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ABSTRACT

Substantial advances have been made over the past decade in the

prediction of turbulent flows. There has been extensive work in the

development of turbulence models, particularly for use in boundary

layer calculations. This review covers, in a common notation, the basic

`	 aspects of su-veral important methods based on partial differential equa-

tions for the mean velocity field and turbulence quantities, including

the relationship between the methods and suggestions for future develop-

i rent. New work on three-dimensional time-dependent large eddy simulations

is discussed. The emphasis is on the hydrodynamics of incompressible

flows, but sources for consideration of heat transfer and compressibility

are mentioned.

This article will appear in Vol me 8 of the Annual Review of Fluid 'lechanics.
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1.	 INTRODUCTION

The computation of turbulent flows has been a problem of major concern

since the time of Osborne Reynolds. Until the advent of the high-speed

ccmputers, the range of turbulent flow problems that could be handled Y'as

very limited. The advances during this period were made primarily in the

laboratory, where basic insights into the general nature of turbulent flows

were developed, and where the behaviors of selected families of turbulent

flows were studied systematically. For the engineer th-re were only a limited

number of useful tools such as boundary layer prediction iiAhods based on the

momentum integral equation wiln a high empirical content. Features such as

sudden changes in boundary conditions, se p aration, or recirculation could

not be predicted by these early methods with any degree of reliability. Very

specific empirical work remained an essential ingredient of any engineer's

analysis.

Midway through this century computers began to have a major impact.

First it became possible to handle more difficult boundar y layers by complex

integral analyses involving several first order ordinary differential equations.

by the mid 1960's there were several workers actively developing turbulent

flow computation schemes based on the governing partial differential equations,

(pde's). The first such methods used only the equations for the mean motions

but second generation methods began to incorporate turbulence pde's.

In 1968 Stanford hosted a specialists conference designed to assess the

accuracy of the then current turbulent boundary layer prediction methods

(Cline, et. al 1968). The main impact of this conference was to legitimize

pde methods, which proved to be more accurate and more general than the best

integral methods.

Vigorous devFlopment of more complex and supposedly more general pde

turbulence models followed. Methods were first developed in which a pde

for the turbulence energy was solved in conjunction with the pde's for the

mean motion. Tnen, in an effort to reduce the empiricism required, models

incorporating a pde relating to the turbulence length scales wer(



More recently there has been intense development of models involvinn pde's

for all of the nonzero components of the turbulent stress tensor.

The ability of these more complex models to produce predictions for

the detzi l ed features of turbulent flows has outstripped the available store-

house of data against which these predictions can be compared; moreover the

output of these programs now includes quantities that are difficult, if not

impossible to measure. At the same time these rapid developments were being

made in computation, some totally new approaches to turbulence experiments

were introduced (Laufer 1975). These centered on the observation that

turbulent shear flows possess a remarkable degree of organization of their

large-scale motions. New "selective sampling" techniques were introduced to

study these structures, and a great deal has been learned. As vet the pde

models have not made any use of the new experimental data, perhaps because

large scale transport is not really consistent with the "local" ideas used

in pde models.

One new approach that appears promising, and is just beginnin g to be

carefully explored, is the idea of usin g a very fast, very large computer

to solve three-diiiensional time-dependent pde models for the large scale

turbulence. These would incorporate a simple model of the small scale tur-

bulence in some .enii-empirical way. At present these methods are in their

infancy, but alreidy they have begun to shed some light on the simpler pde

models, in some cases producing numerical values for constants used in the

"simpler" two-dimensional steady pde models. As experience with this apprr-ach

grows, and as machines improve, it seems quite likely that this type of

calculation will eventually be useful at the enginee r ing level.

This review will outline the essential ingredients and effectiveness cf

several levels of turbulent flow pde models:

1. zero-equation models - models using only the pde for the mear

velocity field, and no turbulence pde's.

2. one-equation models - models involvin g an additional pde relating

to the turbulence velocity scale.

3. two-equation models - models incorporating an additional pde

related to a turbulence length scale.

4. SLress-equation models - models involving pde's for all components

of the turbulent stress tensor.
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5. large-ecdy simulations - computations of the three-dimensional

time-dependent large eddy structure and a low-level rodel for the

small-scale turbulence.

Zero-equation models are common practice in the more sophisticated

engineering industries, and one-equation models find use there on occasion.

'I
	

Two-equation models, currently popular among academics, have not been used

extensively for engineering applications, probably because ore can do as

well if not better in most problems with simpler methods. Stress-equation

modeling is now under intensive development; it is essential for handling

the more difficult flows, and will probably become standard practice in

industry in ten years time. Large eddy simulations are just in their infancy,

and are serving mainly to help assess the lower level models. However, in

the long term, large-eddy simula +.ion may be the only way to accurately deal
with the difficult flows that stress-equation models are presently trying

to handle.

Four other reviews have appeared recently covering selected aspects

of the subject.	 Reynolds (1974), in a publication lon q delayed in press,
outlined the state of affairs in 1970. Mellor and Herrinq (1973) provided

an overview of one-equation, two-equation, and stress-e q uation modeling as
of mid 1972. Cebeci and Smith (1974) have an entire book on the subject,

concentrating primarily on their own zero-equation approach. Bradshaw (1972)

wrote an incisive and delightful review of the interplay between model develo p
-ment and experimentation that should be mandatory reA'4 nq for all students of

the field.

The present review will concentrate on the hydr 	 amic modeling of

incompressible flows, but sources of insight for extension to compressibility

and heat transfer will be mentioned.

2.	 ZERO-EQUATION MODELS

The equations describing the mean velocity field in incompressible

turbulent flow are well known (Tennekes and Lumley 1972); they follow from

the Navier-Stokes equation by the usual decomposition of the velocity field

into mean and fluctuating components, u i = U i + u!	 and may be written as

U 	 + U j U i.l	 - p p, i + ( 2,,S ij - R ij ),
i
	 (2.1a)

U 	 0	 (2.1b)

3
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Here we use the cartesian tensor summation convention, in which repeated

indices are to be sunmied over all three coordinates. Subscripts after

•	 commas denote partial differentiation, e.q. U i, , = M 
i/_,x,	

and the over-

dot denotes a partial derivative with respect to time. R id = uiu^ (-oRij

is the Reynolds stress tensor), and S ij = 2(U i.j + Uj,i )	 is the strain-

rate tensor; v is the kinematic viscosity, p is the pressure, and

U the mass density. Note that S ii = 0 =,y (2.1b).

To close eqs. (2.1),additional equations mus s be provided for Rid

in the simplest models R ij is described by a Newtonian con-titutive

equation of the form

Rij = I q2 8 ij - 2vT S ij	 (2.?_)

where q 2 = R ii , and vT is a turbulent or eddy viscosity which must he

prescribed in some suitable manner. The q 2 term can be absorbed in with

p , and so need not be calculated explicitly.

•	 In a zero-equation model 
"T 

is related directly to the mean velocity

field U  . For free shear flows (jets and wakes) one makes the usual

boundary layer assumptions to simplify (2.1). Remarkable success is obtained

with simple assumptions of the form

V  = K1Ub	 (2.3)

where AU is some appropriate velocity difference associated with the flow

(e.g., the difference between jet centerline velocity and the velocity of

the external flow), and b is a length scale charaAerizinq the width of

the jet. The constant K may vary from flow to `iow, but is typically of

the order 0.05-0.1.In this model the turbulent viscosit y is constant ac+oss

the shear layer at any given downstream station (see Schlichting 1968.) A

similar sort of assumption also works very well in the outer (wake) region of

turbulent boundary layers.

In the wall region of a turbulent boundary layer is is essential to

consider the cross-stream variation of the turbulent viscosity. Outside of

the viscous region a commonly used form is

V  =
	 KU *Y	 (7.4)
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Here	 K is the "Karman constant," (approximatel y- 0,4), u* is the "shear

velocity," u * = 
` w
/p where 'w is the wall shear stress and y - x ` is

the distance from the wall, Very close to the wall, where viscous effects

are important, success has been had with simple modifications of (2.4)

that reflect the effect of the wall in suppressin g turbulent transport,

for example

VT : 
Ku*Y( 1

 - e-Y /A )2	 (2.5)

where y+ = yu * /v , and A+ is an empirical constant.

Alternatively, many have used the "mixing length model," which can he

generalized by

VT = â. 2;2—;nmSnm
	

(2.6)

where .'. is the "mixing length." In the wall region of a turbulent boundary

layer, but outside of the viscous region, the velocity field is known to

behave as

aU	 u#	 (2.7)
W = K y

where U = U 1	is the flow velocity parallel to the wall.

This is the only i mportant el ement of U i,j . With Q = Ky in the wall region,

(2.4) and (2.7) are equivalent.

Patankar and Spalding (1970) were among the first to document boundary

layer computation methods of this type, and now make programs available on

a commercial basis. More recently Cebeci and Smith (1974) devoted an entire

book to the subject, emphasizing their own particular computational models

and processes of this general type. A Stanford group under W. M. Kays and

R. J. Moffat has been working with these methods for several years, with the

distinct advantage of doing this in parallel with their com p rehensive ex-

perimental program on turbulent boundary layers with wall suction, blowing,

pressure gradient, and heat transfer. Their own particular model is

certainly one of the most advanced of this type, and I have cho-- ,•. to lelve

5
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into it in more detail to illustrate the empiricism and capabilities of

such methods. Their present program is called STAN-5, and is available

upon request for reproduction costs (Crawford and Kays, 1975).

The boundary layer simplifications of (2.1) rroduce

x 11
U;X + u iy - _ P - + y	 (v + V	

ayJ	

(2.R)

where we have used ll i = (U,V.0), x i = (x,y,z), and p* = p/p + q 2/3 .	 In e

boundary layer calculation, 1, *(x)	 is derived fro,.i the pressure distribution

applied by the external flow. STAN-5 uses (2.6) specialized to boundary layer

flows

In the outer region it uses 	 A = a699
	

where b 
99 

is the thickness

of the boundary layer to the point where U is 99`x. of the free-stream

velocity U .. . The factor	 is provided with a dependence on the momentum

thickness Reynolds number R  = AU./v in order to better predict low

Reynolds number flows,

9.085

A	 =	 min	 (2.10)

0.25RO
-0.25

 0 - 67.5 F)

Here F is a wall layer blowing parameter, V o/U , where V0 is the

velocity of injection into the flow through the wall.

The inner regions are handled by assuming that

Q	 =	 ry(l - e -Y /A )
	

(2.11)

with K = 0.41. The parameter A+ is given as a complicated function of

both thi^ pressure gradient and blowing rate, shown in Fiq.l. There

V  = Vo /u * ,and p+ =(dp/dx)(v/nu*3). An empirical fit to Fiq 1 is used in

STAN-5. The parameter A + determines Lhe thickness of the viscous region.

this will not change suddenly if p + or v 	 char.les suddenly; to accomodate

this delay, STAN-5 uses a "lag" equation,

6
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dA+	
A+ - 

Ae ,

	

--	 ( 2.12 )
dx+	

4000

where A e + is determined from Fig. 1. and x + n xu*/% . In handling the

heat transfer problem, sirr 4 'ar models and empiricism are required; for .,etails

s(e Crawford and Kays (1975).

For a particular flow of interest, Uw (x) and p(x) are known, and a

"starting" profile U(xo .y) must be prescribed. The numerics are actually

executed in STAN-5 using the stream function as a dependent variable and the

mean vorticity as independent variable. as in Patankar and Spalding (1970).

The mesh points are closely spaced in the wall region, and then expand out

away from the wall.

The resulting velocity distributions, temperatu re distributions, skin

friction, and heat transfer are typically in excellent agreement with Exper i

-ments, except for layers very close to separation. Figure 2 shows one of

the greater triumphs of the STAN-5 moc'11, the heat transfer predictions for

a turbulent boundary layer subjected at first to strong blowinq, which is

removed midway through a section of very strong acceleration. which in turn

is terminated downstream. The rapid changes in heat transfer coefficient that

accompany the cessation of blowing and acceleration are extremel y difficult

to predict; every element of the empiricism reflected above is essential to

the success of this calculation.

Two other groups are experienced in the use of zero-eq uation methods

for a wide variety of problems. The first is that of T. Cebeci and A. M. U.

Smith at the Douglas Aircraft Cor poration. They have extended their calcula-

tions to compress i ble flows, flows over axisymmetric bodies and bodies with

longitudinal curvature, and have done extensive calculations on aircraft

wing and body systems. Their particular model, as well as their numerical

technique, is outlined in detail in their book (1974), which is highly

recommended to potential user of zero-equation methods. Cebeci (19'/5) har

extended their procedures to three-dimensional turbulent boundary layers.

A second group is that at Imperial College, under U. B. Spalding. 	 Patankar

and Spalding's book (1970) describes their zero-equation approach for turbulent

boundary layers, and another book by Gosman et. al (1969) describes their

7



iI

1

.i

modeling of recirculating flows. The most finely tuned zero-equation model

for boundary layers is probably the STAN-5 program d eveloped at Stanford ,:s

an extension of the Patankar - Spaldin g approach (Crawford end Kays 1975)

Zero-equation models like STAN-5 are extremely useful in enqineerinq

analysis. However, they fail to handle some important effects. such as

strong surface curvature and free-stream turbulence, all important on

turbine blades. Nor are they accurate near separation points, or in boundary

layers subjected to extremely strong accelerations. The more advanced models.

which incorporate a pde for the turbulence kinetic er.ergy,were originally intro-

duced in the hope of providing additional generality and at the same time to

reduce the extensive empiricism that is essential to success in a zero-

equation model.

3.	 ONE-EQUATION MODELS

An equation describiro the dynamics of the turbulence kinetic energy

can be derived fror the Navier-Stokes equations by simple manipulations

Pe ekes and Lumley 1972),

,)2 + U.lg2,i	
2(1V ) - Jj,,j
	

(3.1)

1

i

Hert	 _ -R i
?
i'j is the rate of production of turbulence energy,

1 

= 2vsisii is the rate of energy dissipation, and J j = u u u^ +

p 
j - 2vu iil s

ij
) is the twice diffusive Fl ux of turbulent kinetic energy.

all per unit of mass. 	 We use s^^ _(u! , ^ + u^,i).

Alterna^vely, (3.1) can be written with ^ 	 replaced by the "isotropic

dissipation" 	 = vuT .u'	 and J• replaced by J.* = u rl u'. + I P , u -
•J i ,J	 J	 J	 >> J	 p	 J

`)q2.] . 
This second form is appealing because of the direct appearance of

the gradirnt diffusion of q2 by v	 in Jj * . Some authors have incorrectly

termed k^l the dissipation. At high Reynolds numbers the isotropy of the

small scale turbulence renders C .= r , but this is not true at low Reynolds

numbers, or near a wall.

8
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vT v C 2 g2 (3.2)

in one-equation turbulence models, (3.1) forms the basis for a model

equation 'ar the turbulence velocity scale q . Typically (2.2) is used

as a constitutive equation, and the turbulent viscosity is modeled by

The length scale t is prescribed, much as in the zero-equation approach

typi f ied by STAN-5. The dissipation and transport are modeled in terms of

the scales q and u . It is well known that, at hivh Reynolds numbers,

the rate of energy dissipation is controlled by inviscid mechanisms (non-

linear interactions that cascade energy to smaller scales) and that the

small scale motions adjust in size to accomodate the imposed energy dissipa-

tion. Hence, by dimensional analysis

OW - C 13 /Z
	

(3.3)

The diffusive flux is usually treated by a gradient diffusion model,

J;	 (C4 VT + v) q2,j
	

(3.4)

STAN-5 has the capability of incorporating this one-equation model for

boundary layer analysis. The zero-equation approach described above is used

for y + < 2A
+
; for y+	 2A + (3.1)-(3.3) are em p loyed, usinq (2.10) and

(2.11) to prescribe u, . Guidance in selection of the constants is obtained

using the well-known fact that, immediately outsi6e of the viscous layer,

(2.7) holds, and	 the production and dissipation terms are essentially in

balance.	 U3ing (2.7), (2.9), and (3.2), in this region c 2 = u* /q .	 Setting

T-^ = 0 in this region, one obtains c 3 = (u* /q) 3 = c 2 3 . STAN-5 uses

c2 = 0.38, ^ = 0.055, suggested by experiments which show g 21J2	7 in

this region, and c 4 = 0.59	 which was determined by comparing

calculations with the one-equation model with those of the zero-equation model

As a "boundary" condition on the q 2 calculation, which is carried out only

for y+ > 2A+ , STAN-5 requires that q2 be such that „T at y+ = 2A+

matches vT generated by thp mixing length model (2.9) at this point. Kays

and his co-workers have used this model to explore the effects of free-stream

9
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turbulence on boundary layer heat transfer (Kearney t . al 1970) and presentiv

are using the model to st-idy the effects of rapid changes in free-stream

•	 conditions ("non-equilibrium" boundary layer behavior).

Norris and Reynolds (1975) proposed a one-equation model t l'4 t shows

promise as an alternative to the hiqhly empirical A+ correlat - and

empirical lag equation needed if one is to get good results in the viscous

region. Their intent was to develop a one-equation motel that is valid

right down to the wall. Noting that at low Reynolds numbers the dissipation

should scale as vq2 /k	 they use

3	 c5
 [1

They arg-je that the length scale should do nothing special in the viscous

region, but should behave like • ky right down to the wall. Near the

wall, q ^- y , and so (3.5) near the wall becomes
46

c 3 c5 vg 2
/c 2 

and

approaches a const nt as y - 0	 This is indeed the proper physical

1. 1havior of the dissipation.	 Finally, they use (3.4), but assume that thf

turbulent transport is suppressed by the presence of the wall, and hence

V  
= c 2gk(1 - e -c6Gy/v )	 (3.6)

Note that this produces ^
,T ' y

4 as y - 0	 At the wall (3.1) becomes

-24%,+ v q 2/ay 2 = 0 , which requires c 3 c5 /k
2
 = 1 if q ^ y near y = 0 .

Having established c 3	this determ nes c4	Finally, a value for cF

can be estimated from the known behavior for a flat-plate boundary layer,

and they used c 6 = 0.014 .

Nor r is and Reynolds applied this model to channel flow with blowing

from one wall and equal suction on the other. For â they used a smooth

fit between f. - 0.4y near the wall and F. = 0.136 in the center, where

is the channel half-width. The mean velocity p rofiles calculated in

the wall region, and the change in skin friction over the no-blowino case,

are in excellent agreement with the corresponding data for flat-plate

boundary layers. Since the main effect on A + is that of vn+ , and the

10
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Norris-Reynolds n ►odel seems to handle that quite well, it does seen likely

that it will handle the pressure gradient system as well. A boundary layer

version of this model is now beinq prepared to study this conjecture.

A similar approach was adopted by the Imperial College group, reported

by Wolfshtein (1969). However, Wolfshtein allowed the length scale to

depart from Ky in the viscous region, but kept the same behavior (3.3)

for the dissipation. When placed in com parable forms, the constants used by

Wolfshtein and by Norris and Reynolds are quite similar.

Norris and Reynolds discovered an intereatin q aspect of the behavior

of their model. They solved the channel flow equations by g uessing a

wall dissipation, inteqratinq outwards from the wall, and then adjusting

the wall dissipation until the proper conditions were satisfied at the

channel centerline. The calculation proved enormously sensitive to the

wall dissipation, and a double precision integrating scheme had to be used.

The guessed dissipation had to be within one part in 10 8 of the proper value

before the calculation could even continue to the centerline (if the value

was further off, q 2 either blew up quickly or went negative). This very

narrow window meant th,_- a wide variety of centerline conditions could be

satisfied with almost identical distributions of mean velocity and kinetic

energy in the viscous regions; computationally the model confirmed the

concert of the law of the wall!

Most workers have abandoned one-equation models in favor of two-equation

or even stress equation models. However, it may be that one can do better

with this sort of one-equation model in most flows of interest, fo r it may

be easier to specify the lenqth scale distribution than to com-

pute it with a pde.	 This would be particularly true if the 1F,^gth scale

really should be governed by the global features of the flow through ar

integro-differential equation. Hence, further study of extended one-equations

models is encouraged.

Melln- end Herring (1973) discuss some of the earlier work on one

equation models, citing numerous references of particular calculations.

The serious student of this subject will find their review particularly

useful as a resource for computational examples.



4.	 TWO-EQUATION MODELS

In attempts to eliminate the need for specifying the turbulence length

scale P as a function of position throughout the flow, several workers

•	 have explored the use of a second turbulence pde which in effect gives . 	 .

^	 I
	

The groups at Imperial College and at Stanford both experimerted with ad-hoc

transport equations for Z , with no real success. However, Success has been

had by both groups and others using a model equation based on tree exact equa-

tion for the isotropic dissipation b—, this equation can bt developed from

the Navier-Stokes equations by appropriate differentiation, multiplication,

and averaging, acid is

+ U  J^ j - -W - Hj.j
	

(4.1a)

here

W = 2vuT u — u — + 2,^ 2u^^u --
i . j J . k k,>	 > , jj i ,kk

+ 2v u^u — U, + u^u 
i

U	 + 2 , V.u'.	 '1	 (4.1b)
i. j i,k J,k	 i,k J, k 	 .l	 J i.k i.jk

H. = vu  uT u + 2vu	 - v^	 (4.1c)
J	 i , k i , k j	 J , k , k	 j

H j represents the diffusive flux of UIS- in the j direction.

The systematic workers have insisted that their two-equation models

first describe properly the decay of isotropic turbulence, and then have

worried about the behavior of their models in homogeneous flows where the

transport terms vanish. For the isotropic decay problem,(3.1) and (4.1)

reduce to

W is a scalar for w',ich a closure assumption is needed. In this problem

W gust be a function of the only other variables around, q 2 and	 and

from dimensional arguments must be (at high Re ynolds number)

i
	

W = c71^2/q2	 (4.3)

12



The exact solution for the decay is

q 2	q0 (1+t/a) -n	o	 ^^ (1+t/a)-(n+l)
	

(4.4a,b)

a = ng0/(21S'0 )	 n	 2/(c7-2)	 (4.4c,d)

Here qo and	 0 are the initial values. Early experiments suggested

n = 1	 which gives c 7 = 4	 Comte-Bellot and Corrsin (1966, hereafter

denoted by C-BC) took special care to obtain better isotropy, and their

data reveal	 n values in the ran(le 1.1-1.3. 	 Lumley and Khajeh-ilouri (1974b,

hereafter denoted by LK42) suggested that slight anisotropies are responsible

for these differences, and proposed a righer-order model to take this into

account. But this theory does not explain the different values observed in

truly isotropic decay, as revealed in Table 3 of C-BC. It seems more reasonable

that the structure of the low wavenumber portion of the s pectrum is responsible

for these differences.

The influence of the low wavenumber spectrum on n can be shown usino.

the spectrum of Fiq,3, following a similar analysis of C-BC. The low wave-

number part of the spectrum is assumed to be permanent, and the hi g h wavenumber

portion moves down as 	 becomes smiller. The peak, which corres ponds to the

energy-containing scale, occurs at wavenumber k  . To the left of the peak

we take E = Ak m ; it is known that E k 4 for k - 0 , but this might not

include the energy containing range and so we allow a less gradual qrowth in

this range. For k < k0 the k 4 behavior would obtain, but we shall not

need to deal with this region. To the right of k 	 we use the Kolmogoroff

inertial sub-range spectrum E 	 k-5/3 . The constant a is universal for

this spectrum, and has a value of about 1.5. 	 In the inertial sub-range enerq.y

is transported up the wavenumber scale by non-linear interactions, and the

spectrum is controlled solely by the rate at ►!hich energy is being processed

upscale (i.e., by the dissipation J^ ). At hi g h wavenumbers viscosit y is

important, but this range does not contain significant energy and need not be

considered here in detail.	 It is a simple matter to calculate the energy

•	 contained in this model spectrum from q 2/2 = fE(k)dk, assuminn k0<`kL<-kd

One finds

q2	
a 1
	 + 3 

)'k 
-2/3 2/3	

(4.5)

	

(mMT	 L c
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It is interesting that the form of the lareje-eddy spectrum enters through m

but its strer(Ith (A) does not. Eqn. (4.5) shows that the length scale of the

energy-containing eddies is q 3/,J^. (compare 3.3), and hence the time sc le

is q2/V^0..

Matching the two portions of the s pectrum gives

.f	

k
L = [,W/3/,,]3/(3m+5)	

.

Then, using (4.5)

	

- C[g21(3m+5)/(2m+2)	 (4.6)

where C is a constant. Substituting in (4.2a), and solving for q 2 , one

obtains (4.4a) with n = (2m+2)1(m+3). So, m = 4 gives n = 10/1 , m = 2

gives n = 6/5, and m = 1	 gives n = 1 .

It is clear that the details of the low wavenumber portion of the spectrum

are instrumental in determining n	 since these details are in no way

represented by the scales q 2 and	 , there is no way that this model can

e)actly predict the decay of laboratory grid turbulence. However, it is

possible to make a fairly rational choice of c 1 . We really should expect

the model to work only when the large-scale structure is devoid of any scales,

i.e. when the large-scale energy is uniformly distributed over all wave vectors.

This occurs only when ^ ii (k) is the same at all k low wa venumbers. The

three-dimensional energy spectrum `unction used above is E(k) = 2rk2dii(k)

and represents the energy associated with a shell of wave vector space. Hence,

in "equipartioned" large-scale turbulence, * E(k) ti k 2 . On this basis we

recommend n = 6/5 , which gives c 1 = 11/3 . This is close to the value

used by '.K442 and the Imperial College workers.

When strain is applied to the flow, there is every reason to expect an

alteration in W ; something must provide a "source" of ^ S-, and this must

depend in some way on the mean flow. Lumley has argued that this can not come

from the terms in W explicitly containing the mean velocity, but must come

from the first two terms in W (see 4.1b), which are very lar ge but of

opposite sign. Lumley feels that the alteration of W by strain should be

modeled in terms of the anisotro p y of the Reynolds stress tensor. If we

	

There is no real reason to require E(k) % k 4	as required by analyticity

in k as k , 0 (see Hinze 1959). The box-like grid certainly could create
a directionally-dependent dE/dk for k - 0 .

14



follow this approach, and represent the anisotropy through

bi,l	
=	 (R id - g2b ij / 3)/ q2

	
(4,1)

the,i the first scalar that can be formed from the anisotropy measure is

t 2 = b ii b ij . Lumley therefore proposes
J

	

W = ( c 7 - c 8b`2 /q 2 	(4.8)

LK-N2 use c 7 - 3.73 and c 8 = 30.

In a two-equation model b2 must be produced from the constitutive

equation (2.2), with v 	 given by

V  = c 9 q 4 /^.	 (4.9)

To match (3.2) and (3.3), c 9 = c 2 c 3	 Then, bi.J = 2c9g2Sij/)-,

b 2 = 4c9
2 4 4 S 2

^ , where S2 
=2S.-S.-	

The turbulence production is

= 2c 9q S !^- , and hence b = 2c9 Tj^r. Hence, in this model (4.3)

may be written as

	

W ' ( c7 - C10 (P /^ ) j- 1 q2

	
(4.10)

where c 1 = 2c8c 9 .

Using Lumley's value of c 8 = 30 and the other constants given earlier,

c 10 = 1.25 . The group under B. E. Launder at Imperial College have explored

two equation models extensively, using forms equivalent to (4.10) with c3 _ 3.1

It seems most desiraLle to determine c10 by reference to experiments

in nearly homogeneous flow, where the transport would not confuse the is"HF.

There are two types of such flows, those involving pure strain and those

involving pure shear. Tucker and Reynolds (1968, hereafter denoted by TR)

and Marechal (1572) studied the pure strain case; Champagne. Harris, and Corrsin

(1970, he reafter refered to by CHC) and Rose (1966) studied homogeneous

shearing flows.	 In 1970 (4.10) was proposed as a generalization of models

used by Launder and others, and the constants were evaluated by reference

to the TR and CHC flow (see Reynolds 1974). For that evaluation c 7 = 4 was

15
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used. Recently L. H. Norris and I repeated the evaluation for the preferred

value of c7 = 11/3 . We carefully evaluated the prod.iction term from the

data in these two flows, and used this as input to (4.10) 	 The q 2 history

was carefully differentiated to get an initial value fork , the 6 and

•	 q2 equations were solved simultaneously by an accurate forward-difference

I	 integration, and the q 2 histories were compared with the experimental data.

We found that c 10 = 2 gives excellent agreement in both flows,as found in	 `!

the earlier work. Hence, if one elects to use (4.10) in any model, the choices

C
7 

= 11/3 , c 10 = 2 are reconnnended.	 f

At this point we have a two-equation model that can be tested against

the homogeneous TR and CHC flows. In a prediction the 
RiJ 

and hence

must be derived using the constitutive e q uation (2.2) with (4.9)	 Remarkably

good results are obtained for the TR flow with c 9 = 0.025 . As noted below	 a

(4.9) , gives c 9 = 0.020 using STAN-5 constants. With this value the two-

equation model underpredicts (? in the TR flow, and does not produce enoug,

anisotropy in the Reynolds stresses. When applied to the CHC flow, the two-

equation model fails miserably in prediction of both shearing and normal stresses.

`	 A weakness of (2.2) is that it forces the principal axes of 
Rii 

and

Si.]	
to be alighned.	 This is true in pure strain (the TR flow), but not

true in any flow with mean vorticit y (e.g., CHC) . One is tem pted to try

a modified constitutive equation (see Saffman 1974) 	 a

2

Rii _ IF 6 i - 2vT S ij - c 11 k 2 ( S ik Stki 
+ Sik"ki )
	 (4.11)

where 2= 71 Ui,i - U^ i ) is the rotation tensor. In a two-equation model

k could be expressed in terms of q2 and	 Eqn. (4.11) does produce the

right sort of normal stress anisotropy in shear flows, but the new terms don't

alter the shear stress, and hence (4.11) works no better than (2.2) for the

CHC flow. Two-equation models also fail to predict the return to isotropy

after the removal of strain, or the isotropizinq of grid-generated turbulence

(C-HC). This failure arises because of the need for a constitutive equation

for the RiJ . Thus, one should not really expect two-equation models to be

very general, although they might be made to work well with specific constants

in specific cases, such as boundary layers.
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In spite of these difficulties with models based on constitutive equa-

tions, their simplicity makes them attractive. Two-equation models have

been studied by a number of groups, and it is significant that these workers

inevitably turn to stress equation models because of the difficulties out-

lined above. Stress equation models have their own problems, and so there

probably is still considerable room for development of two-equation models.

Of particular interest is turbulent boundary layer separation, where anisotropy

of the normal stresses is known to be important. Since (2.2) won't give this

properly in a shear layer, but (4.11) can, the use of (4.11) in conjunction

with two-equation models should be explored further.

To use the two-equation model outlined above in an inhomoneneous flow,

one needs to assess (or neglect) the effects of inhomogeneity on W , and

also to model the transport term H  . Jones and Launder (1972, 1973,

hereafter referred to by JLl and JL2) assume that W is not modified by

inhomogeneity and use a gradient diffusion model for H i ,

H 
	 = -(v + 

c 12 VT ) t^'j	
(4.12)

with c 12 = 0.77 . Lumley (see Lumley and Khajeh-Nouri 1974a, hereafter

denoted by LK-N1) argues on formal grounds that the diffusive flux of dissipa-

tion should depend as well on the gradients in turbulence energy, and vice

versa, in the manner of coupled flows such as thermoelectricity and thermo-

diffusion studied by the methods of irreversible thermodynamics. If this is

true, one really should use models of the form

J
j	=
	 -A

Il
q?	 - Al2 %	 (4.13a)

H 
	 = -A

21 q?i - A226,j	
(4.13b)

Lumley and his coworkers have done this in their stress-equation modeling,

but as yet no users of two-equation models have adopted this approach.

Eqn. (4.13) would allow for up-gradient diffusion of turbulence energy, a

real phenomena in the central region of a wake, while the simpler uncoupled

models do not. This is an area worthy of further experimentation within the

structure of two-equation models.
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The A^- equation model described above works fairly well at hiqh

Reynolds numbers, but fails near a wall where viscous effects are important.

JL proposed ad-hoc low Reynolds number modifications that seem to work reason-

ably well in the wall region,and Han.jalic and Launder (1914, hereafter denoted

by HL) proposed further modifications of the l^6r equation for use with their

stress-equation model. Clearly the W term has to be modified, for in the

"final period" of decay of isotropic turbulence q 2	t-5/2 instead of

t -b/5 . If the turbulence Reynolds number RT - q4 	is small, then the

inertial terms in the dynamical equation are unimportant, and in isotropic

turbulence W is dominated by the second term in (4.1b). At low RT

J'.? ti 
vq2/k2	

so R ti (vg
1 /t>) 1/2

 , and W ^- v 2 g 2 /k4	 &2 /q 2 	 Hence, at

low RT	W = c*t 2̂/q 2	which is of the same form as she high R T behavior

(see 4.3).	 Settinq n = 5/2 in (4.4), c* = 14/5 , which is consistent with

the models of HL and JL. A smooth transition between c 1 and c* is needed;

a form similar to that used by JL and HL but consistent with c 7 = 11/3 and

c^ = 14/5, is

W =	 11 fl (R
T q2	 (4.14a)

where

f l	= 1 - 
3

exp [-(RT/12)2]	 (4.14b)

Remember that this is just for the part of W that is non-zero in homogeneous

isotropic turbulence.

	

Eqn. (4.14) presents problems near a wall, where 	 i const. and q2	 0

Launder and his coworkers get around this by ad-hoc modifications of their

model equations. HL replace b 2 by 6 b- where ;ti = -^, - v(;q/1xi)2 .
Unfortunately they refer to t^l as the isotropic dissipation, for some reason

confusing it with.	 In spite of this semantic oroblem, their assumption

does seem to work in boundary layers. However, this reviewer would prefer

an approach in which	 const. as y	 0 , which physically is

correct.

18



An alternative approach to handling this part of W near a wall is

W = 11 f 1 (RT )(1 - e -c13gy
/\) )^,2/q 2	 (4.15)

This gives W	 const.	 as y • 0 . The use o' . (4.15) should be explored.

The third and fourth terms on the right in (4.1b) vanish at high R 

because of the small scale isotropy. HL planned to include these at low RT

by lumping then with the first two terms in (4.1b) by further modification

of f 1 . However, they found that this was not necessary. The last

term in (4.1b) was neglected by JL. It was modeled by HL in a complex way

involving products of two second derivatives of the mean velocity and the

Reynolds stresses.

JL2 used the two-equation model to study a limited number of boundary

layers, including the "difficult" flow shown in Fig. 2. The predictions of

their model are seen to be noticeably less accurate than those of the STAN-5

one-equation model shown.

•

	

	 One difficulty with using the t5- equation as the basis for a second

model equation has escaped the model developers. This arises from the second

•	 term in (4.1c), the pressure gradient-velocity gradient term in the transport

Hj . Since the pressure field depends explicitly upon the mean velocity field

(see ^5) , mean velocity gradients can explicitly give rise to ^y, transport.

This could be an extremely important effect, especially near a wall. The

omission of this consideration would seem to be a serious deficiency in all

equation models that have been studied to date.

Other two-equation models have been heuristically conceived. Of these

the most well developed is the Saffman-Wilcox (1974, herea fter denoted by SW)

model. Instead of a '^j- equation the y use an equation for a "pseudovorticity"

l
+ U j L'̂ j [^—Ui

+ (( v+ QvT)S j 1	 (4.16)
L	 J .J

In conjunction with this they use the q 2 equation (3.1) with

Q = a* 2S 2 q 2 /2	 _ 3*g212 2	 (4.17a,b)
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vT n q2 /(2L,, ) (4.18)

They use (3.4) for the q 2 transport, setting c 4 • o* , and for	 T they set

The constitutive equation (2.2) is used to provide R ij for the mean momentum

equations. Their recommended constants are a z 0.1638, a* = 0. 3, 6 s 0.15,

G* = 0.09. v = 0.5 . C* = 0.5

The production term P as given by (4.17a) is inconsistent with the Rij
constitutive model; this seems to be an internal inconsistency in the model,

but it may in fact be	 a strength. The 9 model is based on the experimental
fact that the structure of the turbulence in the wall region of a boundary

layer is essentially independent of the strain rate, and hence 	 should

be proportional to q2	 Hence, the SW model is a curious blend of the

"Newtonian" and "structural" alternatives (Reynolds 1974).

For isotropic turbulence decay the SW model ..quations may be solved

exactly. The high-RT behavior, q 2 ", t
"6/5	

is obtained if P*/	 3/5

as suggested by SW. I recently tested the SW model against the TR and CHC

flows, using "starting" values for i_ carefully calculated from the initial

q 2 decay rate.	 In neither case were the results at all impressive. 1oreover,

the `_W model does not display the proper decay of isotropic turbulence at low

P,T . Therefore, it does not appear that the SW model is or can be any more

general than any other two-equation model. Indeed, both Saffman and Wilcox

are independently exploring stress equation models (Saffman 1974, Wilcox 1975),

neither version of which presently works very well in the TR and CHC flows.

The SW model has been tested a gainst only a limited body of boundary

layer flows. The model works surprisingly well in the viscous region, but

has the troublesome point that S1 must be infinity at a perfectly smooth

wall. SW use a "large" value of E. at the wall to produce mean velocity

curves that are in excellent agreement with experiments for smooth walls. 	 In

effect , SW match their solution to experimental data by judicious choice of

the value of the wall S, .	 In SW they considered only zero pressure gradients

with no transpiration. More recently Wilcox (1975) examined a few cases of

pressure gradient and transpiration, and made a useful comparison of the SW
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model with other two-equation models, including JL. By jur	 nus selection

Of Lite wall value of ,, he could match some of the Stanford t. ans^ .red

boundary layer; his calculations indicated a strong effect of blowing on the

wall 0 . Thus, the SW method will require a graph of the wall i^ as a

function of pressure gradient and blowing parameter, similar to Fiq. 1.

Wilcox also found it essential to use accurate values for the free-stream

value of S1, , which he also had to carefully deduce from experimental data.

It appears that the sensitivity of the SW model to free-stream conditions

riay be significantly greater than that of the JL model, and certainly is much

greater than that of one-equation models.

One is led to conclude that the SW model should not be used as an

engineering tool until such time as it has been developed much further.

Regarding ^. as a reciprocal time scale may be useful in nuidinq these

developments.

ti	 STRESS-EQUATION MODELS

In turbulent shear flows, the energy is usually first produced in one

component and t 6  transferred to the others by turbulent processes.

Exact eq uations 'or R ij can be derived from the Navier-Stokes equations

(Tennekes and Lumley, 1972); for an incompressible fluid,

Rij + DkRij + k - Pij + Tij - D ij - J ijk,k	 (5.1a)

Here Pij is the "production tensor,"

P i J'	 =	 -R ik u i k - R j k u i + k

-(R ik'kj + Rjk s ki ) ` (R i0kj { Rjk''ki)	
l5.lh)

Note that P ii = 2
1? . Tij is the "transfer tensor",

T ij = p P, (u	 + u ^^	 (5.1c)
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This "pressure-strain"term is responsible for energy exchange between

components. Note that T ii = 0 by continuity. D ij is the "isotropic

dissipation tensor,"

	

-T--!	 (5.1d)D	 2v uiJ	 i ,kuJ,k

and D ii = 21:y . J ijk is the diffusive flux of 
Ri J ,

l iJk = p fi is, k + Qu A. ) +'J!U^- 
"R^J^K	

IF 101	 '

Note that Jiik = Jk

P ij is explicit, but models are needed for T ij , D ij , and Jijk

In addition, one must either specify v or use a 1^ equation. We will

first discuss the high-Reyno'js number modeling of (5.1), particularly as

applied to homogeneous flows, and then discuss the problems and status

of extending this model to inhomoneneous regions, particularly near walls

where R 	 is small.

The one fact that seems very C ear from experiments is that, at high

RT the small-scale dissi pative structures are isotropic. Hence all workers

now use

DiJ	 =	 26,'iJ	
(5.2)

The transfer term T ij has been the subject of most controversy and

experimentation.	 In a flow without any rean strain, this term is responsible

for the return to isotropy. However, in deforming flows the situation is

much more complicated. Guidance is provided by the exact e quation for the

fluctuation pressure, derivable from the Navier-Stokes equation (see

Tennekes and Lumley 1972),

p,ii	 =	
-2ui,i iii - ui^JuJ^i	

a	
9 1 + 12	

(5.3)

The source term in this Poisson equation contains two parts, each of which

will be responsible for a part of the pressure field. The part determined

by gl , which involves the mean deformation explicitly, we denote by pi ,
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and the remainder by p^	 Following LK-N2, the explicit dependence of

the pi contribution to T ij can be obtained for horio geneous fields in

terms of the Fourier transform of the velocity field. Let

Pil	 = f P(k)e
ik•!dk
	

(5.4)

In homogeneous flows the mean qradients are constants, so (5.3) hives

k.

p = 2u i i Uj.i
k

	 (5.5)

Then, the Dart of the pressure-strain term associated with pi is ( ►ve

aJopt the subscript choice of LK-N2 for convenience in comparison)

T lpq = pl(up,q+uq,p)
	 ff p(k)

 IPW
u)k^ + u* W )k^ dk'dk	 (5.6)

Using (,.5) and the statistics of random transforms, (5.6) becomes

T 1pq	 =	 2U•j,iGijpq
	

(5.7a)

where	
f(^

Gijpq 	
It 	 + -^ ^ ig (k) dk	 (5.7b)

k	 k

Eqn (5.7a) is identical to an expression developed by Rutta (1951) 	 from

slightly different arguments.

Models for G ijpq have been propose' by Launder and Lumley and their

coworkers. There are various const . ,jint<.	 at Gijpq must satisfy. From

continuity, Gijpp = 0 , GiiPq = 0 . Also, Gijjo = R iq	 For isotropic

turbulence these suffice to define G ijpq	 Narjaiic and Launder (1972)

first used a model of G ijpq that involved linear and quadratic terms in

the R ij . Later Launder, Reece, and Rodi (1973, hereafter denoted by LPR)

dropped the quadratic terms. LK-I42 also used non-linear terms, but later

Lumley (1975) ar gued that the rx)del must be be linear in the Pevnolds stresses

because for a field that is the Sum of two uncorrelated fields T lij should

be the sum of their individual	 T lij's .	 Lumley (1975) sought to resolve

certain inconsistencies between the calculations and experiments by allowinq
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G ijpq to depend in a complicated way on scalars developed sr	 combinations

of the mean deformation and b ij (see 4.1) . But this violates the condi-

tion that the Gijpq should not be changed by a sudden change in the mean

strain-rate.	 If this condition is imposed, and we insist on linearity in

•	 the Reynolds stresses, then the G ijpq model (in a homo geneous field) must

be of the form

Gijpq	 dij6Pg +	 (6iP6jg { 6ig6jP) g2

+ 15 b 
^1	 +b d. )	 5 b.6	 +b ^	 )

	

3 i( iP j g	 ig jP	 uP iq	 j g ip
(5.B)

+ A,Ebij6pg	 i( bip6jg + biq,jp)

bjp6iq + 
bjg6ip) + bpg6iji g2

Using this in (5.7a), the part of Tij explicitly related to the mean

field must be

T lij	 r(1+A1) S ij g2	 Al ['ik'ki + Rjk ski + 3" ^i,jJ

r5	 7	
(5.9)

T - + *41) ['ik"'kj + Rjk"ki]

This is precisely the form used ey HL.

The part of T ij associated with 9 2 , which we denote by 
T 21

should not change instan''y when the mean deformation is changed, and

hence should not depend explicitly on the mean deformation. LK-N%. ignored

this requirement, and allowed 
T2ij 

to depend on the rotation tensor.

Lumley (1975) has now abandoned this positior. Launder and his coworkers,

and others, have followed Rotta in assuming'

T2ij	
=	 - Ao,	 (5.10)

The constant A 	 determines the rate of return to isotropy. Its value

has been the subj ,, ct of much uncertainty.	 The TR flow implies a value

Ao = 6 , while the C-BC data suggest a much lower value is appropriate.
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14L and LRR use AO = 3.0, LK-N2 use A O = 3.21 . LRR point to the advantages

that would be obtained if a lower value of approximately 0.6 could be used,

in which case the behavior near a wall would be much more accurately modeled.

Lumley and his coworkers add additional non-linear terms in the bij

feeling that the rate of return to isotropy should depend upon the degree

of anisotropy.	 It does not seen that the data justif y the inclusion of

higher-order t^!rms, and so (5.10) is recommended, at least for homogeneous

flows away from boundaries at h:qh Rr .

L. H. Norris and I recently studied this problem using the exact

solution of the model equations for -;ie retuv:, to isotropy in homogeneous

turbulence without strain.	 Using (5.2) and (5.10) in (5.1), for this case

-(A0 - 4. -2 b i j	 (5.11 l
q

Eqns. (4.2) again describe q 2 and	 The exact solution for the

decay is (see 4.4)

b ij	 -	 biio0 + t/a)-(A2-2)n/2	 (5.12)

where b ijo are the initial values. Note that A 	 m;!st be at least 2

if isotropy is to be restored. Norri, and I used the data of C-BC's Table 1,

and first simply solved (5.11) for (A 0-2). Subsequently we compared the

solution (5.12) to the data, using n = 6/5 . There is a great deal of

scatter, because the anisotropies are rather sma11. There was absolutely

no systematic dependence of A 	 on either anisotro py or RT 	Based on

this work, vie re.:.)mmend Ao = 5/2 .	 I
Kwak and Reynolds (1975) studied the TR flow it a numerical simulation,

and found a much slower return to isotropy than indicated in the TR experi-

ments. However, different components return at decidedly different rates. 	 j

Shaanan and Ferziger (1975) carried out a similar calculation for a shear 	 i

flow similar to that studied by CHC.	 In a comp utation the shearing can bF'

removed, which can not be done experimentally. These calculations also

showed a marked difference in the return rate for different components,

probably because of great difference in the length scales in the

directions. We conclude ti-at current stress equation models will not do a

'	 very good job in handling the return to isotropy; however, the models may

work well in flows dominated by other effects.
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The constant A l should be evaluated by reference to homogeneous

flows, such as the TR and CHC flow. LK-N2 used -2.455 , which was

obtained by a comparison with a rapid distortion analysis of homogeneous

strain. Later Lumley (197 ; ) argued against th;s approach, and settled on

-1.23 (in a more involved model). 	 LRR use a value of -1.45 (their

c 2 = -(7-+ 
47 

A l )) , which they base on homogeneous experiments. I recently

found that -1.5 is a reasonable compromise between -1 which works better

for the TR flow and -2 which works better for CHC, and now recommend

3
A l = 7

Inhomogeneities greatly complicate the 
Tii 

modeling, especially

1 lij . LRR add a complicated term inversely proportional to the distance

from the wall. Recently M. Acharya and I extended LK-N2's an&lysis for

T lij to a flow near a wall. We took Fourier transforms in only the x 

and x3 directions, and solved the ordinary differential equation for the

transform amplitude 	 p(y) . This leads one to a messy integral expression

in which T lij depends upon the mean velocity gradients at all points in

the flow. In a wall region one might well expect T lij to be determined

by a region at least as wide as the distance to the wall, and hence a complex

integral model is really needed for such flows. This is a very unsatisfactory

aspect of present stress-e(luation modeling, and an area that should receive

considerable attention in the future.

In addition to modifications in T ij , inhomogeneities require rx)delinn

of J ijk . The gradient diffusion model is usually employed; HL and LRR set

2
J..	 =	 A	 R R	 + R.	

i
R	 + R	 R..	 (5.13)

i3k	 2^	 jin	 k,n	 In	 k,n	 kn ij n)

Hanjalic and Launder (1972) gave some justification for this form by con-

sideration of the dynamical equation for uTU uk . Lumley (1975) used

somewhat more extensive arguments to in effect provide further justification

for this form. Noting that J
ij,	

contains one pressure-velocity term,

and since p' will have a part (pi) that depends explicitly on the mean

velocity gradients, it does seem that J ijk also should be explicitly

linear in the mean gradients, though this need has escaped notice.
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Other modifications necessary near a wall have been suggested by LRR.

In particular, they propose to allow anisotropy in Dij at low R  , and

have concocted a smooth trans-ition between (5.2) and

D i j = 2Rij ^r/q2
	

(5.14)

which they incorrectly imply is exact as R  ' 0 .

Two approaches have been used in stress-equation modeling. The earlier

work (Donaldson 1972) involved specification of the length scale and use of

(3.3) to determine qt^ . HL used the b equation model outlined above in

conjunction with the R ij equations. At this writ i ng this work is in a

state of rapid development, and undoubtedly improvements will be made by

the time this article 1: released. 	 Interested persons should follow most

carefully the work of Launder and Lumley. It will be some time before these

models are sufficiently well developed to be better than simpler models for

use in engineering analysis.

An interesting use of stress equation rx)dels is suggested by a contraction

of (5.13),

2

d iik -	 -A2	 ( R kn g 2n + 2RinRik,n)	
(5.15)

If this is compared with (3.4), its counterpart in the one- ortwo-equation

models, an important difference is seen; Eqn. (5.14) does allow for a flux

of q2 to be driven by gradients of other than q2	 Moreover, if the

constitutive equation (2.2) is used with (3.2), the q 2 flux will be driven

by mean velocity gradients These effects are not incorporated in (3.4);

an approach to improving the simpler one- and two-equation models might be

to use the more complex stress equation model as a guide to the nature of

new terms that should be included.

There is a basic difficulty in this general approach to turbulence

models. One would like to model only terms that respond on time scales

short compared to that of the computed quantities. It is well known that

the small scalE_ respond to change much faster than the large scales, and

hence it is reasonable to express a quantity dominated by small scales, such

as D i , , as a function of quantities dominated by lar qe scales, such as
J
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However, terms like J i j k have time scales comparable with that of R ij ,

and thus one really should not expect an equilibrium constitutive relationship

to exist between J ijk and Rij . In general, it seems that higher order

statistical quantities take longer to reach steady state than lower order

statistics; for example, in a channel flow the "entrance length" for the

mean velocity is ratner shcrt, while the entrance length for the 
Ril 

is

known to be quite long. Any model obtained by truncation at some statistical

urcer would suffer from this difficulty. What one really needs to do is

truncate at some level of scale, and thereby take advantage of the fact

that the smaller scales do adjust faster to local conditions. Then, by

truncating at smaller and smaller scales, one has at least some hope of con-

vergence, a hope that is at best dim when one truncates at higher and higher

orders of statistical quantities that have comparable time scales. The large-

eddy simulation described in the next section provides one avenue to a

scale-truncation approach.

An interesting identity that might be useful in a different approach

to turbulence modeling is

r	 1 2	 (5.16)
ij ,j - -e

i jk ujwk	 1q,i

where wi = E- ijkuk ,j is the fluctuation vorticity. When this is used in
(2.1a), the Reynolds "stresses" disappear (except for a "Reynolds pressure"

g 212. ), and are replaced by "Reynolds body forces" F i = eijkuk . Stress

equation models try to model R ij , and then take their gradients. 	 It

might be easier to model the body forces F i directly. For a physical

discussion of the F i , see Tennekes and Lumley (1972).

6.	 LARGE ED DY SIMULATIONS

This line of approach is just beginning to bear fruit. The idea is

to do a three-dimensional time-dependent numerical computation of the larqe

scale turbulence.	 It is impossible to compute the smallest scales in any

real flow at high R  (and will be forever), so they must-be modeled.

Care must be taken to define what it is that is being computed and the

early work was not done with sufficient care.
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In 1973 we began a systematic program of development and exploration

of this method, in close cooperation with NASA-Ames Laboratory. The first

contribution was made by Leonard (1973), who clarified the need for spatial

filtering. We now define the large-scale variables by (see Kwak and Reynolds

1975)

T(x)	 fr. (x-x')  f(x')dx' 	 (6.1a)

where the filter function is

3

G(x-x') _	 6 7 )	 exp 
I
6(x-x')

2P	
(6.1b)

T1 
La

Here as is the averaging scale, which need not and should not be the same

as the grid mesh width. We use this particular filter because of its

advantages in Fourier transformation. When this operation is applied to

the Navier-Stokes equation, and an expansion is carried out, one finds

(neglecting molecular viscosity)

P2
Ui + U1Ui ,j	 - p ^,i +	 24 ( ^i 11 ,kk - R i j	 + 0(Ga	 (6.2)

' l 	 )

where -oR ij are the "sub-grid scale Reynolds stresses." The unusual term

appearing before Rij is an additional stress-like term resulting from the

filtering of the non-linear terms; we now call these the "Leonard terms,"

and view	 pLa ( Ui U.) ,kk /24 as the "Leonard stresses."

We have explored two models for the R id . Goth are based on (2.2);

the first is Smagorinsky's (1963) model,

	

vT = 
B A2	 S 	

(6.3a)

The second uses the rotation in place of the strain rate,

2 (6.3b)

	

vT = 
g2 Ga 	 s

In these expressions S ij and rij are the strain rate and rotation of

the calculated local time-dependent large scale field. The q 2 term in
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(2.2) is again absorbed with the pressure. Note that the sub-grid terms

R ij	 are 0("a)	 and hence if they are important the Leonard stresses

are also likely to be important. Moreover, a difference scheme must be used

that is accurate to O(A a )	 this important requirement was overlooked

by many of the early workers.

Kwak and Reynolds (1974) solved the isotropic decay problem, adjusting

B l or B2 to obtain the proper rate of energy decay. The calculations

were started using an isotropic field with zero skewness, but the proper

skewness develops in only a few time steps. The predicted results for the

large scale field are compared with the experimental results of Comte-Bellot

and Corrsin (1971) filtered with (6.1). We find that the averaging scale

^.a must be twice the computational mesh scale 4 for a satisfactory

calculation of the spectral evolution. We find that calculation in a mesh

containing as few as 16 3 points gives remarkably good spectral predictions;

better results are obtained with 32 3 points, and it is reassuring that

the same constants B 1 or d2 fit both sizes. The skewness, which is

dominated by smaller scales, is predicted much more accurately in the 323

calculation. Good results are obtained with both (6.3a) and (6.3b). Fig. 4

shows the results for the 16 3 calculation. On the basis of this work, we

now use B 1 = 0.06 or B 2 = 0.09 .	 It is surprising that B 2	B1

because, as Tennekes and Lumley (1972 - Eqn. 3.3.44) show, 	 S2 = ^t1 for

large R  . This paradox remains to be understood.

Next we simulated the TR flow, first with an initial distribution that

matched the anisotropy of the TR flow and later with an isotropic initial

distribution. One has problems in setting anisotropic initial conditions

that are free of shearing stresses, and so the isotropic starting is probably

a better approach. It is remarkable that the salient features of the TR

experiments are captured quite we l l in a computation using only 16 3 points!

The results are shown in Fig. 5; the calculation was executed on a CDC 7600,

using 120 time steps, in approximately 5 minutes.

Ferziqer and Shaanan (1975) are experimenting with a staggered qrid

approach that is second-order accurate and does not require explicit

inclusion of the Leonard stresses. They have validak'ed the constants B1

and B2 with this method, and have also explored the CHC flows. There
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are some difficulties in providing suitable initial conditions, so comparison

with experiments is not easy. Nevertheless, the salient features of

•	 the CHC flow can be produced with 16 3 calculations!

We have started work on the two-stress mixing layer, in which we expect

to find a sharp boundary between the turbulent field and irrotational external

flow. The vorticity model (6.3b) will offer the advantaqe of yieldinq zero

subgrid scale stresses in a vorticity-free region, and this is the reason

that it is of interest. We plan to extend the computation to "infinity"

using inviscid flow theory, and the matching of the computation with the

inviscid analysis will require use of a difference scheme that does not

produce vorticity improperly. 	 It will be some time before we will feel

prepared to handle a wall flow accurately. In the meantime, the simulations

of Deardorff (1970) and Schumann (1973) provide some initial experience with

channel flows.

One objective of this work is to test the turbulence models, particularly

the stress equation model. We can compute the pressure strain terms directly

(both Tlij and T 2ij ), and are doing this presently. We had hoped that

the calculations would serve as a basis f9 r evaluating consti<nts in the

stress-equation models; instead they seen to be hiqhliqhtinq the weaknesses

of these models, as discussed in ^ 5 . However, the fact that a very coarse

grid produces such remarkably good results leads us to believe that larqe

eddy simulations might, after considerable development, eventually be useful

for actual engineering analysis. 	 Interested readers should also follow the

work of Orzag ana Israeili (1912), who are carrying out similar calculations

u009 Fourier ratner than grid methods.
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Figure 4.	 Decay of isotrrr)ic turbulence - 16 3 calculation

10

39

C
E



10-4 L
10

n • 1
	

CONST. RATE OF —
	 PARALLEL-

STRAIN
	

FLOW

10-3

{

0 0 0 0^ 17 q2/u o

	

. • • ..	 ••, uI/uQ

0	 •
0

0

0	 U2/u^
0

0

U 2 /U 2 0
I	 0	 0

0
000000

100	 200
DOWNSTREAM DISTANCE IN INCHES

Figure 5.	 Larne eddy simula t io n (16 3 ) of t-le

Tucker-Reynoi c;s f l cnv .


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf

