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... SUMMARY - - : I

Development of the conservation equations in the first part starts from
the Boltzmann equation. A general transport equation for an arbitrary pérticle
property is derived; from this the species mass, momentum, and energy conser-
vation equations are obtained. Collision terms are treated in detail in the
approximation of two independent, displaced Maxwellian distribution functiomns,
which takes into account the effects of different flow velocities and tempera-
tures. A new formalism is developed for these terms, simplifying analytic
evaluation; this is illustrated by analytic evaluation for a sufficient variety
of interaction potentials to meet most ionospheric requirements. The three-
fluid approximation is applied to the species conservation equations, resulting
in separate sets of equations for electrons, ions, and neutral particles.
Order-of-magnitude estimates, based on extreme values for ionospheric proper-
ties in the altitude region 90 km to 800 km, are used to delete terms which
are not important for the specified ionospheric conditions. Closure of the
conservation equations is accomplished through transport tensors and coeffi-
cients. A condensation of Shkarofsky's method for calculating electron trans-—
port tensors is presented. Use of this technique is facilitated by the deri-
vation of a new method for representing the electron-neutral collision frequency
velocity dependence as a power law. Transport coefficients for ions and
neutral particles are also presented. The resulting set of coénservation
equations should provide appropriate starting points for a wide variety of

studies, both theoretical calculations and data analysis.
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In the second part, these conservation equations are applied to the
detailed examination of aiuroral E region neutral winds observed by the inco-
hérent scatter radar af Chatanika; Alaska, during geomagnetic disturbances (15
May 1974). Two primary objectivés of this study are: (1) to determine the.
effects of altitude structure in ion and neutral velocity fields on neutral
velocities derived from the radar observations; and (2) to determine the
relative importance of ion drag and auroral heating in generating these winds.
Ion and-neutral momentum equations for the ion drag model are solved numeri-
cally, using observed electric fields and electron number densities. The

coriolis force is included; its importance is demonstrated in model calculations.

The following results are obtained from these velocity calculations.
Large vertical gradients are found in the calculated velocities for altitudes
below about 130 km. As a consequence of this structure and fluctuations in
the electron density profiles, the data analysis procedure of Brekke, et al.
(1973) for obtaining neutral winds from radar data are found to underestimate
the wind speed by up to 40 percent, but it represents the direction and tem-
poral structure reasonably well. Comparison of observed neutral velocities
with calculated values shows that ion drag alone caﬁnot account for the obser-
vations., An equation is derived to estimate the pressure gradients required
to resolve the discrepancy between calculated and obsérved neutral winds.
Accelerations due to these pressure gradients are of the same order as those
due to ion drag, but at least an order of magnitude larger than those due to
solar heating. Directions of the pressure gradients are consistent with
expected locations of auroral heating. During geomagnetic disturbances, ion
drag and auroral heating both appear to play important roles in the generation

and modification of neutral winds.
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Section |
INTRODUCTION

Recent interest in upper atmospheric dynamics has been directed toward
high latifudes, both because of increased observations in this region and
because of increased'awargness and understanding of the importance of the
coupling between the magnetosphere and ionosphere (Folkestad, 1972; Chappel,
1974), which is most prominently displayed in the vicinity of the auroral oval
(Akasofu, 1968). Observations of ionospheric properties in auroral latitudes
(~60° to 80° geomagnetic latitude), made by a variety of remote and in situ
techniques, have found electric fields, ionization number densities, flow
velocities, and temperatures to be highly variable in space and time relative
to conditions at lower latitudes. Time scales for significant variations of
these properties are typically on the order of minutes at high latitudes
(e.g., Banks, et al., 1974), compared with hours at middle and low latitudes
(cf. Rishbeth and Garriott, 1969). Similarly, spatial scales for significant
variations, on the order of several thousand kilometers at low and middle
latitudes, are an order of magnitude smaller at high latitudes and even smaller
near auroral arcs (e.g., Chan and Colin, 1969; Jelly and Petrie, 1969). These
relatively small spatial and temporal scales complicate the comparison and
interpretation of observational data (Maynard, 1972). They also increase the
difficulties of theoretical studies because appropriate boundary conditions
are uncertain, and approximations which permit physical insight and mathemati-
cal tractability in lower latitude problems are not valid for high latitude
conditions. In addition, the magnitudes of electric fields and associated
plasma drift velocities are an order of magnitude larger at high latitudes
(Maynard, 1972; Banks, et al., 1974). As a consequence, different and some-
times new physical considerations enter Into the formulation of the governing
equations, The primary objectives of this study are to develop a theoretical
framework adequate for treating problems of the dynamics of magnetosphere-
ionosphere interactions at high latitudes, and to use this framework in the

investigation of such a problem.



Two approaches, continuum and particle, may be taken in formulating the
governing equations for upper atmospheric gases. The goal of both approaches
is to determine the relations among and the behavior of the macroscopic
observables, those measured by experiments which detect the average properties
of a small but finite volume of the gas, specifically: number density n, flow
velocityhz, and translational temperature T. In the continuum approach,
equations governing the macroscopic observables are formulated directly from
physical considerations of the bulk behavior of the‘gases. This involves the
introduction of transport coefficients, which indicate how readily spatial
inhomogeneities in the density, momentum, and energy of the gas approach a
homogeneous state. These coefficients must be determined experimentally in
the continuum approach. Proceeding from a particle viewpoint involves formu-
lating equations which incorporate interactions of individual particles with
fields and other particles, using statistical methods to determine the macro-
scopic behavior of the aggregate. To the order of approximation appropriate
to the upper atmosphere, both methods lead to essentially the same macroscopic
equations. Important advantages of the particle formulation are (1) the
enhanced insight gained into the physical processes which affect the macro-
scopic observables, (2) the possibility of direct calculation of the transport
coefficients, and (3) the assurance of a consistent treatment, especially when
new physical processes must be considered. 1In addition, the particle approach
is particularly flexible in treating multicomponent gases, which recommends
its use in upper atmospheric problems. This, then, is the approach to be used

in this study.

Relating the macroscopic behavior of a nonuniform, multicomponent gas to
the microscopic interactions of its constituent particles is the task of
kinetic theory. Methods used for accomplishing this end are discussed in
detail by Chapman and Cowling (1970). The basic procedure begins with a
Boltzmann equation for each particle species (e.g., NZ’ 02, e, O;, O+, etc.);
this equation governs the velocity distribution of each species. A general
transport equation is obtained by multiplying both sides of the Boltzmann
equation by an arbitrary function of particle velocity, and integrating over

velocity space. When those particular particle properties which are conserved

in (elastic) collisions (mass, momentum, energy) are used in this transport

1-2



 equation, the conservation equations for number.deqaity, momentum, and energy
result._-In general, a set of conservaﬁion equatioﬁs for each particle species
is required to determine properly the aggregate behavior of the system.
However, if several species have in common those properties which are of
primary interest (e.g., temperature and flow velocity), the appropriate equa- -
tions can be easily combined, resulting in a considerable reduction in cdmpu—
tational effort when the system of equations must be solved. This is the

basis of the three-fluid approximation.

As applied to a partially ionized plasma, such as the ionosphere, the
three-fluid approximation implies that electrons, ions, and neutral particles
have distinct properties, but that these properties are undifferentiated by
species within these gases. Applicability to problems of ionospheric dynaﬁics
can be better understood from a brief review of typical ionospheric conditions
which affect the dynamics. Basically, four factors play primary roles in
determining and differentiating the motions of upper atmospheric gases:

(1) relative number densities of different gases, (2) types of interaction
between particles, (3) relative masses of particles, and (4) forces which act

differently on different gases. These are examined in turn below.

Although particle populations vary considerably in both space and time,
Figures 1-la and 1-1b show typical daytime, midlatitude altitude profiles of
constituent number densities. Both neutral and ion compositions are seen to
shift from diatomic to monatomic species and toward the lighter species with
increasing altitude. This is due to diffusive separation in the Earth's
gravitational field and results in a decreasing mean mass per particle with
increasing altitude. Ions are only singly ionized (negative ions are negligi-
ble above 90 km (Banks and Kockarts, 1973)), and charge neutrality (electron
number density is equal to total ion number density) is assumed to hold every-

where on the macroscopic scale of interest here.

Strictly in terms of numbers, the upper atmosphere is seen to be a weakly
ionized plasma at all altitudes shown. However, the collisional coupling

between the gases also depends on the interactions between the particles and
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BY SPECIES FOR DAYTIME, MIDLATITUDE CONDITIONS: (a) NEUTRAL
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on their relative masses. These considerations are taken into account to some
extent in the momentum transfer collision frequencies, vij’ which indicate the
degree of momentum coupling among the gases. Altitude profiles of collision
frequencies, based on the number densities in Figure 1-1, are shown in Figure
1-2. Most of the altitude variation in Figure 1-2 is due to variation in
total number densities, and to a lesser extent to the changing compositions
(hence changing interactions) and changing temperatures. Temperature profiles
used in computing these collision frequencies are shown in.Figure 1-3; these

profiles are representative of daytime midlatitude conditioms.

In addition to collisional coupling among the species, electromagnetic
forces, which selectively affect only charged particles, have a pronounced
effect in differentiating the motions of ionospheric gases. For purposes of
this study, detailed consideration is limited to the effects of the static
geomagnetic field and electrostatic (curl free) fields, in addition to the
Coulomb interaction between charged particles. The intensity of the geomag-
netic field varies geographically, ranging from about 0.2 gauss to about 0.6
gauss at ionospheric altitudes (Matsushita and Campbell, 1967). Since this
range of values is relatively small, the more important variation is in the
geometry. A somewhat schematic view of the magnetosphere is presented in
Figure 1-4, showing the dipolar configuration of the geomagnetic field at
ionospheric altitudes. Not indicated in this diagram is the fact that the
dipole axis is tilted about 11 degrees with respect to the Earth's rotational

axis.

The significance of this geometry derives from the Lorentz force (qz X i/c)
which causes charged particles moving in a magnetic field to spiral about the
field lines. This inhibits motion transverse to the field, so that charged
particles are, to some extent, tied to the field lines. The strength of this

coupling is indicated by the particle gyrofrequency,

wg = |qs|B/mSC (Gaussian Units) (1-1)

where 9 is the particle charge, B is the magnetic field strength, m, is the
mass, and c¢ the speed of light. For a magnetic field strength of 0.5 gauss
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(representative of the continental United States), electron and mass-averaged
ion gyrofrequencies are shown along with the collision frequencies in Figure
1-2. Since collision frequencies aﬁd gyrofrequencies play similar roles in
the charged particle.equations of motion, they may be compared directly to
determine whether the magnetic field or the other gases will dominate the

motion of a given gas.

From Figure 1-2 it is evident that the electrons are firmly coupled to
the geomagnetic field at all altitudes shown, siﬁce they gyrate about a field
line many times between collisions with either ions or neutrals. Ions, however,
undergo a transition from strong coupling to neutral particles at low altitudes
to strong coupling to the geomagnetic field at high altitudes. The character-
istic distance associated with coupling to a magnetic field is the gyroradius,

given by

W

L

T, = (1-2)
s

where W is the particle velocity component perpendicular to the magnetic
field. If thermal velocities are used for order-of-magnitude estimates,
representative gyroradii are about 3 cm for electrons.and 4 m for ions, corre-
sponding to Te = 2400°K (;; = 3 x 107 cm s_l) and Ti = 1200°K (;i ~ 8 x 104 cm
s—l). As a result of this restriction in the transverse direction, charged
particles move most freely parallel to the geomagnetic field lines, that is,

in a north-south direction over the magnetic equator and vertically over the

magnetic poles.

At this point, several questions can be examined with respect to appli-
cability of the three-fluid approximation in studies of ionosphere dynamics,
particularly at high latitudes where magnetosphere-ionosphere interactions are
so important. Is a three-fluid approximation necessary, or would a two-fluid
or even a single fluid approximation be sufficient? Is a three-fluid approxi-
mation adequate, or must the different species of the ion and neutral gases be
treated separately? If the answers to these are affirmative, are present
three-fluid formulations adequate, or are further developments required? The
answers to these questions essentially determine the scope of the theoretical
framework developed in this study.

1-8



The first question inquires whether the macroscopic properties n, 3, and
T of the electrons, ions, and neutrals are sufficiently different to warrant
consideration of three separate gases. Experimental and theoretical work on
ionospheric temperatures have been reviewed by Banks (1969) and Willmore
(1970). The prevalence of nonthermal equilibrium among the gases of at least
the ionospheric F region is well established observationally and reasonably
well explained theoretically. The basic mechanism for this condition is
preferential heating of thermal electrons (energies s 0.3e V) by photoelectrons
in the process of being collisionally thermalized. Preferential heating of
electrons results from their small masses and long~range Coulomb interaction.
In turn, electrons transfer energy collisionally to ions and neutrals, but
preferentially to ions, again because of the long-range Coulomb interaction.
At higher altitudes (above ~300 km), ions lose close thermal contact with the
neutrals and, through a balance of energy gained from electrons and loss to
neutrals, attain a temperature intermediate to those of the electrons and
neutrals (e.g., see Figure 1-3). Theoretical calculations (Rees and Walker,
1968) have suggested that heating due to large auroral electric fields may
cause ion temperatures to exceed electron temperatures, although no direct
observation verifying this is presently known. Thermal nonequilibrium in the
E region has been a subject of some controversy for several years because of
apparently conflicting results from different observational techniques (D'Arcy
and Sayers, 1974). However, this is immaterial to the present question since
conditions in the F Region clearly require consideration of distinct electron,

ion, and neutral temperatures.

For flow velocities, fewer observational data are available for several
reasons. Flow velocity measurements are more difficult, particularly those
which measure velocities for different gases simultaneously. Also, conditions
in which substantial differences in flow velocities of the different gases are
likely to occur are less prevalent in space and time than for thermal nonequi-
librium. Nevertheless, there is sufficient evidence to establish that large
differences in flow velocity, on the order of hundreds of meters per second,
can and do occur at high latitudes. In this region, large electric fields,
sometimes in excess of 100 mV m—l, can occur due to sources far out in the magnet-

osphere (Maynard, 1972). These fields are mapped from the magnetosphere into
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the ionosphere along geomagnetic field lines (see Figure 1-4), which act
approximately as equipotentials (Farley, 1959; Reid, 1965). This results from
the high conductivity along field lines relative to that transverse to field
lines. (A qualitative grasp of this idea may be gained from the comparison of
collision frequencies and gyrofrequencies in Figure 1-2, recognizing that for

S
inhibit motion transverse to the field line.) Implicit in this conception is

w_ > “ij’ collisions inhibit motion along the field line while gyrations

that electrostatic fields are transverse to magnetic field lines. The degree
to which parallel electric fields are actually negligible in the ionsophere is
presently the subject of considerable controversy (Maynard, 1972; Zmuda, et
al., 1974). However, the existence of large transverse ionospheric electric
fields at auroral latitudes is an observational fact (Maynard, 1972; Banks, et

al., 1974); and for present purposes that is sufficient.

Large transverse electric fields cause large electron and ion flow veloc-
ities of several hundred meters per second. In the absence of collisions,
this velocity is given by

> ExB
vV = Xz c (Hall Drift). (1-3)
B

For B = 0.5 gauss, an electric field of 30 mV m—1 results in a drift velocity
of about 600 m s_l. At high altitudes where ion-neutral collision frequencies
are much smaller than ion gyrofrequencies (Figure 1-2), electrons and ions
drift with the same velocity, given by equation (1-3) (which is independent of
charge sign). Thus, when an electric field suddenly becomes large, the charged
particles respond rapidly, resulting in a large velocity difference between
the charged and the neutral particles at high altitudes. Under the same
circumstances at low altitudes, where the ions are collisiorally coupled to
the motion of the neutrals, the electrons will again respond rapidly to the
electric field (since W >> ve) while ions are constrained to move with the
neutrals. So at low altitudes the large velocity difference is between the
electrons and the heavy particles. Numerical calculations, by Fedder and
Banks (1972), among others, demonstrate these effects theoretically. Barium
cloud release experiments, for example, those analyzed by Meriwether, et al.
(1973), provide direct observational evidence of ion-neutral velocity differ-

eéences of several hundred meters per second. Comparison of high altitude and
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low-altitude incoherent scatter radar observations allows similar inferences

to be drawn with respect to electrons and ions, if transverse electric fields
are assumed to be mapped along magnetic field lines unchanged from F region to
E region altitudes (Brekke et al., 1973, 1974a). From these considerationms,

it is concluded that different flow velocities for electrons, ions, and neu-
trals must be taken into account in any theoretical framework used for treating

problems of dynamics at high latitudes.

For the final mécroscopic observable, number densities, different reason-
ing must be used. If composition of either the ion or neutral gas is required
as part of the solution to a problem under study, then a continuity equation
for every particle species is required. If composition can be assumed and
only total numbers of particles of each gas (electrons, ions, and neutrals)
are of interest, as in some dynamical problems, then only a two-fluid approxi-
mation is required, since the charge neutrality assumption eliminates one
charged particle continuity equation. For present purposes, consideration

will be restricted to the latter case, that in which composition 1is not required.

With the necessity of considering separate properties of at least three
gases established, the next question must be examined: Are three gases enough?
For number densities, this question has been somewhat sidestepped by limiting
the scope of applications to problems in which more than three gases need not
be treated. For temperatures and flow velocities the question reduces to
asking whether or not all ion species share a common temperature and flow
velocity, and likewise for neutrals. Experimental techniques are not suffi-
ciently selective to be able to measure the flow velocity or temperature of a
single species of ion or neutral gas. However, theoretical calculations
indicate that temperature differences between O+ and H+ in excess of 100°K
could be expected to occur (Banks, 1967). Since H+ is a minor ion below about
800 km (see Figure 1-1b), this will cause no difficulty for studies below that
altitude; and even above that altitude it may be of little consequence. Since
0+ is predominant between 200 km and 800 km, and below 200 km the ion tempera-
ture is equal to the neutral temperature, thermal nonequilibrium among ion

species is negligible for altitudes below about 800 km (and perhaps above).
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No theoretical work has suggested that neutral species in the ionosphere may
have differing temperatures. Similarly, no information is available to indi- -
cate that flow velocities of either ion or neutral gases might be signifi-
cantly differentiated by species. Therefore, it appears that the three-fluid
approximation is adequate for a wide variety of problems in the altitude range

90 km to 800 km for all geographic locations.

Finally, the question of the present state of development of multifluid
formalism must be considered. Since gases interact by collisions (leaving
aside collective phenomena of plasmas for the present), the important multi-
fluid effects are contained in the collision terms. Different temperatures
mean different thermal velocities; and since collision cross sections are
functions of the relative speed of the colliding particles in general, average
collision frequencies depend on the temperatures of both gases. Intuitively,
it is apparent that if the relative flow velocities are comparable to or
larger than the thermal velocities, the collision frequencies will also be
affected. In the ionosphere, ion thermal velocities are of the order of 102
to lO3 meters per second. Ion drift velocities of this order occur frequently
at high latitudes due to relatively large electrostatic fields, as discussed
previously. This is why proper treatment of flow velocities in the collision

terms is important in problems of high latitude ionospheric dynamics.

In the context of these ideas, various multifluid formalisms can be
considered briefly; a more detailed examination is deferred to Section III.
Chapman and Cowling (1970) present an extensive treatment of the kinetic
theory approach to gas dynamics in the single-fluid approximation. Their
treatment of gas mixtures is based on deviations of the individual species
properties from the (global) properties of the mixture as a whole. S. T. Wu
(1969, 1970) treats gas mixtures in a similar manner, but includes detailed
consideration of inelastic interactions between the gases and with the radia-
tion field; however, he includes no external forces (e.g., electrostatic and
magnetostatic fields). Because of the relatively loose coupling of the three
ionospheric gases, more physical insight is to be gained by treating these
gases individually, rather than in terms of global mixture properties. More-

over, since deviations of the properties of the electron and ion gases from
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those of the neutral gas (which dominates the mixture, due to much larger
number densities) may be quite large, the global approach is likely to be

either inefficient or mathematically troublesome.

More appropriate for the ionosphere is the work by Burgers (1969). He
considers explicitly mixtures of gases with arbitrarily different temperatures
and flow velocities. However, his treatment of collision terms for the case
of arbitrary flow velocities is limited to a few examples (hard sphere, Coulomb,
and Maxwellian-molecule interactions) which only partially satisfy the require-
ments of ionosphere studies. Moreover, since Burgers' (1969) study treats
higher order approximations extensively, his framework (and notation) is more
general and complicated than is necessary for ionospheric applications. This
makes it cumbersome to use and difficult to extend to other interactions of
interest. This latter objection has been remedied somewhat by Banks and
Kockarts (1973), who take appropriate results (conservation equations) from
Burgers (1969) and present them in a more transparent notation. The difficulty
here is that only the results are presented, so that the mathematical origin
of parts of the equations remains somewhat obscure. In particular, the colli-
sion terms are presented with insufficient formalism to permit extension of
the results to other interactions of ionospheric interest. In addition to
these, separate treatments of the collision terms alone have appeared in the
literature, to be discussed in detail in Section III; but none have extended
results beyond those presented by Burgers (1969). Thus, there appears to be a
need for a more thorough development of the collision terms.for the multifluid

case, with extension to additional interactions of ionospheric interest.

Conclusions which may be drawn from the considerations above are as
follows: the three-fluid approximation is needed for and applicable to iono-
spheric problems, particularly at high latitudes; and present formulations
need further work on the collision terms. The first objective of this study
is then to develop the formal framework of the conservation equations in the
three-fluid approximation, suitable for application to ionospheric problems at
all latitudes and 90 km to 800 km in altitude (E region and lower and middle F

region). ‘'The second objective is Lo use this framework in the investigation



of a problem of current interest in ionospheric dynamics at high latitudes.
In the formal development of the conservation equations the treatment is
necessarily uneven, since parts are covered in many texts, while others have
been little discussed. To ensure completeness and consistency, steps of the
more familiar parts are at least outlined; detailed mathematics is reserved

for those areas involving original formulations or results.

The approach taken is to start with the Boltzmann equation for each
species and, following procedures noted previously, to develop the general
transport equation. This is then used to obtain species conservation equations
for number dénsity, flow velocity, and energy. These steps are presented
briefly in Section II, along with an introduction of the notation and physical

ideas associated with the mathematics.

Detailed treatment of the collision terms is reserved for Section ITI.
Emphasis is placed on this treatment because an original formalism is developed
which allows more physical insight into the energy transfer process when gases
move through one another with a large relative velocity, a condition frequently
occurring at high latitudes. The Appendix is a logical extension of Section
IIT. 1Included there are proofs that the collision terms reduce to accepted
expressions in the limit of zero relative flow velocity, and analytic calcula-
tions of collision frequencies for a sufficient variety of interactions that
most ionospheric requirements should be met. Because these calculations are
detailed, extensive, and tend to divert attention from the principal objective

(formulation of the conservation equations), they are relegated to the Appendix.

Formal development of the species conservation equations is completed
with the collision term treatment in Section III. It is the task of Section
IV to turn these formal equations into working equations, applicable to the E
and F regions of the ionosphere. Here the three-fluid approximation is applied
to obtain three sets of conservation equations. Through conservative order—
of-magnitude estimates, a system of working equations of general applicability
to ionospheric problems is obtained. Nonelastic and external source-loss

processes, which are excluded from the formalism, but which nevertheless
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significantly affect the conservation equations, are also examined briefly.
The results of Section IV represent the starting points for practical problems
in the sense that all approximations of general validity have been made.

Further modifications will depend on the conditions of any particular problem.

In Section V, transport properties of the gases in the ionosphere are
discussed briefly in order to provide a means for remedying the closure problem
of the set of conservation equations. It is characteristic of any set of
equations formed by taking velocity moments of the Boltzmann equation that a
higher velocity moment is introduced that is not determined by the (finite)
set of equations (T.-Y. Wu, 1966). Through the use of transport coefficients
(calculated or experimental), these higher order moments can be related to
lower order moments, permitting closure of the set of equations. They can
also be used in simplified model studies to examine some effects of transport
without solving the entire set of velocity moment equations (e.g., Schunk and
Walker, 1971). Emphasis here is placed on electron transport properties, both
because electrons are much more mobile than other gas particles due to their
small mass and because an adequate treatment is readily available. Mathemati-
cal detail is restricted primarily to that necessary to use results from the
literature. The main exception is the derivation of an original method for
approximating the energy dependence of collision frequencies by a power law in
velocity, thus making available for arbitrary velocity dependence the rela-
tively simple traunsport coefficient results of the power law case. Explicit
analytic expressions for collision frequencies, some obtained from the litera-
ture and some froum the present investigation, are introduced at this point

since they are basic to the transport properties.

A problem of contemporary interest is examined in Section VI, making
partial use of the mathematical apparatus developed in earlier sections. This
is an investigation of the altitude structure of auroral E region neutral
winds and some of the consequences of this structure for incoherent scatter
radar observations. Since the primary calculation is based on observational
data at a single location as i function of time, severe limitations are placed
on the spatial information available. . This results in a considerably simpli-
fied calculation for a problem which is not necessarily suéceptible to such
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simplification. The use of theory, observation, and calculation together,
however, makes it possible to obtain .estimates of some elements left out of

the calculation by necessity. A summation is presented in Section VII.
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Section 1l

KINETIC DESCRIPTION OF GOVERNING EQUATIONS

21 GENERAL FORM OF THE TRANSPORT EQUATION

Investigations of transport phenomena based on a particle descriptlon of
gases generally begin with the Boltzmann equation. Since the derlvatlon of
the Boltzmann equation is discussed in detail in many texts on klnetlc theory,
it is sketched only briefly here. At time t, the number of particles in a
volume element drdw of six dimensional phase space located at ¥, aiis given by
f(;, $, t)d;d$, where f(?, ;, t) is the distribution function of the gas.
Suppose each gas particle is subject to an external force f and no collisions
between particles occur. Then at time t + 8t, particles previously at ;, w
at time t will be located at ? + ; st, $ + (f/m) §t, where m is the particle
mass. Due to collisions, however, not all particles at ¥, 3 at time t will
arrive at ; +w St, ; + (F/m) St at time t + 8t. Likewise, due to collisions,
not all particles at T+ w St, and w + (f/m) St at -time t + St originated at

?, w at time t. This collisional effect is expressed in the following

equation:

>
[£(F + w 6¢t, w + 5 §t, t + 6t) ~ £(r, w, t)]drdw
of > >
<3t>c drdw &t. (2-1)

Dividing through by drdw §t, expanding the first term to first order in 6t,

and taking the limit as &t + 0 results in the Boltzmann equation:

of
. wa = <¥> (2-2)
. c

The right side will be treated explicitly later; for the present it simply

]
ot

th

>
+w e VE +

g =

denotes the time rate of change of the distribution function due to collisions.

If there is a mixture of gases, each species has a distribution function

governed by equation (2-2). For the species r this is written



BE_ :i-‘r (afr)
FER TR S T S (2-3)

where the collision term now includes collisions with other species in addi-
tion to self collisions. The distribution function is taken to be normalized

: -
such that the number density of species r at the location r is given by

> > >
nr(r, t) J fr(r, W, t)dwr, (2-4)
where the integration extends over all velocity space. In this definition, it
is assumed that fr vanishes for infinite velocities. Conventionally, equatior.

(2-4) is called the zeroth (velocity) moment of the distribution function.

->
The velocity v denotes the total velocity of an r-particle with respect
to some fixed (laboratory) reference frame. It is convenient to define also

the species random (thermal) velocity by

> > >
c, =W, Vo, (2-5)

where 3r is the average velocity (also referred to as the drift or flow vel-
ocity) of species r. 1In the literature random or thermal velocities are
frequently defined with respect to the mass average velocity of the entire
fluid. That is convenient when the species flow velocities of all species are
close to one another. However, in the ionosphere species flow velocities may
differ significantly from one another. A more consistent and physically more
transparent treatment is possible if the parameters for each species are

defined in their own reference frames.

The species average value of some particle property er is defined to be

9> =i- J o f_ dw_ . (2-6)
r n r'r r
r
In particular
- - 1 > -
v = <w> = ——-J w_f dw_ . (2-7
r r n_ r r T

It then follows from equations (2-5) and (2-7) that



<c> =<w> ~v =0 . (2-8)

A transport equation for the property er is obtained by multiplying both sides

of equation (2-3) by er and integrating over all velocity space:

r m
r

Bfr) o
= I er(EE— . dwr . (2-9)

It 'is assumed that the integrands are well-behaved and vanish as velocities

afr - > > i‘*r -
[ 6 — dw_ + f 06 w_ e VEf dw_ + j 6 -V f dw
T r T o T w'r T

become infinite.

For macroscopic analysis, a more convenient form for equation (2-9) can
be obtained by considering each term individually. 1If er is assumed to have
no explicit dependence on position or time, then since time and velocity are

independent coordinates, the first term in equation (2-9) may be written

of
_r oo _ 3 > _ 9 -
I o 3t ¥ T 3¢ J o, £, dw =% (o <6>) (2-10)

from equation (2-6). The second term can be treated in a similar manner:
> > > > > B
f IR Vfr dwr =9 o J 6. W fr dw_ = V (nr <w e>r) . (2-1D)

The third term in (2-9) can be integrated by parts to obtain

fr -> fr -
ferm 'wardwr“Jm—Vw' (o, Fdw,
r T
n
=-—L<v .08 ¥,
mr w Y r

where the first equality follows from the assumption that fr vanishes on the

infinite velocity surface. For velocity-independent forces
<Vw . e§>r =<F . Vw 6>r . (2-12)

But this equation also holds for velocity dependent forces which are perpen-

dicular to the velocity (e.g. qa X ﬁ/c). Since all velocity-dependent external



forces to be treated in this work are of this nature, equation (2-12) may be

used, with the result

v

n

fe Y.V f dw =-—S<F-.v o> . (2-13)
rr w T r mr w r

Substituting equations (2-10), (2-11), and (2-13) into (2-9) gives

n

> r
+ ° -— —— °
(nr.<9>r) v (nr <0 W>r) <F v 6>r

r
Bfr N
= J er Et—— dwr . (2-14)
C

This equation (or ones very similar) is variously referred to in the litera-

a_
at

ture as Maxwell's transport equation (Sutton and Sherman, 1965), equation of
change of molecular properties (Chapman and Cowling, 1970), or transfer equa-

tion (Burgers, 1969).

In its present form the transpoft equation is quite general (except for
inelastic effects) and no improvement over the Boltzmann equation in terms of
computational requirements, since the distribution function must first be
known before the average quantities in equation (2-14) can be determined. The
purpose of this formulation is to establish a bridge between the microscopic
properties of the gas, which can be inferred from theory and specialized experi-
ments, and the macroscopic properties, which are observed under more general

conditions.

2.2 SPECIES CONSERVATION EQUATIONS FOR MULTICOMPONENT GASES

Conservation equations are obtained by selecting for use in the general
transport equation, those particle properties which are conserved in collisions.
In particular, mass, momentum, and energy are the conserved quantities of
interest here. The object is to obtain equations governing the macroscopic
observables of the gas, i.e., number density, flow velocity and temperature.
In this section only terms on the left side of the transport equation (2-14)
are treated in detail; treatment of the right side (collision terms) is defer-

red to the next section.



2.2.1 Conservation of Mass (/. = m,)
Since m is simply a constant quantity, equation (2~14) can be written

down immediately for er =m:

anr -> afr —>
mr gt—' + mr V o nr Vr = mr J Y . dwr, (2-15)

where equation (2-7) was used. The common factor m_ can be cancelled out
unless it is desired to work in terms of mass density. If the right side of

equation (2-15) is denoted by 5r’ this equation can be rewritten

on > .r
= 4 . - = . -
at v Ty Yy m_ (2-16)

2.2.2 Conservation of Momentum (0., =m, Wr)

With er =m_ ;r’ equation (2-14) becomes

on

> > i‘: -
m <w> + m V - n <ww> - n<F .V w>
r ot r r r r r W r

of
=m J‘T (——£> dw_ =%, (2-17)
r r \ot r r
c
where ﬁr represents the total momentum transferred to the species r through

I . > > .
collisions. In the second term, the tensor <w w>_ can be expanded, using

equations (2-5), (2-7), and (2-8):

> > > >
<W W> = <C C> + <w>_ <> . (2-18)
T r r r

In keeping with the method of defining all macroscopic parameters for each
species in the species frame of reference, the species pressure tensor is

defined by

;} =n_m <CC> (2-19)

and the species temperature by
n_k T -1 c’> = (2-20)
r = 3 n m < P >

where P, is the scalar pressure of species r. Equation (2-20) is seen to be

the perfect gas law (for species r) and comparison with (2-19) shows that the

2-5



scalar pressure is the mean value of the diagonal elements of the pressure .
tensor. These definitions correspond to values which would be measured by
appropriate gauges sensitive only to the species r and drifting with the
species r at a velocity ¢r' Equation (2-18) can now be written

P, >

<w w>_ = +v_ v, |, (2-21)

r n_m r r
r r

where equation (2~7) is used. The second term in (2-17) may then be written

Ve (a_v)), (2-22)

> > = > > >
mVen<ww_ =9V.+.p +mn(v. - V)v_ +v
T r T r rrr r r

where the last two terms follow from Chapman and Cowling (1970, p. 19).

The third term of equation (2-17) follows directly from a standard vector

identity to be
n<f-V $> =n<f> .
r w r r r
With these results equation (2-17) may be rewritten as

-> = > - - ->
— + . + . + .
mr ot (nr vr) v pr nr mr(vr v)Vr mr vr v (nr vr)

- nr<f>r =3 . (2-23)

r

223 Conservation of Energy (6, = % m, wrz)
In the literature the thermal energy moment (1/2 m cz) is more fre-
quently used in obtaining an energy equation than is the total kinetic energy

moment (1/2 m wrz) used here. Since in those treatments, drift velocities
are generally small compared with thermal velocities, the practical conse-
quences of this distinction are negligible., In the ionosphere, however, flow
velocities of ions and neutral particles can attain magnitudes of the same
order as thermal velocities. It is therefore jmportant to treat the energy

contribution of both flow and thermal components.

For 8, = 1/2 m wrz, equation (2-14) becomes
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103 2 i o, 2> o 1 . 2
2 ™ 3t (nr<w >r) + 2 mv v (nr<w w>r) 2 nr<¥ Vw v >r
of '
_._]_: : 2__!' > = —
=50 [ L ( ) dwr = Er . (2-24)

ot

where Er represents the rate at which energy is transferred to the species r
by collisions with other species. Again, a more usable form is obtained from

a term by term examination.

In the first term the time derivative can be expanded:

2
on I<w>
1 3 2 _1 2 r, 1 r _
2 Mr 3t (nr<w >r) =2 ™V e Bt + 2 M Py ot : (2-25)

Although, as an independent coordinate, L (and hence wrz) is independent of t,
this is not true for <w2>r, due to the time dependence of the distribution

function over which v is averaged. From equations (2-5), (2-7), and (2-8)

2 _ 2 2
w'> o= <ct>t+v o, (2-26)
since the cross term vanishes. With the definition of species temperature,
equation (2-20), equation (2-26) can be written

3k Tr 2

W= ——a;——-+ v, . (2-27)

This is equivalent to the statement that average total kinetic energy is the
sum of the average thermal energy and the average flow energy. Equation

(2-25) now becomes

an oT
18 2y .3 1 20 % 3 r
Y (nr<w > ) [; kT + 5 mv 3t > 0 k 5t
>
> aVr -
+ n_ mr V. ' 3¢ ¢ (2-28)

In treating the second term of equation (2-24), it is convenient to expand
first the averaged velocity expression. Making use of equations (2-5), (2-7),

and (2-8) yields



-
<w2 w>

-> > > > >
<(c2 + 2¢c » <w> _ + <w> 2) (c + <w> )>
T r r r

> - > > 2 > ->
<c2 c> +2v s <ce> +<e> v+ v 2 v . (2-29)
r r r . r r T r

-
For species r the heat flux vector 9, is defined as

1 2 >
5 D, m_ <S¢ e, (2-30)

4
dr
representing the flow of thermal energy. With this and previously defined
quantities, equation (2-29) can be substituted into the second term of

equation (2-24), giving

1 2 > _ - > = é . >
5 M V . (nr<w W>r) =V 4, + v (vr pr) + > kV (nr Tr vr)
1 2 >
+ 27 M v . (nr v vr) - (2-31)

Most of these terms can be expanded readily in vector notation; however,
the second term on the right is more easily manipulated in Cartesian tensor
notation. Making use of the convention of summing over repeated indexes allows

this term to be written

T = 9
v (v - p) ox, (vj pji)

) )
= —_— + — .
Ve %o Pag Pii % Vi (2-32)

After Chapman and Cowling (1970, p. 16), the double product of two second rank

tensors is defined as

:B = Aij Bji . (2-33)

>

Then, since ;} is a symmetric temsor (see equation (2-19)), equation (2-32) can
be written in the form
- = -> = == >
LY LY = - LY + . - -
v (vr pr) v (v pr) P, Vv (2-34)

r

Using this result and expanding other terms in equation (2-31) gives



-

1 2 > _ -> > = = >
5 V o~ (nr <w w>r) =V T q, + v~ vV » pr) + pr.V v,
+3 0 KT 9.V +2n kv - YT +2KT V_ - ¥n
2 'r r T 2 'r T r 2 r r r
+-l m_ v 2 Y «Vn_ +n . m v = [(3 - V)z ]
2 r r r r r r r r r
1 2 -
tyn . m vV v . (2-35)

The third term in equation (2-24) is straightforward:
> 2 -> >
F «V w =2F w . (2-36)

It was previously noted that the only velocity dependence of F to be considered
has the form of a cross product in velocity, for which the scalar product in
equation (2-36) vanishes. Therefore, the third term in equation (2-24) may be
written, using equation (2-7),

n <F .V w2> = -n <F> . 3 . (2-37)
r w r r r

{
N

Combining results from equations (2-28), (2-35), and (2-37) permits equa-

tion (2-24) to be placed in the following form:

>
aT oV
3 r - r 3 1 2 r
= — + . — + |= + = —
2 My k ot T ™ Ve ot [2 k Tr 2 M Ve ] ot
> -> = = > 3 ->
+ . . : + =
Y q. + v (7 » pr) + P, v v, 5 I k Tr Y ~ v
+ é-n k 3 - VT +-§ kT 3 « Vn_+ 1 m v 2 3 « Vn
2 r r T 2 r r r 2 r r r r
- > - 1 2 -+
+ m_on_ v s [(vr - V)Vr] + 2 D, B Vo V »~ v
-n <F> .v_=E . (2-38)

The energy equation in this form is rather cumbersome; and since further

modifications will be made subsequently, a detailed description of the physical
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significance is deferred. However, for future reference, attention is directed
to the final term on the left side of equation (2-38). This represents work
done on species r particles by external forces. In the ionosphere, if F repre-
sents an electrostatic field, this term is called the "Joule heating'" contri-
bution (Cole, 1962). A generalization of this concept will be discussed when

the conservation equations are placed in final form.

2.2.4 Formal Modifications of the Conservation Equations

Equations (2-16), (2-23), and (2-38), as a coupled set of time-dependent
partial differential equations are inconvenient to use in calculations because
the quantities of interest are coupled in the time derivatives of the equa-
tions. A more workable form is to have the time derivative of only one of the
macroscopic variables n, Cr, Tr in each equation. Each equation then describes
the time evolution of a single observable, although coupling remains present
in other terms. Fortunately, obtaining this result is a straightforward oper-

ation, and the results are well worth the effort.

Equation (2-16), the continuity equation, already has the desired form.
It is used to eliminate the time derivative of n_ from the momentum equation

(2-23). That time derivative can then be written

] > a—‘;r > .r >
M Bt (nr vr) LM T vr[q -V (nr vr)] ) (2-39)
Substitution of equation (2-39) into (2-23) gives
av _ . .
m noooT +m n(v Vv +V- P, - D <F>r = Pr PV (2-40)

where all collision terms are collected on the right side.
For the energy equation both equations (2-16) and (2-40) are used to

>
eliminate time derivatives of n_ and v After considerable algebra, equation

(2-38) becomes

2-10



3 k'iTl+—3- KV +VI_+9Veq +p:VV
2 Pr * %t 2 % * Yy r - A TPV Y

=E -v «P + —E-[l m v 2 _ kT ] . (2-41)
r mr 2 r r r

This represents a substantial simplification in the form of the energy equa-
tion. One consequence of this simplification is the absence of an external
force term, which for an electrostatic force was termed the "Joule heating"
term in the previous section. It will be seen in the following section' that
this contribution is contained implicitly in the collision terms, where it

physically beldngs.

Since the left sides of the conservation equations are now in final
(and simplest) form, the physical meaning of the terms can be examined briefly.
Examination of the collision terms is deferred until the next section. In the
continuity equation (2-16), the first term represents the explicit time rate
of change of n, while the second represents the net change in n due to more

or less r-particles flowing into a small volume than out.

In the momentum equation (2-40), the first term gives the explicit time
rate of change of momentum of species r particles. The second term is the
nonlinear term which gives the change of momentum of particles in a small cell
flowing with the species r particles at velocity 3r due to the variation of $r
in space. The third term gives change in momentum due to internal forces
within spécies r, that is, pressure and viscous forces. Finally, the fourth
term gives momentum changes due to external forces, excluding collision (fric-

tional) forces which are treated explicitly.

The energy equation (2-41) is seen now to involve only thermal or random
energy. All directed (mechanical) energy contributions may be recovered from
the momentum equation which governs directed motion. The first term in equa-
tion (2-41) gives the explicit time rate of change of temperature while the
second gives the temperature change of a cell moving at velocity 3? due to
spatial'differences in temperature. Net changes in thermal energy due to more

or less thermal energy flowing into a small volume than out are given by the
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third term. The fourth term gives the thermal energy of viscous dissipation;
that is, the randomizing effect of collisjions of r particles among themselves

=
when the drift velocity v, varies in space.

The net effect of the mathematical manipulations in this section has been
the transformation from microscopic to macroscopic variables. The resulting
equations separately describe the time evolution of number density, directed
motion, and random motion, while remaining closely coupled. Although the
physical situation has been improved in the sense that the equations can be
interpreted in terms of physically measurable quantities, the mathematical
problem is no less complicated. The terms treated to this point involve only
the averaged interactions of species r particles with themselves and with
external force fields. Interactions with other species is the object of the

next section.
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Section |l1

FORMAL TRANSFER INTEGRALS

3.1 GENERAL FORM OF THE TRANSFER INTEGRAL

The transfer integrals to be treated are those obtained fromvthe right
éidé of equation (2-14) when mass,'momentum, and‘kinetic energy are succes-—
sively substituted for er. Initially, however, the form of the transfer
integral for arbitrary er is determined. For this an expression fo; (Bfr/at)c,
the collision integral, is required. In the standard formulation of the
collision integral, only elastic collisions are considered, and particle
potentials are assumed to be spherically symmetric and of sufficiently short
range that only binary collisions need be considered. This latter assumption
is too restrictive to include Coulomb collisions. However, for electron-ion
collisions use of the Boltzmann equation has been found to give the same
results as the Fokker-Planck equation, which treats many simultaneous but
independent collisions (cf Shkarofsky, et al., 1966 or Burgers, 1969). So for
convenience, the Boltzmann collision integral will also be used for electron-

ion collisiomns.

With these assumptions, the collision term in the Boltzmann equation (2-
2) for species r is given by

(&)

. = g f (£, £ (wl) - £ () £ (w)]gbdb -dp dw, , (3-1)

where fr,s = distribution function for species r,s
$r’s = total velocity of species r,s particle before collision
aris = total velocity of species r,s particle after collision
g = |$S - $r| = relative speed
b = impact parameter

¢ = aximuthal angle.

The summation extends over all species and the range of integration over all

w_-space. A schematic diagram of the collision process is given in Figure 3-1.
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Figure 3-1.

GEOMETRY FOR ELASTIC SCATTERING
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The derivation of equation (3-1) is présented in many books (eg. Chapman and
Cowling, 1970; Sutton and Sherman, 1965; Huang, 1963) and is not repeated
here. For notational convenience, only collisions between species r and
species s are considered for most of this section; appropriate summations are

reinstated as needed.

When equation (3-1) is substituted in the right side of equation (2-14),

the transfer integral has the form

of
r > [ X > -
jer <§E—>C dw Jer [frfs frfs]g bdbd¢ dw_ dw _, (3-2)
where f' = f(w'). By means of symmetry arguments, Chapman and Cowling (1970,

Chapter 3) show that an equivalent form of equation (3-2) is

of
T > v > - . _
Jer<——at )c dwr J (er er) frfsg bdb d¢dwr dws, (3-3)
where 9; corresponds to post-collision values of the property er. This is the

form of the transfer integral on which subsequent calculations are based.

3.2 SPECIFIC TRANSFER INTEGRALS

At this point, it is helpful to define carefully the plasma system to be
encompassed by the model being developed. The ionospheric plasma of interest
is the thermal plasma, i.e. the low energy plasma with generally random
velocities. Plasma particles in this category have energies <2eV, with pre-
dominantly Maxwellian distributions characterized by temperatures of a few
hundred to a few thousand degrees Kelvin. This distinction is important
because occupying the same space may be charged particles with energies of
order 10eV (photoelectrons), of order 1-10 KeV (auroral particles) and of
order 100 KeV - 10 MeV (trapped radiation). In general, number densities of
these higher energy particles are orders of magnitude smaller than that of the
thermal particles in the ionosphere; and they do not have the approximately
Maxwellian velocity distribution associated with the tﬂermal particles.
Because of these substantially different properties, it is convenient and
plausible to treat the higher cnergy particles as separate entities and, in

fact, to consider them as external to the system being treated. Although a
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strictly consistent, complete treatment of the problem would require inclusion
of all such elements in the system (e.g. S.T.Wu, 1970), considerable success
in ionospheric investigations has been achieved by means of this distinction:
because it has a sound physical basis and it greatly simplifies a number of

bookkeeping and computational problems.

In addition to practical considerations, there is some theoretical justi-
fication for taking this approach. From numerical solutions of Boltzmann-—
Fokker-Planck equations, Carleton (1968) and Ashihara and Takayanagi (1973,
1974) have found that for electron energies less than about 1 eV, the energy
distribution is very nearly Maxwellian; above those energies significant
deviations from a Maxwellian distribution occur. Solving a similar equation
for the atomic oxygen ion distribution function, Banks and Lewak (1968) deter-
mined that for ionospheric conditions the ion distribution is only slightly

distorted from Maxwellian in the steady-state nonequilibrium (Tnjiijie) case.

With these ideas in mind, discussion of the collision terms can proceed.
For the case er = mr, the right side of (3-3) clearly vanishes, since at the
low energies considered here mass is unaffected by an elastic collision.
From equation (2-16), this implies 5 = 0. Here, however, recognition of the
physical situation described above must be taken into account. This result
is a direct consequence of ignoring inelastic collisions, chemical reactions
and higher energy particles. Although these effects cannot be included in
the present formal treatment of collisions, their place in the equations can
be retained by simply retaining the B notation until details can be filled in
appropriate to the specific conditions of a problem. Hereafter, 5r/mr is
viewed as a source/sink term resulting from processes external to the system,

in the sense described above.

For er = mrar, equation (3-3) takes the form

s, |

2y

of
r > e _ o > _ > _
r<at >c dwr s f (wr wr) frfs gbdb d¢ dwr dws - Prs (3-4)



Because of the presence of the relative speed g in the integrand, it is
necessary to transform the velocities to the center-of-mass system. New
velocity coordinates are the center-of-mass velocities,

> ->
m wr + msws .
£ =¢, (3-5a)-

m_ +m
r s

(right equality follows from conservation of momentum) and. the relative

velocities
> > -+
g = wr - v, (3-5b)
g R R -
4 . WS . (3-5¢)

Equations (3-5a, b, c) can be solved for $r and $S to obtain the inverse rela-

tions

$=E+ rs—gr, $=a_ rsg’ (3—6)

1

mrms/(m + mS) is the reduced mass, and similar relations hold for

post-collision velocities. From conservation of momentum and energy it can

where Mg
be shown that

g=28", (3-7)
so that only the direction of relative motion is changed by the collision.

From these relations, the change in velocity of particle r due to the

collision can be expressed as

- > H >
@ -w) == @ - B (3-8)
r

The scattering angle X (see Figure 3-1) is given by

BB - cos X, : (3-9)



where equation (3-7) has been used. It follows that in the direction of g
g' -%=-2 (1~ cos X). © . (3-10)
Because of agimuthal symmetry in the scattering, other components of the vector

2 - §), when averaged over many collisions, will not contribute to the inte-
g

gral in equation (3-4). That integral may therefore be written
> > -
ﬁrs == f gg (1L - cos yx) frfs b db d¢ dwr dws . (3-11)
The cross section for momentum transfer is defined to be

Q. () = J (1 - cos x) b db d¢, (3-12)

where the g dependence follows from the fact that x = x(g, b) in general. From

the transformation equations it can be shown that

so that equation (3-11) can be written
rs rs

P o=~y f g g Qe £f dg dd, (3-13)

where now fr s = fr S(E, 6) from equations (3-6). This is the form which is
] ’

used for calculations with specified distribution functions.

For er = 1/2 mrwi, equation (3~3) becomes

1 [ 2 (%) o
2 'r r \ 3t c W

1}
Nof=

2 2 > >
14
m J (wr wr)g frfs b db d¢ dw dwS

i
(2}

rs (3-14)

From equations (3-6), it follows that
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l '2_2= *y _ T . _

2 o (wr wr) urs(g £) E, (3-15)
As previously, averaged over many collisions, the vector (E' —:E) contributes
to the integral only in the component parallel to E. Making use of equations

(3-10), (3-12), and (3-15) permits equation (3-14) to be written
> >
E .=~ Mg f g g+ G Qg frfs dg d¢ . (3-16)

In this form the energy transfer integral is evaluated for specific distribu-

tion functions.
33 TRANSFER INTEGRALS FOR MAXWELLIAN DISTRIBUTION FUNCTIONS

3.3.1 Background

Before a lengthy calculation of this nature is begun, it is appropriate to
question the need and the physical and mathematical justification for it and
to review previous efforts in this direction. In order to evalugte the momentum
and energy transfer integrals, ?rs and Ers’ some form for the distribution
functions fr and fS must be used. The simplest, physically reasonable choices
are two Maxwellian distributions with a common temperature and zero average
velocity; reasons for choosing a Maxwellian distribution were discussed pre-
viously. In this case, however, application of energy conservation in equa-
tions (3-1) or (3-2) shows that the collision terms vanish. Moreover, such
conditions do not in general hold in the E and F regions of the inosphere. It
has been well established from both ground-based and in situ measurements that
electron and neutrdl temperatures differ up to several thousand degrees Kelvin
with ion temperatures intermediate to these. Flow velocity differences, while
generally small (s 102 cm s_l), may reach magnitudes of *105 cm s_l under

certain conditions; this is of the order of ion and neutral thermal velocities.

Burgers (1969) has treated the transfer equations in considerable detail
and considered these conditions specifically. He refers to the situation of

small relative differences in temperatures and flow velocities aslthe fully



linear case. Large temperature differences but small differences in flow
velocities cdnstitute-the semilinear case. By extension, unrestricted differ-
ences iﬁ both temperatures and flow velocifies are termed here the nonlinear
case. Although this terminology is nét widely used, partially because the non-
linear case has received little attention, it aptly describes the range of

approximations for this aspect of ionosphere modeling.

A completely rigorous treatment should also consider distortions of the
Maxwellian distribution, for example, by use of a Chapman-Enskog method (cf
Burgers, 1969). This is not attempted here because the calculational require~
ments are large and the degree of accuracy to which basic data, such as momen-
tum transfer cross sections, are known does not presently warrant such an
effort. Moreover, as noted previously, theoretical determinations of distri-
bution functions for ionospheric conditions have found deviations from the
Maxwellian distributions to be small for the thermal energies considered here.
The most important contributions to the transfer integrals are expected to be
due to temperature and flow velocity differences, rather than distortions of

the distribution functions.

A variation of the semilinear approximation considers arbitrary tempera-
ture differences, but assumes static gases. This problem has been treated in
detail for Maxwellian distribution functions by Banks (1966 a, c) among others.
It can be considered a limiting case for the nonlinear problem and is so used
later in examining results. Treatments of flow velocities (i.e. displaced
Maxwellian distributions) have not been so complete in either the semilinear

or nonlinear approximations.

Morse (1963) has made analytic calculations in the semilinear approxima-
tion, presenting both general expressions (arbitrary interaction potential)
and specific results for Maxwell, Coulomb, and hard sphere interactions for
both momentum and energy transfer. However, his energy transfer integral is
based on the thermal (random) energy moment (1/2 mczf rather than on the total

energy momﬁnt (/2 mw2 - see equation (3-14)) considered here. Noting this



distinction, Ingold (1968) has presented specific anmalytic results in the
nonlinear approximatibn for Maxwell and Coulomb interactions. However, he has

presented no general equations, except in the semilinear approximation.

Apparently without knowledge of these other studies, Stubbe (1968) has
also investigated this problem. He has treated only the momentum transfer
integral, obtaining a general result in series form, which can readily be shown
to reduce Morse's (1963) closed form integral. His specifit results are
obtained numerically and apply to charge transfer interactions. Burgers (1969)
has presented a comprehensive, systematic development of the fluid dynamic
equations from the Boltzmann equation. However, although he has laid out the
Chapman-Enskog procedure for treating the nonlinear pfoblem, he has not
attempted to solve it. Rather his treatment of this problem extends only to

hard sphere interactions, using displaced Maxwellian distribution functions.

Recently Horwitz and Banks (1973), apparently independently of the others
cited, have applied the consideration of large flow velocity differences to
the lonogsphere for both momentum and energy transfer in the nonlinear approxi-
mation. However, they provide no general expressions; and their results,
although pertaining to charge transfer colligions, are in an approximation
corresponding.to a hard sphere interaction. As with Burgers' (1969) similar
results, the energy transfer calculation is based on the thermal energy moment

rather than the total energy moment.

A notable feature of this brief review is the number of times this type
of problem has been investigated, generally independently, in a piecemeal
manner. It indicates an interest in the problem for a variety of reasons. For
lonospheric research in particular, there is good reason for interest. Much
attention is currently being directed towards high latitudes where large elec-
trostatic fields are observed driving the ionospheric plasma at high velocities.
The previous partial treatments have been found to be inadequate for the pre-
sent study, particularly with respect to the energy transfer integral. So
one of the objectives of this investigation is to present a complete formal

treatment of the nonlinear problem, in the approximation of two displaced

i
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Maxwellian distribution functions, and to provide a set of qpecific results
which should be adequate for most requirements. Below, general formal expreé-
sions are developed for arbitr?ry interactions. In the Appendix, the formal
results are applied to several specific interactions to.obtain analytic expres-

sions suitable for numerical evaluation.

3.3.2 Momentum Transfer
Momentum transferred to species r by specles s through elastic collisions

is calculated from equation (3-13). Both distribution functions are assumed to

be displaced Maxwellians, given by

m 3/2
fr =0y L exp | - r + Zq
2wkT 2kTr 1Wf Vr)
- » (3-17)
m 3/2 [~ m -
f =n 5 exp { - ——5—-(3 -3 )2
s -} 2nkT 2k'1‘S s s J ’

where parameters 3 R Vs’ £ '1‘s have arbitrary values. Placing these expres-

sions in equation (3-13) gives

3/2
# o0 I > Q ()
== nn {~—>%H o5 g8 4
rs rs r 8 by Zsz T rs
T > 2 s - 21 >
r s

The exponent of the exponential function must now be transformed to the center-
of-mass system, uging equations (3-6). When this is accomplished, the expo-
nent, denoted by X(E,-E), can be written in the form

2

X@, 6 =-ag? +B2 +cg-E+DaZ+EB-C+F), (3-19)

urs mr Tt + ms T
where A= 7k p—— (3~-20a)
rs rs
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B = 2% T T (3-20b)
‘r's
Urg Ts - T - |
C = =l TT (3-20c)
r's
D'—— Urs +_(+T _+T) (3 20d)
=T ktT 7 Wplg T Vg ' -
r's
_ 1 _ -> >
E:z - T, I (m¥ T +m¥T) (3-20e)
2
Ve BsVs
F = 2kTr + 2kTS . (3-20£)

Since the only unknown in equation (3-18) is the momentum transfer cross
section which is a function of g only, the integration over E¥space can be
carried out immediately. For notational convenience, the integral in equation

(3-18) is denoted by TP’ which can be rewritten as
2
§=fd§g§%;9emvmg+nz-§+ml
2 - >
. f exp{-BG™ - E « (Cg + Eg)] da . (3-21)
With the notation

3

Cg + EB , (3-22)
the integration over anpace can be performed by completing the square, giving

3/2
I exp[—BG2 -¢. 3146 = (%) exp(sz/z.n). (3-23)

When this result is substituted back into equation (3-21), togetﬁer with
definition (3-22), TP may be expressed as
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3/2

I g% Qe expl-(a'g? +7' « T+ Clap (3-24)

P B g
where 2 "
'_A-C _Trs _ _
¥4 H
Y Db - =- I G -9 (3-25b)
2 2 u
¢t =p-EB _Is 3 _3y2 (3-25¢)

4B kT T s

The right sides of equations (3-25) follow from equations (3-20) and the defi-

nition of a center~of-mass temperature

Tr TS
T = el 70 + P . (3-26a)

For convenience the following notation is also introduced:

VvV v -v (3-26b)
o) Tr S

K =y /2kT (3-26¢c)

Equation (3-24) may then be expressed concisely as

3/2

b (3)

If a spherical coordinate system is selected for §¥space, the angular

[e8 0@ eotx@-3)% 6 . (3-27)

integration can be performed immediately. This can be accomplished by means
of symmetry arguments (e.g. Mathews and Walker, 1965, Chapter 3). Since ;; is
the only direction specified in the integral, TP must be parallel or anti-

parallel to it; this is specified mathematically by

T =aA v , (3-28)
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where A0 is a proportionality constant to be determined. Let ;0 designate the
polar direction in a spherical coordinate system in E—space. Then from equa-
tions (3-27) and (3-28) '

v .1 3/2
A = Zg—:——g-= 1 (= v gzcose Q_(&) exp[—K(g2 + v2 ~ 2v g cosd)]
o v2 v2 B o rs o o
o o

. gzdg sinfdede . (3-29)

Because of azimuthal symmetry, the variable ¢ may be integrated out directly
and the 6 integral evaluated. For that part of the integral involving only

angles, the result is

1
2 I cosf exp (2ngo cosg) d cos 0O
-1
- an cosh(2Kgv ) - 1 sinh(2Kgv )
Zngo o 2Kgv o]

Placing this result in equation (3-29) gives

3/2 exp(~ Kv )

R ¢ e [Q(g)axp( Kg")
Hrs v o
Sinh(Zngo) 3
cosh(2Kgv ) - “okev. |® dg . (3-30)
o
With the relation
d sinh(Zng ) 51nh(2ng )
-EE 2ng cosh(Zng ) - Zng . (3-31)

equation (3-30) can be modified and substituted into equations (3-28), with the

result

2 o
3/2 exp(-Kv_) sinh(2Kgv )
t, =42 (3) ——= 7, J Q__ () exp(-kg))g'd [————Zng 5 :l
[¢]

o] o]

313 (3-32)



Since ff represents the integral in equation (3-18), that equation may

now be written

oo

o)

]

[
=}
=]
<

) J sinh(2Kgv )
> 2, 4 o
rs Trs 2 o Qrs(g)e p(-KgT)g dl 2Kgv :
"wK v0 o o

(3-33)

An effective collision frequency for momentum transfer Vg is now defined by
the relation (Stubbe, 1968)

= > —
irs = T Ves ¥rs Vo : (3-34)

Comparison with equation (3-33) identifies the collision frequency as

X exp(—Kvg < 2. 4 sinh(Zngo)
Ve () = 2 [T mg — f Qg ®exp(KgDe d | gy — |-
o

v
(o]

(3-35)

Equation (3-35) formally generalizes the collision frequency obtained by
Banks (1966a) for two gases at different temperatures to include the effects
of average relative motion between the gases. This equation is equivalent to
the expression obtained by Morse (1963). It is also equivalent to the series
form obtained by Stubbe (1968), as may be verified by expanding the hyperbolic
sine in equation (3-35) in a power series. In the Appendix it is shown that

in the limit 30 + 0, equation (3-35) has the form

ElEs

v =3 “s,/_ K? J Q, (&) exp(-kg”)g’dg, (3-36)
o

which is the expression obtained by Banks (1966a). Equation (3-35) is evalu-
ated analytically in the Appendix for a number of forms of the momentum trans-
fer cross section, corresponding to collisional interactions of general in-
terest. Specific collision frequencies of aeronomical interest are compiled

in Section V.
3-14



3.3.3 Energy Transfer

Total energy transferred to.species r by species s through elastic colli-
sions is calculated from equation (3-16). When displaced Maxwellians, equa-
tions (3-17), are assumed for the distribution functions, equation (3-16) may

be written

3/2
mrms 5 2 - > -
Ers =T lJ'IZ'S nrns T— Idg & Qrs(g)exP[—(Ag + Da - g + F]g
4°K"T_ T
r s
. J ¢ exp[-(8G% + & - (Cg + EB) 148, (3-37)

where the constants are as defined in equations (3-20). Denote the integral

over E—space by 1 Since the exponent in T is the same as previously,

B
equation (3-22) can be used to write

E

2
TE = exp(82/4B) f ¢ exp[-B(C + %E) 1d¢ . (3-38)

If variables are changed to E =3¢+ §/2B, equation (3-38) becomes
2 -+ § 2. .
TE = exp(S~/4B) J (£ - EE) exp (-Bg7)dE . (3-39)

The integral of the first term vanishes since the integrand is an odd function
>

of each cartesian component of £ over the symmetric, infinite range. Integra-

tion of the second term then gives

3/2

TE = - exp(52/4B) gﬁ-(%) , (3-40)

by equation (3-23).

With this result equation (3-37) becomes
2

g\3/2 2nk"T T o N
Brs = " Vrs \u —m—rm——f g - [Cs + EfleQ (8)

- exp[-K(g - 35)2]d§ . (3-41)
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Designate the first and second terms on the right by I1 and 12 respectively
and consider 12 first. The integral in 12 is basically the same as IP; so

from equations (3-32) through (3-35) I, can be evaluated immediately:

u 5/2 _
rs 2 - > > 2.~
I2 nns mm 2mk TrTs (n) E E j g8 Qrs(g)exp[—K(g - vo) ldg
BV
u ]
- _ rs o _
ny <mr + ms) < T )vrs(vo) ? (3-42)

where E has been evaluated from equation (3-20).

For I, the integration over angles can be carried out directly:

1
1 .
_ 31nh(2ngo)
27 f exp[Zng0 cosBld cosp = 27 ———EE—;———— . (3-43)
o
-1
) I1 is then given by
2, ®
u 3/2 QXP("KV )
rs K o 4
I, = -nn_ (m — > &Y ek, - 1) ——= j g o__(2
T s o
o
. exp(—ng)sinh(Zngo)dg . (3-44)

By differentiating with respect to Vs the following equation can be
verified from equations (3-31) and (3-35):

[ & ot expxe®sinn (2Kgv, g
(o]

Jr_{ZK v, exP(KV v (v )] + 2 exP(KV v (V)

(3-45)
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When this equation is substituted into equation (3-44) and part of the dif-

ferentiation carried out, the result can be written

I, = - ‘rs T\ s, (3kT + 2y 3-46
17 % m +om T Yo v, HrsVo/Vrs - (3-46)

With equations'(3—42) and (3-46), equation (3-41) can be written
u : T - T v

. - rs T s rg
Bs =~ 0 (m + m )( T ) I}okT v

r s o

B9
+ [3kT + vV —2 (3-47)
Hrs Vo T - TS rs -

This is the desired result.

Equation (3-47) expresses the energy gained by species s due to elastic
collisions in terms of the effective collision frequency for momentum transfer.
This formulation in terms of momentum transfer collision frequency is original,
and it is usgful in simplifying both calculations and interpretation of colli-
sional energy transfer. Expressed in this way, terms which depend on tempera-
ture differences or average velocitf differences or both are clearly separated.
The high velocity correction (Bvrs/avo) term is an isolated term as opposed to
a set of factors (e.g., Horwitz and Banks, 1973). This permits a more direct
assessment of the importance of the correction involved. Once the collision
frequency is determined, the additional term is found by differentiation,
which is simpler than performing the addition;l integral required by other
formulations. This is illustrated in detail by the analytical evaluations in

the Appendix.

Consideration of some special cases aids interpretation of equation (3-47).
If the species flow velocities are the same (3r = 38), then 35 = 0. In the
Appendix it is demonstrated that in this limit avrs(O)/av0 + 0. Equation (3-47)

then has the limiting form o

E = - _rs 3K (T - T ) (0) (3-48)
- n,. m + m r s’ Vrs ’

’
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where vrs(O) is given by equation (3-36). This is the result derived by Banks
(1966a) for these conditions. It can therefore be concluded that the term
3kTvrs in brackets in equation (3-47) represents the transfer of random energy

(heat) from one gas to the other due to temperature differences.

For Tr = TS the energy transfer given by equation (3-47) is

n
Ers B nr(mr + ms)l:r_nz—s Vi - Gr ) _‘;o:l vrs(vo) ’ (3-49)
where the definitions of E, T, and 30 (equations (3-20a), (3-26a), (3-26b)
have been used. Comparison with corresponding results of Morse (1963) shows
that the second term in equation (3-49) constitutes the difference between
taking the total energy moment and the random (thermal) energy moment of the
collision integral. This term is seen to represent the rate of work done on
species r by the frictional force - (mr + ms)vrs 30 due to the difference in
flow velocities. Thus the term (E . -‘;o)/(Tr - TS) in equation (3-47), which
is the right side of equation (3-49), is seen to have two components, one
representing a transfer of directed energy and the other a conversion of
directed energy to random energy. The collision of two monoenergetic beams is

a limiting example of this case.

The remaining terms in brackets in equation (3-47), kaT Bvrs/avo and
Mog Vivrs’ cor{espond to cross terms in the sense that both conditions Tr # TS
and 3r # 35 must be satisfied for a nonvanishing contribution. The first of
these depends on the interaction potential for its sign as well as its magni-
tude. Neither term has a straightforward physical interpretation, due to the

dual requirement for a finite value.

In the energy conservation equation (2-41), the elastic collision terms
are (Er - 3? . 3&). The first term is the rate at which total kinetic energy
is transferred to species r through collisions. From this is subtracted
(second term) the rate at which work is done on species r by collisioms, that
is, the rate of transfer of direéted energy. What remains is the random energy

part, which is consistent with the left side of equation (2-41). The collision
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terms can be evaluated in terms of the momentum transfer collision frequency
from equations (3-34) and (3-47) (with a summation over all species). The

result, after lengthy but straightforward algebra, is

> Ty Mrsg 2 CA
E -v_.P =—"|nvy -k(_ -T)H3_ +v —}| .
rs r rs mr + ms s o'rs r s rs o 3V

(3-50)

Since, from discussion above, the right side of equation (3-50) must repre-
sent thermal energy, the physical meaning of the terms can be obtained. In the
case of thermal equilibrium (Tr = Ts)’ but v, # 0, only the first term remains.
This term thus represents the conversion of directed energy to thermal energy,
which is a generalization of the Joule heating usually associated with electric
fields. 1In this form, Joule heating (or frictional heating) is seen to result
from any forces which cause the gases r and s to move with different average
velocities; and this difference in velocities may be due to the nature of the
force (for example, electric field) or due to conditions of the medium (for
example, a third species which couples preferentially with species r or s).
From the form of equation (3-50), it can be inferred that for a two-component

. . 2 .
system, the total rate of Joule heating is n Vg with a fraction

u v
r "rs o
ms/(mr + ms) going to species r (Banks and Kockarts, 1973, Chapter 22).

If v, = 0 but Tr # Ts’ only the second term in equation (3-50) remains.
This gives the rate of transfer of thermal energy to species r due to the
temperature difference. For the third term not to vanish three conditions
must be met: (1) Tr # TS, (2) ¢r # ¢s’ (3) Vg must vary with velocity. This
term represents a correction term for large relative average velocities, but
only if the gases are in thermal nonequilibrium, and only if Vog is velocity

dependent.

34 FINAL FORM FOR FORMAL CONSERVATION EQUATIONS FOR MULTICOMPONENT CASES
Results of Section II for the left sides and Section III for the right
sides pf the conservation equations can now be combined to obtain the final

forms. For multicomponent gases the species conservation equations are:
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(i) Continuity Equation (equation (2-16))

on X
r Ty = L -
5t TV (v =4 (3-51)
T
(ii) Momentum equation (equations (2-40) and (3-34))
33 f
r > > 1 = <F >
ot + (Vr ) v)Vr + n m v pr - r =
rr m
. T
H p
rs - > r -
- E m rs (vr - vs) “am Vr (3-52)
s T T

(iii) Thermal energy equation (equations (2-41) and (3-50))

3 aTr 3 > - = >
E—nrk SE—-+-5 nrkvr- v Tr + 7 . q. + pr:V v

urs 2 a\)rs -
= nr Z m + ms msvrsvrs -k (Tr - Ts)(%vrs + vrs Bvrs :]

p [ ]
r |1 2
+-;r- 5 mV_ - 3/2 k Tr (3-53)

r

> - > > .
where the notation Vs = v, — Vg has replaced the v previously used.

These equations are formal in the sense that specific interactions must
be known before v o can be computed from equation (3-35) and 6r must be speci-
fied. In addition, there is a closure problem for the system of equations.
Although these five equations are sufficient to solve for n_, ¢r’ and Tr’ the
additional unknowns associated with ;; and Er require considerably more infor-
mation than is given in these equations. And finally, as with such partial

differential equations, initial and boundary conditions must be specified.

Part of the additional information required can be determined from general

ionospheric conditions, and some simplification of the equations can be obtained

3-20



¥

by considering such. These matters are treated in the next section. Some in-
sight can be obtained from investigations of transport properties undér con—
trolled conditions, obtaining results which can be applied more generally.
This aspect is examined in Section V. Finally, ceriain information must await
the particular problem to be solved for specification. This latter category
is by its nature a catchall, since every variable which has not been tied down
by previous efforts must be approximated or specified by assumption before the
problem can be solved. Section VI illustrates this procedure in a numerical

calculation.
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Section 1V
THREE-FLUID 1IONOSPHERIC MODEL

4.1 CONSERVATION EQUATIONS IN THE THREE-FLUID APPROXIMATION

In the three~fluid approximation, macroscopic properties of the electronms,
ions, and neutrals are treated separately, while differences of these proper-
ties amoﬁg the various ion or neutral species are assumed negligible. Specifi-
cally, all ion species are assumed to have a common temperature Ti and flow
velocity 31, and all neturals are similarly assumed to have common temperature
Tn and flow velocity 35. With these assumptions, discussed in Section I, the
relevant conservation equations for ions and neutrals can be obtained by
summing over the species comprising these gases. Electron equations are

given directly by the species equations since a single species constitutes the

gas.

From equation (3-51), the electron continuity equation is

BN N o R
3t tvo. (Ne ve) = EZ- ) (4-1)

For number densities, the notation N will hereafter denote the total number
density‘of the (ion or neutral) gas, while n will denote a species number
density. These are then related by

N =7 ny o (4-2)

J

To avoid cumbersome notation, subscript i will denote ion and n, neutral;
summations will imply summation over all relevant ion or neutral species, as
specified by an i and/or an n. Thus, these subscripts serve the double
function of summation index and gas indicator. In practice, this should cause
less confusion than a proliferation of subscripts. Summing equation (3-51)

over all ion species gives

~13
s
+
o~
<
~~
]
<
N’
I
e )
E! .
i



From charge neutrality, N, = Né, so that interchanging the order of summation

i
and differentiation allows this equation to be rewritten as
N 5
e Ty=F -1 -
5 TV N vy = ; m, (4=3)

>
where vy was factored out of the summation. In a similar manner the neutral

continuity equation is found to be

aNn N
3e TV V) =)

(4=4)

]
=P |57

If a problem involves composition change as one of the significant physical
processes, this formulation is inadequate; a separate continuity equation

(3-51) must then be used for each ion and neutral species

Equations of motion are obtained from equation (3-52). For electrons

the equation may be written down directly:

>
Bve N N 1 — <fé>
ot + (ve : v)Ve + N m v pe T m
e e e
> .
> > ve Pe
== L vegGe v -gla ) s (4-5)
s=i,n e e

where the approximation Hog = Ty has been used for the reduced mass of the
electron with any ion or neutral particle. To obtain the momentum equation
for ions and neutrals, it is convenient to multiply equation (3-52) by the
number density and mass before summing. The ion equation of motion may then

be written

3_\;1 - > =
Imgmyge * Ly @y s WY+ ]V - D <Ep
i i i i
> > > .
=L g v GtV vy Sy (4-6)
i,s=e,n i

Let the mean mass per particle m of a gas (ion or neutral) and the mass density

p be defined by

p=Nm = g n,m . (4-7)



b

Similarly, let the mean effective collision frequency for momentum transfer
between gas r and gas s (if r represents ions, then s represents neutrals and

vice versa) be defined by

- -1 _
Vrs T 5 ) Op Hrs Vrs ° : (4 8)
rr,s

With these definitions and the fact that the three-fluid approximation allows
the flow velocities to be factored out of the summations, equation (4-6) can

be rewritten as -

5
v
i - 1 = 1
— 4+ (v, « Vv, +—V . 2 p, - — Z n,<F. >
at i Pi i i Py 1
-
_ > - _ > > vi .
=" Viay T V) T Ve "i""e)'p_i ;pi : (4-9)

>
v
n -> = 1 >
—_— % . + — . - =
Y v, - OV SV ) Ph ", ) n_<F >
n n nn
>
- > -+ — > -> vn °
- \)ni(vn - Vi) " VeV -V ) - ag CH (4-10)

It is helpful at this point to establish the relation between ;;s and

;;r' The total momentum transferred to gas r due to collisions with gas s is

given by (cf equations (3-34) and (4-6))
Vonou_ v Vo -V)=p_ v (-7 (4-11)

by equation (4-8). From equation (3-35) it can be seen that

n v =n v . (4—12)

is

En u v Eps; =p v . (4-13)



The distinction between equations (4-12) and (4-13) is sometimes confused. It
can be seen that the proper relation depends on whether the momentum transfer
term in the momentum equation is written as in equation (4-6) (use equation
(4-12)) or as in equation (4-10) (use equation (4-13)). Consistent use of the
notation introduced above should eliminate any confusion in the remainder of
this study. Application of equations (4-13) and (4-8) gives the following

specific relations:

n -
ei ) Vei Vie T :g'vei (4-14a)
i m
i
_ _ Ne m, _
en L Ven Vae © — Ven' (4-14b)
n ‘ N m .
non
N m
- 1 - e 1i-— _
Vin T = LMy Mya Vin e Vo ST Vg, (4-14e)
N m i,n N m
e 1 n n

This allows all collision terms to be expressed in terms of the three collision

frequfécies Vi’ Ven and Vi 9T alternatively, their averaged counterparts Vei?

Ven® Vin’

The energy equations are obtained from equation (3-53). For electrons

this can be written

3 ' s =
2 N k + N k Vo v Te + Vv . qe + pe.V Vo

=N m (v 245 vhH N k@ -T) |3, + zavei
e Pe vei vei Ven Yen e e i Vei Vei v

i el
av
— en
- Ne k(Te - Tn) Even + Ven X (av )]
n \- en

p
el|l 2 3
m 2% Ve T2 k Te:] (4-15)
e
where Vg = $r - 35" Equations for ions and neutrals follow from proce-

dures used above. For ions the result is



3y ka3 n K e 4y T, +5 v v
2% 3t 2e V1" L9y Pysv v

i 1
v v v av
=Nm2vzzei-Nmk(T -'T)Z 3ei+e1 el
e e el m e e i ei mi mi v

i1 el
: uz n uy v
2 in .y L _ 1M in
+ v z n, — v, =-k(T, -T) ——————Ev +v ( )]
in in i m, in i n’ i,n (m1 + mh) in * 'in Bvin

1 2¢-+ 3
+5 vV p, ~5 kT
2 i E i 2 i g

(4-16)

-} .
[l |

where equation (4-12) and the fact that Veg = Vgr have been used freely. The

corresponding equation for the neutral gas is

3 aTn 3 > > = -
ENnk-a‘E—+ENnkvn-VTn+V-Eqn-}-gp:Vv

2 2 ven ven ven a\"e_n
=Neme Vengmn _Nemek(Tn-Te)E 3m + m v

+

N

2 . 3 n
Vn 2 pn - "2" k Tn Z ; . (4-17)
n n n

This completes the set of conservation equations in the three-fluid approximation.

4.2 IONOSPHERIC CONDITIONS AND CORRESPONDING APPROXIMATIONS

Representative ionospheric conditions were indicated in Section I, Figures
1-1 through 1-4. Here the interest is not so much in typical conditions as in
the extremes likely to be encountered in a wide variety of potential applica-
tions. The objective is to strip the conservation equations of unnecessary
terms without limiting the scope of applications. This is accomplished by con-
sidering the range of values of variables and parameters likely to be encoun-
tered under usual and unusual conditions, then, from order-of-magnitude esti-
mates, discarding those terms of negligible contribution thrqughout the range.

At this stage a conservative approach is taken -~ borderline or questionable
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terms are retained. There is ample opportunity for further reduction of the
equations when a particular problem is defined and physical conditions are

known more precisely.

Extremes of ionospheric variables generally correspond to different
altitudes, different geographic locations, and different times. Values given
are based on observations or inferences from observations and should be taken
as indications of order of magnitude rather than as absolute limits. With
that caution, extreme values are presented in Table 4-1. These values will be
used as the basis for order-of-magnitude estimates in the remainder of this

section.

Table 4-1. EXTREME VALUES FOR SELECTED IONOSPHERIC PARAMETERS

. 10 o
Masses: me/ms 10 , S =1, n
Number Densities: Ng/N, s 1073

. 2 5 -1
Flow Velocities : 10 s v< 10" cms
Tempera‘tur'es: 102 s Ts 104 °K
Spatial Scales*(L) 106 <L s 108 cm
Time Scales*: Tz21s
Electric Fields: 0< [E] <150 mv m

i Lower limit is a practical limit of interest and observability.

* Restriction - not a natural extreme.

4.2.1 Continuity Equation

As noted in Section III, the term 5/m on the right side of the continuity
equation is a phenomenological terﬁ in this study because only elastic colli-
siéns are treated systematically. It is appropriate at this point to discuss
this term and its role in the ionosphere more specifically. Rather than a
single term it actually represents the net sum of all processes which add or
remove particles of the appropriate type to or from a given volume element.

This can be represented mathematically by -



ps/ms = g (Ps - LS) s ' s =1, n, e (4-18)

where P denotes particle production processes and L particle loss pfocesées.

For ionization, the electron and ion ﬁrocesses are the same; and since
only singly ionized ions are present, ions and electrons are produced and lost

at the same rate. In the notation of equation (4~18), this is written
P, =-§ P, L, = g L . (4-19)

The "P" terms originate primarily from photoionization of neutral atoms and
molecules by extreme ultraviolet radiation (A < 1029 Z for primary comstitu-
ents). An extensive set of chemical kinetic processes modifies the ion compo-~
sition from that due to photoionization. Photoelectrons produced in this way
are not the thermal electrons of interest here, but since they quickly become
thermalized, the photoionization rate is generally taken to be the thermal
electron production rate. Collisional ionization is another source of thermal
plasma, but its importance is restricted primarily to high latitude regions
where large numbers of relatively high energy (>1 keV) charged particles fre-
quently penetrate to the altitudes of interest here (90 km to 800 km).

The important loss process for charged particles is dissociative recombi-

nation, represented schematically by

+ * *
XY +e>X +Y

where the asterisk denotes a possible excited state. Of secondary significance

is radiative recombination

+ *
X +e+X X+ hv

which may play a significant role only in the upper F region where atomic
neutral species predominate. Three-body recombination is important only below
the E region where three-body collisions can occur frequently enough to be

significant.



Despite the apparent coupling between the source-loss terms of the
charged particle and neutral particle continuity equations, they are indepen-
dent, except for possible coupliﬁg in the transport terms. This results from
the low degree of ionization, particularly at altitudes where production and
loss rates are highest (110 km to 250 km); that is, the number of particles
involved in ionization and recombination is negligible compared with the total
neutral number densities. More important is the photodissociation of molec-
ular species, especially molecular oxygen. For many problems it is adequate
to set this term to zero. Such considerations, however, are best left to
particular applications. For a detailed discussion of these terms the work by

Banks and Kockarts (1973) (hereafter denoted B&K) may be consulted.

Finally, one of the consequences of the assumptions of (1) charge neutral-
ity, (2) single ionization and (3) no negative ions can be obtained from the

continuity equations. Use of equations (4-18) and (4-19) in (4~1) and (4-3)

gives
BNe N
Bt tve (Ne ve) = Pe - Le (4-20)
and
BNe N
stV (N, v) =P -L . (4-21)
Current density is defined as
+ ->
3= Z g %5 Vs
s=e,i
-> ->
= e Ne(vi - ve) (4-22)

where -e is the electron charge and the latter result follows from the assum-
tions. If equation (4-20) is subtracted from (4-21), the result can therefore

be written

v.d=0 (4-23)

where the vanishing of the time derivative of the space charge density, normally

found in this equation, is a direct result of the charge-neutrality assumption.



=

For completeness the neutral continuity equation, corresponding to equations
(4-20) and (4-21), is written as '~

aNn N

EE—-+ v - (Nn vn) = Pn - Ln . . (4-24)
4.2.2_ Equations of Motion .

A distinctive difference between the equations of motion of charged and
neutral particles is the external force term. Electromagnetic'forces, as
noted previously, play an extremely importanﬁ role in differentiating the
motions of the charged and the neutral particles. Other forces are also
operative in the upper atmosphere, however, and their importance must be
assessed. These forces are the gravitational force and the coriolis force,
the latter a consequence of working in an Earth-fixed, rotating coordinate
system. For the neutral gas, the external force term may be written

1 > - > >
. ) n <F > =g+ 2v x Q (4-25)
nn

e r . . - 3 s
where g is the gravitational acceleration, 2, is the angular acceleration of

E
the Earth and the brackets around fn indicate that the average velocity,
rather than particle velocity, is to be used. The gravitational term has a
unique quality among all the terms in the momentum equations: for a given
location it is constant in magnitude and direction. This makes it difficult
to neglect in general because a situation can be conceived in which every term
is, at some time or other, smaller than the gravitational term. So gravity
should always be included unless it can be shown to be insignificant in a

particular problem. No such general statement can be made of the coriolis

term; it must be examined in the context of the other terms.

External force terms for the charged particles are similar to equation

(4-25), with the addition of the appropriate electromagnetic terms:

-5
<Fe> o 5 Ve § s .
= - — + = x B} + g+ 2v_ x Q
me me c e E
-r
v,
L y n.<f > =& (ﬁ + — X ﬁ) + E + 23. X 5 .
p, » 1 1 - c i 7 E
ii m
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The angular velocity of a charged particle gyrating about a field line .is

given by

-7

q
> _ s -
wg = o c R (4~26)

the magnitude of which is the gyrofrequency. Using this notation in the

above equations gives

-5
<Fe> _ E - -> + > + 2—> 5 (4 27
m, T T W BT Ve XU T8 Ve X ¥%g -27)
1 E - 2
> — —_ > > >
= = ~c + + g + -
or g ni<Fi> w; € Vi X, tg 2vi X QE . (4~28)

where the bar on the ion gyrofrequency denotes an average value obtained by
using the mean ion mass Ei. Note that in the ion equation, for example,

the magnetic and coriolis terms can be combined to obtain

> > &>

Fimag +F =V ox (g +28). (46~29)
Since w, ~ lO2 s_l while QE = 7.29 x lO_5 s—l, the coriolis force is negli-
gible compared to the Lorentz force. The same holds true for the electron
/ s_l. So the coriolis force is retained only iﬁ the

equation since Wy ~ 10

neutral equation.

The momentum equations may now be written with external force terms
written out explicitly and the notation of equations (4~14a through 4-1l4c)
incorporated in the collision terms. From equation (4-5) the electron

momentum equation

3—‘Ee—+(v Vv + Vep + E +v x0 -8
ot v Ne m P Ye B ¢ Ve x We &
>
VG -3V G -%) - @ -1 (4~30
=T VeiWWe T VY4 en''e = 'n N, e e’ )
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Normally, .the last term on the right side is negligible because

-1
(Pe - Le)/Ne << 1ls .
while
v or v 2 102 s-l.

en el

At certain times the ratio may approach the order of one, but collision or
other terms would still dominate. So this term will be discarded. The other

terms require closer examination.

To this point little has been said of the pressure tensor, ;; (also called
the momentum flux tensor), since its definition in equation (2-19). It was
noted, following its definition in equation (2-20), that the scalar pressure
P is one third of the trace of the pressure tensor. For convenience, these

definitions are rewritten in Cartesian tensor notation:

Pyg = P M<c cg> a,8 =1, 2, 3 (4-31a)
p = %—n m<e € > a =1, 2, 3 (4-31b)

where the summation convention is used for repeated indices. From these, the
viscous-stress tensor (also called the zero-trace pressure tensor and shear-

stress tensor) is defined by

T -p s (4-32)

aB - Pag aB

where 6a8 is the Kronecker delta. Chapman and Cowling (1970, Section 7.41),

following rigorous procedures, obtain an expression which can be written in

the form

v v
- - _a_ _B 2 i -
TaB B " % + Bxa:] + 3" 6aB vev (4-33)

8
where n is the coefficient of absolute viscosity. That derivation also pro-
vides a rigorous means for computing n; however, for present purposes that is
less useful than the simple mean-free-path expression derived from physical

arguments.
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These expressions can now be considered in the context of the electron
momentum equation (4-30). The question of immediate interest is whether the
anisotropic part of pressure tensor is negligible compared with the scalar
(isotropic) pressure. To determine this, an order-of-magnitude estimate is
made based on a mean-free-path expression for n. Expressions of Mitchner and
Kruger (1973, Section I1I-12), obtained for partially ionized gases, are
employed. With factors of order unity ignored, the desired ratio can be

written, for purposes of estimating order-of-magnitude only, as

(Te) " v
—f . el 2@ (4-34a)
pe

n =N m c & (4=34b)

- . m
where c, is the mean electron thermal velocity and le is the electron momentum—

randomization mean free path, which can be written

g e —2—— . (4~34c)

P = Ne kT =N m ¢ . (4~34d)
are introduced into equation (4-34a), the result is

(t,) 3(v,)

1
i —2. (4-34e)
€ (vei + ven) B

A conservative estimate is obtained by taking maximum values in the numer-
ator and minimum values in the denominator. Possible extremes would be Cei +
;;n = 10 s-l, A(ve)a = 1 km s_l and AxB ~ 10 km, very unlikely to occur in this
combination. From this it appears that
(t,)
— e = 1072 (4-34£)
e
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so that only the scalar pressure part of the pressure tensor need be retained

in the electron momentum equation.

Rewriting equation (4-30) to include only the retained terms gives

v

e - > 1 E - - >
ot + (ve ' V)Ve + N m VPe + me B c+ ve x u’e -8
e e
- > > — > -
= - vei(ve - vi) - \)en(ve - vn) . (4-35)

| .
It is now convenient td estimate the range of values each of these terms may

be expected to have baébd on values listed in Table 4-1. These are given in
Table 4~2. In the 1asl two cases, values of 104 s-1 and 105 s_1 were used for
maximum values of Gei 3nd Gen respectively.
'.

Several consideratﬁons apply to the judicious use of these numbers.
First, some terms can vanish or almost vanish, and in a number of problems
this can be reasonably assumed. However, maximum values for these terms are
much less likely. Second, values for some of these terms scale with the
electron velocity, making a better comparison possible. Third, directions must

be taken into account explicitly since the geomagnetic field makes the ionos-

phere quite anisotropic.

Individual terms can now be examined in light of these consideratioms.
Because of the anisotropy due to the geomagnetic field, it is convenient to
think in terms of components parallel and perpendicular to the geomagnetic
field. This differentiation applies particularly to terms (4) and (5), which
are potentially the largest. Since ge is parallel to the magnetic field
(equation (4-26)), term (5) affects only transverse components of electron
velocity. Because the value of this term varies directly with electron
velocity, it may be compared with terms (7) and (8) which may vary somewhat
similarly. Since wg remains virtually constant while factors in terms (7) and
(8) can become much smaller, these latter terms can be neglected in equations
for the transverse components. Similarly, terms (1), (2), and (6) are negli-

gible for transverse components (radio frequency driving forces would be
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| Table 4-2. ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME

VALUES FOR TERMS IN THE ELECTRON
MOMENTUM EQUATION

TERM RANGE OF VALUES
NUMBER (cm s2)
v
(1) 1072 < ﬁ < 105
-5 > 4
(2) 1077 < |(ve V)ve|-s 10
4 ] 8
(3) 107 < l vp.f s10
Ne L e
(4) 0 < wegc < 10%2
9 > - 12
(5) 107 < [vg X wg| s 10
(6) 131 = 10°
- > > 9
(7) 0 < I"ei( o v1)| < 10
— = 10
(8) 0 < lven(ve - vn)l <10
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IS
required to make the first term significant). Term (3) can also be neglected,
although it appears to be -a borderline case, because there is little likeli-
hood of the minimuﬁ Qalue of term (5)'oc¢urfiﬁg at the same location’ as the
maximum of term (3). Thé former corresponds to a loﬁ or middle latitude
location and the latter to high latitudes. This reduction leaves only terms
(4) and (5), which can be solved explicitly for the transverse components oﬁ

+
Voo giving

s _Exd
el 52

'(4-36)

This is ffequently termed the E x B drift velocity or the Hall drift. Althoﬁgh
equation (4-36) is expressed in Gaussian units, in the literature measured
values of E are generally given in units of millivolts per meter. A conven—
ient conversion for estimating drift velocities 1is that an electric field
(transverse to ﬁ) of 1 mV m_l results in a drift velocity of about 20 m s_1

for B = .5 gauss.

For the equation of the component parallel to the geomagnetic field, the
situation is entirely different because term (5) is not part of the equation.
It may be recalled from discussions in Section I that the existence of an
electric field component parallel to the geomagnetic field is controversial.
For this reason term (4) is retained in the equation for possible use, but it
is not used to eliminate other terms. Since terms (1), (2), (7), and (8)
scale with electron velocity, comparisons among these terms allow (1) and (2)
to be dropped. Gravity is parallel to the magnetic field only at the poles
where the (vertical) pressure gradient will be closer to the maximum value, so
term (6) can be dropped. The resulting equation can again be solved explic-—
itly giving '

E 1
W B S TN m Vi De:l . . (4-37)
e e



. Equations (4-36) and (4-37) together comprise the electron momentum equations

for the E and F regions of the ionosphere, within the few restrictions

adopted.

Since rather similar considerations apply to the ion equation, it can be
treated more briefly. From equations (4-9), (4-14), (4-18), (4-19), (4-28),

and (4-32), the ion momentum equation can be written

3_61 > -> 1 = _IE
— 4 (v, - V)v + = vp + ——-V . Z T, - w, > cC
ot i Py pi i i iB
s e =y, @ -V) -y G-y - Te” e (4-38
-V, xw,  Vin Vi Va = Ve1'Vy Ve Vi N ‘ )
i i mi e

Corresponding to equation (4-34e), the ratio of the anisotropic part of the

ion pressure tensor to the isotropic part is given by

(Ti)
8 1
o |= — — v (4-39a)
Py v, t v, B I
ii in
As before, a maximum estimated value is obtained for (;ii + ;in) ~ .1 s_l,
A(vi) ~ 1 km s_1 and AxB ~ 10 km, with the result
a
()
—5—0"@ <1 . (4-39b)
i

So in the following order-of-magnitude estimates, it is sufficient to comsider
only the scalar pressure gradient - the viscous-stress tensor divergence will

be retained or discarded along with the pressure gradient.

Terms in equation (4-38) are evaluated from Table 4-1 as before, to
obtain the estimates given in Table 4~3. Because the ion gyrofrequency is
much smaller than the electron gyrofrequency, the electromagnetic terms do not
dominate the ion momentum equation as completely as in the electron case.
Comparison of terms (1), (2), (7), (8), and (9), all of which scale with $i
for the most part, allows all but term (7) to be dropped. Thé/azhsr terms do

not scale together, and the ranges overlap sufficiently that nome can be
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Table 4-3. ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME VALUES
FOR TERMS IN THE ION MOMENTUM EQUATION
TERM RANGE OF VALUES
NUMBERS (cm s72)
3V
(1) 10_2 < ‘Et—] < 105
-5 4
(2) 1077 s J(V; - v)Vy] 510
(3) 1s — v p;| s 10%
Ne m,
(4) 151 = 10°
>
(5) 0 < B} %—C < ]07
-5
(6) 10° ¢ [¥; x w;| < 107
(7) 05 |5, (V- V)| <10°
m
e — ;> > 4
(8) 05 | 250 - T < 10
m.
1
P - L
> e e 5
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totally ignored. Although the gravitational term is borderline, compafed
with term (6) (transverse components), it is convenient to retain it and write

a single vector equation. The remaining teérms can be placed in the form

1 -+ _
3. = ; + - w, Ec + ; X w, + E -1 vp, - l—-V . X T (4-40)
i n v, iB i i p i p i )
in i i i

which is an implicit partial differential equation for v This is the final

i
form for -the ion equation of motion.

Similar procedures are followed in treating the neutral momentum equa-
tion. From equations (4-10), (4-14), (4-18), (4-25), and (4-32) this equation

may be written

——BT,“ + @MV A o 4V TT -%-20 x5

ot Vn Yn p Pa p "n & Yn ¥ YE
n n n
N m N m (P -L)
e i > > e — > - n
= - v, (v. =wv,) - v -v)-v .
— in"'n — en n e n N
N m N m n
n n n n

The ratio of the magnitude of the viscous stress tensor to the scalar press-

ure, analogous to equation (4-39a) for ions, has an order of magnitude given
by

(Tn) . ) B(Vn)-

—= = el . (4-41a)
P, N . Bxs

in + vnn

€3
N
n

A value of approximately 10_3 s-l is used for ;;n at 800 km, based on a hard-
sphere collision assumption. For neutrals, the scale size for significant
variation is larger than for electrons and ions because the smaller scale

sizes are associated with the geomagnetic field at high latitudes. These
affect the neutrals only through collisions with charged particles; and because
of the number density disparity, relatively long times are required to make
significant changes in the neutral times. During this time, motions of the
neutral gas cause the effects to diffuse to surrounding regions, that is,

enlarging the spatial scale for significant variation. A conservative value
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1

of 100 km is used for Axe. Together with an extreme value of 1 km sf for
: A(vn)a’ equation (4-41la) yields
)
> aB| < 10 . (4-41b)
n

As before, the scalar pressure term will be used to represent all pressure
tensor terms in the following order-of-magnitude estimates, with due recogni-
tion of the above result in the event that the pressure gradient term appears -

negligible.

Order-of-magnitude estimates, based on values in Table 4-1 and the above
considerations of spatial and time scales, are presented in Table 4-4. The
estimate for term (8) is based on a phétodissociation rate constant of 10_‘6 s‘l
for molecular oxygen (B&K, 1973); this term is clearly negligible. Also, term

(7) may be neglected compared with term (6).

For the neutral gas, gravity play; the prominent role in developing aniso-
tropies in the motions, much as the magnetic field did for the charged parti-
cles, but in a qualitatively different way. Gravity clearly separates the
vertical and horizontal directions for different treatment. Maximum observed
vertical neutral velocities are on the order of tens of meters per second
(Rees, 1969; Rieger, 1974), while horizontal velocities in excess of 1 km s"1
have been observed (Wu, et al., 1974). In addition, vertical scale lengths are
of the order of tens of kilometers, while horizontal scales are at least an
order of magnitude larger. When these considerations are taken into account,
the vertical component equation reduces to terms (3), (4), and (6), with all
terms except (4) contributing to the horizontal component equations. 1t may
appear that term (5), the coriolis term, should be dropped. However, this is
the only term which explicitly couples the different directions, resulting in
a rotation of the wind direction. For sufficiently long-lived winds this

effect is significant; hence it is retained in the neutral equation of motion.

The final vector equation of motion for the neutral gas is then
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Table 4-4. ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME
VALUES FOR TERMS IN THE NEUTRAL MOMENTUM

EQUATION
TERM RANGE OF VALUES
NUMBER (cm 5-2)
-2 a—‘7n 3 -
(1) 10 = = 3Tl S 10
(2) 108 < |7, - 0¥ [ 5 10°
(3) 107 ¢ 1_ vp,l s 103
Np M
(4) 3] = 103
(5) 1072 < !217" X §E| < 10
6 o< lhes v -v)l <10
(6) _ SNn"invn'v1 <
N m
e e — ;> o
(7) 0 s N—n—ﬁ—ven(vn - Ve) s 1
n
P -1
(8) 0 s V("N L] 10']
' n
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av N 1 1

—E-P(v ~V)vn+p—Vpn+p— Z'r -g—2(v xﬁ)
_ n n
Ne mi — -+ > '
= — vin(vn - vi) . (4-42)
N m
n n

This completes reduction of the momentum equations to form$ appropriate to

ionospheric conditioms.

4.23 Energy Equations

The procedure for examining the energy equations is quite similar to that
for the momentum equations, which is by now familiar. Only the heat flux
vector has not been encountered in the previous equations. This was defined
in equation (2-30) as

E = i n m<c2 o>
2

where c is the random (thermal) velocity. Chapman and Cowling (1970, Section
7.4), in a rigorous derivation, show that the heat flux vector can be written

in the form (second approximation)

3=-xvr , (4-43)

where KT is the thermal conductivity coefficient (sometimes designated by A).

With this result the electron energy equation may be written from equa-
tions (4~15), (4-18), (4-32), and (4-34f) as

a'r
3,33 . S S | 1 T <
zka 2kv VTe X v+ (K VT)+N (Vpe) Vve
e e
ov
— 2 - — el
me(\’ei Ve:l. + Ven ven) - k(T - Ti) [BVei + ve:L y v ]
- i el
v\ (¢ -1L)
— en e e 1 2
- k(Te - Tn) l}ven + ven z<Bv )] + N [2 me ve
n en e
3
-5k Té] . (4-44)
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Some of these terms can be ignored forthwith by considering the relative

magnitudes of flow and thermal energies. Maximum flow velocities are of the

1 7

order of 105 cm s while electron ﬁhermal velocities are of the order of 10
cm s_l. Since energy varies as the square of the velocity, the ratio of flow
to thermal energy is of order 10_4; therefore, for electrons, flow energy can
be neglected in comparison with thermal energy. Thus, all ‘terms containing

ve2 or vei_can be dropped from the right side of equation (4-44). This is why
Joule heating (conversion of bulk motion to random (thermal)) motion is negli-

gible for electroms.

In the notation of Section III and the Appendix, the small ratio of flow
to thermal energy corresponds to the condition Kvo2 << 1. From equations in
subsection A.1 of the Appendix, in this 1limit the ratio of terms in brackets

on the right side of equation (4-44) is given approximately by

v 2 K f Q(g) 87 eXP(-KgZ) dg
(vo 3;;>3v ~ - K VO 1 -3 :]. (4-45)

5 2
JVQ(g) g~ exp(-Kg") dg
If the momentum transfer cross section, Q(g), is assumed to vary as an integer

wr

power law n, within the range covered in the Appendix, then the ratio of

integrals is given by

n = even r+1

[ Q(g) g7 exp (—ng) dg K r=0,1, ..., 4
[ﬁQ(g) gs exp (—ng) dg e 4 1 (4-46)
n = Odd —Z—K— r = 1’ cees 4

(Gradshteyn, I. S. and Ryzhik, I. M., 1965, Integrals 3.461-2,3). The

bracketed factor in equation (4-45) is then of order unity or less so that

av_\ 1
Volav 3v
o

Terms containing the partial derivatives of collision frequencies may there-

<<l . (4-47)

fore be dropped from the right side of equation (4-44).

With these reductions, the remaining terms of the electron energy equa-
tion are
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oT

3 e 3, > 1o T o
2 k 3t + 2 k v, VTe Ne v (Ke v Te) + k Te v v,
— — (Pe - Le) 3
= - 3k(Te - Ti)vei - 3k(Te - Tn)ven - ——‘Ti;————'f kTe . (4-48)

Order-of-magnitude estimates of terms in this eqdation are presented in Table
4-5. The estimate for term (3) is based on a mean-free-path expression ob-

tained by Mitchner and Kruger (1973, Section II-12):

KTzNek—c- e ™. (4-49)

Term (7) is a consequence of the formalism, predicated on electrons being

created with zero energy, thus requiring an average energy of 3/2 kTe from
the electron gas. For now, this term will be retained; the actual physical
situation will be discussed later in this section. For the other terms, it

appears that terms (2) and (4) are negligible compared with the others,

leaving
oT
3 e 1 T _ _ —
2 %% "N " (Kg VT == k(T ~ Ty
(p_ - L)
— e e 3
- 3k(Te - Tn)ven - Ne 2 k Te . (4-50)

The ion energy equation does not have the same simplifications because
flow energies are comparable to thermal energies, when flow velocities approach
1 km s_l. Consequently, neither the flow energy terms nor the derivatives of
the collision frequencies can be neglected outright. From equations (4-16),

(4-18), (4-19), (4-32), and (4~43) the ion energy equation can be written

3,41 3,2 _1 T >
s kot kv VI -V Z K, "V T, + kT, 7 - v,
e i
1 = > 2 2 Vei Vei
+ 5 z TV vy =m v ) w ~ D k(T, - T) Z -
e i ii i i
v 5 v 2 2
el vei in Hin
+ m v + N z B in
i ei e 1i,n i
k(Ti B Tn) ni Yin 3\)in
- ) v, +v, B
N . (m, + m ) in in Jv,
e i,n i n in



Table 4-5. ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME
VALUES FOR TERMS IN THE ELECTRON ENERGY
EQUATION
TERM RANGE OF VALUES
NUMBER (eV 5-1)
oT
-5 3 e -1
(]) 10 < 2 k 3t s 10
(2) 1078 ¢ %—kv -V Ty < 1073
-10 1 T
(3) 10 s EV-(Ke VTe) s 1
-8 > -3
(4) 1077 s [kT, v - v ] 510
— 3
(5) 0 s [3k(T, - Ti)\’eil < 10
(6) 0 s |3k(Te - Tn);enl < 10
P - L
3 e e -1
(7) 0 < 7 kTe (T) s 10
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(P, - L)
1— 2 3 e e
+ { == . B — = T. —_— 4-51
( m, v 2 k ¥> ( )
As with the ion momentum equation the scalar pressure is taken to represent
the entire pressure tensor in order-of-magnitude estimates. These estimates

are presented in Table 4-6.

Only one term appears to be negiigible under all likely conditions, term
(5). Term (7), the generalized Joule heating term, has potenfially the largest
magnitude, depending on the magnitude of the ion~neutral relative flow veloc-
ity. Because the relative flow velocity is negligible in many problems, it
cannot be used alone as a basis for discarding other terms. Term (9) will be
discussed later with the corresponding electron term. There appears to be no
simple means of estimating the magnitude of the collision frequency deriva-
tives short of a detailed numerical calculation. These terms will therefore
be retained until there is sufficient reason tb drop them. The reduced ion

energy equation is then

3 i 3 > 1 T i > l_ =
zkt+2kvi-VTl—Nv-ZKi HVT, + =V v NZTV
e i e e i
2 2
Vin Hin k(T.’L - Tn) n1 uln Bvln
TN z oy in ~ N (m, + m ) 3\)in + Vin av
e i,n My n e i, m e in
Vei | Yei Mei
- me k(Ti - Te) Z 3 m, + m, 9V
i i i ei
(p_-1)
1 — 2 3 e e
+ <2 mev,” -3 k T%) Ne . (4-52)

The primary differences between the electron and ion energy equations were
due to the disparity in masses. From that standpoint the neutral energy equa-
tion is similar to the ion equation. Here the main differences are due to the
disparity in number densities. From equations (4-17), (4-18), (4-32), and

(4-43), the neutral energy equation can be written as
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Table 4-6. ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME
VALUES FOR TERMS IN THE ION ENERGY
EQUATION
TERM RANGE OF VALUES
NUMBER (eV S—])
T. ) *
-5 3 aly -1
(1) 10 7 < ?-k ST 1S 10
-8 3 -3
(2) 10 ~ < 'z—kv,I-VTi < 10
(3) 108 v (kT T < 1072
. i i
- P; -
(4) 108 | 1y, v, <103
N i
e
(5) 0 m—ez- v 1076
3 m, Veil
m
e -2
(6) 0 < ﬁ;-Bk(T1 Te)ve1 < 10
” 2
in 2 3
(7) 0 < W‘ V_in \)1n < 10
in -1
(8) 0 5 fa (T4 = Thvgy| 5 10
P o-L
1 2 3 e e -1
(9) 0 < <§- m, vt -5 kT'i)( Ne ) s 10

|
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3 n 3 > 1 T >
Skt kv - VI =%V« J(R VL) +kT Vv
n n
N v N
1 = > e 2 2 en _e _
+ N z Tn'v Vn N e Ven z m N e k(Tt'-: Tn) Z
nn n n n n n
v.2 u.2 k(T - T.) n, u,. v,
4+ _in z n. in _ n i 2 i“din |, +y, —in
N . imn in N m, +m in in 9v,
n i,n n n i,n1 n in

P - L
1 2 _ 3 n n s
+|:2 mov, 7 k Tn](———-———Nn ) . (4-53)

Order-of-magnitude estimates for terms in this equation are given in

Table 4-7.

From these values it appears that collisions with charged particles play
a very small role in neutral particle energetics, with the exception of the
Joule heating term (7). Terms (5), (6), (8), and (9) are negligible, leaving

the following equation:

3 n 3 - 1 T -
=2 — 4 =2 . - = o -
> k t 2 k VI_1 VTn N v (Kn VTn) + k Tn Y Vn
v 2 n L2
1 o= _ > _ Vin in _
+ N ) TV, Ty 'z n, S vy - (4=54)
nn n i,n n

Actually this equation is far from complete due to limitations of the formal-
ism, specifically, omissions of inelastic collisions and interactions with the
radiation field. These subjects are discussed in a limited way in the next

subsection.

4.3 INELASTIC PROCESSES IN THE IONOSPHERE

At various points throughout preceding discussions allusions have been
made to factors which, by assumption, have been excluded from the system under
consideration. These include inelastic collisions, interactions with the
(solar) radiation field and elastic collisions with high energy, nonthermal
(non-Maxwellian velocity distribution) particles. Formal inclusion of these
effects has been accomplished by S. T. Wu (1969, 1970) using the Chapman-

Enskog method of successive approximation. The resulting increase in formal
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ORDER-OF-MAGNITUDE ESTIMATES OF EXTREME

Table 4-7.
VALUES FOR TERMS IN THE NEUTRAL ENERGY
EQUATION
TERM RANGE OF VALUES
NUMBER (eV S_])
T
-5 3 n -1
(1) ]0 < §k 3t < 10
(2) 108 s Bk vt | <107
(3) 107 <o K TvT] s 107
n
(4) 108 s kT v .7 | <1073
2
N m
e e 2 =11
(5) O < | . Ven Ven 10
n i
N m
(6) 0 s |28 3k(T, = T )vg,| s 1077
n'n
2
N s
-3
(7) 0 ¢ -—-—lﬂ-v- v < 10
Nn m., in Tin
N
e -6
(8) 0« N;'k(Tn Ti)vin < 10
P - L
1 = 2 3 n n ~7
(9) 0 < (7 mov," -5 an><—Tn———> <10
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complexity makes use of this approach somewhat formidable for numerical cal-
culations. For applications which exercise the full extent of the formal
framework, this added complexity may be no more than is required for a com-
plete treAtment in a less rigorous and consistent manner. But for the ionos-
phere, a simpler approach appears more efficient. Furthermore, the method
formulated by S. T. Wu (1969, 1970) is based on expansions of species tempefa—
tures and flow velocities in a center-of-mass system for the gas as a whole.
It has been noted previously that such an approach is less useful for the .
ionosphere than explicit use of distinct equations for wvarious gas-3, due to
the relatively loose coupling observed among them. Because large differences in
temperature and flow velocities can occur among ionospheric electrons, ions
and neutrals, it is not clear that the expansions used by S. T. Wu (1969,
1970) (to first order) would converge, so that truncation with the linear
terms could yield inaccurate results. For these reasons the approach adopted
for this study has been to formulate a complete, consistent treatment based on
elastic interactions, with nonelastic effects included phenomenoclogically when

and where they are required.

A thorough examination of these topics exceeds the scope of this investi-
gation; such a treatment is given in the recent two-volume work by Banks and
Kockarts (1973). The purpose here is to discuss briefly those physical pro-
cesses which may affect the conservation equations. In a few limited instances,
explicit expressions are provided to allow these processes to be taken into
account directly in the conservation equations. Generally, however, the
treatment must be limited to qualitative discussion, because no convenient
closed form expressions of direct applicability are available. 1In these cases
recent reviews or model calculations are cited, where Information required for
numerical calculations can be obtained. As in previous discussions of the .
conservation equations, the continuity, momentum and energy equations are

discussed in turn.
Because the source/loss terms of the continuity equation were introduced

into the momentum and energy equations in the process of eliminating time

derivatives of number densities in those equations, it was expedient to
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examine those terms preceding the order-of-magnitude estimates of the previous
section. For present purposes, nothing need be added to that discussion of
the processes whereby particles are added or lost to the various gases. How-
ever, the concomitant effects on the momentum and energy equations require
elaboration. First, momentum transferred from solar radiation to upper atmos-
pheric gases is negligible. Since photoelectrons tend to be emitted in the
direction of polarization of the photon (Heitler, 1954), and since solar
radiation incident on the upper atmosphere is predominantly unpolarized, there
is azimuthal symmetry in the emission of photoelectrons about the direction of
the solar radiation. The result is that on the average essentially no net
momentum is added to any of the gases as a result of photoionization. So
newly formed ions on the average should have the average neutral velocity,
resulting in an effective transfer of momentum from the neutral to the ion
gas. Isotropy in the recombination process results in the reverse effect. In
general, net production or loss involves only a small portion of the ion
population, particularly at altitudes where ion and neutral flow velocity
differences are largest. Even though the reasoning here differs from that
used in the previous analysis of this term, order-of-magnitude estimates are
the same in both cases. So the previous results, that the source/loss terms
of the continuity equation have negligible effects in all the momentum equa-

tions, remain unchanged.

Different considerations apply to the energy equations. In photoioni-
zation, since momentum must be conserved, the mass disparity between the newly
formed electron and ion causes the photoelectron to carry away all but about
one part in 104 of the photon energy exceeding the ionization potential. The
energy left to the ion (~10_3eV) is small relative to thermal energies and,
from the discussion of ﬁgaghtum, randomly directed. Newly formed ions there-
fore have a temperature which may be expressed as Tn + AT, where, AT << Tn'

In the ion energy equation (4-52), the last terms reflect the effects of
deviations of the average properties of added and lost ions from the average

ion gas properties. For the lost jions, data on the energy dependence of rate

coefficients for loss processes presented by Ferguson (1974) in a recent
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review indicate that such deviations are small. The last term in equation

(4-52) should therefore be replaced with

-]

k(Tn + AT - 'ri) . (4-55)

W

e
Qp N,
For altitudeg below about 300 km, Tn x Ti’ so that the tempefature factor is
small where the source factor Pe is maximal; above SQO km where temperature
differences become large, Pe/Ne is quite small. In terms of previous order-
of-magnitude estimates, however, this term cannot be dropped as negligible
under all conditions. It should be noted that equation (4~55) applies only to
photoionization. For collisional ionization, as in-auroral activity, a

thorough reformulation would be required.

For the electron energy equation a different physical situation prevails.
Photoelectrons are generally created with several tens of electron volts of
energy, which places them outside the energy range of particles considered
part of the system, as discussed previously. The energy they provide to the
thermal gases is treated as if it were due to an external heat source. Thus,
photoelectrons are placed in the incongruous roles of being counted as new
particles in the system in the continuity equation, but being considered as an
external heat source in the energy equation. These roles are somewhat recon-
ciled by the fact that at sufficiently low altitudes thermalization of the
photoelectron takes place rapidly; that is, through iﬁelastic collisions with
neutral particles and finally through elastic collisions with thermal electrons
the photoelectrons energy is quickly reduced to less than a few electron
volts. When the delay between creation and thermalization is short, few
problems of consistency arise in the time evolutions of the conservation

equations over the time scales of interest.

More serious is the distance the photoelectron travels before it is
thermalized. Photoelectrons created above ~300 km and moving upward approxi-
mately parallel to the geomagnetic field may suffer no collisions to inhibit
their motion until they traverse the entire field line to the conjugate iono-

sphere. Charge neutrality assures that the local rate of photoionization

4-31



remains the local rate of electrqp production, because newly created ions will
not travel far. However, phbtoelecgron energy may be deposited nonlocally.

In a recent review, Cicrone (1974) has concluded that photoelectron transport
and energy loss within the ionosphere (local effects) are well understood;
however, understanding of nonlocal effects due to photoelectron transport
between conjugate ionospheres along geomagnetic field lines remains rudimen-
tary. For detailed &iscussions of photoelectron properties with effects on
ionospheric gases, and for problems requiring source functions due to photo-
ionization, the review by Cicerone (1974) and references therein can be con-
sulted. Such source functions should replace the final term in equation (4-

50) which does not adequately represent the physical situation.

In previous discussion of the neutral continuity equation it was noted
that photodissociation is the primary source term. When order—of-magnitude
estimates were made for this process, effecis in the energy equation were
found to be negligible. However, once again this estimate failed to comnsider
nonelastic effects, in particular excess energy of the photon beyond that
required for dissociation. This contribution will be compared with those of
other nonelastic processes below; here it is sufficilent to note that although
the final term in equation (4-53) is dropped, the physical process behind it,

photodissociation, does make a contribution in another form.

The conclusion to be drawn from these discussions is that in the ionos-
phere, the source/loss terms of the continuity equation do not contribute
significantly to the momentum equation. They do have significant effects in
the energy equation, although not in the form suggested by the formalism.
This is due to the neglect of inelastic processes in the formalism, and these

processes are the basis for effects in the energy equation.

To this point, discussion has been centered on particle sources and
losses and the associated effects on momentum and energy equations. Sources
and sinks of momentum and energy themselves must now be considered. Source/loss
terms for the momentum equations are already included in the form of the

external force terms; these require no further discussion. However, in the
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energy equations, as in the continuity equations, major source/loss mechanisms
are not 1ﬁc1uded within the elastic—collisi9n formalism developed above. These
involve energy transfer through inelastic collisions.and radiative sources and
sinks of energy. The former is important primarily for electrons and neutrals,
the latter for neutrals alone. This separation of effects can be understood

from the properties of the gases in the upper atmosphere.

The importance of inelastic collisions for electron energy transfer is
another consequence of the disparity between electron and heavy-particle
massés. Equation (3~48) shows that energy transferred per elastic collision
between ions and neutral particles is equivalent to the difference in mean
particle energies, while for electrons and neutrals it is this energy differ-
ence reduced by a factor of (me/mn). Consequently the elastic collision is an
efficient means for the transfer of energy from ions to neutrals, but rather
inefficient for electrons to neutrals. 1In this context the relative magnitudes
of elastic and inelastic cross sections must be considered. Elastic cross

sections are of the order 10-15-10_16 cm2 while inelastic cross sections are

—17—10_18 cm2 or smaller at energies of an electron

generally of the order 10
volt or less. Since the most efficient inelastic collisions for energy trans-
fer will be those with transition energies near the kinetic energies of the
colliding particles, the relative magnitudes of these cross-—sections indicate
that energy transfer for ions through inelastic collisions is negligible

compared with elastic collisions. However, for electrons the smaller inelastic
cross section is more than compensated by increased energy transfer per inelastic
collision, making this the predominant means of electron energy transfer, up

to heights.where electron-neutral collisions become less important than electron-

ion collisions.

The importance of a given inelastic process for electrons depends on the
transition energy for the process and the electron energy distribution. Con-
servation of energy requires that the kinetic energy of the collision partners
equal or exceed the transition energy in order for the cross section to be
nonzero. Thus, the significant transitions are those with energies of the

order of or less than the mean thermal electron energies —~ a few tenths of an
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electron volt. For the primary neutral species ur the upper atmosphere,
rotational and vibrational excitation of N2 and 02 and excitation of the fine
structure levels of the ground state of atomic oxygen meet this criterion.

For unusually high electron temperatures (Te 2 4500°K), excitation of elec-
tronic states of atomic and molecular oxygen becomes significant. These and
other inelastic collisions have been reviewed by Dalgarno. (1969). The appli-
cation of these processes to electron energetics has been examined by a number
of investigators, notably Dalgarno, et al. (1968). To facilitate computer
calculations, these investigators have developed analytic expressions for
electron energy transfer rates due to inelastic collisions; these will be

extracted from the literature and presented here without detailed discussion

of their derivation.

For energy transfer due to electron collisional excitation of the rota-

tional levels of NZ’ the expression given by Dalgarno (1969) is

N,(ROT): Q = - N_ ny

2
14

- 1/2 -3 -1
x (2.9 x 100" (T_ - T)/T,

eV em T s (4-56)

where Dy is the number density of NZ' The corresponding energy transfer rate
2

for 02, also given by Dalgarno (1969), is

0,(ROT): Q = - N, noz

-14 1/2 -3 -1
(6.9 x 10 )(Te - Tn)/Te

eV cm s . (4~-57)

ine energy transfer rate due to electron excitation of the vibrational states

of N2’ as presented by Stubbe and Varnum (1972), is

NZ(VIB): QL = - Ne n_N

- 2000
x(2.99 x ) exp 2000 T
T - T
X :l exp [— g (—%T“):”ev cm_-3 s_l . (4-58)
e n
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where

f=1.06 x 104 + 7.5 x 103 tanh{1.10 x 10_3(Te - 1800) ]

and
g = 3300 + 1.233(Te - 1000) - 2.056 x 10_4(Te - 1000)(Te - 4000) .

The corresponding: expression for 02, given by Prasad and Furman (1973),

is
: 02(VIB): QL = - Ne n02
T - 700
-13 e
x(5.196 x 10 ) exp [f( 200 Te >:|
Te - ¥ -3 -1
x {1 - exp |- 2770 (—i;—irﬂ> eVem ~ s (4-59)
e n
where

f = 3300 - 839 sin[1.91 x 10_4(Te - 2700)]

Electronic excitation of atomic oxygen (O(3P) -+ O(ID): transition
energy = 1.97 eV) becomes significant for high electron temperatures such as
are found in aurora and stable mid-latitude red arcs (SAR-arc). An expression
for energy transferred by electrons to O by this method, also provided by
Stubbe and Varnum (1972), is

oclpy: Q = - N_ n

12 T, - 3000)
x (1.57 x 10 Y exp | £ —gaaaﬁf;—
T - T -3 -1
x{1- exp [} 22713 (‘ET_ETE> eV em ~ s (4-60
e n

f=2.4x 104 + .3(Te - 1500) - 1.947 x lO—S(Te - 1500)(Te - 4000)

where

Excitation of electronic states of molecular oxygen is less likely to be
significant because at altitudes where molecular oxygen is more important,

electron temperatures are not likely to be high. However, conditions for
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these processes to be significant might be found in aurora. Therefore, the

following expressions obtained by Prasad and Furman (1973) are presented:

(02(3E;) > 02(1Ag): transitional energy = .98 eV)

l = -
0,8 @ = - N, m,

2

14 Te - 1500
x (1.143 x 10 ) exp [f <—1500—Te>]

T - T
x {1 - exp [—11400 (—PT———T—“)]! (4-61)
- e n

where
£ = ‘13200 + 1410 sin[2.41 x 107(T_ - 500)]}
X [1 + exp[(Te - 14011)/1048]} 3
3~ 1.+ .
(02( Zg) > 02( I g): transitional energy = 1.64 eV)
o,z ): @ =-N n
28 "¢’ L e 0,
“16 Te - 1500
x (1.616 x 10 ) exp [? —1366—E;~
T - Tn
x{1 - exp | 11400 <'ﬁ—>] (4-62)
e n
where

g = {19225 + 560 sin[3.83 x 10"‘(Te - 1000]}

x il + exp[(Te - 16382)/1760]}

Fine structure éxcitation of ground state atomic oxygen requires a more
extended discussion (1) because its cross section is of the order of the
elastic cross section, (2) because it is thought to be the dominant mechanism
whereby electrons lose energy to neutrals, and (3) because the cross sections
have recently been recalculated, casting some doubt on the previous assertion.
Atomic oxygen has a 1P ground state with nondegenerate total angular momentum

J
states, the J = 0 and J = 1 states lying .028 eV and .02 eV above the J = 2
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ground state respectively. Dalgarno and Degges (1968) first suggested that
this mechanism might be an efficient means of cooling ionospheric electrons.
They presented electron cooling rates based on collision strengths computed by
Breig and Lin (1966). The importance of this mechanism for electron energetics
wags confirmed by Dalgarno; et al. (1968). New calculations qf cross sections
for this process were reported at a recent American Physical Society meeting
by Tambe and Henry (1973). Cooling rates calculated from these new cross
sections are about a factor of three smaller than for the previous ones (G. A.
Victor, 1974). Since these recent developments have not yet appeared in the
open literature, their implications for electron energetics are not yet clear.
However, it appears that some caution is in order in making and interpreting

calculations involving the electron energy equation.

In the absence of an available electron cooling rate expression based on
the new atomic oxygen fine structure excitation cross sections, that based on
the previous cross sections is provided, recognizing that it is likely- to be
superseded in the near future. A detailed derivation of the cooling rate due
to fine structure (FS) excitation of atomic oxygen, demonstrating the book-
keeping required for a multi-state system, is presented by Comfort (1970).
That expression, determined from the collision strengths of Breig and Lin
(1966), is

-13
Ne n, (6.217 x 10 )Te1/2

5+ 3 exp(- .02/k T) + exp(- .028/k T_)

O(FsS): QL = -

x {6[exp(- .02/k Te) - exp(- .02/k Tn)]

x [1.323 - 1.028/£°] + 2.8[exp(- .028/k T )

exp(- .028/k T )] [.9911 - .9555/£2] + .8 exp(- .02/k T)

[exp(- .008/k Te) -~ exp(-.008/k Tn)]

b

[1.505 - 1.510/£%] eV em 3 571} (4-63)

E

where f = 8k Te +1 .
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As noted above, the cross section for excitation of the fine structure
levels of ground state atomic oxygen is of the order of the elastic momentum

16 cm2). ‘The basis for ignoring momentum transfer

transfer cross section (~10
in inelastic collision was previously stated to be that inelastic cross sections
were much smaller than momentum transfer cross sections; the frequency of
inelastic collisions would therefore be so much smaller than that of elastic
collisions that the total momentum transferred through inelastic collisions
would be negligible by comparison. Since for this inelastic process, such
reasoning is invalid, Schunk and Walker (1970) have suggested that an effec-
tive increase in the momentum transfer collision frequency, due to fine struc-
ture excitation of atomic oxygen, could have a significant effect on iono-
spheric electron transport properties. It would therefore be desirable to

take this into account quantitatively. However, Itikawa (1972) has discussed
the effect of inelastic processes on the momentum transfer cross section and
concluded that the presently available formalism is inadequate to treat this
problem. Moreover, given the unceftainties in the fine structure excitation
cross sections noted above, it appears unprofitable to attempt a quantitative
estimate of such effects at this time. This effect must therefore remain an

uncertainty in any calculated results, to be taken into account in their

interpretation.

For ions, neither inelastic collisions nor radiative interactions play a
significant role in the energy balance. Excitation energies for ions are too
high for thermal particles of the upper atmosphere to interact with them
inelastically to any significant degree. Similarly, too few ions absorb or
emit radiation to affect the energy balance appreciably. Interest in ion
excited states is restricted primarily to auroral emissions, as indicators of
interactions with nonthermal particles.

Neutral energetics, on the other hand, depend to a high degree on radia-
tive and inelastic processes. Chandra and Sinha (1973) have recently presented
model calculations of the neutral thermal energy budget. Results of their
calculations for local noon show that below 300 km primary heat sources for
neutrals are inelastic collisions with photoelectrons and photo-dissociation
by solar ultraviolet radiation. Above 300 km inelastic interactions with the

thermal plasma deliver energy comparable to the photoelectron contribution,
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while photo-dissociation is a negligible heat source. Energy losses are due
primarily to thermal conduction and, to a lesser extent, infrared emissions.
Smaller heat sources in the calculation include chemical energy (energy
released in dissociative recombination processes) and neutral wind energy
(Joule or frictional heating in collisions with ions due to flow velocity
differences). At night, of course, heat sdurces based on solar radiation
vanish, resulting in a very different heat budget. Also, since the calcu-
lations of Chandra and Sinha (1973) are based on middle latitude conditions, a
rather different set of relationships can be expected at auroral latitudes. .
This simply emphasizes that the importance of a given energy source depends on
the conditions associated with each problem. Each problem, therefore, requires
a detailed review of energy sources and sinks in order to include all that are
of possible importance without including unnecessary computational burdens.
The paper by Chandra and Sinha (1973) and B&K (1973), as well as references

therein, may be consulted for quantitative expressions and detailed discussions.

This discussion of inelastic and radiative processes has been necessarily
incomplete and, for the most part, qualitative. 1Its primary purpose has been
to note physical considerations of importance which are not contained in the
formalism previously developed. In many cases, these involve complicated
problems requiring extensive computations in their own right. Since they are
generally treated in this manner, it is more practical to incorporate results
of such treatment into a calculation phenomenologically than to include every-
thing into the formalism and solve it in one computational effort. This
approach is illustrated in the problem treated in Section VI. References
cited in the discussion above should provide reasonable resources for obtain-

ing the detailed information required for specific calculations.

44 CONSERVATION EQUATIONS APPROPRIATE TO THE IONOSPHERE

The results of this section are summarized in the final conservation
equations which have evolved from consideration of the physical conditions in
the ionosphere. These equations represent the starting points for the investi-
gation of particular ionospheric problems. For convenient reference they are

collected here.
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4.4.1 Continuity Equations

v

N
e -+ .
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In the electron and neutral energy equations, the final terms represent sums
over inelastic and/or external energy production (P) and loss (L) processes,
as diccussed in subsection 4.3 of this section (for example equations (4-55)

through (4-63)).
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Section V
TRANSPORT PROPERTIES

5.1 MACROSCOPIC APPROACH TO TRANSPORT PROPERTIES

In the derivation of the conservation equations (Section IT), a set of
velocity moment equations 1s generated by multiplying the Boltzmann equation
by successively higher powers of velocity (terminated at v2 here) and inte-
grating over velocity space. An infinite number of moment equations could be
generated in this way. However, the second term on the left side of the
Boltzmann equation (2-2) contains velocity as a factor, resulting in a velocity
moment one order higher than the moment of interest. Effectively, this intro-
duces an additional variable into the system of equations. As a consequence,
any finite sequence of velocity moment equations generated from the Boltzmann
equation is an indeterminate system of equations. However, if the highest order
moment can be related to lower order moments, essentially independently of the
system of moment equations, the system can be closed and solved, in principle.

This is one of the mathematical motivations for studying transport properties.

Physical motivation stems from the possibility of better understanding
the relative importance of different mechanisms which convey particle proper-
ties from one location to another. At the elemental level, a particle can be
thought of as having certain average properties, characteristic of its loca-
tion. In the context of a Boltzmann binary collision, a particle moves undis-
turbed (except for external force fields) from one collision to another; these
collisions determine the length of a free path. Thus, the particle carries
the average properties characteristic of the beginning of the free path to the
other end of the free path. For this reason, Chapman and Cowling (1970) use
the term "free path" phenomena as an alternate to "transport" phenomena.
Clearly, if average particle properties at both ends of a free path are the
same, nothing is changed. So the effects of transport depend on a spatial
gradient in the property of interest. With a spatial gradient, the total
effect of transport then depends on the length of the free path, which in turn

depends on velocities, number densities, and collisional interaction potentials.
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Using mean ffee path arguments of this nature, Chapman and Cowling (1970)
derive expressions for diffusion, viscosity, and thermal conductivity coeffi-
cients, which relate to gradients in number density, flow velocity, and tempera-
ture, respectively. These expressions are useful for physical understanding
and order-of-magnitude estimates. However, for rigorous derivations with
accurate results, Chapman and Cowling (1970) (and others) use the Boltzmann

equation.

For charged particles, the effects of electric and magnetic fields must
be considered in addition to spatial gradients. An immediate consequence of an
external magnetic field is that it renders the medium anisotropic. This is
easily seen in terms of the éimple free path arguments. For a strong magnetic
field (wb >> v), the effective free path in the transverse direction is no
longer determined by collisions, but by the gyroradius. In the parallel direc-
tion, of course, collisions are still the limiting factor. Furthermore, the
Lorentz force causes the transverse component of external forces to drive
particles in a direction transverse to both the driving force and the magnetic
field, for example, equation (4-36). The situation is more complicated when
the collision frequency and the gyrofrequency are comparable, for example,
ions in the E region; both collisions and the magnetic field then affect the
transverse free path. The mathematical consequence of these physical effects
is that each transport coefficient must be replaced by a three dimensional

tensor of rank two.

Shkarofsky (1961) has developed a method for calculating electron trans~
port tensor components, explicitly including the effects of a magnetic field
of arbitrary strength and an arbitary degree of ionization. Use of this method
in calculating transport tensor components is rather difficult for the general
case., However, if electron-neutral collision frequencies vary with velocity
according to a power law r, Shkarofsky (1961) presents results with all the
integrals evaluated. Although these results still require lengthy calcula-

tions, they represent a considerable reduction of effort over the general case.

With this motivation, methods have been developed for determining an

effective power law for electron-neutral collision frequencies of arbitary
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velocity dependence. This makes complete results of the Shkarofsky formula-
tion immediately accessible. Derivation of this technique is presented first.
This is followed by a discussion of specific elastic collision frequencies for
upper atmospheric gases. The power law approximation method is applied to the
electron-neutral collision frequencies as an example of its use. With-these
parameters available, expressions for electron transport tensor calculationa
are extracted from the derivation by Shkaroféky (1961) . These are examined
briefly for consistency with order-of-magnitude estimates in the previous
section. Expressions of more limited applicability are presented for ions
with a discussion of the consequences. Finally, available expressions for

neutral transport coefficients are presented.

5.2 POWER LAW REPRESENTATION FOR COLLISION FREQUENCIES

As noted previously, calculations of transport coefficients by the method
of Shkarofsky (1961) are considerably simplified if the collision frequency
varies as a power law in velocity. Recognizing this, Schunk and Walker (1970)
presented a technique for determining an approximate power law representation
for electron-neutral collision frequencies when the velocity dependencies of
the momentum transfer cross sections are expressed as polynomials. An alter-
nate. technique has been developed which offers the following advantages over
the Schunk and Walker (1970) method. It gives a power law representation for
arbitrary velocity dependence; 1t has a simple extension to multi-species
gases; and it is derived straightforwardly without approximation from the
defining equation. Most importantly, comparisons of this method and the Schunk
and Walker (1970) method with results of exact calculations in a model study
for the ionosphere demonstrate this method to be the more accurate (Comfort,
1975).

In the following derivation, it is convenient to adopt the notation of
Shkarofsky (1961). This permits an orderly introduction of that notation with
relationships to notation used here; in the later presentation of transport
tensor components, use of this notation will facilitate reference to the source

work.
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From equation (A-3) in the Appendix, it is seen that beyond the first term
in the expansion of the momentum transfer- collision frequency, all terms are -
of order (Kvg) or higher. For electron-heavy particle collisions K = me/2kTe,
which is approximately the reciprocal of the electron mean square thermal speed.
Since v, is the magnitude of the relative flow velocity l;; - 35, (j =1, n),
JE-VO is thezratio of relative flow velocity to mean thermal velocity, which is
of order 10 © or less in the ionosphere. Thus, electron collision frequencies
may always be computed in the limit v, 0, given by equation (3-36). This is
consistent with the expressions of Banks (1966a), Shkarofsky (1961), and
Itikawa (1971, 1973).

When the isotropic part of the electron velocity distribution is assumed
to be Maxwellian, the total effective electron-neutral collision frequency for

momentum transfer is given by Shkarofsky (1961) as

<v > = -8 K5/2 f v4 vm(v) exp(—sz)dv, (5-1)

3

where K is as above, v is the total electron velocity (approximately the total
relative velocity g of Section III), and %n(v) is the velocity-dependent colli-
sion frequency. For a single neutral species, vm(v) is related to the momentum

transfer cross section by
vm(v) = Nn v Qm(v) . (5-2)

With this definition, equation (5-1) is seen to be equivalent to equation (3-36);

hence <vm> = Ven' If vm(v) varies with v as a power law of the form
vv)=cv, (5-3)
m

where ¢ is proportionality constant and r need not be an integer, the integra-

tion in equation (5-1) can be carried out immediately, yielding

v >=c gT/2 1’(%—5)/1‘(3) . (5~4)
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For Vo given by equation (5-3), Shkarofsky (1961) gives the following
relation (his equation (99)):

2
W) [Giv ) = 1/2 (x +5) , | (5-5)
where W = sz and, for arbitrary function ¢, the average ( )a is defined by

3/2
(¢)a = 47 (5) J ¢ exp(-sz)vzdv . (5-6)

ﬂ
o

Equation (5-5) can be verified by straightforward integration; however, an

alternate method indicates a convenient method for determining the effective

power index r. From equations (5-1) and (5-6), the denominator and numerator

of the left side of (5-5) are given by

(W\)m)a = 3/2 <v > | (5-7)
and -
7/2
(wzx)m)a = j—% J vmv6 exp (—sz)dv . (5-8)
o

Let I(K) denote the integral in equation (5-1); thus from that equation,

I(K) = W k32,

8 K \)m> . (5—9)

Then the integral in equation (5-8) may be written as

-5/2

9 %- o_ (K < >), (5-10)

6 2 _ 3 - a_
J vy Vv exp(-Kv )dv = - K I(X) K.
o

in which the order of integration and differentiation has been reversed.

Equation (5-8) may therefore be rewritten

2 __3.7/23 ,.-5/2
W \)m)a =-3 K °K (K <vm>) . (5-11)



If.vm varies as a power law in v, as in equation (5-3), equation (5-4)
can bg\?sed in (5-11) and the differentiation carried out. The result, to-
gether with equation (5-7), verifies equation (5-5). It should be emphasized’
that the steps leading from equation (5-8) to equation (5~11) deﬁend on a
Maxwellian velocity distribution for electrons, but place no particular

restriction on the velocity dependence of Vp*

.

In the following, it is assumed that <vm> is a known function of K (that
is, Te), based on a knowledge of Yo and equation (5-1). Equation (5-5) is now
taken to define an effective value of r for those cases in which Vo does not

have the simple form of equation (5-3). Solving equation (5-5) for r yields

2 .
W)
- 2__1n_a| -
r=-2 [; (va)a . | (5-12)

Substitution of equations (5-7) and (5-11) into (5-12) and performing part of

the differentiation results in

r=-2(k 2 5, (5-13)

which provides a convenient means for evaluating r, once <v> is known as a
function of Te' It is noted that result (5-13) follows from the defining
equation (5-5) without approximation; and thé functional form of <v > is

unrestricted.

Although equation (5-13) is sufficiently flexible to treat multi-component
gases, a more convenient form for such gas mixtures is easily obtained. Let j
designate the jth neutral species. For each neutral species an effective power
law index rj is computed from equation (5-13). The total electron-neutral
collision frequency is just the sum of the individual species collision fre-

quencies

—rj/2 r, +5
<\)m> = Z <\)j> = z Cj K r "JT— /I’(5/2) . (5-14)



where each <v,> is represented by equation (5-4), using the computed value of

T When equation (5-14) is used to evaluate the derivative in equation (5-13),

j'
the result may be written as
=T < (5-15)
r Vo 3 ¥y e

This specifies r simply as the mean of the power law indexes weighted by the

corresponding species effective collision frequencies.

A brief application of these results to ionospheric collision frequencies
is given in the following subsection. Accuracy of this representation is dis~
cussed in terms of ionospheric transport tensor component calculations by
Comfort (1975). It is found that for the collision frequencies presented in
the next section, use of the above approximatibn results in deviations from

exact calculations of less than 2 percent, in a model calculation.

5.3 EFFECTIVE MOMENTUM TRANSFER COLLISION FREQUENCIES FOR THE IONOSPHERE

Formal expressions for collision frequencies have been.derived in Section
III and the integrals for particular velocity dependencies evaluated in the
Appendix. Here explicit expressions for the different species of the ionosphere
are presented in a form suitable for computer evaluation. Some of these are
obtained directly from the literature; others are introduced here based on

momentum transfer cross sertions or other information in the literature.

5.3.1 Electron—Neutral Collisions

The most recent reviews of momentum transfer cross—-section information
(experimental data and theoretical calculations) are those of Itikawa (1971,
1973), based on results available at the end of 1971. Ttikawa (1971, 1973)
defines two effective collision frequencies, one for computing a. c¢. conduct-
ivities, the other for d. c¢. conductivities. That for d. c¢. conductivities is
designated WVegg” and is defined as in equation (5-1). Itikawa (1971) shows
that <veff> is appropriate for use in the transport calculations of interest
here; accordingly those collision frequencies are presented here.
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Collision frequencies are given by Itikawa (1973) as functions of Te in

tabular form. If, for each neutral species, vj is written in the form

(5-16)

m
vV, = 1n z ajk Vk ’
S
then equation (5-~4) can be used to obtainmn
k/2
n m 2k T
+ -
R G an% r (52) G-
3 k=0 e
. 1/2
where K = me/2kBTe has been used. A fourth degree polynomial in Te has been
fit to the collision frequency data of Itikawa (1973), Table II). Equation

(5-17) has then been used to determine the ajk coefficients from the curve fit
coefficients; these ajk coefficients are listed in Table 5-1. The resulting
polynomial approximations represent Itikawa's (1973) tabulated collision fre-

quencies within 2 percent over the range 200°K j_Te < 5000°K.

Table 5-1. COEFFICIENTS FOR ITIKAWA'S (1973) ELECTRON-NEUTRAL
COLLISION FREQUENCIES (CGS UNITS)

J 41 %o 33 24

N, [ -2.32 x 107'® [ 6.60 x 107 | -1.28 x 1070 [ 9.12 x 107
0, 1.50 x 1076 | 3.87 x 1072° | 3.24 x 1073 | -2.86 x 1073°
0 | 5.33x10°17 | 4.32x107%* | 5.10 x 10732 | -4.85 x 10740
Ho| 4.90 x 10770 | 5,84 x 1072 | -a.69 x 1072 | 8.02 x 1074
H| 4.23x107°] 7.07x107%% | -9.76 x 10731 | 6.50 x 10739

As an application of the power law representation for collision frequencies,
derived in the previous section, equation (5-17) can be substituted into equa-

tion (5-13) and the differentiation carried out to obtain

n

= <v > T(5/2)

4

kgl k ajk

2

(kI (k + 5) ’
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which is readily evaluated with the ajk coefficients in Table 5-1. Numerical
results are given by Comfort (1975). Equations (5-17), (5-18), and (5-15) are

particularly convenient forms for computer evaluation.

5.3.2 Electron—lon Collisions

Cbllisions among charged particles in plasmas have received extensive
attention in the literature and in many texts, so that a detailed discussion
need not be presented here. It is nevertheless worth fioting that a variety
of methods have been used, each focusing on a particular physical aspect of
the process. To first order, all ‘rely on either truncating the Coulomb poten-
tial at the Debye length (RD) or using the screened Coulomb (or Debye) poten-
tial (= exp (—r/RD)/r) with or without truncation at RD. The physical idea
behind these approximations is that charges of a given sign are effectively
screened by charges of the opposite sign, so that beyond a certain distance
(RD) there i1s negligible interaction. Among the approaches used to compute
the effects of charged particle collisions are the binary collision concept,
the Fokker—-Planck equation, and two-particle distribution functions. These
are examined in detail by Shkarofsky, et al. (1966, Chapter 7) and Burgers
(1969, Chapter 4).

To first order, the various approaches arrive at results which can be
placed in the same form, with differences incorporated into the Coulomb
logarithm (2n A). Numerically, ionospheric collision .frequencies resulting
from these methods agree within 10-15 percent. Since there appears to be
little consensus favoring one result over others, and given the reasonable
agreement among them relative to other uncertainties in ionospheric calcula-
tions, the basis for selection here is simplicity and consistency with other

factors in the study.

With that rationale, the derivation of the electron-ion collision fre-
quency is outlined in the context of the binary collision formalism developed
in Section IITI. It is well-known that both classical and quantum mechanical
treatments yield the Rutherford differential cross section for scattering in

a Coulomb potential:
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X zrzse 1
o(g,Xx) = 2

A (5-19a)
2u_ g sin (x/2)

in the notation of Section III, with Zr and Zs the number of charge units for

species r and s. The momentum transfer cross section for this process is then

given by equation (3-12) as

R
Q__(g) = 2 rs __ J (1-cos y) ~8in X .y, (5-19b)
rs 2 4
2u_ 8 5 sin’ (x/2)

Here the relation between the impact parameter and the differential cross

section,

bdb = -o(g,x) sinydy, (5-19¢)

has been used.

Since the integral in equation (5-19b) diverges at the lower limit, which
corresponds to forward scattering and infinite impact parameter, the standard
technique for avoiding this problem is to set a new lower limit Xpe This is
determined by assuming that because of screening by charges of the opposite
sign, the potential of a given particle does not effectively extend beyond the
Debye length

kT
e

1/2
= —&_ . (5-19d)
RD 4nNee2:]

With this assumption and the condition that densities be sufficiently high that
the Debye sphere contain many charged particles, the integration in equation

(5-19b) can be carried out and the result placed in the form

2\ 4 2
Zrzse ursg
Qgle) = 16m|=—— | in|~=—5Ry|. (5-19¢)
2u_ g ZZe
rs r s
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At this point, the usual approximation is to argue that the logarithmic
factor varies sufficiently‘slowlyfwith velocity that the mean velocity can be
used in its argument and the logarithm can be factored out of the integral in
the collision frequency. For the electron-ion collision frequency, Z Z =],

urs m, and equation (3-36) is used for the integration over relative velocities,

giving the result

N e4

4 27 e '
> =3 ) (kre)3/2 nA, (5-20a)

where the argument of the Coulomb logarithm (4n A) is given by

3kT KT 1/2
A= e e . (5-20b)
e 4wNee

This form for the collision frequency 1s consistent with those of Banks
(1966a), Shkarofsky, et al. (1966) and Itikawa (1971) among others. The form
for the Coulomb logarithm is one of the most common in the literature. How-
ever, it neglects the effects of ion motion both in charge shielding and in
contributing to the relative collision speed. Since the ion thermal speed is
about one percent of the electron thermal speed, these effects are relatively
small; but they contribute to the numerical differences discussed above. For

present purposes, equations (5-20a) and (5-20b) are considered adequate.

5.3.3 lon—Neutral Collisions

Ion-neutral collisions have special significance for several reasons. First,
elastic collisions are an efficient means for transferring momentum and energy
between ions and neutrals, so that the formalism developed in Section III
applies directly. Second, it was shown above that all collisions involving
electrons could be computed in the 1limit of wvanishing relative flow velocity.
However, this is not true for ions in general. Hence, the full mathematical
framework developed in Section III, taking into account the effects of the
relative flow velocity on momentum and energy transfer, must be used for ion-

neutral collisions and only for those collisions. Third, because the masses



of ions and neutrals are comparable, electrostatic fields of external (mag-
netospheric) origin give momentum to the charged particles; and this is
transferred to neutrals primarily through collisioné with ‘ions. In other
words, the ions are the agent through which magnetospheric electric fields
interact with the neutral atmosphere. Some effects of this Interaction are

examined in the following section.

Since there are five major neutral species and five major ion species,
a total of 25 different collision frequencies are possible. However, all of
these species are not important in the same altitude region. Thus, some
possible combinations are not required. Those that are required may be
conveniently grouped into two categories: collisions between ions and unlike
neutrals, and resonance charge exchange collisions between ions and parent
neutrals. Interactions in each category are the same, differing only in
strength, so that only two different expressions are required to express all

the collision frequencies. These are discussed separately below.

5.3.3.1 Collisions Between Ions and Unlike Neutrals. The longest range inter-

action between ions and neutrals results from an induced dipole potential of

the form

¢ = —ae2/2r4, (5-21)

where o is the dipole polarizability of the neutral atom. This interaction
predominates at low temperatures, below about 300°K. Due to lack of experi-
mental data for higher temperatures, little is known reliably of the actual
shorter range interactions (Mason, 1970). Depending on the nature of these
shorter range interactions, the momentum transfer cross section can either
increase or decrease with increasing temperature. So in the absence of
reliable information, the simple approach is taken: *“the polarization inter-
action is assumed to predominate for all ionospheric temperatures. Corre-
sponding to the induced dipole interaction, equation (5-21), 1s the momentum

transfer cross section (see Dalgarno, et al. (1958))
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rs urs

2\1/2
Q. (g = 2_é2_];1<£_> cmz, (5-22)

where r designates an ion species and s a neutral species. This is recognized
as the momentum transfer cross section for Maxwellian molecules, for which the
collision frequency is independent of temperature. From equation (A~43d) the

collision frequency for this cross section is

2\1/2
v o = 2.21n :‘— n_ s . © (5-23)

s

When values for the dipole polarizability given by Banks and Kockarts
(1973, Chapter 9) are used in equation (5-23), collision frequencies may be

written in the form

Vg = Arsns R (5-24)

where the Ars coefficients are given in Table 5-2.

Table 5-2. COEFFICIENTS FOR ION COLLISIONS WITH UNLIKE NEUTRALS FROM
DIPOLE POLARIZABILITIES OF BANKS AND KOCKARTS (1973)

TON-NEUTRAL A (107 %3 ION-NEUTRAL A (10" %m%s 1)
o - N, .89 ot - H 2.18
+ +
0y - 0 .70 Hy - N, 1.84
not - N 90 -0 1.29
2 * e *
+ +
no* - 0, .83 HE - H 2.36
No" - 0 7 H - N, 3.50
+ +
0 - N, 1.08 WY - 0, 3.32
ot - 0, 1.00 HY -0 2.37
+ +
0" -, | .66 H - W 1.33
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The order corresponds to the altitude region of primary importance, with those
+ +

listed first (left side) most important in the E region. Since He and H ions

are negligible at altitudes of interest here, those collision frequencies are

included only for completeness.

A significant feature of these collision frequencies is that they are
constant. This is associated with the type of interaction assumed (that of
Maxwellian molecules) rather than any approximation involving dropping small
terms. Since the derivative with respect to relative flow velocity vanishes
for this type of collision frequency, that term will be absent from the ion

energy transfer equation (4-66b) for these collisions.

5.3.3.2 Collisions Between Ions and Parent Neutrals. For collisions between

ions and parent neutrals, resonant charge exchange interactions become more
“important than induced dipole polarization interactions as temperature

increases (Mason, 1970). Such collisions are quite important for the exchange
of momentum and energy between ions and neutrals. In a single collision, a

fast ion becomes a fast neutral and a slow neutral becomes a slow ion. Because
both momentum and kinetic energy of the particles are conserved in the collision,
the collision may be treated as if it were elastic, by the formalism developed
in Section III. Indeed, the small-angle charge exchange collision is indistin-
guishable from a large angle elastic collision. Therefore, these collisions

are discussed here in the context of elastic collisions and in that mathematical

framework.

Banks (1966c) has examined the transition from induced dipole polarization
interactions at low temperatures to charge exchange interactions at higher tem-
peratures. He finds that the transition takes place over a témperature range
of a few hundred degrees. Outside this range, he determines that the individ-
val interactions dominate almost totally in their respective temperature
regions. Banks (1966c) therefore takes the approach of extrapolating experi-
mental or theoretical curves of cross section versus temperature for each
interaction into the temperature region of the other. Where they cross defines
the transition temperature and expressions for each interaction are used alone

in their respective regions of dominance.
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Stubbé (1968) takes an alternate approach. In a semi-classical calcu-
lation, he corrects the contribution of charge exchange to the momentum transfer
cross section by including contributions of induced Dipole polarization for
impact parameters beyond a critical value. Solving the resulting equations
numerically, he presents graphic results for the momentum transfer cross sec-—
tion of (O+;,O) and (H+, H) for g <2.5 x 105cm s_;, as well as collision fre-
quencies as functions of relative flow velocity, with T as a parameter, for
|$i - 3ﬁ| < 3x 105 cn s_l. He also approximates the collision ffequencies
at zero relative velocities as power laws in temperature for other charge

exchange collisions of aeronomical interest.

In comparing his results for (0+, 0) with those of Banks (1966c), Stubbe
(1968) finds his results greater than Banks' (1966c) ranging from about 35
percent at 500°K (transition region) to 22 percent at 2000°K. Stubbe (1968)
appears to interpret these differences at high temperatures as due to dipole
polarization effects, ignored by Banks (1966c) at high temperatures. However,
since they used slightly different charge exchange cross sections, exact
agreement should not be expected. Stubbe's (1968) own data indicate that at
2000°K the polarization effect 1s less than 9 percent. In view of uncertain-
ties in the source data, such differences are not necessarily the limiting

factors in the accuracy of the results.

For present purposes, it is not so much the assessment of accuracy as
the form of the results that leads to the use of Stubbe's (1968) results for
the present study. The desirable feature is a single representation of the
velocity dependence of the momentum transfer cross section over the entire
velocity range of ionospheric interest. Numerical results of this type are
presented graphically by Stubbe (1968) in his Figures 6 and 7. Since these
momentum transfer cross sections clearly vary inversely with relative velocity
(g), second order polynomials in (1/g) have been fit to these curves over the
velocity ranges presented by means of least squares curve fits. Moﬁentum

transfer cross sections are then represented analytically in the form
A, A

. ( = A, + +

Q g) jo —J—g

(5-25)

® o
NN
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where the Ajr are curve-fit coefficients of appropriate units. Values of these
coefficients are given in Table 5-3. These coefficients used in equation (5-25)
reproduce the graphic values within 2 percent over the entire velocity range
of the graphs. It is assumed that this expression can be used in collision

fredﬁency integrations for all velocities.

Table 5-3. COEFFICIENTS FOR STUBBE'S (1968) MOMENTUM
TRANSFER CROSS SECTIONS (CGS UNITS)

COEFFICIENT _ ot-o M
Aso 67067 x 10714 1.4056 x 10°14
A .33298 x 107° 1.1572 x 107°
Aip 11465 x 107% .64445 x 107%

With the momentum transfer cross section represented by equation (5-25),
collision frequencies can be obtained directly from equations (A-43 c-e).

Thus, the collision frequencies have the form

2
exp(-KV ) rv Ay
v, (v ) =n, A'1+ 2+1 A, +—5
im0 Jg 4 JrK 2kv o5

(o]

4Kv2 o 2Kv
o o

sert @B v | fo? + 1 - 22 2ok retony 22, (s-26)
er Yo Yo Kv Yo 31
> >
where v = Ivi - an’ K = 4kT/mj, T =1/2 (Ti + Tn) and the Ajr's.are given in
Table 5-2.

When equation (5-26) is evaluated for (O+, 0) collisions, using various
values for \A and T, comparison with corresponding graphic data presented by
Stubbe (1968, Figure 9) shows exact agreement, within the precision of the
graph. However, similar comparison for (H+, H) collisions (Stubbe, 1968,
Figure 10) shows a temperature-dependent discrepancy. Since both calculations
are made by the same computer program, changing only the A

jr
the agreement for (O » 0) validates the equation and the program. Similarly,

coefficients,
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the same computer program computed and checked both sets of curve fit coeffi-
cients; so the (0+, 0) results validate that procedure. Review of the input
data reveals no error there. It appears that for (H+, H) collisions, the
momentum transfer cross sections presented by Stubbe (1968, Figure 7) are in-
consistent with his collision frequencies (his Figure 10). Collision frequen-
cies computed from the cross sections by equatioﬁ (5-26) are consistently
larger than Stubbe's (1968) graphic values by amounts ranging from about 6 per-
cent at 500°K to 18 percent at 3000°K (v0 = 0). For present purposes, this

is no problem since H+ is generally a minor ion below 800 km. In addition,

the size of the discrepancy is within the uncertainties associated with ion

neutral collision frequencies.

In addition to the collision frequencies above, Stubbe (1968) provides

the following approximate expressions, for 500°K <T < 3000°K and v, = 0:

v(0+, 0,) =1.17 x 10_9 (T/lOOO)'28 n s_1 (5-27a)
2 9y 0,

vONT, N = 2.11 x 1072 (T/1000) * 38 st (5-27b)
2° N2 “NZ

w(NT, M) = 1.75 x 10™° (T/1000) " 34 ng gL (5-27¢)

v(HE, He) = 2.92 x 1072 (1/1000)°37 0. 71 . (5-27d)

He

Of these only v(O;, 02) is likely to be significant below 800 km. For most of
this region, v(0+, 0) is the single most important ion-neutral collision fre-
quency because O+ is the major ion species throughout the F region (above about
180 km, see Figure 1l-1c) and resonant charge exchange is the most important

collision process.
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54 METHODS FOR COMPUTING TRANSPORT TENSOR COMPONENTS

Rigorous calculations of transport properties are inherently difficult,
requiring numerical solution of coupled sets of integro-differential equations.
As the number of independent parameters with which the transport properties
vary increases, it even becomes difficult to place the numerical results in a
form usable in practical calculations. Thus, when arbitrary degree of ioniza-
tion and magnetic field strength must be considered in addition to number
density and temperature as independent parameters, the problem becomes
formidable indeed. This is why the method of Shkarofsky (1961) is so useful:
it includes all these effects in a basically simple form. For the power law
representation derived in Section 5.2., the more complicated mathematics has
been worked out by Shkarofsky (1961), who presents expressions requiring only
the evaluation of determinants. Recent experimental data supports Shkarofsky's
(1961) treatment of partial ionization (Albares, 1973). The primary disadvan-

tage is that only electron motions are treated.

Shkarofsky, et al., (1966) treat the ion pressure tensor in a manner
similar to that for electrons. However, only a fully ionized plasma is con-
sidered (ion-neutral collisions are neglected) and only tranéport assoclated
with gradients in flow velocity (i.e. viscosity/préssure tensor) are treated.
For the ionosphere, this set of limitations makes the results of little practi-
cal value. At high altitudes where the fully ionized gas approximation is most
nearly approached, the strong magnetic field limit (<vin> <<wi) applies to the
ions, so that ion transport is restricted to the parallel direction. In this
case, less complicated results for no magnetic field can be employed. Also,
gradients in flow velocity are likely to be much smaller at high altitudes
than in the E region (e.g. see Section VI) where the magnetic field competes
with neutral collisions for dominance of ion motions. The fact of this
competition, however, means that the fully ionized approximation is inappli-
cable. The net result of these considerations is that for ions Shkarofsky's
method offers too little for the effort required to be useful for ionospheric

applications.
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Alternate expressions for ion transport coefficients are therefore adopted.
Although these lack the thoroughness of the electron tréatment, the effects on
practical calculations are probably small, as discussed below. For neutrals
different complications arise, due to the multiplicity of neutral species.
However, adequate expressions are available from the literature, and these

are presented.

5.4.1 Computation of Electron Transport Tensor Components

The Shkarofsky method for computing electron transport coefficients is -
described in detail in several works (Shkarofsky, 1961; Shkarofsky, et al.,
1966; Hochstim and Massel, 1969; Mitchner and Kruger, 1973); a lengthy
description is inappropriate here. Since calculation of the transport
tensor components is the primary objective here, the assumptions and approach
used are summarized briefly. Then those equations necessary for makiﬁg the

calculations are extracted from the sources above.

Assumptions made in the derivation of the Shkarofsky method are listed by
Shkarofsky (1961, Section 2) and, in a slightly different form, by Shkarofsky
et al., (1966, Chapter 4). These have been placed in the context of thé iono-
sphere by Schunk and Walker (1970), who also demonstrate that ionospheric condi-
tions are consistent with the assumptions (where appropriate). In the form

given by Schunk and Walker (1970) the assumptions and conditions are as follows

1. Only electron current and heat flow are considered; contributions due
to ion motions are ignored.

2. Only elastic collisions are considered (see discussion of fine struc-
ture excitation of atomic oxygen in subsection 4.3 on the validity of
this assumption).

3. A steady state is assumed ~ for the ionosphere this is valid because
time scales for changes in macroscopic properties are long relative
to electron relaxation times.

4. The angular dependence of the electron distribution function is
expanded in Legendre polynomials, truncated after the second term.
Schunk and Walker (1970) note that this requires the electron flow
velocity be much less than the mean thermal speed and that the
electron mean free path be much less than the electron scale height;
they demonstrate that both hold in the ionosphere.

5-19



5. The collision frequency is a function of velocity only, not of
position; i.e. scatterers are uniformly distributed. This is valid
if electron mean free paths are much smaller than both electron and
neutral scale heights. -

6. Driving forces (electric fields and gradients) are sufficiently small
that the equilibrium Maxwellian distribution is not disturbed; i.e.
the isotropic part of the distrution function 1s assumed to be
Maxwellian. This holds if the flow velocity is much smaller than the
mean thermal speed.

7. Applied electric and magnetic fields are uniform in space.

8. The perturbation to the equilibrium Maxwellian distribution is expanded
in a series of generalized Laguerre polynomials, truncated after four
terms. (Hochstim and Massel (1969) carry out the expansion to 20
terms in order to investigate convergence properties. Examination of
their results indicates that for the ionosphere four terms gives
sufficient accuracy.)

These items fairly well indicate the approach as well as the assumptions
and conditions for the calculation. The electron distribution function is

expanded first in Legendre polynomials in the form

+ ... (5-28)

< 1<

f=f0+¥l-

in the notation of subsection 5.,2. This form is then used in the Boltzmann
equation, together with the previous assumptions. The resulting equations
relate fi to fo' From these relations general expressions for the transport
tensors are obtained. To solve the equations, %1 is expanded in terms of
generalized Laguerre polynomials (four terms). Once ¥l is known the expres-
sions for the transport tensors can be evaluated. The end products of this

rather lengthy procedure are presented below.

Since the required equations are taken from Shkarofsky (1961), this work
is denoted by SI for ease of reference in the remainder of this section. Inso-
far as feasible, the notation of SI is followed to facilitate reference to the
complete derivation in that work. The treatment in SI includes a.c. electric
fields; these effects are suppressed in the results below since they are not

included in this study.
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Consistent with the assumption above, the electron current is related to

the electric field and gradients in Te and Ne by (SI, equation (70))

:fe=c.§-'en.vne-r.vre.- (5-29)

(An egquation of this form can be obtained from the-eledtroﬁ @omentum equatioﬁ
(4-35) for the steady-state case.) Here G is ‘the d.c. electrical conductivity
tensor, D is the diffusion current tensor, and T is the current flow tensor
due to thermal gradiénts at cbnstant density (SI uses ?:instead of ?i but here
T is used to denote the viscous stress tensor). Correspondingly, the total
energy flow H due to electrons is related to the electric field and gradients

in Te and Ne by (SI, equation (72a))

> = = =
=1+ E-eQ - VN, - K VI, . (5-30)

Here ?zis the energy flow tensor due to electric fields, 3:18 the energy

diffusion tensor and K is the thermal conductivity tensor at constant density.

These transport tensors are not independent, being related by (SI, equation

(76))

F = 7 s 3 = 2 ?’ (5-31)

known as Einstein relationships. Calculations are therefore limited to :: T,

?, and ?

In Shkarofsky's formulation, the transport tensor components are expressed
in a compact notation with a deceptively simple form. Only in the limiting
cases does simplicity remain as the parameters are expanded for evaluation. 1In
order to present this expansion in a coherent manner, the approach taken here
1s to begin with the final result required -~ the transport tensor. These are
related to other parameters, which are in turn related to still other parameters,
until all parameters can be related to the fundamental properties of the system:

electron temperature, electron number density, collision frequencies, magnetic

field strength and physical constants.
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All of the transport tensors have the form

4 o

_ X11 %5 0
X=1*a *n ’ (3-32)
0 0 X,

where the 3-component lies in the direction of the magnetic field. The rela-
tively simple form is due to the fact that the only anisotropy of the medium
is due to the magnetic field; off-diagonal terms are due to the Lorentz force.
Because of the symmetries in the matrix elements, they can be compactly

expressed for the general case in the following manner (SI, equations (82)):

_ Ne e2

0y ¥ 10y = Me(<vg>gc_+_- iw b)) (5-33a)
_ Ne ek

Tpp * 1Ty = Me(<vg>gTiimth) (5-33b)
- 5Ne ek Te

Hi1 + gy < 2Me(<vg>guiimbhu) (5-33¢)
_ 5Ne k2 Te

Kpp F 1Ky = M, (v gl hy) (5-33d)

In these equations <vg> is the total effective electron collision fre-

quency, given by (see notation in subsection 5.2.)

= <+ . -
v > = <y > <y > (5-34)
The g and h coefficients are correction factors which incorporate the effects
of the degree of ilonization and magnetic field strength into the tensor compo-
nents. The complex notation is a device for compact expression; it has no
physical significance. To obtain the X33 components, simply set Wy = w, = 0

in equations (5-33); these correspond to the zero magnetic field case.
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In equ_atiohs (5-33) the only unknown quantities, in the context of the
fundament:a_l properties noted above, aré the g and h correction factors; so it
femins only to determine them. They are computed from (SI, equations
(92 a-h)): '

Vei” 1A | | -
g =——— R TI_IT (5-35a)
(e} <vg> e( AOO )
) <v > . .
el A
hU i@b Im (r%giT) . (5-35b)

v, 4> la]
8 * <ve> Re 5 (5-35¢)
[8g0 +5 1804 |
700! 21701

<v >
h, = == T (————I—AJ-—) _ (5-35d)

Vei” A
g = R (5-35e)
B <v> e (ero + A01|)
<y >
i A
h = —=2 1 (5-35f)
u imb m<[Aoo + A01|>
2<y >
ei [a]
B " s> Re AP (5-35¢)
g 1800 H2 120 15121 |
2¢v >
hx"ﬁg"lm( 7IAl 5 ) : (5-35h)
—b . 800 1*2 1801 5 1801 1) '

(The factor 2 in these last two equations was erroneously omitted from equations
(92g) and (92h) in SI, as determined from SI equations (82) and (91) and veri-
fied by comparisons of numerical results.) Signs + in the h factors cori'espond
to + in equations (5-33). '
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In equations (5-35) the notation IAOOI denotes the 00 minor of the deter-
minant TAI , with similar meanings for the other determinants.. Matrix A is
given by (SI, equations (55¢), (63a))

Hyg T iwy Hyy Hyo 0
. s
Hyy Hyp 5, B9 o .
p— 35 0
Vei” Hyo Hiy Hyy X 1550y
105
0 0 0 Hy, + 1503 o
(5-36)

The matrix (Hij) is an interaction matrix, with contributions due to collisions

of electrons with jons, electrons, and neutrals:

en

_ ei
H =<y ,> H; 13

ee
+
13 e1” Byt Vey> V2 H  + <y > H

. (5-37)

(In SI the collision frequencies in this equation are included in the defini-:
ei ee en

tions of Hij’ Hij’ and Hij')

For the first two matrices in equation (5-37), the interaction is known

and fixed; the matrix elements are therefore constants. These are given by
(SI, equations (49), (53), (63b, c))

1 3/2 15/8 35/16
ot 3/2  13/4 69/16  165/32
By =\ 15/8  69/16  433/64 1077/128 (5-38)
35/16 165/32 1077/128 2957/256
and
0 0 0 0
e 0 1 3/4 15/32
HHo =10 3/4 45/16  309/128 | ° (5-39)
0 15/32  309/128 5657/1024
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[

The matrix (Hij

en
) contains effects of electron-neutral interactions;

its elements vary with the velocity dependence of the momentum transfer cross

sections for electron-neutral collisions.

In general, these matrix elements

are given by integrals over velocity-weighted products of the momentum transfer

. cross section and electron distribution function (isotropic part).

For the

case of a simple power law dependence (see equations (5-2) and (5-3)), these

matrix elements have been evaluated in SI.

The purpose of the method derived

in section 5.2. was to permit use of these results for arbitrary velocity

depéndence.

action matrix is given by

From SI, equations (48) and (63d), the electron-neutral inter-

_ r(r-2)(r-4)
48

r{r-2) (r2+2r+30)
96

(5-40a)

_ rtrearde6ar?e8re420)

1 -z r(r=2)
2 8
_r r2+2r+10 r(r2+2r+20)
2 4 - 16
en
(Hij) B r(r-2) _ r(e2+20420, HED
8 16 22
2 4,3 2
_ r(r-2)(r-4) r(r-2) (x"+2r+30) _ r(r +4r +68r +8r+420)
48 926 384
where
en 4 3 2
Hyy = (r + 4r~ + 52r" + 96r + 280)/64
en 6 5 4 3 2
H33 = (r + 6r

384

en

Ha3

(5-40b)

+ 142r " + 528r~ + 3952r" + 6864r + 15120)/2304.(5-40c)

In SI this matrix is expressed in terms of "m", which is related to r by

m = (r+3)/2.

(5-41)J

The notation used above seems more convenient and compact.
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Once the power law index r has been determined by the procedure in sub- -
section 5.2., all information necessary for the calculation of the transport
tensor componenté is available in terms of the fundamental properties desired.
These equations hold for the general case of arbitrary degree of ionization
and magnetic field strength. For the ionosphere, there is a simplification
associated with the fact that for electrons the magnetic field is always in
the strong field limit (wb>> <vm>). This applies, of course, only to the

transverse components.

In the strong magentic field limit, transverse components of the transport

tensors are expressed in the following manner (cf. equations (5-33) above):

Ne e2 +i go <6g>
911 ¥ 1057 = 7 he Y22 (5-42a)
e ob h"w
ob
Ne ek +H gr <vg>
T12a 23Ty = @ (h t ) (5-42b)
T “b T “b
5Ne ek Te +i gJJ <vg>
Hyp XAy = o ho T2 32 (5-42¢)
e ub h™ o
u b
5N k2 T /+i g.,<v_>
K,, + 1K, = — e(— 4+ X 8 ) (5-42d)
11 = *f21 M h 2 2 |°
e K% hK wy

from SI, equation (98). The limiting expressions for the correction factors

are then (SI, equations (99a) - (99d)):

ha =1 for a = o0, T, u, K (5-43)
g, = 1 (5-44a)
1 -1 + (r+2)<vm>/<vei>
& = 72 1+ <v >/<v > (5-44b)
m ei
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1
1 + =(x+5)<v >/<v >
2 .2 m ei
By ™ 3[ T+ < >/<v > ] (5-44c)
: m el
1/10 + 275 + [(x+5) (x#4)<v_>/20<v_ >]
- = = (5-44d)
gK 1+ <vm>/<vei>

Since the transverse components can be evaluated from equations (5-42) -
(5~44), the lengthy procedufe involving the interaction matrices can be avoided.
This is not so for the parallel (3, 3) components; however, for this component
there is a small simplification. Because this component is obtained by setting
w, to zero, it is seen from equation (5-36) that

Aij = Hij/<vei>, all i,3j , (5-45)

in computing the parallel component only. With g correction factors given by
equations (5-35a, c, e, g), the parallel components are then computed from

(cf. equations (5~-33)):
Ne e2
= ” ~ (5-46a)
Me <vg>g0
N ek
> (5-46b)

=
i
=

1

-]
Me <\)g>gT

5Ne ek Te
- _e_ (5-46¢c)
2M <v >g°
e g °u
SN_ K 1
K =K, 6 = ———— (5-46d)
[-]
Me <\)g>gK

where the subscript and superscript o denotes no magnetic field.
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To make use of these tranéport tensors in the context of the conservation
equations, it is necessary to relate them to the unknown quantities, in parti-
cular to the heat flux vector a;. In SI this quantity is denoted by ﬁh énd-is

>
shown to be related to the total energy flux H by (SI, p. 1656).

Ee = H - SkTej’/ze . (5-47)

In the ionosphere it is frequently assumed that the current parallel to magnetic
field lines vanishes. Physically this is interpreted as a steady state condi-
tion in which an electric field has built up in such a way that it cancels
current contributions due to gradients in temperature and density; this is
termed the thermoelectric effect (Spitzer and Harm, 1953). The effect in
equation (5-47) 1is to make Ee equal to H. It is shown by Hochstim and Massel
(1969, p. 160) that for this case the heat flux parallel to the magnetic field

can be computed from

->
1, * Koge VTg » (5-48)
where SNe k2 Te
K = 3 (5"49)
eff -Me <\)g>(g1<.)eff
and
1 - 1 g5

(5-50)

oy = - Soo .o
(gK) off gx 28u By

in notation introduced above.

In view of the approximations made in Section IV regarding transverse
componénts in the electron equations, it 1s worthwhile to examine briefly the
transport tensor expressions for consistency with those approximations. Let
X denote any one of the transport tensors, and consider the ratios of trans-
verse to parallel components. The component parallel to a transverse driving
force is Xll' From equations (5-42) for the strong field transverse case and

(5~-46) for the parallel (zero field) case, the ratio is
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xll <v >\2
33 “b

In SI a rather comprehensive set of tables is provided, giving g ana h correc-
tion factors for -3<r<3 with magnetic field strength ranging from zero to
infinitely strong and degrees of ionization from essentially zero to completely
1Qnized.' The g correction factors are of order unity, always satisfying

|g|S3. Disregarding them and using maximum values of <vg> consistent with

.those used for order-of-magnitude estimates in Section IV gives

X

X33

< 1074 . (5-52).

Similarly for the off diagonal component, corresponding to transport which is
transverse to both the magnetic field and a transverse driving force, the ratio
is

Xu| _ (Vg "
X33 Oy (5-53)
< 1072

In both cases the direction of the magnetic field clearly dominates the
transport for isotropic driving forces. However, there may be no driving
force in the parallel direction, as is frequently assumed to be the case for
steady-state 1lonospheric electrostatic fields. The pertinent ratio is then
the ratio of the transverse component parallel to the driving force (Xll) to
the component transverse to both the magnetic field and the driving force

(x21)’

11

%71

<y >

g)| < 1072, (5-54)

“b
In words, transport parallel to the driving force is negligible compared to
that perpendicular to the driving force in the transverse plane. When the
driving force is an electric field, the current (conductivity) parallel to

the electric field (in the transverse plane) 1is called the Pedersen current

(conductivity), while that perpendicular to the electric field is the Hall
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current (conductivity). It is readily recognized that only the Pedersen
component represents work done by the electrip field on the electrons. Since,
according to equation (5-54), most electron transport transverse to the mag-

netic field occurs through Hall motion, Joule heating (mﬁ . 3) of electrons

will be small.

These considerations are consistent with the results of Section IV and
this is evident from examination of equations (4-65a) and (4-66a). In the
momentum equations, the transverse and parallel component are uncoupled with
only the Hall drift remaining in the transverse'equation. Joule heating was
dropped from the electron energy equation by comparison with thermal energy
exchange terms. The additional conclusion that can now be drawn is that the
spatial gradients in the electron energy equation (4-66a) need be taken only
parallel to the magnetic field, since the transverse components of E'are small

compared with K33. Mathematically, this is written (consistent with equation
(5-48))

-1 = -1 3 aTe
§ VKV R % (Keff E)' (5-5%)

where s is arc length along a magnetic field line (see Banks, 1966b).

Equations presented in this part should be i iequate for any ionospheric

investigation of electron transport.

54.2 ION Transport

The formalism for a complete treatment of the ion transport problem,
.including arbitrary degree of ionization and arbitrary magnetic field strength,
has been developed by S. T. Wu (1968); however, its form is impractical for
numerical calculations. 1In the absence of a complete, usable method, only
what is needed for the conservation equations and is readily available in the

literature is presented. The term "readily" is used advisedly, since Mitchner
and Kruger (1973) note that with proper precautions, the Chapman-Enskog approach,

as applied by Hirschfelder, Curtiss, and Bird (1954), can be used in computing
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both ion and neutral transport coefficients (for the zero-magnetic field gase).
Some indication of the steps required for such a procedure are provided by
Chapman (1954) in his evaluation of the viscosity aﬁd thermal conductivity
coefficients for a fully ionized gas ﬁithout a magnetic field. Rather than
engage in such an effort, the results of Chapman (1954) are presented;
limitations on their applicability and consequent effects on calculafions are
then examined'briefly.

References to equations (4-65c), (4-66b) and (4-33) shows that only
coefficients of viscosity and thermal conductivity are required for the ion
conservation equations. In the previous seétion, it was seen that in a
magnetic field the thermal conductivity becomes a- tensor of rank two.
Shkarofsky, et al. (1966, Chapter 8-8) show that viscosity is affected in a
similar manner, although the results are included in the stress tensor rather
than in an explicit tensor viscosity. They note that a scalar viscosity is

applicable only 1if w, << V43 this condition seldom holds in the ionosphere.

1
Thus coefficients derived for a fully ionized gas in the absence of a magnetic
field apply only for directions parallel to the field lines. For these condi-
tions Chapman (1954) obtains the following expressions for viscosjity and thermal

conductivity coefficients of a single ion species:

s M amy/? (5-56
"4 T 2y7 4 )
e A,(2)
2
KT _. 15k (5-57)

= == p .
i 4Mi i
In the work cited, A2(2) is an integral based on a cutoff at the mean
separation of particles. This has subsequently been modified in Chapman and
Cowling (1970, p. 178) to use a Debye length cutoff, although the form of the
result is unchanged. Thus A2(2) can be expressed in terms of the argument of

the Coulomb logarithm, A, equation (5-20b), as

A,(2) = 2 [an@+?) - A2/ D], | (5-58a)
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Since A>>1 (Spitzer, 1956; Banks, 1966a), this can be written to a good approxi-

mation as
A2(2) = 2{24nA-1].

For consistency with the results for electron-ion collisions, this should fur-

ther be approximated by
A2(2) = 4 n A . (5-58b)

In the ionosphere 1nA>10 (see Spitzer, 1956). It may now be noted that Chapman
and Cowling (1970) use an expression corresponding to A which differs from
equations (5-20) by a factor 4/3. Such a difference is inconsequential in
terms of the approximation leading to equation (5-58b).

Equation (5-56) can thus be rewritten as
5 My (kT)S/Z
n, =g Jy———"7 (5-59)
i 8 ¥V 4
e 1In A

while equation (5-57) remains unchanged. This result may be compared with a
similar result obtained by Shkarofsky et al. (1966, equation (8-140)). That
form can be shown to be the same with a factor 3/[4-VE?.7326)] in place of 5/8
in equation (5-59). These numbers have decimal values of .7239 and .6250
respectively. However, the expression obtained by Chapman and Cowling (1970)
is in the first approximation (Chapman - Enskog method of successive approxi-
mations). They note that in the second approximation, the expression for the
first approximation is simply multiplied by 1.15. When this is done, the
numerical constant is .7188, in very close agreement with the result of
Shkarofsky et al. (1966). The corresponding correction factor for K: in the
second approximation is 1.25. So the recipe for accurate ion transport
coefficients is to compute n; from equation (5-59). With this value, evaluate

Kg; then multiply the former by 1.15 and the latter by 1.25.
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As indicated at the outset, these.expressions are -of limited applicability.
The question is, how important are the limitations? Consider first the effect
of the geomagnetic field. Chapman and Cowling (1970, Chapter 19) find that
transport perpendicular to the magnetic field is reduced from the zero field
case by a factor 1/[1 + (w T) ] for direct transport and by a factor (w )/
1+ (w T) ] for transverse transport. The terms direct and transverse, as
used in this sense, refer to directions parallel to and perpendicular to the
driving force (external force or gradient) in the plane perpendicular to the
magnetic field. 1 is a relaxation time which is given approximately by the
inverse of the total ion collision frequency. Thus at low altitudes (<130km)
where wi<vi, -direct transport is little affected by the magnetic field, while
transverse transport varies approximately as w /v At high altitudes, on

the other hand, where w,>> v,, direct transport varies as (w /v ) and

i i?
transverse transport as (wi/vi) 1. Hence, at high altitudes transport is
~ confined to directions parallel to the magnetic field (except for strong trans-

verse electric field driving forces).

For thermal conduction, observation and theory agree that ions have
approximately the neutral temperature up to altitudes of 250km to 300km. So
below that transition, thermal conduction is unimportant for the ions. Above

this transition w,>>v, so that ion thermal conduction transverse to the geo—

magnetic field isiuni;portant. Thus, the thermal conduction coefficient for
the zero-magnetic-field case is sufficient for practical purposes. Further-
more, above the thermal transition region, ion-neutral collision frequencies
are small compared with collision frequencies of ions with charged particles.
Hence, the ion thermal conductivity for a fully ionized gas is appropriate.
In sum, the limitations on the application of the ion thermal conductivity
coefficient, given by equation (5-52), should have little practical effect

on ionospheric calculations.

For viscosity, the physical situation is rather different and not so
well-defined, since less is known about i1onospheric velocity fields than
about its thermal structure. According to present understanding, signifi-

cant ion flow velocities have two origins: electric fields and neutral
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flow (via collisions). As discussed in Sections I and IV, electrostatic fields
in the ionosphere are predominately transverse to the geomagnetic field. At
high altitudes, where wi>> ;in’ the Hall drift_(ﬁxﬁ) resulfs (e.g. electron
momentum equation (4-36)). At low altitudes, where.G;n$> Wys ions essen-
tially move with the neutral flow. A transition between these motions occurs
at intermediate altitudes where ;in =W, (~120km - 140km), resulting in vertical
velocity gradients. Since large electric fields are observed primarily at

high latitudes where geomagnetic field lines are almost vertical, large ion
drifts due to electric fields are primarily horizontal. Thus, in this case,
the flow is mainly horizontal with primarily vertical gradients which are
largest in the region where v, *w, . This qualitative picture is given quanti-

in
tative substance in the next section.

When neutral flow causes the ion motion, a similar situation results.
Collisional coupling at low altitudes (;in>> wi) causes ions to move with
the (horizontal) neutral wind. With increasing altitude the ion coupling
undergoes a transition from collision dominated to geomagnetic field dominated,
until at high altitudes the ions move primarily along magnetic field lines in
the absence of transverse electric fields. Although this picture is somewhat
complicated by geomagnetic field geometry variation with latitude, the physical
results are basically the same as above. Velocity gradients are predominately

vertical and strongest in the dynamic transition region (;;n~mi).

Physically, viscosity represents momentum transport due to spatial grad-
ients in velocity. From the discussion above, this corresponds essentially
to the transport of horizontal momentum in vertical directions. Since the
physical conditions for maximum velocity gradients are now more precisely
defined (;;n~wi) than those used for order-of-magnitude estimates in Section
IV, a new estimate may be useful. 1In equation (4-39a) the same values are
used to obtain-a maximum velocity gradient (~.1 s—l), but the collision fre-
2 s_l).

Under these conditions the ratio of the viscous stress tensor to scalar

quency 1s now restricted to the order of the gyrofrequency (~10

pressure is

T
I__i_ﬁgl < 10_3
Py

. (5-60)
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Hence viscous effects on ion motion are negligible in the dynamic transition

region and below.

At high altitudes, where the total ion collision frequency is much reduced,
it might appear that viscosity could be important. However, since the primary
driving force for ion flow at high altitudes is electric fields, this is
unlikely for the following reasons. The largest measured electric fields occur
at high latitudes; that is, they are of magnetospheric origin and mapped into
the ionosphere along geomagnetic field lines (see Figure 1-4). Because magnetic
field lines are approximately equipotentials and the magnetic field is almost
uniform over the altitude range of interest here, the electric field varies
little along a field line over this range. Correspondingly, there is little
variation in the ExB drift velocity, resulting in very small velocity gradients.
Consequently, along with the reduction in collision frequency at high altitudes,
there is a reduction in the vertical velocity gradient, due to a uniformity in
altitude of the driving force. So viscosity 1is unlikely to be important for
ions at either high or low altitudes. If it is significant, it will probably
be at high altitudes and for gradients along field lines, conditions for which

the viscosity coefficient above 1is appropriate.

5.4.3 Neutral Transport

Neutral gas transport is not complicated by considerations of magnetic
fields or degrees of ionization. Moreover, the kinetic theory for transport in
single species monatomic gases is well-established (see Chapman and Cowling,
1970). However, difficulties arise in gas mixtures, particularly mixtures
involving polyatomic molecules. These difficulties are discussed in some
det#il by Chapman and Cowling (1970, chapters 12-14) and will not be elaborated
here. Using approximate formulas and some inspired curve-~fitting, Banks and
Kockarts (1973, chapter 14) have devised simple, yet reasonably accurate
expressions for the viscosity and thermal conductivity coefficients for the

mixture of neutral gases in the upper atmosphere. These are presented below.

The temperature dependence of the viscosity coefficients of all primary

neutral species has been approximated in a common power law form, based on
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experimental data for all except atomlc hydrogen. Thus all the viscosity.

69 for 200°K<T<2000°K, a range adequate for most upper

coefficients vary as T’
atmospheric conditions. Because of this common temperature dependence, Banks

and Kockarts (1973) have been able to reduce the viscosity for the mixture to

thé following simple form:

no=a1®, (5-61a)

where
A=) Annn/Z n_ . (5-61b)
n n

The summation runs over all neutral species, and the An coefficients are given

in Table 5-4.

Table 5-4. COEFFICIENTS FOR COMPUTING THE NEUTRAL
VISCOSITY COEFFICIENT (BANKS AND KOCKARTS,

1973)

NEUTRAL 6. -1 -1
SPECIES A, (107gm cm " s77)

N, 4.03

0, 3.43

0 3.90

H 3.84

H 1.22

Thermal conductivity is treated in a similar manner. If all upper atmo-
spheric gases were monatomic, a relation similar to equation (5-57) for ions
could be used to obtain the thermal conductivity coefficient from the viscosity
coefficient. However, the internal degrees of freedom associated with the
diatomlc molecules N2 and O2 also affect the thermal conductivity. Analysis of
experimental data allows correct inclusion of these effects. Banks and Kockarts
(1973) are again able to express all temperature variations in a common power

law form, permitting the thermal conductivity for the mixture to be written
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K = pr+89 | (5-62a)
where
B=]Bn/ln . - (5-62b)
n n -
The Bﬁ coefficients are given in Table 5-5.

Table 5-5. COEFFICIENTS FOR COMPUTING THE NEUTRAL
THERMAL CONDUCTIVITY COEFFICIENT (BANKS
AND KOCKARTS, 1973)

NEUTRAL -1 -1 op-1
SPECIES B, (erg cm™" s™" °K™7)
N, 56.0
0, 56.0
0 75.9
H, 299.0
H 379.0

These relations may be used over the temperature range 200°K§In§2000°K. Although
the error in O2 due to curve fitting approximations approaches 20 percent at
2000°K? at altitudes where O2 is important, temperatures and errors are much
lower. Errors for the other gases are smaller than for 02.
Since viscosity and thermal conductivity are the only transport coefficients
appearing in the conservation equations, none others are required for closure of

the neutral equations.
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Section VI

NEUTRAL WINDS IN THE AURORAL E REGION
DURING GEOMAGNETIC DISTURBANCES

The conservation equations developed in previous sections are somewhat
general in the sense that 6n1y those approximations appropriate to all E and F
region conditions have been applied. For the particular physical circum-
stances of any specific study, further approximations may be justified. More-
over, observational data may be used to specify some variables so that certain
of the equations need not be solved at all, or may be greatly simplified.
Also, numerical constraints may require simélifying assumptions which limit
the applicability of the results to special circumstances. For these reasons,
results of the previous sections must be regarded as appropriate starting
points for a wide variety of upper atmospheric investigations, rather than as
finished products. The present section is an example of one such investigation,
and it illustrates various methods for bridging the gap between the initial
set of conservation equations and the final working equations which can be

solved numerically within computational constraints.

6.1 INTRODUCTION

Since the incoherent scatter radar facility at Chatanika, Alaska, became
operational in 1971, thermal, dynamic, and electrical properties of the iono-
sphere above that location have been observed under a variety of conditionms
(e.g. Watkins and Banks, 1974; Brekke, et al., 1973, 1974a, b). Of particular
interest are winds generated during éeomagnetic disturbances. It is well
established that global disturbances of both the charged and neutral components
of upper atmospheric gases are assoclated with geomagneﬁic storms (Jacchia, et
al., 1966; DeVries, 1972; Matuura, 1972; Wu, et al., 1974). The mechanisms
by which these disturbances occur at low and middle latitudes remain under
study; but neutral winds originating in the auroral region are proposed in
some theoretical explanations (e.g., Obayashi and Matuura, 1972). Such winds
have apparently been observed in the E region at low latitudes followiﬁg a
magnetic storm (Smith, 1968), and simple estimates, based on observations at

high latitudes, support the plausibility of such occurrences (Rees, 1971a).
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Hence, extended observations of these neutral winds in the vicinity of their
origin, may provide decisive information in establishing the validity of these

and other theories.

In this study, attention is directed toward certain aspects of the neutral
winds as determined by incoherent scatter radar observations. Because ion
velocifies, rather than neutral velocities, are observed directly by the
radar, the neutral wind velocities must be derived from the ion velocities.

One of the approximations required to determine the neutral velocity is that
this velocity is uniform over an altitude range of 25 km to 50 km in the E
region. Although Brekke, et al. (1973, 1974a) recognize that this condition
does not hold, no quantitative estimates of its effects on the derived neutral
winds are provided. One of the objectives here is to examine the effect of
the neutral velocity altitude structure on neutral velocities derived from the

incoherent scatter radar data.

A second objective concerns the origin of neutral winds during geomagnet-
ically disturbed conditions. Brekke, et al. (1974a) note that incoherent
scatter radar data alone provides insufficient infqrmation to separate the
effects of ion drag (collisional coupling) and Joule heating on neutral winds.
From observations of high latitude rocket-borne chemical releases at E region
altitudes and ground-based magnetometer data, Rees (1971la) concludes that the
neutral winds are generated by collisional coupling with electric~field-driven
ions. This view is shared by Meriwether, et al. (1973), based on similar data
for altitudes above 200 km. On the other hand, from chemical release data
below 180 km, Rothwell, et al. (1974) concur in the conclusion of Stoffregen
(1972), based on similar data for higher altitudes, that during geomagnetic
disturbances, the deviations of observed neutral winds from theoretical models

are due to high latitude heating and resultant pressure gradients.

To examine this problem, an approach which is partially direct and par-
tially indirect is employed. In the direct approach, the effects of collisional
coupling are computed by numerically solving the ion and neutral momentum

equations simultaneously, based on observed electric fields as the driving
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force and omitting pressure gradients. If there is good agreement between the
calculated and observed velocities, this indicates that collisional coupling
is adequate to explain the observations and that effects of pressure gradients
are inconsequéntial. On the other hand, large discrepancies would indicate
the opposite. Then, the indirect approach is employed: the discrepancy
between the observed and calculated velocities is used to estimate the omitted

driving force (pressure gradient).

Data used to carry out the calculations and to provide the observational
reference velocities are described in.subsection 6.2. In subsection 6.3
details of the theoretical and numerical methods are presented. Model calcula-
tions are presented in subsection 6.4 to demonstrate in a simple context the
effects to be encountered under realistic conditions with observed electric
fields. In subsection 6.5 a series of calculations, designed to meet the
objectives outlined above, are discussed in detail. Finally, results of this

study are discussed and summarized in subsection 6.6.

6.2 OBSERVATIONAL DATA

6.2.1 Characteristics of the Data

Data used in the calculations and comparisons below were obtained by the
incoherent scatter radar facility at Chatanika, Alaska on 15 May 1974. This
facility became operational in July, 1971; and early observations have been
reported recently in the literature (Doupnik, et al. 1972; Brekke, et al.,
1973, 1974 a, b; Banks, et al., 1973; Banks, et al., 1974; among others).

. Leadabrand, et al. (1972) have described the equipment and its operating
characteristics; and Banks and Doupnik (1974) have recently reviewed the
experimental methods and operational modes used with the radar. Therefore,
only those aspects pertinent to the analysis of the present data need be

summarized here.

Location and geomagnetic field characteristics of Chatanika, Alaska, are
given in Table 6-1. Operating at a frequency of 1290 MHz, the Chatanika. inco-

herent scatter radar has a completely steerable dish antenna with a beam width

6-3



of .6 degrees. For the experiment on 15 May 1974 the recently developed
azimuth scan procedure (Banks and Doupnik, 1974) was employed. Elevation of
the antenna was held constant at 76.5 degrees above horizontal and the antenna
azimuth was changed at the rate of 1 degree per second. Data were integrated
over 15 second intervals (15 degrees in azimuth) to obtain estimates of ion
drift velocity vectors and electron density profiles. The 24 estimates, for
each 360 degree scan, were then analyzed, using a Fourier analysis technique,
to obtain the ion velocity vector in 8 separate range gate; and a time-
averaged electron density profile for the 6 minute time period. At azimuth
299 degrees (geomagnetic west) on each scan, the direction of antenna rotation

was reversed.

Table 6-1. CHATANIKA, ALASKA: LOCATION AND GEOMAGNETIC
FIELD PROPERTIES

LOCATION: Geographic - 65.1°N, 147.45°W
Geomagnetic Dipole - 64.75°N, 105°W

TIME: Alaskan Standard Time (AST) = UT-10 hours

GEOMAGNETIC FIELD: Dip Angle (I) = 76.5°
Magnetic Declination (§) = 29° East of
Geographic North
Magnetic Field Intensity (B) = .54 Gauss

A diagram of the azimuth scan method of sampling the jionosphere is pre-
sented in Figure 6-1. It ié seen that in addition to time-averaging over 6
minutes, this technique averages spatially. For example, the centers of the
first two range gates correspond to altitudes of 109 km and 167 km; given the
elevation angle, the radar beam samples over horizontal distances of .55 km and
85 km at these altitudes. In addition, due to the time length (1) of the
radar pulse, the radar signal averages ionospheric properties over the spatial
extent of the pulse (ct). Brekke, et al. (1973) note that although the total
extent of each range gate is 96 km, the effective length is reduced to 25 km
to 50 km due to weighting of the radar signal. This weighting has three
components: (1) a triangular factor which is unity at the center of the range
gate, decreasing linearly to zero at the ends; (2) a factor which decreases

as the inverse square of the range; and (3) the electron number density. The
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Figure 6-1. DIAGRAM OF THE AZIMUTH SCAN MODE OF OBSERVATION FOR THE
INCOHERENT SCATTER RADAR AT CHATANIKA, ALASKA (BANKS
AND DOUPNIK, 1974) '

first two of these multiplied together are designated by W(z) and are pre-
sented graphically by Brekke, et al. (1973); those results are used here with
appropriate translation to the proper altitude.

Interspersed with the long radar pulses, used for velocity measurements,
were short pulses (with greater range resolution) for electron density deter-
mination. Beginning at a range of 73.6 km (71.6 km in altitﬁdeg due to the
elevation angle), successive values are spaced at range increases of 4.5 km
(4.38 km altitude). However, since the signal samples a range of 10 km,
adjacent electron density values are not totally independent (Doupnik, 1975).
Doupnik (1975) also notes that for electron densities below -104 cm—3, true
densities are underestimated by the radar because the Debye length becomes
comparable to the radar wavelength. 1In addition, measured densities must be
multiplied by a factor of (1 + Te/Ti)/Z to obtain tru; values. For E region
altitudes, Te/Ti = 1 may be a reasonable approximation, however, not for
higher altitudes. Since present interest is in the E region (and in the
absence of temperature measurements), the electron density measurements are

used without modification.



Geomagnetic activity during the experiment was relatively high globally;
15 May 1974 wés designated one of theé 5 disturbed days for that month (Lincoln,
1974). -Values of the global three-hour geomagnetic range index Kp varied from
3- to 5+, averaging about 4. These, together with local index K for College,

Alaska, are shown in Table 6-2.

Table 6-2. GLOBAL (Kp) AND LOCAL (K) (COLLEGE, ALASKA)
THREE-HOUR GEOMAGNETIC RANGE INDICES FOR

15 MAY 1974
PERIOD: 1 ) 3 p : —
Ko & 3- 4 5. 5+ a1 3 o

) N 2 3 6 7 6 3

6.2.2 Data Analysis

From the ion flow velocities measured in different range gates, values of
the electric field and the altitude-averaged E region neutral wind can be
determined. The procedure for accomplishing this is described in some detail
by Brekke, et al. (1973); it will be summarized here. This procedure is
followed exactly since it provides the currently-accepted observed values from
the incoherent scatter radar method. Part of the objective of this study is
to compare theoretical calculations with standard observed values; so in

treating the data, the established procedures are used without deviation.

At high altitudes where Wy >> V.o, ions move with the Hall drift velocity
(E X E c/B2) (cf. electron momentum equation (4—-36)). The vector equation
relating the ion velocity to the electric field can then be solved for the
electric field in terms of the ion velocity at high altitudes. At low alti-
tudes where wy < Vin’ collisions with neutrals as well as the electric field
affect the ion motion. With the electric field known from the high altitude
ion velocity measurements, the ion velocities observed at low altitudes can be

used to determine the neutral wind velocity.

These qualitative considerations can now be put on a quantitative basis.
If gravitational and pressure gradient terms are assumed to be small compared

with electric and magnetic field terms, the ion momentum equation (4-40) can



be written in the form

ﬁ‘-(¢-3i)+§c+3ix§= ) (6-1)
(.I)i .

From this equation it is apparent that if ;i

>

&y

>> ;;n’ the electric field com-

~ ponents transverse to the magnetic field can be obtained from ion flow

velocities from the equation

-

E+c—ix’ﬁ=o . (6-2)

Brekke, et al. (1973) find that the ion velocity measured in the second range
gate (centered at 167 km). shows little rotation from those at higher range
gates. They conclude that the electric field can be adequately determined
from equation (6-2), using observed ion velocities from the second range gate,
Tn the model to be discussed later (similar to that used by Brekke, et al.
(1973)), it is found that at this altitude';in/ai ~ .05, thus the collision
term in equation (6-1) is expected to be unimportant, consistent with the

observations.

By taking scalar and cross products of B with equation (6-1), that equa-
tion can be solved explicitly for 31, with the result

- iE® Z&. > B
Vi _-_——Ec+_—v XE
1+ (w /v vy v, O

— 2 - 2 > 3
Wy Ex'ﬁc Wy Ya ° ]
= 2 = B ’
Vin B Vin

(6-3)

where the component of E parallel to B has been assumed to be negligible com-
pared to the components transverse to 3. Equation (6-3) holds at each altitude;
however, observed ion velocities are welghted averages over altitude. There-

fore, similar averaging must be appliéd to this equation.

Based on the weighting of the incoherent scatter radar signal, discussed
in the previous section, Brekke, et al. (1973) determine that the weighted
averages can be represented as

- z, R z,
v, - L N_(2) W(z) ¥, (2) dz/Jz N (2) W(z) dz . (6-4)
1 1
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Limits of integration correspond to the boundaries of the range gate; this is
accomplished in effect by the vanishing of the weighting function W(z) at
these boundaries. This weighting function represents the linear decrease
from the center of the range gate divided by the square of the range; it is
shown for the first range gate in Figure 6-2. It is a consequence of this
weighting by W(z) and Ne(z) that the effective width of the first range gate
is reduced from 96 km to 25 km to 50 km.

140 -

10 -

ALTITUDE (KM}

100 e

wiz)

T T T T T T T

T T
o 41 .2 3 4 5 & 3 3 9 10
WEIGHTING FUNCTION (10°%)

Figure 6-2. INCOHERENT SCATTER RADAR WEIGHTING FUNCTION W(Z)
(BREKKE, ET AL. 1973)

In order to apply this averaging technique to the right side of equation
(6-3) and obtain useful results, Brekke, et al. (1973) make the following
assumptions: (1) the neutral wind velocity has a uniform value Vﬁ throughout
the first range gate; (2) the electric field determined from the second range
gate is mapped down magnetic field lines to the bottom of the first range

gate with no change in either magnitude or direction. Under these conditions,
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equation (6-3) can be multiplied by Ne(z) W(z), integrated over altitude and
normalized by the denominator on the right side of equation (6-4) to obtain

j3 Ex3
Vi = Kj Vﬁ + 3 Wn x B/B + K B¢ + Ky —;E—— c
e, - BEBE (6-5)
The k-coefficients ‘are given by
1 Z2 w vy (2) N (2) W(=2)
=1 — — dz , (6-6a)
Wizg o vy oy '
1 ) '4512 N_(z) W(2) _
Ky = E—-f > — dz , (6-6b)
Wizg vin(2 tuy
Ky = 1- Ky (6-6¢)
where
Zy
Iw = J Ne(z) W(z) dz . (6-6d)
z

1

The ion velocity on the left side of equation (6-5) now represents the velocity

as observed by the incoherent scatter radar.

To determine the neutral velocity, equation (6~5) is solved explicitly for

Vn, in the same manner as equation (6~3) was obtained, with the result

-
N P S - % B_E
v, 2| —= 7] <5 Vs Kl(vixB+Bc)
Ky + Kg
2

(ki7" = K,K,)
+ ——1——;2—‘2*3 (ExBec+ (Vi . 'ﬁ)'ﬁ]] . _ 6-7)

(Equation (6-7) corrects a typographical error in equation (11) of Brekke,
et al. (1973).) From this equation the height-averaged neutral wind is deter-

mined from incoherent scatter radar data. TIon velocity Vi is obtained from
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oS>
the first range gate; E is obtained from ion velocities in the second range
gate (through equation (6-2)); and the y—coefficients are evaluated from
electron number density measurements and a collision frequency model (to

be discussed later).

By means of these techniques, Chatanika incoherent scatter radar observa-
tions made on 15 May 1974 have been analyzed. Resulting electric field values
are shown in Figure 6-3a; and horizontal neutral velocities, determined from
equation (6~7), are shown in Figure 6-3b. It should be noted that the x-
component is defined positive to the south, while the meridional componenf
in the figures of Brekke et al. (1973, 1974a) is defined positive to the
north. Values shown in Figuregs 6-3a, b are used in the calculations and com-

parisons below.

The electric field components in Figure 6-3a show two distinct periods of
enhancement, the first extending from about 06.to 11 hours UT and the second
from about 12 to 18 hours UT. During the calm periods, electric fields have
values generally less than about 10 mV m_l, while during disturbances they
have values of several tens of millivolts per meter. Rapid variations in
magnitude are the rule; but reversals of direction which persist with the
large magnitude electric fields, occur only once, shortly before local midnight
(1000 UT). This reversal is a general feature of this local time period. It
is associated with the Harang discontinuity (Heppner, 1973), originally observed

as a reversal of ion flow direction.

Neutral velocities shown in Figure 6-3b are notable for their rapid and
sometimes quite large fluctuations in both magnitude and direction. Since
this indicates large variations during the peirod over which the data are
averaged, large errors are likely (Brekke et al. 1973, 1974a). Nevertheless,
the trend of the data is clear: except for occasional large fluctuations,
magnitudes of the neutral velocity components are generally near or less than
about 125 m s_l. Periods of greatest velocity fluctuations correspond to
periods of enhanced electric field. These results will be examined more

closely in the comparisons with calculated velocities.
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6.3 THEORETICAL APPROACH

6.3.1 Physical and Maﬂiematicél Description
As noted previously, the effects of collisional coupling in neutral wind

generation are to be determined. In simplest terms, an external electric
field causes the ions to move. Collisions of ions with neutrals both modify
the ion motion and cause the neutrals to move. It is the resultant motions of
the neutrals, as functions of altitude and time, that are of particular inter-
est. Model calculations of this nature have been presented by Fedder and
Banks (1972). However, they differ from the present calculations in two
important respects: theirs neglected coriolis effects and they were only
model calculations with no explicit comparison with experiment possible. The
first of these differences is examined in similar mcdel calculations in sub-
section 6.4 to determine the importance of the coriolis term. The second
difference, use of observed electric fields and comparison of corresponding
calculated velocities with observed velocities, allows the importance of this

collisional coupling in neutral wind generation to be assessed.

The theoretical framework has been developed in previous sections. Here,
in the application of this framework, it remains to apply those additional
approximations which the more restrictive conditions of a particular problem
permit. And then a method for determining each remaining unknown quantity must
be specified, either by including an appropriate equation in the system to be
solved, or by adopting appropriate model values. This translation of the
physical problem to a mathematical and numerical problem is accomplished

below.

The coupled ion and neutral equations of motion (4-65c) and (4~65d) are
the appropriate starting points. In consonance with discussions in Section V,
the ion pressure tensor term is neglected in comparison with the scalar pres-

sure term. Thus, the initial equations are

g

ey

-
= v -+

>
V.
1 n

<|‘
. P
@it

> > 1
c + v, X Wy + g - 5; v p%] . (6-8a)

in
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+5+2v x0.-v . (v -V) , (6-8b)

where
+%n R (6-8¢)

in Cartesian tensor notation (equation (4-33)).

In addition to being coupled to each other, these equations are coupled
to the continuity and energy equations through mass densities (pn, pi)’ press-—

ures (pn, pi) and collision frequencies (;i ). Thus, additional infor-

s V
mation or equations are required in order tg so;ie equations (6-8). From the
incoherent scatter radar observations, electron number density profiles are
available. Ion composition cannot be obtained from these observations, so an
ion composition model, based on the rocket-borne mass spectrometer measurement
of Kopp, et al. (1973) at high latitudes (68°N), is used. With this information,
the ion continuity equation is no longer required. Since electric fields and
velocities are generally largé throughout the experiment, the order-
of-magnitude estimates in Section IV indicate that the pressure gradient and
gravitational terms can be dropped from the ion equation (6—85). In addition,
at the altitudes of interest (90 km to 200 km) the ion temperature can be
assumed equal to the neutral temperature (required only for collision fre-

quency calculations). These approximations and assumptions obviate the use of

_the ion energy equation.

To supplement the neutral equation of motion a model atmosphere is adopted
to provide neutral number densities and temperatures. This approach is taken
partly to keep the computational effort reasonable and partly due to lack of
information. Since temperature measurements were not made in the experiment
of 15 May 1974, there is no means for monitoring any theoretical calculations

of temperature. Also, by using a static model for neutral temperature and
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densities, the source of calculated velocity variations can be more éasily
identified. For a series of calculations of incréasing complexity, this

approach is a reasonable first step.

The neutral atmospheric model adopted is the Jacchia 1971 model (Jacchia,
1971; also cf. CIRA 1972) for an exospheric temperature of 1000°K (see Figure
1-3). Although this choice of exospheric temperature is arbitrary, it does
correspond to the exospheric temperature used by Brekke, et al (1973, 1974a)
in their data analysis (however, they employed a neutral model by Banks and
Kockarts (1973)). Effects of model differences will be discussed later. It
may be noted that recent temperature measurements reported by Watkins and
Banks (1974) indicate that 1000°K is a reasonable choice for the exospheric
temperature for a problem such as this. Their observations show no pronounced
diurnal variations; however, temperature excursions of 100°K to 300°K over

time periods of an hour, associated with large electric fields, are common.

As a result of using a model atmosphere, the continuity and energy equa-
tions are no longer required. However, there is an additional consequence for
the neutral momentum equation. The Jacchia 1971 model is a static diffusion
model in which it is assumed that each neutral constituent is in diffusive
equilibrium. For present purposes the important feature of this condition is
that the vertical pressure gradient exactly balances the gravitational accel-
eration in the momentum equation - there is no vertical motion. In reality,
small vertical velocities are observed (Rieger, 1974). However, because the
gravitational and pressure gradient terms are larger than the velocity terms,
by factors of 102 to 103 under these conditions, a relatively small adjustment
of the pressure gradient can counteract vertical motions, causing them to
vanish or remain quite small. Consequently, vertical motions are suppressed

in equations (6-8b) and (6-8c): diffusive equilibrium is assumed.

Finally, all horizontal gradients are neglected. This is required by the
fact that all observations are made at a single location: no information on
the horizontal variation of properties is available. Implicit in this assump-

tion is horizontal uniformity, which is a bad assumption at high latitudes.
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However, horizontal gradients affect only certain terms and if these terms are
small relative to others, the consequences may be negligible. One of the '
objecgi%es of this calculation is to test this assumption.

With the approximations and assumptions made, the ion'equation of motion

in eﬁuétion (6~8a) reduces to.

i n — B i B

- > Wy 1 E > B . '
v, =v +—lzct+v, x|, (6-9)
Y ‘
in

which is equivalent to equation (6-1). The neutral equation (6-8b) is corre-

spondingly reduced to

>
ov
n

v, - 31) +2v x 9. (6-10)

1 =
v T .

ot o) n vni n
n

where the form of ?; remains as given in (6-8a), but many of the terms vanish.

To solve equations (6-9) and (6-10) numerically, they must first be
decomposed into scalar component equations. Based on physical considerations,
it is convenient to treat these equations in two different Cartesian coordin-
ate systems; the computer can easily transform the coordinates numerically as
required for calculations. The ion equation is treated in a system designated
here as "plasma" coordinates (1, 2, 3), in which the 3-component is parallel
to E, the 2- component is toward geomagnetic east in the plane transverse to E,
and the l-component lies in the geomagnetic meridian plane; this is shown
in Figure 6-4a. The neutral equation is decomposed in a local Cartesian coordin-
ate system (x, y, z) orliented along geographic coordinates with x positive
to the south, y positive to the east, and z positive vertically upward, as shown
in Figure 6-4b. Angular relations between the coordinate systems are shown in
Figure 6-4c. Transformation equations between these coordinates for an arbitrary
vector E are: '

(i) From plasma coordinates (1, 2, 3) to local geogréphic coordinates
(x, y, 2)

Q, =49, sin 8 — cos G(ql sin 1 + q3 cos I) (6-11a)
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qy = q, cos § + sin G(q1 sin I + q4 cos I) (6-11b)

q =q,co8I-gq,sinlI (6-11c)
z 1 3

(11) From local geographic coordinates (x, y, z) to plasma coordinates

(1,. 2, 3)
'ql ; qé cos I - sin I(qx cos § - qy gin §) (6-12a)
q, = q4, siné + q, cos $ (6~12b)
Q3 = ~4, sin I - cos I(qx cos § - qy sin 8) . | (6-12¢)

Congistent with the assumptions of Brekke, et al. (1973, 1974a) and dis-
cussions in Sections I and IV, the electric field is assumed to be uniform, and
the component parallel to the geomagnetic field is assumed to be negligible.

In the plasma coordinate system-this is given by

- . (6-13a)
E3 0

If this 1s used in equation (6-12c¢), Ez can be expressed in the terms of Ex

and E_ as
y

E = - cot I(E_. cos § - E_ sin §) . (6-13b)
z X y

When the ion momentum equation (6-9) is written out in plasma coordinates,
the directional coupling due to the Lorentz force can be removed algebraically

giving the explicit results

— - \2

P~ —_r w E w E
Ve, = 1 v .+ B S & c+v ) + L 2 c
il — 7 \2 nl — B n2 - B
1+ (wi/vin) ., Vin Vin
o _ ; (6-14a)
- — \2
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Wi™Vin? L Vin Vin :
= X 6—14(:
Vi3 =¥ ( )

n3



The neutral velocity component equations in local geographic coordinates are

2
avnx " 9 Ynx  —
FT i Vi Vox ~ Vi ¥ 2vny Qp sin X (6-15a)
n Jz
Bﬂl nnazﬂl _
v = p—-——lz - \)ni(vny - viy) - 2vnx QE sin A (6-15b)
n 93z
v =0, (6-15c)
nz

where ) is geographic latitude. io obtain the viscous terms in this form, it
is assumed that the viscosity coefficient varies slowly in altitude compared with

neutral velocity variations, an assumption which has been found to be valid.

The set of neutral velocity component equations is seen to be a set of
coupled (in the coriolis terms) partial differential equations, first order in
time and second order in space. In addition to being coupled among themselves,
these equations are coupled to the ion equations through the collision terms.
Although the ion equations are of a time-independent form, the ion velocities
are implicit functions of time through the time dependence of the electric
field and the neutral velocities. Since E and ;;i (which varies directly with
Ne) are specified outside the system of equations (from scatter radar observa-

tions), numerical solution is the only feasible approach.

Collision frequencies are computed according to equation (4-1l4c) and the
species collision frequencies presented in subsection 5.3.3. Because static
models of the neutral atmosphere and ion composition are employed, the ion—-
neutral collision frequencies ;in remain fixed throughogt the calculation.
However, as noted above, Voi varies with Ne and must be updated from observation.
The viscosity coefficient is evaluated from equations (5-6la, b). Since it
depends only on the neutral model, the viscosity altitude profile is constant

throughout the calculation.
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6.3.2 Numerical Methods and Boundary Conditions

To solve equations (6-6la, b) an explicit finite difference technique is

employed. For this discussion, let subscript m designate the spatial grid

The

partial derivative of a variable V with respect to time is approximated by the

index and superscript n the time grid index, as shown in Figure 6-5.

finite difference expression

v _'m " Vm | 3
at At ’ (6-16)

where At is the uniform grid spacing in the t direction. Similarly, the
second partial derivative of V with respect to z is approximated by
n n
a_(ﬂ)z Vo~ 2V Voo
dz \9dz (Az)2

where Az is the grid spacing in the x-direction.

s ’ (6~17)

To use these expressions, equations (6-15a, b) are first placed in the

form
avnx azvnx
ot = Q(z) 322 + R(an’ vny’ Vix? z) (6-18a)
avn 32vn
5t - Q(z) *Zaxz + S(v__» Voy® Viy® z) | (6-18b)

where the functions Q, R, S can be identified by comparison with equations (6-

15a, b).

When the derivatives in equations (6-18a, b) are replaced according

to equations (6-16) and (6-17), the resulting equations can be pléced in the

. form

nt+l _

n At n n n
(vnx)m - (vnx)m + (Az)2 Q(zm)[(vnx)m+l - 2(an)m + (vnx)m-l]
e RGP ()P v 00 2 (6-19a)
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Figure 6-5. GRID POINT DESIGNATION IN DISCRETE z-t SPACE FOR A
VARIABLE V
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n+l n At - n n n
(Vny)m = (Vny)m + (Az)2 Q(zm)[(vny)m+l - Z(Vny)m + (vny)m-ll
+ At S((vnx)mn, (vny)m“, (viy)::ﬂ, zm) (6-19b)

Evaluation'of equations (6-19a, b) requires the specification of initial
and boundary conditions. For initial conditions, the neugral velocities are
taken to be zero. Consequences of this assumption will be discussed later.
Because a second spatial derivative 18 involved; two boundary conditions must
be specified. For finite difference equations of the form in (6-19), it is
appropriate to specify one condition at each boundary in z. Thus, the lower
boundary is taken to be 90 km and the neutral velocity is assumed to vanish
there. At the upper boundary, z = 250 km, the vertical derivative of the
neutral velocity is assumed to vanish. Tests involving changes of these bound-
ary conditions have shown that the lower boundary condition has negligible
effects at 100 km and above, while the upper boundary condition has negligible
effects on results at and below 200 km. These results are consistent with
similar results reported by Fedder and Banks (1972), who find that significant
boundary condition effects are limited to within about one scale height of the
boundary (scale heights are approximately 5 km at 90 km and 40 km at 250 km).

It has been found that the grid steps At and Az cannot be selected inde-
pendently, due to numerical instabilities. Although the form of equations
(6-18a, b) is somewhat more complicated, the stability critesion for the usual
diffusion equation (equations (6-18a,b) with R and S set to sero) has proved
to be a reliable indicator. This criterion, as given by Potter (1973),

requires that the inequality

ae < 1 (6-20)

be satisfied throughout the domain of the calculatlon. Accordingly, the grid
steps employed are Az = 5 km and At = 20 seconds. Inequality (6-20) is satis-
fied at all altitude from 90 km to 250 km, although the limit is approached.at
the upper boundary. Considerations of requirements of the physical problem,

computer storage and processing times, and numerical stability were all taken
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into account to arrive at the grid step sizes and location of the upper

boundary for the calculation.

One of the early numerical tests performed with this set of equations was
the use of the time-dependent ion equations of motion, to determine conditions
for which the time-independent form is valid. The time-dependent ion equations

of motion -have the finite difference form (taking the l-component as an

example)
n+l n — E1 — n
Vipn = Gy TAE l:‘”i B ¢t 0oy
- n n
- Vin[(vil)m - (vnl)m ]:l (6-21)
With an initial condition of 31 = 0, it was found that for At > Tin® where Tin

= 1/3;n is the mean time between ion-neutral collisions, numerical instabil-
ities rapidly developed. This is easily understood from the equations.
Initially, the electric field term is the only nonzero term in both ion and
neutral equations. If it accelerates the ions for a time At > Tin® the ions
attain an unrealistically large velocity. Neutrals respond slowly to ion
collisions because of much larger number densities, so the neutral velocity
remains close to zero. In the next time step and thereafter, the collision
term in (6-21) dominates, with the result that the sign of the velocity
alternates with each succeeding time step, and grows rapidly in magnitude.

For At < Tn® this does not occur, and reasonable results can be obtained.

For a constant electric field, it was found that the ion velocity reaches
essentially equilibrium values in 6 to 8 collision times (Tin). Since Tin
varies from 3 x 10_5 seconds at 90 km to 1 second at 250 km (for models used
heré), a wide range of equilibrium times corresponds to the altitude range
under study. The difficulties in using equation (6~21) under such circum-
stances are apparent. However, the important point of these results is not the
range, but the fact that all times are short compared to the time scales of
interest here. Since the Chatanika incoherent scatter radar- observations are

averaged over about 6 minutes, that is the time scale for change of the elec-

tric field. Hence, use of the time-independent ion momentum equations introduces
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essentially no error into the calculation; and the ion velocity field can be
considered to be always in equilibrium with the electric field.and neutral
velocity field. This results in a considerable reduction of the computational
effort. '

.64 - MODEL CALCULATIONS

Before performing an extended calcﬁlation and attempting to interpret. the
results, it is helpful to assess the Importance of the various factors involved.
While order—-of-magnitude estimates are useful in judging the immediate effect
of a variable on the system, total effects over extended periods of time are
difficult to determine by this means. This is one purpose of the model calcu-
lations to be presented here. By adopting a simple electric field model and a
static ion density model, the temporal response, or riée time, of the ion-
neutral wind system can be determined. Effects of coriolis and viscous forces
can be ascertained by selectively femoving these terms from the equations and
re-solving the problem. Once these effects are known, a better interpretation

of the results for the physically realistic problem can be formulated.

A model calculation of this nature has been performed by Fedder and Banks
(1972). They consider a polar cap case in which magnetic field lines are
vertical; and they retain the time-—dependent form for the ion equations.
Otherwise, their aséumptions, approximations and.resulting equations corre-
spond to those above, with one important exception: they neglect the coriolis
term. Effects of the coriolis force have been found to be significant by
Heaps (1972) in calculations of high-latitude thermospheric winds over extended
times; and it 1s expected that they should be significant here also. Since
the analysis of Fedder and Banks (1972) treated the effects of collisional
coupliﬁg and viscosity in some detail, the model calculations here are primar-
1ly to supplement those results by including coriolis effects. To accomplish’
this most clearly, the quasi-step function electric field used by Fedder and
Banks (1972) is employed here:

£ = -E(t)y - (6-22a)

where
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where
E(t) =0, t <O
E(t) 20[l - cos(nt/1800)] mV m— ,
(6-22b)
0 < t < 1800 seconds

E(t) = 40 mV m-l, t > 1800 seconds

For these calculations, geomagnetic field geometry corresponding to
Chatanika, Alaska is used. Differences in results between this geometry and
the polar cap geometry of Fedder and Banks (1972) are small except for the
vertical component of ion velocity, which is not considered in detail here. A
representative ionization profile is used in conjunction with the ion compo-
sition and neutral atmospheric models previously discussed to compute required
collision frequencies. The ionization-~density profile and resulting collision-

frequency and gyrofrequency profiles are shown in Figure 6-6.

Calculations for the electric field model in equations (6-22a, b) have
been carried out’for a period of 24 hours, both with and without the coriolis
force. The ion and neutral horizontal velocity components (geographic coordi-~
nates) thus obtained are shown in Figure 6-7 as functions of time for altitudes
of 115 km, 125 km, and 150 km. Velocities computed without the coriolis force
in Figures 6-7 a, c are consistent with the results of Fedder and Banks (1972);
the more rapid response of their neutral velocities to the ion velacity driving

force is due to their use of larger collision frequencies.

In this approximation, it is seen that neutral velocity x-components
(Hall drift direction) approach the ion-flow velocity over time periods of ten
hours and more, the longer times corresponding to lower altitudes. This
altitude variation of response times is understood in terms of neutral densi-
ties increasing exponentially with decreasing altitude, in effect reducing the
degree of ionization, even for little change in ionization number density. At
low altitudes, the neutral atmosphere thus requires a larger total transfer of
momentum to achieve a given velocity than at higher altitudes. Since the rate

of momentum transfer varies less with altitude than the neutral number density,
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more time is required for the neutral velocity at lower altitudes to come into
equilibrium with the ion (collisional) driving force. From the opposite point
of view, the effect of the neutrals on ions is clearly evident in the response
of the ions to the electric field. At 115 km, this response time is very
large and is closely coupled with the neutral response time because of the

close collisional coupling of the ions to the neutrals.

The y-components are more difficult to understand immediately because
they involve a balance between the geomagnetic field and collisional coupling
with neutrals in controlling ion motions. However, upon reference to equations
(6-14a, B), it is seen that because of ion~neutral collisions at lower alti-
tudes, both components of both the electrical field and neutral velocity
affect each component of ion velocity. This directional coupling is the
origin of the relatively large ion velocities parallel to the electric field
(Pedersen drift) in the early stages at 115 km and 125 km. The neutral veloc-
ities again respond to the collisional coupling and approach the jion velocity.
However, because of the changing neutral velocity components the ion velocity
y-component begins decreasing and becomes smaller than the neutral velocity.
At this time the inertia of neutral gas results in a "coasting' motion, now
becoming a driving force for the ions in maintaining their motion. At the
same time neutral momentum is being diffused in altitude through viscous

effects, as discussed in detail by Fedder and Banks (1972).

These results may now be compared with those of Figure 6-7b, d, for which
the coriolis term is included. The effects on the neutral velocities are
profound, and extend to the ion velocities at 125 km and 115 km where the
collisional coupling of ions to neutrals is important. The magnitudes of the
neutral velocity x-components are reduced to about one third of the equilibrium
values being approacﬁed when coroilis forces are neglected, with the sign
changing at lower altitudes. In the y-components of neutral velocity, the
differences at different altitudes are particularly pronounced. Since the
coriolis force basically couples the directions, the oscillatory behavior is a
manifestation of a rotating velocity vector. The different effects at differ-
ent altitudes are due to the variation of response times of the neutral velo-

city field with altitudef
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For example, at 150 km, where the response time is somewhat smaller than
the 13 hour period of the coriolis term, the x-component of neutral velocity
begins to grow rapidly, as in Figure'6—6a. Through coriolis coupling, however,
part of this motion is diverted into the y-component. When a final steady-
state is achieved the y-component is much larger than for the previous case
and the x—component is much smaller. This is not a simple case of just
rotating the velocity vector however, because the magnitude of the velocity
vector is smaller when the coriolis force is included. The neutral response
to collisions with ions is not rapid enohgh for the neutral velocity to ap-
proach the ion velocity before coriolis effects significantly alter the

direction of the former.

At 115 km, it appears from Figures 6-7b, d that the neutral velocity
field will oscillate due to the coriolis force for a considerable period (of
the order of days). This appears to be due to the fact that the response time

of the neutrals to ion drag exceeds the coriolis period (see Figures 6-7 a,b).

An immediate consequence of these results is that large ion-neutral
velocity differences are maintained at all altitudes, even when an equilibrium
condition is reached. This is in contrast to the case when coriolis forces
are ignored, in which the equilibrium condition is identical ion and neutral
velocities. As a result, Joule heating, which varies as the square of the
ion-neutral velocity difference (see equations (4~52) (4~54)) should remain
relatively large under equilibrium conditions when the coriolis force is taken
into account. This is consistent with the conclusions of Heaps (1974), who
examined the effects of the coriolis force on Joule heating in a single-fluid-

approximation calculation.

Effects of coriolis forces are now examined explicitly in terms of alti-
tude structure, Calculated altitude profiles of the velocity fields are shown
for t = 5 hours and t = 24 hours for no coriolis force in Figures 6-8a, c and
with the coriolis force included in Figures 6-8b,d. Figure 6-8a shows the
extent to which the equilibrium is approached in 5 hours and Figure 6-8c shows
virtually the final state, when no c;riolis coupling of directions is consi=-

dered. At high altitudes the intuitive picture is fulfilled; below 125 km the
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Figure 6-8.
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complexities introduced by the transition from ion—-neutral collisional cBuplihgﬁ
to ion magnetic field coupling is evident, but with a similar end result: iom

and neutral velocities are almost the same at all altitudes.

In contrast, altitude plots in Figure 6-8b, d, for whicﬁ the coriolis
force ié included, show a very different altitude structure for ions and
neutrals at all altitudes. Effects on the ion welocity are seen to be small
except at low altitudes, as expected. At high altitudes, the profile inm
Figure 6-8d represents virtually an equilibrium configuration,_while‘at low

altitudes the structure can be expected to change somewhat, as discussed

previously.

Similar calculations have been carried out with the viscous terms omitted.
Results are not substantially different from those in which viscosity is
included, however, so those results are not shown. The primary effect of
viscosity is to diminish maximum values of the velocities and smooth out the
altitude variations to a small extent. No significant differences in altitude
structure of the velocity fields are seen. This is not really unexpected, due
to the nature of viscous forces. It may be noted that Fedder and Banks (1972)
found viscosity to be effective in transporting horizontal momentum through
about one scale height. Their calculation was particularly designed to test
this aspect by beginning with a strong vertical gradient at 155 km and no
other driving force in the neutral wind equation. Because the collisional
driving forces maintain the gradients in the present calculations, viscous
forces are not seen so prominently. Under more realistic conditions, effects
could well be more pronounced. Nevertheless, viscosity is not expected to
alter the basic altitude configuration of the velocity fields to any great

extent.

The inverse situation is now examined; that is, the decay of the velocity
fields from an initial configuration is calculated for the case in which the
electric field 1is set to zero. It is noted that this should correspond to a
very unlikely condition, because even in the absence of an external electric

field, a dynamo electric field would be generated by the E region wind system.
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However, it was seen in Figure 6~3a that electric fields are observed to "turn
of f" rather abruptly; so this example may not be so unreasonable. 1In any
event the purpose here is simply to gain some idea of the inertial properties
of the wind system, primarily to see how important the initial conditions are

to the calculated winds some hours later.

The initial wind configuration is that shown in Figure 6-7d, which is the
calculated velocity field after 24 hours under the influence of the electric
field in equation (6-22). The full set of equations (6-14) and (6-15) is
employed, as it was to obtain the initial configuration. Temporal variations
for the velocity components at 115 km, 125 km, and 150 km are shown for 10
hours in Figures 6-9a, b, Altitude structure of the velocity fields at-3
hours and 10 hours after decay begins are shown in Figures 6-9c, d. From the
detailed numerical results it is found that the coriolis term dominates the
motion, particularly at lower altitudes. This is evident in Figures 6-9a, b.
Viscosity is found to be more important in the decay mode than when the veloé-
ity field is building up.

Perhaps the most important feature of these results, however, is the
inertia in the 110 km to 120 km region. After 10 hours with no momentum
input, velocities there are reduced by about one half, while at 200 km the
velocities have all but vanished. This indicates that initial conditions for
the calculations with observed electric fields may be significant for an
eéxtended periocd after the calculation begins. It also shows that small elec-
tric fields for the initial 2 or 3 hours of a calculation do not guarantee
that initial neutral velocities will be small or will become small before the
velocity fields are significantly affected by the larger electric fields of
interest. This must be considered in the comparisén of Calculéted and observed

neutral velocities.

Results of interest from these model calculations may be summarized as
follows. In the development of the velocity fields through collisional coup-
ling alone, 8 to 10 hours are required at high altitudes (2150 km) for the

neutral velocity to approach the ion velocity, while at low altitudes (<120 km)
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more than 24 hours are required. The coriolis force plays a significant'

role in both development and decay of the velocity fields. It reduces the'
magnitude of the maximum neutral velocity attained, and maintains a larger
ion-neutral velocity difference in a steady state. The coriolis term causes

an increase in the time required for an equilibrium velocity field to be
achieved, particularly at low altitudes. In the decay mode from large initital
velocities in the absence of driving forces, the coriolis term is dominant.
Finally, large initial velocities can persist without driving forces in excess
of 10 hours at low altitudes; hence effects of initial conditions can be

expected for several hours into a calculation at these altitudes.

6.5 VELOCITY CALCULATIONS FOR 15 MAY 1974

A series of calculations, based on observations made by the incoherent
scatter radar facility at Chatanika, Alaska on 15 May 1974, are now presented.
Since successive calculations are motivated by preceding ones, each set is
examined and discussed in turn before presenting results of the next. This
facilitates clarity and allows interpretation to be developed in an orderly

manner.

6.5.1 Calculated lon and Neutral Velocities as Functions of Altitude and Time

The first set of calculations is the simultaneous numerical solution of
the ion and neutral momentum equations (6-14) and (6-15). The ion mean gyro-
frequency Ei and ion-neutral mean effective collision frgquency ng vary with
altitude but are constant in time under approximations above. From the inco-
herent scatter observations, electric field components are prescribed as
functions of time (shown in Figure 6-3a) and assumed uniform throughout the
region of interest. Remaining parameters in equations (6-14), speed of light
c and geomagnetic field strength B, are constants.  Neutral wind components
are computed from equation (6-15), according to the numerical scheme discussed
in subsection 6.3.2, Neutral mass density LI and viscosity coefficient n, are
functions of altitude but constant in time. Geographic latitude X and angular
velocity QE are constants. The neutral-ion mean effective collision frequency

varies linearly with ionization density and, hence, varies in both altitude and

time. To determine these collision frequencies a collision frequency profile
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normalized to 1 ion cm-'3 (which varies only with altitude) is multiplied by
the ionization density profile appropriate to each.time. A new electric field
vector and ionization density profile.are provided by the incoherent scatter
radar at approximately 6 minute intervals; linéar interpolation is used to

determine values at intermediate time points.

Calculated values of the ion and neutral velocity components in geographic
coordinates are shown as functions of time in Figure 6-10 for altitudes 110
km, 125 km, and 150 km. Altitude 110 km is shown in particular because it
corresponds to the center of the first range gate, data for which is used to
determine the neutral winds in Figure 6-3b. Several interesting features may
be noted in these figures. First, the changing relations of the velocity
components at different altitudes indicates changlng altitude structure in the
velocity fields. This is displayed more clearly in Figures 6-1la, b, ¢, which
show the altitude structure of the velocity fields at UT = 1506, 1714, and
2234 hours. Although these times were selected to display some of the extreme
velocities, the form of the altitude structure is not atypical, as reference
to Figures 6~8 and 6-9 will indicate. Vertical gradients in the horizontal
velocity components can be quite large, particularly at altitudes below 130
km. It is also of interest to observe in Figures 6-10 and 6-11 that the
largest velocities for both ions and neutrals do not necessarily occur at the
higher altitudes, but may also occur in the dynamic transition region, approxi-

mately 115 km to 130 km for this calculations.

A second significant feature of Figure 6-10 is the slow and almost sinu~-
soidal variation of the neutral velocity components, in contrast with the
highly structured temporal variation of the ion-velocity components. This
latter structure clearly follows directly from similar structure in the
electric field components, although the correspondence is not exact. Because
of large numerical superiority, and therefore greafer total inertia, the
neutral gas averages over the short period fluctuations in the ion motioms.
This response is not unexpected, since it is comsistent with qhe relatively

long response times seen previously in the model calculations.
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(a) AT UT = 1506 HOURS '
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A major difference between this calculation and the model calculations,
however, in addition to the large electric field fluctuations in this case, 1is
large fluctuations in ionization density. This is illustrated in Figure 6-12
where the temporal variations of ionization density at 100 km, 110 km, 120 km,
and 130 km are plotted. Large fluctuations at a given altitude in short times
are frequent during the times of greatest electric field fluctuation. It
might be suspected that resulting fluctuations in the neutral-ion collision
frequency ;£i could induce similar variations in the neutral velocities. Upon
examination of equations (6-15) however, it is recognized that an order of
magnitude increase in the collision frequency ;;i has about the same effect as
a similar increase in the ion velocity (electric field): an order of magnitude
increase in the collision term. Over short times, neither produces a large

variation in the neutral velocity, again because Nian << 1 at all altitudes.

Considerable attention Is directed to the temporal variation in the
neutral velocity components because the neutral velocity components inferred
from the Incoherent scatter radar observations, shown in Figure 6-3b, have
large fluctuations in short times. Thus, the temporal structure of the observed
neutral winds more closely resembles that of the calculated ion velocities
than that of the calculated neutral velocities. Even without.considering in
detail the magnitudes of these velocities, the nature of this discrepancy
indicates a problem. If the winds inferred from the radar observations are
consistent with the assumptions made in the data anlaysis and are approximately
correct (indicative of the actual neutral winds at that location), thén from
the discussion above, ion-neutral collision coupling alone cannot account for
them: some important mechanism has been omitted. On the other hand, to the
extent that collisional coupling is important, Figure 6~11 shows that one of
the important assumptions in the radar data analysis for neutral wind determin-
ation is called into question. The data analysis procedure assumes a neutral
wind which is uniform throughout the first range gate, and it is such a wind
that is determined. Figure 6-10 shows that considerable altitude structure
does exist in this region, unless collisional coﬁpling is unimportant, in
which case the data analysis procedure is invalid anyway (Brekke, et al.

1973).
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With respect to the effect of altitude structure on the analysis of radar
data, two possibilities can be seen. The radar is assumed to average the
observed ion velocity over altitude as 1n equation (6-4). Weighting the
average are the electron (ion) density Ne(é) and the radar veightihg function
W(z). In Figure 6-12 it was seen that electron densities can change rapidly -
i? time. Exaﬁples of how rapidly the altitude structure of Ne(z) can change
are shown by the altitude profiles in Figure 68-13. It is evident that even if
gge velocity structure remains constant, variation of the electron density
profile can cause a shift in the altitudes most strongly weighted. From
Figure 6-11, it is apparent that small shifts in altitude can correspond to
large changes in velocity. Thus, the scatter radar observations of apparent
temporal variations in ion velocity can result solely from variations in the
electron density profiles, due to large vertical gradients in the velocity
fields. Brekke, et al. (1974a) note this problem; although the mode of oper-
ation for the present experiment improves the situation somewhat, due to

better time resolution, it nevertheless remains a difficulty.

A second possible effect 18 due to variation in the ion velocity altitude
structure itself. Since the ion velocities are immediately affected by elec-
tric field variations, over a period of a few minutes the ion velocity altitude
structure can change considerably, while that of the neutral velocity ié
virtually unaltered. If an effective altitude of observation is assumed to be
defined as that altitude at which the weighted average velocity and the actual
velocity agree, it can be seen that this effective altitude can shift by a

change of ion velocity altitude structure, even for fixed electron demnsity

profiles.

It appears possible that some of these changes may be adequately compen-
sated by the daté analysis procedure, equations (6-6) and (6-7). 'For'ekample,
effects of variations in electron density profiles are taken into account to
some extent by different values of k-coefficients which essentially weight
different altitudes (see Figure 3 of Brekke, et al. (1973); note, however,

that their «.,' and Ky labels are reversed). Also, since both the electric

1
field and ion velocity appear in equation (6-7), changes in the one may
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compensate changes in the other, with little effect on the neutral velocity

determined by that equation.

Nevertheless, the question remains, how are the calculated velocities of
Figure 6-9 to be compared with the results of observation in Figure 6-3?
Evidently, the answer is not to choose a fixed altitude and compare the calcu-

_lated velocities as functions of time at that altitude with observed velocities.
A promising approach, however, appears to lie in averaging the calculated
velocities in altitude after the manner of the radar; that is, numerically
simulate the radar averaging. This has the advantage of providing a common
form for the observed and calculated velocities, making a valid comparison
possible. It also offers prospects for resolving some of the difficulties

noted above.

6.5.2 Woeighted Aititude Averages of Calculated Velocities

- Computation of weighted altitude averages of the calculated velocities
presents no difficulties. Equation (6-4) defines the manner in which the
average 1s weighted, and equations of this type are used to compute weighted
altitude averages for both ion and neutral velocities. Numerically, the
procedure is the same as that used in computing the k-coefficients by equations
(6-63 through c¢). For ion velocities this result should simulate the inco-
herent radar observation, to the extent that the calculated altitude structure
corresponds to the actual altitude structure. For neutral velocities, the
result represents what the radar would obtain if it were sensitive to the

neutral gas in the way it is to ions.

This calculation also provides an opportunity for assessing the accuracy
of the data analysis procedure for determining the neutfal wind. On the one .
hand, the presumably accurate weighted altitude average of the neutral wind is
obtained by direct numerical integration. On the other hand, the same is done
for the ions, which should accurately represent the radar result. By treating
this result as an observation, that is, by using it as an input to the data
analysis procedure (equations (6-6) and (6-7)), neutral/winds are obtained

reflecting all systematic errors and inconsistencies inherent in the procedure.
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Direct comparison with the accurate results then provides a test of the

accuracy of the procedure under realistic conditions. It is emphasiied that
this is not a comparison of theory with observation; rather it is a test of
the data analysis procedure (different theory) to see how well it represents

what it is supposed to represent.

Before presenting results of these calculations, it is helpful to intro-
duce some notational guides. Used consistently, these will help reduce con-
fusion as different velocities are examined and discussged through the remainder
of this section. Calculated velocities will be denoted byllower case 3, with
gubscript i or n indicating ion or neutral as before. A bar over the velocity,
;; will indicate a weighted altitude average. Observed+yelocities, or those
obtained from observations, will be denoted by capital V} where the bar.indi-
cates that it is a weighted altitude average. Within this framework, veloc-
ities will be distinguished by whatever means is appropriate, consistent with

pPrevious notation.

In terms of this notation, the weighted averages of the ion and neutral
velocities obtained directly from equation (6-4) (g; its analog) are denoted
by ;; and ;ﬁ. The neutral velocity obtained from ;; by means of equation

(6—7), as discussed previously, is genoted by ;;'. Horizontal components

(geographic coordinates) of ;£ and ;£ are presented in Figure 6-14.

>
Examination of ;;, with reference to $n at constant altitudes in Figure
6-10, shows that the process of taking weighted altitude averages introduces
considerable structure into the time variation of the velocity. It can be
inferred that fluctuation of the electron density profile is the cause, since
W(z) does not vary in time and the neutral wind is seen .in Figure 6-10 to vary
relatively slowly at all altitudes. If the general trend of ;gg is taken as a
reference in Figure 6-14, it appears that perturbations of up to 50 percent
can result from such shifts in the altitude weighting. The absence of similar
large perturbations in the y-component appears to be due to the different
altitude structure and smaller magnitude of this component during periods of
large electron density fluctuations (see Figures 6-11 and 6-12)., Finally,

even though the weighting function W(z) is centered at 109 km, reference to
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Figure 6-10 shows that the magnitudes of ;;x and ;;y correspond to altitudes
several kilometers higher, the exact altitudes varying with the electron
density profiles.

-+ ->

The comparison of ;h with ;Q'

in Figure 6-14 demonstrates that the+data
analysis procedgre consistently underestimates the actual magnitude of ;ﬁ

(and therefore V;) by amounts ranging up to 40 percent. This appears to be a
systematic effect associated with the altitude structure-of the neutral wind,
since the more Eransient effects of electron density fluctuations are evident
in both ;g and ;;'. The notab1e+feature of this compirison, however, is how
well the temporal variations of v are reproduced by vn'. With allowance for
the systematic bias in magnitude, it is clear that the data analysis proqedure
does provide a reasonable representation of the weighted altitude average of
the neutral velocity. However, it is equally clear that the time variation of
this velocity is not the same as a straight altitude average of the neutral

wind, because the weighting due to Ne(z) has been seen to introduce some of

this variation.

With regard to the magnitude of the velocities determined by equation
(6-7), a brief digression is instructive. To assgure that the data analysis
procedure was being executed exactly as prescribed by Brekke, et al. (1973), a
portion of the data for 15 May 1974 was processed through the computer program
used for that study by J. R. Doupnik and P. M. Banks, and used to verify
comparable calculations in this investigation. Proper use of the p;ocedure
has been comfirmed. However, in the course of this verification it has been
seen how sensitive the magnitude of the velocity is to model values entering
into the collision frequency ;;n' To compute ion—-neutral collision frequencies,

Brekke, et al. (1973, 1974a) have used the expreésion

5. =7.5x109y8 (6-23)

in n

with the total neutral number density Nn obtained from a neutral atmospheric
model given by Banks and Kockarts (1973), corresponding to an exospheric
temperature of 1000°K. Collision frequencies used here are computed according

to equation (4-14c) from the individual species collision frequencies ‘given in
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subsection 5.3.3. They also depend on the ion composition model and neutral
atmosphere'model discussed in subséétion 6.3 When these different approaches
are taken and the final values are computed and compared, the collision fre-
quencies, used by Brekke, et al (1973, 1974) are larger than those .used here -
‘by a factor of about 1.5 at 90 km, increasing with altitude to a factor of 2
at 160 km.

Neutral winds calculated accgrding to equations (6-6) and (6-7) by
Doupnik and*Banks are denoted by V', while those calculated in this study are
denoted by V. This notation indicates that both are computed from the obger-
vational data. Horizontal components (geographic coordinates) of V' and V
for 0600 hours UT to 1800 hours UT on 15 May 1974 are shown in Figure 6-15.
It is emphasized that both of these represent "observed" neutral wind veloc-
ities, in the sense that they are obtained from observational data. The
procedure for their calculation is the same; only the collision frequencies
;in differ significaptly. This comparison shows basically the same temporal
variation, but magnitudes are frequently substantially different. These

differences are not systematic in an obvious manner.’

The purpose of this comparison is to emphasize the sensitivity of the
neutral windé derived from observation to the collision frequency model employed
to deduce them. Because of uncertainties involved in the calculation of ion-
neutral collision frequencies, from the pertinent interaction; to the numbers
of each species of ion and neutral particle actually present, it is difficult
to support one set of collision frequencies against another. However, to the
extent that a degree of arbitrariness is involved, its effects on the final

results - neutral wind velocities - should be recognized and acknowledged.

In a study of this nature, such considerations*do not undermine the
comparison between observation and theory, so long as the same collision
frequencies are used consistently in both the data analysis and the theoretical
calculations. There is at least a rough scaling with collision frequency of
neutral velocities obtained from both theory and data analysis, as indicated

by Figure 6-14. One calculation which could be adversely affected, however,

6-53



400 L } L ] i | ' | ' |
CHATANIKA 15 MAY 1974
[
200 —— - . —
L3
nx ' "
—_ o
o
)
L
S |
>
[
g = -
z ! (a)
> [ f—
s
[
[]
H
i -
3
v X-COMPONENTS
_ 400 —— b {POSITIVE TO SOUTH) L~
v
’ nx
- -
0000 AST
—600 T lf T % T ]L T % T % T
600 800 1000 1200 1400 1600 1800
TIME (UT)
400 N | L I L | | L | R
CHATANIKA 15 MAY 1974
200 —
o
bt .
@
£
>
£ 0 (b)
8
w
> b
—200 —4—
Y-COMPONENTS
. ;.: (POSITIVE TO EAST) 5
0000 AST
L]
—400 T % T * T } T % T J[ T
600 800 1000 1200 1400 1600 1800
TIME (UT)

Figure 6-15. NEUTRAL VELOCITIES DETERMINED FROM INCOHERENT SCATTER RADAR
OBSERVATIONS USING THE COLLISION FREQUENCIES OF THIS STUDY
(Vn - SAME VELOCITIES AS FIGURE 6-3b)) AND USING THE
COLLISION FREQUENCIES OF BREKKE ET AL. (1973) (Vn'):
(a) x-COMPONENTS; (b) y-COMPONENTS

6-54



. > > > i
is that of Joule heating, which depends on (Vi - V;)z. Since Vi 1s determined
directly by observation, its accuracy is affected only by the experimental
error. However, because Vﬁ is also subject to this additional bias in the
data analysis, a Joule heating calculation is susceptible to similar error.
This is merely noted for future studies because no such calculation is cérried

out here.

With that digression concluded, the primary comparisdn can be Eade between
the theoretical weighted altitude average of the neutral velocity, Vo and
that determined from observation, Vn. These are presented in Figure 6-16.

The initial impression is one of suRstantial disagreement. First, despite the
temporal structure introduged into v, by taking the weighted altitude average,
the temporal variation in Vn i8 larger in both frequency and magnitqge of
fluctuations. From the comparison in Figure 6-14, it is clear that Vn is a
reasonably accurate reflection of the weighted altitude average of neutral
velocity in terms of the observational data. However, Brekke, et al. (1974a)
note that the data represent time averages - for this experiment over a period
of 6 minutes. If velocities or electron densities are changing substantially
during this time,\Ehe results will be inaccurate. It is evident that this
happening when large differences are seen between consecutive measurements;
and Figures 6-3a and 6-12a show this to occur frequently in this experiment.
So these large rapid fluctuations must be taken as a qualitative indication of
variability, rather than a quantitative measure of reality. The more stable
quantities are a more accurate measure of the physical variables.

= >

Even from this point of view, the discrepancy between va and Vn remains
substantial. Two characteristics are apparent. First, the general magnitudes
of th and V; are considerably smaller than the bzoad mgiimums attained by

Vox and Vﬁy. .Secondly, the general directions of Vg and ;£ bear little coher-
ent relation to one another. Consequently it can be concluded that the theoret-
ical basis for the calculated results is inadequate for describing the iono-

.spheric conditions actually present when the observations were made. However,
since the velocities calculated theoretically are somewhat larger in magnitude

than those observed, the collisional coupling is evidently important. It
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appears that other mechanisms of comparable importancé are operating in at
least partial opposition to the collisional force so that the build-up of

neutral velocities is inhibited.

It is helpful to recall briefly the basis of the theoretical calculation
in order to see the implications of these results. The physical model is one
of large electric fields of magnetospheric origin causing ions to move with
large flow velocities. Some of this momentum is transferred to the neutral
gas through collisions, causing it to move. The neutral gas motion is then
modified somewhat by viscous and coriolis forces, these modifications being
coupled back to the ions by collisions. From the comparisons in Figure
6-16, these processes are important, but insufficient to describe the actual
physical behavior of the sytem. However, more information is now available
than initially. Not only are velocities due to collisional coupling known,
but the size of the discrepancy between these velocities and the observation
velocities is known. This information can now be used to estimate the terms
omitted form the theoretical analysis, that is, those terms required to resolve

the discrepancy.

6.5.3 Estimates of Pressure Gradients

In order to carry out a calculation of this nature the original assump-
tions in subsection 6.3.1 must be reviewed. Those involving the ion momentum
equation are on a sound physical basis and appear to require no modification.
However, in the neutral momentum equation, the neglect of horizontal gradients
was recognized as a mathematical expendient at the outset; this must now be
reconsidered. The uncoupling of the neutral vertical component and use of
static equilibrium model in its place remains an approximation, but probably
not a major contributor to the discrepancies in the horizontal component.
So, the primary requirement for more realistic horizontal neutral equations

of motion appears to be the inclusion of horizontal gradients.

Thus, it is now assumed that the neutral velocities determined from

incoherent scatter radar observations obey the following equations of motion:
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In order to make use of the observational data, weighted altitude averages are
required. This is accomplished formally by multiplying equations (6~24a, b)
by Ne(z) W(z), integrating over the first range gate, and normalizing to Iw
(equation (6-6d)). When this is done the results may be written

3V N W '
_nx _ __1( e 3p 1 J n_ g2
- -5 f P ax G2 T N WO T, de

1 Moo _1 _
+ jnewp p (v.v’n)dz I Jne W(Vn- \7)vn-x dz

3IW n W
O -V, )+2qe. Vsl (6-25)
_vni( nx ix) ) ny sin A

—% -_—
where Voi 1s the weighted altitude average of Vog® after the manner of equation

i
(6-4). An analogous equation may be written for Vny'

Except for the last term in this equation, all terms in which the integral
symbbl is not written explicitly must be considered approximations, since they
do not follow directly from equation (6-4). The left side in particular
requires that electron densities vary slowly during the interval in which the
time derivatives are evaluated. Since successive radar observations are used,
this is consistent with the similar requirement for accurate observational
data. It must be noted that only V;x and V;y are known from observational
data. So those terms remaining as integrals are to be regarded as unknown

quantities.
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To make a comparison with the calculated results, a similar operation

must be performed on the original equations (6-15a, b). This gives

- 2
v n N W3v _
3:x = %%-J e gx dz _.%— J vni(vnx - vix)Ne W dz
W Ph a3z W
- + 2 QE vny sin A (6-26a)
— 2
aVn 1 nn ] Vn 1 —
_3E1-= i—-J ——-———Ez-Ne W dz - E—-J vni(vn - vy )Ne W dz
W Ph 5z W o Y
-2 QE Vox sin X . (6-26Db)

Since Vox and vny are known as functions of altitude, the integrals in these

equations can be evaluated numerically without difficulty; that is, each term

i8 a known quantity.

The difference between equations (6-25) and (6-26a) is now taken; this

results in

v n %V a2y
ay nx _ 1 N w2 nx _ nx| 4,
at nx ot Iw 2

W € n axz 3y
N W
+3—%—JNewng(V-Vn)dz-1I§ -%P-dz
W n W n X

[ Ne W(Vﬁ . V)Vnx dz + 2 QE sin A(Vny - vhy)

1
Iw

- == L [ w—
vni(an - vix) + Iw J Ne W vni(vnx - vix) dz (6-27)

with a similar equation for the y-component.
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Several of these terms are probably small and can be omitted. The first
term on the right side is negligibly small if the altitu&é structures of an
and V.x are similar, or if both terms are small. This term for Vix has been
found in numerical calculations to be always at least one to two orders of
magnitude smaller than the collision terms at these altitudes. Moreover, it
seems unlikely that an has larger vertical velocity gradients, since the
magnitude of an is generally smaller and vertical gradients in V.x are them—
selves large. Hence, it appears reasonable to omit this term. As another
approximation, the other viscous terms (second and third terms on the right
side) are assumed negligible in comparison with the nonlinear term (fifth term
on the right side). This seems reasonable from order of magnitude considera-
tions, which can be specified more precisely than in Section IV because condi-
tions are more restricted. The ratio of viscous to nonlinear terms is given

by (order-of-magnitude only)

2
(n, V/on L7)

{ s 1072 , (6-28)

"n
v /L Pa V L
where n, 10-4 poise, V - 104 cm s_l, Py 2 2 x 10-12 gm cm—3 and L is a

typical horizontal scale length exceeding 106 to 107 cm.

With these approximations, equation (6-27) is simplified and rearranged

so that unknown quantities appear on the left side while terms which can be

evaluated are on the right. The result is

1l 1 3 L . = v -3
I I N W[ Ny + (Vn V)Vdez 2 QE sin )‘(Vny v )

W e Pn ny
W -V, )+ v, d
- vni( nx ix) Iw Ne W vni(vnx - vix) z
a?fnx a?nx
L3¢ " Tee | ¢ (6-29a)
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The corresponding equation for the y-component is

1 3%, & . = - v -
Iw J Ne Wl:én 5y + (Vn V)Vn;] dz - 2 QE.sin A(an vnx)
Y& Vy+= |8 wy d
- vni( ny - iy) Iw e Yni (vny - viy) z
v v
- —szz-— —SEX- . (6-29b)

The left side is seen to include both the pressure gradient and nonlinear
terms. Their relative contributions can be estimated, based on observed
velocities, if it is assumed that the horizontal scale length L is approximately
the same for both pressure and velocity variations. With that provision, the

ratio of nonlinear to pressure gradient terms is (order-of-magnitude)

(Vﬁ ’ V)an Mn vn2
~ . (6-30a)
°n
1

From Figure 6-16, observation values of Vn are of the order of 100 m s .
With assumed values of m - 25 AMU and Tn ~ 400°K, consistent with the neutral

model employed, the ratio is

-1

w_ . VDV
—_—= < 10 . (6-30b)

3ap
9x

U|F‘ﬁ

n

Actually, velocities in Figure 6-16 sometimes exceed 100 m s_l by factors of 2
to 4; and, on the other hand, T“ very likely exceeds 400°K by substantial
amounts, on occasion, due to local heating. For this reason, the nonlinear
term is retained in equations (6-29a, b). However, from (6-30b), it is clear
that it is the pressure gradient which is generally being evaluated by these

equations.

Numerical evaluation of terms on the right side of equations (6-29a, b)
gives the accelerations shown in Figure 6-17a, c¢. These are based on the

calculation and observation values shown in previous figures, and at time
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points corresponding to the observations. The rather large fluctuations which
frequenfly occur between consecutive points tend to obscure the general. trend..
Since they may result from inaccuracies in the data, due to rapidly changing
conditions, and from contributions from the nonlinear term for the larger
velocities, these fluctuations do not necessarily represent good values of

the pressure gradient. To see the general magnitude of this term more clearly,
these fluctuations are smoothed somewhat by taking simple averages between

consecutive points. These results are shown in Figure 6-17b, d.

Despite this averaging of results, considerable temporal structure remains.
Nevertheless, trends in the magnitude and direction of the pressure gradient
are now more apparent, particularly during the second electric field enhance-
ment. In the x-component, the first two hours indicate no definite direction.
During the first enhancement (0600 to 1100 hours UT; see Figure 6-3a) this
component fluctuates considerably, but appears to be somewhat more negative
than positive, indicating generally higher pressures (heat sources) to the
north. Between enhancements, the pressure gradient is relatively small, and
perhaps slightly more negative (northward) than positive. For the duration of
the second electric field enhancement (1200 to 1800 hours UT),-the meridional
pressure gradient is predominately positive, indicating heat sources primarily
to the south. Thereafter, this component becomes small, fluctuating about
zero for about two hours, and then remains small but primarily negative C(heat

sources to the north) for the remainder of the experiment.

A similar examination of the y—-component of the pressure gradient reveals
both similarities and differences. The initial two hour period is again
characterized by small magnitudes with indefinite direction. During the first
electric field enhancement, the sign is more definite than for the x—component
and the fluctuations smaller in amplitude. The predominately positive pressure
gradient (heat source to the east) appears to become primarily negative
shortly before 1000 hours UT and remains moderately small until about 1230
hours. For the duration of the second enhancement this component is primarily
negative (heat sources to the west), although large rapid fluctuations occur

between 1500 hours and 1800 hours UT. In contrast with the x—component,

6-66



'however, the y-component does not become appreciably smaller in magnitude
after termination of the second electric field enhancement. Rather it becomes
more definité,in its sign, still indicating heat sources to the west. This
situation remains until about 2200 hours UT, when the sign becomes.indefinite.

Magnitudes of these accelerations are seen to be a few tens.of centimeters
per second per second during electric field enhancements and a few centimeters
per secoﬁd per second otherwise. This distinction is less clear for the y-
component, however, than for the x—component. These magnitudes may be compared
with pressure gradient accelerations used in global theoretical models of the
neutral wind system. Pressure gradients in the models of Kohl and King (1967)
and Blum and Harris (19751 are both based on one of the neutral model atmos-
pheres of Jacchia. Amplitudes of these pressure gradients for E region alti-
tudes are < 1 cm s—z. Thus, pressure gradients during disturbed conditions at
high latitudes are typically at least an order of magnitude larger than those
driving the global neutral wind models, which are due primarily to solar
heating at low latitudes. It is therefore not surprising that observations of
neutral winds at high latitudes under geomagnetically disturbed conditions
frequently disagree with these models (e.g. Stoffregen, 1972; Meriwether,
et al. 1973; Brekke, et al. 1974a; Rothwell, et al. 1974). TFor these cond-
itions no other calculated or experimentally derived estimates of horizontal
pressure gradients are known to be available for comparison. Accelerations

due to ion drag are of the same order as these due to pressure gradients.

To interpret these results, it is important to note a significant differ-
ence between ion drag and pressure gradients as driving forces for neutral
winds. For ion drag the direction of the electric field as well as its distri-
-bution and magnitude must be considered. - Pressure gradients, however, depend
only on the distribution (geometry) and magnitude of pressure enhancements
(primarily heat sources). Since these results involve only pressure gradients,
interpretation requires an explanation of the implied distribution of heat
sources. Local heating, for example Joule heating associated with ioﬁ—neutral
velocity differences at the point of observation, need not be considered,

since it would represent a local maximum for which the local gradient would
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vanish. Rather it is heat sources in surroﬁnding regions, which are not

observed by the radar, that must be considered.

Comparison of the electric fields in Figure 6-3a and the electron number
densities at constant altitude in Figure 6-12 shows that periods of enhanced
electric field occur during the same periods as auroral E layers. This is not
meant on a (time) point by point basis, because large electric field magnitudes
are often -anticorrelated with E region electron densities; “but rather periods
of large rapid fluctuations in electric field magnitude coincide with similar
fluctuations in E region electron densities. Since a developed auroral E
layer is a reliable indicator of auroral activity, it can be concluded from
Figure 6-12 that the ionosphere over Chatanika was iﬂ the auroral oval, that
is, in the midst of auroral activity, from shortly after 0600 hours to about
1800 hours UT, with a possible exception during a brief period between 1200
hours and 1300 hours UT. Further, auroral heating in the form of both energetic
particle precipitation and Joule heating was occurring concurrently in the
same locations. Based on statistical models of the auroral oval (Feldstein
and Starkov, 1967), it can be assumed that before and after this period, all

auroral activity in the vicinity of Chatanika was to the north.

In this context the pressure gradients in Figures 6-17c, d can be examined.
During the initial two hour period, no particular directionality is evident in
the pressure gradient. After Chatanika enters the auroral. oval near 0600
hours UT (2000 hours AST), the pressure gradient indicates that heating lies
primarily to the north and east, which is consistent with the general picture
of auroral activity being concentrated toward the local midnight and early
morning sector (Akasofu, 1968). TFrom 0900 hours to 1100 hours UT (1000 hours
UT is AST midnight), no consistent directions are in&icated; this can be
viewed as a consequence of a somewhat symmetric distribution of heat sources
about Chatanika. The period 1100 hours to 1300 hours is somewhat ambiguous;
a more defailed discussion is deferred. During the second active period, from
1300 hours to 1800 hours UT (0300 hours to 0800 hours AST) the pressure gradi-
ents indicate predominant heating to the south and west. Again the heating

toward the west is consistent with primary activity in the local midnight-and
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early morning sector of the auroral oval. The definite southward direction of
the heat sources shows that Chatanika is well within the auroral oval. Soon

after 1800 hours UT the electric fiéld decreases abruptly to very small values,
concurrent with the disappearance of the auroral E layer. Thus, Chatanika has

left the auroral oval, or vice versa.

After 1800 hours UT, local activity is at a low level. The y-component
of the pressure gradient, however, remains relatively large in magnitude with
a definite westward direction, decaying slowly over the next 4 hours. It
appears that heating on the night side has built up and maintained pressure
differentials which are affecting the dayside region. In contrast, the x-
component drops rapidly to very small magnitudes by 1830 hours UT, and remains
small and essentially undirected for about an hour. Then it becomes definitely
negative, indicating heat sources to the north where the dayside auroral-oval-

cusp region is located.

Separation of spatial and temporal effects in observations at a single
location is difficuit, particularly when it involves a dynamic region like the
auroral oval, which has a relatively fixed orientation with respect to the sun
but can expand or contract due to magnetospheric electrodynamics. Nevertheless,
some plausible inferences can be drawn. The period 1100 hours to 1300 hours
is a good example. Between 1100 hours and 1200 hours UT the electric field
(Figure 6-3a) has become quite small, while a small auroral E layer (Figure 6-
12) persists. Between about 1215 hours and 1245 hours UT the.auroral E layer
vanishes and a large electric field develops. Several possible explanations
for these observations exist: (1) the auroral oval could have contracted so
that Chatanika was to the south of its equatorward border; (2) Chatanika could
have encountered an extended region of low activity (first a region of low
electric field, then low auroral precipitation), while activity continued in
surrounding regions; this could occur by Chatanika votating through a more or
less fixed reglion of low activity, or the region could drift by Chatanika due
to electrodynamic forces; or (3) activity could simply cease in time over a

large spatial region due to source region temporal variations.
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The first possibility does not seem to be supported by the available
information. It could not have occurréd except during the brief period when
the auroral E layer vanished. Calculations of Jones and Rees (1973) show
that an auroral E layer will decay to background levels in a minute or less
after removal of the ionization source. This appears to happen near 1215
hours UT, but not prior to that time. However, during the period of no auroral
E layer, a large electric field develops. For all other times in these obser-
vations, large electric fields occur in the immediate vicinity of auroral
activity. Furthermore, during this same time a substantial pressure gradient
develops directed first toward the south. This could not happen if Chatanika
were to the south of the auroral oval at this time. For this same reason, the
second explanafion.appears more likely than the third. It seems probable that
Chatanika rotated into a slot between bands of activity oriented along the

auroral oval. However, data from other locations would be required to substan-

tiate this.

Similar considerations can be applied to the time period after 1800 hours
. UT. Here the evidence supports the vigw that the position of Chatanika rela-
tive to the auroral oval has shifted té the south. Electric fields and E
layer number densities are consistent with this interpretation. Also tﬁé\x-
component of the pressure gradient favors this view. Heating to the south of
Chatanika is indicated for several hours before. Shortly before 1730 hours
UT, the pressure gradient begins to decline rapidly. This would.be expected
if the auroral oval were contracting northward so that pressures previously
built up in the south were becoming balanced by pressures developing in the
north. Such a balancing is more likely than a decay of the pressure in the
south because these decay times are of the order of hours (Thomas and Ching,
1969; Rees, 1971b). From Figure 6-17c, it appears that approximate balance is
achieved about 1830 hours UT, lasting for approximately an hour. Continued
heating to the north then prevails, shifting the dominant pressure to the

north of Chatanika.

While interpretations such as these cannot be proved without information

covering an extended spatial region, they are consistent with the observations
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at Chatanika and the general morphology of aurofal activity. The results, as
interﬁreted above, support the schematic model suggested by Stoffregen (1972)
for explaining discrepancies between observed high latitude neutral winds and
winds determined from the global theoretical wind models mentioned previously.
Figure 6-18 shows his proposed schematic modification of global temperature
distribution. This proposal is based on an analysis of 25 chemical release
observations of neutral winds, restricted in local time to twilight hours, and

for altitudes generally above 200 km in altitude. Nevertheless, the required

‘heating would take place primarily in the E region and the general features of

the diagram are consistent with the discussion of pressure gradients above.
In particular the westward pressure gradient after 1800 hours UT (0800 hours
AST) is satisfactorily explained, whereas the pressure gradient produced by

solar heating alone should be eastward and of much smaller magnitude.

A possible period of inconsistency is in the first two hours of the
experiment, when auroral heating would perhaps be expected to produce an
eastward directed pressure gradient. However, effects of this heating may be
small, so that some form of balance is achieved with the small westward pres-—
sure gradient assdciated with solar heating and ﬁeating in the afternoon
sector of the auroral oval. Also because of uncertainties involving initial
conditions, the earliest calculated results are not'necessarily reliable; this

could skew the pressure gradient calculation during that time period.

The broad features of the pressure gradient results have been discussed
at some length because it is felt that they are more reliable than the small
time scale features, due both to noise in the observational data, and to
approximations required in deriving equations (6-29a, b). However, the tem—
poral structure evident in Figure 6-17 requires comment. This structure is
élmost certainly not all real. Some is due simply to experimental uncertain-
ties in the observed ion velocities. Likewise, some is due to altitude struc-
ture of the Xglocity fields and the weighted altitude averaging, as was seen
to occur in ;;. It should be reemphasized that the pressure gradients calcu-
lated are weighted altitude averages. The altitude structure of these hori-

zontal pressure gradients is not known. Conceivably, close to rapidly varying
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Figure 6-18.

08 12 T2
——»  WIND DIRECTIONS (NO ACTIVITY)
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-

SCHEMATIC MODIFICATION OF EXOSPHERIC TEMPERATURE DISTRI-
BUTION PROPOSED BY STOFFREGEN (1972) TO INCORPORATE
AURORAL HEAT SOURCES: (a) ORIGINAL DISTRIBUTION (JACCHIA,
1965); (b) STOFFREGEN'S (1972) MODIFIED DISTRIBUTION
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localized sources of Joule and particle heating, it could be complicated, but
vertical motions would likely diminish such complexities rapidly.

Despite these disclaimers, however, the temporal structure should not be
dismissed entirely because there are physical reasons for expecting it to
exist, based on discussions above. If the interpretations made previously are
basically correct, Chatanika was more or less surrounded by particle and Joule
heating while in the auroral oval. From the variability of the electron
densities and electric fields, this heating is evidently highly variable in
space and time. Thus, while heating may, for example, occur predominately to
the south of Chatanika, sudden localized heating to the north may also occur.
Depending on the strength and location of the northern heat source relative to
the observation point, the southward pressure gradient could be diminished. or
even reversed. Hence, rapid changes of neutral wind magnitudes and directions
could be a consequence of the sudden development of heat sources in various

nearby locations and the resultant fluctuations in pressure gradients.

In this context back pressures must be considered. When a moving gas
flows into a stationary gas (or one moving more slowly), density will increase.
The localized pressure build up will result in a pressure gradient (back
pressure) which opposes the motion of the fast gas but also transmits momentum
to the stationary gas causing it to move. As a result, the original fast
moving gas will be slowed and probably diverted. The precise role of back
pressures in the auroral oval itself is difficult to assess. It is possible
that much of the fluctuation in magnitude of the pressure gradients is associ-
ated with back pressures. However, conservation of momentum permits a back
pressure only to diminish the original pressure gradient, not to reverse its
sign. Thus, those frequent fluctuations which involve a reversal of component

direction require a different explanation, such as offered previously.

Finally, some idea of the horizontal scale lengths (L) associated with
these pressure gradients can be gained from order-of-magnitude estimates.
Let A denote values of the acceleration due to the weighted altitude average
of the pressure gradient, as determined from equations (6-29a, b). The order-
of-magnitude is then estimated from
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Based on Tn = 500°K and Eﬁ = 25 AMU, values for L are given in Table 6-3.
Thus, scale lengths corresponding to pressure gradients in Figure 6-17 are
seen to range generally from a few hundred to a few thousand kilometers, which

are not unreasonable.

Table 6-3. HORIZONTAL SCALES ASSOCIATED WITH PRESSURE
GRADIENT ESTIMATES

(em s7%) 1 10 100

L (km) 2x10%  2x103 2 x 102

6.6 DISCUSSION AND CONCLUSIONS

In recent years several amnalyses of neutral wind observational data have
examined the problem of discrepancies between theoretical winds predicted by
global models and those observed under magnetically disturbed conditons.
These have considered altitudes above 150 km; however, results obtained here
are pertinent to those discussions. Basically the issue comes down to whether
ion drag (collisional coupling) or auroral heating (Joule and charged particle
precipitation) is primarily responsible for deviations from the models.
Stoffregen (1972) and Rothwell, et al. (1974) contend that ion drag cannot
account for the observations and that pressure gradients due to heating are
the primary driving forces. On the other hand, Rees (197la) and Meriwether,
et al. (1973) favor ion drag, particularly in the evening and midnight sector;
and the latter specifically argue against pressure gradients as accounting for

discrepancies at other times.
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The ohservations of groups on both sides of the question are based on
chemical releases, which are somewhat brief (lasting a few minutes) and are
restricted in local time coverage. The arguments are semi-quantitative in
nature, relying heavily on the relative directions of the ion and neutral
velocities. The more recent papers on both sides cite the results of Fedder
and Banks (1972) as indicating that the equiiibrium directions for ion and
neutral winds are coincident above about 200 km. In this regard the neglect
of coriolis effects by Fedder and Banks (1972) is significant. Figure 6-8d
shows that a directional difference befﬁeen ion and neutral velocities is
maintained in a steady state, even at higher altitudes, when the coriolis
force is faken into account. From the detailed numerical results, at 250 km
¢n is rotated in a clockwise direction through an angle of 47 degrees from 31
in this calculation. This angle develops over a period of time, but even at 3
hours into the calculation this angle has reached a value of about 30 degrees.
The time for development and the final equilibrium angle depend on the model
‘values used. At lower altitudes the angles can be somewhat larger (e.g. about
56 degrees for 150 km at 24 hours). Such effects should be considered in

future discussions of ion drag.

An additional consideration is the variability of ion velocity. Figures
6-3a, b show that the electric field (hence ion velocity) can change substan-
tially in magnitude and direction while neutral winds at high altitudes are
presumably less variable. Thus, observations over relatively short periods of
time may be subject to considerable deviation from the general trend over a
period of one or more hours. Comparison of ion and neutral velocity direc-

tions for brief periods might then be quite misleading.

Results of these calculations indicate that both ion drag and pressure
gradients due to auroral heating are important. While heating appears to
predominate during this experiment, the effects of ion drag are large enough
to modify the winds significantly, even though not decisively. Moreover, it
is not obvious that these results apply generally. Both Joule heating and ion
drag result from the same physical phenomenon -- ion collisions with neutrals.

Joule heating varies with |$i - 3n|2 while ion drag varies with (31 - 3n).
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It therefore appears that as|3i - 3£| increases, a transition will occur,
below which ion drag will dominate the bulk motion and above which pressure
gradients due to Joule heating will assume that role. An important factor in
this consideration, however, is the spatial distribution of electric fields,
which is the driving function for the ions. This precludes any simple esti-
mate of such a threshold. Furthermore, if particle precipitation heating is
larger than Joule heating the question is moot. The point is that under
different conditions, also to be found in the high latitude ionosphere, ion

drag may predominate.

In summary, the following conclusions are drawn ...w the calculations.
Collisional coupling of neutral particles with ions driven by large electro-
static fields can cause neutral winds of several hundred meters per second,
having considerable altitude structure below about 130 km. Coriolis forces
have the effect of maintaining ion-neutral velocity differences, even in a
steady state for constant electric fields. Attainment of a steady state at
low altitudes requires longer times when coriolis forces are taken into account

than in their absence.

When observed electric fields and electron number densities are used in a
simple collisional coupling calculation, short time variations in these prop-
erties are not reflected in the resulting neutral wind at a given altitude.
The neutral gas inertia is so large relative to the rate of collisional momen-
tum transfer, that such variations are averaged out. However, when weighted
altitude averages of the neutral velocity are computed, short time scale
perturbations of up to 50 percent are found to occur, due to fluctuations in

the electron density weighting factor.

Comparison of weighted altitude averages of neutral velocities computed
by direct numerical integration with those obtained indirectly from similar
averages of ion velocities by means of the incoherent scatter radar data
analysis procedure reveals: (1) magnitudes are underestimated by up to 40
percent; but (2) temporal structure and general directions are reasonably well

reproduced. Magnitudes of velocities determined from the radar data are also
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somewhat sensitive to the collision frequencies used, which includes the
interaction model, the ion composition model, and the neutral atmosphere
model. Some of the temporal structure is associated with variability in
ionization density profiles due to the fact that weighted altitude averages of
ion velocities are observed. With due recognition of these factors, however,
it appears that neutral velocities derived from the incoherent scatter radar
observations give a reasonable indication of the time evolution of neutral

winds.

From a direct comparison of neutral velocities derived from the incoherent
scatter radar observations with the weighted altitude averages of the calcu~
lated velocities, it is found that ion drag is inadequate to explain the
observations. An equation is derived to compute the pressure gradient required
to remove the discrepancies between observed and calculated results. The
magnitude of the acceleration associated with this pressure gradient is found
to vary from a few centimeters per second per second in quieter periods to a
few tens of centimeters per second per second in more active periods. Accel-
erations due to ion drag are of the same order. These are generally at least
an order-of-magnitude larger than those associated with solar heating. Direc-
tions of the pressure gradients are consistent with the location of the radar
relative to the auroral oval and expected auroral heat sources. Fluctuations
in the pressure gradients, to the extent that they are real, are thought to
result from shifting balances in highly variable heat sources and from back

pressures.
It appears that ion drag and pressure gradients are both required to

explain the neutral winds generated in the auroral E region during geomagnetic

disturbances.
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Section VII.
SUMMATION

7.1 SUMMARY AND CONCLUSIONS
This work is comprised of two basic parts: a formal development of the
ronservation equations for ionospheric gases, and an application of these
equations to iohospheric dynamics, in which éhe generation of neutral winds
“during geomagnetic disturbances is investigated. Governing equations for
ionospheric gases are developed from kinetic theory, beginning with the Boltz-
mann equation; and é particle viewpoint is maintained throughout. The final
formulation is bésed on the three-fluid approximation, which requires that the
electron, ion, and neutral gases be treated separately, witﬁ different temper-
atures and flow velocities for each. The domain of applicability of the final
equations is approximately 90 km to 800 km in altitude for all geographic

locations.

Starting from the Boltzmann equation a formal equation of transport for
an arbitrary particle property is derived in Section II. This property is
successively:specified to be mass, momentum, and kinetic energy, resulting in
the species conservation equations for these properties. Collision terms are
treated separately in Section III in the binary collision formalism of the
Boltzmann collision integral. Formal results are extended by approximating
the speciles distribution functions as independent, displaced Maxwellian distri-
butions. In this context a new formalism is developed for the collision terms
in the momentum ahd energy equations; it simplifies calculations for specific
interactions, as compared with similar expressions presently in the literature.

" Explicit evaluations of collision terms are carried out in the Appendix for a
sufficient variety of interactions to meet most ionospheric requirements. In
addition, proofs of some of the limiting properties of the general expressions

are provided there.

In Section IV, the formalism of the species conservation equations is

applied to the ionosphere in terms of the three-fluid approximation. This



results in separate sets of conservation equations for electrons, ions, and
neutral particles, coupled through the collision terms. Extreme values of
ionospheric properties and parameters are considered for the altitude region
90 km to 800 km, for which the three-fluid approximation is assumed to hold.
Based.aﬁ*these values, order-of-magnitude estimates are made to determine the
range of values possible for each term in the complete set of conservation
quations. Those terms which can be clearly identified as negligible under
all ionospheric conditions for this altitude region are omitted. The resulting
set of equations provides a reasonable starting point for a wide variety of E
éﬁd F region ionospheric investigations, from purely theoretical model studies

to the data analysis of ground-based or in situ observations.

In order to close the set of conservation equations, the higher order
velocity moments introduced into the equations by the derivation method have
to be related to lower order velocity moments, essentially independently of
the set of conservation equations. This is accomplished in Section V by means
of transport tensors and coefficients. Electron transport is treated in a
comprehensive manner by the method of Shkarofsky (1961). 1In order to take
advantage of simplifications in the use of this method when electon-neutral
collision frequencies vary with relative velocity as a power law, a new method
is derived for approximating an arbitrary collision frequency velocity depen-
dence as a power law. The equations presented represent a condensation of
Shkarofsky's procedure, for application to ionospheric calculations. Ion and
neutral fransport coefficients available from the literature are also provided.
Explicit sets of collision frequencies for electron-ion, electron-neutral, and
ion-neutral collisions are presented, as computed from results in Section III
and the Appendix, or as taken from the literature. Those sets of collision
frequencies incorporating the effects of flow velocity differences have not

previously been availabie.

The second basic portion of this work applies the results of the first
five Sections to a specific.problem in Section VI. In the process, it illus-
trates the different methods available for modifying the set of initial equa-

tions (the products of the first part) so that numerical solutions can be
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obtqiﬁed. These methods include additional approximations based on the physical
conditions of the particular problem, dsé.pf empirical or apalytical models as
substitutions for equations or variables, use of observational data in the

same mannef, and mathematical assumptions required for consistency with these

other techniques.

The problem investigated involves neutral winds observed during magnetic-
ally disturbed gonditions in the auroral E region. One objective of the
calculations is to determne the effect of altitude structure in the ion and
neutral winds on the determination of neutral winds from incoherent scatter
radar observations. A second objective is to determine the relative importance
of collisional coupling (ion drag) and auroral heating in the generation of
these winds. Observations made by the incoherent scatter radar at Chatanika,

Alaska, on 15 May 1974.are used in the calculations and analysis.

Theoretical calculations are based on large auroral electric fields
causing ions to move, with collisions between ions and neutrals both modifying
the ion flow and causing neutral gas flow. Viscous and coriolis terms modify
the neutral gas motion; pressure terms are omitted from the initial phase of
the model. Calculations are restricted to altitudes between 90 km and 250 km.
To become familiar with the effects of the coriolis term and inertial proper-
ties of the neutral gas, model calculations are first carried out with a
simple electric field model. From these calculations it is determined that
the neutral atmosphere responds much more slowly to ion drag at lower altitudes
(<125 km) than at higher altitudes (>150 km). The coriolis term causes a
substantial ion-neutral velocity difference to be maintained in a steady-
state, resulting from both a smaller neutral velocity magnitude (compared with
the ion velocity) and a difference in direction of aboﬁt 45 degrees. Due to
the large inertia of the neutral gas relative to the ion gas at low altitudes,
effects of initial conditions can last for many hours at these altitudes, when

ion drag is the only driving force.

For the primary calculations, observed electric fields and electron

density profiles are employed, providing 6-minute time resolution. Despite
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the considerable time variation in these quantities, the neutral gas effec-
tively filters out such variability due.to its large inertia relative to the
ion gas. Large vertical gradients in horizontal ion and neutral velocity
components are found to result from the ion drag model. To make comparisons
with observed velocities, weighted altitude averages of the calculated veloc-
ities must be taken numerically. By this means it has been possible ‘to assess
semiquantitatively the technique for deriving neutral velocities from the
incoherent scatter radar observations. It has been found that this data
reduction technique systematically underestimates the velocity magnitude by up
to 40 percent, but provides a fairly good indication of temporal variation in
the weighted altitude average of the neutral velocity. A sensitivity to the
collision frequencies used in the data reduction has also been noted. In
addition, it has been determined that the process of taking weighted altitude
averages itself can introduce fluctuations in magnitude of up to 50 percent in
resultant velocities. This is due to variation in the electron density profile
part of the weighting factor, together with the altitude structure in the

velocity fields.

Comparison of neutral velocities derived from observation with those
calculated for E region altitudes shows that the ion drag model used for the
calculation is inadequate by itself to account for the observed velocities.

An equation is derived to estimate the pressure gradients required to resolve
the discrepancy between the calculated and observed velocities. The acceler-
ations resulting from these pressure gradients are generally comparable to
those associated with ion drag, but at least an order of magnitude larger than
those due to solar heating. Directions of the pressure gradients are consis-
tent with expected locations of auroral heating, relative to the radar location.
Since accelerations due to pressure gradients and ion drag are of the same
order, it is concluded that both are important in generating and modifying

neutral winds in the auroral E region during geomagnetic disturbances.

1.2 RECOMMENDATIONS FOR FUTURE RESEARCH
In the course of preparing a work such as this, certain weak areas in

foundations on which sometimes elaborate calculations are based become apparent.



One of these is ion—-neutral collision frequencies. The lack of knowledge of
ion-neutral interdactions at intermediate and close ranges leaves large uncer-
tainties in ion-neutral collision frequencies at temperatures above about

300°K. One consequence of this in the present work was seen to be a signifi-
cant uncertainty in the absolute magnitude of the neutral velocities derived

from observations.

Another weak area, loosely related to the first, is transport properties
of ions in a partially ionized gas permeated by a magnetic field of arbitrary
strength. A complete theoretical treatment, similar to that presented for
electrons, is needed. Because the ion gas undergoes a transition from large
ion-neutral collision frequencies to $mall collision frequencies relative to
the ion gyrofrequency, it is clear that transport transverse to the magnetic
field is more complex and more significant for iomns than for electrons (for
which it is largely inhibited). Large ion gas inertia, as compared with the
electron gas, and closer collisional coupling to the neutrals result in ioms
being less mobile than electrons. However, charge neutrality assures that
macroscopic densities of ions and electrons are the same. Thus, ionization
transport due to mechanical forces are constrained by the ion motion, although
electrons play the primary role in responding to electromagnetic forces. At
present it is difficult to separate the limitations imposed by lack of a
comprehensive theoretical transport treatment from those due to uncertainties

in collision frequencies; both require improvement.

With respect to the development of conservation equations for the E and F
regions, several modifications could be made to extend the range of applica-
tions. These are, for the most part, straightforward, and require only the
addition of certain equations. First, problems of ion or neutral composition
can be treated by adding the appropriate continuity equations for each ion or
‘neutral species. Second, the set of conservation equations can be augmented
by Maxwell's equations in a form appropriate to whatever problem is under study.
This would be necessary, for example, in studies involving hydromagnetic waves
or self-consistent electric fields resulting from dynamo action. Third, for

higher altitudes (>800 km), where light ions are dominant, the three-fluid



approximation may not be reliable. In this case separate sets of conservation

equations would be required for each species.

In the study of auroral E region neutral winds, several extensions and
improvements are suggested. First, data for a less disturbed case could be
used for a case study similar to this one. This could be done rather easily
by changing the data input to the computer programs. The primary purpose of
such a calculation would be to determine if ion drag is more important than
auroral heating under these conditions. Published observations under such
conditions indicate that this may be the case. A second addition would be the
calculation of electric currents and resulting magnetic field perturbations,
and calculation of Joule heating. Both could be aécomplished by extending the

calculations already made.

Significant improvements in the present neutral wind calculations can be
made, but at a significant increase in computational effort. It was demon-
strated that préssure gradients due to auroral heating play a dominant role in
the generation and modification of neutral winds in the auroral E region
during magnetic disturbances. In order to include these pressure gradients in
a calculation, horizontal variations would have to be taken into account,
requiring at least two spatial dimensions, ideally three. In addition, the
neutral continuity and energy equations would be required to replace the
static neutral model atmosphere. This would have the added desirable effects
of allowing the calculation of vertical velocities (with consequent -effects on
horizontal velocities) and of permitting inclusion of neutral composition
changes, which have been observed during magnetic storms. To accomplish this
in the manner of the present study would require observational data from a
considerably expanded spatial region. However, iﬁitially some of the effects
could be profitably explored in more restricted model calculations. Much

remains to be done.
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Appendix

ANALYTIC EVALUATION OF COLLISION TERMS

Al LIMITING FORMS FOR THE COLLISION FREQUENCY AND ITS DERIVATIVE AT
COMMON FLOW VELOCITIES

In order for the generalized collision frequency, derived in Section
III, to be consistent with previous work, it should reduce to the standard
expression in the limit of common flow velocities. In this part of the
Appendix this is demonstrated to be the case. It is also shown that in
this limit the derivative of the collision frequency with respect to the

relative flow velocity vanishes.

From equation (3-35) the effective collision frequency for momentum

transfer is given by

X exp(—Kv ) 2. 4 sinh(2kgv°)
vg(V) = 2 /> n, —-—-;2——-—J Q  (8)exp(-Kg")gd ~ gy,
° (a-1)
where
> > >
v =V -V
o T 8
K Mrs o By

=%T = 2k(m T +mT) °
Tr s 8 T

Clearly, simply setting v, to zero in equation (A-1) is meaningless.

Instead, a series expansion is used for the quantity in brackets:

ainh(2Kvog) (2Kvog)2 (2Kvog)4
— e = ] + + +. .. (A-2)
2Kv°g

3! 5t

Making use of the chain rule and equation (A-2) permits equation (A-1)

to be rewritten

v g(v) = 2n_ E exp (~kv )(ZK) rQ (s)exp(-l(s )s 3—
4(2Kv°g)
t—r—+ .. . |as (A-3)
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In the limit v, ™ 0, only the first term of the series contributes,

giving

w]oo

2
vrs(O) = JNQ(S) exp(—kgz) 85 dg . (A-4)
[o]

o

This is the expression derived by Banks (1966a) for two static gases at
different temperatures. It is also equivalent to the expression desig-

nated by Itikawa (1971) as WVogg” when applied to electroms.

To evaluate Bvrslavo, let the integral in equation (A-1) be denoted
by J:

(A-5)

)
n

- 2 4 sinh(ZKvog)
fo R e ]

Carrying out the differentiation of Vogs using equation (A-1), gives

2 2
Bvrs X 2K exp(—Kvo ) Zexp(—Kvo )
= 2\ |- J-———2—3

av v 3
o o v
o

2
exp(—Kvo ) o
+___f

Q(g) exp(—K32)34 d [Eosh (2Rv_g)

3
v, o
sinh (2ng )
- Zng (A-6)

Since the limit of the sum equals the sum of the limits, each term could
be examined independently. However, this turns out to be useful only
for the first term; the others must be treated collectively because
important cancellations take place which must be taken into account

before the limiting process.

For notational convenience let the successive terms in equation

(A-6) be designated Tl, Tz, T3, and T4. From equations (A-1) and (A-5)
the first term may be written '
T, = - 2K v_ vrs(vo). (A-7)



Taking the limit as vy vanishes gives

1lim T1 =0 (A-8)
vd+0 '

since, by equation (A-4), Vg is finite in this limit, From equation
(A-5) the fourth term can be written

: exp(-Kvoz) . -
T4-- 2ns ,;— — 3 J . (A-9)

v
(o]

e

The second and fourth terms can be combined immediately,resulting-in

exp (-Kvoz)
3
v
o

Making use of the series expansion (A-2) in J gives

J . (A-10)

s

T2 + T4 = - 6nS

T, + T, =7 8n_ - f Q(g) exp(-Kg”) g
g Jﬁ? o 0
3.4(2Kv @)% 3-6(2Kv g)* + dg . (A-11)
N I 5 ° 4 - 9 R A

The hyperbolic cosine in the third term of (A-6) is similarly

expanded with the result

2 ©
5/2 exp(-Kv_7)
T, = 8n_ & 2 J Q(g) eXP(-Kg?) 35

3 ] F Vo o

(2I<vog)2 (2Kvog)4
el + 3 + — +...]|dg (A-12)

Comparison of equations (A-11l) and (A-12) shows that the series are both
multiplied by the same factors so that they can be combined directly

term by term. The result is

: 9/2 2 0 2 7
T2 + T3 + T4 = 8nS = exp(—Kv0 )vo Jo dg Q(g) exp(-Kg") g
2 4(2Kvog)2
.[5.3! + 7751 + .. .]dg s (A-13)
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where the first terms cancelled completely. From this equation it is

clear that

1im (Tz + T3 + T4) =0 , (A-14)
vo*O

Combining equations (A-~6), (A-8), and (A-14) gives the final result

avrs(vo)
Hm ——— = lim (T, + T, + T, + T,)
v0+0 avo vo+0 1 2 3 4

=0 . (A-15)

A2 ANALYTIC EVALUATION OF COLLISION FREQUENCIES FOR SPECIFIC FORMS
OF INTERACTION '

Forms of interaction among charged and neutral particles of the
upper atmosphere are varied, and, in some cases, poorly known. In this
segtion, collision frequencies and their relative velocity derivatives
are determined ana}ytically from equation (3-35) for those forms likely
to be required for ﬁbst ionospheric abplications. Some of these are
well known theoretically (e.g., Coulomb and hard sphere interactionms),
while others are useful for the curve fitting of experimental data (e.g.
polynomials or power laws in relative velocity). Specifically, the

interactions considered have the forms:

= i
Qg8 = 4, 8 (A-16a)
Q. (8 =4 g | (A-16b)
Q. (8) = Ag exp(-Bg) , (A-16c)

where j is an integer, v is nonintegral, and B is arbitrary. Since
clposed-form expressions can be obtained for integral powers, but not
for arbitrary nonintegral powers, the distinction between j and v is

useful.

The more familiar interaction laws are usually written as functions
of relative distance. When the force between two particles varies
inversely as a power of the distance between the particles,

> >
F = alz/ru ,



Chapman and Cowling (1970, Chapter 10) demonstrate from classical two-
body interaction theory that the momentum transfer cross section (not

'their_terﬁinoiogy).varies with relative velocity as

Q. (8) « g 4/ 0D
With this expression, the velocity variation of some familiar power law
interactions can be identified. Thus, for the-iﬁverse square Coulomb
force, y = 2 and j = -4. For "Maxwellian molecules", so called because
Maxwell first recognized the simplifications fgsulting from this type
of interaction (Chapman and Cowling, 1970, ﬁ 173), the force law y = 5
corresponds to j = -1. For the case of hard sphere interactions, y » ©
and j = 0 results, so that .he momentum transfer cross section ié.inde-

pendent of velocity.

For present purposes, the constants of proportionality in equations
(A-16) are not of interest; they may be obtained from theory (analytically
or numerically) or from experiment. The object here is to evaluate the
appropriate integrals. This is done for -4 < j < 4 and for arbitrary v
and 8 within the mathematical constraints of the integrals.

A.2.1 Integral Power Law Interactions
From equation (3-35) the generalized momentum transfer collision

frequency for species r with species s is given by

2
-K o
v (v) = ZJEn TR, ) Q__ (g) exp(-kg®) g
rs o T 8 2 s
v o
o
sinh (2ngo)
*d “Xgv. | (A-17)
o
where v _ = |;r - :SI is the relative flow velocity. Let J denote the

integral in this equation. With the momentum transfer cross section

represented by equation (A-~16a), J may be written

sinh (2ngo):]

. T 2 _
JJ Aj fo g exp(’ Kg™) d[ Kav (A-18)

o
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Integrating by parts gives

sinh (2Kgv ) ;g™ o .
= o’ _ith4 ol _ 1
Jj = A.j Zngo g exp(-Kg“) Io ZKVOJO sinh (2Kgyo)
. '+
- exp(-kg?) g*? [(3+4) - 2Kg2]dg‘. (a-19)

The first term vanishes for j > -4. However, the integral is qualita-
tively different for j < -2 than for j > -2, so the cases j = ~3, j = -4
will be treated separately. For j < -4, Jj will not be finite.

First the case of j > -2 is treated. With the notation a ifi'vo
and the change of variable z ==fi-g, equation (A-19) becomes
j+
21922 - (§+4)1dz
(A-20)
Since both terms in brackets are even functions of z the integrand has

A, s o
Jj = 5& (X) (G+4)/2 J sinh (2az) exp(—zz)z
o
definite parity. The integrals to be evaluated all have the form
z" sinh(2az) exp(-z“)dz .
o

If B is an odd integer, then it can be seen that

o 9

f zB sinh (20z) exp(—zz)dz - (A-21)
8

o 2 da

where

-
i

= J cosh (2az) exp(—zz)dz . (A-22)
o

Similarly, if B is an even integer, the corresponding result is

J zB sinh (2az) exp(-zz)dz = — o (A-23)
o

where

o}
i

f sinh(2az) exp(—zz) dz . (A-24)
o

Thus, once Io and L0 are evaluated analytically, all results desired for
different values of j (B) can be obtained by differentiation with respect
to a. It remains only to evaluate Lo and Io'
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Consider Lo first. If the hyperbolic cosine is expanded in terms of
exponential functions and the square is completed in the resulting com—
bined exponents, equation (A-22) can be rewritten as

Lo = %-exp(az) I exp[-(z - a)z]dz + I expf[-(z + a)Z]Idz .
' o o
(A-25)
Changing variables to x = z -~ a in the first integral and x = z + a in

the second integral gives
L° --% exp (az)[] exp(-xz)dx + J exp(—xz)dx:] . (A-26)
- o

Since the integrand exp (-xz) 1s,an even function of x

2 @ 2

exp(-x")dx = exp(-x~) dx .
-a o

Equation (A-25) may theu be written

Lo = exp(az) J exp(—xz)dx
o

= —% exp(az) (A-27)

from standard integral tables.

Following a similar procedure for Io leads to the equation, analogous
to (A-25),

I, = % exp(a’) f exp(-x°)dx - J exp(-xDax | . (4-28)
- o

The symmetry of the integrand about zero, noted above, allows this equa-

tion to be rewritten
2, [® 2
Io = exp{(a”) J exp(-x)dx . (A-29)
o

This integral is recognized as the error function, which is conventionally
defined as (Gautschi, 1964)



z

erf(z) = —z-j exp(-cz)dt . ' ' ' (A-30)

Fo

With this definition, equation (A-27) is written
1 2
Io =37 exp(a“) erf(a) . (A-31)

Equation (A-27) can now be used to evaluate equation (A-21) for
appropriate (odd) values of 8. From equation (A-Zb) it is seen that if
j is in the range -2 < j < 4, B will lie in the range O < B < 8. Carrying
out the required differentiation gives the following results:

pon]
]

l:J z sinh (2¢z) éxp(-—zz)dz
o

- @a exp(az) (A-32a)

B = 3:[ z3 ginh (2a2)- exp(—zz)dz
o

- ‘l%_a (3 + 202 exp (D) (A-32b)

B = 5{ 25 sinh (2a2) exp(—zz)dz

=YL, (5 + 2007 + 4™ exp(ad) (A=32¢)

ken)
I

7:J z7 sinh (2¢2z) exp(—zz)dz

o

=¥T o (105 + 22007 + 84a* + 8% exp(a®) . (A-324)
For even B, equation (A-31) must be used in conjunction with

equation (A-~23). This requires the derivative of the error function,

which is given by (Gautschi, 1964)

?l% erf(z) = 2 exp(-zz) . (A-33)
m




Differentiation then gives the folllowing'rcml-.t-_:
g = Ozr sinh (2az) exp(-zz)dz
o .

- _\f_;- exp(az) erf (a) . . (A-34a)

g = Z:r z2 sinh (2az) exp(-zz)d:
° .

-2y ﬁ[ exp(a®) erf(a) (1 + 24%) (A-34b)

N

4

B=4:| 2z sinh (2az) exp(-zz)dz

o ¥

2

=25+ 262) + 1T exp(ad) erfla) (3 + 1202 + 4a%) (A-340)

8
g = 6: r 2% sinh (20z) exp(-z2)dz = £ (33 + 2802+ 4a)
[+]
+ﬁ exp(a?) erf (a) (15 + 90a® + 60a® + 8a%) (A-34d)

g = s:r 2% einh (2az) exp(-z2)dz = = (279 + 37002 + 1080% + 8%)
[« ]

b 4 2240 + 165

(A-34e)

+ !3C; exp(a?) erf(a) (105 + 8402 + 840a

These results, equations (A-32) and (A-34), may now be used as
required to evaluate equation (A-20) for different values of j. Beginning
with } = -2, the following results are obtained straightforwardly.

. Az 2 2,
J=-2:7,= x r(z - 1) sinh (2az) exp(-z“)dz
o L ]

Az 2 2 -
" K (20 + 7 exp(a”) erf(a) (2a° - 1)] (A-35a)
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§ = =1: (ﬁamllian Molecules)

3 .. _AL '(2g3 - 3;). sinh(2az) -m;-zz)di
=17 372 L | _,
2 :
A Ta :
-1 J 2
2K:'.Iz | - .

j = 0: (Hard Spheres)

A

J =2 | (2% - 22%) sioh (2az) exp(-22) az
o 2 .
oK )

2

Ao 2
= [2a(1 + 2a7)
8aK .

+ Fexp(uz) erf(a) (-1 + 4a + 4a™)} © (A=35¢)

A
= 1: J1 = ——;I—zr (2:s - 5:3) sinh (2az) exp(-zz)dz
2aK o

Aaz

- -l.—:-st-Fexp(az) 5+ 2Y (A-354)

A

j = 2: Jz = -—g-r (z6 - 3:‘) sinh (2az) exp(::z) dz
akK™ ‘o

A,

160K
+Fexp(az) erf(a) (-3 + l&;2 + 36a

[2a(3 + 16a% + 4ah)

3

4 4 8% (A-35¢)

A
j=3: J3 - —-;—,z-r (Zz7 - 7:5) ainh (2az) exp(-zz) dz
20K o

Auz Py

= 2T exnta?) (35 + 28% + 4a) (A-35£)
8K
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A - S S . -
IR AR J (28 - 42%) sinh (2az) exp(a®)az

ak” ‘0 - - : '
3 PR

A

- b 7 [2a015 + 14602 + 76a® + 8a5)
320K . . _
2 : 2 4
+J7 exp(a®) erf(a) (-15 + 120a“ + 3600
6 8 '
+ 160a + 16a )] . L _ ., (A-35g)

Clearly this procedure could be used to extend results to higher
values of jJ. However, for the present, these should be sufficient for
most curve-fit applications. Lower values of § appear to be limited
by properties of the integrand in equation (A-18) to j = -3 and -4; these
must be treated individually. For j = -3 equation (A-18) becomes, with
the change of variables and notdtion introduced above,

A L]
J ..{:2 I z exp(—zz) d [}inh gZazz:]

-3 2az
sinh §2az2 exp (~z2) ”
. - o [y
- jw siah (Za2) (3 - 25% exp(-zz)dz‘ , (A-36)
o X .

vhere the second equality follows from an integration by parts.

The first term in equation (A-36) vanishes in the limits, leaving
two integrals. One may be evaluated from equation (A-32a); the other
is

. A, | A N
c A _Jf sinh (2az) exp(-z )dz = ._ -3 1 (a) (a-37)
2a JTF ° z 20,JTF

¥
4

which defines 1_3(a). Differentiating I_, with-iespeét to the parameter

a gives

A-11



a1

3;3 = 2 I“ cosh (2az) exp(-zz)dz
o
=2 Lo -frr_exp(az) . : | (A-38)

where equations (A-22) and (A-27) have been used. Since 1_3(0) = 0,
the differential equation (A-38) can be immediately integrated to obtain

I_3(a) = J;j exp(xz)dz
o

21 erf(ia) (A-39)

(Gautschi, 1964). The final result is then

[

A
-3 2 ivVr
= V© jexp(a®) + erf(ia) . (A-40)
"3 2K 2a ]

For j = -4 a similar procedure is followed. In the new notation

equation (A-18) becomes

J =A exp(-z)d sinh (2az)

~4 -4 202
o

i
A, ’3_%(2_“21 exp(-z2)

o

+'; J sinh (2az) exp(-zz) dz , R (A-41)
o . .

where an integration by parts has been performed. The first term
vanishes at the upper limit, but has a limiting value of 1 at z = O,
The integral in the second term is just Io‘ equation (A-24). So the

desired result can be written immediately

J_4 = A-lo [ -1+ Zcexp(a ) erf(a)] (A-42)

from equation (A-31).

A-12



With equations (A-35), (A—éOj; and (A-42), collision frequencies
can be evaluated from equation (A-17). For notational éonvenience, the
J value is given as a superscript on the collision frequency. Final

expressions for the collision frequencies are, in the original notation:

ng A—-@ - K 2.
j= _4.\; (v ) = 3 erf(ff vo) - lZVOE exp(-l(vo ) (A-43a)
v, L
-3 s Aal 2
j = —3:vrs(vo) = 3 2vo + if% e:l:p(—Kvo ) erf(iﬁ vo)
2vy L (A~%43b)
n A [
-2 K 2
j=-2: (V O = 2 12v Fexp(-l(v )
\’ 2K vo3 | oy w o'

+ (ZKVOZ -1 'erf( Rvo)] (A-43c)
j- -1=v;i'(vo) =n_ A (A-43d)
j= 0=Vrg(Vo)' = [/_v (1 + 2K v, ) exp(-Kv )

4K v,
+ (-1 + 4K vo2 + 4K> vol‘) erf(JX vo)] (A-43e)
n_ A
3= Ll 1) =-—§——l G+xvh (A-43f)

i = 2:v 2(v ) = [/—v 3+ 16Kv + 4K v, )exp(-Kv )
rs 81( v,

2 2 4 3 6
+ erf( JK .vo) -3 + 18Kv° + 36K .vo + 81(.vo ).] (A~43g)
n A
3= 3v 3(v) =223 (35 + 28kv 2 + 4k Y (A-43h)
rs' o 4[(2 _ o o
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n A
3= 4 Y(v) =-—Ji—ii—[},/5 v (15 + 146Ky 2 + 76K>v *
: rs' o 4 3 T O o 0
16K vo

3.6 2 [" 2
+ 8K \A ) exp(—Kvo ) f erf( JK vb)( 15 + 120Kvo

+ 3601<2vo4 + 160K3v°6 + 16x4v°8):] . (A-431)

For the momentum equation (3-52), collision frequencies as given
by these equations represent the entire collisional interaction. How-
ever, in the energy equation the derivative of the collision frequency
with respect to the relative flow velocity is also required. These

expressions are given in the next equations.

= -4-av;: Ty N ‘/5 (kv %) (3 + 2Kv %)
3 ‘av 4 VoV T SXPLTRY, Yo
o v,
-3 erf(‘/K vo):] (A-44a)
= _3.32;§ = - 25.?:2 6v + i JX (-K: 2)
3 ‘v 4 Vo KX SXPLRY,
o 2v0
. erf(i‘/K vo)(3 + 2Kv°2{] (A-44Db)
-2
ov n A
s rs _ s -2 | ,5 vy 2
j = 2'8v 3 [6v0 - exp( Kvo )
o 2K vo
rerf(fRv) (3 - ZKVOZ{] (A-44c)
av;;
§= -l = 0 (A-44d)
o
o
v n_ A
- s _ 8 o l& _ 2 2 _
i = 0'3v = =5 [} = Yo exp ( Kv0 )(ZKVO 3)
o 4K v,
+ erf("K v )(3 - 4Kv 2 + 4K2 v 4) (A-44e)
o o o
avri
j = 1:avo =2n_ A v, (A~44E)
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_ avri 3n, A, ) '
3= 2: = [: J—-v exp(—Kv )(—3 + 4Kv + 4K v, )

ov
o
2 2 4 3 6 ; '
+ erf( li-vo)(S - 6Kvo + 12K v, + 8K v, {] (A-44g)
3 .
d3v_ 2 n_A_ v
- s _ s 3 o 2 : _
j= 3-avo - = K (7 + 2KV° ) (A-44h)
) avr: ong A
j = 4.36 = ’ v, exp(-K v, ) (-9 + 18Kv
o 16K v,
2. 4 3.6 2 2 4
+ 44Ky "+ 8K v 7) + erf( {Tvo) (9 - 24kv " + 72KV
+ 96k%v_® + 16Ky 8{‘ (A-441)

With these relations and the collision frequencies in equations (A-43),
the collisional transfer of energy and momentum can be evaluated for

arbitrary temperatures and flow velocities for a variety of interactions.

A.2.2 Nonintegral Power Law Interactions

Experimental data of momentum transfer cross sections or results of
numerical calculations may be fit to power law curves of arbitrary power.
The appropriate integrals for this case are evaluated here. Because of
similarity with the previous case, the analysis is the same through
equation (A-20). So here, the starting point is

A

J == (I<)"("+4)/2 J sinh (202) exp(-zz)
v 2q o
221222 - (v + #)14dz (A-45)

where v is nonintegral. As previously, this equation holds only for

v > -4,

Several approaches can be taken for treating this integral; however,
all appear to end up in infinite series or in one or more of the less

common special functions. For this reason, the most expeditious route
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to a series solution is taken, by expanding the hyperbolic sine in a

power series:

2n+l

sinh (20z) = § (20z)"

Lo@m+DT (A-46)

Equation (A-45) can then be rewritten

pot 2n+l1 .
- (2) 2, (2n+v+5)
R K(:+4),2 N CIR VY *2 Io exp(-z)z dz
- (v +4) I GXP(—zz)z(2“+"+3)dz} ’ i
o

where now v > -3 is required for all integrals to be finite. From one
of the integral representations of the gamma function, the following

result is obtained:

o 2
l 2" e % dz =-% T (E;g-l> . (A-48)

which has the form of the integrals in equation (A~47). Use of this

equation in (A-47) gives

o 2n
= v (2a) (Zn + v+ 4) _
oz Lot (5 ) (a-49)
where the gamma function property
r(z +1) = z r(2) (A-50)

has been used.

For the simple case v = -1, it can be verified that equation (A-49)
is equivalent to equation (A-35b). However, the path 1s sufficiently
devious and tedious that the approach used previously for treating
integral power laws appears shorter and less susceptible to error than
working back through the power series from the general result given in

equation (A~49) for arbitrary v (restricted only by v > -3).
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The collision frequency is found from equation (A-17) and (A-49) to
be given by
2n A exp(-Kv 2) o (4Kv 2)n
s v o o

v (v) = nl
rs' o FK(v+3)/2 vo2 n=1 (2n + !

(2n +2v + 4) .
(A-51)

Differentiation of equation (A-51) with respect to v, has the result,

after some manipulation of series,

v 2 2.n
avrs 2ns Av exp(-Kvo ) (lsKvo Y (n~-1)

avo FK(\)+3)/2 v 3 =2 (2n + 1)!
o

[n(v +3) +1] T ( (A-52)

2n + v + 2)

— ) -
With equations (A-51) and (A-52) the collision terms in the momentum
and energy equations can be evaluated for the nonintegral power law

interaction.

A.2.3 Exponential Law Interaction
The final case to be treated is that in which the momentum transfer
cross section varies with velocity according to an exponential law,

equation (A-16c). Then the integral in equation (A-17) becomes

2 9 4 sinh (2ngo)
JB = AB J exp(-Kg~ - Bg)g d Tg\‘r—— . (A-53)
o o
Expanding the differential and changing variables permits equation (A-53)

to be rewritten

A o
JB = BZ J exp(-22 - vz) [23 cosh (2az)
2aK o
z2
-2 sinh (2az){dz , (A-54)

where z = ng and y = B/ JK. The- hyperbolic sine and cosine functions

can be rewritten in terms of exponentials to obtain
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. A o , _ 2\
JB = 82 f exp[—22 - (y - 20)z] (23 - %&-)dz
: " 4aK o ' ' e .

o . 2 ’
+ J exp[-zz - ('Y + 20.)2] (23 + ';_a> dz } . (A—ss)
o -
These integrals all have the form
* {=-]
In = J exp(—z2 - pz)zn dz . (A—56)
o

As previously, the integrals for arbitrary n > 0 can be obtained
from the integral corresponding to n = 0 by differentiating with respect

to the parameter p:

*
* " 1 .
I = ()" ° (A-57).
n n

op
where
* © 2
Io = J exp(-z~ - pz)dz . (A-58)
o

Equation (A-38) can be treated by completing the square in the exponential

and changing variables; the result is

¥ = Eexp (% pz)[l - erf (g-)] . (A-59)

o 2
Differentiation with respect to p gives

*
o1

Se e e (3 )1 - ere 3]

(A-60a)

2 %

: §OI= % {- Zp +Fexp (‘EE) [1 - erf (%)][2 + pz]} (A-60b)
P

331* 9

a 3o - 1—6 {- 2(4 + p2) +Jn_p exp (2—)[1 - erf (12’-)][5 + pZ]‘ .
| %

(A-60c)
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These equations are used together with equations (A-56) and (A-57)

to evaluate (A-55)

with p = Y - 2a in the first 1ntegra1.and p=oa+ 21

An the second integral, giving the result

‘320K

ba[2 + v2 + 4a?]

J;-exp (JL%%_Zg)zi] [1 - erf 1_%_22)]
[2ay - Saz + 72 + aly - 201.)3 % 2]

7o [ (52 [ - oot (2529)]

[2ay + 8a2 - Y2 + a(y + 2a)3 - 2]‘ . (A-61)

Then in the original notation, the collision frequency, from equation

(A-17), is

Since the limit of

2
n A exp(-Kv 7) 2
8 82 3 = ‘4Ev0|:2+%—+41<v°-2]
16K vy
(s-zxv)][ (B—ZKv)]
exp 1 - erf
ZJ

3

B - 2Kv
.EBV a2+ [T, (e +2]
o {E-

I:(s + 2Kvo)2][ | B + 2Kv_ ]
exp] ————— || 1 - erf |—=2}
4K 2 JE-

3
e + 2Kv
[ZBV + 8Kv_ -—+'/— -2}.

B = 0 corresponds to a momentum transfer cross section

A-62)

which is constant (hard sphere), equation (A-62) should reduce to
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~ equation (A-43e) in this limit. A quick check shows that it-éoes, thus
verifying all terms except those containing B. Finally the derivative.
of the collision frequency with respect to v, is given by

B

v ng A exp(-Kv )
avrs= B ‘/g Ev (K+8)—3( )]
o 16K v,
[B-ZKV '—'": B-2Kv >:|
- exp 1 - erf .
2/x

2v
. [(B 2 + ———) (2Kv - B) - 24K2v04 + 328 Kvo3

K o K
. 2 : 2
2 2 _ g 87\ 8%
+8v° (K—B)-Bvo(6+.K> 3(2+K ):l
,_2
B+2Kv B+2Kv-o
- exp - erf [———— :]
.Z‘IK

V
[(l‘i 02- )(21<v + 8) +24Kv"+163 Kv03

z 2
4v°2(32 - K) + Bv_ (%‘ - 2) + 3 <£— + 2):” . (a-63)

Comparisons of this equation in the limit B -+ O with equation (A-44e)

verifies the terms not containing B.
This concludes the analytic calculation of collision frequencies

for nonequilibrium gases moving relative to one another. Results pre- .

sented here should be adequate for most ionospheric applications.
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