
ANALYSIS OF LARGE POWER SYSTEMS

Herman W. Dommel

University of British Columbia
Vancouver, B.C., Canada

INTRODUCTION

This paper is a survey of computer-oriented power system analysis as practiced in the electric
utility industry. Problems of the interconnected system in the western United States may be
emphasized more than problems in other parts of the country because this is where the author
gained most of his experience during eight years with the Bonneville Power Administration in
Portland, Oregon. Of necessity, the survey can only highlight a few points. (An excellent source of
background material is the July 1974 issue of the Proceedings of IEEE on computers in the power
industry (ref. 1).

Power systems are interconnected facilities for generating, transmitting, and distributing elec-
tric energy. The backbone of a power system is a network of high-voltage overhead transmission
lines that interconnect the powerplants with the load centers. Most lines are operated as balanced
three-phase systems, but there are also high-voltage direct current links. Power systems usually
extend over many states and comprise many utility companies. Figure 1 shows the major transmis-
sion lines in the western United States and Canada, which are owned by about 40 utility companies
who have formed the Western Systems Coordinating Council (WSCC) for joint studies on a com-
bined systems basis. Joint studies are made by a technical staff located in Salt Lake City, which
utilizes the computer facilities of the University of Utah. Similar "power pools" or "regional
electric reliability councils" exist in other parts of the United States (fig. 2).

In contrast to other forms of energy, there are few economic ways yet for storing electric
energy on a large scale. One practical solution is the pumped-storage plant, where water is pumped
into a reservoir at times of low load consumption and excess production at other plants, such as
run-of-the-river hydroplants, and thermal plants running at minimum output. By and large, the
energy demanded by the customers must therefore be generated at all times, following the load
demand curve. Interconnections have been built primarily to take advantage of the greater diversity
of load in a larger region to keep the total installed capacity as low as possible, and also to share
reserve capacity in case of plant outages. Any imbalance between generation and utilization would
require partial shedding of load through selective switching or voltage reduction. All generators on
the system run in synchronism at 60 Hz in the United States and Canada, and any disturbance to
the normal operation, such as an insulator flashover, leads to relative oscillations of the machines
against one another. If these oscillations do not die out fast enough, then the system may become
unstable and "collapse." Therefore, the system must not only be balanced between generation and
load under normal operation, but must also be designed to be stable against small and large
disturbances.

The growth of power systems is determined by the load demand, which has been doubling
about every 10 years in the United States as well as in most other industrialized countries. Simple
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arithmetic will show that such a geometric progression cannot continue forever. The Club of Rome
and others deserve credit for drawing attention to the limits of growth. There is reason to believe,
however, that the portion of electric energy in the total energy consumption, which is about
25 percent today, may grow to about 50 percent by the year 2000, as more electric energy will be
used for mass transportation, recycling, and other purposes. Therefore, electric power systems will
continue to grow.

A reliable supply of electric energy without imposed restrictions on consumption requires
(a) large amounts of capital expenditure and (b) careful planning of the total system expansion
through analysis of the normal operation as well as of the effects of disturbances. The word
"expansion" must be emphasized because planning is almost always concered with additions and
modifications of an already existing system. Power system planning is partly science and partly art
and must answer questions of the type "where and at what time should a powerplant (transmission
line) be built, what should be its rating, and should few units of large size be used or more units of
smaller size?" For such studies, the load growth must be forecast in great detail for the next 5 years
and in less detail for the next 20 years, always, of course, with a degree of uncertainty. Advance
planning is essential because lead times (time from the decision to build something to its going into
operation) are almost 5 to 10 years now for powerplants and 2 to 4 years for transmission lines.

For those engaged in power system analysis and power system planning — the "software side"
of power system research — it is well to remember that it is primarily the components of the system
(such as powerplants, transmission lines, and circuit breakers) that require the most expensive
research. Normally, it is not so much a matter of new technology but of continuity.

HISTORIC PERSPECTIVE

Systems analysis has always been important in the power industry simply because additions of
powerplants and transmission lines require so much capital expenditure that their influence on the
behavior of the overall system has to be analyzed before they are built. There is very little room for
modifications after installation. There is reason to believe that power systems were the first systems
studied in the modern sense of systems engineering.

The mathematical foundations of power system analysis are very old. The well-known node
and mesh equations were already explained in Maxwell's books published in 1873 (ref. 2). He, in
turn, relied on work done by Kirchhoff, Helmholtz, and others. It was recognized almost 50 years
ago that meaningful system studies were impossible with hand calculations, which led to the
development of specialized analog computers ("network analyzers") in the 1920's and 1930's.
Some are still in use today, and some are still being built for special purposes (e.g., for studies of
electromagnetic transients).

SOLUTION OF SPARSE NETWORK EQUATIONS

Many problems in power system analysis lead to the solution of a system of linear equations.
The steady-state behavior of an electric network is normally described by node equations of the
form
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where [ Y] is the nodal admittance matrix; [ V], the vector of voltages from node to datum; and
[/], currents injected into the node from datum. All matrices are normally complex. The diagonal
element Y^ is the sum of all admittances of the branches connected to node /', and the off-diagonal
element Y^ is the negative admittance of the branch connecting nodes / and k. Since only few
branches are connected to each node in power systems, [Y] is "sparse"Xit has only a few nonzero
entries). Nodes represent powerplants, load centers, and major substations, while branches represent
lines, cables, and transformers. • .

» < -
Gauss elimination1 has clearly become the preferred method for solving linear equations' of ...

the form of equation (1). It requires less memory and time than the Gauss-Jordan diagonalization
process. In power system analysis, the elimination process for matrix [ Y] is normally separated
from the elimination process for the right-hand side [/]. This offers advantages if the system has to
be solved repeatedly with the same matrix [Y] but with different right-hand sides [/], which is
frequently the case. For such "repeat solutions," only the process for the right-hand sides must be
repeated. Often, [ Y] is symmetric; in that case, only the upper triangular matrix must be stored.

All realistic power system problems are under the curse of dimensionality. Power flow studies
must routinely by performed for networks of more than 1000 nodes with more than 2000
branches. The major breakthrough in the solution of equations for such large power systems came
in the early 1960's with the exploitation of sparsity by ordered elimination (refs. 3,4). This has
reduced solution times and memory requirements by almost a factor of 100 in smaller systems and
much more in larger systems (see the ratio in fig. 3). It is believed that sparsity techniques were
pioneered in the power industry, but mathematicians are well aware of it now (refs. 5—7). The
following table illustrates the savings for a moderately sized system:

Matrix data:

Number of nodes 267
Number of branches 423
Number of nonzero elements above diagonal

after elimination in 267 X 267 matrix 1015

Solution times (IBM 7040):

Triangular factorization of complex matrix 16.5sec
Repeat solution 1.6 sec .

Without sparsity, the upper triangular matrix would have approximately 36,000 elements, which is
approximately 36 times more than in the table. Figure 3 (from ref. 8) compares the numerical
effort of straight-forward matrix inversion with that of ordered elimination with exploitation of
sparsity for typical power network problems. Figure 4 (also from ref. 8) shows the network graph
and the sparse matrix after triangularization for a 62-node water distribution network, which
illustrates that sparsity can also be exploited in non-electric problems. Another example would be
the analysis of pin-jointed mechanical structures such as transmission towers (ref. 9).

'Also called Gauss-Banachiewicz, triangulation, triangularization, triangular factorization, LU decomposi-
tion, Gauss-Doolittle, Crout, Cholesky, etc. (sometimes in modified forms).
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FAULT STUDIES

Fault studies are made to find the fault currents if faults occur at various locations in the
system. Most faults involve only one phase of the three phases, for example, a flashover across an
insulator to the tower. Fault current values are needed to check whether they lie within the
interrupting capacity of those circuit breakers that remove the faulted line selectively and tem-
porarily from the system.2 They are also needed to set the sensing devices for the circuit breaker
tripping mechanism.

Classical fault studies solve the steady-state component of the fault current only, which is
sufficient for the purposes mentioned before. The problem formulation leads to a system of linear
equations of the form of equation (1). For balanced three-phase faults, a single-phase equivalent
representation is used. For example, the voltage drop along the three phases of a line

dx

dx

dx

7 7^m ^m

7 7^s ^m

Z Z^m ^s

(2)

(where Zs is self impedance and Zm is mutual impedance) can be simplified for balanced conditions
(Ifr - Iae~il 20°,IC = Iaeil 2 °°, analogous for V) to the single-phase equivalent

^<:~^rriJ*f] ' (3)dx ^s ~m»a •

The solution for phases B and C is the same as that for phase A, except for phasor rotations with a
factor e~J1 2 0

operation.
The expression (Zs — Zm) is the equivalent impedance for balanced three-phase

For unbalanced faults, such as flashover from one conductor to the tower, symmetrical com-
ponents are used. This is a well-established technique in power system analysis (ref. 10) whereby the
three coupled phase equations such as equation (2) are transformed into three decoupled equations:

dV0

dx

<*Vi
dx

dx

2Zm

0

0

0

7 — 7^ ^

0

z -z^ m

(4)

2The removal time ("dead time") is kept as short as possible (just long enough to permit arc extinction in
case of flashovers); it is noticed by the consumer only as a brief flicker.
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with the linear transformation,

1 1 1

1 a a*

1

(5)

for V and one that is identical for /, with a — e^120 . The new variables 0,1,2 are called zero,
positive, and negative sequence components. With symmetrical components, one has to solve
N equations three times rather than 3N equations once, which saves memory and computer time.
With sparsity techniques, however, the savings may no longer be as impressive because solution
times increase about linearly with N rather than with N3.

The techniques for classical fault studies are well developed, and it is unlikely that worthwhile
improvements can be made.

POWER FLOW STUDIES

The flow of electric energy in interconnected ac systems is determined by the branch imped-
ances, as expressed in Kirchhoff s laws, and cannot be controlled on an individual line. (There are
exceptions, such as real power control with phase shifting transformers and high-voltage direct cur-
rent links.) When lines are added to an existing system or when the effect of line outages is to be
studied, it is therefore necessary to study the flows in the entire system. This is the power flow or
load flow problem. Normally, only balanced conditions are studied with single-phase equivalents
such as equation (3). Formulating the power flow equations in an W-node system leads to AH nodal
equations of the form of equation (1), except that the current is a function of the voltages,

Jk=- (6)

where P^ is the real power into node k, Q^ is the reactive power into node k, and V^ .is the
conjugate complex voltage from node k to ground. Normally, P^ and Q^ are specified, or P^ and
I Vfc\ are specified. Equation (6) not only makes the power flow equations nonlinear but also
nonanalytic because of the conjugate complex term. Therefore, the complex derivative is not
defined, and numerical techniques based on derivatives must use pairs of real equations rather than
complex equations and rectangular or polar coordinates rather than complex variables.

The standard solution technique for power flow problems is now Newton's method (ref. 11).
The system of power flow equations

[*([*] )]=0, (7)
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with the unknown vector [x], is solved iteratively with the system of linearized equations:

w|^J[Ax]=-fe] <8a)

and

I /1 \ I I f T - i \ I

(8b)

The Jacobian matrix [dg/dx] and the right-hand side -[g] in equation (8a) is evaluated at the
approximate solution point [x'"~*']. Newton's method only became practical for large power
systems after sparsity techniques had been developed. The Jacobian matrix shows basically the same
sparsity pattern as the admittance matrix in equation (1). Typically, a solution with good accuracy
is reached in three to four iteration steps, independent of the size of the system.

The Jacobian matrix gives a linearized model of the power flow equations around the solution
point; therefore, it is very easy to calculate first-order sensitivities with repeat solutions, provided
the triangularized Jacobian matrix has been stored. The equations are simply

with [p] being those parameters for which the influence on the solution vector [x] is sought.

The Jacobian matrix can also be used to calculate reduced gradients as the basis of optimiza-
tion studies (refs. 12,13). (These techniques are beyond the scope of this paper.)

STABILITY STUDIES

Large disturbances, such as short circuits or powerplant outages, cause electromechanical
transients in the form of relative oscillations between synchronous machines. These oscillations may
be large enough to cause loss of synchronism in one or more machines. A generator that loses
synchronism because of some disturbance is automatically disconnected from the system to avoid
overheating and damage. Often, this increases the severity of the disturbance for other generators
and, in turn, more generators may lose synchronism ("cascading outages"). This is the typical
course of events in "blackouts."

Stability probems are more critical in geographically large systems (as in fig. 1) than in tightly
meshed systems. Stability first became important in the 1930's when hydroelectric plants were built
far away from the load centers. At that time, "swing curves" (= rotor oscillations as a function of
time relative to synchronous speed) were calculated to the crest of the first swing because power
systems had enough damping that synchronism was practically never lost on subsequent swings.
Today, stability must be checked beyond the first swing because modern fast-acting excitation
systems on generators have decreased the system damping. The interconnection of formerly discon-
nected power systems has also created new stability problems in the form of spontaneous oscilla-
tions, which are sometimes damped with supplementary control signals in exciters and turbine
governors.
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Lyapunov's second method has been proposed to find the region of stability directly without
simulation. Many papers have been written on the subject because it is a challenging theoretical
concept for scientific reasoning, but it is not yet a competitive alternative to the existing transient
stability simulation programs. The region of stability obtained by Lyapunov's method is too con-
servative since the condition for stability is only sufficient but not necessary. In other words, the
system might still be stable outside that region. The shortcomings of the method are overwhelming
at this time and it seems questionable whether application to realistic power systems will ever be
feasible (ref. 14), even though others disagree (ref. 15).

Since there are no practical methods yet for assessing stability directly, simulating the behavior
as a function of time, for specific disturbances assumed by the planner, remains the only practical
alternative. Its main drawback is that the question of system stability is only answered for the
specific disturbance, starting from specific initial conditions. Production-type stability programs can
solve systems with up to 2000 nodes and 600 generators step by step with about 10 to 20 different
exciter models and 5 to 15 different turbine governor models.

In simulating electromechanical transients, two systems of equations must be solved simul-
taneously, namely, the system of power flow equations.3

= 0 (10)

and a system of differential equations,

r,,n
'1,01 (11)

which describe the dynamic behavior of the turbine-generator rotors and of the exciters and turbine
governors.

Step-by-step solution methods for stability programs are classified in reference 16. Most pro-
grams solve the differential equations and the power flow equations alternatingly, using a prediction
of power flow state variables to solve the differential equations over one time step and using these
results to obtain the new power flow solution at the end of the time step. There is a large spread in
the magnitude of the eigenvalues in equation (11), assuming that the equations are linear or linear-
ized of the form [dy/dt] = [A] [y]. Explicit methods such as fourth-order Runge-Kutta are very
slow for such "stiff systems"; they require a small time step, dictated by the smallest time con-
stants, which one would not anticipate from the smooth curves for the rotor oscillations. This
"small time constant barrier" is being overcome with implicit integration schemes, such as the
trapezoidal rule (ref. 16), which has been used quite successfully for electromagnetic transients in
power systems since at least 1961 (see ref. 11 in ref. 17).

3The rotor oscillations are slow enough to permit the use of steady-state equations for the network part.
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SUMMARY

Only some topics of power system analysis could be described. While they cover the "big
three" problems of fault, power flow, and stability studies, there are many other analysis problems
in power systems which are partly summarized in reference 1.

One topic omitted here, the computation of electromagnetic transients, would have provided a
good example of transfer of knowledge from one discipline to another, which is at least partly the
objective of this workshop. The method of characteristics described in reference 17, which has
become the standard solution technique for traveling wave problems on transmission lines, was first
used to study pressure waves in hydraulic systems in the late 1920's (see refs. 7 and 8 in ref. 17). It
also illustrates that older techniques developed for hand calculations may still be valuable in our
days of powerful computers, an observation which is also true for implicit integration with the
trapezoidal rule.

The solution techniques for most power system problems are highly developed by now and
relatively efficient because of the exploitation of sparsity. Improvements are still possible, of
course.
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COTTONWOOD

SAN FRANCISCO*

AMERICAN FALLS RIVERTON •

LOS ANGELES

Figure 1.—Major transmission lines in the western United States. Source: Annual Report 1972 of
the Western Systems Coordinating Council.
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NATIONAL ELECTRIC RELIABILITY COUNCIL

-MARCA SUMMER 12,452 - WINTER 11,543

(DUAL COORDINATION: MARCA & MAIN)

-MAIN SUMMER 27,085 - WINTER 23,546

-ECAR SUMMER 46,695 - WINTER 47,302

NPCC SUMMER 39,606
WINTER 45,212

MAAC SUMMER 27,852
WINTER 25,095

SERC SUMMER 62,956
WINTER 64,723

SPP SUMMER 27,552 - WINTER 21,361

(DUAL COORDINATION: SPP & MAIN)

ERCOT SUMMER 20,252 - WINTER 13,693

WESTERN SYSTEMS COORDINATING COUNCIL SUMMER
WINTER

56,470 (ACTUAL)
60,180 (ACTUAL)

Figure 2.— Regional electric reliability councils. Peak loads in MW for Summer 1972 and Winter
1972/73 (forecast). Source: Sept. 1972 report of the National Electric Reliability Council.

RATIO

10 100
OKOER OF MAVHrX, n

1000

Figure 3.—Comparison of the numerical effort required by matrix inversion with that of ordered
triangular factorization (OTF) for typical power network problems.
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(a) NETWORK GRAPH, DRAWN
APPROXIMATELY TO
GEOGRAPHICAL
PROPORTIONS.

(b) NONZERO PATTERN
O RESULTING MATRIX
A FILL-IN UPON TRIANGULARIZATION

Figure 4.-Sample small 62-node water distribution network.
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