following the recursive
functional form of Eg. 4.4, it is clear that Oy is the
optimal solution. In other words the procedure of Eq. 4.4
is an optimal procedure for a N-class classification.
This is because the multistage decision process defined by
Eq. 4.4 is in a recursive form; with D being the optimal
decision function, once a true optimal solution Wy is
encountered at the k-th stage the decisions at later stages
including the final decision will all be the same, i.e. Gy -
And an optimal solution will be achieved regardless the
order of classes in the class sequence. This policy discussed
here is described as well by Bellman's "Principle of Optimal-
ity" [44] for dynamic programming, which states that - "An
optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state re~
sulting from the first decision."

If the true densities are known and if the features
are all independent variables the optimal feature subsets
for all class pairs are the same, i.e. the complete

feature set. As mentioned before, in this case the multi-

stage decision procedure of Eq. 4.4 degenerates to the
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conventional optimal procedure, the maximum likelihood pro-
cedure. However, if the densities are estimated with dif-
ferent optimal feature subsets for different class pairs the
procedure of Eg. 4.4 may not be optimal, for the reason that
the law of transitivity* can not be applied to the ordering of
likelihood ratios measured in different feature subspaces.
Withh the loss of optimality, contradiction of classification
results might ocsur, if the segquence of classes used in
tests is different from the sequence {ml,mz,...,mn} used in
Eq. 4.4, Different class sequence in the tests corresponds
to a different tree structure. As an example the sequence
Im4,m3,m2,ul} will lead to the structure shown in Fig. 4.9,
which is an alternative to the structure shown in Fig. 4.7.
The different results for alternative structures is also
illustrated by a simple example in Fig. 4.10, whexe the
region (x <0, y<0, z>0) in feature space will be assligned
to two different classes due to two different arrangements
as shown.

In practical cases, if the probability densities are
fairly well represented by the training samples, the popu-
lation of samples in the ambiguous regions in feature
space can be very small. Therefore the difference in
classification results due to different arrangements would
Le negligible. From this standpoint, it is clear that the

Linary tree approach as described is not optimal but close

*A binary relation R over a set S is said to be transitive
if for s, t and u in &, sPRt and tRu imply sRu.
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enough to an optimal approach to improve the accuracy for
multiclass classification in the presence of the dimension-
ality problem. For an optimal approach, some back up process
in a decision tree procedure woulé be necessary, and
thresholds on the likelihood ratio would be used in order

to decide whether to reject a class or not. Procedures
similar to the Fano's Algorithm in sequential decoding ([20]
can be designed, the details of which are discussed in

Reference [47].

4,3,3 The Search Approach to Optimize the Decision Tree

As mentioned in the end of Section 4.3.1, to maximize
the overall performance of a decision tree is one of the
goals of decision tree optimization. For this purpose, the
designed tree structure must be as general as possible.

The essential features for a general and practical tree
structure can be stated as follows:

1) Any feature subset can be used in the decision
function of a nonterminal node.

2) The number of immediate descendant nodes of a non-
terminal node varies from two to the number of classes in that
node.

3} The number of classes in a node is always greater
than the number of classes in each of its immediate descendant
nodes.

4) No two immediate descendant nodes of a nonterminal

node contain the same set of classes.
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With such generality numerous different structures are
possible. There are basically two problems in optimizing
the performance of a decision tree. One is the complexity
of the tree structure. It has not been possible to describe
the tree structure in terms of a set of variables, and then
form a space in which each point stands for a unique tree
structure. The second problem is that the overall performance
of proposed classifier structure can not be predicted exactly
accurately. Because of the f:rst problem, most of the
existing mathematical programming procedures can not be
applied effectively. Hence, the heuristic search method
will be used. In this method, the structure is constructed
stage by stage, thus reducing the problem of representation.
For the second problem, there is nc exact solution at present.
Attempts have been made to predict the performance as accu-
rately as possible.

Generally speaking, the search method introduced here
can be referred to as "guided search with forward pruning”,

a category in the methods of heuristic search [49,50]. This
particular search method is also very close tc the branch-
and~bound method [51]. The essential concept of the branch-
and-bound method is that it partitions solutions into
subsolutions (branching) and after each branching, only

feasible solutions are retained for further consideration.

4.3.3.1 The Search Procedure

This procedure first selects a set of feature subsets
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to be searched., 1If m, the total number of features is small,
all 2™ -1 feature combinations can be used. If m is large,
feature selection methods can be used to select a set of
"likely" feature subsets out of the 2™ -1 possibilities. The
reduction in featuie subsets increases the search efficiency.
These selected feature subsets are then searched in
order to construct a stage of the decision tree structure.
For each feature subset, with the given c¢lasses under con-
sideration, a nonsupervised clustering is performed. With
interclass separability as distance,* s=ch class is treated
as a single point ir the space. As a result of clustering,
several groups of classes are found. The candidate sub-
structure (a stage in the tree) for each feature subset is
then constructed; i.e. each group of classes represent a
newly generated descendant node; the associated decision
function has tne corresponding feature subset chosen as
features, and the statistical parameters for each outcome
(descendant node) are the pooled statistics of the "repre~

sentative classes"** in each group.

*We will assume that a "distance" has some, though not all,
the properties of "metric®. A metric is a real valued func-
tion & defined on Sx 8 (x indicates cartesian product)
such that for arbitrary ¥, G, H in 8

(a) §(r,G) 20
(b) (1) s(F,F)=0
(2) If 6(F,G) =0 then F=G
(¢) 86(F,G) = §(G,F)
(d) 6(F,G) + &§(G,H) 2 6(F,H)

**The "representative classes" are unique to one class group
only in contrast to some overlapping classes which belong to
more than one class group. Explanation of the clustering
procedure with the associated method of extracting those
"representative" classes will be given later.
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When a candidate substructure is formed, it is evalu-
ated by a function which reflects the cost of classifica-
tion using that substructure. After all feature subsets
are searched, the candidate substructure with the lowest
cost will be selected as the substructure for that stage.

The above discussion describes the method of constructing
one stage of the decision tree classifier. After this stage
is constructed, some of the newly generated nodes may have
more than one class. The same procedure is used in expanding
those nodes, i.e. constructing the next stage. The search
procedure terminates, indicating that the decision tree
design is completed, when all terminal nodes contain only
one class.

A flow chart and a simple example of the search method
is shown in Fig. 4.11 and 4.12 respectively. 1In the example,
six classes Wy, i=1, ..., 6 are to be classified with only
four features fi' i=1, ..., 4 available. The search
procedure searches through all the 24-1 feature subspaces.
With a given cost criterion the best structure shown in
Fig. 4.12, where the encircled classes are the representa-
tive classes. This structure results from the clustering
of those six classes based on the separabilities
corresponding to feature subset {fl}. Notice that the
search procedure will be applied to the first and second
nodes generated to construct the next stage, since they

contain more than one class.,
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Figure 4.11 A Flow Chart of the Search Procedure.
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Figure 4.12 A Stage of the Tree Structure.



A set up of the search approach for digital computer
application is shown in Fig. 4.13. The same diagram is
also valid for the accuracy oriented approach discussed
in Section 4,3.2.

In the search procedure described previously, the
c¢lustering and evaluation are two major steps. Some
introduction to the clustering procedure will be given in
next subsection. The form of the evaluation function
and the discussion of optimality of the decision tree

designed will be given in later subsections.

4.3.3.2 The Clustering Procedure

As mentioned previously, clustering classes
into groups is an important step in the search procedure.
A brief introduction of the clustering procedure will be
given here (while the detailed mathematical verifications
will be given in Appendix B).

The first step in the clustering procedure is to form a
distance matrix for the points that are to be clustered. The
second step is to £find several nonoverlapped point subsets.
These subsets have the property that only points from the
same subset are considered similar, while points from different
subsets can never be similar. Whether two points are
similar or not is determined by a similari+y criterion
defined on the distance between these two points. After

thege distinct subsets are found, the same number of
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clusters are formed each being obtained by grouping all
the points similar to the points in a subset previcusly
selected.

The same procedure can be applied to classes, with each
class being treated as a single point and the separability
between two class distributions as a measure to determine
whether tnese two classes are similar or not. By doing so,
we may again form a similarity matrix., Using the cluster-
ing procedure, distinct and mutually dissimilar (for any
two classes belonging to two different class subsets
selected) class subsets can be selected. The classes in
these distinct class subsets will be called the representa-
tive classes. Groups of classes selected later based on the
first selected class subsets will then be clusters which are
the proposed immediate descendant nodes of this stage.

The significance of the representative classes has been
mentioned in the previous section, i.e. the parameters of
the decision functions are pooled sta.istics of those
representative classes.

The idea of the clustering procedure is very simple.ft
However, to sort out the distinct and mutually dissimilar
point (or class) subsets is not easy, especially if the
number of points (or class) is large. A method to simplify

this cluster sorting procedure, as developed in this study

is explained in Appendix B.
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4.3.3.3 Form of Evaluation Function

The evaluation function is essential to the method
of guided search as discussed in Section 4.3.3.1. The form
of the function reflects the objective of optimization (that
is to maximize the overall performance of accuracy and
efficiency). To specify the performance criterion, the
additive form of accuracy and efficiency will be used. This
form is chosen because the additive form of the total cost
has been widely accepted by statisticians [48].

As the overal! performance of the decision tree is
evaluated by the weighted sum of accuracy and efficiency,
each stage of the tree will be evaluated by a similar
criterion. The evaluation function E(di) for each candidate

structure following node di will be defined as follows:
o

R
E(d;) = —T(di) - Kee (di) +j£1F(d”j) (4.5)

where the evaluation of the decision function for node di

is given by the first two terms. The summation quantity

is the predicted evaluation for further stages. The
efficiency and accuracy are represented by the negative of
the computation time T(di) and negative of the error a(di)
respectively; both quantities are measures for node di only.
K is a weight constant which determines the relative
importance of efficiency and accuracy, and its value will be
assigned by the user. c; is the number of immediate

descendant nodes of di’ and d2+

are those nodes, with E(d )

3 R+3
as theilr associated evaluations. To be more specific, we have
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c,
| . -
E(di}-ﬁfﬁagﬁ-[Pi T(mi,ci)4-j£1P2+j-T(m.n£+j)‘
—K'e(di)+K-C {4.6)

where T(a,b) stands for the computation time of a maximum
likelihood procedure for an a-feature b-class classification.
m,n are the number of features and classes used in the con-
ventional one stage procedure. Pk is the probability that

a path of classification will pass through ncde d . my and
c; are the number of features and decisions, respectively, of
the decision function proposed for node di. n2+j is the

number of classes contained in the descendant node d2+j'

And C is a constant to be explained in the next paragraph.
The meanings of some of the notations appearing in Eq. 4.6
are also illustrated in Fig. 4.14.

The term T(di) in Eq. 4.5 is expressed by Pi-T(mi,ci)
in Eq. 4.6. K- e(di) in Eq. 4.5 is not changed in Eq. 4.6.

E(d ) in Eq. 4.5 is expressed by P1+j-T(m,ng+j) which is

2+
the computation time of the one stage procedure (with m

features and n, . classes) being designed for node d2+

L+7 j?

and E(d£+j)' the expression for error is not included in

Eq. 4.6. The reason that this simplified form for E{(d )

g+
is used is because structures for further stages have not
yet been determined, and efficiency and accuracy are diffi-

cult to predict; thus the conservative single stage procedure
evaluations are proposed for each of the immediate descendant

nodes d2+ of node di. And the sum of error quantity

3
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Figure 4.14 A Stage of the Decision Tree Classifier

L9



68

v (d ) is expressed by a bias constant C. The terms

243
associated with efficiency are normalized by the computation
time of one stage conventional procedure, i.e. T(m,n), so
that they can be compared to the terms associated with
accuracy which are expressed in terms of error rate.

To improve the performance of the designed classifier,
a constraint on E(di) is applied, which is the evaluation of
a conventional procedure to be used for node di such that
the evaluation of a selected substructure can not be less
than this constraint. In other words, a conventional pro~-
cedure will be used for node di' if the evaluation.. of all
candidate structures are no greater than this constraint.
Another interpretation of the constraint is that a conven-
tional one stage structure is also added as a candidate sub-

structure to be evaluated. The constraint Eo(di) for node

di is given by Eq. 4.7

1

Eo(di)="m [Pi-T(m,ni)]-Kx eo(di) {(4.7)

where n, is the number of classes in node di‘

Since Eo(di) is a constant term for all E(di), it is
convinient to substract Fo(di) from the expression for E{di).
The constraint for this modified E(di) will be zero for all

di. The modified form of evaluation is then given by Eq. 4.8.

' =1 . - .

C.,
1
+ jglPHj-T(m.n“j)]Hxx [c' - e(a,)] (4.8)
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Since eo(di) is a constant, it is absorbed in the bias
constant C'.

In Eg. 4.8 all the guantities of T(+,+*) are known
quantities, since the computation time of classification
for a given number of classes and features can be measured.
The remaining quantities can not be calculated precisely.

In Eq. 4.8, they are Pi' P and e(di). However, with a

243
good separability measure, these probabilities can be
estimated reasonably well. The empirical method of

estimating probabilities is given in Appendix C.

4,3.3.4 Discussion of the Optimality of the Design

Equation 4.8 is used to optimize a stage of the
structure. How this relates to the optimization of the
overall performance of the decision tree is explained as
follows:

In a designed tree structure, assume there are
totally N nonterminal nodes. The summation of the evaluations

of these N nonterminal nodes, di, i=1, ..., N is given below

=
I

Dﬁ
E'(d,)
i=1 *

i

N i
1
Tﬁﬁﬁﬁ'izllpi T(m,n;) - j£1Pz+j T(m'nz+j)]

1 N N

— - - L] -— L]
TIm, 8y j_.-_z-lpi T(mi,ci) + K « NC K i=§1

e(di) (4.9)
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In Eq. 4.9, terms in the first underlined summation
will cancel each other except for the first term Pl-T(m,nl)
of the root node, which is equivalent to T(m,n). The
second summation is the expression of computational time of
the decision tree procedure. And the last summation is the
total error rate. Let To' o and T,e be the computation
time, and error rate of the conventional procedure and the

tree procedure respectively, as defined below:

To = T(m,n)
N

T = izlpi-'r(mi,ni)
!

£ = e{d.,)
i=1 *

With these expressions, Eqg. 4.9 is rewritten as

E = g [T ~T]-Kxec + KxNC' (4.10)
o}

Eq. 4.10 can be viewed as the difference in performances

Fy

of the tree procedure and the conventional procedure. 1i.e.

T

= T _ - (- 2 - "
E = (—T_ Kxe) ( 7 Kxeo) + C (4.11)
o o
where C" = KxNC'- Kxe_ is a constant, (4.12)

0
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Through the above derivations, the consistency of the
evaluation E(di) and the overall evaluation is evident.
In other words maximizing E(di) individually increases the
value E as expected. The value of constant C' in Eq. 4.8
ig difficult to determine. Ideally, C' should be set
close to the value of eo/N such that C" vanishes in Eq.
4.11, but N is unknown before a tree is designed. Indeed,
one can simply set C' as zero; this is equivalent to
raising the constraint of E(di) by a positive amount
(because the value for which C' stands is positive).

This solution to the design is suboptimal to the
objective of optimization. The reasons are summarized
as follows:

1) Not all possible tree structures are evaluated.

2) The evaluation is an approximated gquantity.

3) Maximizing each E(di) does not imply that the overall

evaluation - %l-K:<a is maximized.
o

Although the search is suboptimal, with a carefully
formulated evaluation function--Egq. 4.8--, net improvement
in classifier performance is achieved. The search
procedure itself is very efficient, thus its practical
usefulness is enhanced. Some experimental results
related to the search method for decision tree optimization

will be shown in Chapter 5.



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

Several e«perimental results related to the dimensionality
problem will be presented first. Experiments were performed
on both real and simulated data sets. Next presented are
results of decision tree classifiers based upon various
design approaches. Emphasis has been placed on the
optimization approcach. The reason is twofold: One is to
verify the validity of the optimization procedure
since several empirical methods are involved; the other is
to gain confidence in the performance of a design which is
the result of an "automatic" design approach.

The Bayesiandecision rule with assumptions of 0-1 loss
function, equal a priori probabilities and multivariate
normal distributions is used as the decision rule in all
experiments when classification is involved.

Two separability m-asures, the transformed divergence

DT [53] and the transformed Bhattacharyya distance B_, [54],

T
are also introduced here, for they will be used frequently

in later experiments as criteria for feature selection.

D, = 2000:{(1—-e_D/8) (5.1a)



73

where D has been defined in Eq. 2.9, the divergence of two

normal distrihutions.

BT = 2000x {1~ et‘fu(/ZB) 1 (5.1b)
-1
. +17
P e e _
{(z, +2,)/2]
+ %-]_og 1 2 (5.2)

1/2 1l/2
iz, 122,12

and

e dx {5.3)

it

erfc(x)

5.2 Dimensionality Probler in Multispectral Pattern Recognition

In this section, the dimensionality problem will be ex-
perimentally studied. There are two major objectives of con-
ducting these experiments. One is to further demonstrate the
existence of this problem in multispectral pattern recogni-
tion; and the other is to verify the hypotheﬁical explana-
tion of this problem, which is disc. sed in Section

2.1.

5.2.1 Experiments on Real Data

The following two experiments are mainly for the purpose
of observing the dimensionality problem in multispectral

pattern recognition, The first experirent is a repetition



74

of the one shown in the end of [1], except that the training
and test data sets are different. The specific purpose of
repeating this experiment is to confirm the previous results
which demonstrated that in classifying multispectral remotely

sensed data the optimal dimensiocnality can be rather low.

Experiment 5.1 Five classes of crops, oats, soybeans,

corn, red clover and wheat are selected from multispectral
scanner {(hereafter referred to as MSS) data of the 1966 C-1
Flight Line*. Part of the selected data is used for training
and a much larger portion is used for testing (detalled field
descriptions are listed in Appendix D,l). The number of
features used for classification varies from one to twelve.
And the feature subsets were selected based on the averaged

pairwise transfcramed divergence D, (Eg. 5.la) in conjunction

T
w.” the condition that a feature subset with lower dimension-
ality is always a subset of another with higher dimensionality.
With feature subsets selected in this manner, although each
one may not be the optimal with respect to each dimensionality
(but is close to optimal), however the effect of additional
features can clearly be cbserved as classification dimension-
ality increases. The classification results in terms of
overall error rates (averaging by the total number of test

samples) are plotted in Fig. 5.1 and also tabulated in

Table 5.1. WNotice the error rate of the complete feature

*An experimental flight line over west central Tippecanoe
County, Indiana. Also described in Ref. [1].
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Figure. 5.1 Error Rate Versus Dimensionality for the
Five Class Test in Experiment 5.1,



Table 5.1 Feature Subsets and Associated Error Rates for the Five Class
Test in Experiment 5.1.

FEATURE SUBSET OVERALL (%)
ERROR
1 53.4
1, 10 26.4
1, 10, 12 18,1
1, 9, 10, 12 18.5
i, 6, 9, 10, 12 20.3
1, 6, 9, 10, 11, 12 20.1
i, 6, 8, 9,10, 11, 12 20.4
i, 5, 6, 8, 9, 10, 11, 12 20.0
1, 5, 6, 7, &, 9, 10, 11, 12 20.4
i, 4, 5, 6, 7, 8, 9, 19, 11, 12 20.5
i, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 20.9

l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 20,9

9L
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set is about three percent higher than the best result

which is obtained by using three features.

The above experiment is for five-class classification.
For a closer look at the problem, an experiment on two-

¢class classification was conducted.

Experiment 5.2 For a two-class classification, crops

of corn and soybeans are selected and classified (detailed
description of data and results are listed in Appendix D.2).
The results are plotted in Fig. 5.2, together with an uprer
bound o (Ref. [S], p. 70) on error probability, which is

calculated by using Eg. 5.4 based on the estimated densities.

€y = {P(ml)-P(mz)]l/zexp(~B) (5.4)

where B is the Bhattacharyya distance defined by Eq. 5.2; and
P(ml) are the a priori probabilities estimated by the numbers

of test samples for two classes.

From the results of these two experiments, the dimension-
ality problem in multispectral pattern recognition is clearly
observed. It is also noticed that the trend of calculated
error bounds based on estimated statistics doeé not fit the
trend of real error rates in this case, i.e. the former goes
downward and the 1a£ter goes upwe .d. In principle, the error
bound €q given by Eg. 5.4 will never increase with additional

features. Contradiction in the above example occurs because

I
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+he densities used to calculate €, are not the true

densities.

5.2.2 Experiments on Simulated Data

As mentioned in Section 2.1, the dimensionality problem
ig closely related to the number of training samples in
probability density estimation. The following experiments
were conducted mainly for the purpose of observing this
relationship. Simulated multispectral remotely sensed data
have been used for the reason that it is possible to select
an arbitrary number of independent samples (real data are
more or less spatially correlated). In the simulation,
multivariate normally distributed data were generated based
on the second order statistics of real remotely sensed data.
And the Hasting Formula [55)] were used to approximate the
inverse of the error function (Eq. 2.12} to transform a
random variable from a uniform distribution into a normal

distribution.

Experiment 5.3 10,000 samples for each class were

randomly generated according to the normal distribution with
means and covariances calculated in Experiment 5.2 (Appendix
D.2). Totally there were 20,000 samples generated for two
classes. Four sets of classifications were performed on

all 20,000 samples, using successively 20, 40, 100 and
10,000 training samples per class respectively. In each

set the dimensionality varied from one to its upper limit
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which is twelve, For each dimensionality the same feature
subset was used for all four sets; and the feature subsets
were the same as those which were used in Experiment 5.2.
Four sets of results are shown in Fig. 5.3 (Results

for 400 training samples were made but are not plotted in
Fig. 5.3, because they are very close to the results for
10,000 training samples). The dimensionality problem

and its relationship to the number of training samples is
apparent. That is, the optimal Jimensionality decreases

as the numbgr of training samples decreases.

Attempts at theoretically relating the number of train-
ing samples to the amount of degradation in accuracy have
not been successful, due to the difficulties mentioned
in Section 2.1.2. One of the difficulties, the lack of
analytical means to estimate errors, can be eased (such
that Eq. 2.1l can be used) if both classes are known to
have approximately equal covariance matrices. To demon-
strate this theoretical result, the following experiment
is made on simulated data of two normal distributions with

equal covariances.

Experiment 5.4 Two multivariate normal distributions

N(Ml,z), N(szz) are assumed for two classes of data, where

Ml, Mz, are the same as the means of the two classes in

Experiment 5.3, and I is the covariance of the first class
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in that experiment. 10,000 samples were generated for each
class according to the above defined distributions. Again,
statistics caleculated from 20, 40, 100 and 10,000 samples
were used to classify these two classes. The fact of

equal covariarce in these two distributions was not
explicitly used ?uring the experiment, so the procedure of
this experiment was the same as Experiment 5.3, except
that the feature subsets selected were based on N(M,.I)

and N(ME,Z). The classification results are plotted in
Fig., 5.4. The theoretical error rates, calculated accord-
ing to Eg. 2.11 (and Eqg. 2.8) with given numbers of samples
n, dimensionality m and divergence D (calculated from

the true distributiovs), are also included and are

connected by dotted lines in Fig. 5.4.

It is noticed in Fig. 5.4, that the experimental and
theoretical results match best, as expected, for the case
with n=10,000. Discrepancies between experimental and
theoretical results foL other cases, in general, occur
within three percent. For n= 20, the underestimation
is probably because small quantities with variances of the
order l/n2 are neglected in deriving Eq. 2.8. Despite
these discrepancies, the trend of the theoretical results
corresponds well with that of the experimental results.
One must also recall that Eg. 2.8 is a problem averaged

expression for the error in likelihood ratio estimation,
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thus random deviation of the results of a single experiment
is to be expected, especially when n is small.

For practically predicting the optimal dimensionality,
besides the difficulty of lacking analytic means to
predict error accurately, another is that the value of D
calculated with a small number of training samples is not
accurate enough to be used to estimate the degradation,
e.g. BEg. 2.8. An example is shown in Fig. 5.5 where the
values of divergence calculated based on statistics used
in the classifications in Experiment 5.4 are plotted. For
a given dimensionality, there is a general tendency that
as the number of samples decreases the divergence increases
from its true value. For the egual covariance case
such phenomenon can be explained as follows: first, any
error in estimating the covariance will lead to the cal-
culated D being greater than its true value (the £irst
term in Eq. 2.9 is never negative for positive definite

L., and Zor but it is zero for the original case of equal

1
covariances); second, there are m (dimensionality) degrees
of freedom for the error in estimating the mean vectors,
but there is only one possibility (out of m) that D

will decrease, which corresponds to the distance between
two estimated means decreasing along its true direction
(the direction of a vector joining two true means in
feature space). For cases with unequal covariances, the

second argument still holds and the phenomenon mentioned

is expected.
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Number of Features

Figure £.5 Estimated Divergencs Based on Sample
- Statistics for the Ywo Class Test
in Experiment 5.4.
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A similiar phenomenon is also observed in the
Bhattacharyya distance measure. In Fig. 5.6a, estimated
upper bounds on error rate for Experiment 5.3 are plotted.
The bound is calculated according to Eg. 5.4 by using
the Bhattacharyya distance based on the estimated statisti-
cal parameters used in Experiment 5.3. It appears as though
when n decreases one may expect lower error rate. However,
this is only because B tends to be overestimated more for
small samples than for larger ones. The true situation is
suggested by the real classification results shown in
Fig. 5.6b (which is the same as Fig. 5.3 except that the
vertical scale is reduced in order to be comparable
to Fig. 5.6a), where the psrformance associated with
small n is worse than that with large n. In fact, some
of the real results actually exceed the estimated bounds

in Fig. 5.6a.

5.£.3 Summary

From the results of the‘above experiments, it is
evident that the optimal dimensionality for classification
may be smaller than the dimensionality of the complete
feature set, when there are a limited number of training
samples for estimating the probability densities. Because
the practical method of predicting optimal dimensionality
has not been achieved, and because the distance measure

may be misleading in case of too few training samples,
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to achieve reliable classification results one has to

have enough training samples. The results reported

in Experiment 5.2 and 5.3 also suggest that any prediction
on classifier performance based on a limited number

of training samples can be erroneocus. One must be aware

of this fact and therefore be cautious in selecting features

as well as numbers of training and test samples.

5.3 Classification Results of Decision Tree Classiflers

The following are results obtained by utilizing the
various approaches to the design of a decision tree

classifier discussed in Chapter 4.

5.3.1 Classifier Designed by Utilizing the Histogram Approach

Experiment 5.5 In this experiment, the objective of the

classification was to map wate- bodies in strip mined areas
by using aircraft MSS data. Thirteen meaningful spectral
classes* were selected, including subcategories of water
and other representative coverage types. By examining the
coincident spectral plot (in a form similar to the one
shown in Fig. 4.3), a decision tree was designed as

shown in Fig. 5.7, where the sets labeled by "CH"

are se%s of spectral channels used in that stage of

classification, and the symbol in the parenthesis is the

*Data sets were provided by courtesy of Luis A. Bartolucci.
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symbol used to display that particular class in the printed
output.

Fig. 5.8a shows the classification results for an area
by using the classifier shown in Fig. 5.7. Some of the
scattered points classified as water are tree shadows
according to aerial photographs; these data points have
spectral response similar to water and hence are misclassi-
fied.

With the same set of statistics and symbols, Fig. 5.8b
shows the classification results by using the conventional

one stage procedure with five of the six features* that were

used in the decision tree shown in Fig. 5.7. In this

set of results another type of error occurs, some areas

of water are classified as nonwater. It is difficult

to draw conclusions as to which classifier provides more
accurate results, however the decision tree procedure is
about six times faster in computation than the conventional
procedure.

5.3.2 Classifiers Designed by Utilizing the Sequential
Clustering Approach

Experiment 5.6 In this experiment, the objective of

classification was to detect the change in size of a lake.
MSS data gathered from the same area in two different seasons
were overlayed The data gathered on one date which was

associated with high water level were first clustered into

*One of the three features CH.{4,5,6} of Fig. 5.7, for
water subclass classification was not used.
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three spectral classes. Through the clustering map,

one of the cluster classes was observed to correspond
accurately to the lake area., Next, a part of the area
identified as lake was further clustered into three spectral
clagses using data gathered on another date; the area
selected for clustering was known to have been partially
covered by water at that time. After these two steps, a
two level decision tree classifier was designed. The re-~
sults of classification are shown in Fig. 5.9a, where the
three classes displayed are water, wet soil and bare soil;
the other categories are displayed as blank. The same
results are displayed in Fig. 5.9b, where the changed area
of water (bare soil) is displayed by dots, the unchanged
(includes water and wet 1and{ is displayed by character “W",
and the other unrelated areas are displayed as blank. This
experiment shows one of the applications of the decision

tree classification approach.

As mentioned in Chapter 4, inétead of clustering, a
supervised learning scheme can also be used to obtain the
statistics of spectral classes and so to construct the
decision tree in a sequential manner. Results similar to
those shown in Fig. 5.9 can be cbtained by using this super-

vised design approach.

5.3.3 Classifiers Designed by Utllizing the Optimization
Aggrcach

As a result of the discussion in Section 4.3.1, with a
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given set of classes tc be classified, there are two design
approaches to optimize the performance of a decision tree
classifier. The usefulness of these two approaches was
experimentally studied and the results are reported in the

following subsections,

5.3.3.1 Binary Decision Trees to Improve the Accuracy

The decision making procedure and the structure
éf the binary decision tree have been discussed in Section
4.3. The key step to the classifiexr design then is to find
the optimal feature subset for each pair of classes. In
the following two experiments, a "without replacement
search procedure" [56,57] has been used to select feature
subsets for class pairs. The procedure first selects
the best single feature from the total set of M features
in accordance with a given criterion, Then the remaining
(M~1l)} features are scanned for the next best singie feature
which results in the best pair when combined with the
previously chosen best single feature, and so on. The per-
formance criterion used is to maximize the separability of
two probability densities, The reason for using |
this "without replacement search" approach for feature
selection is to test the effectiveness of this suboptimal

approach which uses considerably less amount of compuiation.

time than the exhaustive search method.
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Experiment 5.7 The data set of Bxperiment 5.1 was used

in this experiment., Classification results /in terms of O
error) associated with the binary decision tree classifiers
designed with different feature selection methods are listed
in the last three columns of Table 5.2. Classifiers with
three, four and five features to classify a pair of clagses
were constructed. This number is listed as the "Dim." (an
abbreviation of Dimensionality) in the table. The first

two columns under the "Binary Decision tree procedure" are
results associated with the "without replacement search”
method for feature selection, and the effectiveness of both
the divergence D and the Bhattacharyya distance B as
separability criteria have been tested. The last column
lists the results associated with the exhaustive search
method for feature selection*, with the Bhattacharyya distance
as a separability criterion,

Also listed in Table 5.2 are results obtained by using
the conventional maximum likelihood decision rule. TFor
dimensionality three, four and five, results associated with
features selected according to maximum average transformed
divergence DT (Bq. 5.la) and maximum average transformed

Bhattacharyya distance B, (Eq. 5.2a) are listed in the first

T
and second columns under thg item “Maximum Likelihcod

- Procedure" respectively. Results listed in the third column

*Por a given dimensionality and a pair of classes, the method
searches through all possible feature subsets, and f£inds the
one with the highest separability measure.
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.Table 5.2 Results (% Error) of Five Class Classifica~
tion by Using Conventional Maximum Likelihood
Procedures and Binary Decision Tree

Procedures.
MAXINUM LIKRLIIOOD BINARY DECISION TREE
PROCEDURE PROCEDURE
MAXINUM MAXIivoM SEARCHT MITHOUT EXEMUSTIVE
DIN. AVERAGE | AvDRnGE | BBST FEPLACKMENT SEARCH
DT BT RESULTS D B B
3 22,8 18.1 18.1 2.4 21,1 17.7
4 20,2 18.5 18,5 20,0 17.8 18.3
5 20,3 20,3 18.7 1949 18,2 20,6
6 19,7
7 20.4
8 " 20,0
B 20,4
10 205
11 20.9
12 20.9
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of the ML Procedure are the best results ever found by using
the conventional procedure, which were obtained by testing
several other feature subsets associated with close to masii-
mum transformed distance values.

The best results of dimensionality 3, 4 and 5 using the
binary decision tree method are 17.7, 17.8 and 18.2; they are
plotted in Fig. 5.10 as three circles. The dots in Fig. 5.10
are results using conwentional classifiers. The three dots
jointed by solid curves are results in the third column (the
column of dimensionality is not counted) of Table 5.2, and
the others (except the result with Dim.=2) are from the

lowver portion of the first column.

The results plotted in Fig. 5.10 clearly indicate that
for this case the optimal feature dimensionality for the con-
ventional classification procedure is three. A binary tree
classifier with this dimensionality for each test does achieve

the highest accuracy.

Experiment 5.8 A commonly used data set [58, pp. 6-7]

described in Appendix D.3, which is also selected from C-1
Flight Line, is used in this experiment. There are nine
spectral classes, two of which are subclasses of wheat.
The misclassifications between these two classes are not
counted as errors. The procedure of the experiment is
simpler than that of Experiment 5.7, i.e. classifications

associated with the third and the sixth columns of Table
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5.2 are not performed. The classification results of this
experiment are summarized in Table 5.3, and the values of

column 1 and column 4 are plotted in Fig. 5.11.

The net improvement in classification accuracy by
utilizing some binary decision tree classifiers is demon-
strated in both experiments. Especially in Experiment 5.8,
the binary tree classifier achieves the accuracy which can
not be achieved by any conventional means., As far as the
method of feature selection is concerned, these results sug-
gest that Bhattacharyya distance is better than divergence
as a separability criterion for a pair of classes, an inference
which can also be drawn from the report by Whitsitt and
Landgrebe [54]. For many classes, the performances of
average BT and D, are comparable, probably because the vari-
ance of error rate, which is larger for a given DT than a BT
in the corresponding range, for an average D, value is reduced

T
by the averaging process.

5.3.3.2 Classifiers Designed Through the Search Approach

The search approach as described in Section 4.3.3
is for the purpose of designing decision tree classifiers with
better overall performances as compared to the conventional
classifier. The following experiments are designed to verify
whethexr this 6bjeétive can be achievéd. Experiments on air-
craft MSS data will be reported first. Simulated aircraft MSS
data are then used to test the validity of the search proce-

dure, Experiments on satellite MSS data are alsc reported.
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Pable 5.3 Results (% Error) of Nine Class Classification
by Using Conventional Maximum Likelihood
Procedures and Binary Decision Tree

Procedures.

MAXIMUM LIKELTIOOD BINARY DECISION
PROCEDURE PROCEDURE
MAXIMUM | MAXIBUK SEARCH WITHOUT
AVERAGE AVERAGE REPLACEMENT
DIM. Dy By D B
3 18.0 22,8 8.2 6.7
4 8.0 8.1 7.2 7.0
'5 7.6 7.5 647 6.7
6 7.7
7 7.2
8 7.2
9 7.0
10 7.2
11 7.2
12 7.1
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In each experiment different classifier structures are
constructed by varying the design cptions. These options
are listed as follows:

1} The maximum number of features m used in each

stage of decision.
2) Distance criterion used in the clustering procedure
described in Section 4.3.3.2. Two.distance
measures have been used: the transformed divergence
Dy and the trénsformed Bhattacharyya distance BT'
3) Threshold value T, to determine class similarity
{see Appendix B).

4} Tradeoff constant K of Eg. 4.5, which determines

the relative importance of accuracy to efficiency.

Experiment 5.9 The data sets of Experiment 5.8 were
used in this experiment. Feature subsets.for the search were
selected using two approaches: One approach was to find a.
good feature subset first, then form all possible combina-
tions of features from this subset. In this experiment, the

criterion of maximizing average D, used to select a good

T
feature subset. The dimensionality was chosen as four, and
features {1,6,10,11} were selected. This resulted in a
total of 2% . 1=15 feature subsets formed for search. - The
other approach uses the "without replacement search" method,
seeking good feature subsets with dimensionality £from one to

four for all class pairs. With a total of twelve features,

approximately six times as many feature subsets (78 and 79
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in Table 5.2) were formed by using the second apprcach as
compared to the first one.

Several different threshold values wére used, T=1300
wasg the starting value for the threshold applied to BT or D.
This value was chosen from the past experience that good
classifiers can be constructed with thresholds equal to or
higher than 1900. fTherefore this starting value was used
throughout these experiments.

The classification results of the classifiers designed
are tabulated in Table 5.4, where columns labeled by "E(J)"
are classification results in terms of overall error rate;
T/'l‘0 indicates the ratio of the classification time (of
central processing unit) associated with the decision tree
classifier to that of the conventional classifier with m=4,
And m, B

{or DT), 7. and K are the four options described

T h
previously. The second column labeled "Feature Subsets" are
the number of feature gubsets searched in designiag a decision
tree classifier, and the numbers in the £ifth colunn labeled
"ID" are to distinguish different classifier structures;
classifiers having the same "ID" have the same node structure.
An example of how the tradeoff constant K effects the
classifier structure is shown in Fig. 5.12 (only the
node structures are shown). With K the only variable
option, it is observed that as K increases the structure
approaches the one stage conventional classifier.

This is expected because using a larger value of K accuracy

-is emphasized more than efficiency; if the dimensionality
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Pable 5.4 Decision Tree Design Parameters and Associated
Classification Results of Experiment 5.9.

PPN

N A

i Mo PoEEL PRI

DESCRIPTION CLASSIFICATION RESULTS
DISTANCE FRATURE PARNUITERS m = 4 w3
Eo
CRITCRION | BUBSETS Th IR o/ To B} T/To B(%)
10.0
1 0.72 10,3 || a.53 | 17.0
20,0
1900
20.0 | 2 0,05 7.8 | 0.2 | 10.0
a5+ 109.0 | 3% 1.0 8.0 | 0.69 | 18,0
20.0
1950 4 0.16 7.8 [ 0.62 { 10.0
40.0
. 2000 - 3 1.0 8,0 || 0,69 | 18.0
T 10,0 | 5 0.60 13.7 || 0.47 | 16.8
20,0 | 6 0,79 7.0 || 0.88 | 6.7
1900
20,0 | 7 0.B1 8.9 || 0.58 | 17.5
75+t 100.0 | 8 1.0 g1 | 0.69 | 18.0
. 2040
1950 9 0,72 10.4 | 0.53 | 11.2
40,0
2000 -] g 1.0 8.1 | 0.65 | 18.0
10.0
20,0 | 1 0.72 0.3 | 0.54 | 19.8
1900 .
40.0
a5t 100.0 | 3 1.0 B.0 || 0.69 | 18,0
20.0
1950 1 0.72 10.3 || 0.54 | 19.¢
40,0
A ]
2000 - | 10 0.93 8.1 || o0.67 | 18.2
By
10.0
20.0 | 11 0.77 11.0 f 0083 | 20.0
. 1300
40.0
b ,
79 00,0 | 8 1.0 8.1 || 0.69 | 18.0
20.0
1950 1 0,77 311.0 | 0.53 | 20.0
40,0
2000 - |2 0.93 8.2 || 0.67 | 18,2
4

-.‘.5‘5 **% When ’.l'h = 2000, any positive K will result in tho sare
Q‘ ,Q clasgifier structura (bocausa c(di) w 0, seo Appondix CF.
%) Na + Poature subsets are counbinations of four fcatures {1, 6,
,@Q‘, ++ Featute subseto are selected from all twelve available
(%) Q, featuras with the “without replacement scarch® mothod.

ML classifiecr.

"\GP’ * Clagsifiers with 7/Tc = 1 are same ag the conventional
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K=10.0
(1D=5)

8 9 47
3 21 813 7 4

K=20.0, 400
{ 1D=6,7}

2 1 3794 8 3 661 2

K=100.0
(ID=8)

8 1. 235679 4

Figure 5.12 <Change of Drcision Tree Structure with

Respect to-the Change of Traleoff Constant K
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problem does not arise, the conventional procedure with the
complete feature set is optimal in accuracy. The performance
of the decision tree classifiers are plotted as dots and
circles in Fig. 5.13 (Triangles are results of next
experiment), The performance of conventional classifiers
with m= 3,4 are also plotted for comparison purpose: they

are the two squares as indicated.

Polynomial curve f£itting has not been used for the
results plotted in Fig. 5.13 (nor for later experiments),
because experiments at this stage are mainly
for the purpose of observing which set of parameter
values give desirable results; thus it is not very mean-
ingful to discuss the results in terms of "mean"
performance of error rate versus the efficiency. It is
obsexved from Table 5.4, that By as a separability measure is
as the distance, T, = 1950

pf iy h
= 1900. Another observation is that

more effective than D and with B

can be better than Th
for a fixed level of accuracy, the classification time can
be reduced by using properly designed decision trees, i.e.
the efficiency is improved relative to that of the conven-
tional classifiex.

It is also important to verify the validity of the
search procedure, especially when empirical methods,

such as calculation of classification probabilities through

statigtical distances (Appendix C), are involved. Simulated
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* m=4
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. 4, real
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S5k A é é Admm=3, simulated data
A
At 4 K an=y,
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) | _ data
o | 1 1 I ' 1 .

0 25 5O 75 1O
Time Ratio T/To | -' |

Figure 5,13 Performance of Decision Tree Classifiers
in Classifying Real and Simulated Data
Sets. '



data sets of multivariate normal distributicns have keen
used for an "accurate" evaluation, because real data of each
class (after unimodal refinement) are not exactly normally

distributed.

Experiment 5.10 Nine classes of data with 1,000 samples

for each class were dgenerated according to multivariate nox-~
mal distributions with means and variances the same as those
calculated for the classes in Experiments 5.8 and 5.9%. (las-
sifiers designed in Experiments 5.9 were used to classify
this simulated data set. The results in terms of efficiency
and accuracy are plotted as triangles in the lower portion

of Pig. 5.13,

The probability P; that a classification path will pass
through node di.has been estimated during the design (Eq.
4,6j. As a result the tntal amount of computation time for
a given design per sample can be estimated by summing up the
products of probabilities and computation time of all stages.
For all classifiers designed in Experiment 5.10, the esti-
mated units of computation time are plotted versus the
measured units in Fig. 5.14. The estimated values are
generally a few percent lower than measured values; this is
because in a real case P; is a sum of the probabilities of
correct and misclassifications, but in the empirical method
described in Appendix C the probability of misclassification
is not included in P, for the reason of simplicity and this

leads to the underestimation.
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(1)

L0

1 1
0.5 . 1.0
Measured Units of Computation Time

Figure 5.14 Estimated and'Measuréd_classification
Time of Decision Tree Clagsifiers in
Classifying Simulated Data Sets.
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The accuracy of classifying simulated data being
higher than that of real data is expected because real
data are not exactly normally distributed. For a given
dimensionality, it is noticed that with increasing efficiency
the error rate is essentially kept at the same level. This
suggests that the sequential partitioning of the feature
space by the designed decision trees is very effective. The
results plotted in Fig. 5.14,.which demonstrate the closeness
of the predicted and the measured results, reflect the
Validity of the method in approximating the classification
probability, which is an important step in the search approach.
Because the error rates do not change much, the effects of
the tradeoff constant K can hardly be observed; this will be
studied in later experiments.

The following two experiments are performed on ERTS-1
Satellite MSS data. The spectral dimensionality of this
data is four, and all fifteen feature combinations have

been gelected for search.

Experiment 5.1l Twenty six spectral classes were ob-

tained in a forest area by means of an Eucledean Distancg
clustering algorithm [43]. These classes were then grouped
into £ive groups: conifer, deciduous, agricultural area, |
wéter and bare rock, which represent the basic coverage
types in that forestry area. The statistics* of these

twenty six classes were used to classify an &area of 12,467
*Data sets were provided by courtesy of Michael Fleming.
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samples. One hnndred and twenty four test fields with a total
of 773 samples were selected from available ground truth
information for testing purposes.

The input to the search procedure are options and the
class group information which modifies the zero-one error
matrix and also helps to determine whether further
classification of a set of classes in a node is necessary.
The assumption of equal a priori progabilities for all
spectral classes wasalso used in the design.

By utilizing the search procedure, a number of decision
tree classifiers were de:signed. A typical tree structure
is shown in Fig, 5.15. In the upper figure, the numbers
in brackets are features, and the others are class designa-
tions., For the nonterminal nodes, the classes in the
upper row are the representative classes; their pooled
statistics are used to represent that node they are in.

In the lower portion of Fig. 5,15, the tree structure shown
above is drawn in terms of symbols, each of which indicates
a subgroup of clagses. The mapping of classes, symbols

and groups is indicated in Table 5.5.

Classification resulis of the classifiers designed along
with their options are listed in Table 5.6. The form of this
table is similar to that of Table 5.4, except items labeled
by 6N are added. The number 8N for each classifier
was determined by counting the points classified differently

by using the designed classifier with respect to the resulis
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Table 5.5 Class Group information of the Twenty Six Spectral Classes in

GROUP

CONIFER

DECIDROUS

AGRICULTURAL

BARE

WATER

Experiment 5.11.

SUBGROUP

PINE

SPRUCE, FIR

ASPEN

OaK

SY¥YMBOL

SPECTRAL CLASSES COMPRISED

i, 2, 3, 4, 23
5, 6, 25

7y 21, 22
8, 9, 10, 24, 26

11, 12, 13, 14, 15, 16

17

18, 1%, 20

€IT
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Table 5.6 Decision Tree Design Parameters and Associated
Classification Results of Experiment 5.9.

DEGCRIPTIONS CLASSIFICATION RESULTS
DISTANCE | PARAMETERS Ho= 4 m= 3
crITERION] T, | K il o/m0 | B(2) gy || o/t | B{®) N

5.0 | 1) 0,33 | 6.3 | 245 | o0.23] 5.8 532
10.0 § 2] 0u26 | 5,3 | 191 | o0.20| 5.4 382
20.0 | 3 0442 5.2 08 0.30 | 5.4 346
1900 40.0 | 4| 0.45 | s.2 78 | 0.32] 4.9 378
100.0
51 0.61 | 5.2 13 | 0.41] 4,9 a7L
200,0 _ '
1.000,0 6 || 1.0 5.2 o “0.60] 5.6 12
By 5,0 { 7] 0.42 | 5.0 [ 110 | 0,30 6.0 367
10.0
84 0.35 | 5.0 | 104 | 0,26 6.0 153
20.0
1850 40,0 § ol 0,43 | 5,2 91 | 0.3L) 6.0 153
51 0.61 | 5.2 | 13| o0.42] 5,5 371
200.0 ,
1000.0 |30 | 0.87 | 5.2 20l 0.57 | 6.6 416
1998 - 1% | 0.57 | 5.0 11 | o0.40 ; 4.8 389
CONVENTTONAL 6§ 1.0 5.2 o | o0.64] 6.6 412
5,0 12 [ 0.35 | 5.4 76 [| 0.26 | 5.7 359
10,0
13 | 0,34 | 5.0 33 | 0,271 4.5 379
20,0
1900 40,0
100.0 [24 | 0.46 | 5.0 31 || 0.32] 4.5 393
) 200,0
1e0n.0 Jas || 0.54 | 5.2 a1 || 0,36 ) 6.6 423
D’.T.' 5.0 _ .
16 || 0.36 [ 5.0 34 {f 0,26 | 4.5 379
10,0
20.0 §17 || 0.37 | 5.0 33 || 0.27 | 4.5 379
1950 10.0 |18 || 0,39 | 5.0 35 || 0.28 ) %.5 372
100,0 '
19 || 0.44 | 5.0 31 || 0.31 ] 4.5 394
20040
1000.0 (20 | 0,53 | 5.3 29 f 0.,37{ 6.9 423
1999 - |21l 0.39 | 5.2 9 i 0.4l ] 4.9 175
CONVENTIOHAL 6 || 1.0 ] 5.2 0 ! 0.64 | 6.6 412
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of using a conventional procedure with all £fovv features.
The accuracies and efficiencies (measured by ratios T/To)
of Table 5.6 are plotted in Fig. S.lsa and 5.16b for BT
and Doy respectively. Various values of the change of
classification 8N versus tradeoff'consﬁant K are plotted

in Fig. 5.17. And finally the efficiencies T/T0 with
respect to the tradeoff constant K are plotted in Fig. 5.18a
and Fig. 5,18b according to the values in Table 5.6

for B and Dep respectively.

Comparing Fig. 5.1l6a and Fig. 5.16b, there does not
appeay to be any significant difference in the performance of
classifiers designed by using D, or By as the separability
criterion. Some of the results in Fig. 5.16b are better than
those of Fig. 5.16a. And this obsexrvation is contradictory
to the results shown in Experiment 5.7, there B, is shown to
be better than Dp as separability criterion in £inding optimal
feature subsets for a pair of classes. This contradiction can
T and
DT,thich has been mentioned in the end of Secéion 5.3.3.1,

because in this experiment the numbers of classes in terminal

decisions are often much greater than two. It is also noted

'from'Table 5.6 that results of'decision tree classifiers

with a maximum of three features in terminal decisions are

better than the results using a conventional classifier with

‘all four féatuxes, or the results using decision tree

classifiers with four features in terminal decisions.
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Classifiers designed with BT
e :T=[S00
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Classifiers designed with .D‘T

A :T=1900
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Figure 5.17 Change of Classification (%) Versus
Tradeoff Constant K.
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- This Fact is probably due to the presence of the dimension-
ality problem. The slight improvement (within one percent)
in the accuracy is not considered significant because only
773 samples have been tested. Nevertheless, the fact that
the overall performance of the classifiers designed by the
search method can be better than the overall performance of
conventional classifiers is again demonstrated,

Another way .0 evaluate the performance of designed
clasgifiers is by checking the classification results point
by point (as compared to the results made by a conventional
classifier). Here we actually assume that the decision boun-
daries of a conventional procedure using all features are
optimal. The purpose of the check is ito observe whether the
boundaries of a decision tree classifier coincide with the
optimal boundaries. Since the class group information is
part of the input in designing a decision tree classifier,
only misclassification between different groups are counted.
These results are listed in Table 5.6, and are plotted in
percentage guantity in Fig. 5.17 {only results of m= 4 are
plotted for comparison) with respect to the tradeoff constant
K. Thé rercentages of change are all very small as shown.

It is also obsaxrved that the different §N for design with
B, as a separability criterion is relatively more sensitive
to the change of K than those designed with Depe

The effic’encies with respect to the input tradeoff con-

stant K are also plotted (Fig. 5.18a and Fig. 5.18b). Again
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those designed using By appear to be relatively more sensi~

tive to the change of K.

Experiment 5.12 Twenty eight spectral classes are found

in the satellite MSS data in the San Jose urban area. These
classes are then grouped into eight meaningful groups as shown
in Table 5.7 according to ground truth information. The pro-
cedure for this experiment is same as in Experiment 5.11,

except that no test samples are available, so that only the

resulting changes (§N) can be determined. In all 10,040

samples are classified. The classification resulits of
classifiers designed by the search procedure are listed in
Table 5.8. (The notations in this figure are same as

those used in Table 5.6.)

The fact that the performance of the decision tree
classifiers can be better than that of the conventional
classifiers is again demonstrated in this experiment. That
is for a negligible change in classification results, the com-
putation time can be greatly reduced; or for the same amount
of 6N (or less than 37° of the conventional classifier with
m=3) the computation time measures for decision trees are
in most cases le-. than tiat of the conventional classifier

(m=3).

5.3.3.3 Discussion
For the class of binary decision trees, feature

selection using the Bhattacharyya distance has been found



Table 5 .7 Class Group Information of the Spectral (lasses in E:&periment 5.12,

FUNCTIONAL LAND — USE

COMMERCIAL ~ TINDUSTRAL
MOBILE HOMES

RESIDENTIAL

 PARKING LOTS
UNTMPROVED OPEN SPACE (BARE)

| UNIMPROVED OPEN SPACE (TREES)
IMPROVED OPEN SPACE (IRRIGATED)
' WATER

*CLASSES 4, 7 are deleted.

SYMBOL

© + N

SPECTRAL CLASSES COMPRISEDY®

1, 2, 3, 14
c ,

6, 9, 10, 13, 15, 16, 17
18, 19, 20, 21

8, 22

11

23, 24, 25, 26, 28, 29, 30
12

27

12t
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Table 5.8 Decision Tree Design Parameters and Associated

Classification Results of Experiment 5.12.
! DESCRLPTIONS  CLASSIFICATION RESULTS
i
! DISTANCE PARAMETERS mw= 4 mw 3
1D
Ty K /70 N o/To  BH
1800 | 5.0 1 0.34 136 ' 0.25 | 453
‘ ‘I 10,0 .
. 2 0.40 8s 0.29 | 410
i 20,0
: 40.0 3 0.44 77 0,32 | 446
100.0
4 0.53 77 0.36 | 446
200,0
By
1950 5,0
10,0 5 0.39 32 0.28 | 374
20.0
40,0 '
6 0.46 24 0,32 | 382
100.0
200.0 7 0.52 24 0.36 | 389
1999 0.0 8 0.80 a 0,54 | 203
CONVENTIONAL 9 1.00 0 0.65 | 370
1900 5.0 10 |} _0.39 89 0.28 | 413
: 10,0 11 0.42 g8 0.30 | 412
20,0 -
40.0 12 0,59 56 0.40 | 409
100,0
200.0 13 0.79 230 0.52 | 458
Dy
- 1950 5.0
10.0 14 0.85 118 0.28 | 435
20.0 . i ;
40.0 15 0.40 112 | o0.29 | 41s
Ty 4 |1 : ,
. 16 0.4 6 0.35 366
200.0 ”
1998 0.0 17 | e.50 a7 || 0.57 390
1 CONVENTIONAL 18 1.00 9 0465 429
ORIGINAY, 5/
AL BAG 1g
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to be more effective than using the Divergence. For decision

tree classifiers designed by the search method, the two

transformed separability criteria BT_and Dy seem to be

of comparable effectiveness for feature selecticn. Since

less computation is required in calculating Divergence (for

aormal distributions), this makes the transformed Divergence

DT preferable to the transformed Bhattacharyya distance BT’
By observing the results of previous experiments, for

general classification the recommended threshold value T

for the search can be set as 1950, and the tradeoff ccnstant

¥ can be set at 20.0. If T is set as 1999 or its maximum

value (i.e., 2000), the classification results of the designed

decision trees are almost the same as the results of conven-

tional classifiers; net improvement in efficiency is also
observed in.these cases.,

The cost of search ls another important factor in
determining the usefulness of the search procedure. It is
roughly proportional to the number of feature subsets
searched and the number of classes. In Experiment 5.9
using nine classes, to design a tree the average computation
time using a largé computer (IBM 360/67) is about ten
seconds for fifteen feature subsets. In Experiment 5.11 and
5.12, the average éomputation time to design a tree is about

forty secqndé.
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CHAPTER 6
CONCLUSION

6.1 Summary of Results

The dimensionality problem in muliticlass and multi-
variate classification has been studied both theoretically
and experimentally. The results confirm the existence of
this phenomenon; thus one must come to the conclusion that one
must be cautious in choosing the feature dimensionality
for classification when there are only a limited number of
training samples available to estimate data distributions.
Although reliable methods which enable one to predict the
optimal dimensionality have not been found, the basic
study presented in this report provides additional
knowledge to pattern recognition reseaxrchers and users

concerning the effect of insufficient number of training

samples on classification accuracy.

The major objective of the entire work is to develop
multistage decision tree classifiers. The above study is one
of the efforts in understanding the utility of such
classifiers. Another meaningful result from these efforts
is the derivation of the upper bounds on logic efficiency
in multiclass classification, In a practical problem these

bounds usually can not be attained, but they imply that
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some type of classification procedure can be mere efficient
than the conventional procedure, i.e., the usual pointwise
maximum likelihood decision rule; and one of the suggested
procedures is the decision tree procedure. The study of

logic efficiency and the dimensionality problem actually leads
to some necessary conditions on efficient classification.

To design decision tree classifiers, several design
approaches have been proposed in Chapter 4. In the firoct two
approaches, human interaction is heavily involved in many
aspects. The performance of the designed classifier thus will
depend heavily on the experience of the person vho designs
the classifier. In the optimization approach the decision
tree classifiers are designed by a preprogrammed process.
Man-machine interactions are minimized, so that the need for
a highly traineé analyst is reduced, although the analyst is
gtill required to supply certain parameters and training sets.

There are two separate design procedures in the optimiza-
tion approach. One is aimed sbecifically at classifiers with
higher accuracy. The design procedure is very straightforward.
The other design procedure uses a heuristic search strategy.
Due to the difficulty in representing the tree structure and
the lack of theoretically verified method to predict the
classifier.performance, several empirical methods have been
incorporated in the search strategy. And the strategy as
can be noticed involves many different.procedures. Both
of these facts raise difficulty in verifying the validity

of the search strategy. The basic point is that when both
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a practical solution and theoretical perfection can not be
achieved simultaneously, then one tends to choose the former.
Through the experimental results, the fact that the
performance ©Of c¢lassifiers designed by the searxch procedure
are better in most cases than that of the conventional
procedure is demonstrated. Also one can observe the fact
that performance does change with respect to different

input parameters in a predictable manner.

6.2 Suggestions for Further Research

Predicting the optimal feature dimensionality is an
important step for optimal classification. Other approaches
which have not been investigated in this work, such as
analvzing the principle components, can be pursued.

The bound on logic efficiency suggests another type of
efficient procedure. That is the block or sample classifier.
At purdue University, several kinds of sample classifiers for
remote sensing classification have been studied [59-61]
or are currently under investigation. Generally, they classi-
fy many resolution elements at a time; and in general the
classification accuracy is improved because sample statis-
tlcs provide more information than a single data vector., A
systematic approach to design block classifiers which Zocus
on higher classificatlion efficiency also can be proposed
for Ffurther investigation.

Several approaches towards the design of decision

tree classifiers have been studied in this report., All of
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the designed classifiers are point classificrs, and con-
text information has been ignored in classifying unknown
samples, Singe the class designations of successive samples
in multispectral remotely sensed data generally are not
indepenﬁent, context information is certainly very helpful
in furthér improving the classification accuracy. Thus,

how to extract the context information and then utilize

it in point classifiers {one-stage or multistage) |

can really be a very interesting and rewarding research

project,
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APPENDIX A

A DERIVATION ON DIMENSIONALITY PROBLEM

A.l Derivation of the Mean Square Error of the Likelihood
Ratlo

If the probability densities are estimated quantities,
the likelihood ratio which is a random variable of the random
sample X does not equal to its true value. The mean square
error of the ratios calculated based on the estimated densi-~
ties will be approximated in the folluwing derivation.

Assuming X; 0 i=l,...,n are independent identically dis-
tributed (i,i,d) random vectors from an unknown multivariate
normal distribution N(M,Z), the unknown density function N

can be estimated through the statistics # and £. They are

A l Iil '

M= = X. (2-13)
By * -

~N _ 1 n ~ .S T

1= = ) (X, -M) (X, -M) (2,1b)

©i=l

where Xy is a (mxl) vector
and n is the number of samples from a known category,
assuming
n’m (A.1)
The probability density Ffunction £{(M) of Boiss |
£() = n4,23) (@.2)
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The distribution of £ can be derived from the Wishart

Distribution [Al] by writing
o 1
L= T A

n ~ "~
then the density of A = ) (X;~M) (X,~1)" is

i=1
|A|l/2(nmmml) e*l/2 trAzul
pi/2mm mim=1)/4 |y n/2 T T[1/2(n+l=i)]

i=1
for A positive definite and O othexwise
For two c¢lasses with egqual a priori probability, the

estimated log likelihood ratio is:

Ty, (X) = log s

where ﬁ(xlwi) = N(Mi,zi) is the estimated probability density
function of class W, with i=1,2. The true value of %lz(x)
is

P(XIml)

Y., {X) = log e
12 P (x|o,)

where P(x|w,) = N(Mijzi) are the true densities. The mean

square error of rlz(X) is written as

E[(82)2] = BI(z,, (X ~r,x) %) (3.4)
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The integral expression of Eg. A.5 is given by

) P, (X) B (x) 2
)
P, (X) B, (%) 2

+ P (X){log—(—)- log——-z-;i-} ]d..dﬂ

P, (%) 2, (x) 2
l/2fP (M z)f[P (X}'I‘P (X)] {log—-—-(vm— 1ogp {X)] d&dsz
&

1l

(A.5)
Qhere 5 indicates the estimated parameters, ﬁ and g denote
the estimated mean and covariance respectively. And Pi(x)
stands for P(Xlwi). The factor one half is included because

of an assumption:
P(wl) = P(wz) = 1/2 (A.6)

Eg. A.5 can also be written as Eg. A.7, in terms of

the cross product and the square of the logarithmic guanti-

ties, i.e.

2 _ .
E[{(Ax)°) = E, + Bg (2.7)
where
P, (X) P (X)
EC = 53E [=2 {1og-.x-(—-r) (10gm—r)] {(A.8a)
I
P, (x) 2 P, (x) 2

EC = QE [(109—:«7—7) + (logm) ] (A, 8b)

and ,E indicates the expectation which is averaged

8 ,x
over the space of X and ﬂ the integral expression of I

4,x
has been given in Eq. A.5.
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With Rl being independent of ﬁz, Eg. A.8a can be
written as the product of two expectations. Further with

ﬁi being independent of ﬂi (because the distribution of ﬁi

is independent of Mi) and with Ezl beinyg approximated by

e . I | o :
Ly mEgTSELE (Gzi"'zi zi), the expectation of log

(Pi(X)/%i(X)) vields the approximated value m/2n., Thus E,
is derived as:
2

m
c 2n2

I}

E

where n,m are the number of.samples and features re-

spectively.
However, the evaluation of Eg given by Eq. A.8b is more
difficult. Theoretically, a closed form solution of E, can
be obtained because the density functions of ﬁi and ﬁi are
known (BEg. A.2 and Eg. A.3, and the density function of
|§i| can also be derived from Eq. A.3), and the average over
[Pl(X}+P2(X)]_can be calculated by first factorizing the co-
variance matxrices and then using the moment generating func-
tions of Pl(x) and.Pz(x). It can be seen that the final solu-
tion of this integration is very complicated., Instead of
carrying out this exact derivation, an approximation (erroxr
gquantities with variances lower than the order of 1/n are

dropped) of By is calculated. First, we have
logz=——=log P, (X|0) ~ log ?l(x|§)

-‘— _ "~ . -.-ﬁ T‘._.l H‘

=1/2 log lzl] + 1/2 XMy ) "E4 T (XM, )

~1/2 log |£| ~1/2(x-0)"e7  Gety) (8010}
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Rewrite M, #;, with i=1,2, as

it

M, Mi + ami - (A.lla)

i}

N |
T, = I + 8%, . (2. 11b)

With M, being unbiased estimators as defined by

Eq. 2.1, the delta-~quantities in Eg. A,11 have the fsllowing

properties (suffix i in Eq. A.11 has been dropped)

E{M] = 0 (2.,12a)
EISMSMT] = 1/n & (A.12b)
E[Goij] = 0 {A.13a)
E[(§0,.)%] = 2/n 0,2 (2. 13b)
ii ii *
where Scij are elements of the matrix 6I
With approximation on gt given below
()"t 2 7 - 37l ospeet (a.14)
Eg. A,10 can re expanded as follows:
| 1ogm- 1/2 (X-Ml"GMl) (21'1'621) (X"I*;l"sml).
| - (2]
~1/2 (x-4,) 75, "L (x4, ) -1/2 logemt—
[24+624 ]
N VRN T NS SSS D
= 1/2 (%M, oMy ) (24 "=y 76234 ) (X=My-8M,)
o - P - - _ 121;
-1/2(X-M1) Zl (X—Ml) ~1/2 log

|54+82, |
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= (XM )

l) ﬁMl +1/2 GMlZl

-1 -1
-1/2(x—ml—aml,z 62 z (x-Ml~6M )

Iz, |

Izl+62

-1/2 log (A.15)

1)
Assuming n is large, in approximating the expectation
of the square of Eq. A.1l5, only products of the lowest orders

of the delta-quantities are retained. Thus we have

1 ~ 1
B [ (log: ) 1 = B, + 1/4E, + 1/4B, + 0 (=% (A.16)
8,%x Py X) 1l 2 3 n2
where
_ e 3Ty =1 L
B, = ﬁEx[(X M) TE, oM, My TR T (x-) ]
!
B, = B [{(x~M)T5, Y62, 2. "L (x-M )}2]
2 ﬁ 1 1 171 i

Notice the cross products of terms in Egq. A,15 are not
included because they have zero expectations. The quantities

Ey+ E; and E, are then evaluated in the following mannexr:

_ e T -1 T, -1,
B, = ﬁEx[(x Ml) I, T8M8M, T, (X MlJ]
I 4

il

g[(x—ml)Tzl“l{g[aMlaMlTl}zl"ltx-mlnl

1/n E[(XHMl)Tzl“l
X

(X-Ml)]

)|

1/ x 1/2 [ [P, (K40, (2) ] [ (%-1) T2, ™ (x4 ) T
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For Xew,, the guadratic term in parenthesic is of chi-
square distribution with m degrees of freedom.

S0 we have

T
Jp (00 [(x4p) ¥

b (x-n1) Tazeem (A.17)
For Xew,, the result of integration will be
fP (X) [(X-M,) z (K-—Ml)]dx

|2,

- | ~1 T, -1
og—‘—-—T +orr E,5, 70 4 (-, T8 T

M --Mz)
(2,18)

which is derived thyough the use of moment genéraﬁing

function., The method is described in Ref [5]1, pp. 63-65.

Combining Eg. A.17 and Eg. A.l8, we have

12,1
= --[m+2log~l——l-+ £,y Tl (1, ~1,) TR T (1 1) ]
(A.19)
The quantity B, will be calculated by first introducing

the orthonormal matrix ¢ which satisfies:

E ¢, = A and @ @ = I {(A,20)

%17 251% 1 1
where Al is a diagonal matrix, Using ¢ as the matrix for

linear transformation, let
'— g -
_ T
Gﬂl = ¢l 62@1 (A.21b)

Inserting the unit matrix of Eq. A.20 into Ez' with the hewly

defined terms of Eq. A.21, E, can be written as
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E, = B [{(X'-M,*)A ~IsA A'ltx‘—M =)}21
2 - & x 1 1 1 1
I
m m (x,'-m ')(x ’nm ')ﬁl 2
= 5] ] L =
8,% i=1l =1 lllhlj

Egq. A,132 implies E[8A 1 =0, With each.GHJJ being inde-

1ij
pendent with another, the above eguation is simplifed as

shown below

m (x '~m ) (x '-m ') Gh .
E, = ) 7 5 2 , 131 (a.22)
ﬁ X i=1 j=1 MM a

The expectation of SA2 is derived [Ref. 5, pp. 250-251]

as

: 2 1 2

where 6ij is the Kronecker delta-function which eguals
1l if i=j, and 0 otherwise. The suffix 1 of 81 and A as used
in Eq. A.22 is dropped in the above éxpression. Substitute

the above expression into Eg. A 22 we get

1 m m (xl J') (x ' -m, ') m '(xi—mli')4
Ey=5E L[] ] B VY ) 3
X i=1 j=1 1i 13 i=l A;.
2 4
(x Vet . ¥)° 2 m (x,'-m,.")
=L e § e T e S R WL}
X i=l id i=1 A%

When quantities in the bracket of Eq. A.23 are averaged
with respect to Pl(x), the inteyration can easily be evalu-
ated., This is because the first summation is of chi-square
distribution with m degrees of freedom; and in the second
summation each term is the square of a random variable of

chi-square distribution with cne degree of freedom (for Xsml,
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with the orthonormal transformation, xi'is now uncorrclated

with xj'for i#j). Thus

P R .
E, = 2n[(m +2m) + m(1l+2)] + E,'

2
—_ ce]-:u- 2 i ' b
= §= (m%+5m) + E, (»,24)
where fsg, 0 "2 5 (x. ')4
m X, -m, . m (X, "=m, .,
Ey' = 5 f By (X1 [( ] —A—Fd) 4 e -
x' i=l 1i i=1 hZi

(A.25)
The integration of Eg, A.25 is rather difficult to
carry out; to simply the calculation the assumption of
approximately equal covariances has been made, i.e.

Eq. A.25 when solved with I, = I,, gives

i

E,' %ﬁ[(m2+2m+4n'+D'2+2mD')
t ]
4
m (M, .=Ma,.)
+ (3m+6D"+ ) -E"_i-%.%... )1
i=1 l.
1
| (m' mI )2
m -
i (w2+sme10p'+2mp'4pr 2y § 2L 23
2n i=l A%
1

1 (A.27)

where li are the eigenvalues of the commor covariance I
m;i, 2=1,2, are the components of mean
vectors in the transformed space.
and D' = (Ml—mz)Tz'ltml-Mz) is the divergence of two

normal distributions with equal covariance.
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With the assumption of Eg. A.26, an approximation can

1
be made for E, of BEg. A.25, i.e.

]

E, = %H(m2+5m+10D+2mD+D2) (A.28)

where D is the Divergence of two multivariate normal
distributions as defined in Eg. 2.9. Notice the last texm
of Eq. A.27 has been dropped because the summation is less
than D2 and most of the other terms of Eg, A.28,

Substituting EZ' into Eq. A.24, Eé is now expressed

as follows:

E

) %H(2m2+10m+2mD+lOD+Dz) (a,29)

Finally, for E, assuming the delta-quantiti:.. §\ are

small compared with A, we have

|z, 482, | . J ygtodgy)
log = log
TE T m
oA
i=1
_ m 1o A1i+6Ali
1y 09 X3
= 1i
= ¥ 6214
1=1 *11
Substituting above into Bay
m §A;, 2
B, 2 B OI( ] =i
g, di=1 *1i
m &
=E [ ] () ]
§ i=1 “li
-7 2
j&q n (A.30)
2m



143

Eg. A.30 is obtained because §A; and Ghj are uncorrelated
for i, and with EIGAi]=0, E[ﬁk§]=% i according tc Eg. A.22,
With El’ E2
expressed in terms of n,m and statistics parameters, An ex-

and E, approximated, Eg. A.16 can now be

pression similar to Eg, A.16 can be cbtained for the ex-
pected value of the square of log[Pz(X)/ﬁz(X)]. By adding

them together, we get

B[ (Ar)?] [(1 a2 P22, n?
r = og + og = ——x
8,x% £ (%) P, (X) 2n?

it

1 11 2 2y
-é-r-l-(Bm+2D)+ 7 -ﬂ-(Zm +1 0m-+2mD+10D+D“)

L. 4m 1
+ y e + 0 ("'":?)
n
_ 1 2 2 1
= -4-5-(2m +20m+2mD+14D+D°) + 0(-—2-) (A.31)

n
Eg. A.31 is the approximate averaged mean square
error of the estimated likelihood ratio 512. Several as-
sumptions on which the approximation of Egq. A,3l is based

are summarized as below:

‘1) P(X|wy) ~ N(M,,Z,)

= -
2) P(ml) = P(mz) =5
3) n, = n, =n and n>m
4} Zl = 22

~
In case the covariances are known, i.e. Zi=2i, better
approximate solutions can be derived, The derivations are

given as follows:
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With 6z.=0, Eg. A.1l5 can be written as

P, (X} l.

- -1
log m- (X"'Mi)zl tSMi + M

i
2 1 i

GMi z
Substituting the above expression into Eq. A.8, the

2 . .
value of E, equals --ﬁ%—- The expression for ES is now

evaluated as
: P (%) 2 P {X) 2 2 2

F [los gy + (log o) 1 - 25
weX 2

By

i

|

il

(3m+2D) + * )j m[ (M35 oM, ) 2]

2n i=1 §

Since SMi has the density function N(O,%Zi), the ex~-

pected values of above equation can be evaluated. So we
get 9
1 L W +2m
ES = -2—n(3m+2D) 4 E ( nz )

Substituting Es and Ec into Eq. A.7 we have

2 2
2n 2n 2n
- SWH2D - (A.32)
Z2n n

Bg. A.32 is the exact expression for E[(Ar)zl with known

covariances.

A,2 Two Class Classification with Equal Covariance

With equal a priori probability, the logarithmic wvalue
of the likelihood ratio of two normal distributions with

equal covariance is given by:
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P(x]uw,)
rlz(x) = log =—————
P(X|w,)
_ - To-l, 1 T.=1 _
= (Ml MZ) L X 2(M1+M2) x (Ml Mz) (A.33)

The maximum likelihood decision rule is set +o be

>0 Xew,

<0 Xsz

r X)

12 (2. 34)

Since X of a given class is of multivariate normal dis-
tribution, from the expression of Eq, A.33 it is clear that
rlz(x) is also normally distributed. The mean and variance
of rlz(X) are calculated as below:

Blr,, (X)|e;] = ~Elr,, (x)|w,] = D/2 (A, 35a)

Vie, o (X) 0] = Viz,, (X)|w,] = D (A, 35b)

where D = (M =M. )75 L (M, -M,)

172 172
In this gpecial case, the probability of misclassifi=~

cation € can be predicted according to

€ = erf (= fg_
_ x Ei
where exrf(x) = [ 73h-e- 2 4o

When density estimation is involved, the estimated value

of rlz(x) becomes
s . Fs “A e —']__- ~ A "'.,,l_ ~ -.A
Tyglx) = M ~M,)2 7K 2(M1+M2FE (M, ~M,) (a.37)

where the estimated parameters ﬁi and ﬁi are computed accord-

ing to Eg. 2.l. The mean of Eq. A.37 can be calculated as

..
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E(Z1, (%) 0] = =B[F,,(X) |u,] = D/2 | (A. 38)

Assumption that Zi is independent of M, is made to obtain
the above expression. The variance of Eq. A,37 with the

mean given by Eq. A.38 can be calculated as
VIr,, G o1 = VIE , () |ug] + BL(Ar) ? ;] (A.39)
Por equal covariance, we have
EL(ar)%|uy] = EL(AT)?|u,]

With the above expression being written as E[(Ar)zl,

substituting Eq. A.36b into Eg. A.39, we have

V[£12(X)[wl] = V[§12(X)|m2] = D+E[ (Ar) 2]

So finally we arrive at

D/2
g = erf ( -~ . . )
{D+EIAr2]}1/2
That is 2 1
, 1.1 E[Ar©] —F
e = aerf (= "2"['5 + T} ) {(2.11)
Reference v

[Al] T. W. Anderson, An Introduction to Multivariate
Statistical AnalyEis, JORN Wi' s N Ye; L958.
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APPENDIX B

A NONSUPERVISED CLUSTERING PROCEDURE

B.1 Clustering Procedure

The nonsupervised clustering procedure which was used in
the search method to design a decision tree classifier belongs
to the class of graph theoretical methods for cluster
analysis [Bl]-[B4]. In the graph theoretical method,
starting with a similarity graph which is in the form of
a binary macrix B = [bij] {such that bij=l means elements
i and j are similar), a sort strategy generally is incor-
porated to find sets of subgraphs which satisfy certain
given criterion. If matrix elements bij=l are scattered
in the binary symmetric matrix B in a random fashion, the
procedure for sorting will be very complicated. However,
if elements of value 1 are all condensed along the diagonal
of matrix B, the cluster sorting procedure can be simplified;
that is, one can simply locate the "bottlenecks" along the
belt of 1's and thereby extract cluster information.

Assuming the binary matrix B is obtained by applying a
threshold to distances, to transform the original matrix into
the one with elements 1l's condensed along the diagonal is the
same as rearranding the points into a new seqguence such that

points within a cluster and neighbors in the seguence. To
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achieve that objective, the procedure for rearranging the
point sequence is described below:

Step 1. For n points, one may form an (nxn) distance
matrix D=[dij] with a prespecifiecd distance function.

Step 2. Set i=l., Initialize an n-vector u(i)=[uy (i),

u_ (1)1 such that

uj(l)=0 for all j=l,...,n (B.,1)
and define Q=(q1,...,qn) as the initial index sequence, with
anj for all j=l,...,n

Step 3. Pind index XK out of 1,...,n such that the
k-th rowsum of matrix D is a maximum. After K is found ex-
change the values of ql‘and gy s SO oOne will have ql=k and
qk=l for later steps.,

Step 4, Increase i by one. Set

uy (i) = o uj(i-l) + 4 j=i,...,n  (B.2)

917
where o is a constant O<o<l.
Step 5. Find index K, such that

uk(i) = Min u, (i) (B.3)
i<j<n ]

Exchange the values of = and q; as step 3 did for q, and
g *

Step 6. If i is less than n, repeat step 4, otherwise
proceed to next step.

Step 7. Rewrite D=[dij] according to the newly ar-

ranged index sequence Q. That is

_ 1
D' = [dij]
'

it d.. = d B.
with 13 qiqj (B.4)
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Step 8. Apply threshold to d;j to obtain a binary
matrix B=[bij3 such that
. '
bij _ F; if di? < T, 5. 5)
otherwise
where T is the threshold value.
| The resulted binary matrix B has the property that
elements with the value of 1 tend to cluster along the
diagonal, thus simplifying the sorting procedure, An examp.e
of such a binary matrix B is shown in Fig., B, lb while the
original distance matrix is shown in Fig. B.la. The method of
extracting clusters may differ for different cluster cri-
teria, for our purpose to partition the feature space,

the scheme will be explained as follows:

Suppose the binary matrix B of Eg. B.5 is “condensed”,

if bij=1 then by =1 for all ic<k<j, i<2<j
(B, 6}
Then pairs of distinct vertices {i,j} (i<j) are selected

£or each occurance of

and b 1 (B, 7)

i,4=1"Pi-1,9-1"Pi+1,5"

After m such pairs (ai,bi),.i:l,...,m are selected, order
those pairs such that ai='aj for all i>j. Examine those
pairs with i from 2 to m, delete some pairs to make the

¥ ]
remaining pairs (aj,bj), J=l,eee b (2<m) satisfy:

W



150

1l 2 3 4 5 6 I3 8 9 10
1 0
2 15601 0
3 829 1446 0
4 175 1010 322 [+
5 1723 40 645 1253 0
4 1880 126 970 1583 42 0
7 2000 1287 1938 1993 1342 1219 0
8 1486 336 222 961 275 489 1830 0
9 817 2000 1943 1547 2000 2000 2000 1995 0
10 89 1187 434 14 1402 1689 1997 1109 1351 C

Figure B.la A Distance Matrix for Ten Objects,

THRESHOLD = 1700
CONSTANT ALPHA = 0.6

9 110 4 3

[os)
i
~N
o
~4

9 1 1 110 0 00 0 O
i1 1 11 1111100
10 1 131 11 1 1110
4 1 11 1 1 1 11110
3 0 1 11 1 1 1110
8 ©6 1 1 1 1 1 1 1 1 0
§ ©0 1 1 1 1 1 1 1 11
2 0 1 11 11 1111
& © 0 1 1 1 1 11 1 1
7 ©0 00 0 0 0 1L 1 1 1

Figure B.lb The Binary Matrix (Similarity Graph)
Obtained by Rearranging the Order of
Objects and Applying Threshold on
Distances.,



ay < b; for all =1,...,%
(B.8)

]
and bj < aj+l

for all j=1,...,4=1
By adding two numbers 1 and m, we may form new 211 pairs

from the old % pairs. These newly formed pairs are
(1,27}, (b],2,) b,
12y e ( 1la2 peesf g r10

each pair given above form a set of core points, e.g. a pair
{i,3) gives the set qi'qi+l""'qj where ay is an element

of the index sequence Q mentioned previously. Finally, for
each core a cluster is formed by grouping points similar to
at least one of the points in the core. .

Referring back to the example in Fig. B.lb pair of

indices (1,5), (2.9), (6,10) satisfy the conditien in Eq.
B.7. Aand according to Eq. B.8, the selected pairs¥* (1,5)
and (6,10) give a new set of pairs (1l,1), (5,6) and (10,10).
The corresponding points for each pair can be found in the
sequence Q (on top of the matrix in Fig. B.1lb) as (9),
(3.8) and (7). 8o, essentially three cores can be found
from the binary matrix shown in Fig. B.lb. For each core,
a cluster can be formed by having all the points associated
with the core elements. The three clusters formed are
{e,1,10,4), (1,10,4,3,8,5,2,6) and (5,2,6,7).

A flowchart of the clustering procedure follows in

Figure B.2.

*The pair (2,9) has been omitted because the row number 2 is
less than the column number 5 in the proceeding coordinate;
but (2,9} itself gives the set of cores (1,2) and (9,10)
which correspond to the points (9,1} and (6,7) as previocusly
stated.
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TART

v

FORM {nxn)
DISTANCE MATRIX
D=[dj ]

\
INITIALIZE
SET =1, AND
q =) ujl)=0
FOR ALL j=i,..n

\

FIND THE (FURTHEST)
POINT K, SUCH THAT
THE KTH RAWSUM IS

A MAXIMUM EXCHANGE
VALUES OF g, ay

el

v
i=i¥1 ]
\
FIND qj ,, SUCH THAT
gj 1S QLOSEST TO qj«|
ACCORDING TO uj{l}= &
upli-1) +dgg. g

\ .
EXCHANGE ql ,Qj VALUES

YES

NO

FORM B=[bjj] WITH
| IF dgiqi <T
0 OTHERWISE

DETECT CLUSTERS FROM B

" Figure B.2 A Flowchart of the Clustering Procedure.

+
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In some cases if the binary matrix does not saticfy
the condition given by Eg. B.B, i.e. there are 0's within
the belt of 1's. Some modification has to be made. The
simplest would be to f£ill in those undesired 0's with 1l's
such that Eg. B.8 can be satisfied. actually the first
seven steps to transform the distance matrix is designed to

reduce such possibility of modification.

B.2 Theoretical Explanation

The procedure for extracting clusters from the rearranged
matrix B which satisfies Eqg. B.8 is much simpler than the
procedure (Step 1 through Step 6) to rearrange the seguence
of points. The steps involved in the former procedure in
fact are logic operations. It is seen that the final 2+1
pairs selected which satisfy the condition of Eg. B.8 give
the nonoverlapped and mutually disascociated point subsets.
In order to obtain such a "condensed" matrix as described by
Eq. B.8 for cluster extracting, after the first seven steps
of the point rearrangement procedure, the resultant distance
matrix D' of Eq. B.4 must have the property that the small

values of ai. will be lncated closer to the matrix diagonal

than those 1irge values. Explanations will be given in the
following paragraphs as how this property can be achieved by
these steps of operation, and the rationale of these steps is.
Eg. B.2 is in the form of a first order autoregressive
process [B5)]. It is a weighted sum of the distance from

point qj to all points (ql,qz,...,qi_l) previously arranged.
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This statement becomes clear by expanding Eq. B.2 through a

backward substitution of Eq, B.2 itself, i.e.

1

u. (i . -1)+ . s
J(l) OLuB (i 1) dql_1q3

il

olou, (i-2)+d J+d
J qi—qu qi-lqj

i-2 i-3
d +o d +Qtt+d (Bog}
qlqj q2Qj qi-lqj

)]
e

where the index i refers to {he fact that the i~th position of
the sequence 1s to be determined and index j denotes a candi-
date point for the i-th position in sequence Q. According

to Eqg. B.3, we observe that the i~th point in sequence Q is
chosen to be j such that the value of uz(i) is a minimum,

This means that j is the point closest to the previously
arranged points (ql,...,qi_l), where closeness is measured

by the weighted distance given by Eq. B.9. after all points
have been rearranged, the final sequence Q has the property

that for each point a; the value

_ R +e..td (B.10)
qqi = qu(l) o dqlqi Q519

is a minimum with respect to all 50 with j=1i, i+l,...,n.

Before explaining how to determine the value of a (which is
discussed in next section), the reason why minimizing u(i)
will lead to the "condensed" binary matrix (a band of one's
along the diagonal) will be explained in the following.

Referring back to Eg, B.1l0, the quantity auqi, can be
written as following
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¢ = . a Foaet a
Yoy T fae 9i-193
i=-1 .,
= z l"'I’sd
k=1 q!:q:.
1 1
» . . = d f. u, = u
Let dlj dqiqj efine 4 a;
i-l 2 ]
u = § ol “a;;i (B,11)
1 k=1

) '
' t = . s _ . ;
With D —[dij], also dii 0, it is clear the u; in Eqg.
B.7 is a weighted sum of elements of the i~-th column of D'
1 ]
from the topmost dli to the diagonal . =zment d;se From Eg.
B.1ll the weighting constants for elements of D' are illus-

trated as following

lo &2 + ¢ % s 0&“1_1T -
Lo o o o o mﬂhz
m-3

1 L] ” ] * L] a

With 0<a<l, from the above expression we cbserve that the
weidght decreases as the element of D' is further away from
the diagonal, Thus minimizing Eq. B.1l will lead to the
desired matrix D' in which the larger elements are placed

further away from the diagonal than those smaller elements,
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because ‘he weights are smaller away from the diagonal.

B.3 Correlation Property of the Series u(i)(=uq (i))
’ ' ' i

The correlation coeffiicient of u(i) and u(i~j) is
defined as following:
Coviu(il) ,u(i-j)]
viu(i)]t/?

Y3 7 Viu(i~g)1+/2

E[ (u(i)-8{ZY) (u(i-3j)-u{i=37]
(B (u(i)-TED 1B (u(i-3)-TE-IT 21 }+/2

1>0, i-i >0 (B.12)

Assuming the number of points is large, and the dis~
tances are uniformly distributad, we may approximately model

the series u{i) as an asymptotically weak stationary process

i.e, EB[u(i)l=U for large values of i
and E[u(i)u()] = s(]i~j|) (B.13)
Substituting thesie expressions into Eg. B.8. We have
s (}i~3])-~u?
Y1i-3] 7 Tg0) 02 (B.14)

Let k=|i-j|, the above equation can be written in the

following form 2
S(k)-u

¥y = (B.15)
k S(o)-IF

The three unknown quantities U, S(K), S(0) will be

obtained by the following derivations

Let Bld;.]=d (8.16a)

e
V[dij]—c (B.16b)

e
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Then

U = Efu(i)]
i=1

=E[Z
=1

i-1
-1
ol
o

d

i
_ 1l-a
T 1o d

U =4/ (1l-a) (B.17)
for sufficient large i and O<a<l
To obtain the value of S(0), we may square both sides
of Eg, B.2 and take the expectation; then

S(0) = oS(0) + 20Ud + o
The above expression is arrived at by substituting Eq.

v
B,16 into the term of E[di_l i] and using the assumgtion that
!

. ' .
.~ (i~1l) is independent of the distance dqi_lqi—di_l’i. Re~

afxgnging the terms, and substituting the expression in
Eg. B.l7 for U, we have
2
(1-a?)5(0) = 2% 4 ¢? + g2

l-a
2 2
so 5(0) & mms + T (8.18)
(1-c) l~o

Finally for the wvalue of S(X), we have

S(K) Blu(i)uti~k}]

E (ou (i-1) +2di_1 +) 0 w(i=K}]

i
a-
asS (XK-1) + Tog

1l
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By an iterative back substitution, we get

2 K
s(K) = ofs(0) + Tga yoott
2=1
2 X
- JK d® l-a
= a8+ g Ty
2. . K
_ oKg2 oFo? ac(i=o™)
= 2-"}‘ 2‘]' — 5
(1-0) l-o (1~}
e -2
= X4 91”_2 (B,19)
Lot (1-o)
Substitute B,17, B.1l8 and B,19 into B,15
K2 42 42
7t 7 5
_ 1-a (1-0) (1-0)
3 52 52 32
7t —3 - 3
{l-a) 1-c (1-a)
ive. Y = ok (B.20)

This expression is arrived at by the assumption as pre-
viously stated that the number of points is large and dis-
tances are uniformly distributed, such that the series u(i)
in Egq. B.1l0 can be approximately described by an asymptotic
weekly stationary process, But if this assumption is not
valid, that is, clusiters exist in that set of points, we
shall expect that the true value of Y will not be a mono-
tonically decreasing function of K as Eg. B.20 shows. This
is because for a proper vealue of ¢, points belonging to same
cluster will gather as neighbors in the seguence Q, When the
point q; and its previous neighbors (with index less than 1)

are in the same cluster, u(i) will be a relative small value;
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conversely when 9 and its previous neighbors are not in the
same cluster, u(i) will be relatively large. That is if
several clusters exist in the sequence and points belonging
to the same cluster are neighbors, we might expect a periodic
change in the values of u(i), and this periodic change of
u(i) will result in the nonstationarity of both S(K) and the
correlation coefficient vyy.

From this discussion, it is clear that we might expect
the value'yK to drop below a certain significance level when
two points with indexes which differ by K do not belong to
the same cluster. If we model this decreasing of Yk by Eq.
B.20, then the value of ¢ is determined in the following
manner,

Asgume T, is the threshold value, such that two points
with distance less than T will be considered as belonging to
the same cluster. The probability that an arbitrary pair of

distinct points are in the same cluster is given by

_ e 1 n n
p = P(d;;<T|i#]j) = m[i£1 jElbij] (B.21)
1 if d,. <T
where b, . =-[ 1] n (B.2)
J 0 otherwise

and n is the total number of points
The averaged number of points a point is associated to
(with distance less than threshold) is
mM=nxp (B, 22)

Because of the symmetric property, for a point in the



160

sequence the expected number of associated points on either
side of that point will be half the value of n in Eq. B,22.

Set N equal to that number i,e,

With the previous discussion; we know the gorrelation
coefficient YKéaK should decrease to some insignificant level
as K approaches the number N. This is because as previously
discussed N is considered to be the expected limit that two
points belong to the same cluster, As a consequence, the
value of g can be determined by empirically setting the value
for insignificance as 0.l1. This gives

aN = 0,1

ie. o = (0.1 (B.24)
with N beihg determined from Eg. B..

As the threshold constant Tn appeared in - B,22, two
approaches can be used to determine its value., One is sub-
jective and another is objective, depending upon the purpose
of the clustering.

For the objective approach, the threshold can be deter-
mined from the historgram of the distance distribution,
because if clusters exists, the distance distribution will
be multimodal.

FPor the subjective approach, the threshold is determined
such that it is egual to the maximum distance that two points
are mutually associated. The maximum distance is usually de-

fined as a desired property of the result clusters,

"
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APPENLIX C

METHODS OF APPROXIMATING THE CLASSIFICATION PROBABILITIES

Transformed Divergence D& *Eg. 5.la) and transformed
Bhattacharyya Distance BT (BEg. 5,1b) are used as seper-
ability criteria to cluster the classes into groups. The
theoretical aspects of these types of transform have been
discussed in Ref, 53 and 54. Empirical methods are used
to approximate the classificatiorn probabilities from those
distances, for the reasons mentioned in Section 2.1,2 that
there is no exact method to predict these probabilities.
Experimental results which relate the probability of correct
and B

classification to the seperability measures D are

T T
also reported [53] [54]). Some of these results are shown
here in Fiyg. C.1(a) and C.1(b)., They are superimposed classi-
fication results of 2790 and 40,000 data sets respectively.
For each data set 2000 samples are classified, and the esti-
mated probability of correct classification is then plotted
against the seperabiiity measure. Also shown in Fig, C.1l(a)
are the least-squares polynomial approximation (of deyree 3),
and the theoretically derived bound [46] on performance as
function of separability.

Clearly, there is no one~to-one relationship between

probability of correect classification and the measure of

seperability in both figures. But for the range of
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classification accuracy likely to be encountered in rcal
problems--say, 80 percent to 100 percent--the mean of per-
formance has an approximate linear relationship to the
seperability measures. Hence, approximations based on
this observation are made to predict the misclassification
rate, i.e,

€15 = Ky (1D, /2000) (c.1la)

!

or €15 K2 (1 _B'.i‘ /2000) (C.1b)

where constants Kl,K2 are adjusted to be 0,32 and 0.5 re~
spectively, for the seperability measures in the range from
1000 to 2000.

These approximations are valid for two=-class classifi-
cation. For more than two classes, the misclassification

rate is approximated by:

n n
« B ng
ezYi__Z:lj_lel i3 (€.2)
where aij is given by Eg. C.1, and eii==0.

Py is the probability that a sample is from

class wy
Y is a constant

The factor y (0<y<l) is included since the summation of
pairwise errors (of two class clasgssification) iz always
greater than or equal to the true error for multiclass
classification [33]. It has been observed that in order for
£ to be close to its true value, y should decrease as n (the

number of classes) increases. For this reason, vy is
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approximated by:

~|r=-"-(;"§-B B>0 (c.3)
This form is chosen such that y decreases as n increases,
and y is one in case with two classes. When the number of
classes is about 10, B is experimentally set as 0.7. For
other values of n the same value of g is used for a rough
approximation.

In the case there are n classes in a nonterminal node
which has only m(2n) immediate descendant nodes, an (n:im)
associativity matrix A = [aij] can be formed according to

1l if class w, belongs to the j-th immediate
descendant node

a;. =
J 0 otherwise {C.4)

The probability Qij of a point from class Wy being
classified into the y-~th immediate descendant node is

approximated in the following manner:

iy if a4 = 0 (C.5a)
P;-ey if there is only one j such
Qij = that aij=l {C.5b)
.a.
= (p,-e.}) if a,.=1 and a, =1 {C.5¢c)
Caij+ai2 b R & ij i
- n i
m
a = » 4 Ca7
ey j£1e13 {c.7)
and Eig is the mean of the separabilities from class

wy o the "core" classes (Appendix B) of C»2
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By using the clustering procedure explained in Appendix
B, a class can belong to one or at most two clusters, Thus
Egq. C.5 approximates all the possible values of Qij' Notice
that only the probability of correct classification is
approximated in Egq. C.5b., The probability P& of a sample
from class Wy in the j-th immediate descendant node dj
(cluster cj) then 1s given the value of Qij for the a priori
probability of a further stage. The probability Pj appeared
in Eg. 4.6, that a cléssification path will pass through a
particular node dj is

)
P, = a
Jo=1

And error rate e(dk) (dk denotes the nonterminal node under
consideration, i.e. the immediate ascendant node which

generates m descendant nodes as previously mentioned) is now

given by:

18
15

e(dy) = e,. (C.9)

i=1 =1 *J
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APPENDIX D

DESCRIPTION OF DATA SETS FOR EXPERIMENTS

D.1 Training and Test Fields for Experiment 5,1
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D.1l, cont.
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P P AR Y

2 i el cnl el sl sl sl sl

M~ ~
~etQO N~
Ot O N ot

M - "N n
—-PeOMNY NN
O et Ot et = ) ot

o ek et e el e ek

OVt N =t e LN
O™ O Mo
MU O NG O™

P el () et () VAN
ONO =N O
MO0 NN

NN N
NN

~ Pl -
QOP ==t O PO~
vt o OOV it P et S

no
N =~ OmOm
65312‘-215

ot et et e et ok e ek

VNN O O it ot
OO O Ut ot OO S
NN NS O

Celel lelalal Bl ]
FEONMOP G N

nnnnman

et e e ek o ek o ek e

wn PP N
F=MON~nNM~Or0
(ke Bl e R s e

[+ ] e
ek ) ) o O] et () ek O] O
F TN et F e i D

e ek ot ek e ek ok e ek ek et

NN el et
O~ DO~ 0D
et N QPP DM O M~

NINNCh= mMmOoNo
~_NNSTOONOOSTO
DN OO NS O

MMt N MM
MoEe @ oOodod
00 D= 3= D= €0 3= G0 = = o= 2=
ANV

NN NN NN
nununnnnnnnnn

T ————— VN

ot et e et et ek

Dalaal”aladalad
O et O ot (N i Y
Ly LY BV E TN I o

oanonon
oONVOY
i O ek et g ok et

et el =t d ek e et

[l daa ol B
~ON—~O O
MOMNMS P~

LAl s ek

Irx P 4
EZXTEXTXRTE

NN NN
NN NN

~000909090IONVVVOVOVVVIMOVIOVV VT VOV VIO0VVOVONV OV OV00

00000000 CO000000C 000000 O0CO0O0OOOO 0000
=OO0000000OFO00000000O0O0000O0OFCO0O000CO000OO000000
NOO0O0O000OONOO0000000CNO0O000ONOO000000000ON0O0O0000
WOOODO VOOV WOV L OOV O OVWO O OOV VUW OOV VOV VOOV VWLOL OO OO0
0000V POV VIVOVOVV VO~V OVVOVO=V VLYV DVIO VOOV LV VOV OD




169

D.2 Details of Experiment 5.2

Field Descriptions
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D.2.3 C(Clagsification Results and Estimated Exrror Bounds

FEATURE SUBSETS

i, 4, 9, 10, 12
<1l, 4, 8, 9,10, 12
1, 4, 8, 9, 10, 11, 12
-1, 4, 7, 8, 9,10, 11, 12
i, 4, 6, 7, &, 9, 10, 11, 12
i, 4, 5, 6, 7, 8, 9, 10, 11, 12
i, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
i, 2, 3, 4, 5, 6, 7, 8, 9, 1o, 11, 12

MEASURED
ERROR RATE

(%)

2.8
18.8
17.9
i7.8
i8.5
17.7
18.4
19.5
20.0
20.3
21l.1
20.6

UPPER BOUND
ON ERROR RATE

(%)
42.0

37.2
33.2
28.9
27.7
26.4-
25,3
23.9
22.9
22,0
21.0
20.4

L1
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D.3 Training and Test Fields for Experiment 5.7

TRAINING FIELDS
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D.3, cont.

TEST FIELDS
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