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i j: LIFE ANALYSIS OF HELICAL GEAR SETS USING 

LUNDBERG-PALMGREN THEORY 

by John J. Coy and Erwin V. Zaretsky 

Lewis Research Center and 
U. S. Army Air  Mobility R&D Laboratory 

SUMMARY 

A mathematical model f o r  surface fatigue life of helical gears  was developed. The 
derivation is based on the Lundberg -Palmgren theory, which has been accepted since 
1950 as the best  predictor of rolling-element bearing life. In addition, an equation fo r  
the dynamic capacity of a gear  s e t  was derived. Dynamic capacity is defined as the 
transmitted tangential load which gives a 90 percent probability of survival of the gear  
set for one million pinion revolutions. It was assumed that the gears  were geometrically 
ideal with no profile e r r o r s  or tooth spacing e r ro r s .  
duced by tooth flexibility and gear  inertia was neglected. Uniform line contact between 
mating gear  teeth was assumed. The influence of s t ressed  volume and gear  tooth flexi- 
bility a r e  discussed. 

bearing tes ts  and the Weibull slope f rom gear  tests.  

The effect of dynamic loads in- 

The sample calculation given uses  material  constants obtained from rolling -element 

INTRODUCTION 

Gears  used in  power transmissions may fail in several  different ways - such as 
tooth breakage caused by high bending stresses i n  the gear  teeth, scoring of the gear  
tooth surface due to an  inadequate lubricant f i lm,  or surface pitting caused by high 
surface-contact s t r e s s  (ref. 1). 

Blok first postulated in  1937 (ref. 2) that there  is a cr i t ical  or  flash temperature 
below which no scoring takes place. This phenomenon is discussed fur ther  in refer- 
ence 3. The prevailing opinion today is that scoring resistance of gear  teeth may be 
improved by making changes in gear lubricant o r  gear  tooth profiles (refs. 1 and 4). If 
these changes are successful inlowering the temperature in  the conjunction zone between 



the meshing gears, the scoring resis tance will be improved (ref. 3). 
Design methods for  avoiding gear tooth breakage are based on the bending endurance 

l imit  of the gear material .  Usually, in  these methods the helical gear tooth is analyzed 
as a cantilevered beam with the addition of semiempirical  service and geometry factors.  
If the maximum calculated bending stress is less than the bending endurance l imit  of the 
material ,  it is presumed that no tooth breakage will occur (refs. 5 and 6). More exact 
calculations of the stress in bending have been made by finite element methods. The re- 
sul ts  are compared in  reference 7 with American Gear  Manufacturers' Association 
(AGMA) and International Standard Organization (EO) standards on the strength of gear  
teeth. However, this reference deals only with spur  gear  teeth. In 1960, Wellauer and 
Seireg presented a semiempirical  method fo r  analyzing the helical gear  tooth as a canti- 
levered plate. The resu l t s  were  incorporated into a strength rating f o r  helical gea r s  
(refs. 8 and 9). 

Current  methods of design to resist surface fatigue are based on the concept of a 
surface fatigue endurance limit. 
gear  tooth pitting fai lures  is s imi la r  to that used f o r  predicting tooth breakage. Accord- 
ing to this method the Hertzian contact s t r e s s  is estimated and then modified by service 
condition and geometry factors  to become the s t r e s s  number. By definition, when the 
stress number is less than the surface fatigue endurance limit, no surface pitting fail- 
u res  will occur. 

ment, the authors state that there  appears  to be no surface fatigue endurance limit. 
They are of the theoretical opinion, however, that there  is a surface fatigue endurance 
limit. 
l imit  fo r  surface fatigue. 
industry since the publication of two important papers  by Lundberg and Palmgren in  
1947 and 1952 (refs. 15 and 16). 

Recently, several  authors have applied statistical methods to predicting gear  life. 
A probabilistic method of deciding the allowable s t r e s s  f rom a small  amount of fatigue 
test data is presented in reference 17. The method depends on the existence of a surface 
fatigue endurance limit. Bodensieck (ref. 18) presents  a stress -life -reliability system 
f o r  rating gear  life. His  work is a nontraditional approach intended to give more  preci-  
sion to life and reliability predictions. Work has  been done recently wherein the theory 
of Lundberg and Palmgren was applied to gear  surface fatigue (refs. 19 and 20). The ex- 
perimental life obtained from fatigue testing of vacuum-arc-remelted (VAR) AIS1 9310 
gears  was reported in  reference 20. A life theory f o r  surface pitting of spur gears  was  
a l so  derived. 
perimental life studies have been conducted to determine the failure distribution of spur  
gea r s  under various conditions (refs. 12 to 14, 20, and 21). 
s imilar  experimental data f o r  helical gears .  

The current  method (refs. 10 and 11) of predicting 

Gear life tests and ro l le r  life tests are reported in reference 12. Based on experi-  

Schilke (ref. 13) and Huffaker (ref. 14) are convinced that there  is no endurance 
This has  a lso been the position of the rolling-element bearing 

The theoretical and experimental lives were in  good agreement. Also ex- 

Unfortunately, there  are no 
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The research  reported herein was  conducted to extend the spur gear  failure theory 
I presented in  reference 20 to helical gears .  This  extension uses  the bas ic  pitting fatigue 

failure theory of Lundberg and Palmgren,  which has been proven valid f o r  rolling- I 1 element bearings fo r  the past  two decades. It is assumed herein that helical gear  life is 
1 

a function of the s t ressed  volume, the cri t ical  stress, and the depth of occurrence of the 

1 crit ical  stress as determined fo r  the helical gear.  This  assumption is the same as those 
f o r  the spur gears  (ref. 20) and rolling-element bearings (refs. 15 and 16). 

FATIGUE THEORY 

The fatigue life model proposed in  1947 by Lundberg (ref. 15) is the commonly a c -  
cepted theory for  determining the fatigue life of rolling-element bearings.  In refer- 
ence 20 the basic  theory of Lundberg and Palmgren was applied to obtain the surface 
fatigue life of a single spur gear  tooth. The formulation obtained was based on the as- 
sumption of a uniformly distributed load on the line of contact between the meshing spur 
gear  teeth. But the spur gear  formulation is not applicable to helical gea r s  because they 
differ in geometry from spur gears .  
gradual shifting of the transmitted load from one tooth to the next as the teeth pass  
through the plane of action. This  fact  makes it necessary to review the assumptions r e -  
garding maximum s t r e s s  and s t r e s sed  volume in  deriving a fatigue life model fo r  helical 
gears .  In appendix B it is shown how the following basic  model for  surface fatigue life is 
derived from the Lundberg-Palmgren theory: 

The helical inclination of the gear  teeth causes a 

where 

L1 

K1 

life of gear  tooth, millions of revolutions 

material  constant fo r  a 90 percent probability of survival 

depth of occurrence of cri t ical  stress 

crit ical  stress 

volume representation of stress concentration or "s t ressed volume" 

0 
Z 

TO 

V 

e Weibull's exponent 

h, c material-dependent exponents 
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(All symbols are defined in  appendix A. ) The mater ia l  constant K1 used in  this report  
is ultimately based on life data obtained by Lundberg and Pa lmgren  fo r  AIS1 52100 steel 
with hardness of Rockwell C 60. F o r  newton and meter  (SI) units, K1 = 1 . 4 2 8 ~ 1 0 ~ ~ ;  fo r  
pound and inch (U.S. customary) units, K1 = 3. 583X1056. 

In the following sections, helical gear geometry and gear  tooth loads are used to de- 
termine the critical stress and the stress field. The resu l t s  may be used with equa- 
tion (1) to give the gear  life equation in  t e r m s  of famil iar  gear  design parameters.  

MAXIMUM HERTZIAN CONTACT STRESS 

At this t ime there  is no exact stress analysis in  the l i terature  for  a helical gear  
tooth. Finite element methods have been applied to spur  gear  teeth (ref. 7), but there 
is no s imilar  work f o r  helical gear  teeth. 

Current  helical gear  design practice is to estimate the stress at the pitch point of 
the teeth by assuming line contact between two cylinders whose rad i i  depend on the 
curvature of the helical gear  teeth at the pitch point. The unit loading on the contact line 
is estimated by assuming that the teeth are infinitely rigid and that the load is distributed 
uniformly along the line of contact (refs. 22 and 23). 

Another method of calculating load distributions, by Matsunaga (ref. 24), is based 
on the assumption of a constant deflection of the teeth in mesh at any point on the line of 
contact. His calculations use a n  extension of the semiempirical  "moment image" 
method of Wellauer and Seireg (ref. 8). Matsunaga's calculations show a 22:l variation 
in the theoretical unit loading ac ross  the contact line. However, the method of calcula- 
tion neglects Hertzian and beam shearing deformations. He a l so  notes f rom his gear  
tests that when pitting occurred it was near the pitch line of the driving member.  I t  is 
interesting that the highly loaded regions (according to ref. 24) were  near the lowest 
point of contact on the pinion. Matsunaga's opinion is that scoring wear  relieved the high 
stress in that area. Hence, the region near  the pitch point became more highly s t ressed ,  
causing the resulting pitch-line pitting to occur. 

F o r  purposes of calculating contact stress, it is assumed that the pitch point is the 
most  highly loaded area. There  are two reasons fo r  this assumption. First, a fatigue 
spa11 requires  both a high contact stress and a cer ta in  number of stress cycles for  its 
formation. There is evidence that pitch-line pitting is not dependent on pr ior  scoring 
wear  that alters the involute tooth form (ref. 21). Second, tooth load sharing in spur 
gears causes the heaviest loads to occur near the pitch point. The same effect prob- 
ably occurs  f o r  helical gears ,  mainly because of the higher bending compliance of the 
gear  tooth as the load nears  the tooth tip. 

1 

Figure 1 shows the necessary geometry for  estimating the Hertzian contact stress 
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; at the pitch point. Based 
calculated by the formula 

f 

f 
I 

I 
on these assumptions the maximum Hertzian contact s t r e s s  is 
(ref. 20) 

q = L(9) 
sb  Qc 

:’ where Qc is the length of the contact line. For spur gears  this length is the same as 
the face width in  contact. 
the case. 
applicable to helical gears .  

However, for  helical gears ,  as shown in figure 2 ,  this is not 
For  this reason the work done fo r  spur gea r s  in reference 20 is not directly 

The equation fo r  the semiwidth of the contact (ref. 20) is 

CONTACT LINE LENGTH 

The zone of contact in the plane of action is shown in figure 2.  Several  lines of con- 
tact for mating pa i rs  of teeth lie in  the zone of contact. 
can be imagined as a series of slanting lines (the contact lines) passing through a sta- 
tionary viewing f r ame  (the plane of action). IC 
may be  calculated a t  each instant of t ime by graphical or analytical methods. Figure 3 
shows the typical variation in the length of the contact lines that occurs  during the gear 
meshing process.  
95  percent of the average total length of the contact lines (ref.  10). 

The process  that takes place 

The total length of the l ines of contact 

F o r  gea r s  with good helical action, P c  is equal to approximately 

Q = 0 .95  P f 
Pb cos $b 

C (4) 

The Hertzian s t r e s s  varies inversely with the square root of IC. While i t  is recognized 
that the Hertzian s t r e s s  is not constant over the entire cycle of contact, i t  is felt  that no 
large e r r o r s  in approximation will be introduced since i t  can be shown that gear  life is 
inversely proportional to load to approximately the 1. 5 power. Therefore,  a 10-percent 
increase in load resul ts  in  a decrease in life of approximately 13 percent. 

Its use should be reserved for g e a r s  with axial contact ra t ios  near 2. 
tact ra t io  is much less than 2 ,  IC should be  calculated from the geometry of figure 2 .  

For  helical gea r s  of low axial contact ratio,  equation (4) becomes less accurate.  
If the axial  con- 
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STRESSED VOLUME 

The expression f o r  the s t ressed  volume is derived in  appendix C as 

3 
4 

V = - fzoQ s e c  

where zo represents  the depth under the surface a t  which the cri t ical  s t r e s s  a c t s  and Q 
denotes the length of involute in the critically loaded zone. 

At this t ime i t  is not clear whether the maximum orthogonal reversing shear  stress 
o r  the maximum shear  s t r e s s  should be considered as the cr i t ical  stress (ref. 25). The 
value of the maximum shear  s t r e s s  and i t s  depth below the surface a r e  affected by rela- 
tive sliding between the contacting bodies (ref. 26). This  sliding affects the traction co- 
efficient. The authors of reference 27 a r e  of the opinion that the fatigue life of ball 
bearings is reduced by increases  in traction. Their data show a reduction in life by a 
factor of 3 when the traction coefficient increases  f rom 0 to 0. 0675. According to the 
resul ts  presented in reference 19, there is no noticeable reduction in life with increased 
traction fo r  the ro l le r  disk tes t  machine. However, much more  data must be collected 
before a definite conclusion may be drawn. 

One interesting observation can be made from the stress analysis of Smith and Liu 
(ref. 26). For traction coefficients la rger  than 1/9, the maximum shear  stress lies on 
the surface. If the zo associated with this stress is used in  equation (5), the s t ressed  
volume vanishes. 
nificant a l so  that the peak-to-peak amplitude of the reversing orthogonal shear  s t r e s s  
does not change i t s  magnitude o r  position below the surface for  increased traction coef - 
ficients. In view of the aforementioned, i t  is probably bes t  at this time to adhere s t r ic t ly  
to the original intent of Lundberg and Palmgren and u s e  the orthogonal reversing shear  
s t r e s s  as the crit ical  or decisive s t r e s s .  However, the cri t ical  s t r e s s  actually may be  
the maximum shear  stress or the orthogonal shear  stress. These s t r e s ses  may be af- 
fected by the increased amount of sliding in  the helical gear  mesh (ref. 26). If at some  
future t ime this proves to be the case, the theory may be readily modified by a "percent 
of sliding" term.  

pair  of teeth were in  contact. For helical gea r s  there  is no equivalent length because of 
the gradually changing nature of the load sharing between the teeth. Therefore,  several  
choices of length are possible depending on which assumption seems most reasonable for  
a particular situation. The simplest  method of choosing Q would be to use the ent i re  
length of involute f o r  which there  is tooth action. 
sumption that the helical teeth are infinitely rigid and that the only variation in tooth 

This  would resul t  in  no life at all according to equation (1). It is s ig-  

For spur  gea r s  the length Q was taken as the length of involute fo r  which a single 

This would be consistent with the as- 
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loading is caused by the changing length of the contact line, as described in the previous 
section. A second possible method is to choose the length P equal to L1, where the L1 
is calculated as f o r  a spur  gear  by using t ransverse plane geometry. This  calculation is 
outlined in  reference 20. 

modeled as spur teeth which are slightly displaced f rom one another along the helix 
angle, as shown in figure 4. It is fur ther  assumed that the adjacent spur  sections cause 
no increase in  stiffness of the elemental spur section. Therefore,  to a degree, these 
two methods are extremes which bracket the t rue load-sharing ability of the helical gear  
teeth. The resul ts  should provide reasonable lower and upper bounds to the statist ical  
analysis of the life of a helical gear  set .  

The second method is consistent with the assumption that the helical teeth can be  

LIFE AND DYNAMIC CAPACITY 

A s  a f i r s t  step in determining gear  mesh life, a n  equation which gives the life of a 
single tooth for 90 percent reliability was developed in a form that depends on the gear  
parameters  that are familiar to most mechanical engineers. 
to (3), (5), (B7), and (B8) the following resul ts  were  obtained: 

By using equations (1) 

The t e rms  in  equation (6) can be simplified or  writ ten in t e r m s  of more familiar param-  
e t e r s  of the helical gear  geometry. From figure 1 the load Q ,  which l ies  in the plane of 
action and is normal to the contact line, may be writ ten in t e r m s  of the transmitted tan- 
gential load which ac t s  normally to the line of centers  a t  the pitch point. 

Q =  Wt 
cos J/, cos qt 

The curvature sum a t  the pitch point may be written as 

(7) 



By using equations (7) and (B13) to (B15) in  equation (6), the following expression is ob- 
tained: 

2/(h-c-l) 
WtL1 2e/(c-h+1) = K21c cos qt  (9) 

8 where K2 = 132 000 when pound and inch units are used and K2 = 5.28X10 when newton 
and meter  units are used, fo r  a mater ia l  s imilar  to AIS1 52100 steel of Rockwell C 60 
hardness. By definition the dynamic capacity of a single pinion tooth is the transmitted 
tangential load Wp that may be carr ied for one million pinion revolutions with a 
90 percent probability of survival. From equation (9) 

The life of the single pinion tooth for a given transmitted load is 

L1=(-%T 

where 

(12) 
c - h + l  

P =  
2e 

The next s tep in  the derivation is to develop the l ives and dynamic capacities fo r  the 
entire pinion, &e gear  tooth, and the entire gear  and finally fo r  the system which is 
composed of the gear  and pinion in  mesh. This  derivation was  performed in  refer- 
ence 20. The resu l t s  are presented in  equations (13) to (20). The lives listed will be ex- 
pressed in  t e rms  of millions of pinion revolutions. F o r  the pinion, 

L1 
Lp = N1 -l/e 

F o r  a single gear  tooth in  t e r m s  of pinion rotations, 
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F o r  the gear ,  

L1 
- l/e N ,-(l+e)/e 

LGP = N2 L2P = 2 1 

H 

i 
F o r  the mesh of gear  and pinion, 

The dynamic capacity of the gear  tooth is given by 

where 

W =  c - h + L p e  
2 

F o r  the gears  in mesh the dynamic capacity is 

- l/w 

WtM = [l[ ‘g]]] WtP 

If the actual transmitted tangential load is Wt, the corresponding life is given by 

Most  of the t e rms  in these equations are on any standard dimension sheet for the 
helical gear .  However, as was  previously pointed out, 1, and 1, which are the length 
of the contact line and the length of the involute in the critically loaded region, respec-  
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tively, are not as readily determined. The approximate minimum contact-line length Qc 
may be found directly f rom equation (4), or  the t rue  minimum contact-line length may be 
found f rom a tedious analysis of f igure 2. Also, as mentioned previously, there  are sev-  
eral choices for the length of involute Q to be used in  equation (10). Appendix D gives 
some gear geometry that is useful in  computing Q. 

NUMERICAL EXAMPLE AND DISCUSSION 

The theory is now used in  a sample calculation fo r  the life and dynamic capacity of a 
helical gear drive. Assume that the drive consists of a 16-tooth pinion and a 36-tooth 
gear.  The input speed is 1000 rpm and 3000 kW (4000 hp) are transmitted. The gea r s  
have a 0. 0762-meter (3-in.) face width. The diametral  pitch is 0. 3937 tooth/cm 
(1 tooth/in. ). The tooth form has the basic proportions given by table 5-16 (tooth form 1) 
i n  reference 28. It is assumed that the gear  mater ia l  is case-hardened steel of Rockwell 
C 60 hardness. The values h = 2 3  and c = l%, taken f rom rolling bearing tes t  data, 
are used. The Weibull slope e = 3 was determined from NASA tests of AIS1 9310 s teel  
spur  gears  (ref 20). 

Expected life was  calculated for  each of two different assumptions regarding the 
failure-causing s t r e s s  patternon the gear  tooth surface.  In case I, i t  was assumed that 
the peak Hertzian stress ac t s  over the region of the tooth for  which there  is single-tooth 
contact if the helical gear is imagined as shown in figure 4. The following expression is 
true fo r  case I: 

1 1 

f Q =  
‘Os q b  

C 

In case 11, the contact-line length 8, was calculated by equation (4), and it was assumed 
that the peak Hertzian stress ac t s  over the entire region fo r  which the teeth are in con- 
tact. In this sample calculation the face  width is smal l  compared to the axial pitch. As  
the rat io  of the face width to axial pitch becomes smaller ,  the amount of helical tooth 
overlap a l so  decreases .  This is the case for  gea r s  used in  automotive transmissions. 
Marine reduction gea r s  are much wider,  having a grea te r  amount of helical action. 
Therefore, while both cases I and I1 give reasonable lower and upper bounds to the life 
prediction, case  I is probably the more accurate  assumption. 

The details of the calculation are presented in table I, and the predicted fai lure  dis-  
tribution is plotted on Weibull coordinates in figure 5. Weibull coordinates are the log- 
log of the reciprocal of the probability of survival graduated as the statist ical  percentage 
of specimens failed (ordinate) against the log of the t ime to fa i lure  o r  system life (ab- 
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i 
scissa).  The calculated upper and lower bounds of the 10-percent life (90 percent proba- 
bility of survival) are 890 and 1050 hours. The maximum contact stress fo r  case I is i 119 000 N/cm2 (173 000 psi). When the conditions of this problem are used to calculate 

J gear  life according to AGMA gear  surface durability standards (ref. lo),  a n  infinite life 
' is predicted. The bending-induced stress calculated according to reference 5 is only 

16 000 N/cm2 (23 000 psi), giving a safety factor of about 2 f o r  the bending fatigue type 
of failure. 

There is a design guide (ref. 29) used for  the purpose of improving the accuracy of 
life predictions for  rolling -element bearings.  The guide accounts for  life improvement 
due to quality of lubrication and mater ia l  improvements in the s teels  used. I t  is pos- 
sible to apply some of these life adjustment factors  to gear-life prediction. Further ,  as 
data f rom helical gear  fatigue tes t s  become available, the material  constant and expo- 
nents may be  determined with grea te r  accuracy. I t  may also become possible to deter-  
mine the influence of dynamic loading and sliding, which has  been neglected in  the p re s -  
ent analysis. 

11 

SUMMARY OF RESULTS 

Equations f o r  the dynamic capacity and life of helical gear  s e t s  were  developed. The 
failure mode w a s  assumed to be  surface fatigue pitting. 
transmitted tangential load which will give a 90 percent probability of su rv iva l  of the gear  
s e t  for one million pinion revolutions. It was assumed that the gears  were geometrically 
ideal with no profile e r r o r s  o r  tooth spacing e r r o r s .  The effect of dynamic loads induced 
by tooth flexibility and gear  inertia was neglected. 
gear  teeth was a l so  assumed. Material constants and exponents which are used in the 
analysis were obtained from experimental results. 
tions, when simplified by setting the helix angle to zero,  reduce to the resul ts  which 
were previously developed fo r  spur  gears .  

The dynamic capacity is the 

Uniform line contact between mating 

The life and dynamic capacity equa- 

Lewis Research Center,  
National Aeronautics and Space Administration 

and 
U. S. Army Air  Mobility R&D Laboratory, 

Cleveland, Ohio, June 10, 1975, 
505-04. 
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APPENDIX A 

SYMBOLS 

a 

B1 
b 

C 

E 

EO 

e 

f 

h 

L1 

LGP 
Q 

Q C  

N 

P 

P 

pb 
Q 

r 

a r 

'b 
S 

V 

half of major axis of Hertzian contact, m (in. ) 

material  constant defined by eq. (B5) 

half of minor ax is  of Hertzian contact, m (in. ) 

orthogonal shear s t r e s s  exponent 
Young's modulus, N/m 2 (psi) 

defined by eq. (B13) 

Weibull's exponent 

face  width of tooth (fig. l ) ,  m (in. ) 

depth to cri t ical  s t r e s s  exponent 

constants of proportionality 

pitting fatigue life, millions of revolutions 

life of a single pinion tooth, millions of revolutions 

gear  life in t e rms  of pinion rotations, millions of revolutions 

involute profile a r c  length, m (in. ) 

length of contact line, m (in. ) 

number of teeth 

diametral  pitch, teeth/meter of pitch diameter (teeth/in. ) 

load-life exponent defined by eq. (B12) 

base  pitch, m/tooth (in. /tooth) 

normal tooth load, N (lb) 
maximum contact stress, N/m 2 (psi) 

pitch circle radius,  m (in.)  

addendum circle  radius, m (in. ) 

base circle  radius,  m (in. ) 
probability of survival; surface area, m 2 2  (in. ) 

volume, m 3 3  (in. ) 

12 



Wt 

wtM 
W 

Z 
0 

XYZ, i j k 
xyz, El ii2 ii3 

@H 1 

@L1 
Y 
6 

c 
r7 

e 
h 

P 

c p  
CT 

TO 

'Pt 

+b 
0 

Subscripts: 

G 

H 

L 

M 

P 

1 

2 

transmitted tangential load, N (lb) 

dynamic capacity of gear-pinion mesh, N (lb) 

defined by eq. (18) 

depth of occurrence of maximum orthogonal reversing shear  stress, 
m (in.) 

right-handed orthogonal coordinate systems and associated unit vectors 

heavy-load-zone roll angle, rad 

light-load-zone ro l l  angle, rad 

tooth-contact rol l  angle, rad  

precontact ro l l  angle, rad  

length of zone of contact in  plane of action, m (in. ) 

millions of stress cycles 

base  circle  ro l l  angle, rad  

lead of helix, m (in. ) 

principal radius of curvature, m (in. ) 

curvature sum, m - l  (in. -l) 

Poisson's ra t io  
maximum subsurface orthogonal reversing shear s t r e s s ,  N/m 2 (psi) 

t ransverse pressure  angle, rad 

base  helix angle, r ad  

base  helix parameter  

gear  

heavy load 

light load 

mesh of pinion and gear  

pinion 

driving member 

driven member 

13 
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APPENDIX B 

FORMULATION OF BASIC HELICAL GEAR LIFE EQUATION 

In this appendix, the Lundberg-Palmgren life model is used to obtain a fundamental 
form which is a start ing point f o r  the derivation of the helical gear life formula. Most 
of the work presented here  is in explanation of the method used to obtain the mater ia l  
constant in equation (1). Lundberg and Palmgren did not introduce such a constant of 
proportionality until their equation had been specialized f o r  use in  rolling bearing life 
prediction. 

The basic  formulation by Lundberg and Palmgren (ref. 15) was 

If a constant of proportionality is used, the resu l t  is 

Since a relation for  fatigue life is wanted, the equation is rearranged. And since there is 
only one stress cycle per  revolution of the gear ,  the following equation may be written: 

If i t  is assumed that all l ives will be calculated f o r  a 90 percent survival rate,  

The constant K1 in this equation must now be determined. The constant K1 may 

14 



3 

be related to the material  constant B1,  which was  given in reference 20. The following 
equations were  taken from reference 20, which pertains to s teel  spur  gears  with uni- 
formly distributed stress along the line of contact between the teeth: 

- (c+h - l)/2ef(c -h - 1)/2 e p L 1 =  BPfl)-l’e 1 7  cp Q- 

z0= 0 . 5 b  (B7) 

T~ = 0 . 2 5  q 038) 

3 
4 

a = - f  

c - h +  1 
P =  

2e 

E =-- E - 2.  3X1Ol1 N/m2(3. 3 ~ 1 0 ~  psi) 
2 0 

1 - 5  

(B 15) 
1 h =  2- 3 

Substitution of equations (B6) to (B12) into equation (B4) and comparing the r e su l t  with 
equation (B5) show that the following relation exists between B1 and K1: 

15 
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c+h -1)/2 
B( C -h+1)/2 

(2)h-1(27r)-crG)( 1 

8 In  reference 20 it was found that B1 = 4.08xlO 
i n  equation (B5) and that B1 = 102 000 when pound and inch units are used. Since K1 
does not depend on the Weibull exponent, there  is no theoretical relation between the 
constant K1 and the failure distribution of a sample of tes t  gears .  
tained from bearing tests may a l so  be used in the gear  life formula.  Finally, using 
equations (B13) to (B15) yields K1 equal to 1 . 4 3 ~ 1 0 ’ ~  f o r  newton and meter  units 
(3 .  5 8 ~ 1 0 ~ ~  for  pound and inch units). 

when newton and meter  units are used 

Thus, a constant ob- 
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APPENDIX C 

DERIVATION OF STRESSED VOLUME FOR HELICAL TOOTH 

In this appendix the equations describing a helical gear  tooth surface are presented. 
The expression fo r  the differential element of tooth surface area is derived. Then by 
comparing the expressions for helical gear  tooth surface area and spur  gear  tooth s u r -  
face area, it is seen  how the s t ressed  volume should be writ ten f o r  the helical gear.  
The parametr ic  equations describing the base helix, which is shown in figure 6, are 

h 

2ir 
z=--w 

where X, Y, and Z denote the position coordinates of the base helix t raced on the base 
cylinder in t e rms  of the parameter  w .  The position vector of a point on the base helix 
may be written 

Let the reference f r ame  xyz have i t s  origin a t  P, and let  a point on an  involute profile 
be located by the position vector S 

(C 5) 
- q = x n  + yii 1 2 

where 

x = r b (sin e - e cos e)  (C6) 

y = rb(cos e + e s in  e - 1) ((37) 

Then the position vector of a point on the surface of the helical tooth is given by 

- 
R = ? + q  (C8) 
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Since the position vectors have their  basis  vectors in  different reference f rames ,  a 
transformation matr ix  may be used to transform the components of 
f r ame  to the XYZ f rame.  Therefore,  the components of position vector E in  the 
XYZ f rame  may be writ ten as 

from the xyz 

cos w s in  w 0 

-sin w cos w 0 

0 0 1 

The components of i n  the XYZ f rame  are found to be 

% = rb[sin(6 + w )  - e + w ) ]  

Ry = rb[cos(e + W) + e cos@ + w ) ]  

1 0 

These equations describe the helix surface by two parameters ,  8 and w .  The physical 
meaning of the two parameters  can be seen in  figure 7. The equation of the line de- 
scribed if 6 is held fixed and w varied is one of the w-coordinate lines. Hence, the 
two parameters  of the surface describe the gr id  mesh on the face of the helical tooth. 
The grid l ines are not mutually perpendicular. 

Finally, the surface area element is given by the vector product 

ao ae  

The resul t  of this vector operation is 

The magnitude of the surface differential area element is determined by the sca la r  
product as 

18 



The resul t  is 

By using equation (C3), equation (C16) may be writ ten 

. -  

From the geometry of figure 2, the following relation is obtained: 

2srb 
tan *b = __- 

h 

Using equation (C18) in (C17) gives the resul t  

ds = rbe secGb dZ de (C 19) 

The expression f o r  surface area of the helical tooth is obtained by integrating equa- 
tion (C19): 

The term under the f i r s t  integral is the length P of the involute in the t ransverse plane. 
The length Q is the a r c  length along the constant-w lines of figure 7.  The second inte- 
gra l  denotes the face width f of the helical gear  tooth. 

For  a spur gear, the volume representation which accounts fo r  the s ize  effect of the 
material  i n  relation to the extent of the stress field is given in  reference 20 by the follow- 
ing equation: 

3 V =  - f Z  Q 
4 0 1  

I 
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The te rm Q1 is the length of the involute in  the critically loaded zone, while f is the 
f ace  width. Therefore the product fQ1 is a representation of the spur  gear  surface area 
in the critically loaded zone. 

The surface a r e a  for  spur  and helical gears  differs only by a factor,  s ec  qb. 
Therefore ,  the expression fo r  the s t ressed  volume of the helical gear  tooth is written 

3 
4 

V = -fzoQ sec  qb 
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APPENDIX D 

HELICAL GEAR GEOMETRY NECESSARY FOR CALCULATION OF 

INVOLUTE PROFILE ARC LENGTH 

In reference 20 the equations were  given f o r  calculation of the length of involute f o r  
which only two teeth are in contact. Equations (Dl) to (D10) summarize these equations. 

L1 = - - &) 
2 

rbl = rl cos Sot 

0 L 1 =  61 + PL1 

'ui = ' L1+  pH1 

I 

'b 1 

2arbl 
pb=- 

N1 

21 
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If the entire length of the involute is wanted, the following equations should be used f o r  
OL1 and Oul instead of equations (D3) and (D4): 

where y1 is the total increment of pinion roll  angle for  which there is tooth contact. 

c 
'b 1 

Y 1 =  - 

22 
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TABLE I. - SAMPLE CALCULATION 

iymbol 

Wt 

‘Pt 

*b 
P 

N1 

N2 
--- 

f 

r l  

r2 

‘a 1 

‘a2 

rb 1 

rb2 

c p 

pb 

r 
---- 

OH1 ’ 

PL 1 

Definition 

Transmit ted tangential load, N (lb) 

Transverse  pressure  angle, deg 

Base  helix angle, deg 

Diametral  pitch, teeth/cm (teeth/in. ) 

Number of pinion teeth 

Number of gear  teeth 

Speed of pinion, rpm 

Face  width, cm (in. ) 

Pinion pitch radius, cm (in. ) 

Gear pitch radius, cm (in. ) 

Pinion addendum radius, cm (in. ) 

Gear addendum radius ,  cm (in. ) 

Pinion base  circle  radius ,  cm (in. ) 

Gear base  circle  radius ,  cm (in. ) 

Curvature  sum, cm-l  (in. - l )  

Base  pitch, cm (in. ) 

Length of zone of action, cm (in. ) 

Transverse  contact ra t io  

Roll angle through heavy load zone, rad  

Roll angle through light load zone, rad  , 61 1 Precontact  rol l  angle, r a d  

Equation Formula 

Given 

Resul t  
~ ~~ 

1. 40x105 (31 500) 

20 

15 

0.3937 (1) 

16 

36 

1000 

7.62 (3.00) 

20.32 (8.00) 

45.72 (18.00) 

22.86 (9.00) 

48.26 (19.00) 

19.09 (7. 5175) 

42.96 (16,9145) 

0.2008 (0.5099) 

7.498 (2.9521) 

11.96 (4,7104) 

1.5956 

0.1588 

0.2339 

0 0317 



I C  

OL 1 

Q U 1  

1 

WtP 

WtM 

L 

, c a s e  I 1 Case II Case I 1 Case II Case I Case II 

Minimum face width in contact, cm (in. ) 7.889 (3. 1058) 

Roll angle a t  which s t r e s s  begins, rad (D3) (D11) 61 + P L 1  0.2656 

Roll angle a t  which s t r e s s  ends, rad  (D4) (D12) oL1 + PH1 61 + c l r b l  0.4244 

(21) 1 (4) ~ f/cos Gb 1 0.95 Cf/% 61 cos lpb 

Length of s t ressed  portion of involute, cm (in. ) 

Dynamic capacity of single pinion tooth, N (lb) 

(DO 

(10) 

Dynamic capacity of mesh, N (lb) 

System life, millions of pinion revolutions (hr)  

1.046 (0.4119) 

3. 7W1O6 (844 000) 

1. 99x106 (447 000) 

53.47 (890) 

11.958 (4.7079) ' 
0.0317 

0.6583 

4.128 (1.6251) 

4. 19x106 (943 000) 

2. 22X106 (500 000) 

63.15 (1050) 

N 
4 



Figure 1. - Exaggerated view of helical gear tooth showing base cylinder and plane of action. Contact line is 
intersection of tooth face with plane of action. Contact between mating gear teeth occurs on the contact line. 
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Figure 2. - Zone of contact in plane of action at instant of init ial tooth contact. 

Figure 4. - Stepped spur gears. A helical 
gear results when there is a large num- 
ber of very thin gear sect.ions. 
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Mesh life, hr 

Figure 5. - Theoretical distr ibution 
of fa i lures for l b t o o t h  hel ical 
p in ion dr iv ing 36 too th  gear. 
Speed, 1000 rpm; hel ix angle, 
15'; pressure angle, 26'; maxi- 
mum Hertzian stress, 119 000 
N k m 2  (173 000 psi); material, 
60 Rockwell C hardness steel. 

Y 

(involute) 
1: Y 

X 

Figure 6. - Helical tooth geometry showing the base helix and a single profile line element. 
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Constant u 

Figure 7. - Lines of constant w and constant 0 scribed on surface of hel ical  gear tooth. 

NASA-Langley, 1975 E-8283 
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