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EFFECTS OF SPANWISE BLOWING ON THE PRESSURE FIELD 

AND VORTEX-LIFT CHARACTERISTICS OF 

A 440 SWEPT TRAPEZOIDAL WING 

James F. Campbell
Langley Research Center 

SUMMARY 

The present investigation was conducted to measure the effects of spanwise blowing 
on the surface pressures of a 440 swept trapezoidal wing. Wind-tunnel data were obtained 
at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust 
coefficient, and jet location. Results of this study showed that the sectional effects of 
spanwise blowing were strongly dependent on angle of attack, jet thrust coefficient, and 
span location; the largest effects occurred at the highest angles of attack and thrust coef -
ficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard 
span station with a small blowing rate, but successively higher blowing rates were neces-
sary to achieve full vortex lift at increased span distances. Spanwise blowing increased 
lift throughout the angle-of-attack range, delayed wing stall to higher angles of attack, and 
improved the induced-drag polars. The, leading-edge suction analogy can be used to esti-
mate the section and total lifts resulting from spanwise blowing. 

INTRODUCTION 

On thin, highly swept wings at moderate to high angles of attack, the flow is charac-
terized by a leading-edge separation which forms a stable vortex over the wing and pro-
vides large vortex-lift increments. This characteristic of slender wings for supersonic 
cruise has been understood for many years (refs. 1 to 5). However, for moderately swept 
wings that have higher aspect ratios and are suitable for fighter aircraft, vortex break-
down can occur at low angles of attack. Thus, the wing does not achieve the large vortex-
lift increments that are desirable for maneuvering. 

A promising technique for enhancing the leading-edge vortex and effectively delaying 
vortex breakdown to higher angles of attack is that of spanwise blowing. This method con-
sists of blowing a discrete jet spanwise over the wing upper surface and in a direction 
essentially parallel to the leading edge. Some original research related to this approach 
was performed in references 6 to 9 and demonstrated the control of separated flow regions 
by transverse blowing. The photographs in figure 1 were taken from reference 9 and



illustrate the leading-edge vortex that forms on a rectangular flat plate because of trans-
verse blowing. The additional work reported in references 10 to 14 applied the concept 
to different types of lifting surfaces, such as swept wings, trailing-edge flaps, and rudders. 
To supplement this research, it is desirable to obtain detailed information concerning the 
wing-jet interaction for wings of interest for fighter aircraft. 

Accordingly, the present investigation was initiated to evaluate the spanwise devel-
opment of an augmented leading-edge vortex. This was accomplished by measuring sur-
face pressure distributions on a moderately swept wing with spanwise blowing from the 
fuselage and by analyzing the experimental results with appropriate aerodynamic theory. 
A trapezoidal wing planform having a 44 0 leading-edge sweep was used for the study, 
which was conducted at a free-stream Mach number of 0.26. Data were acquired for a 
range of model angles of attack, jet thrust coefficients, and jet exit locations. 

SYMBOLS 

Ae	 nozzle exit area 

b	 span 

CD	 total drag coefficient 

CL	 total lift coefficient 

C L,p	 potential total lift coefficient 

CL,v	 vortex total lift coefficient 

CL ,tot	 = C Lp + CLV 

Cm	 total pitching-moment coefficient 

pressure coefficient, 
p - p 

q 

AC 
P = Cp,u - C1 

Cm	 nozzle thrust coefficient, _ T_!L 
qS 

CTS	 static thrust coefficient of single nozzle,Pas 
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c	 local chord 

cay	 average chord, S/b 

Cr	
root chord (chord at wing fuselage juncture) 

cd	 section drag coefficient 

c1 section lift coefficient 

c1 = cl jet on - C1 ,jet off 

c1 potential section lift coefficient 

c1 v vortex section lift coefficient 

cI,tot = c1	 + 

C1 section lift-curve slope 
a 

cs section suction-force coefficient 

ct section thrust-force coefficient 

d nozzle diameter

h	 height of nozzle center line above wing surface 

k	 constant in potential-lift equation (see eq. (1)) 

kv	 constant in vortex-lift equation (see eq. (2)) 

M,	 free-stream Mach number 

pa	 ambient pressure 

stagnation pressure in nozzle settling chambers 

POO
	 free-stream static pressure
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free-stream dynamic pressure 

S	 wing reference area, 0.103 m2 

Tn	 static thrust of both nozzles, T 1 + Tn2 

Ts	 static thrust of single nozzle 

x	 chordwise distance, measured from wing leading edge 

Xn	 chordwise distance of nozzle from leading edge of wing root chord (see fig. 2) 

y	 spanwise distance, measured from model plane of symmetry 

z	 vertical distance, measured from wing chord plane 

angle of attack of model 

ratio of specific heats, 1.4 

Ale	 leading-edge sweep angle 

An	 sweep angle of nozzles 

Subscripts: 

1,2	 refers to nozzles 1 (left) and 2 (right), respectively 

1	 condition on lower surface of wing 

max	 maximum 

tot	 total 

u	 condition on upper surface of wing 

MODEL AND APPARATUS 

The wind-tunnel model consisted of a wing-fuselage combination that had a discrete 
jet mounted in both sides of the fuselage and oriented to blow air over the wing upper 
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surface. A three-view drawing of the model is shown in figure 2, and photographs of 
the model installed in the wind tunnel are shown in figure 3. 

The trapezoidal wing had a 440 leading-edge sweep angle and a trailing-edge sweep 
angle of -5.70 . The aspect ratio, based on a theoretical area of 0.103 m 2 , was 2.5 and 
the taper ratio, 0.2. The wing had no twist, camber, or dihedral and had an airfoil section 
(measured streamwise) which was a circular arc with sharp leading and trailing edges. 
The thickness ratio was 6 percent at the fuselage-wing junction (root chord) and varied 
linearly to 4 percent at the wing tip. The pitching-moment reference center was taken to 
be at 25 percent of the theoretical root chord as shown in figure 2(a). 

The wing was instrumented with 140 pressure orifices which were arranged in 
chordwise rows at six different span locations. (See fig. 2(b).) Pressures were meas-
ured on the lower surface of the left wing and on the upper surface of the right wing. The 
coordinates of all the orifices were measured with a three-dimensional digitizer and are 
presented in table I as values nondimensionalized by the local chord. The pressures 
were recorded by three automatic pressure-scanning valve units located inside the fuse-
lage. These units are shown in figure 4, which presents a schematic of the test equip-
ment inside the model. 

The continuous-flow air system that was used to provide the desired dry high-
pressure air to the two nozzles is also shown in figure 4. Each nozzle was connected to 
a cylindrical settling chamber, which was provided air by a 0.953-cm-diameter stainless 
steel supply line. The stagnation pressure in each settling chamber was recorded on a 
large dial pressure gauge. The size of the settling chambers necessitated the use of a 
fuselage fairing to cover them (shown in fig. 2(a)). 

The angle of attack was measured with an accelerometer, located in the nose of the 
fuselage, which recorded changes in the attitude of the model with respect to the horizon-
tal. The angle-of-attack measurements account for deflection of the model support sys-
tem due to loads. 

Details of the convergent nozzle geometry and location are shown in figure 5, where 
the subscripts 1 and 2 refer to nozzles 1 and 2, respectively. Each nozzle was made 
of 0.953-cm-diameter stainless steel tubing, whose inner diameter converged from 
0.775 cm to the diameter d 1 or d2 of the circular exit shown in the figure. The exit 
diameters were slightly different for the two nozzles. The bottom of the tubing was 
shaped to allow the jet to be closer to the wing surface. This configuration, shown in 
figure 5(a), was used for the bulk of the testing. Figure 5(b) shows the nozzle raised 
1 nozzle-exit diameter farther above the wing surface than the basic position in figure 5(a). 

Both nozzles were calibrated prior to tunnel installation to obtain static nozzle thrust 
as a function of plenum total pressure. A strain-gage balance was used to measure nozzle 
thrust for a range of values of plenum total pressure, and the resulting data are shown in 
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figure 6. The nozzle thrust for nozzle 2 is higher than that for nozzle 1 at a given nozzle 
stagnation pressure because d2 is slightly greater than d 1 . Thrust as a function of 
stagnation pressure is essentially linear, which would be expected for a convergent, 
choked nozzle under static conditions. 

TEST CONDITIONS AND PROCEDURE 

The tests were conducted at a Mach. number of 0.26 in the Langley high-speed 7- by 
10-foot wind tunnel which has a slotted test section. The average dynamic pressure was 
4549 Pa, with a temperature of 297 K and a Reynolds number of 5.2 X 10 5 per meter. The 
tests were performed on the model without fixed transition, except for one test configura-
tion where transition strips 0.159 cm wide were located on the fuselage nose and wing 
leading edges. The strips were composed of No. 80 carborundum grit and were located 

1.27 cm aft of the nose and leading edges measured in a streamwise direction. The test 
data were not corrected for blockage and flow angularity since these are considered 
negligible. 

Pressure data were obtained for each configuration at angles of attack from 00 to 
240 at 40 increments, with nozzle thrust coefficients of 0, 0.06, and 0. 12. At the maxi-
mum a, CT was varied from 0 to 0.18 at increments of 0.02. For all of the thrusting 
conditions, the thrust of both nozzles was the same and was obtained by adjusting the noz-
zle stagnation pressure to the value in the static calibration (fig. 6). It is assumed that 
these static thrust levels would be essentially the same at the test condition of Mc = 0.26. 

The test configurations represent different nozzle orientations and are listed in the 
following table: 

xn/cr h/d Transition 
strips 

0.15 44 0.835 No 
.23 44 .835 
.23 44 1.843 I 

.32 44 .835 

.32 33 .835
I 

.23 33 .835 

.23 33 .835 Yes

A value of 440 for An was chosen so that the jet would be parallel to the wing leading 
edge as was done in references 10 to 14. 
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FLOW VISUALIZATION 

Oil-flow studies were performed on one configuration to provide an indication of the 
effects of spanwise blowing on wing upper surface flow patterns. The photographs pre-
sented in figure 7 were taken of the upper surface of the left wing with xn/cr = 0.23, 

An = 330, and h/d = 0.835. The oil was a mixture of Dow Corning 200 Fluid and lamp-
black. The wing was painted white to provide a suitable background for the photographs. 
Two floodlights were used to provide the necessary lighting for a K-24 camera which was 
mounted outside the test area above the model. The camera had a remote shutter release 
and an automatic film advance to allow more than one photograph to be taken during a run. 

The procedure for obtaining the oil-flow photographs was initiated by putting oil on 
the left wing with the tunnel off. The model was then put at a high angle of attack and the 
tunnel turned on. This high angle of attack resulted in the flow over the upper surface 
being completely separated and prevented oil from wiping off until the test conditions were 
set. The model was then lowered to the desired angle of attack and a photograph was taken 
after the flow patterns became established. Flow establishment was determined with a 
television camera which provided a real time picture of the oil-flow pattern on the model 
planform. The nozzle total pressure was then set to obtain a desired thrust coefficient 
and the flow patterns were again allowed to change before taking a photograph. The tun-
nel was then shut off and the procedure repeated for the next test angle of attack. 

PRESENTATION OF RESULTS 

The results of this investigation are presented in the following figures:

Figure 

Model configuration: 
Photographs of spanwise blowing on a rectangular flat plate 

(from ref.	 9)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 I 

Three-view drawing	 ............................... 2(a) 

Drawing showing locations of pressure orifices 	 ................ 2(b) 

Model photographs showing wind-tunnel installation 	 .............. 3 

Schematic of air supply system and measurement devices ........... 4 

Nozzle details	 .................................. 5 

Static calibration of nozzles	 ........................... 6

Flow visualization: 
Photographs of oil-flow patterns on upper surface of left wing ........ . 7 
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Figure 

Typical results and comparison with theory: 
Effect of span location on chordwise distributions of 	 AC	 for several 

values of	 CT;	 a	 20.60 ;	 Xn/cr = 0.23;	 A	 = 440 ;	 h/d = 0.835	 . . . 8 
Schematic of wing pressure field; 	 a	 20.60 	 ................. 9 
Effect of	 a on chordwise distributions of 	 LC	 at	 2y/b = 0.5	 for 

several values of	 CT;	 xn/cr = 0.23;	 An = 440 ;	 h/d	 0.835	 ....... 10 
Effect of spanwise blowing on section lift characteristics; 	 xn/cr = 0.23; 

An = 440 ;	 h/d	 = 0.835	 ............................ 11 
Variation of section lift with 	 CT	 at different span locations on the wing; 

a = 23.90 ;	 xfl /cr = 0.23;	 A	 = 440 ;	 h/d = 0.835	 .............. 12 
Spanwise variation of section lift and lift-augmentation ratio for a range of 

CT;	 a = 23.90 ;	 Xn/cr = 0.23;	 An = 44°;	 h/d = 0.835	 .......... 13 
Effect of blowing on span loading for wing at	 a = 23.9°;	 xn/cr = 0.23; 

An= 44°;	 h/d	 0.835	 ............................ 14 
Effect of spanwise blowing on section drag characteristics; 	 Xn/Cr = 0.23; 

An= 440 ;	 h/d = 0.83 5	 ............................ 15 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xn/cr	 0.23;	 An = 440;	 h/d = 0. 83 5	 ..................... 16 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xn/cr = 0.15;	 An = 440 ;	 h/d = 0.835	 .................... 17 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xn/cr = 0.23;	 An = 440 ;	 h/d = 1.843	 .................... 18 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xfl/cr = 0.32;	 A	 = 440 ;	 h/d = 0.835	 .................... 19 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xn/cr = 0.32;	 A	 = 33 0 ;	 h/d = 0.835	 .................... 20 
Effect of spanwise blowing on longitudinal aerodynamic characteristics; 

xn/cr = 0.23;	 An = 33 0 ;	 h/d = 0.835	 .................... 21 
Effect of spanwise blowing on longitudinal aerodynamic characteristics of 

model with transition strips;	 Xn/cr = 0.23;	 A	 = 330;	 h/d = 0.835	 . . . 22 
Effect of transition strips on longitudinal aerodynamic characteristics 

with and without blowing;	 xn/cr = 0.23;	 An = 33 0 ;	 h/d = 0.835 23

Effect of nozzle location and angle: 
Effect of Xn/Cr on chordwise distributions of AC at 2y/b = 0.5 for 

two values of a and CT; An = 44 0; h/d = 0.835 .............24 
Effect of xn/cr on section lift characteristics at several span locations 

with CT = 0.12; An = 440; h/d = 0.83 5	 ..................25 
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Figure 
Effect of xfl/cr on longitudinal aerodynamic characteristics for

CT = 0.12;	 A	 = 440 ;	 h/d = 0.85	 ..................... 26 
Effect of	 A	 on chordwise distributions of 	 ACP at	 2y/b = 0.5	 for 

two values of	 a	 and	 CT;	 Xfl /Cr = 0.23;	 h/d = 0.835	 ........... 27 
Effect of	 A	 on chordwise distributions of 	 ACp	 at	 2y/b	 0.5	 for 

two values of	 a	 and	 CT;	 Xn/Cr = 0.32;	 h/d = 0.835	 ........... 28 
Effect of	 An	 on section lift characteristics at several span locations 

with	 CT = 0.12;	 xn/cr = 0.23;	 h/d = 0.835	 ................ 29 
Effect of	 An	 on longitudinal aerodynamic characteristics for 	 CT = 0.12; 

xpjcr = 0.23;	 h/d = 0.835	 .......................... 30 
Effect of	 h/d	 on chordwise distributions of 	 AC	 at	 2y/b = 0.5	 for 

two values of	 a	 and	 CT;	 xn/cr = O.23;	 A=44° ............. 31 
Effect of	 h/d	 on section lift characteristics at several span locations with 

CT	 0.12;	 xn/cr = 0.23;	 A	 = 440 	 ..................... 32 
Effect of	 h/d	 on longitudinal aerodynamic characteristics for 	 CT = 0.12; 

xn/cr = 0.23;	 An = 440 33 

Effect of nozzle orientation on capability to generate lift for a range of 	 CT; 
a23.9°	 .................................... 34 

C hordwise pressure distributions: 
Effect of	 CT on chordwise distributions of C for a range of a; 

xn/cr = 0.15; A	 = 440 ;	 h/d = 0.835	 .................... 35 
Effect of	 C'j' on chordwise distributions of C for	 a = 23.50; 

xn/cr = 0.15; An = 440 ;	 h/d = 0.835	 .................... 36 
Effect of	 CT on chordwise distributions of C for a range of a; 

= 0.23; A	 = 440 ;	 h/d = 0.835	 .................... 37 
Effect of	 CT on chordwise distributions of C for	 a = 23.9°; 

xn/cr = 0.23; A	 = 440 ;	 h/d = 0.835	 .................... 38 
Effect of	 CT on chordwise distributions of C for a range of a; 

xn/cr = 0.23; A	 = 440;	 h/d = 1.843	 .................... 39 
Effect of	 CT on chordwise distributions of C for	 a = 24.0°; 

xn/cr = 0.23; A	 = 440 ;	 h/d = 1.843	 .................... 40 
Effect of	 CT on chordwise distributions of C for a range of a; 

xn/cr = 0.32; An = 440 ;	 h/d = 0.835	 .................... 41 
Effect of	 CT on chordwise distributions of C for	 a = 24.0°; 

xfl/cr 	 0.32; An = 440;	 h/d = 0.835	 .................... 42 
Effect of	 CT on chordwise distributions of C for a range of a; 

= 0.32; A	 = 33°;	 h/d = 0.835	 .................... 43
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Figure 

Effect of	 CT on chordwise distributions of C for	 a = 23.80; 

xn/cr = 0.32;	 An = 330;	 h/d = 0.835	 ................... 44 

Effect of	 CT on chordwise distributions of C for a range of	 a; 

xn/cr = 0.23; A	 = 330 ;	 h/d = 0.835	 ................... 45 

Effect of	 CT on chordwise distributions of C for	 a = 23.80; 

Xn/Cr = 0.23; An = 330 ;	 h/d = 0.835	 ................... 46 

Effect of	 CT on chordwise distributions of C for a range of	 a; 

Xn/Cr = 0.23; An = 33 0 ;	 h/d = 0.835; transition strips on 

Effect of	 CT on chordwise distributions of C for	 a = 23.80; 

xfl/ cr = 0.23; An = 330 ;	 h/d = 0.835; transition strips on	 ........ 48

DISCUSSION 

The wing-surface pressure measurements obtained during the wind-tunnel tests are 
presented in graphical form in figures 35 to 48. Upper and lower surface pressure coef-
ficients are plotted against x/c, the nominal fraction of the local chord. (See table I.) 
The lower surface pressures are identified by a + inside the data symbol. The data 
were machine plotted and then faired with a cubic spline (with no tension); this spline was 
integrated to obtain section forces and moments. The spanwise variation of the section 
properties were then fitted with a cubic spline and integrated to obtain the total forces and 
moments on the wing.

Wing-Surface Flow Patterns 

Photographs of oil-flow patterns on the upper surface of the left wing are shown in 
figure 7 for the configuration with xn/cr = 0.23, A = 33°, and h/d = 0.835. Although 

these photographs were obtained with An = 33 0, the flow patterns are similar to those 

observed for the model with An = 

At a = 8.10 (fig. 7(a)) the wing-jet interaction is like the "jet in a crossflow" 
problem, where the jet path bends downstream. With CT = 0, there is a stagnation line 
faintly visible near the juncture of the wing leading edge and the fuselage. This is indica-
tive of the formation of a leading-edge vortex in this region which can also be noted in the 
pressure data in figure 45(c). Spanwise blowing extends the stagnation line along the lead-

ing edge. 

At a = 16.60 (fig. 7(b)) blowing has a similar effect on the stagnation line near the 
leading edge. Rather than bending downstream as observed for a = 8. 1 0 , the jet tends 
to move toward the leading edge, particularly on the outer portion of the wing, where the 
jet surface flow appears to coalesce. The primary reason for the change in jet exhaust 
trajectory with angle of attack is probably due to the wing flow that exists without jet 
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blowing. At a = 8.1° most of the upper surface flow is attached with CT = 0. At 
a = 16 . 60 , however, extensive flow separation exists over the outer half of the wing with 
CT = 0. Blowing causes the wing flow field to reattach aft of the jet flow, thus completely 
eliminating the separated flow regions. The effects of blowing at a = 23.8 0 (fig. 7(c)) 

are similar to those observed at 16.60. Some of these trends of wing-jet interaction have 

been noted in the studies of references 13 and 14. 

Detailed Effects of Spanwise Blowing 

Because of the large quantity of data obtained during this investigation, only one of 
the model configurations will be used to explain the detailed effects of spanwise blowing. 
The particular model to be used has xn/ cr = 0.23, A = 44, and h/d = 0.835. The 
data trends that are discussed in the following sections for this configuration are typical 
of the trends obtained for all the test configurations. 

Chordwise distributions of C. - The effects of nozzle thrust coefficient and model 

angle of attack on wing-surface pressure distributions are presented in figures 37 and 38, 
respectively. The data are shown as plots of upper and lower surface C as a function 
of chordwise distance for each of the six span locations. 

Spanwise blowing results in more significant effects on the wing upper surface pres-
sure field than on the lower surface pressure field and at high angles of attack as opposed 
to low angles of attack. To appreciate the complicated interaction process between the 
wing and jet flow fields, it is desirable to first examine data for a = 0 0 (fig. 37(a)). The 

first effect to note is at the inboard station (2y/b = 0.259) where a sizable negative pres-
sure coefficient occurs at x/c = 0.3 when the jet is blowing. This effect is probably due 
to the close proximity of the jet exit, located at 2y/b 0.2, to the pressure orifices; the 
underexpanded nozzle provides a distinct high velocity flow which has expansion waves and 
can effectively increase local thickness. This interference pressure disappears farther 
out on the wing, where the jet has had time to spread. It is interesting to note that this 
effect at the inboard station is essentially insensitive to changes in a (see figs. 37(a) 
to 37(g)) and is consistent when the nozzle orientation is changed, as is the case in fig-

ure 41 where Xn/Cr = 0.32. 

The second effect to observe in the a = 0° data is noted primarily at 2y/b = 0.501, 

where the spreading jet causes a decrease in C	 over the aft portion of the wing sec-
tion. This effect, which results from the displacement of surface streamlines due to the 
addition of jet flUid on the wing upper surface, is similar to an increase in wing camber. 
This interaction effect diminishes farther out on the wing. This trend was also observed 
in the experimental tests reported in reference 13. 

With the angle of attack increased to 12.3 0 (fig. 37(d)), the pressure field reflects a 

lifting situation for the wing. A large pressure peak occurs on the upper surface near the 
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leading edge of the inboard station with CT = 0. Analysis of the data shows that a larger 
2y/b results in a decrease in the peak pressure and a rearward shift in the location. 
These data are indicative of the formation of a leading-edge vortex which is well organized 
at the inboard station but quickly weakens as it grows in the span direction. The fact that 
the vortex quickly dissipates explains why Wentz (ref. 3), who used a schlieren system, 

was not able to observe it on a 450 delta wing. 

The spanwise blowing jet affects the pressure field over most of the wing upper sur-
face, with no noticeable effect on the lower surface pressures. The magnitude of the upper 
surface pressure peak is increased by spanwise blowing, and the span effects noted with no 
blowing are essentially the same as those with blowing. The jet-camber effect noted at 

a = 0 is difficult to ascertain in these data. 

The effects of spanwise blowing become more pronounced at the higher angles of 
attack. The primary reason that the effects are more pronounced is connected with the 
separated flow field over the wing which occurs with no blowing. With the sharp leading 
edge of this wing, the flow separates at the leading edge, after which It may reattach to the 
wing and lead to the more conventional flow separation which occurs near the trailing edge. 
The wing upper surface flow field is dependent, then, on the interaction between these two 
separation points and the reattachment point, and as a consequence, so are the wing stall 
characteristics. Complete stall would occur at a particular wing section when the sepa-
rated leading-edge flow does not reattach but remains separated over the wing. This 
results in upper surface pressures that are essentially constant over the wing section. At 

a = 12.36 (fig. 37(d)) this constant Cp ,u distribution is seen only on the outer portion of 
the wing near the wing tip. However, as a is increased, this completely separated flow 
region moves progressively inboard until at a = 23.9 0 (fig. 37(g)) the flow is separated 
over the entire upper surface. Spanwise blowing causes the leading-edge vortex to reform 
and the flow to reattach to the wing upper surface at some point aft of the jet flow, similar 
to the flow condition noted in figures 1 and 7. This results in significant decreases in 

particularly at the inboard stations where the jet flow is still strong enough to cause 
the vortex to roll up and the vortex is still close to the wing surface. These pressure 
results are similar to those obtained on a rectangular flat plate in reference 10. The pres-
sure distributions obtained with blowing appear to be similar to those obtained on highly 
swept delta wings which have a natural (no blowing required) leading-edge vortex (ref. 5). 
It is noted that at the highest angles of attack, blowing causes a slight increase in C1 
coupled with a slight rearward shift in the stagnation point on the wing lower surface. 

Chordwise distributions of 	 - The effects of span location on the chordwise dis-

tributions of AC are shown in figure 8 for a = 20.60. With no blowing (CT = 0), the 

highest ACP values occur at the inboard station and decrease with an increase in span 

distance. With CT = 0.06, the leading-edge vortex is formed and results in large suction 
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pressures and pressure gradients near the leading edge at 2y/b = 0.259. At span sta-
tions farther outboard, the growth and displacement from the wing surface of the vortex, 
combined with the spreading of the jet, results in lower peak pressures but has a greater 
effect over more of the wing section. The effects on the AC distribution with 
CT = 0.12 are the same as seen for CT = 0.06; CT = 0.12 results in higher negative 

values of 

A schematic of the wing pressure field is shown in figure 9 to illustrate the pressure 
distribution near the leading edge that results if the flow is separated, as in the present 
experiment, and to show what distribution it might have if it were attached. The attached 
flow condition is represented by the subsonic theory from reference 15 and is character-

ized by negatively increasing C	 as the leading edge is approached. The experimental 
data show that the flow cannot negotiate the sharp leading edge; therefore, it separates. 
Spanwise blowing helps the separated leading-edge flow to roll up into a vortex, thus yield-

ing the negative peaks in the C p2
Udata. 

The effects of angle of attack on the chordwise distributions of LC at 2y/b = 0.5 
are illustrated in figure 10. With no blowing, AC increases with increases in a up 
to the stall angle for this wing section (16 0); further increase in a results in a decrease 

in ACP With CT = 0.06, an increase in a results in a progressive increase in 
all across the chord. This implies a greater wing-section stall angle than that obtained 
with no blowing. The data shown for C T = 0.12 have the same trends as the data for 
CT = 0.06. The higher blowing rate does result in an effect at a = 00 at this span sta-
tion that was not apparent at the lower blowing rate. This is the jet-induced camber effect 
discussed previously which results in a slight compression on the forward half of the wing 
section and a favorable expansion on the rear half. 

Section lift and drag characteristics.- The information in figures 11 to 15 will be 
used to discuss the effects of spanwise blowing on wing-section aerodynamic character-
istics. The section data were obtained by integrating the chordwise pressure distributions 
using the pressure orifice locations presented in table I. 

The effects of blowing on section lift characteristics are presented in figure 11 for 
the six span stations. An increase in CT generally resulted in an increase in c 1 all 

across the span, the largest effects occurring at high angles of attack, where the wing 
sections have experienced partial or complete stall with no blowing (CT o). 

The largest c 1 values on the wing were attained for the highest blowing rate shown 
(CT = 0.12) and occurred at 2y/b = 0.609 and 0.707. The c1 at 2y/b = 0.707 was 
limited due to vortex breakdown. The data also indicate that blowing increases cia 

and cl,m, as well as the angle of attack where clm	 occurs. In addition, blowing 

causes a change in the section lift behavior near stall (or ci,m). For example, the data 

at 2y/b = 0.609 and 0.707 for CT 0.06 show that these wing sections experience a
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fairly abrupt loss of c1 beyond Cimaj, as compared with the high angle-of-attack data 
for CT = 0. This type of stall pattern is typical of wings with leading-edge vortex flows 
(ref. 3) and results because of the sudden loss of lift due to vortex bursting on the wing. 

With no blowing, c1 as a function of a is reasonably linear at low angles of 
attack, particularly on the inboard portion of the wing. Blowing results in nonlinear sec-
tion lift curves which are characteristic of lift curves obtained on highly swept wings 
having a leading-edge vortex (ref. 3). 

To better interpret the experimental results, theoretical estimates of the section 
lift characteristics were calculated by using the leading-edge suction analogy. The basic 
assumptions which are used in reference 1 to apply the suction analogy to a wing with a 
fully developed leading-edge vortex are assumed to apply here on a sectional basis. 
Accordingly, the potential and vortex section lifts for a section with 0-percent leading-
edge suction are given by 

c1 = k sin a cos2a 

ci ,v = kv sin2 a cos a 

where the total lift is 

citot = c1 + cl,v 

The terms k and kv are defined as: 

k =c P	 la 

and

Ct	 CS 

v - cos Ale sin2a - sin2a 

where Ct and c5 are the section thrust- and suction-force coefficients, respectively. 
Because of their dependence on section properties, the parameters k and kv are 
functions of spanwise location. The parameters Ct and c5 , as well as Clap were 
determined at different span locations on the trapezoidal wing (fig. 2) by the lifting sur-
face theory of reference 16. Since this is a linear theory, kv was calculated by using 
a2 in equation (5) instead of sin2a. 

The theoretical estimates for section lift with no vortex lift (c 1,p) and with full 
leading-edge vortex lift (C1p + c1 , ) are presented in figure 11. Several observations

(1)

(2)

(3)

(4)

(5) 
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of the comparison with experiment are necessary. For the case with CT 0, the sec-
tion lift is estimated reasonably well up to section stall by c 1 p. This substantiates the 
earlier observation that, with no spanwise blowing, this wing has little or no leading-edge 
vortex flow. The dashed line, which represents the estimated section lift that would result 
if the leading-edge vortex was fully established, has the same lift-curve shape as the data 
with blowing and generally estimates magnitudes reasonably well. There are some notable 
exceptions to this besides the obvious deterioration as the wing tip is approached. At some 
sections, blowing results in section lift coefficients that are higher than the estimated full 
vortex-lift levels. At 2y/b = 0.501, for example, CT = 0.12 results in larger c1 
values throughout the a range. At a = 00 where there is no leading-edge vortex on 
the wing, even with blowing, the increase in c1 is due to a jet-induced camber effect. 
This effect was noted previously during the discussion of the pressure data and has been 
observed in references 10 and 14. 

At other span stations, 2y/b = 0.609 and 0.707 for instance, there is no evidence 
of the jet-camber effect at a = 00, even though the data at higher angles of attack for 

C T = 0.12 indicate lifts that are greater than the estimated values. It is not obvious why 
this is so, but there is a definite difference in the wing-jet flow field at high angles of 
attack compared with low angles of attack as was demonstrated by the oil-flow photographs 
in figure 7. Some of the lift benefits may be the result of the jet feeding the vortex in a 
manner similar to the leading-edge blowing problem studied by Barsby (ref. 17), who 
showed that injecting a thin jet of air out from the leading edge strengthened the vortex 
and increased lift. 

So far the data have shown that the amount of sectional vortex lift generated by span-
wise blowing is dependent on CT, 2y/b, and a. One question that can be asked is what 
value of CT does it take to achieve the full vortex-lift level at the various span loca-
tions? An attempt to answer this is shown in figure 12, which presents c 1 as a function 

Of CT for the six span locations with a = 23.9 0. The full vortex-lift levels, which were 
estimated by- the suction analogy, are represented by the dashed lines. 

As was observed earlier, blowing increases the section lift at all the span locations, 
but this figure illustrates how dramatically different the blowing effectiveness is depend -
ing, of course, on 2y/b. The increase in c 1 at low values of CT is most effective 
inboard and least effective outboard near the wing tip. This is reflected in the value of 

CT that is required to achieve full vortex lift at each of the span stations. For example, 
at 2y/b = 0.259, CT z 0.07 is required; at 2y/b = 0.501, CT z 0.08 is required; 
at 2y/b = 0.609, CT z 0.11; and at 2y/b = 0.707, CT z 0.17. At the two outermost 
stations, the full vortex-lift level was not attained with the CT values used in the current 
tests.
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These results suggest that blowing spanwise from the fuselage is a jet-decay problem. 
Thus, the development of the leading-edge vortex and the associated section lift depend on 
the local jet and vortex properties, as well as on free-stream Mach number and dynamic 
pressure. As a matter of reference, the geometries of the wing and jet are such that the 
jet flow must penetrate almost 62 nozzle-exit diameters to reach the wing tip. The result-
ing decay of the jet velocity is large enough to have a significant effect on leading-edge 

vortex formation. 

Another way of looking at spanwise blowing effects is shown in figure 13, which pre-
sents the variation of section lift and lift-augmentation ratio along the span for a range of 
blowing rates. As shown earlier, blowing increases c 1 all across the span. Plotting 
the data in this fashion gives a good perspective of the span distribution of c1 with and 

without vortex lift. The no blowing case (CT = o) is typical of a wing with no vortex lift. 
Blowing causes the shape of the c 1 distribution curve to progressively change toward the 

distribution estimated by the suction analogy. At the higher blowing rates, the c1 
values on the inboard portion of the wing are higher than the theoretical estimates; this 
trend was also shown in figure 12. This jet-induced effect on the inboard portion of the 
wing, coupled with available vortex lift on the outboard portion, suggeststhat higher CT 
than those of this test will produce even higher lift levels. 

Also shown in figure 13 is the lift-augmentation ratio AcI/CT, where 

= 1,jet on - l jet off As might be expected from some of the previous results, the 
data for CT = 0.04 yields the largest augmentation ratios and a decrease in the ratios 

occurs with an increase in CT. The maximum augmented lift for a given CT occurs 
between 2y/b = 0.501 and 0.707, depending on the value of CT . On the outboard portion 

of the wing near the wing tip, the ratios are essentially independent of CT. This implies 
that Ac, near the wing tip is a linear function of CT, which is what the data showed in 
figure 12 at the outermost span locations. 

The effects of blowing on span loading is shown in figure 14 for the same data pre-
sented in figure 13. Blowing increases the span loading, particularly on the inner portion 
of the wing. This effect is beneficial from a wing bending-moment standpoint. The pre-
diction of the span loading obtained from the suction analogy is also shown. 

The effect of spanwise blowing on section induced-drag characteristics is presented 
in figure 15 for the various span locations. Blowing improves the drag polars over most 
of the span, the smallest effect occurring near the wing tip. Estimates of the induced-drag 
polars were obtained by taking the section normal force to be the resultant section force, 
which would be the case with zero suction. This leads to the expressions 

cd = c1, tan a
	 (6) 
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for the situation with no vortex lift, and 

Id = C1 tot tan a	 (7) 

for full vortex lift. The c1, and Cltot used in these expressions come from equa-
tions (1) and (3), respectively. 

The expression for the potential flow case gives reasonable estimates of induced 
drag for the no blowing (CT = 0) situation except at high c 1 , where section stall has 
begun. The improvements in drag polars due to spanwise blowing are generally estimated 
by the theory, which assumes that full vortex lift exists. At 2y/b = 0.501, 0.609, and 
0.707, the drag obtained for CT = 0.12 is lower than the predicted level. This is con-
sistent with the lift results at these sections that were discussed in figure 11. 

Total aerodynamic characteristics.- The section data presented in the previous 
section (figs. 11 and 15) were integrated spanwise from 2y/b = 0.259 to 1.0 to obtain 
the total force coefficients presented in figure 16. Estimates for lift were obtained 
by spanwise integration of the theoretical values of cl ,p (potential lift) and Cl,tot 
(potential + vortex lifts). These lift results are presented in figure 16 and were used 
to obtain estimates for induced drag. 

Spanwise blowing results in an increase in lift and improved drag polars, which 
would be expected, particularly at high angles of attack where the wing without blowing 
(CT = o) has experienced complete stall. Besides increasing CL , m, blowing increases 
the angle of attack where CL,max occurs. There appears to be a small jet-camber 
effect at a = 00 with C T =0.12, resulting in a slight increase in CL. 

The assumption of no vortex lift leads to good predictions of CL and CD for the 
no blowing case (CT = o). The theory for full vortex lift predicts the blowing effects very 
well. The pitching-moment results obtained by using the moment reference center shown 
in figure 2 are also presented in this figure. Spanwise blowing results in an extension of 
the linear pitching moment obtained for CT = 0 to much higher lifts. This is accom-
plished without adversely effecting the stability level. The estimates for pitching moment 
were obtained using the method described in reference 18. 

Configuration Effects 

The discussion thus far has been devoted to just one of the test configurations, 
where xn/cr = 0.23 1 A = 44°, and h/d = 0.835. For the benefit of completeness, the 
effects of blowing on the longitudinal aerodynamic characteristics of the other six con-
figurations are presented in figures 17 to 23. The effects of blowing are similar for the 
different configurations, although blowing effectiveness varies somewhat. The effect of 
transition strips was determined by adding transition strips to the configuration with
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xn/cr = 0.23, A = 330, and h/d = 0.835. The effects of blowing on the aerodynamic 
characteristics of this configuration without transition strips are presented in figure 21, 
and with transition strips in figure 22. Figure 23 shows that there is little or no effect of 

the transition strips for CT = 0 and 0.12. 

Effect of xn/cr. - The effect of nozzle chordwise location xn/cr on the wing pres-

sure field is illustrated in figure 24. Chordwise distributions of AC at 2y/b = 0.501 

are shown for C T = 0.06 and 0.12, and at angles of attack of 12.30 and 20.50. Moving the 

nozzle position rearward from xn/cr = 0.15 causes a reduction in the peak value of 
which occurs near the leading edge and an increase in iCp over the midportion of the 
wing section. These trends are evident at both angles of attack and nozzle thrust coeffi-

cients, although the largest effects of xn/cr occur at a = 20.5° with CT = 0.12. 

The data trends of figure 24 are reflected in the sample section lift data shown in 

figure 25. Increasing xn/cr decreases c1 throughout the angle-of-attack range at the 

inboard station and at intermediate angles of attack at the outboard stations. The trend at 

the outboard stations tends to reverse at the highest a. 

The effect of xn/cr on the longitudinal aerodynamic characteristics is presented 
in figure 26 for CT = 0.12. Increasing xn/cr causes a slight decrease in CL at inter-

mediate angles of attack but has essentially no effect on CD and Cm. 

Effect of A. - The effect of nozzle sweep angle An on chordwise distributions of 

AC is illustrated in figures 27 and 28, where xn/cr is 0.23 and 0.32, respectively. 
p	 440 The data are shown for a = 12.3 0 and 20.50 with C T = 0.06 and 0.12, where An = 

is parallel to the wing leading edge. Sweeping the nozzle angle forward from 440 to 33 

causes a slight increase in the leading-edge pressure peak and a varying degree of adverse 

effect on the aft portion of the wing section. 

The effect of decreasing An on the section lift characteristics (fig. 29) is adverse 
at 2y/b = 0.259 for all test angles of attack, with a varying effect at the outboard sta-
tions. These trends result in unfavorable effects on the total loads as observed in fig- 

ure 30. Decreasing A from 440 to 330 causes an adverse camber effect at a = 00, 

which persists throughout the angle-of-attack range. This, of course, leads to higher 

induced drag and more negative Cm at a given CL. Although the data results in fig-

ures 29 and 30 were obtained with Xn/Cr = 0.23, similar trends were obtained for the 

configuration with xn/cr = 0.32. 

Effect of h/d.- The effect of nozzle vertical location h/d on chordwise distribu-
tions of AC is illustrated in figure 31 for two angles of attack and two blowing rates. 
Raising the nozzle location from h/d = 0.835 to 1.843 results in a slight decrease in the 
pressure peak near the leading edge and a varying effect on the aft portion of the wing 

section. 
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Figure 32 shows that increasing h/d increases section lift on the inboard portion 

of the wing and decreases c1 on the outboard portion. The effect of h/d on the longi-

tudinal aerodynamic characteristics is presented in figure 33 for CT = 0.12. Increasing 

h/d has no effect on CD and Cm and causes a slight decrease in CL. This is sub-

stantiated by the results of reference 9 which performed a nozzle position study on a 
45° delta wing at a 21°. For Xn/cr = 0.20, these data showed that the model with 
h/d = 1.0 generated more lift than with h/d 1.5 or 2.0. (See fig. 6 in ref. 9.) How-
ever, with xn/cr = 0.30, the optimum vertical position was h/d = 1.5, and with 

xn/cr 0.40, h/d = 2.0. 

An effort was made in figure 34 to compare the lift-producing capabilities of the dif-

ferent nozzle orientations for a 23.90. Generally, the configuration with xn/cr = 0.23, 

A = 440 , and h/d = 0.835 resulted in the highest increase in CL, while the configura-

tion with xn/cr = 0.23, A = 33 0, and h/d = 0.835 resulted in the lowest increase. 

CONCLUSIONS 

The present investigation was conducted to measure the effects of spanwise blowing 

on the pressure distributions of a trapezoidal wing with 
440 leading-edge sweep. Wind-

tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model 
angle of attack, jet thrust coefficient, and jet location. Results of this study lead to the 

following conclusions: 

1. Spanwise blowing had significant effects on the upper surface pressure field at 
high angles of attack. The largest suction pressures occurred at the inboard span station 

near the wing leading edge and diminished outboard. 

2. The pressure distributions obtained on this 44 0 swept wing with blowing are simi-

lar to those obtained on a highly swept wing which has a well-established leading-edge 
vortex without blowing. With no blowing the trapezoidal wing had very limited vortex flow. 

3. Full vortex lift was achieved at the inboard span station with a small blowing rate; 
successively higher blowing rates were required to achieve full vortex lift at increased 

span distances. 

4. Increased blowing rate increased span loading all across the wing; the highest 
loading occurred at the inboard span station, which is beneficial from a wing bending-

moment standpoint. 

5. The leading-edge suction analogy can be used to obtain reasonable estimates of 
increased section and total lift curves resulting from spanwise blowing up to wing stall. 
Section induced-drag polars were adequately estimated by the product of section lift coef-
ficient and the tangent of the angle of attack; the same was true for total induced-drag 

polars.
19



6. Spanwise blowing increases total lift throughout the angle-of-attack range, thus 
increasing the maximum lift coefficient and the angle of attack where this lift occurs. In 
addition, blowing improves the induced-drag polar, and extends the linear pitching moment 
to high lifts. 

7. Within the range of test variables, the configuration with a nozzle chordwise loca-
tion at 23 percent wing root chord, a nozzle sweep angle of 440, and a nozzle vertical loca-
tion of 0.835 nozzle diameter above the wing surface resulted in the highest increases in 

lift. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 3, 1975. 
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Figure 1.- Photographs of spanwise blowing on a rectangular flat plate (from ref. 9). 
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Figure 35.- Continued. 

64



MOMMEME 
MENSESEEMEEMNEW

IIMII 
mom 

MEN 
IONESEENENIONS 

0
JOE 
ME

E 0 
MEEIIIIIIIIIIIIIIIs

ONION 
MENOMONEE NONNI 

iiuhINhII1uuunu•. 
UA:ILili!!!u 

MONSON mosoll 
INflIHUHUffUNHIUU 
NoIIHUIUHIHUHIII 
MENEEMEN MENEM 
"INIMEEME INNIII 
ii•iiiuuuiiiiiu 
MEMO Noniiiniu 
NEONnuiuuuunrnuu 
NoHHINIHUIINUHIII 
no AilhIUIfthIIUXIU1 
No 0 MEN 0HI 
M., No NINEHH 

sm"m 
'iluIuuulniII•nu 
iiiiiiunuuoiiuuu

-7 

-6 

-5 

-4 

C7

-2 

-I 

-5 
-4 

-3 

-2 

C7

-1 

-5 

-4 

-3 

-2 

Cp

-I

0	 .2	 .4	 .6	 .8	 2.0	 0	 .2	 .4	 .6	 .8	 1.0 

(c) a = 8.00.

Figure 35.- Continued.

65 



-1 

-6 

-5 

-4 

cp	 3 

-2 

-1 

-5 

-4 

-3 

-2 

cp

-I 

-5 

-4 

-3 

-2 

CO

-I

.2	 .4	 .6	 .8	 LO	 0	 .2	 .4	 .6	 .8	 LO 
zIc	 x!C 

(d) a = 12.2°.

Figure 35.- Continued. 

66



-7 

-6 

-5 

-4 

C7

-2 

-5 

-4 

-3 

-2 

CS

-1 

-5 

-1 

-3 

-2 Co

.5

liHIllll 
1llWllITh 

I1IAhI1IIIIU!1!!!UA 

millimiHIUUUUU• 
.IflhIIIA!uAhiHflI. 
11111011111111111milmU• 
ii.uuui.u.II1,uhIIuI 

UmUR.0 M MEN 4111EME 
MEN 

MI

31HIMMUNIIIIII mom 
IIIIIIIIII M1 

IN 
Mom 

•UMIUIINUUlfl
0 mm 

ME 
mm- IMIIIIUIIIIIINUI•

11.1Isom EMKINEEIIIIIIIIIIIII EEO 
0 M I millmo MEMO SE, IMMEM

liimmmmmmmmm 
00

MEMMI 

JIllWfl mammossom 

Immmill MEEMI 0 IUHflIflllllffl
0	 .2	 .4	 .6	 .8	 1.0	 0	 .2	 .4	 .6	 .8	 1.0 

1c

(e) a = 16.40 . 

Figure 35.- Continued.

67 



-8 

-7 

-6 

-5 

-4 

CD	 3 

-2 

-1 

-5 

-4 

-3 

-2 

CR

-I 

-5 

-4 

-3 

-2 

C2

-I

0:Um MAIN:I . ..... 

--

loom

- maw

M m 

Mrsrm•••AAIIUUI•• 
NINE mmNONE

SEEM Em 
011hllN•UAIHUIU•U•• 
III II Ins IRE=ME MmIlimmil11-H"BAR, M 

JLJ 

!Iii1UINIi1I•ilma 
•UIUIUmflUIIIU

1111 milli 

upoil
IIIU••UflIIII1N•
0 iuiii JIM 

EEM INftftU IMIN

iliiu.iu 11 I• BUS-1311111 Was rm 

..:_Ii. .1 
IIIUN--IIU II• 
-: A..il - SOL 

OEM 
No

0	 .2	 .4	 .6	 .0	 LO	 0	 .2	 .4	 .6	 .8	 La Ic 

(f) a = 20.4°.

Figure 35.- Continued. 

68



IWIIIIII!II lim==Mlmmllmmmmmm MEN Im 
ON 111PEEM m! is IN11I mmmmmmmlim 

0 ROME 1 
I IiiiIIiIiI.fl... 

KIMHiU••IIIII1IiiU•O 
11111IMMEMEIuA...i. 
MINIM iIIiiIiIU1!iUU 

Imp"! EXAMINE 
MEMO MENEM 

MEMNON IN 1 11 
No —'. 
MHUIII1• 

U IUi1IIIIflhI0, 
::IIIIIUHUMollH Ii 
IIUUUUI1IIUIIN II U 
EflUHAUã-I 

ONEIIiNU 
0 NONE

'--'—III"-" 
MIUI 

U No
MEU II 

Meom.-UHM MENEIIUUI1U 
MORENO-,IIUIULL..III 

NIiiUIUUI1NI1ii 
IIIIIIIUIINIMENINIUUI

-7 

-6 

-5 

-4 

C7	 _ 

-2 

-I 

-5 

-4 

-3 

-2 

C2

-I 

-5 

-4 

-3 

-2 

CS

-I

0	 .2	 .4	 .6	 .0	 LO
xk

0	 .2	 .4	 .6	 .8	 3.0
xIc 

(g) :Y = 23.50 . 

Figure 35.- Concluded.

69 



-1 

-6 

-5 

-4 

C2

-2 

-I 

-5 

-4 

-3 

-2 

CS

-1 

-5 

-4 

-3 

-2 

CS

-1

0	 .2	 .4	 .6	 .8	 1.0 0	 .2	 .4	 .6	 .8	 L0
Ic 

(a) CT = 0, 0.02, and 0.04. 

Figure 36.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for 
= 23.50; xn/cr = 0.15; A = 44°; h/d = 0.835. 

It']



-1 

-6 

-5 

-4 

Cl	 _3 

-2 

-I 

-5 

-4 

-3 

-2 

Cl

-I 

-5 

-4 

-3 

-2 

Cp

-1

....illwrnwIom 

RIME Emmmmm=mml 0 M UfflllW 
111MOMMIN

ll 

M MINES 

IN noME M MEMMEME 
MENOMONEEMENMINNIE OEM 

RIME INRIUUUUUU 

1111INGIM 
0 0 EMEM OEM 

0 MOMME MI Sim 
ME 

mIMENE 

M
EN== EMEME 
sm.m.l....11MMEMEM 

0ME 

MI MINE 
:

Wl2mj!4.mMm .Rmq,m_lmmmm 
MMEM'SOMMENE 

MEMEMEME MEME 
WII 

uwThll 
ME a ON MEMEMEM MEMENEM 

Em 
MEMEME EMOMMEME 

MENIMMEMOMMEEmMEMMEMI 
MEMO NHThL1

I	 .2	 .4	 .6	 .8	 1.0
lc

0	 .2	 .4	 .6	 .8	 LO 

(b) CT = 0.06, 0.08, and 0.10.

Figure 36.- Continued.

71 



(c) CT = 0.12 and 0.14. 

Figure 36.- Continued. 
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Figure 37.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for 

a range of angle of attack. xn/cr 0.23; An = 440 ; h/d = 0.835. 
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Figure 38.- Effect of nozzle thrust coefficient on wing-surface pressure distributions 
for a = 23.9°; Xn/cr = 0.23; An = 440; h/d = 0.835.
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Figure 39.- Effect of nozzle thrust coefficient on wing-surface pressure distributions 
for a range of angle of attack; xn/cr = 0.23; A = 44 0; h/d = 1.843.
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Figure 40.- Effect of nozzle thrust coefficient on wing-surface pressure distributions

for a = 24.00 ; xn/cr = 0.23; An = 440; h/d 1.843. 
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Figure 40.-, Concluded.
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Figure 41.- Effect of nozzle thrust coefficient on wing-surface pressure distributions 
for a range of angle of attack. Xn/Cr = 0.32; An = 44 0 ; h/d = 0.835. 
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Figure 44.- Continued. 
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Figure 45.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for 
a range of angle of attack. xn/Cr = 0.23; An = 33 0; h/d = 0.835. 
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Figure 46.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for 

a = 23.8°; xn/Cr = 0.23 A = 33 0; h/d = 0.835.
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Figure 47.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for 
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Figure 47.- Continued. 
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Figure 47.- Continued. 
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Figure 48.- Effect of nozzle thrust coefficient on wing-surface pressure distributions for

a = 23.80 ; xn/Cr = 0.23; A = 330; h/d = 0.835; transition strips. 
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TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Techndlogy Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546
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