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FOREWORD

This document is Volume 1 of the final report of a program conducted by Rocket Research
Cerporation for NASA-JSC (Contract NAS 8-28950) entitled “Monopropellant Engine Investigation
for the Space Shuttle Reaction Control System.”” An additional task added during the course of the
program was the detailed design, analysis, and testing of a catalytic gas generator for the Space
Shuttle APU. Results of the gas generator task are presented in a separate document, Volume [, of
this final report.

The oroject manager for the program was Dr. Don L. Emmons. Mr. Douglas D. Huxtable was
respoisible for the technical direction of the design, analysis, and experimental efforts. Major
contributors to the program included K. W. Arasim, M. Archer, C. Cunningham, J. Daly, Dr. J. D.
Rockenfeller, T. O. Roubidoux, Dr. E. W. Schmidt, I. Stewart, and the many manufacturing
personnel involved in the RCS fabrication and assembly. Mr. L. R. Blevins, NASA-JSC, was the
technical monitor.
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1.0 INTRODUCTION

1.1 GENERAL

Presented herein are the results of an investigation to determine the capability of a monopropellant
hydrazine thruster to meet the requirements specified for the Space Shuttle RCS. Of those
requirements (Table 1-1), the major concern was whether the 100,000 seconds life could be
achieved at thrust levels within the specified range. Although burn times in excess of 200.000
seconds have been demonstrated at low thrust levels, the corresponding total impulse values have
been substantially lower than that required for the Space Shuttle RCS. Two other areas of concern,
involving the catalyst, were: 1) the effects of the relatively high vehicle vibration levels on catalyst
attrition and 2) the effect of exposure of the catalyst to air during atmospheric reentry of the
vehicle. The goal of the present program was to investigate these problem areas. as well as others
defined below. and then design, fabricate and demonstrate the life/performance capability of a
monopropellant hydrazine RCS engine.

Table 1-1
SPACE SHUTTLE RCS SPECIFIED REQUIREMENTS

Thrust 400 — 1,100 Ibf
Feed pressure 300 psia
Minimum impulse bit 30 !bf-sec
Maximum pulse frequency 5 Hz
Maximum steady state burn 600 sec
Burn-time per mission 1,000 sec
Pulses per mission 2,000
Life:

Total on-time 100,000 sec

Total impulse (min.) 40 x 106 Ibf-sec
Environment:

Random vibration 28 g rms

1.2 PROGRAM SCOPE AND OBJECTIVES

In order to accomplish the overall objective the program was divided inio the following five major
tasks:

Task | Preliminary Design Investigetion

Task Il  ~  Engine Detiled Design and Analysis

Task 111 Hardware Fabiication, Test, and Evaluation
Task 1V Hardware Refurbishment and Delivery
Task V. - Post-Test Disassembly and Inspection

i
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The overall flow of the program is shown in Figure 1-1. The scope and objectives of each task are
presented in the ensuing paragraphs.

1.2.1 Task I — Preliminary Design Investigation

The objective of Task | was to establish a cost-effective design approach which ensured maximum
confidence that the specified engine requirements could be achieved with high reliability and
minimum development/operational costs. To achieve this objective, the Task I effort was divided
into subtasks with the following objectives.

Bed Retention Design Studies - The objective of these studies was to optimize the design of
compartmented catalyst beds to withstand the vibration/acoustic/shock and acceleration environ-
ments experienced by the Space Shuttle during launch and reentry. Parametric tests were conducted
to evaluate various compartment geometries under simulated mission conditions. Results from these
studies included the effect on catalyst attrition of compartment dimensions and total time of
exposure of the bed to the launch/reentry environment.

Material Studies — The objective of these studies was to select materials for fabrication of the
engine components capable of meeting the specified engine life requirements. Tests were conducted
to evaluate effects of nitridation. oxidation, and corrosion due to high temperature operation and
exposure to humid salt air. Results were obtained of material nitridation/corrosion characteristics as
a function of time of exposure to the above environments at various thermal conditions.

Engine Optimization Studies - The objective of these studies was to analytically evaluate the effect
of chamber nressu-e and bed loading on engine weight. cost. life, and operating/performance
characteristics with the goal of selecting the optimum engine operating conditions. In support of
these studies subscale tests were conducted with the objective of determining the optimum catalyst
composition (i.e.. ratio of spontancous to nonspontaneous catalyst) to minimize catalyst cost
consistent with meeting the specified engine performance and life requirements. The primary result
from this effort was the selection of the optimum cngine operating conditions (chamber pressure
and bed loading) and the corresponding catalyst bed composition.

Preliminary Engine Design Studies - The objective of this subtask was to generate preliminary
designs of various engine configurations using the results obtained from the previous subtasks. The
engine designs varied primarily in the injector design approach and an all-welded design versus a
replaceable catalyst bed design.

Design Selection - The objective of this task was to conduct the necessary preliminary analyses and
design studies required to select an optimum engine design for the Task 11 effort based on
development/operational cost, reliability, weight, and servicing/maintenance requirement considera-
tions.

Catalyst Studies - In addition to the above subtasks, tests were conducted on in-house funds to
evaluate the catalyst oxidation contamination problem and to establish the catalyst thermal
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expansion characteristics. Results from these experiments consisted of:: 1) effect of temperature and
pres-ure on catalyst oxidation: 2) effect of humid. salt air on catalyst activity and life: and 3)
effects of temperature and catalyst bed geometry or: thermal expansion characteristics.

1.7 Task II — Engine Detailed Design and Analysis

The primary objective of this task was to establish a detailed design of the selected engine supported
with thorough analytical studies. The goal of the design and analytical studies was to ensure that the
RCS engine design submitted to test fully demonstrates the capability of monopropellant
technology to meet the Space Shuttle requirements. The end result of this effort was preparation of
detailed engineering drawings of the engine suitable for fabrication. Additional results consisted of
justification for the selection of specific engine design features/materials and prediction of the
engine performance, thermal, hydraulic, and stress characteristics. Service, maintainability. ond
checkout requirements were also defined as wee potential safety concerns.

1.2.3 Task 1l — Hardware Fabrication, Test. and Evaluation

The primary objective of this task was to demonstrate by test the applicabilitv and limitations of
monopropellant hydrazine RCS engines for the Space Shuttle using current technology. Specific
objectives of the test program were to: 1) verify the engine design, and 2) demonstrate the engine
capability to meet the stated design requirements and goals. Results to be obtained from the test
program consisted of: 1) demonstration of engine lifc capability under simulated mission
conditions: 2) demonstration of number of starts obtained with a preheated bed:; 3) measured
performance characteristics; 4) sensitivity of washout during long steady state burns: 5) vibration
damage susceptibility to the catalyst and engine components: 6) thermal performance: 7)
performance during off-limits operation: 8) effects of the test firings on wear of the injector and
catalyst bed assembly. catalyst contamination, nitriding of screens. etc.. and catalyst condition: 9)
post-test calibration data for the injecter and valve: and 10) general servicing and handling
characteristics.

During the course of the program an additional task (Task 111A) was established with the objective
of evaluating potential improvements ot the engine designed in Task II.

A third subtask was added with the objective of evaluating the capability of the Space Shuttle
engine configuration to satisfy the Viking 600-1L. engine life, performance. and flow rate
requireinents. This was to be accomplished using subscale hardware. Results of the tests are
presented in Reference 1-1.

1.2.4 Task IV — Hardware Refurbishment and Delivery

The objective of this task was to deliver an engine to NASA that was refurbished including any
design modifications recommended und approved as a result of the Task 1 effort.
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1.2.4.1 Task IV A — Design, Fabrication, Test, and Delivery of a Gas
Generator Assembly
During the program an additional task was undertaken for the dc=ien und evaluation of a catalytic
gas generator capable of meeting the Space Shuttle APU <« ci.>nts. The details of that
investigation are presented in Volume II of this final report. i

1.2.5 Task V — Post-Test Disassembly and Inspection

The initial objective of tnis task was to establish the effects of the v... firings conducted by NASA
on the RCS engine components. The task was revised, however, to accomplish the same objective on
the Transtage engine tested by NASA. Results of the investigation are reported in Reference 1-2.
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2.0 SUMMARY OF RESULTS

The major results of the RCS investigation are summarized in this section of the report. Results of
the gas gene:ator investigation are presented in Volume II.

2.1 TASKI — PRELIMINARY DESIGN INVESTIGATION

Preliminary Design Studies — During the Task 1 effort, studies were conducted to determine the
optirnum RCS design approach for meeting the Space Shuttle requirements. It was concluded that a
radial outflow bed design was optimum and that the bed should be compartmented to minimize
catalyst attrition. On the basis of analysis, it was determined that the RCS chamber pressure and
catalyst bed loading should be 153 psia and 0.045 Ibm/in.2-sec, respectively. for optimum life,
weight, cost, and engine size.

Catalyst Bed Retention -- A series of tests was conducted using various catalyst bed compartment
configurations to estat:lish the effect of random vibration on breakup of the catalyst granules. Two
catalyst containers, one simulating a radial bed design and the other an axial bed design, were
subjected to vibration (29 g rms) in ~ach of the three orthogonal axes for a total duration of 300
minutes. Test variables included: 1) catalyst bed size, 2) packing density, and 3) particle size. The
effect of voids in the bed was investigated by preioading the ted with initial voids of 5 and 10
percent. Maximum breakup rate was 0.02 percent per minute of vibration at 29 g rms. It was
determined that an initial void in the bed had negligible effect on breakup rate. Used catalyst had
the highest breakup rate. It was concluded that the effect of vehicle launch vibration on catalyst
attrition was orobably not a serious problem.

Catalyst Studies — Laboratory experiments were conducted wherein Shell 405 catalyst was exposed
to flowing air for 30 minutes at temperatures ranging from 200 to 1,7000F. Tests were also
conducted with an ozone/air mixture (15 ppm 03) typical of the upper atmosphere. Following
exposure, the catalyst sample was tested for ignition delay and hydrogen chemisorption.

The results showed that a marked change occurred in both ignition delay and hydrogen
chemisorption at a temperature of approximately 1.2000F. The ignition delay characteristics
indicated very little oxygen damage at exposure temperatures below 1,2000F, whereas, hydrogen
chemisorption indicated a continual decrease in surface area with increasing temperature. The
results obtained with the ozone/air mixture had the same trend, aithough showing somewhat more
degradation than that obtained with atmospheric air. It was postulated, however, that ¢ talyst
damage during reentry of the Space Shuttle was not likely to occur due to outgassing effects. This
hypothesis was verified in tests conducted both at RRC and NASA-JSC wherein air was directed
into the nozzle of thrusters tollowing a firing. On the basis of these test results, it was cor;cluded
that outgassing provides sufficient protection to prevent catalyst oxidation damage for the Space
Shuttle application.
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l Materials Studies — An extensive materials investigation was undertaken to provide the necessary
data for selection of satisfactory materials for fabrication of the RCS components. Tests were ‘
l conductey on severz! candidate materials Jor oxidation, corrosion, and nitriding resistance. The -

g N Y S PO IR

material nitriding t~sts were conducted for a 30-hour duration using a synthetic gas mixture at

1,8000F . Tests were also conducted for the same duration with the nitriding environment at 1,650

and 1,9000F. These tests consisted of exposing sample materials to a flowing gas mixture of J
ammonia 2nd nitrogen. After exposure to the nitriding environment, the samples were tested for
weight change, hardness, ductility, and depth of nitriding. Most of the materials evaluated showed
excellent resistance to nitridation.

Oxidation and salt corrosion tests were also conducted using nitrided samples. The oxidation tests
were performed by cyclically exposing the sample material to an air atmosphere at 1,6000F for a
total of five cycles. Each cycle was 30 minutes in duration followad by a rapid air quench.

The salt corrosion tests (3C days) were conducted per ASTM Specificatior B117. Samples used for
this test were previously nitrided for 6 hours at 1,8000F. In general those materials with iron in
their composition showed less resistance to corrosion. It was postulated that nitriding reduced the
-~ corrosion resistance of all the samples evaluated.

] § On the basis of results of the above studies, as we!l as a consideracion of materiz' physical
' & properties, Hastelloy B was selected for fabrication of the RCS components. Its high strength at
elevated temperature and low coefficient of thermal expansion were significant factors in the
selection.

4
$ -

Subscale Testing — A cost-effective test technique was developed which used a small wedge-shaped
chamber configured to the exact size and geometry of a single catalyst compartment. The subscale
bed assembly consisted of an injector element, inner catalyst bed, and outer catalyst bed. The bed
assembly was installed in a chamber which incorporated a nozzle sized for the desired operating
pressure. This subscale test technique provided diiect scalability of subscale test resuits to the
full-scale engine providing a technique for conducting optimization studies at low cost. Subscale
tests were conducted to: 1) evaluate various low cost outer bed catalysts, 2) evaiuate various
compartmentation techniques. 3) determine the mirimum acceptable quantity ¢ Shell 405 for the
inner bed. and 4) determine life capability of the catalyst d»iiug simulated mission firings.

[

Life tests conducted with the LCH-101 catalyst {(containing iron, nickel, and cobalt) revealed
degradation due to long term exposure to the high temperature decomposition products. An RRC o
proprietary catalyst (LCH-202) was subsequently evaluated and found to be a superior catalys. for
use in the outer bed. A total of 263 hours firing time was accumulated on thi; catalyst during
subscale testing.

Two separate techniques for compartmentation of the catalyst bed were evaluated using ihc
subscale test cechnique. The two compartmentation techniques included: 1) conventicnal and 2)

I
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scalloped methods of catalyst containment. The conventional approach was based on use of the
Viking bed design with spacers to provide compartmentation. The scalloped technique was based
on: 1) tha use of slots in the bedplates to eliminate screen wires and 2) a bedplate design approach
to minimize thermal expansion effects. A total of 9.7 hour: was accumulated on the subscale engine
incorporating the scallopec bedplate design. This approach was subsequently adopted for the
full-scale RCS engine.

Tests were conducted with varying quantities of Shell 405 in the inner bed to establish th:
minimum quantity required for the RCS engine. A minimum quantity of Shell 405, corresponding
to 25 percent of the total catalyst, was found to provid. acceptable performance. Based on life
considerations a value of 35 percent was recommended for the RCS engine.

2.2 TASK Il - ENGINE DETAILED DESIGN AND ANALYSIS

Using the results of the Task I studies the detailed design of the RCS was initiated. The final design
of the engine is shown in Figure 2-1. A design summary is presented in Table 2-1. Photographs of
the components in various stages of assembly are shown in Figures 2-2 through 2-5. The propellant
valve used in the test program was a throttling valve developed by E-Systems, Inc. for the Viking
Lander engine, modified to perform as an on-off valve.

The engine incorporated a number of unique design features including:

Slotted Bedplates — Eliminated the requirement of screen wires conventionally used for catalyst
retention.

Compartmented Catalyst Bed — Incorporated 12 separate catalyst compartnients to minimize
differential thermal expansion effects.

Low Injection Mcmentum — Incorporated 24 injection elements to minimize .njection momentum
and maximize propellant distribution to the catalyst.

Low Cost Catalyst — Shell 405 catalyst (25 to 30 mesh) was used in the inner bed and an RRC
proprietary low-cost catalyst (14 to 18 mesh) was used in the outer bed, with the Shell 405
comprising 35 percent of the total catalyst weight.

Thrust Chamber Liner — Used between chamber wall and catalyst bed to minimize heat transfer
during start transients and reduce temperature gradients in the thrust chamber walls.

Cavitating Venturi — Incorporated in the valve outlet to reduce surge flow during start-up and
maintain uniform flow rate/thrust throughout life.

Refurbishable Catalyst Bed — Incorporated removable end closures to permit refurbishment of
catalyst bed without replacing bedplates or injector body.

Detailed analyses were conducted for the RCS with predictions made of the thermal, structural, and
performance characteristics of the engine. In addition, a design safety and reliability assessment was
conducted, and maintenance requirements of the RCS defined.
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2.3 TASK Il - HARDWARE FABRICATION, TEST, AND EVALUATION . "

Following assembly of the engine, a test program was initiated consisting of a sea level acceptance
test firing and performance mapping firings conducted under simulated altitude conditions.

The acceptance test firing consisted of a 10-second steady-state firing, followed by a 30-minute
down time, and a final series of 10 pulses at 250 msec ON/250 msec OFF. The engine successfully
comrpleted the acceptance test with excellent performance during both steady-state and pulse-mode
operation. Table 2-2 presents a comparison of the design and measured performance values obtained
during the steady-state firing. The delivered values for characteristic velocity and bed piessure drop
were within 1% of predicted values.

Table 2-2
STEADY-STATE ACCEPTANCE TEST RESULTS
Parameter Design Goal Acceptance Test
T Characteristic velocity 4,350 ft/sec 4,361 ft/sec :,
- Chamber pressure 153.3 psia 153.7 psia i
Pcu roughness - +3.0 psid
Pcd roughness - *1.5 psid
- Flow rate 2.108 Ibm/sec  2.108 Ibm/sec
oo Bed drop 41.5 psid 41.7 psid
e Response time 700 msec 425 msec
(cold bed)
Tailoff time - 52 msec

.

Puise-mode data also showed excellent agreement with predicted values. Maximum peak pressure
was 162 psia (8 psi overshoot) and the integrated pressure-time values varied less than 1.1% for the
final six pulses.

Uniform gas temperature was achieved around the circumference of the catalyst bed. Thermo-
couples monitoring gas temperature at the exit of the catalyst bed at each angular 30° recorded a b
nominal gradient of only 40°F. :

, Following the acceptance test the engine was removed froi. the sea level test stand and stored for
. approximately 1 week while the altitude facility was prepared for the performance mapping tests.
The first altitude test consisted of a single pulse to check out the propellant system. All systems
functioned normally; however, no chamber pressure rise was observed in the engine. Subsequently,

PR

P the engine temperature increased reaching a value of 80CCF. The engine was then allowed to cool
k# i, and a second pulse initiated. This pulse exhibited normal pressure rise and thermal response with
‘ transient times similar to the acceptance test values. It was postulated that residual hydrazine in the

T engine following the acceptance firing had poisoned the catalyst, and that the high temperature (

L achieved by the bed following the first pulse in the performance mapping test, restored the catalyst

to near original activity.

210 4




The performance mapping tests were then continued with four successive 100-second steady-state
firings. Each of the four steady-state firings had performance characteristics similar to those
obtained during the acceptance test firing. Some anomalies were noted, however, in temperature
distribution and bed pressure drop.

Pulse-mode testing was then initiated with satisfactory performance obtained during the first two
sequences (0.1 sec ON/9.9 sec OFF and 0.1 sec ON/99.9 sec OFF). Some pulse distortion was noted
during the initial three pulses for the second sequence. During the third pulse sequence (0.1 sec
ON/999.9 sec OFF), pulse shape distortion was observed and the sequence was terminated after
accumulating six pulses. It was postulated that the pulse distortion was due to operation in a
marginal thermal recire. The next duty cycle in the sequence was then initiated (0.1 sec ON/0.99
sec OFF), at which time a pressure spike occurred with subsequent loss in performance. The only
visual damage to the engine following shutdown was loss of one catalyst bed end closure.
Subsequent inspection of the engine, however, indicated that the pressure spike caused a structural
failure of the injector body assembly and subsequent loss of catalyst from the bed.

A detailed teardown and failure analysis was then conducted to determine the cause of the
structural failure. Based on an extensive investigation, including subscale testing, it was concluded
that the failure was due to insufficient injector thermal margins for low duty cycle operation, which
resulted in propellant boiling and decomposition within the injector manifold. This conclusion was
verified using heated injector elements which were pulsed at conditions similar tc those encountered
during the RCS tests. From these tests, as well as analysis of the RCS iest data, it was determined
that the RCS injector encountered a worst-case thermal condition when the injector temperature
was in the range 700 to 1,1000F.

Recommended design changes to increase the irjector thermal margin included: 1) provide smooth
transition from the circular feed passage to the Rigimesh manifold, 2) reduce injector holdup
volume, and 3) reduce mass of metal in the injector at the juncture of the 12 feed passages.

Unfortunately, as a result of funding limitations and NASA redirection to emphasize the Space
Shuttle APU application over the RCS. the above design modifications were not subsequently
incorporated and tested. However, sufficient analytical studies, subscale testing, and APU GG
testing over extreme duty cycle conditions were conducted to provide assurance that a 900-Ibf RCS
thruster can be built and operated with no duty cycle limitations over Space Shuttle thermal
environmental extremes.
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3.0 TASKI - PRELIMINARY DESIGN INVESTIGATION

The basic approach adopted for the Task I studies is shown in Figure 3-1. The baseline design
approach selected for the initial design studies was the Viking 600-lbf REA, which was under
development by RRC for the Viking Lander. Using this engine as a starting point, studies were
conducted of the major problem areas anticipated in developing the Space Shuttle RCS engine, with
design refinements then made to the baseline engine on the basis of results of the problem area
investigations. Results of the various studies are presented in the ensuing paragraphs.

3.1 PRELIMINARY ENGINE DESIGN STUDIES

On the basis of preliminary analyses of engine size, weight, and life, a radial bed was baselined as the
optimum design approach for engines in the 400- to 1,100-1bf thrust range. To meet the life
requirements, it was further postulated that the catalyst bed should be divided into a number of
small compartments. An isometric view of the preliminary baseline design is shown in Figure 3-2.
This engine was identical to the Viking engine except for compartmentation of the catalyst bed.
The thrust chamber assembly consisted of an injector for distributing propellant to the catalyst bed,
a catalyst bed of granular catalyst to initiate spontaneous decomposition of the monopropellant
hydrazine, a catalyst bed support system consisting of perforated cylinders and plates to retain the
catalyst, and an outer case assembly to contain pressure and direct flow of the reaction products to
the nozzle. The catalyst bed was divided into an inner bed containing fine mesh Shell 405 catalyst
and an outer bed containing a less active (and low cost) catalyst fabricated by RRC and designated
LCH-101. Screen wires were attached to the bed cylinders to retain the catalyst. The injector
consisted of six Rigimesh injection elements oriented longitudinally along the chamber axis.

One ot the goals of the preliminary design investigation was to establish the optimum size of the
catalyst bed compartments and the optimum method of propellant injection. Two fundamentally
different methods of injection and bed compartmentation were studied (Figures 3-3 and 3-4). The
technique used for the Viking engine, shown in Figure 3-3, has injection elements located
longitudinally along the axis of the engine. Radial compartment dividers are equally spaced between
the injection elements, resulting in the same number of compartments as injection elements. Axial
compartment members can be used to further compartment the bed as shown in the lower left-hand
figure.

Shown in Figure 3-4 is the other injection technique evaluated which incorporated the use of
circumferential injection elements. Compartmentation of the bed is similar to that shown for the
longitudinal injector design.

Design studies were undertaken for both the circumferential and longitudinal injector design

approaches with the goal of selecting the optimum approach to bs used in the Task II studies.
Preliminary analyses were conducted to determine the thermal, structural, and performance
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characteristics associated with each approach. In order to maximize catal, st life, it was a design goal
to incorporate as many injection elements as possible consistent with thermal restraints. The
primary problem encountered in distributing the propellant more uniformly to the cat: 'yst bed is
that of propellant boiling in the injector manifold. Consequently, analyses were conducted on a
preliminary basis to determine the propellant thermal margin for the various design approaches.

Shown in Figures 3-5 and 3-6 are various designs for the longitudinal and circumferential injection
approaches, respectively. From a design viewpoint, the primary problems with the longitudinal
injector design were twofold: 1) providing axial compartmentation, and 2) propellant manifolding.
In relation to the latter, a problem exists at the junction where the propellant branches from the
single inlet tube to the multiple tubes leading to the injection elements. The problem becomes more
severe as the number of branch passages increases.

The primary prob!>ms associated with the circumferential injector designs were: 1) more complex
injector manifold, 2) relatively high propellant hoidup volume, 3) higher engine weight, 4) larger
size, and 5) more costly to fabricate. Because of the many problems associated with the
circumferential injection approach, the conventi: -al longitudinal injector was selected for further
study.

Thermal analyses were then conducted to determine propellant thermal margins for longitudinal
injectors having 6, 8, 10, and 12 injection elements. Thermal margin was defined as the difference
between the propellant saturation temperature and the calculated fluid temperature at the point of
injection into the catalyst bed. Results of the calculations are presented below:

No. of Injector AP AT =Tgat - To
Injection Elements (psid) (°F)
6 18.7 112
8 21.3 103
10 23.6 95
12 25.0 86

These results indicate that the 12-element injector, although having significantly less thermal margin
than the 6-element injector, has sufficient margin to warrant its implementation for the Task 11
detailed design.

3.2 BED RETENTION STUDIES

The primary objective of these studies was to optimize the catalyst bed design for maximum life.
On the basis of in-house catalyst attrition studies, it was concluded that the primary design variables
affecting catalyst life related to 1) the technique used for catalyst retention and 2) propellant
injection momentum. A review of the life capability of existing catalytic thrusters revealed that
smaller thrusters generally had substantially longer demonstrated life tian that o large thrusi...,
indicating that retention of :he catalyst in small volumes may be an instrumental factor in achieving
long life. In support of this hypothesis, cal - laiions were performed to determine void volume
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growth in the catalyst bed of various size thrusters resulting from differences in thermal expansion
of the catalyst and the bed retaining walls. Tnese calculations showed that rather large void volumes
occur in large catalyst beds as a result of difterential thermal expansion during a firing. It was
postulated that these voids lead to catalyst attrition due to 1elative movement between particles
induced by vehicle vibration and/or injection of propellant into the bed. Consequently, a variety of
design approaches was investigated with the goal of minimizing differential thermal expansion
effects. On the basis of results of these design studies, it was concluded that dividing the catalyst
bed into small compartments offered the simplest and most practical solution to the problem.
Although compartmentation of a given design does not reduce the total void volume introduced by
thermal expansion, it does prevent the accumulation of the total void in one location.

In conjunction with the above analyses, studies were also undertaken to establish the effect of
random vibration on breakup of catalyst granules. Two catalyst containers (Figure 3-7), one
simulating a radial bed design and the other an axial bed design, were fabricated and subjected to
vibration (29 g rms input) in each of the three orthogonal axes fo a total duration of 300 minutes.
The objective of these tests was to determine the effect on catalyst breakup of 1) catalyst
compartment size, 2) packing density, and 3) particle size. The effect of voids in the catalyst bed
was investigated by preloading the bed with initial voids of 5 and 10 percent.

Results of the 25- to 30-mesh catalyst vibration tests are presented in Figure 3-8, where catalyst
fines are defined to include all catalysts smaller than the specified minimum mesh size. Maximum
breakup was 6 percent for 100 missions at 3 minutes of vibration per mission. The results show that
an initial void in the bed has negligible effect on catalyst breakup. Tests were also conducted with
longer beds with no difference detected in breakup rates. Screen wires attached to the inside walls
of the bed also showed no measurable difference on the breakup rate envelope shown in Figure 3-8.
Tests conducted with 14- to 18-mesh catalyst for 50 missions witk an initial 10 percent void
resulted in breakup of 1.8 percent, which was only slightly less than that experienced with the 25-
to 30-mesh catalyst. Tests conducted with used catalyst (25- to 30-mesh) had a breakup of 5.5
percent after 50 missions, which was slightly higher than that of the new catalyst.

In summary, the results of the catalyst vibration tests showed that generation of catalyst fines
occurred at a maximum rate of 0.02 percent per minute of random vibration at 29 g rms and was
independent of compartment size and/or voids. On the basis of these results, it was concluded that
the effect of vehicle vibration on catalyst attrition was probably not a serious problem.

Differential thermal expansion effects were also studied to determine the extent of cataiyst breakup
resulting from “cold starts” where the catalyst heats up faster than the retaining walls. A quartz
tube, 2 inches in length, was loaded with catalyst and heated to 1,8000F. The quartz had a
volumetric expansion ten times less than the catalyst, causing a theoretical catalyst compression of
0.037 inches. Breakup of the Shell 405 25- to 30-mesh catalyst was 2.1 percent (particles smaller
than 30 mesh). The corresponding breakup for the LCH-101 14- to 18-mesh catalyst was 0.65
percent. Based on the results of these tests, it was concluded that thermal expansion effects
resulting from cold starts would have only a secondary effect on catalyst loss.
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3.3 ENGINE OTPIMIZATION STUDIES

The primary goal of the engine optimization studies was to select an engine configuration based on
optimization of life, weight, cost, performance, and size. The primary variables used in the
optimization included chamber pressure, bed loading, catalyst bed geometry and composition, bed
pressure drop, and system hardness ratio defined as the ratio of the liquid pressure drop to
downstream chamber pressure. The intent of these studies was to determine only the relative effects
of the pertinent variables on the parameters to be optimized. Consequently, proportionality type
equations were introduced and computations made for variations in size, weight, and cost of a
bseline engine as a function of the primary variables. The baseline engine selected for these studies
was a 1,050-1bf thruster for which detailed dcsign data was available. Perturbation of this design was
accomplished using basic design equations with weight calculations based on scaling from the
detailed weight analyses for the baseline engine.

Shown in Figure 3-9 is a schematic of an RCS engine and feed system showing the nomenclature
used in the study. The basic design equations for the engine are as follows:

w
Bed loading =
"DBiLB
Aspect ratio = LpDp;
G0.554
Bed radial length = K| —5300
Peg™
Bed pressure drop = K, P
cd
PF - Pcd - APB
Hardness ratio = P
cd
Flow ratio = F/lsp

The parameters Ky and K2 are proportionality constants used to scale from the baseline engine
design.

An ammonia dissociation of 45 percent was sele. . early in the study as the optimum for
performance. Although higher performance can be achiev d at lower ammonia dissociation, it was
decided that lower values would adversely affect life due to the correspoadingly higher
temperatures. Additionally, designing for low ammonia dissociation results in short beds which are
more susceptible to washout. For these reasons, engine performance for the optimization studies
was assumed to be consistent with an ammonia dissociation of 45 percent.
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In order to solve the above set of design equations, it was necessary to specify values for four of the
variables. Values were accordingly selected for bed loading, chamber pressure, L/D ratio, and thrust.
A computer program was used to compute the engine design variables, as well as weight. for a wide
range of input values.

Results of engine weight computations are presented in Figure 3-10 showing the effects of bed
loading, bed pressure drop, and system hardness ratio. Based on chamber pressure stability
considerations, a minimum hardness ratio of 0.5 was selected. Bed pressure drop was limited to 70
psi based on life considerations. Consequently, a region bordered by the pressure drop and hardness
ratio limits was identified for acceptable operation of an optimized engine. For minimum engine
weight, the optimum bed loading and chamber pressure are located at the point where the bed
pressure drop and hardness ratio limit curves 1»tersect. As can be seen, the optimum bed loading
and chamber pressure for minimum engine weight are 0.045 Ibm/in.2-sec and 153 psid, respectively.

It should be noted that the results presented in Figure 3-10 are for a bed length-to-diameter ratio of
2.0. The effect of this parameter on engine weight is shown in Figure 3-11 for the conditions noted.
As can be seen, enginc weight decreases very rapidly with increasing L/D up to approximately 2.0.
For higher L/D values, the engine weight reductions are less pronounced. Catalyst weight, however,
increases with increasing L/D ratio. Since catalyst cost is a factor in optimizing the design, it is
desirable from a cost viewpoint to design for lower L/D ratios. Consequently, a trade exists between
engine weight and catalyst weight (cost) versus L/D ratio. Other factors used to optimize the L/D
ratio were envelope limitations and injector thermal margin, both of which generally favor lower
L/D ratios. Consequently, an L/D of 2.0 was selected as optimum based on the available data and
pasi design experience.

The effect of bed loading on the maximum diameter of the chamber is shown in Figure 3-12 for
various bed pressure drop values. The limiting hardness ratio line is also shown.

Relative production cost as a function of bed loading is presented in Figure 3-13. The relative costs
of engines at various thrust levels and chamber pressures are also shown. Production costs are seen
to be lower for engines operating at higher bed loadings. which is due to the smaller size of the
various engine components and quantity of catalyst.

Presented in Figure 3-14 is a comparison of the relative engine cost. weight, and size as a function of
hed loading. Since it is desirable to minimize all these parameters. it is apparent that the optimum
design is toward higher bed loading. However, as already noted. bed pressure drop and hardness
ratio limitations result in a maximum allowable bed loading of 0.045 Ibm/in.2-sec. Additionally, it
has also been established that higher bed loadings adversely affect catalyst life. Sinc ¢he exact
relationship between life and bed loading was unknown, it was decided to limit bed loading due to
pressure drop and hardness ratio considerations at 0.045 lbm/in.2-sec.

in summary, the design conditions for an optimuin engine configuration were established to be as
follows:
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BED LOADING OPTIMIZATION FOR SPACE SHUTTLE RCS
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G = 0.045 Ibm/in.2-sec
Pc = 153 psia

X = 45 percent

Lp/Di = 20

HR = 05

APB = 70 psi

PF = 300 psia

The above conditions are valid for thrust levels within the specified 400- to 1,100-1bf range.

3.4 MATERIALS STUDIES

An extensive materials investigation was undertaken to provide the necessary data for selection of
satisfactory materials for fabrication of the RCS engine components. Presented in the following
paragiaphs is a summary of the results obtained from the material studies. A detailed discussion of
the results is presented in Reference 3-1. Tests were conducted on several candidate materials for
oxidation, corrosion, and nitriding resistance. The material nitriding tests were conducted for a
30-hour duration using a synthetic gas mixture at 1,8000F . Tests were also conducted for the same
duration with the nitiiding environment at 1,650 and 1 .900°F. These tests consisted of exposing
sample materials to a gas mixture of ammonia and nitrogen. The sample materials were centrally
located in a quartz tube (2-3/8 inches in diameter by 36 inches in length) which was inserted in a
tube furnace. The material samples were 0.5 inch wide by 3.0 inches long with a thickness of 0.005
inch. The gas mixiure was forced through the quartz tube at a flow rate of approximately 2,800
ml/min. Gas samples were frequently taken at the tube exit and the gas composition determined by
use of a gas chromatograpt. The ammonia dissociation was nominally 50 percent. Hastelloy B, as
well as most materials evaluated, showed excellent nitridation resistance.

After exposure to the nitriding environment for the predetermined time interval, the samples were
removed from the furnace and tested for weight change, hardness, ductility, and depts of nitriding.
Results of the weight measurements, bend tests, and nitride layer depth measurements are
summarized in Tables 3-1 and 3-2 and Figure 3-15, respectively. The bend test was a simple free
bend with measurement made of the bend angle at fracture, or the radius formed at 180 degrees of
bend. The depth of nitriding was determined from photomicrographs and a Tukon hardness
traverse. The nitride depth, as measured from the photomicrographs, was taken as the maximum
distance where any structural change could be observed. The Tukon hardness results correlated well
with the photomicrograph results, although generally yielding slightly greater nitrided depths.

Oxidation and salt corrosion tests were also conducted using nitrided samples. The oxidation tests
were performed by cyclically exposing the sample material to an air atmosphere at 1,6000F for a
total of five cycles. Each cycle was 30 minutes in diration followed by a rapid air quench. Weight
gain or loss was measured for the first, second, and rifth cycles with the results shown in Table 3-3.
The results show that the majority of the materials exhibit excellent resistance to high-temperature
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Table 3-1

WEIGHT CHANGE DATA FROM
NITRIDING IN AMMONIA ATMOSPHERE

o

-w

Weight Change gm/cm2 x 10-4

Material 6 Hour 18 Hour | 30 Hour | 30 Hour | 30 Hour
1,8000F 1,800°F | 1,800°F | 1,650°F | 1,9000F
Hastelloy B 5.8 x 104 7.88 8.93 6.23 10.28
Hastelloy C276 12.6 17.47 21.93 14.29 17.98
Hastelloy X 22.0 308 34.69 21.19 23.46
Haynes 625 125 17.72 21.48 12.78 18.06
Haynes 188 17.2 23.4 28.57 21.42 19.71
Rene 41 13.7 23.0 28.20 18.80 25.93
Waspalloy 1.1 20.0 23.45 16.27 22.27
Duranickel 301 -1.94 -7.9
Inconel 600 8.55 11.4 12.91 9.18 9.64
601 12.0 20.76 24.80 151 24.12
617 10.4 17.65 22.69 16.26 18.28
625 11.7 21.0 25.32 13.29 217N
718 16.7 26.6 30.59 32.97 39.73
706 30.8 40.5 41.98 17.52 39.37
Incolov 825 28.2 40.6 47.66 31.M 44.59
L-605 20.6 26.6 28.76 20.43 17.64
Unitemp AF 2" DA 8.05 13.6 18.47 13.18 19.43
Fansteel 85 8.35 12.15
Fansteel 291 7.60 1.3 12.91 7.50 18.32
3-21
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Table 3-2
BEND TEST RESULTS
Bend Radius or Angle (inches or 0)
Material As 6-Hours | 18-Hours | 30-Hours | Comments
Received [at 1,8000F!at 1, 800°F] at 1 ,8000F
Hastelloy B .04 .07 125 19 Hardened
Hastelloy C276 .03 25 .25 1809 Hardened
Hastelloy X .06 .50 1500 600 Hardened
Haynes 188 .01 .25 44 100 Hardened
Haynes 625 .04 12 .06 25 Hardened
Rene 41 .015 90° 800 * 200 Transition
Waspalloy .01t5 .18 A2 .19 Hardened
Duranickel 600 .08 .04 .09 .05 Ductile
Duranickel 601 .09 .06 A2 06 Ductile
Duranickel 617 .09 A2 .08 19 Ductile
Duranickel 625 .06 12 A2 19 Ductile
Duranickel 706 12 15 600 * 19 Hardened
Inconel 718 12 A2 600 * 1800 Hardened
Incoloy 825 .015 .25 450 * 900 Hardened
Incolay L605 015 609 150 * 50 Hardened
Unitemp AF 21DA 200 450 9Q0 * 600 Softened
Fansteel 85 .01 50 50 * NA
Fansteel 291B .01 s¢ 50 * NA Hardened

*Indicates material failure

\
_/@/\\\\
\
\
BEND ANGLE

BEND RADIUS
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Table 3-3
OXIDATION EVALUATION

Weight Change, gm/cm2 x 104 I
Material Cl'i:tle ci:;: C:::?e Remarks
Hastelicv B 9.16 -4.41 -17.40 Spalled
c27¢ 5.55 5.056 -3.48 Spalled
X 4.13 0.690 1.26 Flaking
625 2.3 -0.230 0.115
Haynes 188 1.33 -0.290 0.115
rene 41 2.37 0.057 1.040
Waspalloy 1.79 0.000 0.460
Duranickel
Inconel 600 213 -0.280 0.167
501 2.20 -0.282 0.056
617 2.48 0.000 0.£62
25 3.37 -0.392 0.112
718 .97 0.335 1.120
Scaling with
706 437 -1.400 0.273 evidence of rust
beneath scale 'Y
incoloy 825 1.90 0.335 0.503
L605 2.64 -0.056 0.393
Unitemp 1.00 -0.233 0.175

*Sample material previously nitrided for 30 hours at 1,800°F exposed to air atmosphere at
1,600°F for five cycles for 1/2 hour each followed by rapid air cooled.
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oxidation. Hastelloy B, however, which consists of 30 percent Mo, shows rather pronounced effects
of oxidation. Molybdenum in alloys oxidizes at temperatures greater than 1,400°F with subsequent
spalling of the molybdenum oxide. A rhodium-coated sample of Hastelloy B was subjected to the
same tests and showed no eifccts of oxidation.

The salt corrosion tests (30 days) were conducted per ASTM Specification B117. Samples used for
this test were previously nitrided for 6 hours at 1,8000F. Visual observations relating to surface
appearance of the exposed samples is presented in Table 3-4. The rating for the various samples
ranges from 1 to 19 with the higher numbers corresponding to less observed corrosion. In general,
those materials with iron in their composition showed less resistance to corrosion. It is postulated
that nitriding reduced the corrosion resistance of all the samples evaluated.

On the basis of results of tiie above studies, as well as a consideration of material physical

"" properties, Hastelloy B was selected for fabrication of the engine components. Its high strength at

w elevated temperature and low coefficient of thermal expansion were significant factors in the
 : selection. Although the oxidation resistance of Hastelloy B is relatively low, it was considered a
minor problem which, if encountered, could be resolved by coating the critical parts with rhodium. 4

.

3.5 CATALYST OXIDATION STUDIES

Oxidation of catalyst resulting from operation within the atmosphere was considered a potential
problem especially in view of the multiple mission requirements. Several past studies have indicated :
- that the reaction of the Shell 405 catalyst active metal (iridium) and oxygen sometimes occurs with |
the formation of stable, inert compounds rendering the catalyst inactive. Studies were therefore i
undertaken to quantitatively determine the effect of an oxidizing environment on catalyst activity ,
4 under various temperature conditions. Presented in the ensuing paragraphs is a summary of the |
catalyst oxidation studies. A detailed discussion of the studies is presented in Reference 3-2.

13

an

-v

Laboratory experiments were conducted wherein Shell 405 catalyst was exposed to flowing air for
30 minutes at temperatures ranging from 200 to 1,700°F. Tests were also conducted with an
ozone /air mixture (15 ppm 03) typical of the upper atmosphere. Following exposure, the catalyst
sample was tested for ignition delay and hydrogen chemisorption. Ignition delay was measured with
~ a specially designed apparatus capable of measuring the time interval between coumtact of a
hydrazine droplet with the catalyst sample and the initiation of decomposition. »

L

o o

The results presented in Figure 3-16 show that a marked change occurs in both ig'..tiun deiay and
hydrogen chemisorption at a temperature of approximately 1,2000F. the ignition delay
characteristics indicated no oxygen damage at exposure temperatures below 1,2000F, whereas.
hydrogen chemisorption indicated a continual decrease in surface area with increasing temperature.
The results obtained with the ozone/air mixture have the same tren, although showing somewhat
more degradation than that obtained with atmospheric air.

P SN PP

. Several samples of 1,400°F oxidized Shell 405 were placed in a reducing environment (20 minutes

E I in hydrogen at 1,8000F) to determine if oxygen-damaged catalyst could be reactivated. The results

1 indicated a minor improvement in ignition delay with no measurable imprevement in hydrogen
l chemisorption.

VI RIS W A e
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Table 34
SALT SPRAY CORROSION TEST
Material (C:};:» ;.zé Visual Appearance Ra:ing
Hastelloy B | 5 | Tarnished — green yellow film 15
Hastelloy C276 15 S | Tarnished — green yellow film 16
Hastelloy X 22 19 | Rusted — red orange coating 7
Hastelloy 625 Tarnished lightly — blue film 14
Haynes 188 22 3 | Tarnished — green yellow film 5
Rene 41 19 Tarnished — green orange film 9
Waspalloy 20 Tarnished — green film 10
Duranickel 301 (4] No change 17
Inconel 600 16 8 | Lighdy rusted 8
Inconel 601 23 | 14 | Rusted 4
Inconel 617 22 Tarnished — dark green film 11
Inconel 625 22 3 | Tarnished lightly 13
Inconel 706 16 | 40 | Heavily rusted 1
Inconel 718 19 | 19 | Rusted 6
Incoloy 825 22 | 30 | Heavily rusted 2
L605 20 3 | Rusted — yellow orange coating 3
Unitemp 12 | 0.3 Tarnished - light green film 12
Fansteel 85 No change 18
Fansteel 291B No <hange 19

*Numbers indicate most severe corrosion condition starting with No. 1,

To further establish the effects of oxidation, a series of tests was conducted using cxygen-exposed
catalyst in a 0.5-1bf thruster. Five test firings were conducted (100 seconds each) with three
oxidized catalyst samples and compared to a baseline test with unoxidized catalyst. The first firing
was with 7000F oxidized catalyst. Ignition delay and operation were normal, although there was a
weak ignition pressure spike. The reactor was allowed to cool to ambient temperature following the
firing and a second firing made. No anomaly was noted on the second startup. The first test with
the 1,200°F oxidized sample resulted in an ignition pressure spike (200 psia) with an ignition delay
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four times longer than that obtained with the unoxidized catalyst. The second firing showed no
improvement. A test attempted with a 1,4009F sample was terminated when no ignition occurred
after several seconds of operation.

On the basis of the above results, it was concluded that unfired Shell 405 catalyst could be
permanently damaged by air at temperatures above 1,2000F . It was postulated, however, that fired
catalyst would be somewhat more difficult to oxidize than the unfired catalyst evaluated in the
laboratory tests. It is well known thai ammonia and hydrogen are absorbed by the catalyst during a
firing, subsequently providing a protective layer preventing oxygen reaction with the active metal.
Outgassing of catalyst, even in vacuum, continues for several hours following a firing, during which
time the catalyst cools to ambient temperature. Consequently, it was postulated that in a practical
applicatinoi:, oxidation would not occur.

This hypothesis was verified in tests conducted both at NASA-JSC and RRC wherein air was
directed into the chamber of thrusters following a firing. In the NASA tests, jets of air were directed
into the nozzle of the Transtage 27-Ibf thruster following each of several separate firings. No
anomalies were observed on subsequent restarts. Post-test analysis of the catalyst revealed that only
the downstream layer of catalyst showed evidence of catalyst damage.

In the RRC test, a wedge reactor was purged following a firing with air through a pressure tap fora
duration of 8 minutes with the catalyst above 1,200°F. No abnormal engine behavior was Getected
upon startup, and subsequent examination of the catalyst revealed no oxidation damage.

Several test firings have been conducted to date with subscale and full-scale hard ware with no purge
or other preventive measures taken to avoid oxidation of the catalyst. No damage was observed
during testing or in post-test examination of the catalyst. On the basis of these results, it was
concluded that outgassing provides sufficient protection to prevent any catalyst axidation damage
for the Space Siwuttle application.

3.6 SUBSCALE TESTING

In order to evaluate the effects of replacing substantial q antities of Shell 405 catalyst with a low

cost catalyst, a test program was initiated with a subscale reactor (wedge) that simulated the

operating characteristics of the full-scale RCS. The subscale reactors were simple segments of a )
conceptual design for the RCS injector. The reactor consisted of a 60-degree scgment of the RCS

engine with an axial length equal to one-half that of the full-scale engine. The flow rate was 1/12

that of the RCS with a throat sized to provide the same chamber pressure as the RCS enginc. An

isometric of the subscale concept is shown in Figure 3-17.

The first three wedge reactors fabricated and tested were specifically for catalyst bed optimization.
The results of the wedge testing, howevcr, indicated that the subscale technique could be used to
evaluate new catalyst bed retention t. hniques and thus, additional wedges were fabricated and
tested for life capability. Most of this testing was conducted during Task Il but is discussed in this
section of the report. The following paragraphs summarize the design and results of each wedge test.
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Subscale Reactor SIN 001 — A photograph of the first wedge is shown in Figure 3-18 and the
pressure vessel is shown in Figure 3-19. The injector incorporated a single laminated wire mesh
element, 0.3 inch in width and 2.0 inches in iength, which simulated an RCS injector having six
elements, 4.0 inches long. The flow rate was controlled so that the local bed loading was iden...al to
the RCS design. The catalyst bed consisted of 50 percent Shell 405/50 percent LCH 101 which is
identical to the combination employed by the Viking 600-1bf flightqualified engine. The test
conditions and results are tabulated in Table 3-5. The goal of this initial test series was to establish
baseline performance during start transient and 600-second steady-state burns.

A secondary test was conducted on the first wedge to evaluate the effect of exposing the catalyst to
hot air immediately upon shutdown. After start 5, 600°F air was forced through the P¢ tap for
approximately 8 minutes while the bedplates cooled to 1,2000F. Start number 6 was conducted
with no anomalous behavior, indicating no damage to the catalyst caused by oxidation damage.

Subscale Reactor S/N 002 — This subscale engine was identical to S/N 001 except that the inner
bed length was decreased approximately 0.040 inch, so that the overall catalyst composition
changed to 40 percent Shell 405, 60 percent LCH 101. The primary goal of this test was to observe
performance characteristics and possible washout tendencies (due to decreased Shell 405 catalyst)
during 60- and 600-second steady-state runs. The test results for S/N 002 are tabulated in Table 3-5.
The data shows a substantial increase in outer bedplate temperature with a decrease in inner
bedplate temperature. Since the outer bed temperature was higher than the inner bed, it appeared
that the “decomposition flaime front” had moved to the outcr bed — a marginal condition for
long-life reactors. This unit also had increased roughness at comparable life.

Subscale Reactor SN 003 — A detailed evaluation of the S/N 002 data indicated that further
reduction of Shell 405 catalyst on the baseline injector would create only a more marginal design.
At this time it was decided that wedge S/N 003 should be designed to simulate a 12-element
injector instead of the baseline €-element design. This decreased the total flow rate per element to
one-half the previous value, reducing the local bed loading by 50%. S/N 003 wedge remained as a
single element but the side walls were moved inward so that the wedge consiste;of a 30-degrec arc
insteady of 60 degrees as used in the previous wedges. The inner bed length was also decreased so
that the catalyst bed ratio was 25 percent Shell 405/75 percent LCH 101. The test results are shown
in Table 3-5. Performance parameters were similar to the S/N 001 unit even though only half the
quantity of Shell 405 was used, which indicated that an injector providing increased propellant
distribution should be utilized for the RCS.

Subscale Reactor S/N 004 — Due to the success of S/N 003 wedge, a fourth subscale reactor was
fabricated with two laminated wire mesh elements in a 60-degree arc to more fully simulate the
12-element injector. The reactor was assembled with a catalyst ratio of 30 percent Shell 405/70
percent LCH 101. Since this reactor design was considered to be the probable baseline for the RCS
engine, an extensive test sequence was planned with this unit. A sketch of the wedge cross-section is
shown below along with instrumentation location.
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A total of 3,400 seconds total burn time was accumulated (2,400 seconds at 1/3 nominal flow),
with 10 ambient starts. Several start-up transient spikes were notcd, and were attributed to

_ propellant wicking to the walls and/or accumulation on the outer bed. Gas temperatures began at

1,7559F and decreased to 1,7100F at completion of the test. Bed pressure drop also increased 20
psi during the test sc juence, and roughness was a nominal t4 psi at test completion. Table 3-6 lists
the basic performance of S/N 004.

Table 3-6
SUBSCALE ENGINE DATA FOR S/N 004

— Test LCH 101+ LCH 201* LCH 202*
Parameier (Ist Refurbishment) | (2nd Refurbishment)
Total run time, sec 3,400 3.060 3,000
Chamber pressure, upstream, psia 222 197 183
Chamber pressure, downstream, psia 172 159 147
Initial temperature, OF 46 68 67
Flow rate 0.193 0.179 0.181
Throat area (cold), in.2 0.1514 0.1514 0.1514
P¢d roughness, * psi +2 4 4
Bed temperatures — OF
T 1,645 1.830 1.850
T2 1.635 1.775 1.740
T3 . 1,710 1,815 1,820
Tq - 1.940 1.830
Ts 1.875 1,810 1,730
Te 1910 1.955 1.820

*Performance data from last run.

After completion of this test sequence, a teardown analysis was conducted to determine any
damage incurred to the catalyst bed. The catalyst retention system (bedplates and screens) appeared
to be in excellent condition: the only anomaly was a slight dimpling of the inner-most screen into
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the bedplate holes. The inner catalyst bed (Shell 405) had sustained a catalyst loss of 8 8 purcent
while the outer bed (LCH) lost only 0.5percent. Additional data are shown in Table 3-7.

Examination of the outer bed LCH 101 catalyst (from this test series, as well as that from previous
tests) revealed a small loss of active metal which potentially could become significant for the
long-life requirements of the Space Shuttle. The LCH catalyst from several tests was thoroughly
analyzed using a scanning electron microscope (SEM) and electron microprobe. Based on the results
of these studies, processing techniques for improving the LCH 101 were implemented. In addition,
other LCH catalysts were developed and subjected to extensive in-house testing. The goal of these
studies was to develop an LCH catalyst having improved characteristics in the following arcas: 1)
improve the cold start characteristics by increasing the low temperature catalytic activity; 2)
provide higher steady-state performance by retarding ammonia dissociation: and 3) provide
substantially longer life capability (see paragraph 3.5). To evaluate the capability of new low cost
catalysts, it was decided to refurbish wedge S/N 004 with LCH 201 and LCH 202 catalyst and
compare life capability over similar life demorstrations.

S/N 004 was then refurbished with new Shell 405 catalyst on the inner bed and LCH 201 catalyst
on the outer bed. To improve the life potential of the outer bed, a low-cost catalyst using a lower
active metal content was produced and tested under similar conditions as the LCH 101. The
refurbishment unit was tested for a total run time of 3,060 seconds with 5 starts. Table 3-7 lists the
performance parameters at the conclusion of testing the refurbished unit. The unit was removed
from the test stand and a teardown analysis conducted to determine catalyst attrition rates. The
results of the catalyst analysis are shown in Table 3-7.

At this point, S/N C04 wedge had accumulated 6,400 seconds of total firing time with no evidence
of degradation of the bLedplates, screens, or injector elements. This unit was refurbished a second
time with new Shell 405 in the inner bed and LCH 202 catalyst in the outer bed. Additional
thermocouple instrumentation was inserted into the bed in order to investigate cook-off spikes
encountered during startup which was attributed to propellant wicking. Based on the test results,
the injector was modified so that the injector penetrated further into the bed. A total of 3,000
seconds firing time was accumulated with S ambient starts. Figure 3-20 plots the various bed
temperatures versus run times during the test. It is interesting to note from this plot that stable
temperatures exist on the inner bedplate, indicating constant gas composition, and a low
temperature on the injector face indicating continuous exposure to liquid hydrazine (node 2). The
wedge appeared to be in excellent shape at the conclusion of this test sequence. The catalyst
teardown results are shown in Tabl: 3-7.

Bascd on the S/N 004 test results, LCH 202 catalyst was selected for the outer bed of the RCS
engine. However, inner bed catalyst loss rates exhibited in the S/N 004 design were approximately 7
percent per hour of run time, which was considered too high for Space Shuttle applications.
Therefore, the next series of tests was conducted to evaluate one of two alternate design concepts
for the baseline Space Shuttle RCS. Both alternate design concepts were aimed at providing
maximum retention of the catalyst bed with the goal of minimizing catalyst loss. The two
approaches, denoted ‘*‘composite” and ‘‘scalloped” designs, provide different techniques for
compartmenting the catalyst. The composite design had been under study on in-house funds for
application in low thrust engines.
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The scalloped design approach resulted from studies aimed at providing a technique to minimize
differential thermal expansion effects. A design which provided negligible differential thermal
growth between the inner bed catalyst and bedplate was [abricated with a nominal bed composition
of 25 percent Shclt and 75 percent LCH 101 and designated as S/N 005. The design incorporated

slotted bedplates with the slots su “ficiently small to perniit elimination of screen wires.

Subscale Reactor S/N 005 — A photo of the scalloped wedge is shown in Figure 3-21. This initial
scallop design was fabricated with the thought of encapsulating single injector elements inside inner
bedplates, as shown in the photo. Since this unit had only one injection element, total flow rate and
chamber pressure were 50 percent of S/N 004 tests. The test duration on this unit was 3,000
seconds in order to evaluate the potential increased life capability of the design. The unit performed
similarly to S/N 004 at comparable periods of life. Table 3-8 compares the inner bed catalyst loss
data to that of the S/N 004 design. As seen in this table, the scalloped dcsign provided
approximately 3 times increased life over the S/N 004 design. To fully assess this potential, S/N 005
was refurbished with LCH 202 catalyst and the plenum chamber nozzle was reconfigured to provide
155 psia at 0.090 Ibm/sec flow rate. The goal of this test was to accumulate 12,000 seconds total
firing time, to be accumulated during twenty 600-second steady-state firings in addition to 20,000
pulses ranging in duty cycle from 10 to 50 percent. The results of the test are summarized below.

The twenty 600-second steady-state firings were accomplished with excellent performance of the
reactor. No abnormal start up transients occurred, roughness remained below +3.0 psi and the outer
bedplate temperature remained essentially constant at 1,760°F. Figure 3-22 shows the reproduci-
bility of temperatures within the wedge for each firing, and Figure 3-23 shows the chamber pressure
roughness and bed pressure drop versus life. Four additional ambient starts were conducted to
provide the 20,000 pulses. Typical pulses are shown in Figure 3-24. At the conclusion of the pulses,
an additional 110 second steady-state firing was conducted. At this point (14,000 seconds
accumnulated burn time) the roughness was +3.5 psi, the outer bed temperature was 1,720°F and all
other parameters appeared excellent. A detailed teardown analysis was then conducted.

The subscale engine hardware, after accumulating 14,000 seconds on the catalyst bed ( 17,090
seconds on the engine), was in excellent shape. Deformation of the inner bedplate was 0.002 inch
while the outer bedplate was limited to a slight bowing of approximately 0.020 inch. A nominal
catalyst loss of 14.7 percent occured in the inner bed and only 2.9 percent in the outer bed. The
hydrogen chemisorption for the Shell 405 and LCH catalysts were 112 p moles/grams and 40 u
moles/grams, respectively.

The life capability demonstrated by the S/N 005 reactor was extremely encouraging, but
comparative data on the scalloped concept versus conventional concept was limited due to the
differing test conditions. A test series was formulated to demonstrate the life capability of the two
design concepts (conventional - designated as S/N 006 and scalloped — designated as S/N 007)
using simulated mission firings and multiple vibrations. Propellant flow rates. chamber pressures,
and effective bed loadings were identical between subscale engines.

Subscale Reactor — S/N 006 - The conventional subscale engine was fabricated with a catalyst bed
ratio of 35 percent Shell 405 and 65 percent LCH 202 to provide a slight margin over the bed
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configuration established previously. Dual element injectors were also used; the distance between
elements was reduced from that used in S/N 004 to prevent start transient cook-off spikes, The
testing of the conventional subscale engine is described below.

Ten 600-second steady-state runs were successfully tested on S/N 006. Performance data for the
first and tentk runs are shown in Table 3-9. After 2 firings (1,200 seconds) a 3-minute vibration of
the reactor (11.7 g’s rms) was conducted. Approximately 1 milligram of catalyst was recovered after
vibration. No spikes or perks occurred during the first nine tests; tests 9 and 10 had a 20 psi perk at
approximately 0.7 seconds into the run. Chamber pressure roughness and bed pressure drop had
slowly increasing values as shown in Figures 3-25 and 3-26.

Table 3-9

TEST DATA SUMMARY FOR CONVENTIONAL
SUBSCALE ENGINE LIFE TESTS (S/N 006)

Initial Final

Steady-State Steady-Staie

Firing, 91 Firing, 9-10
Burn time 600 seconds 600 seconds
Accumulated burn time 600 seconds 6.000 seconds
[nitial catalyst bed temperature 110°F 1959F
Propellant flow rate 0.175 Ibm/sec 0.172 Ibm/sec
Chamber pressure 167 psia 163 psia
Outer bedplate temperature 1,7300F 1,7100F
P¢ roughness *4 psi +6 psi
Characteristic velocity 4,290 ft/sec 4,260 ft/sec

A series of 4,100 pulses was then conductéd with interraittent 10-second steady-state firings.
Chamber pressure roughness continued to increase to approximately +10 psi after 4,100 pulses
(roughness obtained during a 10-second steady-state run). After the 4,100 pulses, a | percent duty
cycle with 0.050 pulse widths was attempted on the hot engine. On the third pulse of the serics. a
high pressure excursion occurred in the propellant inlet tube after valve shutdown. The pressure
surge that occurred in the injector was determined to be a result of exceeding the thermal design
capability of the subscale hardware. The chamber of the subscale engine is an all-welded structure,
but quite massive to allow a large number of refurbishments. The end closure of the chamber is a
very large heat sink which in turn required the propellant inlet tube to be longer than normal to
minimize valve soakback. The combination of the large heat sink (end closure) surrounding the feed
tube with a long hold-up volume (nominally 20 msec) constrained the subscale hardware to limited
duty cycles.

3.44
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Subscale Reactor SIN 007 — A subscale engine using the scalloped concept was fabricated with a
dual element injector. The injector fred tube was cooled to preven: tailoff pulses as ohserved in the
previous tests. This test series was conducted to determine life capability of the scalloped concept
and compare performance data with that obtained with the conventional design. The radial bed
lengths were similar to the conventional design: however, the scallop design provided a net
reduction of 35 percent Shell 405 and 177 LCH 202 over that required for the cor 2ntional engine
design. Test results are described below.

Twenty 600-second steady-state runs were conducted. Performan-e dats for these runs are shown in
Table 3-10.

Table 3-10
DATA SUMMARY FOR THE SCALLCPED SUBSCALE LIFE TESTS — S/N 007
Initial Steady- Steady-State Finzl Steady-Stateq
State Tiring, Firing Prior to Firing After
10-1 Pulsing, 16-20 32.000 pulses
Burn time 600 seconds 600 seconds 600 seconds
Accumulated burn time 600 seconds 12.000 seconds 18.000 seconds
Initial catalyst bed temperature 1500F 150°F 19G°F
Propellant flow rate 0.168 Ibm/sec 0.171 \om/sec 0.175 Ibm/sec
Chamber pressure 161 psia 164 psia 168 psia
Outer bedplate temperature 1.750CF 1.7609F *(1.8000F)
Pc roughness +3.0 psid +5.0 psid +8.0 psid
Characteristic velocity 4.260 ft/sec 4.264 ft'sec 4.279 ft/sec

*Approximated {Tom inner bed measurzment

As with the conventional subscale engine (S/N 006), a 3-minute vibration at 11.7 g's rms was
conducted at 1,200 seconds and 0.068 grams was recovered after vibration.

A tote! run time of 18.000 scconds, ten amb ent starts, 32,000 pulses and intermsttent steady-state
runs was accumulated following the Zu steady-state burns. Chamber pressure roughness increased to
+8 psi, and catalyst bed pressure drop decreased to 25 psi while characteristic velocity showed a
slight increase at the end of 18,000 :cconds. Figures 3-25 and 3-26 show the effect of life on
roughness and bed pressure drop.

Three additionral 3-minute vibration tests wire conducted during the test sequence. Table 3-11
tabulates the catalyst recoveied from the engine after cach vibration,

At 18,000 seconds, sufficient time had beer accumulated to acmonstrate the capability of the
scalloped engine design, thus, no further testing was conducted. To provide further design
information for the 490-Ibf RCS. u detaited teardown was conducted with results as discussed
below.
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Table 3-11

CATALYST LOSS FROM SCALLOPED

ENGINE (S/N 007) DURING VIBRATION

Bedplates — No cracking or
significant deformation was
observed in either bedplate
assembly. The physical appear-

Catalyst ance of the bedpiates after
Vibration Accumulated Accumulated Recovered subscale testing indicated that
Sequence Run Time Pulses/Starts From the 490-Ibf engine would be
Engine structurally capable of meet-

ing the 100-mission goal.

| 1.200 sec 2 0.068 grams

2 15.000 sec 23.000 0.439 grams Injector Body — Preliminary
3 16.200 sec 26.000 0.040 grams observations indicated that the
4 17.400 sec 30.000 0.023 grams injector body was fully cap-
able of meeting the 100-

mission goal/requirement. No
deterioration of the injector propellant passage or injector element was evident under 10X
magnification.

Catalvst Bed — Examination of the catalyst beds following testing indicated that the scallop engine
bed retention system was capable of providing a minimum of 50 Space Shuttle missions prior to
refurbishment. The inner catalyst bed. composed of 25- to 30-mesh Shell 405. lost 29 percent of
the original loaded weight. The LCH 202 outer bed catalvst lost only 3.3 percent. Hydrogen
chemisorption vab-es of the pre- and post-fired samples are listed below.

Post-Test Catalyst
(18.000 Seconds Accumulated

Firing Time)} u Moles/Gram

Pretest Catalyst
u Moles/Gram

Shell 405 140 119
LCH-20Z 65 32

3.7 SUBSCALE TEST CONCLUSIONS

The initial purpose of the subscale reactor testing was to establish an optimal mixture of Shell 405
catalvst with a low-cost catalyst. As testing proceeded. the flexibility and potential of wedge
reactors proved much more extensive than originally contemplated. Thus. the subscale reactor
became 1 tool to develop an improved low-cost catalyst. optimized the mixture ratio of the two
types of catalyst. developed a new catalyst retention technique that increased lifc over the standard
catalyst retention system, and finally verified the increased life capability of an injector having
increased propellant distribution. The ability of subscale reactors to serve as a tool that simulates all
aspects of reactor environmer* and life ofters a technique for providing significant cost savings on
materials. catalyst, and propellant during development of large hydrazine engines.
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3.8 SELECTED DESIGN APPROACH

Results of the various subtasks of the Task I investigation were used to arrive at a baseline design for
the Task 11 detailed analyses and design effort. Based on the injector studies (paragraph 3.1). a
12-clement longitudinal injector was baselined. Design studies of an all-welded engine and a flanged
engine were conducted with the goal of determining which design offered the most cost-effective
approach for replacing the catalyst bed. The primary disadvantages of the flanged engine (Figure
3-27) are: 1) a high temperature gas seal is required and 2) heavier weight. These disadvantages are
partially offset, however, by the higher cost associated with refurbishment of the all-welded engine.
Cost studies conducted for both approaches revealed that the all-welded design was more
economical if the number of missions between refurbishment of the bed exceedzd 13. Since 25
missions between refurbishment were projected. and because of the flanged engine heavier weight
and gas seal requirement, an all-welded design was baselined for the Task Il studies.

The RCS preliminary design, which evolved during Task I. is shown in Figure 3-28. A design
summary is presented in Table 3-12. As noted previously, subscale testing was continued during
Task 11, which was aimed at further exploring the scalloped bed design approach. This approach was
subsequently adopted during Task Il as the baseline design approach for the RCS engine.
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4.0 ENGINE DETAILED DESIGN AND ANALYSIS

4.1 DESIGN SUMMARY

Presented in this section are the results of the analytical and design studies that were conducted to
support the final engine design. At the outset of this task. design analyses were initiated using the
preliminary engine design obtained from Task 1 as a starting point. Design iterations were then made
to the preliminary design to arrive at the final optimized design. Final design analyses were then
conducted of the thermal, performance, and stress characteristics of the engine. The objective and
scope of the Task Il effort is shown in Figure 4-1. A summary of the Task Il accomplishments is
presented in Figure 4-2.

Additional subscale testing was conducted to: 1) determine the optimum quantities of Shell 405
and LCH catalysts, 2) evaluate an alternate LCH catalyst, and 3) evaluate various compartmentation
techniques. Based on the results of extensive testing it was concluded that the life capability of the
LCH-101 catalyst was limited and that the RRC proprietary catalyst, LCH-202, should be used for
the RCS outer bed. The optimum ratios of Shell 405 and LCH-202 were subsequently determined
to be 35 and 65%, respectively.

Various techniques for compartmenting the catalyst bed were evaluated analytically and
experimeatally. Based on earlier studies during Task I, it was concluded that differential thermal
expansion between the catalyst and retaining walls was instrumental in catalyst attrition.
Consequently. design studies were conducted to arrive at an approach which minimized void volume
growth resulting from differential thermal expansion. Results of calculations for two appreaches are
shown in Figure 4-3. The scalloped design provides a technique wherein cach pair of injection
clements and catalyst retention system function as separate small engines with corresponding small
void volume growth.

Based on encouraging subscale test results obtained with scalloped subscale engines. it was decided
to adopt this approach for the Task II detailed RCS design. An isometric of the engine is shown in
Figure 4-4. The RCS design summary is presented in Table 4-1.

4.2 THERMAL ANALYSIS

This section includes significant aspects of the RCS thermal design approasch including thermal
requirements. assumptions, analytical models. predicted thermal characteristics, and correlation of
experimental results,

4.2.1 Thermal Design Objectives

The tuic thermal design objectives of the Task H analysis were as follows:
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Demonstrate engine thermal characteristics as a function of duty cycle
Provide estimate of worst-case heating duty cycle

Display thermal soakback characteristics

Design injector with hot restart thermal margin

Define heater requirements

Analyze worst-case aerodynamic entry temperaturec

Limit reactor surface iemperature to 800°F

Minimize conduction heat input to vehicle

SRS ae T

The worst-case combinations of environmental and vehicular conditions used in the analysis are
listed in Table 4-2.

4.2.2 Design Geals and Analytical Results

Table 4-2 summarizes basic thermal design goals and analytical results. The last item in Table 4-3
was found to be invalid under certain engine operational modes and will be discussed in more detail
in paragraph 4.2.4.2.

4.2.3 Analytical Model

Thermal networks relate the simultaneous iteraction of conduction, convection, and radiation heat
transfer. The convection network is given in Figure 4-5. Convection resistances were calculated from

the following relation:
I (hrOF
R= 1A ( Btu )

whe:e h is the value of the unit surface conductance, in units of Btu/hr-ft2-OF  and A is surface arca
in square feet. Similar networks were used for the radiative and conductive analyses.

4.2.4 Analytical Results

This section discusses analytical results concerning basic engine thermal characteristics with respect
to duty cycle and time, injector soak temperatures and thermal margin, engine heater requirement
studies, and re-entry temperatures.

4.2.4.1 Engine Transient and Pulsing Operation

Inner and outer catalyst bed maximum local temperatures versus duty cycle are presented in Figure
4-6. An inner bed ammonia dissociation of 39% was assumed in order to establish the 2,0000F
maximum temperature with 1100F propellant from Table 4-1. Catalyst bed structural design was
based on this maximum local temperature, which was established based upon experimental findings
in the development of the Viking Lander radial bed engine.

Figure 4-7 presents an average catalyst bed temperature versus time at various duty cycles. Such

data can be used to estimate the number of pulses required to reach equilibrium for a given pulse
width.
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Figure 4-8 shows the effect of internal convection heat shields on the transient thermal
characteristics of basic pressure vessel walls. The heat shields have the potential to greatly reduce
the total time the reactor walls will spend at high tempersture for pulse-mode operation. For long
steady-state firings the hea: shields would become effective only if the outer wall Min-K insulation
blaaket were not required.

4.2.4.2 Injector Soakback and Thermal Margin

Figure 4-9 shows that the valve/inj: ctor interface O-ring seal will not be damaged due to heat. The
EPR O-ring is capable of continuous operation under 3509F.

Figure 4-10 shows that maximum injector soakback temperatures occur after a steady-state firing in
hot orbit. The data shown in Figure 4-9 also apply to this condition. Figure 4-11 shows maximum
injector soakback temperature versus duty cycle.

Figure 4-12 shows the results of the thermal margin calculations that were subsequently found to be
invalid under certain engine operational modes. Bulk propellant temperatures were calculated by
the methods described in paragraph 4.2.4. Thermal margin. the difference between maximum bulk
propellant temperature and local saturation, was found to be minimum when the injector cooled for
1.9 hours after a steady-state firing. According to the method discussed in paragraph 4.2.4, only
then would the majority of the wetted injector walls be within the nucleate boiling region (10 to
90°F above saturation). As shown in Figure 4-12 the positive thermal margin of 393 minus 31t or
829F is predicted.

The other case shown in Figure 4-12 has a higher thermal marpin, 393 minus 186 or 207°F, because
film boiling heat flux is not as severe as nucleate. Positive thermal margin is desirable, and a
hydrazine engine having this characteristic will usually not be duty-cycle limited uader a mode of
operation where pulse widths are of sufficient length to cool critical locations within the injector
below decomposition temperatures during flow.

Obviously, for a mode of operation with 100-millisecond pulse widths, the positive thermal margin
prediction is iuvalid as was found in testing. Had the pulse widths been longer. it is felt that there
would not have been any problems.

4.2.4.3 Engine Heater Power Requirements,

As shown in Table 4-3. miinimum valve heater power required to maintain *rapped propellant above
freezing with a comfortable margin is 2.98 watts. At 298 watts in the coid environment the valve
temperature will be above SOOF.

A similar calculation was made to determine reactor heater power required to maintain the catalyst
bed above 150°F to ensure catalvst life and smooth engine starts. Basic results are pr ssented in
Figure 4-13 which shows the inner and outer catalyst bed temperatures versus heater power for cold
and nominal cnvironments. As shown, slightly over 20 watts is the minimum requirement. At 20
watts the inncr bed is above 1SOCF: thus., this value was listed in Table 4-3.
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4.2.44 Re-entry Therma! Considerations

In support of catalyst bed oxiducion studies, and in support of basic thermal/structural design
studies, the etfects of the re-eniry profiles presented in Figure 4-14 0n catalyst bed and propetiant
valve temperatures were determined. Two cases were analvzed. One considered stabilized nonfiring
conditions prior to re-entry and the other considered re-entry after a firing.

The results of the nonfiring case prior to re-entry are presented m Figure 4-15. No problems are
indicated. The results of the firing case prior o re-entry sre presented in Figure 4-16. At
touchdown, valve seat and O-ring temperatures are 280 and 3519F respectively. These values are
higher than the previously calculated values of 254 and 3289F. Thus., the re-entry values were used
for design.

4.3 STRUCTURAL ANALYSIS

Structural analvses were conducted using results obtained from the thermal analyses. Both static
and dynamic analyses were undertaken. The primary obicctives of these studies were te: 1) provide
guidance for the final design and 2) verify integrity of the final RCS engine. Definitions used in the
structural analysis are shown in Table 4-4.

Reusults of the steady-state analvses shown in Table 4-5 indicate large margins of safety.

Results tor cyclic loading are shown in Table 4-6 which indicate satistfactory capability of the RCS
to accommodate the required number of cycles.

Margins on creep rupture and predicted detormations due to creep are presented in Table 4-7
showing satisfactory capability.

Results of a dvnamic analysis showing component random vioration levels resulting from an input
vibration of 28.2 g rms is shown in Table 4-8.

Margins of satety for three-sigma random dynamic stresses are shown in Table 4-9. The only
component of concern was the injector feed tube which had a relatively low (although adequate)
margin of satety for Lateral random vibration.

Based on the results of the structural analyses. it was concluded that the RCS design was
conser atively designed for structural considerations.

4.4 PERFORMANCE ANALYSIS

Detailed analyses were conducted to predi t the pertormance and operating characteristics of the
RCS. Performance losses due to nozzle divergence, nozzle drag, heat losses. and boungary layer
cifects were determined tor nominal operation at an ammonia dissociation of 507, The prediced
specific impulse efficiency was 96,2777 resulting in a dehivered specitic impulse of 230.0 Ibf-sec/ b,
Predicted performance at off-nominal conditions is presented in Table 4-10.
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Early predictions for bed pressure drop inaicated a value of 70 psi would be obtained. However,
values measured during subscale testing indicated much lower values. Consequently, the analytical
model was reviewed and modified to more accurately describe the flow through the catalyst bed.
Shown in Figure 4-17 is the improved analytical model used for predicting bed pressure drop. which
considers flow from only one injector element. This model was successfully used to correlate test
data obtained during subscale testing as well as the Viking engine. Predictions were then made for
the RCS engine resulting in a value of 34.9 psi.

The predicted start response characteristics of the engine are presented in Figure 4-18 for various
initial engine temperatures. The time required to achicve 90% of the steady-state thrust is less than
700 milliseconds with the bed initially at 150°F.

Predicted pulse-mode specific impulse characteristics are shown in Figure 4-19 for vario'is pulse
widths. The results shown are applicable for all duty cycles ranging {rom 5 to 50%. Performance at
lower duty cycles is shown in Figures 4-20 and 4-21. The results show that under equilibrinm
pulsing conditions, pulse-mode performance approaches the steady-state value. Transient perform-
ance, characteristic of monopropellant engines, occurs as a result of energy being expended to heat
the catalyst during the initial pulses. The number of pulses required for the catalyst to reach
thermal equilibrium (and constant performance) is a function primarily of the pulse width as shown
in Figure 4-19.

Predicted impulse bit characteristics of the engine are presented in Figures 4-22 and 4-23. During
equilibrium pulsing conditions, a minimum impulse bit of approximately 7 Ibf-sec can be delivered
with a 15-millisecond pulse width. Substantially smaller impulse bits can be delivered during the
initial few pulses starting with the engine at 150°F as shown in Figure 4-22. For example. the
impulse bit for a 20-millisecond pulse is less than S Ibf-sec for the first pulse, increasing to about 6
Ibf-sec following 10 pulses.

4.5 DESIGN SAFETY AND RELIABILITY ASSESSMENT

A design safety and reliability analysis was conducted with the details and results of the analysis
presented in Appendix A. The results of the reliability prediction, based on a single engine. arc as
follows:

1 mission (7 days) 0.999
25 missions (Refurbishment cycle) 0975
100 missions (Life cycle) 0.903

4.6 MAINTENANCE ASSESSMENT

A preliminary analysis was conducted to determine the preflight checkout. maintenance, and
post-flight scrvice requirements of the RCS engine. Details of the analysis are presented in
Reference 4-1. A summary of the study is presented in the following paragraphs.

The following assumptions were made to establish a baseline for the maintenance anaiysis:
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a. The RCS engine design is adequate to allow 25 equivalent Space Shuttle orbiter missions
without major scheduled maintenance.

b. The Shuttle orbiter vehicle will have on-board recording or telemeter transmitting
capability to continuously monitor the chamber pressure on any RCS engine that is
firing. This engine chamber pressure data would then be analyzed to verify operational
readiness for the next scheduled flight of each RCS engine.

c. The flight crew will have the capability to monitor the following RCS engine parameters
on at least a go/no-go basis:

1. Valve temperature: above 369F — below TBS.
2. Thrust chamber temperature: above 150°F.

3. Engine chamber pressure (Pcg): indication of pressure response subsequent to firing
command; average chamber pressure (indicative of thrust); and chamber pressure
roughness.

d. Each RCS engine would be readily accessible for inspection, fault isuiation, maintenance,
repair, and replacement.

e. Post-flight servicing is limited to faulty line replaceable unit (LRU) replacement.

f.  RCS engines will return from the flight mission with low-pressure propellant locked up by
the RCS engine propellant valve. RCS engines would not be purged prior to landing.

Figure 4-24 presents a schematic of the RCS engine showing the major components.

The RCS engine assembly is attached to the Shuttle orbiter by bolting at the mounting structure
interface. The thrust chamber assembly is attached to the mounting structure by three pinned joints
(or bolted joints) on titanium standoffs. The propellant valve is also bolted to the mounting
structure.

A pressure transducer is “soft” mounted to the mounting structure assembly for monitoring the
downstream chamber pressure (Pcd). A tap is provided to allow upstream chamber pressure
measurement (P¢y) during engine acceptance and fault isolation firing seauences. The Pgy tap will
be capped for flight.

A thrust chamber assembly heater is located at the injector end of the TCA, and a thermocouple is
provided on the TCA to monitor TCA temperature. This thermocouple could be used to provide
logic signals to control the TCA heater in the event that heater power is limited and the heater
cannot be energized continuously. The TCA will be insulated with a preformed insulation blanket.

A thermostatically controlled heater is provided on the propellant valve to prevent propellant valve
freezing during cold enginc-off sequences. Temperature monitoring of the propellant valve is
provided by a thermistor mounted to the valve. A position indicator is also provided on the
propellant valve to allow remote monitoring of “alve open or valve closed status.
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Propellant filtration is provided at the inlet side of the propellant valve to protect the valve seat and
the TCA injector from contamination; it should be noted. however. that system filtration is
provided upstream of the RCS engine assembly and the aforementioned valve filter represents a
final/protection filter for the RCS engine itself.

A cavitating venturi located in the TCA injector inlet stem, immediately below the propellant valve
outlet, is provided to decouple the engine propellant flow from small perturbations due to engine
chamber pressure roughness or minor changes in the catalyst bed pressure drop due to catalyst
packing and thermal considerations.

For the purpose of the analysis, the following terminology was assigned to maintenance tasks:
Level I — (On-Vehicle Maintenance)
e  Repair limited to LUR replacement
e Scheduled maintenance performance
®  Post-flight/preflight checkout and/or fault isolation testing.

Level I1 — (On-Site Repair of LRU’s)
e  Onssite repair of LRU (limited to repair by replacement of subassemblies)

®  Periodic calibrations or adjustments

Level 111 — (Off-Site Repair of LRU’s) by Supplier
®  Major repair of LRU’s or subassemblies

®  Overhaul

®  Major retrofits

°

Acceptance verification tests

The most rapid turnaround of the Shuttle orbiter would be accomplished by limiting all vehicle
maintenance to Level I activities; this approach is consistent with the current plan for engine pod
turnaround within 40 hours.

A flow diagram of the maintenance plan is shown in Figurc 4-25. The Space Shuttle flight and
turnaround activities are shown in five phases as follows:

Flight mission —  Phasel
Shuttle lands —  Phase Il
Post-flight checkout —  Phase 11l
Post-flight service —  PhaselV
Preflight checkout — Phase V

A brief discussion of each phase, from a maintainability standpoint, is presented below.
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®  Average chamber pressure (thrust)
Chamber pressure roughness

Chamber pressure spiking

turnaround period.

the RCS engine components.

data and the analysis of same.

engine assemblies during Phase 11

marginal or fu 'ty during Phase | or I1.

Phase | — Flight Mission — The performance of the hydrazine monopropellant RCS engine can be
characterized by analysis of the TCA chamber pressure (Pcd) data recordings. In particular. catalyst
bed degradation can be detected by analysis of one or more of the following parameters:

Ignition delay (valve command open to 90% P¢d)

Tailoff time (valve command shut to 10% P¢q)

This parameter (Pcq) should be continuously recorded during all engine firings. This data could be
recorded and stored on board the Shuttle orbiter for analysis subsequent to Phase 1l (landing) or
telemetered to the landing site for analysis to determine the acceptability of RCS engine
performance. Analysis of this data will highlight unscheduled maintenance requirements during the

Crew comments on the overall performance of the RCS engines would also be used as inputs for
analysis to determine unscheduled maintenance requirements during turnaround.

The data link with the Shuttle orbiter would also be used to provide historical data updating the
scheduled maintenance requirements relative to the 25 equivalent mission life limit (minimum) for

The Phase I data link will allow rapid planning updates to the maintenance plan to ensure LRU
availability and to highlight manpower requirements during turnaround.

Phase 1l — Shuttle Lands -- There will be no RCS engine maintenance activities associated with the
landing of the Shuttle. with the possible exception of the retrieval of recorded engine performance

There will undoubtedly be safing operations associated with the RCS propenent system. and it is
RRC’s understanding that the RCS engine pods may be removed from the Shuttle orbiter: however.
based on studies to date, there is no specific scheduled maintenance task required for the RCS

Phase 11l - Post-Flight Checkout - During Phase 111, a visual inspection of cach RCS engine would
be conducted as part of the verification for reuse process. Any visual anomalies noted would trigger
an unscheduled maintenance action item for Phase 1V scrvicing.

Fault isolation testing would be accomplished on any RCS engine that has been identified as
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At the conclusion of the Phase I1I checkout, all faulty LRU’s will have been verified and identified,
including those components that have accumulated 25 equivalent missions and are therefore due for .

replacement.

Phase IV — Post-Flight Service (Level I} — All faulty or life-limited RCS engines or LRU engine
components will be removed; new or refurbished spare compor.cnts will be installed. Those RCS
engines or engine components which have been removed will be properly identified and routed to
Leve! II or Level Il repair facilities for repair, rework, verification acceptance testing, and eventual
return to spares inventory.

Phase V — Preflight Checkout - Subsequent to the conclusion of Phase 1V, each RCS engine
assembly is assumed flight ready. The Phase V task is to verify flight readiness which will include
the following tasks:

Final visual inspection to each TCA

Electrical checks to ensure that power and control signals as supplied at the RCS engine
interface are proper and within specification limits

Crew indication of proper valve temperature, proper TCA temperature, and proper valve
position indication.



5.0 TASK IlI - HARDWARE FABRICATION, TEST, AND EVALUATION

5.1 ENGINE FABRICATION AND ASSEMBLY

Following completion of the Task II design analyses, and upon approval of the detailed design,
fabrication of the engine was initiated.

Photographs of the engine components in various stages of fabrication and assembly are shown in
Figures 5-1 through 5-5. The injector assembly, shown in Figure 5-1, incorporated 24 injection
elements with each pair of longit dinal elements connected with a common manifold. The injector
was fabricated from Hastelloy B. The Rigimesh elements were fabricated from Haynes 25.

The catalyst bedplate assembly, shown in Figure 5-2, consisted of inner and outer bedplates, end
closures, and the injector subassembly. Slots were EDM machined in the bedplates to provide for
passage of the decomposition gases while simultaneously retaining the catalyst. End closures were
assembled at both upstream and downstream ends of the catalyst bed and welded at the injector.
The outer edges of the end closures were inserted into bedplate slots and were free to expand
radially outward. A separator similar to the end closures was inserted at the midpoint of the
injector, thereby dividing the assembly into 12 separate bed assemblies with 2 injection elements in
each bed. The inner bedplates were welded to the injector while the outer bedplate assembly was
held in place by grooves milled into the injector body.

A photograph of the catalyst bed assembly packed with catalyst is shown in Figure 5-3. The inner
bed catalyst was Shell 405 (25-30 mesh) and the outer bed catalyst was LCH-202 (1418 mesh).

A photograph of the outer chamber and nozzle assembly is shown in Figure 5-4. An internal liner
was used, as shown, to reduce thermal heat fluxes during start transients. Also shown in the
photograph are holes for inserting thermocouples into the chamber at various angular and axial
locations for monitoring gas temperature. A total of 26 thermocouple ports was provided in the
thrust chamber.

Shown in Figure 5-5 is the assembled engine on the thrust stand. Insulation was installed on the
chamber to reduce heat loss. The engine, which had a nozzle with a ratio of 30:1. was operated
overexpanded during seal level testing.

. The propellant valve was fabricated by E-Systems, Inc. The valve was a modified throttling valve
(developed for the Viking Lander engine) and thus was not fully optimized for minimum opening
and closing response. Tlie valve incorporated a cavitating venturi in the outlet port to control
propellant flow rate. The valve employed a torque motor geared through a ball screw for displacing
the pintle. Operating characteristics of the valve are presented in Table 5-1.
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Table §5-1 Tlie final assembled weight of the engine was 19.0
SPACE SHUTTLE MONOPROPELLANT lbm excluding instrumentation. Total catalyst weight
490-1bf ENGINE THRUST was 1.16 1bm,
CHAMBER VALVE
) 5.2 ENGINE TEST PROGRAM
Pull-in voltage 28 volts i
Drop-out voltage 17 volts 521 fl&“ Plan .
Opening response* 42 msec fgl!owmg assefnt?ly of the engl.nc, a test program was
) initiated consisting of a series of sea level and
Closing response* 34 msec simulated altitude firings. The planned test sequence,
Flow rate 2.108 ibm/sec shown in Figure 5-6, consisted of an acceptance test
at 310 psia firing, performance mapping, mission firings, and
Leakage <10 scc/hr vibration of the engine.

. . . - .
Transient times were determined at The acceptance test firing consisted of a 10-s zond
operating pressure with a linear voltage

differential transducer monitoring ball steady-state sea levzl firing, followed by a 30 minute
gear locatica. downtime, and a final series of ten pulses at 250 msec
ON/250 msec OFF.

The performance mapping test matrix is shown in Table 5-2. Thrust was measured only during the
perforinance mapping test firings.

The mission duty cycle consisted of 490 seconds total on-time, 1,006 hot pulses/starts and 4
ambient teaperature (1500F) starts.

5.2.2 Test Facilities

The sea level test firings were conducted in the RRC high energy test cell. Altitude firings were
conducted in the Boeing Tulalip altitude test facility. A description of both test fadilities is
presented in Appendix 7.2.

5.2.3 Instrumentation and Data Acquisition

The engine was well instrumented with thermocouples to measure gas temperature at various

locations within the chamber. A total of 26 immersion thermocouple ports was provided in the -
chamber. A total of 30 external thermocouples was also provided to measure outer wall

- temperatures on the thrust chamber.

Instrumentation for the sea level and altitude firings is presented in Table 5-3 Thrust was not
- measured during the sea level firings. Location of the catalyst bed exit temperatures is shown in

Figure 5-7. Because of recorder limitations only 18 of the thermocouples were monitored during

the firings — 6 uniformly spaced at the longitudinal mid-point of the “ed and 12 at the downstream
- end of the bed. The thermocouples were centrally located in the aitnular space berween the outer
bedplate and thrust chamber wall. All temperature measurements were taken with chromel-alumel,
sheathed, immersion-type thermocouples with the exception of the external wall temperatures,
- which were taken with bare-wire thermocouples.
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THERMOCOUPLE LOCATIONS

\/THERMOCOUPLES

30° SPACING

NOTE: THERMOCOUPLES LOCATED AT AXIAL
MIDPOINT OF BED AND AT DOWNSTREAM
END OF BED.
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Table 5-3
INSTRUMENTATION FOR RCS FIRINGS
Recorders
Symbol Parameter Range Strip
Chart 0-Graph
Recorder
F Thrust 0 — 600 Ibf X X
PF Propellant inlet pressure 0 — 500 psig X X
Pcu Upper chamber pressure 0 — 250 psig X X
Pcd Lower chamber pressure 0 - 250 psig X X
Wi Propellant ilow rate 0 — 3 1b/sec X
Wo Propeilant flow rate 0 — 31b/sec X
iTCV Valve current 0 — 4 amps X
VvICV Valve voltage 0 - 50vdc X
Tp Propellant inlet temperature 32 - 2500F X
Ty Valve temperature (2) 32 — 5009F X
Tj Injector temperature (7) 32 - 2,2500F X
Tg Catalyst bed exit temperature (24) 32 - 2,2500F X
Tw Chamber wall temperature (14) 32 - 2,2500F X
TG Exhaust gas temperature (2) 32 - 2,2509F X
N Nozzle temperature (2) 32 - 2,2509F X
TIB Insulation blanket 32 - 2,2500F X
fPcd Pc integral Variable X

All test data were recorded on 12-inch Honeywell oscillographs and/or Hewlett-Packard Mosely
two-channel strip chart recorders. For altitude test firings, data were also recorded on magnetic tape
with a high-speed digital data system.

5.2.4 Test Procedures
5.2.4.1 Propellant Sampling

Prior to each test a hydrazine sample was taken and analyzed to determine if the propellant met
Military Specification MIL-P-26536C. All propellant analyzed during the program was found to be
within the specified impurity limits.

5.2.4.2 Test Firing Procedure

The engine was heated to 150 to 1709F prior to commencing a firing using an electrical resistan ce
heater attached to the engine. Heater power was then removed and the engine test firing initiated.

5-11
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The planned test firing duty cycle was stored on punched paper tape, which was used in
conjunction with a Tally tape system to control the propellant valve as well as other time-dependent
test support equipment.

Upon completion of the test firings, the engine was allowed to cool without purging through the
engine. No attempts were made to prevent ambient air from entering the nozzle subsequent to sea
level firings.

When the engine was removed from the test stand, precautions were taken to ensure that the system
and/or propellant valve would not become contaminated. The valve was removed from the engine
and purged with 1909F nitrogen for a period of one hour to remove residual hydrazine. The engine
inlet was covered to prevent contamination.

5.3 TEST RESULTS AND DISCUSSION
5.3.1 Acceptance Tests

Upon completion of the RCS assembly, the thrust chamber valve and the catalyst bed heater were
subjected to individual acreptance tests. The engine acceptance test included proof and leak tests.
and a sea leve! firing.

5.3.1.1 Thrust Chamber Vaive A« eptance Test

The Space Shuttle 490-1bf monopropeliant engine valve was fabricated by E-Systems, Inc. The valve
was a modified throttling valve (developed for the Viking Lander engine), and thus was not fully
optimized for minimum opening and closing response. The valve incorporated a cavitating venturi in
the outlet port to control flow. The venturi was slightly undersized, requiring a feed pressure of 310
psia to obtain the designated flow rate. Table 54 hsts the valve operating characteristics.

Table 5-4

SPACE SHUTTLE MONOPROPELLANT
490-1bf ENGINE THRUST CHAMBER VALVE

Puil-in voltage 28 volts

Drop-out voltage 12 volts

Opening response* 22 msec

Closing response* 34 msec

Flow rate 2.108 Ibm/sec at 310 psia
Leakage <10 scc/hr

*Transient times were determined at operating pressure with
a linear voltage differential transducer monitoring ball gear location.

5.3.1.2 Catalyst Bed Heater

The catalyst bed heaters were designed to provide 30 watts of power (15 watts/element) to
maintain the catalyst bed at a minimum temperature of 1509F. The heaters, fabricated by Clayborn
Laboratories, had operational characteristics, a~ shown in Table 5-5.
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Table 5-5

SPACE SHUTTLE MONOPROPELLANT
490-Ibf ENGINE CATALYST BED HEATER

Voltage 28 vdc
Current 0.6 amps/element
Resistance 429 ohms
Insulation resistance
Circuit to circuit I megohm
Circuit to case 100 megohms

5.3.1.3 Engine Acceptance Test

An engine proof test at 300 psig and an engine leak test at 200 psig were conducted with no
anomalies. Following these tests the engine was installed in the sea level high-thrust test celi for an
acceptance test firing. Table 5-6 presents the test conditions during acceptance test firing.

Table 5-6
ACCEPTANCE TEST CONDITIONS
Environment temperature Ambient
Ambient pressure Sea level
Catalyst bed temperature 1600F
Propellant inlet temperature 659F
Propellant inlet pressure 310 psia

The firing sequence was controlled by a Tally tape control system. The duty cycle consisted of a
10-second steady-state firing, followed by a 30-minute downtime, and a final series of ten pulses
250 msec on/250 msec off. Table 5-7 lists the designed operating performance characteristics of the
490-Ibf engine and the measured values obtained during the steady-state tests. As can be seen, the
measured performance characteristics are nearly identical to the predicted values.

Table 5-7 .,

SPACE SHUTTLE 490-1bf MONOPROPELLANT
STEADY-STATE PERFORMANCE CHARACTERISTICS

Acceptance
Design Goa., Test Resnlits
Characteristic velocity 4,350 ft/sec 4361 it/sec
Chamber pressure 153.3 psia 153.7 psia
Chamber pressure roughness
Upstream 3.0 psid
Dcownstream +1.5 psid
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Table 5-7 (Concluded)

! SPACE SHUTTLE 490-Ibf MONOPROPELLANT
STEADY-STATE PERFORMANCE CHARACTERISTICS

Acceptance
Design Goal Test Results

Flow rate 2.108 Ibm/sec  2.108 Ibm/sec
Catalyst bed pressure drop 41.5 psid 41.7 psid
Response time (valve signal to 90% P¢) 700 msec 425 msec
Tailoff time (valve signal to 10% P¢) - 55 msec

Pulse-mode data also appeared to be in excellent agreement with predicted pulse performance.
Maximum peak pressure was 162 psia (8 psi overshoot) and [Pcdt values varied by less than 1.1%
from nominal for the last six pulses. A trace of pulse 10 is shown in Figure 5-8.

Uniform gas temperature was achieved around the circumference of the radial bed. Thermocouples
monitoring gas temperature exiting the catalyst bed at every 309 recorded a nominal gradient of
only 40°F, indicating uniform propellant distribution. Figure 5-9 is a plot of the radial temperature
distribution of gases exiting the outer bed.

At completion of testing the engine was removed from the sea level test facility and stored for a
short time prior to being transported to the Boeing Tulalip test facility for altitude firings. No
purging or decontamination operations were conducted on the engine following ATP, since purging
was not considered a nominal Space Shuttle maintenance procedure.

5.3.1.4 RCS Altitude Firings

After completing all installation and instrumentation hook-ups, and just prior te initiation of
performance mapping, a short pulse was manually signaled to the valve for final check out of system
operation. All feed system functions and instrumentation appeared to operate normally: however,
there was no indication of propellant reaction within the engine. Instrumentation was monitored
for a short period foilowing the pulse with no indication of decomposition. Test cell vacuum was
then terminated and the cell opened to visually inspect the engine, at which time hydrazine vapor
began exiting the nozzle. Altitude pressure was then reinstated as the accumulated hydrazine began
to react with the warming catalyst bed. Following this incident, a second pulse was manually
signaled to the valve and a normal pulse (160 msec long) was achieved. After assessment of the data,
it was decided to initiate the performance mapping tests. The performance mapping test sequence
consisted of the duty cycle shown below.

A-1 100-second steady-state, 1500F initial catalyst bed temperature
, A-2 100-second steady-state, hot restart
g A-3 100-second steady-state, increase Pg 10 psi, hot restart

A4 100-sccond steady-state, decrease Pf 10 psi. hot restart

B-1 Twenty-five 100-mscec pulses at 17 duty cycle
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B-2 Twenty-five 100-msec pulses at 0.1% duty cycle
B-3 Fifteen 100-msec pulses at 0.01% duty cycle
B4 Twenty-five 100-msec pulses at 10% duty cycle

Preliminary data obtained during the steady-state firings indicated the engine operational
characteristics were the same as during ATP. However, gas temperatire was slightly higher and not
as uniform as the ATP values, and the bed pressure drop decreased to 10 to 14 psi during the
100-second firing. Each of the steady-state firings had similar performance characteristics. A
summary of the results for the steady-state firings is presented in Table 5-8. Visual inspection of the
engine following the steady -state firings revealed no structural anomalies.

Pulse-mode testing was then initiated with no significant anomalies during the first two sequences
(B-1 and B-2). Performance as a function of p iUse number is shown in Figure 5-10. Testing of the
B-3 sequence was terminated after the s.:ll. oulse due to pulse shape distortion which was
postulated to have been due to operation in a marginal thermal regime. Sequence B-4 was then
initiated at which time a pressure spike occurred with subsequent loss of performance. Inspection of
the engine indicated that a pressure spike (or spikes) caused a structural failure of the injector body
assembly and subsequent loss of catalyst from the bed retention system.

A detailed investigation of the initial misfire and subsequent engine failure revealed the following.

5.3.2 Misfire Incident

Incomplete hydrazine decomposition occurred on the first pulse of the performance maj.ping test
due to a large quantity of ammonia residing on the catalyst surface acting as a temporary catalyst
poison. The ammonia poisoning occurred as a result of the relatively short acceptance firing and
inadequate engine securing techniques following the acceptance testing. A review of the ATP
procedures determined that liquid hydrazine was trapped in the engine injector. Slow drainage of
the hydrazine from the injector during storage (the engine was stored in the vertical nozzle down
position) and subsequent slow decomposition allowed the cold catalyst to be blanketed by
ammonia and hydrogen. After exposure to the trapped gases, the catalyst adsorbed sufficient
ammonia to poison the catalyst and cause total washout on the first pulse. Subsequent
decomposition of the residual propellant sufficiently heated the catalyst to desorb the ammonia
poison restoring catalyst activity. Post-test measurement of catalyst activity revealed it to be lower
than that of new catalysi. However, it is noted that the high bed temperatures encountered
subsequent to the misfire caused catalyst sintering with a resultant loss in surface arca.

Subscale engine testing was conducted to simulate catalyst poisoning by exposure to hydrazine
vapors. The bolt-up engine was loaded with a new catalyst bec , tested at the RCS engine ATP duty
cycle. After cooling to 100°F, 1/4 cc of liquid hydrazine was inserted into the engine inlet tube so
that slow vaporization of hydrazine would occur. The catalyst bed was exposed to these conditions
for periods of four and twenty-four hours prior to retes ing. The ignition delays following cach of
these exposure tests were very long (160 to 200 msec) indicating substantial catalyst poisoning had
occurred.
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To obtain a ‘“‘self-poisoned” catalyst bed is a phenomena requiring environmental conditions not
normally experienced in engine testing. Catalyst bed temperatures must be re.atively cold and
exposed to ammonia vapors for a considerably long period of time. Laboratory data ha:
demonstrated that by maintaining a catalyst bed at 200°F — or heating a bed to 20N9F prior to
operation — will prevent the heavy adsorption of ammonia or drive off the species from the surfice
if they are already present.

5.3.3 Engine Structural Failure

Engine testing was terminated following loss of compartment 4 bed closure plate (Figure 5-11).
Subsequent teardown analysis indicated that rapid decomposition of hydrazine occurred in the
propellant passages causing a high pressure spike in the injector body assembly (Figure 5-12). The
spike occurred during low duty cycle operation (0.01%) indicating insufficient thermal margin to
handle the large heat soakback.

Aralysis of thic data indicated that pulse distortion was encountered during operation at a specific
thermal regime of the injector. Shown in Figure 5-9 is a plot of injector temeprature versus pulse
number for the three test sequences. Also noted are comments concerning the observed pulse
shapes. As can be seen, pulse distortion was observed when the injector temperature was in the
range of 750 to 1,1000F. During sequence B-3 the temperature was nearly stable at 8500F. It w2
therefore postulated that the pressure spike was due to inadequate thermal margin of the injector.

Tests to verify the thermal anomaly in the injector were conducted in the following manner. An
individual injector element was fabricated and exterraliy heated to simulate engine thermal
environment (Figure 5-13). The initial tests were conducted by pulsing the hot element at 1,600
and 1,1000F (Figure 5-14). No thermal problems were encountered at these temperatures.
However, pulsing the hot injector at 800CF showed evidence of spikie and roughne< : at 6500
injector body temperature, a significant pressure spike occurred in the iijector similar to the failure
experienced on the 490-1bf cngine.

Based on the results of the failure analysis, it was concluded that the pressure spike was caused by
inadequate injector thermal margin. As a result of a detailed review of the injector design, the
following design changes were recommended to correct the thermai deficiencies noted in the initial
test series.

Decrease injector holdup voluine

Provide smooth transition from circular passage to Rigimesh manifold
Improve Rigimesh weld

Alter passage dimensions consistent with thermal analysis.

o - o

Unfortunately, as a result of funding limitations and NASA redirection to emphasize the Space
Shuttle APU application, the above RCS design modifications were not incerporated and tested.
However, sufficient analytical and experimental studies were conducted over extreme duty cycles 1o
provide assurance that the engine could be built and operated with no duty cycle restraints over the
Space Shuttle thermal environment extremes. The gas generator, designed and tested during Task
IVA and reported on in Volume I, successfully completed hot restarts and a wide range of duty
cycles were conducted.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

The major results. conclusions. and recommendations of the Space Shuttle RCS program are as
folicws:
1.

Although it was found that catalyst oxidation damage can occur under certaun conditions.
it was concluded that catalyst outgassing would prevent any oxidation damage during
reentry.

Random vibration of catalyst confined in simulated compartments at 29 g rms resulted in
negligible breakup rates (0.02 percent/minute). Neither voids nor screer wires inserted in
the compartment affected the breakup rate.

A subscale test technique was developed which provides a cost effective. scalable
approach for parametrically optimizing the design of large monopropetlant engines.
Catalyst retention was achieved without the use of screen wires with a bedplate design
which simultancously retained the catalyst and minimized thermal expansion.

The 490-Ibf RCS engine had excellent performance and operating characteristics drring
acceptance testing with measured performance within 1 percent of the predicted values.
The RCS engine misfire incident was due to catalyst poisoning resulting from residual
propellant in the injector manifold following the acceptance firing. which was not
thoroughly removed prior to storage.

The engine structural failure resulted from heat soakback to the injector with subsequent
decomposition of propeltant in the manifold.

It is reccommended that additional studies be conducted to establish the effects of injector
design variables and heat soakback on hydrazine stability in injector manifolds.

The use of foam meta! for retention of the inner bed catalyst should be more thoroughly
explored for use in lurge thrust monopropeilant engines.

6-1




APPENDIX 7.1
RELIABILITY PREDICTION
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7.1 RELIABILITY PREDICTION

7.1.1 Introduction and Summary
P analvsis covers the reliability prediction for the flight configuration space shuttle orbiter

reaction control system (RCS) engine. The results of the prediction. based on a single engine. are as

tollows

I misston (7 days) 0.999
25 missions (returbishment cyele) 0.978
100 missions (life cycle) 0.903

The misston duty eveles are covered in Section 4.0. Detailed models and calculations are covered in
Section 6.0, The basic analysis covers one mission. or flight, of 7 days. From this basc. predictions
are extended tor 23- and 100-mission groups. These extended predictions have been made because
41 as now projected by RRC. a compiete refurbishment will be accomplished after cach cvele of 25
flights and by the total lite evele is specified as 100 flights.

7.1.2 System Description

The RCS engine is designed to provide a nominal thrust of 490 Ibt. using monopropellant
hyvdrazine. Propellant flow  to the  thruster is controlled by a single-seat. open ciosed,
motor-operated propellant valve (thrust chamber valve  TCV). The TCV has an integral tilter. A
cavitating venturi between the valve and the thrust chamber assemblhy (TCA)Y mamtaims a constant
propellant flow rate. Redundant heaters will be applied to the TCA to mamtam the catalyst bed at
the specified 15S0°F minimum temperature and thus avoid the occurrence ot “cold starts.™
Thermostatically controlled redundant heaters will be applied to the TCV to maintain the valve
above the freezing temperature of hyvdrazine. As now projected. the thermostat of the redundant
heater circuit will have a setting a few degrees below that of the primary heater circuit. This wall
ensure that only the primary circuit is drawing power: and should that arcuit fal. the redundiint
one would be switched into operation automatically. A thermocouple is attached to the TCA to
sense temperatures of that unit. but is is assumed that the output of the thermocouple will be ted
into a signal conditioning/switching device on the svstem level that will automaticatly control the
TCA heater operation. Since the control unit is assumed to be a system level component. it is not
inctuded in this prediction. The engine thermal control s completed by a thermal shroud tor
blankety around the TCA.

In addition to the thermocouple mentioned above, the flight instrumentation mcludes & pressure
transducer for sensing the TCA pressure and a thermistor for sensing the TCV temperature. Fhis
instrumentation is not essential to the mission, inasmuch as the engine will operate and fultdl s
mission functions without it. Theretore, these items have not been included in the rehability
analysis. The RCS engine is illustrated in Figures 7.1-1 and 7.1-2.

7.1-1
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7.1.3 Reliability Requirement

A numerical reliability goal has not been set by NASA-JSC for the space shuttle orbiter RCS
engine. The space shuttle guidelines (per Request No. 1-2-50-23639. Appendix A) include the
following statement: “Vehicle subsystems designs should reflect features consistent with a
philosophy of high reliability, minimum maintenance and checkout. reuseability. and low cost.”

7.1.4 Mission Profile

7.1.4.1 Duty Cycles

Ihe vehicle, engine. and mission lite and duty cycles have been specified by Request No.
1-2-50-23639. Appendix A, and by Contract NASE-28950. Appendix B. Certain operating times
and oy eles necessary for the prediction were estimated by RRC. The predictions performed herein
are based on the time. eveles, and mission freguencies listed below.

Mission duration 7 days

Maximum burn time per mission 1,000 seconds
(0.278 hours)

Maximum number ot pulses per mission 2.069

On-tim- TCV heater pee mission 5 hours*

o ~Tor {CA heater per nission 3 fours*

Boost phase 0.2 hour*

Deorbit and landing phase 0.5 hour*

Fotal number of miszions 100

Number of missions between refurbishment 25

tner RRC proposed program, see paragraph 4.2.4

*stimated

7.1.4.2 Mission Stress Factors and Assumptions
7.1.4.2.1 Operating Modes

B 'h time- and cyelic-related tailure modes are identificd and evaluated in this analysis. Therefore,
the propellant valve and the thruster are analy zed with both time- and cyclic-operating failure rates.
Phe propellant valve, in addition to these, is considered subject to a leakage failure mode. which,
though a Tunction of a constant pressure stress. is nevertheless considered o non-operating mode.
Fhis mode is defined as “leakage nominally in excess of a specificd maximum tolerance. causing a
parasitic but not o perturbating thrast, with some decrease i fength of mission due to gradual loss
ol propellnt.”™ This s contrasted 1o loss of mission due to Tail-to-open or tail-to-close modes of the
valve.

7.1.4.2.2 Ambient Starts
Only ambient starts tor the engime have been included. The TCA heaters are designed to hoid the
catalust bed at the speattied TSOUE temperature ninimuam, which s above a Ueold start” condition
that could cause pressure spikes and possible damage to the catalyst bed. Therefore no seold starts™
are assessed agamst the TCA m this prediction,

7.14
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7.1.4.2.3 Mission Phases

A boost phase and a decibit/landing phase. assumed to be of 0.2-hour and 0.5 hour duration
respectively, have been included to account for envitonmental stresses during those periods that
could increase the generic failure rate. A K factor of 900 hus been applied as a fatlure rate moditier
to the former and 90 to the latter. A K factor of 1.0 has been applicd to the orbiting phasce.

7.1.4.2.4 Refurbishment Group

A complete refurbishment will be accomplished after every 25 missions as a major maintegancee
action on the RCS. This will restore the RCS engines to original condition of performance. [t is
designed to take place before there can be any out-of-tolerance “wearout™ that could result n
failure or major performunce degradation. This ensures that the component failure rates remain
constant.

Redundant O-rings provide a scal where the valve/cavitating venturi inlet tube joins the TCV. This
type of joint makes possibic the replacement of interfacing subassemblies, il required. during
refurbishment. The probability of a leakage failure at this point (during activation of the engine) is
extremely remote, but the failure mode is included in “fittings” with the cavitating venturi in this
analysis.

7.1.4.2.5 Recycling Unreliability

It is assumed that the additional handling, reconditioning, and checkout involved in recycling the
space shuttle after ecach flight during the turnaround period result in a small, but possible,
performance deficiency failure mode. This could result from personnel error, undetected damage or
contamination, incomplete inspection, etc., that may arise from normal recycling operations.
Further. this is assumed to be cumulative from flight to flight until the major refurbishment after
25 missions. To account for this possibility, cach flight (after the first) is assessed a failure rate of §
x 10°0. which is additive through the 25th flight. The model for including this is presented in
paragraph 7.1.6.2.

7.1.5 Failure Rate Data Sources

Eailure rates have been obtained generally from AVCO sources and wherever possible from RRC

and RRC supplier test data. The latter two sources apply specifically to the thruster and propellant )
valve. These data are available in RRC Reliability Bulletin RB-'Z. which also covers environmental

and application factors (K) used to modify failure rates. The K factor of 90 for deorbit/lunding (see

paragraph 7.1.4.2.3) has not been included in RRC RB-1C. This value has been derived by assuming

it as 1/10 the boost phase factor. (This compares with a K factor of 50 that is applied for aircraft

flight stresses.)

7.1.6 Analysis Methods and Mathematical Models
7.1.6.1 Mathematica! and Logic Models

Fhe rehiability estimate s based on g constant Cailure rate assumption. Theretore, the exponential
dintribution 1 used to ostimate the ey ot cach functional rehability block defined by the

rehiability block diagram,

7.1-5 .
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Thus,

i which

R is reliability (probability of ne failures)

XIS Failures per mission tor the ith reliability block.

Some parts operate in only the time domain, some in only the cyclic domain, and some in both.
The appropriate time-related or cyclic-related failure rates have been selected for these parts. It is

also necessary to modity the generic failure rates in accordance with the following formula to
account for the variables that determine the failure rate of a reliability block.

For time-dependent failure rates:

Pt bt B Bwed  em  SEG R

N = nKgKarG (2)
E
Where:
A = Time dependent failure rate (failures/hour)
- n = Quantity of items
.‘. Ky = Failure rate modificr for environmental stress
KA = Failure rate moditier for application stress
i A = Genene fuilure rate (failures/hour).
E
E -'r For cychic-dependent failure rates:
- N = 0KpKaRg 3
7 Where:
g )\C = Cychic-dependent failure rate (railures/cycle)
A, = Genene falure rate (fafures/cyele).

Then to estimate the mission failires tor a rehabihty block

AP W B W 4
] t \
Where:
t = The applicable mission time (hours)
¢ = Theapplicable number of cycles during miswon.

By extension of (1) and (4)., the rehability of a group of blocks in series s stated s follows:

= Ry Ry R, (5)

n

g w1 =




-

The reliability of a fully redundant pzir of blocks (e.g.. u and b) is stated as tollows:
R = 1-(1-R)(1-Ryp) (6)

The alternat= form of this is:
R =1-Q,Q (7)

Ry. Ry, R3 etc. are the reliabilites of the related numbered blocks of the reliability block diagram,
Figure 7.1-3. The same identifying notation is used in the reliability block failure rate data, Table
7.1-1, in which the individual mission exponent values. per (4) above. are derived and listed. The
mission failure rate, or exponent, values are used in all cases to determine the reliability of each
block for one mission.

Incorporating the preceding models, and tased on the block diagram of Figure &-1, the rehability
model for the RCS engine for a single mission (flight) may be stated:

Rpes = Ry [1-(1-RyR3)ZR4Rs [1-(1-Rg)7] R7RgRGR g (8)

To account for the possible cumulative effects on RCS performance duc to turnaround recycling of
the space shuttle system, as discussed under paragraph 7.1.4.2.5, the following terms are assigned:

Ro = Reliability of original countdown = 1.0

QF = Unreliability induced by recycling maintenance = S x 106
RR = Reliability of 25th mission [refurbishment group)

Ry =  Reliability of 100th mission.

With these terms, the following statements are made:

ALY
RR = [Ro(Ro-QF)(Ro-ZQF)(RO-3 Q[;)...(RG-34QF)]RR"(\S )
Ry = Rg? (1)

7.1.6.2 Calculations
7.1.6.2.1 Block Reliability Derivations

The tollowing calculations are made by applying the exponent values for the numbered block from

Table 7.1-1:

i Xi R=cVi Related Calculatior

1 0.000305 0.999695

b 0.0000022 | 0.999998 | 1-(1-RaRHI=1-1(1-.999997)2

3 0.0000004 | 0.999999 | = 1-(.000003)2 = 1)
3 0.00000002 | 1)

S 0.0006955 | 0.999305

(Continued)
7.1-7




7.1.7 Redundancy and Safety Provisions
Thie prediction covers the currently propesed Task [ RCS engine design. Subsequent design
aialvsis or redesign based on the Task I hardware and test program may sequire a subsequent

reviston to this analysis,

Redundant FOV and TCA heaters ensare a highly reliable thermal control. o ensure satety tor
ctound crews perfermimg checkout, reey cling, or mamtenance operations, the use of two-position
Liching vaves upstream ot the FCV should be comsidered, These valves. meorporated at the space
shutthe system level, would sicvide a redundant shut-oft capability both i space and on the grotiid
to pravent a possible feakage falure mode (i exeess of allowable leakage) of the singleseat TV A
anele TV Could shut oft a group of manitolded TCV S m g contigaration consistent with tune bonal

Sthtude control requirements at the syste nlevel,

7.1-8
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Block Reliability Derivations (Concluded)
| ,
i X; R=eXi Related Calculation
l 6 0.0000013 0.999999 1-(1-Rg)2=1- £,000001)2 = 1(-)
0.0000002 1)
1 0.0000018 | 0.999998 2 connectors: R2 = 0.999996
9 0.0000018 2.999992
10 0.0000023 0.999998
1
. 7.1.6.2.2 RCS Reliability
N The following calculations have Seen made by substituting the values from the foregoing table in
formula (8):
R (one mission) = (0.999695)(1.0¢11.01)(0.999305 1 o)
(1.01)(0.999998) 0.999992)(0.999998)
= 0.99899 =~ 0.999
Rgcs (25 missions) = 0.99899=3 = 5.975054 = 0.975
7.1.6.2.3 Missior Reliability (25 and 100)
Substituting in tormulas (9 and (10) the following calculations are made:
RR = [1.001 - 0.0000051 - 0.00001 11 - 0.000015) ... (1-0.006121] (0.975054)
= 11.0(0.9999051(.99999)(0.999985) . . . (0.99988)] (0.975054)
= (0.0999710.975054) = 0.974761
Ryy = 0.974761% = 0902804 = 0.903
)
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APPENDIX 7.2 TEST FACILITIES

Two separate test facilities were used for the RCS test firings — a sea-level test cell and an altitude
facility. Sea-level firings were conducted using the RRC high cnergy test ceil losated in Redmond.
Washington. The 400-ft2 cell was equipped with full instrumentation lead connectors to the
laboratoryv data center. A schematic of thc test setup is shown in Figure 7.2-1. Two temperature
conditioned propellant tanks were used. The 400-gallon tank was used for steady-state firings and
most of the pulse-mode firings. The smaller 35-gallon tank was used for selected pulse-mode tests to
measure propellant consumption during pulsing operation of the RCS.

LA

j All RCS altitude simulation tests were conducted at the Boeing Tulalip test site located 35 miles
north of RRC’s Redmond, Washington, faciiities. The Area 34 altitude test facility includes a
10,000-ft3 environmental chamber, a 640-it3 environmental chamber, two steam ejector systems. a

| cooling tower, a steam generating plant, a 2,500-ft2 assembly area, and an adjoining control area.

3 The vacuum system for altitude simulation consists of two steam ejector systems. One system is a
five-stage ejector capable of evacuating the tank to a simulated altitude of 230,000 fezt, under
no-flow conditions. To accommodate test specimen out-gassing, the same system can evacuate the
chamber at a constant rate of 135 pounds per hour to maintain & consistent 200,000-foot altitude
simulation. The second vacuum system consists of a two-stage ejector system capable of exhausting
1.350 pounds per hour at 96,000-foot altitude simulation or 9,600 pounds per hour at 25,000-foot
altitude simulation. This system is used during tests on high flow test specimens.

E
F

Long duration engine firings were conducted at fully expanded, balanced nozzle exhaust flow
conditions by augmenting the vacuum pumping characteristics of the Tulalip test facility with RCS
second throat exhaust diffuser as shown in Figure 7.2-2. A schematic of the altitude test setup is
presented in Figure 7.2-3.

7.2-i
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