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ABSTRACT

Psychophysical models for the behavior of the human -
operator in detection tasks which include change in detectabi-
lity, correlation between observations, and deferred decisions
are developed. Classical Signal Detection Theory (SDT} is
discussed and its emphasis on the sensory processes is con-
trasted to decision strategies which are the subject of analysis
in this thesis. The analysis of decision strategies utilizes
detection tasks with time varying signal strength. The classical
theory is modified to include such tasks and several optimal
decision strategies are explored. Two methods of classifying
strategies are suggested. The first method is similar to the
analysis of ROC curves, while the second is based on the relation
between the criterion level (CL) and the detectability.

Experiments to verify the analysis of tasks with changes
of signal strength are designed. The results show that subjects
are aware of changes in detectability and tend to use strategies
that involve changes in the CL's.

. The effect on the decision strategy of correlation between
successive observations is studied. It is found that the
present decision of the subject is dependent on his previous
decision with a strong tendency to repeat the last decision
even if it is wrong. The bias effects of correlation are des-
cribed with the use of Markov process theory and the relation

to classical SDT is also shown.

The case of deferred decisions applies to tasks in which
the information rate is so high that the subject cannot make a
decision after each observation. Thus, he is allowed to make
more than one observation, but is asked to ninimize the detection
time. Such detection tasks are usually related to problems of
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failure detection. The model that is suggested consists of
two stages: linear estimation and a sequential decision
mechanism whose decision function is the integral of the
observation error. This model is found to be effective in
predicting subjects performance in experiments that include
"well behaved" processes. The model is also applied to the
task of monitoring automatic landings for instrument failures.
Although the processes that are involved are obtained by a
non~-linear high order time varying system and although the
task is multidimensional, the predictions of the model fit
the experimental data well.
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CHAPTER 1

- PNTRODUCTION

1.1 Background, Motivation and Problem Statement

Psychophysics is that part of experimental psychology
which deals with the gquantitative relationship between
stimuli and résponse of 1living mechanisms. The general frame-~
work can be divided into three different fields: detection,
recognition, and scaling. Detection deals with the question
of the smallest amount of a stimulus that is needed to elicit
a response. Recognition deals with the guestion of resolution
or the minimum difference between two stimuli that can be re-
solved. The problem of relation between the strength of the
stimuli and the amount of response is referred to as scaling.
These three problems were the subject of extensive research
in the last century when they were first posed in a methodical
way by G.T. Fechner in 1860 (swets, 1966}. Fechner also
seems to have been the Ffirst one to notice the probabilistic
nature of the problems, although this approach had already
been implied by Laplace in his quote which was used as an
epigrem to this thesis, The probabilistic approach was needed
because of the the large variability in the sensitivity to the
stimuli due to individual differences as well as internal and

external conditions of the subject. Therefore, Fechner

suggested the use of the method of replication, namely, to get

repetitive yes/no responses of a subject to different stimuli
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and to plot the proportion of positive responses as a function
of stimulus magnitude. This method seems to be the backbone

of any psychophysical research. The next step forward was
taken by Thurstone in 1927 (Thurstone, 1927). He suggested
that the stimulus can be represented as a random variable with
some density function, and the recognition problem is that of
separating two random variables on the psychological continuum.
He also suggested the use of this method for cases in which
the stimulus was not susceptible to physical measurements. &
further step was made by Blackwell (1952) who related the
psychophysical problems to the statistical theory of hypothesis
testing.

The mathematical approach to hypothesis testing was
formulated by Neyman and Pearson (1933) and was generalized
later by Wald (1950). The app?.Jation of this theory was
first employed in communication theory for detection of elec-
tromagnetic signals in the presence of noise. It was further
advanced because of its importance to the design of radar
receivers during World War II, and it was then that the form-
ulas and terminology of "false alarm', "hit" and "miss" were
introduced.

The first rigorous presentation of what is now referred
to as Signal Detection Theory (SDT) was given by Peterson et
al (1954). It was followed by the work of Tanner and Swets

(1954) which suggested the use of the theory in psychophysical



17

experiments. Later Swets et al (1961) embodied the theory

in a psychophysical model for detection of visual signals.

Most of the classical theory as well as the basic experiments
were collected and summarized in books by Green and Swets
(1966), Swets (1964) and Luce (1963). A good summary of the
historical development of SDT and its applications was recently
published by Swets (1373).

The principle appeal for utilizing SDT in psycho-
physical research was its ability to separate the detection
process into two components, namely, the sensory process and
the decision strategy. For the psychologists who were inter-
rested mainly in the threshold mechanism, the sensory process
seemed the more important of the two, and the separation char-
acteristic was used only to eliminate the subjective bias of
the subject that was reflected through his decision strategy
(Trieshman and Watts, 1966). This approach motivated the
use of a fixed signal strength within each experimental
session and the evaluation of the results by Relative Opexr-
ating (Receiver Operator) Characteristics (ROC) curves which
are the heart of classical SDT. This approach was used in a
vwide field of applications which ultimately manifested the
validity of the theory. The applications included cases in
which a well defined signal was to be detected when the back-
ground noise had a known density fanction . Those experiments

tested several sensory systems including vision {(Tanner et al,;

i
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1953), auditory (Green, 1960) and tactile (Gaussin Hupet,
1972). However, it was also utilized in cases where the
noise was the internal uncertainty of the decision maker
due to the limited resolution of his senses., Such experi-
ments were carried out for the detection of motion
(Kinchala, 1969), visual monitoring (Gai and Curry, 1973),
and manual control (Cohen and Ferrel, 1969}.

Much less attention was paid to the second component
of the detection process, that is, the detision strategy,
although it seems that there are several areas in which this
coemponent is the dominant one. One such area is a more com-
plicated visual monitoring task in which the signal strength
is changing from one decision interval to the next. Such
detection processes occur, for example, when a pilot uses
traffic sitvation displays to avoid collisions with intruders.
Since the input to the display is updated with radar infor-
mation only every four seconds, the signal strength is fixed
within the decision intervals but varies between the intervals.
This is therefore the discrete case of signal detection with
time varying signal strength. The main interest in such
tasks lies in the decision strategy or more exactly in the
subject's changing of his decision criterion when the signal
strength is changed. These questions provided the motivation
for the work presented in the first part of this thesis.

Little research work could be found in the literature

concerning this approach to detection problems. Some work on
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the problem of signal detection with varying signal strength
was done by Kinchala and°Smyzer (1967), Glorioso et al (1968)
and Thurmond et al (1970). However none of this work addressed
the question of decision strategy. Other work by Swets et al
(1967) and Birdsall and Roberts (1965, 1966) analyzed the
change of criterion bhetween decision intervals but with fixed
signal strengtﬁ. Decision strategies that were not based

on SDT were suggested by Parks (1966) and Thomas and Legge
(1970). Also, the problem of seguential effects between
decision intervals was analyzed by Kinchala (1965), Speeth
and Mathews (1961), and Tanner et al (1970, 1967).

This thesis suggests a unified theoretical analysis
of the problem as well as experimental analysis to support
the theory. It is shown that classical SDT can be modified
to analyze these problems, if the updating rate is slow
enough so that the signal strength is constant within each
decision interval. The difference between independent and
correlated input stimuli is also dealt with.

If, however, the information flow is fast or even
continuous, the problem is that of testing stochastic pro-
ceéses rather than random variables., An example of such
detection tasks is a pilot monitoring the displayed outputs
of an automatic landing system based on ILS information
(Decelles et al, 1970). This problem is related to the

design of Failure Detection and Isolation (FDI) algorithms
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for fully automatic systems. The question was first anal-
yzed by control engineerse using linear filtering (Jazwenskii,
1970) and optimal control (Bryson and Ho, 1969) techniqgues

to design optimal systems (Athans, 1971). Later the same
ideas were used by man-machine researchers to model the human
as a controller (Kleinman et al, 1970). This model was also
used by Levisoﬁ (1971) and Levison and Tanner (1971) to model
the human monitoring performance. The problem of the human
operator as an FDI system was investigated by Neimala and
Krendel (1974} and Phatak et al (1969, 1972).

The second part of this thesis suggests still another
approach to modelling the human operator as an FDI system
which is based on sequential analysis techniques (Wald, 1974).
This approach is similar to the method used by Chien (1972)
in the design of FDI algorithms for strapdown inertial sys-
tems. Experiments were run to support this approach and the
question of closed and open decision intervals is dealt with.
The theory is also modified to multi-decision tasks where a
share of attention was needed. This compound model 1is then
applied to the case above, that is, a pilot monitoring an
éutomatic landing system where his task is only to detect

failures but not to identify and compensate them.
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1.2 Thesis Organization

Chapter Two includes a detailed description of Signal
Detection Theory (SDT) which is the foundation for the work
presented in this thesis. In the discussion of SDT, we tried
to combine the approaches of the psychophysicist and the
communications engineer, as well as to emphasize the points
that are important to our use of SDT in time-varying signal
detection problems.

Chapter Three generalizes classical SDT to detection
tasks with time varying detectability. Several decision
strategies are discussed and the concept of Decision Rule
(DR) curves is introduced for use in the analysis of these
strategies. An alternative method for analyzing decision
strategies when the underlying distributions are known is
also described.

Chapter Four provides the description and the results
of a visual discrimination experiment in which the signal
strength is changed in a random order to avoid correlations
between successive decisions. A model is suggested which
describes the subjects behaviour and leads to the use of SDT,
The results are used to verify the strategies that are sug-
gested in Chapter Three.

Tn Chapter Five, correlation effects on the decision
strategies are discussed. An experiment similar to the one

in Chapter Four is described. 1In this experiment, the order



22

of presentation is changed, to sequential in order to introduce
correlations. The bias effect of the correlation is described
as a repitition or alternate strategy. The analysis is based
on the theory of Markov processes, and the relation to class-
ical SDT is also discussed.

Chapter Six deals with those detection tasks in which
the information rate is high and a decision is not required
after each observation .but can be delayed. The suggested
model for the detection process consists of two parts: a
linear estimation mechanism and a decision mechanism. There-
fore, the chapter includes a short summary on linear estimation
and sequential analysis. Results of a set of experiments that
support the ﬁodel are described for both open and closed
decision intervals.

Chapter Seven presents an implementation of the model
that is suggested in Chapter Six for the specific problem of
modelling the behaviour of a pilot in monitoring an automatic
landing system for failure detection. Detailed discussion of
the problem, its simplifications, and the use of the previous
model for multidimensional tasks are described.

Finally, in Chapter Eight, we summarize the results

and conclusions, and suggest some ideas for future research.
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CHAPTER II

CLASSICAL SDT AND PSYCHOPHYSICS

2.1 General Discussion

Classical Signal Detection Theory is the foundation
of the work done in this thesis. It is, therefore, important
to repeat in some detail the basic concepts of the theory and
its application. 2an historical background of the development
of the theorv was given in Chapter I. This chapter is a sum-
mary of the basic concepts of SDT and is primarily based on
two references representing two points of view. One is the
communication engineer's approach (Van Trees, 1968) and the
other is the psychologist's aporoach (Green and Swets, 1966) .
in addition, some of the results are presented in still another
form in order to clarify the generalization of the classical
theory to include the case of time varying signal strength

which is the topic of this thesis.

2.2 General Concepts of SDT

Signal detection is a theoretical approach to the problem
of discriminating between several hypotheses orx states of the
world. Tt is assumed that there exist M well-defined states
of the world, each of them affecting in some way an entity

which is available to the decision mechanism and is referred
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to as the observation. Based on these observations, the mech-
anism must decide which of'the possible states of the world
is true.

The simplest case of signal detection arises when there
are only two possible states of the world, sometimes referred
to as a simple binary hypothesis test, simple in the sense that
the statistical characteristics of the sianals are completely
known. Analysis of this simplifed préhlem allows a reduction
in the algebraic work reguired in the derivation of the equa-
tions without any loss of generality. The generalization %o
the composite M hypothesis case is straightforward and can
be found in the literature (Van Trees, 1968). Therefore, in
this work we will concentrate only on the simple binary case.
We will also assume that a decision must be made after each
observation, and that the observation is a scalar guantity.
The generalization to the vector case with a fixed number oI
observations is given in Van Trees (1968)., The case of a
free number of observations is dealt with in section 6.3 of
this work.

Let us assume that there are only two hypotheses H0 and
hypothesis Hy the state of the world is Sq- It is further

Under hypothesis Hy the state of the world is S0 and under

assumed that the g prior? probability of the appearance of Sy

and Sl' P(SO) and P(Sl) are known and that

= (2.1}
P(SO) + P(Sl) = 1
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The observer receives a sequence of N successive observations,
and he must make a decision after each of these observations.
Eéch response or answer A may take one of the twe possible
values

Ay~ State S, has happened

Bqo- State Sl has happened
It is assumed thét all observations are statistically indepen-
dent.

The results of such procedures can be categorized into

four groups:

n(AO/SO) = number of decisions in which the answer was
Ay and the state of the world was 54

n(Al/SU) = number of decisions in which the answer was
Aq and the state of the world was S0

n(AO/Sl) = number of decisions in which the answer was

AO and the state of the world was Sl
n(Bl/Sl) - number of decisions in which the answer was

Al'and the‘state of the world was S1

Cleaxrly n(AO/SU) and n(Al/Sl) represent the number of correct
deciéions while n(Ao/Sl) and n(Al/SO) are the number of errors.
These four numbers can be normalized and transformed into con-

ditional probabilities as follows:

Let ng = P(SU)«N = number of presentations of Sg
0

in W trials
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ng = P(Sl)-N = number of presentations of Sl
1

» in W trials

Then

P(AO/SU) = n(AO/So)/nS probability of a hit

]

P(Al/so) = n(Al/SO)/nSO = probability of a miss

P{Aa,/8,) = n(AO/Sl)/nSl = probability of a false alarm

P{A./S.) = n{BA,/8.)/n, = probability of a correct rejection
1771 1771 Sl

T2 above names are invoked out of tradition from the communica-
tion engineers who first used them in radax applications where
state S, was the appearance of a signal and state S5, was the
appearance of noise without a sigr.’ These four conditional
probabilities are related as follows:
P(AO/SO) + P(Al/SD) =1
P(AO/Sl) + P(Al/sl) = 1

(2.2)

Equation (2.2) shows that only two of these conditional proba-
bilities are needed to compietely specify the expected results
of the experiment. The two that are usually chosen are the
probability of a hit P(AO/SO) and tI= probability of a false
alarm P(AO/Sl). The two guantities are a measure of the per-
formance of the decision process,

The original goal in communications theory was to find
a method of receiver design that optimized some performance
measure. It was suggested that if the observation is repre-

sented as a random variable whose density function under both
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states of the world is completely known, +hen a sufficient
statistic would be the likelihood ratio (Vvan Trees, 1968)

given by
_P(x/so)

P(x/Sl)

L(x) = (2.3)

whexre P(x/so) is the conditional probability of x given S0
and P (x/84) is the conditional probability of x given S,.

It has been shown (Green and Swets, 1966) that if the set on
which x is defined is divided into two subsets, one of which

includes all those x which satisfy
ai{x) > B (2.4)

while the other contains all x which satisfy
2{x) < B (2.5)

t+hen the decision strategy ({(choosing a state of the woxrld
based on the value of &(x) with respect to 8) will be optimal
for the following performance measures:

1. Maximizing the weighted combination

P(By/Sy) ~ BP(Bg/S;)

2. Maximizing the expected value of the cost

3. . Maximizing the percentage of correct responses

4, Minimizing the expected penalty for errors

5. Satisfying the Neyman-Pearson objective, namely,

maximizing P(AO/SO) for a fixed value of P(AO/Sl)
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The likelihood ratio critexrion level (LRCL) B will take differ-
ent values depending on the specific performance measure.

The discussion above suggests the likelihood ratio % (x)
as a decision function. From a psychological point of view,
the guestion is whether such a model can characterize human
behavior. It is, therefore, to be assumed that the sensory
experience of the operator igs somehow transformed onto a
psychological continuum which is equivalent to the likelihood
ratio. It is still not clear how such a transformation is
accomplished. However, it has been found that after a period
of training, the performance of the subjects is similar to the
performance which is predicted by the likelihood ratio model.
Evidence for such performance is found in experiments in a
wide range of applications of detection tasks (Swets, 1973).

The major appeal of the SDT model to psychologists is
its potential ability to separate the two processes which are
involved in the detection task. One of the processes is the
sensory process which is characterized by some distance measure
between the two states of the world SO and §q. It is usually
referred to as the detectability of the signals and is written
as d4'. The value of d4' is a function of the parameters of the
ensemble density function of the stimulus. The other process
is the decision strategy or the way in which the LRCL B8 is
chosen. These two processes, represented by 4' and B, determine
the performance of the subject. Therefore the performance may

bhe written as:
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P(AO/SO) = gl(d'r B)

P(AO/Sl) = gy (dt, g)

(2.6)

I+ should be noted that both d' and 8 might themselves be
fFunctions of several variables; however, those variables that
affect B do not affect 4'.

If two inverse functions can be found such that equation
(2.6) can be written in the following form

a' = g5 (P{Bg/Sy) s P(By/S)) o7
B = 94(P(A0/A0); P(AO/Al))

then the two processes are completely sepcorable. A necessary
condition for this separation is that the density functions
f(x/SD) and f(x/Sl) are completely known. 1In many psycho-
physical applications this condition is difficult to satisfy.

In most of the past studies in psychophysics, the
concentration was on the sensory process alone and the separ-
ation property was used only to eliminate- the subjective bias
of the subjects. In theée cases there is a simple way to avoid
the difficulties mentioned above. This is done by fixing the
value of d' for the whole experimental éession, while changing
B in the range [~=, +»]. The performance is then a function of
B alone for some fixed wvalue of d'. Using eguation (2.6) the
results can be plotted in the P(AO/SO}—P(AG/Sl) plane, yielding

the Receiver (Relative) Operating Characteristic (ROC)} cuxrve.
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By repeating the experiment with different values of d', a
family of curves representing the sensory process is generated.
A typical ROC curve based on experimental data is shown in
Figure 2.1.

Tn the ROC approach, it is necessary to make the subject
change his LRCL B. This LRCL is a function of three factors:

1. The , ppiori possibilities of the state of the
world P(SO) and P(Sl)

2. The rewards given for the correct decision and the

penalties for errors.

3. The detectability d4'.
Since the detectahility d' is fixed, only the first two can be
used. If n different values of B are used, the experiment
will be n times longer. 1In order to shorten the total experi-
ment fime, it is possible to obtain different values for B
by requesting the subject to give rated answers rather than
only two. For example, the following rated answers might be
used: Sure SO’ Think SO’ Indifferent, Think Sl' Sure Sl'
For n rated answers the subject must choose n-1 LRCL's and
therefore produce n-1 values for B. Let these rated decisions
be Ri (1 = 1,+..,n). Then the perfo;mance is a function of 2Zn
variables because for each decision R, the state of the world
might be S0 ox Sl' However only 2(n-1) of these are independent.

We will use the following notation
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P(Ablso)
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g.3 -

0.1 u'

I i l l i
0.1 0.3 0.5 0.7 0.9 P(Aolsl)

FIGURE 2.1 ROC DATA OBTAINED IN A VISUAL DETECTION TASK

(FROM GREEN ANWD SWEETS 1966)



i=1;e0., n~1 (2.8)

P(Ri/Sl)

where

T+ might be noted that if the results of the experiment can be
written in the form of equation (2.7), namely as a function of
d* and Bl""' Bn—l, only n parameters are needed so that the
number of parameters can be reduced by n-2.

Another approach to define the "detectability" without
knowledge of the underlying density function is to use a non-
parametric measure (Hammerton and Altman, 1872). The measure
is based on the outcomes of a confidence rating experiment
with n possible answers. A random variable y is defined on
the set of all possible responses by assigning the value i to

the response R;. The probability of y = i is therefore:
P(y=1i) = P(SO)'P(Ri/SO) + P(Sl)-P(Ri/Sl) (2.9)

Also two conditional expectations can be defined as follows:

|
a3

Yo = B(y/5;3) L iP(R;/8)
i=L (2.10)

Yl = E(Y/Sl) =

|

iP(Ri/Sl)

i=1

The nonparametric measure of detectability is then defined Dby:
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T - 7
c= 0 "1 (2.11)
n- 1

It should be noted that although this measure does give infor-
mation on the detectability of the signals, it is not equi-
valent to d'. It can be shown (Morgan, 1973) that C is a
function not only of the parameters of the density functions
of the signals but also a functio:i. of the LRCL's. This means
that by using C the separation property of SDT is lost, and

therefore the approach is not often used.

Another important property of the ROC analysis is that the

area under the RCC curve in the P(AO/SO)nP{Al/Sl) plane is equal

to the expected percent of correct answers in a four alternative
forced choice experiment {Green and Swets, 1966).

The above methods enable the analysis of data from
psychophysical experiments without the knowledge of the under-

lying distribution. However, if this information is available,

much more powerful results can be obtained.
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2.3 Mathematical formulation of SDT with known distributions

1

From the discussion in section 2.2 it is clear that if
the underlying distributions are known, the wvalues of d' and
the LRCL's might be found so that the performance can be ex—
pressed in the form of equation (2.7) and the separation of
the two processés is complete. Also an analytical expression

can be found for the ROC curves in the form of

PAO/SO(L:"B) = {PAO/Shl(dl’ R) } (2.12)
where

d' = constant -® < B < 4w (2.13)

These theoretical curves can be drawn and the subjects per-
formance can be compared to the predicted performance.

In those experiments where both the signal and noise are
included in the stimulus and the internal noise of the subiect
is considered negligible in comparison to the external noise,
the statistical characterisfics are virtually known (Lee, 1963).
Then, the theoretical ROC curves can be plotted analytically
before the experiment starts. However, for many other cases
in which the internal noise is the main source of uncertainty,
the experimenter has to assume the functional form of the
density function, and then, on the basis of the outcome of the
experiment, f£ind its parameters. The general problem is, there-
fore, a parameter optimization problem and many algorithms

have been suggested for the solution. For the particular
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problem of f£itting distributions to confidence rating experiments,
algorithms were suggested. by Ogilvie and Creelman (1968),

Dorfman and ALf (1368), Abramson and Levitt {1969), and Crey

and Morgan (1972). A further discussion of this problem and a
suggestion for another algorithm are given in section 4.4. and

Appendix A.

2.3.1 The Gaussian assumpition

By far the most commonly used assumption is that the
underlying probability density is Gaussian. In those cases
where the simulated noise is the dominant factor, this dis-
fribution is chosen because of the ease with which it can be
created. Moreover it has some appealing characteristics:

L The distribution is completely defined by two

parameters, the mean m, and the standard
deviation o,.

2. caussian random variables remain gaussian undex

linear operations.

3. Two jo!ntly-Gaussian random variables which are

uncorrelated are also independent.

In the cases where the internal noise is the dominant
noise source, the Gaussian assumption is supported by the
central limit theorem. This theorem states that the distri-
bution of the sum of a large number of indepzndent random

variables with equal distributions and with finite first and
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second moments is approximately Gaussian regardless of their
individual distributions.. Since the sensory events are often
considered to be composed of many similar but simple events,
this theorem might apply. However; when the asgumption about
the distribution is based on this argument, the results should
go through a careful significance test.

Using the Gaussian assumption, the conditional densities

are given by:

1 (x' - mO)‘?‘
f(X’/SO) = exp{- —_—— }
Ji?bo 20,
5 (2.14)
f(x‘/Sl) = -——-exp{- ——y }
270 20
1 1
and the likelihood ratio is given by
L{x') = 5= expl 5 - = 1 (2.15)
0 201 ZUD

The likelihood ratio is, therefore, a function of four para-
meters my, Jq, My, Gge Since the decision is made by com-
paring the 1ikelihood ratio to the LRCL, the performance would

be invariant under a linear transformation. Therefore, let
X = N (2'16)

so that equation (2.15) becomes

2 (x-m?

(%) = = exp %r 5 (2.17)
20

Al
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where

m = (m0 - ml)/a1 (2.18)

o = 0,/0, (2.19)

so that the likelihood ratio is now a function of only two

parameters. The decision is, as before, made as follows:

if 2(x) 2 B choose SO
{(2.20)
if (x) < B choose Sl
L2t K be that value of x which satisfies
p(x) = B : {2.21)
Then the performance of the decision maker is given by:
P(AO/SO) = Prob (% (x) 2_8/80)
— ; expl-z?/2}dg (2.22)
V276 K-m
5]
P(AO/Sl) = Prob(L{x} > B/Sl)
- 5 exp {-z%/2}dr (2.23)
J210  EK—m
o
Defining
- n-m
sl = L 75 ewpl-g?/2lde (2.24)
Y27mo

where ¢ is the caussian distribution function, eguations (2.22)

and (2.23) are written



38

' (2.25)
P(AO/Sl) = 1 - O[K!?

Tn order to express the performance in the form of
eguation (2.7), K in equation (2.25) is replaced by a function

of B, m, and ¢. - From equations (2.17) and (2.20):
1nB = zw = =——k— =~ 1lno (2.26)

The value of K is found to be the solution of the following

quadratic equation:
(02 - l)K2 + 2mE - m2 - 202(lnc + 1nB) = 0
and this equation has a real solution only if
n?+ 2(c2 - 1) (lno + 1ng) >0

When such a solution does exist then:

-mg ¢§2 + 2(62-l)ln80;

02—1

1 -9l

B(B,/8,)
(2.27)

{
ot o/n? & 2(c2-1)1nsc]

2
o -1

P(AO/Sl) =1 -8]

Thus the detectability d' is a function of two variables m and
o: however, the analytic expression for this relationship can
not be found.

From equation (2.25) it is possible to get the eguation
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for the ROC curve in the P(AO/SO)mP(AO/SI) plane. If 4' is
constant, P(AO/SG) and P(AO/Sl) are functions of K only. By

eliminating K from equation (2.25), the ROC equation is
-1 - -1
o7 [L - P(A,/S)]1= old "{1-P (/85031 + m (2.28)

where @“l(a) is the inverse of ¢{a) and can be found in math-
ematical tables. For each curve in the family, m and ¢ are
constant, i.e. d' is constant. Such a family of curves for
different values of m and ¢ is shown in f£igure 2,2. Because
these curves are usually used to validate experimental results,
it would be helpful if the curvature could be eliminated,

This can be done, by using a unit deviate scale rather than a

linear one. Let:

e™M 1L - P(ay/5,)]

e
I

1
(2.29)
- &™tr1 -
z, =& "1 P{Ay/8,)]
Then the ROC is given by a straight line
by = gZq + m (2.30)

Therefore, if the Gaussian assumption holds, the experimental
data points for fixed o and m should be on a straight line.
However, even these curves do not alleviate the problem of

unique measurement of detectability since it is a function of

both the slopé and the zero crossing point.
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P(AOISD)
0.75 -
0.5 -
0.25
0 i 1 1
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PLAO/SO)
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o
—_—< 1
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[
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FIGURE 2.2

ROC CURVES IN THE GENERAL GAUSSTAN CASE
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2.3.2 B8Special Cases:

The fact that the detectability in the general Gaussian
case is a function of two variables and that it is difficult
to express the performance through d' and 8, leads to further
assumptions in which these problems do not arise.

One assumption is that the distributions under both
states of the world have the same variance, or:

oy =0 —*® o =1 (2.31)
Tn those cases where the simulated noise is dominant, it is
easy to satisfy the assumption. In the cases where the internal
noise is dominant, the justification of the assumption is that,
as the signals are deterministic, the internal noise source is
the same for both signals, hence the variance of the stimuli
ig the same. Under this assumption, eguation (2.26) which

relates Inpg to K is:
2 2
Ing = K2/2 = (K - m)“/2
Therefore, lnf is linearly related to K:
1ng = Km - m>/2 (2.32)

The performance of the decision maker is given by

I

P(a,/Sy) = 1 - ¢{lnf/m - n®/2)

5 (2.33)
P(Ao/sl} = 1 - &{InR/m + m /2)

Therefore, the detectability of the siynals in eguation (2.33})

is a function of only one quantity, so we may define
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dt = m = ——— (2.34)

It is clear also that in this case the performance can be
represented by d' and B.

The ROC curve is given by the following equation
M1 - pa/s01= oML - Pa/s )+ A (2.35)
01 - 80’70 *

or if we use the unit deviaite scale

= 1
Z.?.—Zl+d

This is a family of parallel straight lines with unit slope,
and with intercept d'. The detectability is, therefore, the
distance of the line from the origin multiplied by 27

Figure 2.3 shows ROC curves for equal variance Gaussian
distributions in the P(AU/SO)—P(AO/Sl) plane. Figure 2.4
shows the same ROC curves in the Zo=Zq plane.

another possible assumption is that the means of both

signals are the same and the variances differ, namely,
. m=0 (2.36)

In most of these cases both means are zero. The decision is
therefore made on the basis of the difference hetween the

variances of the signals. Equation (2.26) is reduced to

2 2
g = = - X 1no
20

Therefore, from (2.27), K is given by:



43

P(AOISD)

0.9

0.7

0.5

0.3

0.1 -

I ! T T I
0.1 0.3 0.5 0.7 0.9 P(Aolsl)

FIGURE 2.3 ROC CURVES FOR EQUAL VARIANCE GAUSSIAN

DISTRIBUTIONS



44

FIGURE 2-4 ROC CURVES OF EQUAL VARIANCE GAUSSIAN

DISTRIBUTION USING UNIT DEVIATE SCALE
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1
R = szclng + lng) (2.37)
o- -1

Tn contrast to the former case, the linear relationship between
1nB and d4' does not hold, and the relation does not vield a
unique answer. By substituting K from (2.37) into equation

(2.25) (with m = 0), the performance of the decision maker

P(a/Sq) = 1 - @(i_’ﬂ%ned)‘)

o {2.38)
P{AO/Sl) = ] = @(iol—z(—lﬁBT)')

Gz-l

Again the detectability of the signals affects the expected

is given by:

performance of the subjects through one quantity. Therefore,

the detectability can be defined as:

d' = o = do/cl (2.39)

The ROC curves for this special case are defined by the

eguation
-1 _ -1
" {1l - P(Ay/5;)} = o0& {1 - P(Ay/84)} (2.40)

or in the Z,-%; plane

&, = OZ (2.41)

2 1

This is a family of straight lines with different positive
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slopes, all passing through the origin. The detectability is
given by the slope of the line. WNote, however, that the
detectability is a minimum when c=1, and it grows as a function

of |o - 1[.

2.3.3 ' The Logistic distribution assumption

Although in most applications in psychophysics the
gaussian assumption is used, several other density functions
r=ve been tried (Ogilvie et al, 1966). In particular, the
class of density functions £(x) that satisfy the condition

{Thomas and Myers, 1972)

_¥%Inlf£{x)] >
2

0 for all = {(2.42)
ox

w33 found applicable in ROC analysis. This class includes
~»s Gaugsian, Logistic, Gamma, and Exponential distributions.
The Logistic distribution is sometimes preferred to the
=snssian distribution because the cumulative distribution
smction can be expressed in a closed form. This property is
=~so useful in simplifying any parameter optimization algorithm
-tat is used to fit the distribution. Furthermore, it has been
=vynd that the form of the ROC curves in the P(AO/SO)—P(AO/Sl)
~-ane is very similar to the form under the Gaussiéﬁ assumption
~uce, 1963}).

The two conditional densities undex this assumption are:
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x'—mo
exp{— 5 1
£(x1/5,) = 0 _
Xx-m
[L+ expl- %0}]2
(2.43)
e?P{— G }
£(x'/S,) = 1
H=-I
1+ exp{- 1}12
o

where m, and m, are the means, and 9, and Ul are the variances

of the distribution. The likelihood ratio is given by:

1 | - L
b4 1‘l'11 X -m b4 ml

gxp{ = - 0} [+ expl- 5 }]2

o)
1 0 (2.44)

x'—mo

gL {xt) =
312

{1 + exp{- o

The likelihood ratio is again a function of four variables;

however, the same likelihood transformation as in equation

(2.16) can be used so that:

expix - Egm}[l + exp{-—x}]2
(2.45)

(%) =
[1 + exbffgg 112

where

o = 00/01 m = (mo - ml)/ol
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The performance of the subject is given by:

14

_ _ K-my4-1
P(ay/S,) = [1 + expl _E—}]
(2.46)
P(a,/8,) = [1+ exp{-—K}]_l
Where K satisfies
L(K) = B
The equation for the ROC curves is
ln[P(AO/Sl),-l] = oln[P{AO/SO) -~ 1l] - m (2.47)
Defining new coordinates
5, = InlP (Ry/8,) - 1]
(2.48)

22 = ln[P(AO/Sl) - 11

1

The ROC is again a straight line characterized by two parameters

o, m:

o = 0%y =W - (2.49}

In order to express the performance as a function of d' and

B, the value of XK has to be found by solving the equation:

1ng = {1 - 1/0)K + m/o + 2(1ln[i + rxn{-K}1)

- 2(1n[1 + exg{-{K~m)/o}l) (2.50)

A closed form solution for this equation is not feasible, n¢ a

further assumption has to be made., One such assumption is



49

similar to {2.30), that is

In this case

Jaem - 1 1

K = In{ (2.51)
1 - ﬁ/eml
and the performance is given by:
/ m -1
P(AO/SO) = [l + E_:EFEZE_]
Ype" - 1
(2.52)

1 - #B/em b =1

The performance is a function of only one parameter with raspect

+o detectability; so we can define

Gy (2.53)

which is equivalent to the definition of detectability in the
Gaussian case. The ROC curves wiil be straight lines with a
slope of unity in the Z,~2, plane.

T+ can be shown that if the assumption of equal means is

made, the detectability is defined by:
T = =
d o 00/0l (2.54)}

and again the ROC curves and performance are similar to the

Gaussian case.
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CHAPTER III

ANALYSIS OF SIGNAL DETECTION WITH VARYING STIGNAL STRENGTH

3.1 General Discussion

As has already been shown in the last chapter the
performance of any decision mechanism in a binary detection
task can be characterized by the quantities P(AO/SO) and
P(Ao/sl). Each of these guantities is itself a function of
two other parameters, the detectability d' and the likilihood
ratio criterion level (LRCL) 8, which are controlled by either
the experimenter or the subject. Therefore, the .most general
question to be posed 1is how does the performance change when
both @' and B are changed within their full range? Since both
P(AO/SO) and P(AO/Sl) are functions of the same paraneters,
any change in either B or d4' will change both of them. There-

fore, in general, the following relationship is sought:

(B,d') = £ P

P . (B,4") (3.1}
AO/SO Ao/s1 }

where
—co E.B < 4w 0 < df < = (3.2)

The fact that d' is a measure of the performance of the sensory
process alone, while f is a measure of the decision strategy,
enables us to reduce the general case to some special interest-

ing cases.
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In Chapter 2 we dealt with the analysis of the sensory

process. This is a special case of equation (3.1) in which

d' is kept constant. In this chapter we investigate the

manner in which the LRCL B, or decision strateqy, is changed.

A simple approach to this problem might be a dual approach
to the ROC method, namely, to look at another special case of
equation (3.1) in which B is kept constant. However, this
approach cannot be justified as easily as in the sensory
analysis case. There, the fixed detectability assumption
could be based on the following arguments: If both signal
and noise are simulated and the internal noise is negligible,
then it is possible to a prior? fix the detectakilitv and by
so doing to satisfy the assumption, If the internal noise

is dominant, it can still be argued that +the sensory process
is prior to the decision mechanism so that the value of d'
does not depend on B. Therefore, if the stimuli are kept
constant, the internal noise will be stationary and &' is
constant.

Those arguments cannot be used in the analysis of the
decision strategy. The main reason is that the LRCL 8, being
based on the output of the sensory system, may depend on the
value of d'. If we force the subject to fix his LRCL, we are
actually dictating his strategy. Therefore, if the decision
strategy is to be determined on the basis of the performance

of the subject, the correct gquestion to ask is how does the
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decision strategy change with the change of d‘.

Tt should be noted that d' is the distance measure of the
two states of the world and is referred to by several names.
Communications engineers use the names detectability or signal-
to-noise ratio (SNR), while psychophysicists use the name signal
strength. We will use these names interchangeably, according
to the particular use of d'. Since we are interested in the
analysis of the decision strategy, we have to deal with det~
ection problems in which d' is changing in oxder to find how

the LRCL is changed with d'.
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2.2 TDecisicn Rules

Since in many practical cases in psychophysics the
underlying density functions are not known, it is desirable
to work with the experimental raw data, namely, the various
values of P(AO/SO) and P(AO/Sl). This leads to the analysis
of the decision ;trategy in the P(AO/SO)-P(AO/SI) plane, the
same plane which is used in the ROC analysis. In this plane
we are looking for curves given by equations (3.1) and (3.2),

under the assumption that the changes in B are the result of

the decision strategy. Therefore, the bias factors that control
B, namely, the g priori probabilities P(S_) and P(S,), as well
as the rewards for correct decisions and penalties for errors
must be kept constant. The resultant curves in the P(Ao/so)#
P(AO/SI) plane will be referred to as the Decision Rule (DR) .
curves. The shape of these curves is determined by the deci-
sion strategy of the subject.

The first strategy is the one already mentioned, namely,
a fixed LKCL decision rule. This means that the subject ig-
nores changes in the detectability so that B is kept constant,
and this constant value is predetermined on the basis of the
bias factors. Therefore, in this strategy, the performance

will be a function of d' alone. As in the ROC analysis, an

analytic expression for the DR curve in this strategy is not

available unless the underlying distributions are known. It
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should be noted that this strategy is optimal with respect to
all the criteria that were discussed in section 2.2 except for
the N.P. objective.

A second strategy is to try to satisfy the Neyman Pearson
(N.P.) objective, 1In this strategy, the subject fixes his
probability of false alarm P(AO/Sl) while maximizing his prob-

ability of hit. This strategy can be defined by

P (B,d') = caonst. P {R,d')=-max {3.3)
AO/Sl ! 4. caon AO/SO f

Two properties of this strategy are:

1. For a fixed false alarm rate, increasing 4' will
make the task easier so the probability of hit
should increase.

2, By decreasing the false alarm rate, the subject
also decreases his probability of hit for the
same value of d'.

Since this strategy is governed directly by P(AO/SO) and
P(AO/Sll rather than through d' and 8, the DR cuxrve is independent
of the distribution function. The shape of the DR curve is a
vertical straicht line. A familv of such DR lines, where the
magnitude of P(AO/Sl) is the parameter, is shown in figure 3.1.

Vertical lines are not the only possible shape of the DR
curves under the Meyman Pearson strategy. In a dual strategy

to the one defined by equation (3.3) the subject might decide
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to fix his probability of miss P(Al/so) and maximize the

probability of correct rejections. This is formulized as

P(Al/Sg) =1 - P(AO/SO) = const.
(3.4)
P(Al/sl) = 1 -P (Ao/sl)] el T

The use of equation (3.4) rather than {(3.3) might happen when
the magnitudes of P(Al/so) and P(Al/sls are more important to
the decision maker than the magnitudes of P(AO/SO) and P(Ao/sl)-
If the P(AO/SO)-P(AO/Sl) plane is used to draw the DR curves,
their shape in this strategy would be that of horizontal straight
iines., A family of such DR lines, wheie the magnitude of
P(Al/so) is the parameter, is shown in figure 3.2,

In some cases the subject might use a strategy that in-

volves both equation (3.3) and (3.4). This might happen in

those cases where there is more +han one LRCL to be determined,
as in a cogfidence ratino experiment. If the two states of the
world are two signals rather than a signal and noise alone, the
subject might use equation (3.3) for the . LRCL for the sure

state Ay, while using equation (3.4) for the LRCL determining the

sure state Aqe The resultant DR lines under this strategy in

a case of four LRCL's are shown in ficure 3.3.

1f the a priori probabilities of P(SG) and P(Sl) are not

known to the subjsct, he might use still another strategy. How-

ever all the costs must be known to him:
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Ciq = cost for deciding A5 when Sl is true
Cog = cost for deciding A, when S, is true

Chy = cost for deciding A, when S, is true

Cig = cost for deciding A, when 80 is true

Then the expected value of the total cost of making the decision
is a function of.P(SO) and there will be some value of P(SO)

for which the total cost is maximized. The strategy then is to
minimize this maximum total cost, referred to as a minimax
strategy. The DR curves for the minimax strategy are given by
(Van Trees, 1968):

- C

- C - C

c
01 10
P(AO/Sl) 4+ —

01 ~ “o0 €10 = o0
Eqguation (3.5) represents straight lines with negative slopes.

1l 11

(3.5)

P(AO/SO) = e

- C
A family of such curves 1is shown in figure 3.4. Again these
DR lines are independent of the underlying distributions.

Once the experimental P(AO/SO) and P(AO/Sl) are found,
the DR curves can be drawn. If these curves are vertical or
horizontal straight lines, ﬁhen it can be said that the
Neyman Pearson rule was used. If the straight lines have a
negative slope, than the strategy is equivalent to the minimax
rule, If, however, the DR curves are not straight lines. little
can be said unless an assumption about the distributions is made.

In those cases where the distributions are knom, the
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decision rules can be expressed in somewhat different form.
The performance of the subject can be described by B and 4!
directly, rather than through P(AO/SO) and P(AO/Sl). Since
d' is independent of the decision strategy and is the only

variable, the decision rule is defined by the relation
B = £(a") | (3.6)

In equation (3.6) the decision rule can be viewed as a relation
between a stimulus (d') and a response (B). Possible decision
rules are:

1. B, is independent of 4',

2. 8 is a monotonic function cf d'.

3. B is a nonmonotonic function of d'.

Clearly, any decision rule that is given by eguation

(3.6) can also be expressed as a DR in the P(AO/SO)—P(AO/Sl)
plane. For example, case 1 above is equivalent to the fixed
LRCL DR. The analysis can, therefore, be done either way
depending on the case in hand. However, whenever possible

both methods should be used for a complete analysis.
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3.3 Decision Rules for the Gaussian Case

As explained in section 2.3, the assumption that is
usually made and the one that agrees with experimental results
is that the underlying distributions are Gaussian. Eguation
(2.27), which relates the performance of the decision maker to
g and d', provides a basis for starting the DR analysis. How-
ever, for the general gayssizn case the detectaRility cannot
be expressed by one pa. meter, d', but with two parameters, m
and o; the easiest way to express the relationships describing
the DR curve equations is the parametric form given by eguation
(2.27) with B, m, and ¢ as parameters.

The DR curve equation for constant LRCL strategy is
derived by eliminating both m and ¢ from equation (2.27).
However, since there are two equations, only one parameter can
be eliminated so that a closed form expression for the DR
curve is not feasible, and the parametric form (2.27) is used,

Tn order to satisfy the Neyman Pearson criteria in the
general Gaussian case, one of the following relations should
hold

}?(AO/Sl) = Cy P(Al/SO) = C, {(3.7)

substituting from equation (2.27) into (3.7)

- m ¢ o/m’ ~ 2(02 - 1)1nBc c, (3.8)

g% - 1



62

oxr

- mo + /m? - 2(c? - 1l)lnBg'

= Cy (3.9)

g2 -~ 1

where Cl’ Cz, C3, and C4 are constants.
Therefore the Neyman Perarson strategy in the form of

equation (3.6) is

» [C.(g? - 1) + m]?2
Ing = m 3 —in o (3.10)
2{c?® - 1) 2062({g? - 1)
oxr '
m? [cy(c? - 1) + mo]
Ing = — — lno {(3.11)
2(c? - 1} 2(g? -~ 1)

The relations obtained for the general Gaussian case
are rather complicated and further simplifications will be
made. The first assumption is that of equal variances, that is,
g = 1, Now the detectability is defined by one quantity d' = m,
and the performance can be specified directly by 8 and d'. For
the strategy of fixed LRCL or B = constant, the DR equation is
obtained by eliminating m from equation (2.33). Rewriting
(2.33):

Inf/m - m/2

ot [1-p(a,/8,) ]
¢_l£1—P(A0/sl)1 = lnB/m + m/2

Squaring both sides of the above equations and then substituting

the second into the first, we get:



o7 11~ (A /5132 =187 [1-P(Ay/S;)1}2 - 2(1nB) (3.12)

Equation (3.12) is the analytic expression for the DR curve in
the P(AD/SO)—P(AO/Sl) plane for a fixed threshold strategy. A
family of such curves with 8 as a parameter is shown in figure
3.5. For the special case where § = 1, eguation (3.12} reduces

to:

@“1[1-P(A0/so)] - iQ_l[l—P(AO/Sl)] (3.13)

which are straight lines on the two diagonals of the P(AO/SO)—
P(a,/S;) plane as shown in figure 3 ¢, It should be mentioned
that for B = 1, these DR lines are also the DR lines for the
general Gaussian case.

Using unit deviates, the equation of the DR curve is

2 S
Zl - 22 = 2(1ng) (3.14)

This is a famlly of hyperbolas that can be seen in figure 3.7.
The asymptotes of the hyperbolas are obtained for § = 1. As
in the ROC analysis, it is helpful to transform the DR curves
into . straight lines, Then the following transformation is

made:
- p2
%-zl

so'that the DR curves are:

%2 - %1 = -2 {1nB) (3.15)
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FIGURE 3.7 DR CURVES FOR FIXED THRESHOLD DECISION

STRATECY ON UMIT DEVIATE SCALE
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A family of such curves on a unit deviate sqguared scale is
shown in figure 3.8.
To satisfy the Neyman Pearson objective,equation (3.7)

should hold. In the 2qual variance Gaussian case, this means:

U
Q

1 - &(lng/d' - d'sa)
or {(3.16)
1 - &{lnB/d' + d'/2) = C

it

2

Therefore this decision strategy in the form of equation (3.7)
is:

ing ar + dr?/2 (3.17)

il

C3

lng = C,d' - ar2/2 (3.18)

where Cl, C2’ C3 and 04 are constants. The Neyman Pearson
criterion implies a quadratic relation between the log LRCL
and the detectability. It is important to note that in this
strategy Bmight not be wmonotonic with 4.

Since we have already seen a decision rule in which B
is constant, and the Neyman Pearson decision rule implies a
guadratic relation between 1ng and d', it seems reasonable to

suggest another decision rule in which 1ng ig linear with 4'.

Such a decision rule might be:

Inf = C + Csd' (3.19}

5

where C5 and C, are constants. Substituting equation (3.19)
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into eqguation (3.12}, we get the performance of the decision
maker as a function of d'. When &' is changed in the range
[0,®] points on the DR curve are obtained. A family of such
curves in the P(AO/SO)—P{AO/Sl) plane, with CS and Cg &5 para~
meters, is shown in figure 3.9.

another interesting special case of the Gaussian assump-
tion is the case of two Gaussian distributions with equal means
and different vaviances, where m = 0. 1In this case, the det-
ectability is defined as o, and the performance is a function
of only B and o. In order to cet an equation for the constant
threshold decision strategy ¢ must be eliminated from equation

(2.38). Rewriting equation (2.38)

2 (lnBo) /o2-1

n

~1
{® [l—P(AO/SO)]}2
(3.20)

2021nfo/o?-1

i

-1
{a [1-P(A0/sl)1}2

subtracting the two:

o7l (1-p (/8,112 — {87 1P (Ag/8,) 1} = 2(1ngo)

but Ffrom equation (2.40)

_ o1 ~lpa
o =0 {1—P(A0/sl)}/® {1 P(AO/SO)}
Therefore the egquation for the DR is given by

ra—l -1
o7l [1-p(ay/8,) 132 - {87 [1-P(R/8) 1}

o7t [1-p (By/S,) ]
= 2(1ng | =T
o" T [1-P(A;/S4)] (3.21)
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When the Neyman Pearson decision strategy is used, the

following equation holds (from eg. (2.37))

2{1nB + lnc)‘)

g?- 1 1
or
1
1 - ®G§/2(1n6 4+ lno) ) =c,
g? -1
Therefore
¢/5(ln8 + ln&?‘ = C
62~ 1 3
or
2(1 + 1 i
{/ (1ng nol' o /g
o2~ 1 =

This decision strategy in the form of equation (3.7) is

Ing = (c3c2 - Cy - 2(inc))/2

oxr

il

1ng (Cy - 04/02 - 2(1no)}/2

gince

g? »> 1ino for c > 1

The decision rul: given by (3.24) and (3.25) is, therefore,

(3.22)

(3.23)

(3.24)

(3.25)

approximately guadratic, as was true in the equal varlance case.

Again a third decision rule might be suggested in which 1nB

igs linear with o.

Tt should be noted that similar expressions for the
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possible decision rules can be derived for other distributions
satisfying equation (2.41). The derivations are similar to the

ones for the Gaussian distribution and therefore will not be

repeated.
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CHAPTER IV -

" DETECTION OF SIGMNALS WITH UNCORRELATED SIGNAL STRENGTH

4.1 General Discussion

Chapter 3 dealt with a theoretical approach to the
analysis of decision strategies in signal deéection tasks. An
important conclusion of that discussion was that any study of
decision strategy should include experiments in which the
signal strength {(the detectability) is time varying. Aamong the
few experiments of this type that have been reported are Kinchala
and Smyzer (1967), Donaldson and Murdock (1968), Glorioso et al
(1968), Thurmond et al (1870) and Healy and Jones (1973}. To
support the theoretical analysis of earlier chapters, we col-
lected our own data from experiments designed to explore the
decision strategy of the subjects., A description of this exp-
eriment and the results are given in this chapter.

Since our major concern was the general concept of deci-
sion strategy, the question of which sensory system to use was
of minor importance. We chose to test the decision strategy
in a visual discrimination task because a computer with a
graphics terminal was available so that the simulation of
visual stimuli was relatively easy.

A major preliminary gquestion in any experiment with

varying signal strength concerns the time structure of these



74

changes. In classical signal detection, it is assumed that
although repetitive decisions are made in each experimental
session, these decisions are statistically independent. This
implies that in cases with time varying signal strength, the
change in signal strength should be designed in such a way as
to prevent correlation between successive decisions. One
possible way to avoid correlation is to change the sigral
strength in a random manner. It might be argued that in real
1life situations random changes rarely occur, so that such an
approach is impractical. However, since we intend to relate
our results to classical SDT, we chose to start the analysis
with experiments in which the decisions would be uncorrelated.
Once the decision strategy in this basic case is evaluated, it
will be easier to analyze the more complicated experiments
which involve correlations.

Tn order to simplify the experiment as much as possible
without Zffecting the generality of the results, the following
three constraints were adopted:

1. The input signals are deterministic so that the
uncertainty is due only to the internal uncertainty
of the subject.

2. The change in signal strength is instantaneous;
namely, there are no dynamicg and, therefore, no
transient effects. Thus within each presentation

the signal strength is fixed, and the transient
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process of changing levels between presentations
is not shown to the subject.

No feedback is given to the subject after his
decision is made. Also, his decisions do not
affect in any way the format of the data present-

ations.

The principal aim of the experiment is to determine the

decision strategy of the subject in the form of DR curves as

well as the functional relationship between the change in

Likelihood Ratio Criterion Level (LRCL) and the detectability.

Since the input signals are deterministic and the associated

noise is attributed to internal noise, two more questions should

be answered:

l.

Can the assumption of Gaussimn distributions with
equal variances be used fcr this particular visual
task? The answer to this gu=2stion is important
because only if the answer is positive can the
major results of Chapter 3 be employed.

How does the ensemble discrimination of the subject
relate to the signal strength in the presentation?
This relation is important because it might be

used to describe the error sources in the subject's

behavior.
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4.2 Experimental Method

4.2.,1 Motivation

Tn the previous section, we discussed the general impor-
tance of signal detection experiments with time varying signal
strength. However, the specific motivation for the experiment
that is discussed in this chapter was the study of the decision
task of a pilot who uses a traffic situation display to avoid
collisions. Such a display shows the pilot the relative posi-
tion of the intruder and updates this position every four seconds.
The pilct's task is to decide whether the intruder will pass to
his left or right. Since the decision becomes easier when the
intruder is closer, the pilot faces a signal detection task with
time varying uncertainty. A simplified version of this problem
is discussed in this chapter, and the correlation effects are

studied in Chapter 5.

4,2,.2 Apparatus

The ADAGE Model 30 graphics computer with a 17 inch CRT
was used to simulate and display the input data. The function
switch box which contains 12 push buttons was used to sort the
decisions of the subject which were stored for data-analysis.

A horizontal line in the center of the screen along with

a small vertical cursor would appear on the CRT during all the
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experimental sessions. 1In addition, a pair of guarter inch
circles appeared at the beginning of each decision interwval
and disappeared at the end of the interval. The presentation
on the display during an arbitrary decision interval is shown
in figure 4.1l.

whe location of the circles relative to the cursor is
changed from one decision interval to the next and can take
ten different values. Let (xl, yl) define the center of the
upper circle, (xz, y2) define the center of the lower circle,
and the height of the CRT be 2L. Then the ten locations of the

pairs are given by

N . o
%, = L14(i-1), yq = 12-23, i = 1,0.,5 (4.1)
1500 10
+143 ~21 ,
XZ = l-lL yz = il 2]':']:4 -1 o= 1;-:,-5 (402)
1500 10

Note that five of the pairs are on a straight line with a slope
of 7/150, while the remaining five pairs are on a straight line
with a slope of -7/150, as can be seen in figure 4.2,

These pairs represent the visual gtimuli, The subject's
task was to indicate whether the pair that was presented was to
the left or the right of the vertical cursor. Since .the loca-
tion of each pair was fixed within each decision interval and
was always either to the right or to the left of the cursor,

the stimuli can be considered as deterministic (no noise). Any
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DECISION INTERVAL
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uncertainty involved was due to the internal uncertainty of the
subject because the position of the dots was close to the limit
of his discrimination ability. It can also be seen from figure
4.2 that each pair to the left has a symmetric pair to the right
so that the stimuli are symmetric with respect to the vertical
and any asymmetry in the results should ke attributed to an
internal bias of the subject.

Equations (4.1) and (4.2) and figure 4-2 show that any
two symmetric pairs lie at the same distance from the horizonal
line; and therefore, they constitute fiv. different distances
from that line. Since the discrimination between left and right
should be easier for a pair that is closer to the horizontal line,
each two systematic pairs represent a different level of signal
strength. Therefore there are five levels of SNR which are shown
in figure 4-2 and referred to as SNR1 - SNR5. ©SNR1l represents
the smallest SNR and SNRS the largest.

The reason for limiting the number of SNR levels to five is
+o limit the length of the experiment. Green and Swets (1966) sug-
gested that for a classical signal detection experiment with fixed
detectability a subject has to make a large number of successive
decisions before his ensemble performance can be related to his
internal uncertainty. If there are n SNR levels, both the total
number of decisions and the total length of the experiment are

multiplied by n. If every decision interval takes six seconds
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the experiment would take around four hours for five SNR levels,
This was found to be the limit for our subjects' patience.
Furthermore, five points seemed to be sufficient to draw DR

curves.

4,2,3 Subjects

gix subjects participated as observers in the experiments.
All six subjects were graduate students in the #an Vehicle
Laboroatory of M.I.T. Each one of them had a basic knowledge
of probability theory and hypothesis testing, and they all
were familiar with the terminology used in psychophysical
experiments,

The subjects' participation was on a voluntary basis.
However, in order to motivate them to perform their best, they
were told that they were competing against each other. The
competition was based on the total score of each subject, and
after all the subjects finished their task, the table of the
individual scores was posted. BAn informal preliminary test
showed that the competition factor improved subject's per-

formance considerably.
4.2.4 Procedure

The subject sat in front of the CRT while holding the
function switch box in his hand. He could adjust his distance

from the display so that he could get the best view of the
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stimuli. The pair of circles would appear on the display and
remain for 4 seconds; the pair would then disappear for 2 seconds
and reappear at a different 1ocation for 4 more seconds and sO
Oll.

The two second blanking interval was used in an attempt
+0 clear the subject's memory and thereby prevent him from
making judgements on the basis of the previous stimuli.

The position of the pair at each four second decision
interval was determined by a xandom number generator. This
random number generator picked one of the ten possible loca-
tions [(see Figure 4.2) during the blanking interval in such
a way that the probability of each location appearing was equal.
Since the subject was told a priori about the random order, he
knew that the present position was statistically independent
from any previous presentation, Thereiore, it was expected
that the successive decisions of the subject would also be
statistically independent as was demanded by the experimental
design,

During each decision interval which included 4 seconds
of stimulus presentation and 2 seconds blanking period (6 seconds
total), the subject was to indicate whether the pair of circles
was to the right or the left of the cursor. The response was
given by pushing one of the three buttons on the function switch

box which corresponded to
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THINK LEFT
DON'T KNOW (4.3)

THINK RIGHT

The subject was told that his decision could be giwen at any
time during the 6 second interval and the scoring method
accounted only for his correctness but not for the time of
response. Only a single decision could be given, and the
subject was not allowed to change his decision within the 6
seconds.

In classical signal detection, rated decision procedures
with n possible decisions provide (n-1) points for drawing
the ROC curve. Tn view of this aim, the use of only three
possible decisions may seem insufficient. However, it should
be remembered that in dealing with the decision strategy, the
objective is to obtain the DR curves rather +han the ROC curves,

and the number of points on a single DR curve is related to the

number of SNR levels and not to the number of response categories.

T+ should be noted that an increase in the number of response
categories also increases the overall number of decision inter-
vals to be used in one session {(to get sufficient data) and the
1eﬁgth of the experiment is increased. We decided to choose the
minimal number of response categories required for a. confidence
rating experiment, and therefore, chose three categories.

The odd number of categories is also helpful to avoid a central
DR curve which leads to the choice of B close to unity, a case
in which the decision of which strategy was used is more compli-

cated, (For example, for B = 1 the DR for fixed t+hresholds and
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for linear strategy might be the same,as can be seen by comparing
figure 3.6 to figure 3.9

A standard set of instructions was read to the subjects
describing the experimental set-up. They were told that the
probability of a left or a right presentation was 0.5. They

were also introduced to the scoring method which was as follows:

+3 points for a correct deci
-3 points for an incorrect decision
0 points for "Don't know" decision
The ten possible lucations of the pairs on the CRT were shown
to them, and the fact that all pairs lie on one of the two
straight lines (figure 4.2) was explained.

There was no feedback after each trial, and the subjects
were not advised as to what level of confidence they should
chocse in making a positive decision.

Each of the subjects had a ten minute practice session
during which he could interrupt in the event that he had any
guestions or problems. After practice, the first half hour
session of 300 decisions was started. Later the subject parti-
cipated in three more half hour sessions, each on a different
day. Each subject had made a total of 1200 decisions or 200
decisions per SNR level. The data analysis was based on the
1200 pooled decisions, rather than on the results from each
session. One of the subjects (L.L.) participated in only two

sessions.
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4,3 A Mcdel for the Change in Subject Uncertainty

In Chapter 3 we dealt with the analysis of decision
strategies in a general SDT experiment. In the previous section
we described in detail the experimental design. In this section
we suggest a model that describes the particular decision pro-
cess that might apply to our experiment.

gince it was assumed that the decision made by the subject
in each decision interval is independent of decisions in other
intervals and since at each interval the task is the same, it
is reasonable to further assume that the method of decision used
by the subject in each interval is also the same. Therefore,
we shall limit our discussion tc the subject’s performance
within one arbitrary decision interxval. The information
given to t’- subject within this interval is time invariant
and is show. in figure 4.1.

Figure 4.3 shows the displayed information but includes
additional notation that is needed for the analysis. The
horizontal line on the screen is the line S5'. The vertical
cursor crosses this line at point C. The lines OA and CE are
the lines on which the pairs may be located as was shown in
figure 4.2. The lengths of the two intervals CE and CA are the

same and are given by

AC = -d (4.4}

0
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FIGURE 4.3 DISPLAYED INFORMATION WITH THE DETAILED

NOTATIONS THAT IS USED FOR THE MODEL
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Tn a coordinate system with origin at C, the y axis in the CO
direction, and the x axis in the CE direction, the location of
the centers of the pair of circles are at points (xl, yl) and
(32! yz). The length of the line CO is L, and the angle hetween
OC and OE is O

The task of the decision maker is to decide whethar the
two circles are to the left or to the right of the cursor. A
possible method to do the discrimination (particularly in view
of the subjects' knowledge that the pairs lie on a straight
line) is to extrapolate the straight line that passes through
(Xl' yl) and(xz, y5) and to find the intersection point with
§S'. For a perfect sensory system those intersection points
would be either A or E according to the state of the world at
this decision interval, However, because of his internal
noise, the subject might reach point F rather than E when the

state of the world is R (Right). The length of the line CF is

CF = dl(i) (4.5)

where i is the SNR index and changes from 1 to 5. The distance
dl is a function of the SNR index since the discrimination is

mas’er if the circles are closer to SS' and therefore the dif-
ference {dl - do) decreases as i increases. In the limit, when

the lower circle almost touches S58':

%im dl{i) = do (4.6)
i=5
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It should be noted that the value of dl(i) is a random
variable.

Once the location of point F is found the decision is
straightforward. If the subject were forced to a right/left
decision, he would choose point C as a CL (note that this CL
is not the LRCL, but the value of K that is defined in equation
{2.21)) and decide

Right ~ if F is to the xright of C

Left =~ if F is to the left of C
Since he is given the option of saying "do not know", he will
choose two CL's at points B and D and decids

Right -~ if F is to the right of D

Left ~ if F is to the left of B

Don't know ~ if F is between D and B

In any of these cases, this model leads to the use of classical
SDT for tne analysis of the experimental data.

The second question that was posed was how to relate the
internal uncertainty of the subject u(i)} to the SNR. The
uncertainty of the subject is defined as the reciprocal of the
detectability of the signals, or the reciprocal of the normalized
difference between the values 0f dl(i) {see equation (2.34)}.

Let us use the notation dR(i) for d,{i) when the state of the

1
world is right, and dL(i) when the state of the world is left.

Therefore
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dp (i) = d, + Ad(i)

d; (i)

0 (4.6)

-3, + Ad{i)

0
where Ad(i) is the error of the subject in locating the point

E or A and is a random variable. Becuase of the symmetry of

the deterministic stimuli, the same d(i) which is still a function

of i can be used for both states of the world. From equation (4.2)

y = (12 - 2i)L/10 i=1,...,5

Since oy is a small angle (7/150 radians), a good approximation

for Ad(i) is (see figure 4.3):

Ad(i) = (12 - 2i)LAa(i)/10 (4.7}

where Ao (i) is the angular error that the subject makes when
he tries to extrapolate the line OE. Also from figure 4.3,

do can be approximated by

= 4
do Lao ‘ (4.8)

The angular error Ac(i) is a random variable and a function of i.
However, since the angle oy is the same for every i, we might
assume that the statistics of 6wu(i) are stationary with respect

to i, namely
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——

M (1) = Aa (ac (i) - Aq)}? = °a2 (4,9)

Therefore substituting (4.9) into equations (4.7} and (4.6)

dR(i) do + [(12-21)/10]LAc

i

(4.10)
dL(i) = Hdo 4+ [(12-21)/10]LAw
and the standard deviation of dR(i) and dL(i) are:
GR(l) = [(12—-2i)/10]L0OL = Cl - Czi
{4.11)
UL(i) = [(l2-—2i)/lO]Loa = Cl - Czi

where C:L and C, are constants.

Ac is a measure of the internal bias (to the left or to
the right) of the subject in estimating the angle Q- For an
unbiased observer ZZ = 0. On the other hand, O and GR are
possible measures of the uncertainty of the subject in locating
the points A and E, Since the stimuli are symmetric with res-
pect to the y axis, On and o, are equal as shown in equation
{4.11). Equation (4.11) also shows that o and 0, are linearly
decreasing with increases of the SNR index i.

Tt should be noted that the values E;(i), E;(i), Ot and
¢, are not included implicitly in the data collected in the
experiment. In order to evaluate them it is necessary to make
an assumption about the underlying Histribuiion function of

dR(i) and dL(i). Using the arguments of section 2.3, we might

assume the distribution functions to be Caussian. BAlso from
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equation (4.11) we deal with Gaussian distributions with equal
variances. Foxr these assumptions, the detectibility d*' is

defined by

ar(i)y = [dgy(d) - é; (1) 1/0g

and therefore the uncertainty is

u(i) = 1/a' (i) = op/ld (i) - a i = op/2d, (4.12)

so the uncertainty is linearly related to:o Substitutingv (4.11)

R
into (4.12}):

u = [(12—25_)/20610]1.0u = Cg = C4i (4.13}

where C3 and C4 are constants. Note that the uncertainty as

defined by equation (4.13) is independent cf the bias Aa.

——

The uncertainty u and the bias Aa can be found from the

raw data by fitting Gaussian distributions to the experimental

b

results as will be shown in the next section., However, the

values of Oy, dR(i), and dL(i) +that are found as a solution %o
the optimization problem and are used to evaluate u and ZZ,
are not unigue under linear transformations (see Appendix a).
Nevertheless, by defining u as in equation {4.12) it can be

shown (appendix A) that this expression for the uncertainty

ie invariant to the transformation menticned ahove.
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4.4 Data Processing

The raw data collected in a rated decision signal
detection experiment with n possible outcomes consists of
2n numbers that represent conditional probabilities as def£ined
by equation (2.2). Without any additional information, the
analysis is jimited to the use cf the P(AO/SO}—P(AO/SI) plane,
namely, drawing the ROC curves in classical SDT and drawing
DR curves for SDT with changing signal strength., Since only
finite (and usually small) numbers of points are uged to draw
the curves, an efficient method of curve fitting is needed to
compare the raw data points tc the analytic results. Tanner
and Swets (1954) suggested the use of a visual f£it for data.
This might seem reascnable if the aim is to test whethexr the
underlying éistribution is Gaussian since the Gaussian assump-
tion implies that the ROC curves are straicht lines on a
Gaussian unit deviate scale. However, if the aim is to obtain
estimates for all the parareters that define the underlying
distribution as well as the n-1 thresholds, a mMOre rigorous
method should be used.

As a start, an assumption has to be made about the
functional form of the undexrlying distributions. These dis-
tributions are usually assumed to be continuous and unimecdal
and also satisfy eguation (2.42). Once the functional form
of the distribution is chosen, the unkncwns in the problem

are the parameters that define the distribution and the n-1
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LRCL's. The problem now is how to choose values for these
unknowns so that some critericn will be optimized. Since all
the parameters are completely unkrowvn, the maxirum likelihood
is an appropriate criterion, (Ogilvie and Creelman, 1968;
Loriman and Alf, 1968; Abramscon and Levitt, 1969; Grey and
Morgan, 1972). Under this criterion, we are seeking those
values of the unknown parameters which are most likely to
produce values that are equivalent to the experimental results,
Since decisions are taken repetitively and since the 2n
possible outcomes define mutually exlusive and exhaustive
events, the distribution which is asscciated with these events
is multinemial (for m=1, the special case of the bkinomial
distribution is obtained). A simple example explaining the
occurence of such a distribution is when a die is thrown.
The probability of getting any one of the numbers 1 to € in a
single toss is assumed to be known and is referred to as Py
(for an unbkbiased die, p; = 1/6 for i = 1,...,6). When the die

is thrown N times, it wculd show the number i n; timeg where

6
r n, =N
i=1 ¢
The probability that a set of given n, = m, will cccur is
6
= = L%
P(ni = mi) = N!igl Py /mi! . (4.14)

Eguation (4.14) defines the multinomial distribution, 1In our
optimization probklem, the values of the mi‘s are given by the

raw data and,therefore, are known., Howevcr, the prchabilities
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p; are not known explicitly, but are functions of the unknown
parameters. Our optimization problem is to find the parameters
in such a way that they will maximize the probability that the
m. did appear, where this probability has the form of equation
(4.14).

Several parameter optimization technigues have been
suggested for the solution of such problems, such as the
gradient method, the conjugate gradient method, and the Davidon
method (Vander Velde, 1972). These methods were used to solve
the specific problem of fitting an underlying distribution to
data from SDT experiments by the authors mentioned above. In
this work we applied still another method that was sugyested
recently by Jacobson and Oksman (1971) which seems to converge
more rapidly than other methods.

The algorithm fits in its general case, two Gaussian
distributions with different means and different variances;
however many special cases can be implemented. Since we deal
with experiments in which 4' changes, new values for the un-
known parameters must be computed for each level of signal
strength. The algorithm has been programmed to repeat itself
automatically as many times as required, so that all necessary
information is available in one run. When 2 set of .new values
are found, a special subroutine checks the goodness of fit by
the use of a chi square test. A detailed description of the
algorithm is given in Appendix A. Since the expressions in-

volved in the computation are all rather complicated, the
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probability of programming exrors is high. 1In the same Appen-
dix, we suggest a method to test the algorithm with simulated

data; a method that proved to be very helpful in our work.
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4,5  Experimental Results

As has been discussed before, the DR curves can be drawn
dirx. ctly frem the raw data in the P(AO/SO)«P(AO/Sl) plane, Since
in our experiment there were threec possikle decisions for each
subject, we will get '~ so DR curves. Thes" two DR curves for
each subject are shown in figures 4-4 to 4-9 and are referred
to by the LRCL's B, and Bz. Without any further data processing
the only way to analyze these results is by visual inspecticn,
that is, comparing these curves to the theoretical curves that
vere drawn in the P(AG/SO)—P(AO/Sl) rplane in Chapter 2. In many
cases, the decision is gquite complicated so the questicn has to
be resolved on the basis of the processed data, Table 4.1

summarizes the conclusions of the visual inspection methoa,

From table 4.1 it is clear that all possible decision
rules were used, and there does not exist one dominant strategy.
Furthermore, for most subjects the visual inspection shows a
mived strategy, i.e., the subject used different strategies in
obtaining Bl and 82. The decision strategies that are shown
in brackets in table 4.1 indicate the strategy that would best
£it both DR curves. A clear understanding of the decisicn
strategy is expected on the basis of data processing resuits;
however, it should ke noted that statistical analysis for
testing the decisiocn rule that was used on the basis of raw

data alone is possible and was done by Curry (1974}).-
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FIGURE 4.5 DR CURVES FOR SUBJECT L.L
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T RS R T e T
subject Fig No b.R, for Bl D.R. for 82
Ly ¢ o e i 3
J.TA. 4.4 constant B N.P. {constant 8)
i Upir g
L.L. 4.5 N.P. (constant B) constant B
J.TO. 4.6 linear linear
A.E 4,7 N.P. linear (N.B.)
C.B. 4.8 copstant 8 linear
(linear)
Lt =
L.M.L. 4.9 N.P. {linear) linear

Table 4.1 Decision Rules based on DR Curves in

the PLAO/SO)*P(AO/Sl) Plane (N.P. -
Neyman Pearson)
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In order to better understand the detection process, it
was assumed that the underlying distributicns were Gaussian,
and the parameter estimation algorithm described in Appendix A
was used., Since the left and right signals had the same
magnitude (but different signs), it was further assumed that
both distributicns have the same variance, However, it was
expected that each subject might have some bias to the right

or left, therefore we chose bo # 0 or

d, (1) 7 dL(i) i=1,...,5 (4.15)

T¢ test for the significance of these assumpticns, the chi square
test was used. The results of this test for each subject and
for each signal level are shown in table 4-2,
The values that are presented in table 4~2 are derived
from a chi square distribution with one degree of freedom (see
Appendix A). PRach of these numbers represents the probability
that the observed chi sguare values (ox smaller-values) will
be obtained if the experiment were repeated a large nunber of
times with the unknown parametere taking the values that were
found as a solution to the optimization algorithm (Hoel, 1966).
The probabilities that were obtained indicate that the hypothesis
that the underlying distribution is Caussian cannot.be rejected.
The data processing algorithm provides the values of 4'
{and u = 1/d') as a function of i. The values u(i) for each
subject are summarized in table 4-3 (as a function of i) . They
are also drawn as a function of the SNR index i in figures

4,10 to 4.15.
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SNR 1 2 3 4 5

SUBJECT| Percentage Points of the x® Test

J.TA. 0.50 0.75 6.90 0.90 0.60

L.L. 0.90 0.70 0.40 0.55 0.90

J.70. 0.25 0.70 0.92 0.88 0.92

C.B. 0.70 0.85 0.85 0.70 0.55

L.M.L.{ 0.85 0.80 0.90 0.90 0.85

mable 4.2 Results of x? Significance Tests
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SNR 1 2 3 4 5 TESTS
SUBJECT UNCERTAINTY P ui t
J.TA 5.50 1.32 0.66 0.43 0.12 [~0.56 1.90
L.L. 2.30 1.66 0.88 0.50 0.12 |-0,99 6.10
A.E. 3.80 2,90 1.10 0.63 0.27 |-0.86 3.80
J.TO. 1.80 1.10 0.95 0.60 0.14 {-0.99 3.70
C.B 7.60 3.55 1.58 0.88 0.38 {~-0.93 2.96
L.M.L. 2.66 1.95 0.96 {.0.70 0.34 {—-0.96 9.60
I
Table 4.3 Uncertainty u as a Function of SNR i
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u=1/4'

1 1 1 ¥

5 & 3 2 1
FIGURE 4.10 UNCERTAINTY VERSUS SNR INDEX (SUBJECT J.TO)

u o= 1/d?

5 4 3 2 1
FIGURE 4.11 UNCERTAINTY VERSUS SKR INDEX (SUBJECT L.M.L.)
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] 1 H I
5 4 3 2 1
FIGURE 4.12 UNCERTAINTY VERSUS SNR INDEX (SUBJECT L.L.)

u = 1/a’

- T ' i T
5 4 3 2 i
FIGURE 4.13 UHCEPTATNTY VERSUS SNR INDEX (SUBJECT J,TA.)
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u = 1/d'

f I 1 1 i
5 4 3 2 1 0
FIGURE 4.14 UNCERTAINIY VERSUS SKR INDEX (SUBJECT A.E)

u=1/d' '0) //{’

i 1 1 1 |
5 4 3 2 1 0
FIGURE 4.15 UNCERTAINTY VERSUS SNR INDEX {SUBJECT C.B)
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The model that was suggested in section 4,3 implies a
1linear relationship between the uncertainty u and the SNR
index i in such a way that u is decreasing with i increasing.
Therefore, linear regression was used to fit a straight line
to the data points. The correlation coefficient p,; was
computed as a figure of merit to the linearity assumption.

The computed values for p,.; are shown in the sixth column of
rable 4-3. For five of the subjects, these coefficients were
ciose to one which indicates a strong tendency to linearity.
For one subject (J.TA) the value was relatively low; however,
this was due for the most part to one data point. When this
point was eliminated, 0,4 jumped to 0.97. It is also desirable
to test the hypothesis that u and i are not linearly related.
gince the number of the data points is small, either the t ox
the ¥ test should be used. I+ can be shown (Draper and Smith,
1966) that for inferences concerning linear regression, these
tests are equivalent. The t value for the test is evaluated
as follows:

5
e = B3 -mt/? (4.16)
S =

where b is the slope of the regression line and S is given by

R 2
s =Jﬁ T (u(i)-B(E)) : (4.17)

i=1l

The t scores for each of the subjects are shown in the last
column of table 4-3. Using tables of the t distribution, it

can be seen that the hypothesis of nonlinearity can be rejected
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for five of the six subjects. The probability for an errox
of type I, namely, rejecting the nonlinearity hypothesis when
it is actually true, is 0.0l for the subjects L.L. and L.M. L.
and 0.05 for the subjects C.B., A.E., and J.T0. For the sixth
subject (J.TA.) the nonlinearity hypothesis can be rejected
with a probability of error of 0.2. Therefore, we might con-
clude that the experimental results agree with the data that
was predicted by the model suggested in section 4.3.

As shown in Appendix A, the results ol the optimization
algorithm include, in addition to the parameters of the dis-

tributions, the two values K, and K, which satisfy

HKy) = By j o= 1,2 (4.18)

Since we assumed that the distributions have equal variances
and since the value of m is known, eqguation (2.3 ) can be used
in calculating the values of 1nB1 and lnBz. These values are
summarized in table 4~4 as a function of the SNR index for each

subject. However, we are interested in the r=lation

1nB, = £(d') j=1,2 (4.19)

in order to classify the decision strategy. Under our assump-
tion (Gaussian distributions, equal variances) the following
strategies might be considered:

1. 1nf. = constant (fixed LRCL decision strateqgy)

J
2. lnBj C5 + Csd' ] (linear decision strategy)

3. inB C

3 3

a!' = d'2/2 (M. P, decision strategy)
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SNR 2 3 4 5
SUBJECT LRCL's

tng, [-0.27 |-0.92 |-2.05 |-1.3
J.TA

tng, | 0.20 | 0.63 | 0.53 | 0.0

tng, |~1.10 |-1.10 |-0.95 |-0.75
LD

2ng, 0 0.018| 0.018|-0.015

tnB, [-0.58 |-0.57 [-1.10 |-1.70
A.H.

¢ng, |-0.03 |~0.08 |-0.18 |-0.08

tnB, {~0.30 {-0.35 {-0.22 0
J.TO.

| 2ng, |-0.18 | .31 | 0.37 | 0.38

tng, -0.13 |-0.18 l-0.24 |-0.09
C.B.

2ng, 0 0.06 | 0.24 | 0.57

tng, [-0.37 |-0.41 |-0.54 |-0.33
L.M.L

tng, | 0.07 | 0.16 | 0.50 o.ss_J

l .
Fable 4.4

Q.nBi as a Function of SNR Index i
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Since both Bj and d' are known for each level of SNR, 1nBj
can be found as a direct function of d'. Figures 4-16 to 4-21
show lnsl and lns2 as a2 function of d' for each of the subjects.

Table 4-5 indicates for each subject which one of the
three strategies was used (on the basis of wvisual inspection).
The strongest conclusion drawn from the figures is that in
most cases the threshold was changed with the SNR level. This
finding cannot be predicted on the basis of classical SDT
(Donaldson and Murdock, 1968); however, similar data was ob-
tainud by Kinchala and Smyzer (1967) and Healy and Jones
{1973).

Although the use of the data processing results helped
in showing the change in the LRCL, still for four of the six
subjects mixed strategy gave the best fit. An attempt to
settle this question was made by Curxry et al (1974). Their
argument was that the subject is actually using only one
decision rule, and this decision rule is one of those that
were discussed above. However, instead of using the objective
probabilities to form the likelihood ratio, the subjects used
subjective probabilities which are linearly related to the
true values. The fit of DR curves on this strategy, for the

results in our experiment are given in the above reference.
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FIGURE 4.21 1n 3 AS A FUNCTION OF 4' (SUBJECT L.M.L)
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‘Subject Fig DR for Bl DR for 62

J.TA. 4.16 N.P. N.P.

L.%L. 4,17 N.P. constant B8
| N—

J.TO. 4,18 linear linear

A.E. 4.19 linear constant B

T Lo

C.BR. 4,20 constant R linear

L.M.L. §4.21 constant B linear
_tznmrmm—- &}i‘_f e R KT s al e a T

Table 4-5 Decision strategy evaluation on the
basis of the processed data
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CHAPTER V

&

DETECTION OF SIGNALS WITH SEQUENTIAL CHANGE

OF SIGNAL STRENGTH

5.1 General Discussion

Tn the previous chapter we limited 0u£ discussion of
decision strategies to those cases in which the effect of
correlation between successive decisions could be neglected.
The lack of correlation was due to the following properties
of the input data:

L, The order of changes in the signal strength

were chosen with the use of a uniformly dis-
tributed random number generator. Therefore,
the subject was unable to predict on the basis
of the past information and had to consider
each stimulus independently.

2. A blanking period of two seconds was introduced
between successive decision intervals to help the
subject forget the location ofi the circles in the
previous presentation.

However, both of these properties are somewhat arti?icial and
were chosen to satisfy classical SDT assumptions of independent
decisions. In particular, property 1 implies that the input
signal has no time structure, a property which is usually

associated wtih noise rather than with signals. For most real
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1ife detection tasks in which the signal is changing, the
change is governed by somg specific rule that determines the
mean time structure., In such cases, this rule might be used
by the decision maker to base his decision not only on the
current information but also on the pasE information. There-
fore, his decisions will be correlated in some yet unspecified
manner.

Since we have already studied decision strategies under
independent decisions, we are now in a position to analyze by
comparison the effect of the temporal correlation of the signal
on the overall performance of the subject. It should be noted
that vy main interest is the effect of the correlation, so
that the Functional form of the time structure is of secondary
importance as long as it introduces correlation effects into
the subject’s strategies.

The time structure that was chosen is referred to as &
"seguential® change of SNR, and is related to some practical
decision tasks that are of interest, The definition of seguen-
tial change of SNR is as follows:

1, The true state of the world is the same for all
decision intervals within a sequence. With the
use of a uniform random number generator, this
state of the world is determined before the
presentation of the sequence in such a way that

all states of 'the world are equiprobable.
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2, The SNR level is fixed within each decision
interval, bu} increases with the index i of
the interval within the . sequence.
3. There is no blanking period between the
decision intervals so that the current
decision interval starts when the previous
interval ends.
The signal strength in each seqguence is a deterministic
process., However, randomness does exist and is due to the
random choice of the state of the world, which is determined
at the beginning of the seguence. Once the state of the world
is determined, the sequence is deterministic. Therefore, there
are two possible sequences for which the magnitude of the
signal is the same but the sign is different depending on the
true state of the world (SO or 51), and the appearance of each
of these is eqguiprobable.

The real life decision task that we had in mind, while
using the sequential presentation was that of a pilot who is
using a traffic situation display (TSD) to avoid mid air
collisions. Let us again consider such a case and assume that
the TSD is updated by radar information with a change in infor-
mation every four seconds to show the present and previous
{four seconds before) position of all intruders, This infor-

mation is always translated in such a way that the plane of
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of the TSD user stays in the center of the diéplaf; We further
assume that all airplanes are flying in a linear ' motion with
constant velocity; an assumption that usually holds near air-
fields. The pilot must decide whether a specific intruder is
going to pass to the 1ight or to the left. If we consider each
4 second intexval between radar updating as a decision interval,
these decision intervals, starting when the intruder is at the
far end of the display and ending when it is closest to center,
constitute a sequence with the aforementioned properties.

Clearly the true state of the world - (namely, the intruder
passing to the left or right) does not change within this
sequence (property 1). Also the discrimination becomes easier
as the intruder approaches the center, so that the SNR is
increasing with time (property 2Z). Finally, there are no
blanking periods between these intervals (property 3). There-
fore, the pilot's task is a decision task with sequential
change of SNR which might lead to correlation between succes-
sive decisions.

To analyze the results of a signal detection experiment
with correlated signal presentations, the classical methods
{(chapter 2) have to be modified. 1In particular, the outcome
is not based on the current decision alone, but must be further
sorted on the basis of past decisions. This might not be
feasible if the capacity of the memoxy involved were large

enough to store all the information from the start of the
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However, it seems reasonable to assume that the

Sequence.
decision maker has a finite memory and that his present

decision is correlated only to the previous one while all

further past information is ignoxed. This assumption reduces

the sorting problem considerably and leads to the use of
the well established.theory of Markov processes. Since Markov
models will be used in the analysis of the.data, some not-

ation and terminology of this theory will be presented in

the next section.
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5.2 Discrete Markov Processes

Let us start with a sequence of discrete random variables
{K(i)} i = l'---fN (5-1)

where each X(i) can take its value from a finite set of real
numbers

{sp} P = LliveorM (5.2)

The set {Sp} defines the state of the system and the equation

¥(i) = SP

defines the state of the system to be SP at interval i of the
sequence. In our particular application ¥(i) is the decision

of the subject at the decision interval i and the states are

and therefore M = 2.

Tf the random variables X{i) are independent (as was the
case in Chapter 4), the state of the system in each interval
does not depend on its states in the past. Therefore, all that

was needed to describe the system were the probabilities
p{x(i) = sp} i=1,0..,8; P=1,...,M (5.3)

Howéver, if the random variables are dependent, then the prob-

abilities that define the system are the joint probabilities
Probi{X(l) = Sp, Xx(2) = Sq,;..,X(N-l) = Sr' XN) = SE}{(5-4)
or using Bayes rule

Prob{X(N) = SR/X(I) = Sp,...,X(N—l) = Sr}Prob{X(l)

= Sp,...X(N-l) = sr} (5.5)
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Equation (5.5) implies that the joint probability at time N

is a function of the conditional probability that depends on
all past history. In some cases though, this dependence can
be relieved by limiting it only to the previous decision in-

texrval. Then the following relation holds:

Prob{X(N) .= SR/X(l) = Sp,...,X(N—l) = sr} =

Prob {X(N) = sg/x(N-l) = sr} (5.6)

Bguation (5.6) is usually referred to as the Markov assumption
and a sequence {X(i)}} that satisfies it is called a discrete
Markov process. Therefore, a Markov process is completely

defined if:

i

s_}

1. Prob {X(1) p

2. Prob {X (i)

sz/x(i—l) = Sn} i=2,...N

are known.
To simplify our notation, the conditional probabilities

defined in (5.6) above, will be written as follows:
Prob (X(i) = Sk/X(l—l) = SQ) = Pkrg(l,l—l) {(5.7)
where:
i=i'..."N? k=lr...:M; £l=lf.‘.rM
They are referred to as the one step transition probabilities.

If the number of states of the process is M, equation (5.7)
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2

defines M“ such probabilities, which can be written in

matrix notation as

o arina lhena—

1 - - = - » - » . (3 f4 ]
Pl,l(l’l 1) Pl:ﬁ\l,l 1}

P(i,i-1) = (5.8)

PM’1(1,1~1) PM,M(1,1~1)
The matrix P is called the one step probability transition
matrix, Since at each interval the system must be ir one of
the states

M
2 Pkll(l,l—l) = 1 (5.9

=1

i.e. the elements in each row of P(i,i~1l) sum to unity. A
stationary Markov process is a Markov process for which the

one step probability transition matrix satisfies
P(i,i-~1l) = P(i -(i~1)) = P (1) i=1,.0.,N (5.10)

In many cases we are interested in transitions which

include more than one step. We therefore define
@krg(i,j) = ProbiX{i) = S5,/X(3) = §,)}

and the probability transition matrix is defined as
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by L) e < 0p ylind) |

®(i,5) = . . (5.11)

by, Er3) WERE)

by definition

@(i,i! =0 ¢ (i,i-1) = P(i,i-1) (5.12)

Also it can be shown (Howaxrd, 1971) that
r= j-j-1
‘I’(itj) = I P(i"rri"r"l) (5.13)
r=0

If the process is stationary, equation (5.13) is reduced to

6(i-9) = p+d (5.14)

also of interest is the probability of being at a state
p in the interval i, regardless of the state in the interval

(i~-1). We therefore define this probability as

Hp(;) = Prob{X (i) = SP} (5.15)

Tf the number of states is M, there are M probabilities HP(i)

so that an M dimensional vector can be defined

T,.: . . .

E (i; = {nltl)rﬂz(l)r---ﬂm(l}} (5.16)
T+ can be shown (Howard, 1971) that the following relation

holds for statlonary processes

I (i) = o(i) 5(0) (5.17)



5.3 Experimental Method and Preliminary Re="’is

In order to study the effect of the correlated signals
on the decision strategy, an experiment was designed in which
the subject participated in two tasks (each in a different
session) with equivalent stimuli, but with different order
of presentation.' in the first task, the signal strength was
changed in a random order (as in the experiment in Chapter
4) and, therefore, independent decisions were expected, while
in the second task the data was presented in a "sequential®
order to induce correlation. |

The detailed description of the data presentation in
the experiment with random change of signal strength was
given in section 4.2. Since the SNR level in that experiment
is ‘time varying, it was easy to modify the presentation to
"sequential". Each seguence included all 5 levels of SNR
(N = 5) in increasing order to satisfy property 2 in section
5.1. Tor each SNR level the pair of circles could be either
on the right or on the left (Figure 4.2), 1In order to satisfy
property 3, the two seconds blanking period between decision
intervals was eliminated. Before displaying the first pair
of circles of a new seguence, a random number generator was
used to choose whether the state of the world during this

seguence was S0 or S4 with the following probabilities:
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The subject had the same decision task as in the previous
experiment, i.e. to discriminate right from left, except that
now he has four response categories {(n = 4).

SURE LEFT
THINK LEFT
THINK RIGHT

SURE RIGHT

The reason for the change from three to four response categories
was mainly due to the use of Markov models for the analysis.
Four response categories imply a Markov process with four
states, however, by combining the sure and think states together
the number of states can be ieduced to two. Such a reduction
simplifies the computations as well as the analysis of the
decision strategy. Clearly such a reduction is not feasible

for an odd number of response categories.

Two new subjects (who did not take part in the previous
experiment) participated in this experiment. Both were grad-
nate students in the Man Vehicle Laboratory at M.I.T. and
were participating on a voluntary basis, Each subject took
part in 4 experimental sessions. In two half hour sessions
tﬁe presentation was in a sequential order and each subject
made a total of 900 decisions., In the other two sessions of
A5 minutes each, the presentation was in a random order and
again, the total number of decisions was 900. One of the
subjects started with the sequential presentation, while the

other started with the random presentation in order to balance
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learning effects. Instructions and the training session
were the same as in the previous experiment.

For a preliminary comparison of the performance of the
subjects in the two tasks, the DR curves in the PyPon plane
were used. Two of the DR curves (those between sure and think)
are shown in Figures 5.1 and 5.2. Those figures show that a
difference in performance does exist; and, in particular, there
ig an increase in the probability of a false alarm for the
task with the sequential presentation. When the data processing
program (section 4.4) was used, the performance could be
expressed in terms of B and 4!, Figures 5.3 and 5.4 show the
same two LRCL's as a function of d4', and again there is a
difference in performance between the two tasks. It should
be noted that a difference in performance due to correslated
decisions in auditory signal detection experiments was
reported by Speeth and Matthews (1961), and by McGill (1954),

The next step is to describe these differences and to
provide a modification to the theory of uncorrelated decislons
that would describe the subject's behavior when correlations
are present, Furthermore, since analysis through SDT can
separate the sensory and decision processes, it might be pos-
sible to find whether the change is due to only one of these

processes or both.
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5.4 A Model for the Decision Strategy

As was suggested in section 5.1, a basic assumption that
we will make is that the subject has a "limited" memory, so
that a correlation exists between each successive decision
interval, but is weak enough to be neglected between intervals
that are more than one interval apart. This assumption leads
to the use of the Markov models that were discussed in Section
6.2,

Markov processes have previously been used in psycho-
physics for modelling human behavior in auditory recognition
tasks (Tanner et al, 1961). 1In these experiments, the subject
was asked to discriminate between two signals with the same
tone but two different amplitudes which were presented in a
random order. Tanner suggested that the recognition was based
on the difference between the present and previous amplitudes
rather than on the current stimulus alone. They also assumed
that the subjects used two LRCL's in such a way that a high
amplitude was chosen if the difference was larger than the
higher LRCL, and the low amplitude was chosen if it were smaller
than the the lower LRCL. If the difference was between the
two LRCL's, the previous decision would be repeated.

The main argument to support this model, which is based
on the difference between successive stimuli, is that within
each recognition interval the subject does not have any objective

reference on which he can base his judgement. In our detection
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experiments, the situation differs because the reference is
presented in each interval so that no externdl references are
neeaded. gince, +the results show that a change does
exist, we would assume that the decisions are based on the
current information only. If there is no accumulation of
jnformation from one interval to the next, the information

is the same for both random and sequential presentationg, and
we might conclude that the difference in performance is due

+p the effects of past decisions, rather than past information.

The suject's motivation for dependency on past decisions can
be explained by his knowledge that the state of the world
is the same during an entire segquence, and by changing
decisiong he admits previous errors.

The hypothesis that the change in performance is due
to a previous decision and not to past information can be
tested by the use of the separation property of SDT. If this
hypothesis is true, then the detectibility d', which is sensi-
tive only to changes in input information, should be the same
for both presentations, and the linear relationship between a'
and the SNR index i that was found for the random presentation
should hold for the sequential presentation. If that is so,
the change in performance can be attributed to the decision
strategy alone, and the model which will be suggested will

apply to the decision process in the detection task.



132

For simplicity, we will start our discussion of the
decision strategy with the assumption that the subject can
make only two decisions, A, and Aq (n=2}. Therefore his
performance in each decision interval i is given by the

pair:
P (i) = P(B)()/5,(1)) Pypy i) = P(Ry(4)/8; (1))  (5.18)

gince the true state of the world is the same for all intervals

in the sequence, equation (5.18) can be written as:
P (1) = BP(ag(1)/83) Pea i) = P(n,(1)/8,) (5.19})

Now if we assume a Markov model in which the current decision

is based on the previous one, then:
PH(i) = P(AU(i)/SO:AU(iﬂl))P(Ao(l—l)) +

P (Ag (11/8 Ay (i-1))P (A (1-1)) 520,

Pog (1)= P (Ag (1) /8,2 (1-1))R (B (i-1)) +

P (B, (1) /81 ,A; (i-1))P (A) (i-1))

Since there are two response categories, the number of
states in the process is two. However, for our discussion,
it will be convenient to define two (rather than one) pro-
cesses: one in which the subject was correct in his previous

decision and the other in which he was wrong.
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Using the notation of section 5.2, the one step trans—

ition probabilities for the "correct" process are:

»

i

PCog(irinl) = P(A;(4) /80, A, (i-1))

Il

PCo1 (i,i-1) = P (A, (1)/8],A; (i-1))

(5.21)

PC o (i,im1) = P (A, (1)/80,A,(i-1))
Pcll(i,i—l) = P(a, (1)/5, 3 (1-1))

and the same probabilities for the "incorrect" processes are:

PNC o (irim1) = P(ag(1)/8; Ay (i-1))

PC01 (i,im1) = P (B, (1) /8y,A, (i-1))
| (5.22)
PG 0 (1,1-1) = P(A (4)/8, 8, (i~1))
pC  (i,i-1) = P(a, (i)/s (i-1))
11 (e 1 or®y
or in matrix notation
| . c L. .
Pcoo(l,l-l) P Ol(:L,J.--l)
C,. . _
pr(i,i-1) = (5.23)
PClD(i,i—l) Pcll(i,i—l)
and e —
PNCOO(i,i—l) PNCOl(i,i-l)
PNC(i,i-1) = | (5.24)
. NC . .
PNClO(l,l—l) P 11(1,1—1)

——
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Note that the elements in each row of the above matrices

sum to one.

’

1£ the detection is perfect for all intervals in the

1 0 O 1
pC(i,i~1) = pNC (i, im1) = (5.25)
0 1 1 0

and for pure guessing:

seguencet

0.5 0.5

pMC(i,1-1) = pC(i,i-1)

fi

(5.26)
0.5 0.5

These performances are the two extremes which are not expected
in well designed experiments.

The values which are found for these matrices can show
whether or not the subject was biased by his previous decisions.
An unbiased subject is expected (since the SNR is increasing)
to stick to his previous decision if he was correct and to
change his decision if he ﬁas Wrong.

The strategy of an unbiased decision maker is, therefore,
defined by the following inequalities:

PGy, (i,im1) > 0.5 ¢, (i,i-1) > 0.5 (5.27)

= * . NC & . .
chlo(lrl“l) > 0.5 P 01(1,1—1) > 0.5 (5.28)

The values for these probabilities should increase with the
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value of i and in the final interval (i = 5) should approach
unity. Such an unbiased decision strategy would lead to per-
formance that is similar to the performance of the subject

in an experiment with independent decision intervals.

The biased subjects can be divided into two types, those
who repeat and those who alternate. A repeat strategy (RS)
subject would prefer to repeat his previous decisions whether
he was right or wrong. For such a decision maker, the in-
equalities in (5.28) are reversed so that:

NC . NC . .
P70 (i,i-1) < 0.5 P 01(:L,J.—l) < 0.5 (5.29)

on the other hand, an alternate strategy (ALS) subject will
tend to change his decisions even if he was correct before.
For this type of decision maker, the inequalities in (5.27)

are reversed so that
c . . c .
P 00(1,1—1) < 0.5 P ll(l,l*l) < 0.5 (5.30)

Since the simplest method to define a decision strategy
is through the DR curves, it is important to analyze the effect
of the three strateqies that were suggested above through these
curves. It has already been noted that the performance of an
unbiased decision maker is similar to the performance in a
random data experiments; therefore, the DR curves wiil be sim-

ilar to those found in section 4.5,
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For the analysis of the strategy of the biased subject,

let us rewrite equations(5,20).

P (i) = Pcoo{i,i-l)?(AU(i-l)) + PN001(i,i-l)P(Al(i—l))
(5.31)

Py (1) = PNgD(i,i—l]P(AO(i-l)) + PC01(i,i—l)P(Al(i-l))

Since the prokabilities P{Aotiml)) and P(Al(i—l)) are not known,
it would be helpful to separate the performance of the subject
into two categories. His performance conditioned on a previous

decision of BAgs is given by

N

pg(i) = P (1,i-1) PO (1) = P € g lisi-1) (5.32)

and his performance conditioned on a previous decision Ay is

given by:

1,. . . . . s
PH(l) = PNCOI(1,1~1) P%A(l) = P001(1,1—l) (5.33)

Each of the equations above, (5.32) and (5.33), defines a dif-
ferent DR curve for values §f i from 1 to §. So, for every
LRCL there are two DR curves, and if there were n response
categories, the number of DR's would be 2{(n-1). It should be
noted, though, that the family of DR curves defined by equations
(5.32) and (5.33) cannot be plotted in the same PH_ﬁFA plane
because the functional relationship between the above probabil-
ities is not known. Using the superscript terminology defined

above, equation (5.29) can be rewritten as:
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1, 0 ;i _ 2 _ oNC.. .
Pu(i) < 0.5 Poali) =1 Plb(l,l 1) > 0.5 (5.34)

L4

These inequalities characterize the behavior of the RS
subjects, as they describe the tendency of this type of biased
subject to repeat his decisions when he is wrong. Furthermore,
it is reasonable to assume that he will repeat his. decisions

when he is correct, therefore

1

PFA(i) < 0.5 (5.35)

pgci) > 0.5

Substituting these inequalities into equations (5.32) and
(5.33) defines the two DR curves of an RS subject which are
shown in Figures 5.5 and 5.6. The straight lines in these draw-
ings are the DR curves based on the N,P. strategy, and the
curved lines are based on a fixed LRCL. In a similar way, the
inegualities which describe the behavior of the ALS subject

are (from 5.30):

1

PFA{i) > 0.5 (5,36)

0,.
PH(l) < 0,5

and again we might add that this type of decision maker will

also tend to change his mind when he is wrong, therefore:
PL(i) > 0.5 PP (i) < 0.5 (5.37)

The DR curves for an ALS subject are reversed as compared

to those of an RS subject and are shown in Figures 5.7 and 5.8.
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The difference between the two DR curves {one given that
the decision before was A, and the other given that it was
Al), can easily be explained on the basis of classical SDT.
FPigure 5.9 shows the conditional probability density of the
observation under the two states of the world. Let us now
assume that P(SO) = P(Sl) = 0.5 and also that the regret
ratio is equal to 1. Under these conditions, an unblased
decision maker will choose BO as his LRCIL. However, if

the subject is RS he will tend to repeat his previous deci-
sion. Therefore, if his previous decision was Ay he would

move his threshold to SAO so that
Ba < By

This will increase his probability of hit, but will also
increase his probability of false alaxrm, which is in agree-
ment with equations (5.34) and 6.35). If his previous
decision was Ay, then he will: move his threshold to BAl such
that

>BO

Therefore, both PlH(i) and PlFAQi) will decrease, which is
again in agreement with equations (5.34) and (5.35). An ALS
subject will behave in the opposite way (see Figure 5.10).
If his previous decision was By he would choose the LRCL

BA rather than BO such thatl:
0

RNSUURUUS S
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> B
0 0

Thexefore, POH(i) and PO

FA(i) will both decrease which is
in agreement with equations (5.36) and (5.37). If his

previous decision were Aqs the LRCL BA will satisfy
1

< B
1 0

and PlH(i) and PlFA(i) will increase.

Finally, we would like to discuss the method by which
the subject might change his LRCL for the various decision
rules that are used. If the decision rule is to satisfy the
N.P. objective, then the LRCL is based on the probability of
false alarm and the subject is working with two valuves of
PFA rather than one. For an RS subject, the value for PUFA
will be much larger than the value for PipA, and for an ALS
subject, the opposite will happen. If the decision rule is

to keep the LRCL B constant, the value of By in classical

SPT is determined by {Van Trees, 1968)

P(S,) C,, =C
By = —O 1 00 ""10

P (Sl)

1 (5.38)

€11 ~Co1

Where COO’ COl' C10 and Cll were defined in SECt10§ 3.2 and
represent the costs that are associated with the four out-
comes of the experiment. From a mathematical -point of.view, in order
to change BO' the subject can either change his current values

of the apriori probabilities P(SO) and P(Sl), or the regret
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ratio (the expression in square brackets). From psychophysical
aspects, it is more reasonable to assume that the apriori
probabilities were changed. For example, an RS subject will
tend to increase P(SO) if his last decision was A, Or to
increase P(Sl) if his last decision was Aq {(recall that

P(SO) + P(Sl) = 1). Therefore, for biased subjects equation

{5.38) has to be modified to:

P(55) Co0 ~ C10

Bj = Kj [ 1 j= 0,1 (5.39)
P(8;) Cy3 = o3
For an RS subject:
KO > 1 Kl < 1 (5.40)
and for an ALS subject:
Kg < 1 Ky > 1 (5.41)

T+ should be noted that the values of Kj in equation (5.39)
are functions of the decision interval index i.

The same arguments that were used in developing the
above model can be generalized to confidence rating SD experi-
ments. If there are n response categories, a Markov model
with n states will be used. A biased subject will alter his
(n-1) LRCL's in a way that is similar to the case of a single
threshold as described above. For a particular type of decision
maker, all LRCL's will be moved in the same direction for a
given previous decision. However, the magnitude of this move-

ment may differ for different LRCL's.
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5.5 Experimental Results

As mentioned in section 5.3, the preliminary results
of the experiment showed that a difference in performance
between sequential and random presentation did exist for
both subjects. The first guestion to be raised concerning
the validity of the model is whether our assumption that
the detectability d' was almost the same for both present-
ations is supported by the experimental results. Figures
5.11 and 5.12 show the values of d' as a function of the
decision interval index i for bhoth subjects. As in the
previous experiment, the linear relation seems to hold as

follows:

w=1/4" = a+ bi (5.42)

the least square estimates for the parameters a and b {using
linear regression) are shown in Table 5-1. This table also
includes the value for the correlation coefficient p which

indicates the "goodness" of the linear relationship:

SUBJECT DATA a b o]
Seqg. 0.44 0.29 0.98
A.Cl
Ran. 0.36 0.35 0.921
Seqg. 0.24 0.13 0.598
A.T.
Ran. 0.22 0.32 0.%4

Table 5-1 Summary of Linear Regression Results
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Although the regression lines for random and sequential
presentations indicate that A!' was almost the same for both
presentations, a statistical test should be used. As men-
tioned in section 4,4 the use of our data processing program
does not provide information about the variance of the com-
puted parameters d' and B. Therefore, we will base the
analysis on a method that was suggested by Gourevitch and
Galanter (1967) which provides good approximations (Marasculo,
1970). For this analysis the data should be regrouped to a
form with one LRCL. This can easily be done by pooling the
"think" and "sure" decisions for both A and B. DMoreover,
since the analysis of the decision strategy is easier for
a two state Markov model, this regrouping will be useful
for later discussions. After the regrouping, the experi-

mental results are defined by only two parameters:

Py = P(AO/SO) Pra = P(AO/Sl)

An approximation for the mean value of d' is given by

(Gonrevitch et al, 1967)

—_—

g o= o7t - By ot - Py (5.43)

where ¢ is defined by equation {2.24). It is further
assumed that d' is a Gaussian random variable with the above

mean (5.43) and variance:
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P (1-P.) P, (1-P )
oty = BB y 12 FB (5.44)

2 2
NOIORD(l—PH)] Nl[ORD(l—PFA)]

where NO and Nl are the total number of presentations of S0
and Sl respectively, and

1

exp [~5a?] (5.45)
V2T

ORD(a) =

Let d'R denote the detectability for random presentations
and d's the detectability for seguential presentation. We

wish to test the null hypothesis

Therefore, let us define:

'a'l - 'd_l
7 = R S (5.46)

and the null hvpothesis can be rejected with a confidence

level of 95% if

fz] > 1.96

2

ad Udr

Table 5-2 presents the values of 4 and

T 0.2
R’ st d'n
as a function of the decision interval index for both

S

subjects (for NO = Nl = 60). As can be seen from the table,
only two out of the ten Z values shown are greater than 1.96;
while all the others are considerably less. Therefore, the
hypothesis that d‘R = d's cannot be rejected even if a larger

confidence level is used,
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susgecT| SNR 1 2 3 4 5
a'R 0.890 |0.840 |1.310 |1.870 |5.960
3'8 0.660 |0.650 {0.910 |1.680 |3.960
A.C SEER 0.060 |0.056 |0.063 |0.075 | 10°
se® [0.035 |0.035 [0.036 |0.055 103
%z |o0.746 |0.631 {1.260 |0.520 | =0
é'R 0.060 |1.23G |1.140 |2.560 {3.800
a=8 0.900 |1.030 |1.840 |2.750 [7.800
A.T se®y [0.055 0.071 {0.059 |0.092 103
ss°, |0.042 [0.040 |0.046 |0.068 103
z |2.700 |0.598 |2.140 [0.475 | =0
TABLE 5.2 Values found for Significance Test of

I = gt
dR dS
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Now that we have shown that the change in performance
iz essentially not due to a change in the detectability, we
can test our model for the decision strategy. As stated
before, the two state Markov model will be used. The one
step probability transition matrices for i = 2,...,5 for
both subjects are shown in Table 5-3. In this table both
g?(i,i—l) and gsc(i,i—l) are shown. These matrices clearly
show the tendency of the two subjects to repeat their pre-
vious decisions even though they were wrong. Both subjects
show a biased strategy which we refered to as RS; however,
subject A.C. was more biased than subject A.T. 1t can also
be seen that the bias effect decreases when the SWR increases,

so the Markov process is non-stationary. This dependency of

C NC C C
o0’ £ o0’ ¥ 11 11

is shown in Figure 5.13., It should be noted that thcse four

P and PN on the decision interval index i
probabilities completely define the RS bias of th2 subject.
The DR curve in the sequential presentation task in
the PH—PFA plane are shown for both subjects in Figure 5.14
and 5,15. Since there are only two states, there is only

one pair of DR curves for each subject. Although each one of

the DR curves should be shown in a separate plane (POH-—POFA

and PlH_PlFA) the same drawing was used with one axis used
0 1 .50 1 '

for P H and P - and the other for P FA and P FA® These two

DR curves are referred to in the drawing - as.0 (for a previous
decision of AO) and 1 (for a previous decision Al). ‘The curves
agree well with the theoretical curves predicted by the model
for an RS subject. In order to see the effect of the corre-

lation, the same DR curves for the random presentation task
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Subject A.T A.C
Pc(n,n—l) Pnc(n,n—l) P C(n,n~l) gﬁc(n,n—l)
n
T 0o {lfo.e2a o0.06 0.93 0.03! tlo.s6 0.14
2
0.03 o0.97 Hlo.x1  o0.89 ||l.08 0.92] Hlo.14 0.86
L R T, O L- R i
0.97 o.03llio.67 0.33 [ilo.97 0.03| |lo.8a 0.16
3
0.03 0.97(Ho.52  0.48 E:OB 0.921 {l0.17 0.83
1 olllo.72  o0.291|a 0 .74 0.26
4
iy ille.17 o0.83!llo 1} {lo.11 0.89)
1 il 1) il o} {t0.02 0.96
5
0 i1 ofllo 1i§lo.92 0.08
TABLE 5-3

Two Dimensional Probability Transition Matrices
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RANDOM PRESENTATIONS, SUBJECT A.T
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are also shown in figures 5.4 and 5.15. These curves show
that the strategy of the same subjects, when the correlation
was eliminated, was unbiased.
Since in our experiment the subject had four response
categories, a four state Markov model can also be
applied. However the larger number of states has some dis-
advantages:
1. The number of decisions that were collected
per state will decrease by a factor of two.
Since we used a small number of decisions,
the data collected might not be sufficient
for statistical analysis.
2. cince there are two states of the world and
four Markov states, there are three different
LRCLs. One LRCL is actually separating the
states of the world, while the other two
represent different confidence levels for
each of the two states of the world.

In spite of these disadvantages, the four state analysis

was carried out using the following notation:

Ry The decision is Sure S,
R, The decision is Think Sy
R4 The decision is Think 54
R The decision is Sure S,
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Bl Threshold between Rl and R2
82 Threshold between R2 and R3
83 Threshold between R3 and R,

Tables 5-4 and 5-5 show the cone step probability transition
matrices for both subjects for i = 2,...,.5.

These tables show again the RS bias of the two subjects
when they were in one of the two sure states Rl oxr R4. For
the two think states R, and Ry, the tendency to repeat the
previous decision was weaker. When they did not repeat their
think decision, they changed it to the sure decision for the
same statez of the world even if this state of the world was
not correct and even though the SNR had increased. This can
be explained as a result of the subject's knowledge that a
think decision should be followed by a sure decision, other-
wise they are admitting an error.

Since this is a four state model, there are three LRCLs
and six DR curves for each subject (two DR curves for each
LRCL). Figures 5.16 and 5.17 show the two DR curves that
are related to 82 for each of the subjects. In these curves,
the same RS bias that was implied by the two state model is
exhibited. The DR cuxves given Rl and Rz are closer to the
line PO = 1, while the DR curves given R, or R, are close

H

. 1 -
to the line P ra = 0.

In Figures 5.18 and 5.19 the DR curves that are related

to the LRCL Bl are shown. The DR curves given Ris Ry and R,
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€ (n,n-1) pNC (n,n-1)
n
1 0 0 0 1 0 0 0
.y 0.175 0.8 0.025 0 0.223 ©£.629 0.1.1 0.037
0 0.083 0.652 0.265 0 0.166 0.727 0.11:
0 0 0 1 0 0 0 1
0.875 0.125 0 0 0.875 0 0.143 0
a3 0.725 0.25 0.025 O 0.434 0.392 0.174 0
0 0.1 0.12 0.78 0 0.23 0.192 0.577
0 0.04 O 0.96 0 0 0 1
Feprucmsacn PPYEE S, | Bt senmtrr ES———— ]
0 0 0 0.75 O 0.125 0.125
0.882 0.118 © 0 0.601 0.133 0.133 0.133
n=4 0 0 1 0.17 ©0.17 0.33 0.33
0 0 1 0 0.044 0.174 0.782
1 0 0 0 0 0.046 0.136 0.818
1 0 0 0 0 0 0 1
n=3 0 0 0 1 1 0 0 0
0 0 0 1 0.88 0 0 0.12
TABLE 5-4 Probability Transition Matrices for

Subject A.C
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¢ (n,n-1) ~ | 2NC (n,n-1)
0 0 0 0 0 0 0 0
0.364 0.636 0 0 0.059 0.882 0.059 0
=21 19,026 0 0.781 0.253 | 10.02 0.078 0.902 o0
0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0
s | o8 0.16 0 0.04 0.357 0.215 0 0.428
6.017 0.017 0.078 0.896]| |0.288 ©0.244 0.156 0.342
0 0 0 1 0 0 0 1
1 0 0 0 0.9 0 0 0.1 |
.1 [0.615 0.385 0 0 0.25 0 0 0.75
1o 0 0 1 1 0 0 0
0 0 0 1 0.5 0.25 0 0.25
o R
1 0 0 0 0 0 0 I
5| Jo.a 0s 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 6.5 0.5 0 0

TABLE 5-5 Probability Transition Matrices for Subject A.T
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are similar to the ones for 82. However, the DR curve given
R, shows different bias. This bias can be explained by
recalling that Bl represents a threshold between two confi-
dence levels of the subjects and not between the two states
of the world, so the bias is expressed by moving 82 rather
than Bl' A symmetric phenomenon exists for DR curves related
to £, which are s..own in Figures 5.20 and 5.21. The DR
curves given Ryr Ry and R, are similar to the ones fox El,
while the DR curve given R, shows the same bias as in R2
for 8.

The location of these six DR's show that all of them
are shifted according to the bias of the decision maker, but

the magnitude of the shift is different for different LRCLs.
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CHAPTER VI

DETECTION OF A CHANGE IN RANDOM PROCESSES

6.1 General Discussion

In the previous chapters we dealt with detection tasks
which required a decision after cach observation. However,
in some tasks the observation rate is too high (the observation
might be continuous at the extreme) so that the decision maker
is allowed to delay his decision and take more observations
until he collects enough information to make a decision, 1In
binary decision tasks of this form, the decision maker is
told to use two CLs as was the case in the experiments that
were described in Chapter 4; however, instead of giving
"T do not know" as a decision, he takes another observation.

A typical case of a deferred decision situation is the
task of failure detection. In such cases the observation
gives the subject information about the state of some oper-
ating system. The decision maker must decide on the basis
of this observation whether the system is operating in its
normal mode H, or in the failure mode Hy- The subject is
free to take more than one observation before making a
decision, but he is asked to minimize the time betwean
the occurance of the failure and its detection.

Since the observation under both modes of operation
is a stochastic process, it is assumed that the detec£ion

process consists of two steps. In the first step the
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subject tries to estimate the statistical parameters of
the observation, and then on the basis of his estimates,
he makes the decision,.
The next two sections in this chapter include a
shorxt discussion of linear estimation theory and sequential
analysis which provide the theorectical basis for our model.
The model itself is described in sections 6,4 and 6.5.
The last two sections deal with the exveriments that were

run to verify the wvalidity of the model.
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6.2 Linear Estimation

Estimation theory de;ls with the problem of obtaining
the best estimate, in some sense, of a process which cannot
be exactly measured because of the associated measurement
noise (Lee, 1964). If the statistics of all noise sources
are completely known, the problem is sometimes referred to
as Bayesian estimation (Schweppe, 1973). Linear estimation
is a special case in which the estimates are constrained to
be linear functions of the measurements. The most common
criterion for optimality in the linear Bayesian problem {LBP)
is the minimization of the mean'square error.

There have been two approaches to the LBP which lead
to the same solution, and the corresponding numerical effort
was basically the same (Kailath, 1974). The first approach
is the so called Wiener filtering theory (Wiener, 1949) in
which the information about the signal to be estimated is
given by its covariance matrix. The second and more recent
approach is that of Kalman filtering theory (Kalman, 1960)
in which the signal is represented as the output of a dynam-
ical system which is driven by a white process. Because of
the identical results of the two methods and the eguivalence
of their numerical @ifficulty, the choice between the two is
usually based on the way in which the problem at hand is
posed. Since in our case the dynamical model or the "shaping

filter" of the signal is known, it would be practical to use
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the second meihod, namely the Kalman filter (Kalman, Bucy,
1961).
Therefore let us assume that the signal to be estimated

z(t) is given by

cz(t) = B(R)x (L) {(6.1)

where x(t) is the state vector of the shaping filter given by
x(t) = F(£)x(t) + G(t)ult) (6.2)

Here u(t) is a zero mean white process with covariance matrix
Efu(t)u’ (s) 1= Q(t)s(t-s) (6.3)

and H(t), F(t), G(t), and Q(t) are known matrices. Also the

first and second order statistics of x4 are given by

= T, o
Eixgl = 0 Blxgxg 1 = T4

and x

U and u(t) axe uncorrelated:

Elxqu(t)] = 0
The solution to (6.2) is given by (Deyst, 1972):.
' t
x(t) = ok, t5)x, + . [ ¢(t,7)G(n)u(r)dr (6.4)

0

where ¢(t,t0) is the state transition matrix which satisfies
‘?’(trto) = F(t)‘-‘f)(t;to) ¢(trt0) = I
The observation vector y(t) is expressed as

y{t) = H{t)x(t) + v(t) (6.5)
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where z(t) is the observation noise which is assumed to be

a zero mean white process with covariance matrix
Elv(t)v (s)] = R(t)8 (t-s) (6.6)

and it is also uncorrelated to the process noise E(t) and
to N
T T
Elv(t)u (s)] =0 Elv(t)x,] = 0
Ny
The optimal estimate of the observation z(t) is then (Deyst,

1972)
Z(£) = H(£)X(t) (6.7)

where x(t) is the state estimate given by the differential

equation

R(E) = P(E)X(£) + K(t) [y (£)~ H(£)X ()] (6.8)

The term in the sguare brackets is referred to as the

measurement residual, and K(t) is the Kalman gain:
K(t) = P(E)H(E)R 1 (t) (6.9)

P(t) is the error covariance matrix of the state, namely,

p(t) & Blx(t) - x(8) (x(8) - x(en ™) . (6.10)
which is the solution to the Riccati equation:
P(t) = FP(E)P(E) + P(E)FL(£) + G{t)Q(£)GT (t) _
- D (BYHT (2) R () H(E) P () (6.11)

w;th P(to) = HO
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Equations (6.7) through (6.11) are the equations of the
continuous Kalman filter and their recursive characteristics
makes them easily adaptable to solution on a digital
computer,

In most préctical cases the observation are taken
in a discrete manner rather than continuously. Also, because
of the use of a digital computer, even the state equation
must be transformed into its discrete form. Therefore the
optimal filter is the solution to a set of difference
equations rather than differential equations. The trans-
formation must be carrvied out carefully because of the
stochastic nature of the problem. More details about the
practical implementation of the filter are given in
Appendix B.

A special case of equations (6.8) through (6.11) is
the time invarient case, for which the matrices H,F,G,0,
and R are time invariant. The filter will still be time
varying bzcause of the variation of the gain K(t) through
the covariance P(t). However, if the system given by
equation (6.1) and (6,2) is completely controllable and
observable and if ¢ > 0 and R > 0, the covariance matrix

will reach a steady state value P {(Scuweppe, 1973).

85
This value can be evaluated as the positive definite

solution to {(6.11) under the stationary assumption:

p(t) = 0 (6.12)
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The filter then becomes a time invariant system. It is
interesting to note that the steady state requirements do
not include the stability of the original system (6.2).

The quankity = in the square brackets in eguation (6.8)
e () = ylt) - H(E)x(t) (6.13)

has an important role in filtering theory. We referred to it
as the residual, but it is also called the innovation, the
new information, .or the measurement error. It can be shown
(Deyst, 1972) that this residual is orthogonal to all the
past measurements. This means that the filter gleans all

the new information out of each measurement. Also, it has
been shown that the residual is a zero mean white process

(Kailath, 1970) with covariance
E{e(t)e” (£)} = H{L)P(£)H" (£) + R(t) (6.14)

This property of the residual is used for evaluation of the
system model or the implemented filter algorithm.

Up to this point nothing has been said about the dis-
tribution functions of the stochastic processes involved;
only the first and second order moments were used. This is
a result of the mean square error criterion and the linearity
constraint on the filter. Under these conditions only first
and second order statistics are needed to obtain the best
linear filter (Vander Velde, 1972). If, however, all the
white processes are assumed to be Gaussian, then; hecause

Gaussian random variables are invariant under linear trans-
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formations,%(t); g(t), and €(t) will also be Gaussian.
Furthermore, it is possible to show that g(t) given by {6.8)
is also the conditional expectation estimate (Schweppe, 1973).
Therefore, for Gaussilan processes the Kalman filter is not
only the best linear filter but also the best possible Ffilter,
Since in our application the Gaussian assumption is used,

we will refer from here only to the Gaussian case,

As stated before, if the system model is correct, the
residual g(t) will be a zero mean white Gaussian process. If
the system is time invarient and controllable and observable,
the filter will achieve sieady state and e{t}) becomes a

stationary Gaussian process with covariance:

Tw)) = gp. 61T + R (6.15)

E{g(t)e ag

Let us assume now that a failure has ozcurred in the system

so that the measurement X(t) is now
y{t) = Hx(t) + v(t) + m (6.16)

rather than the value given by (6.5). Furthermore, let us
assume that the adu .tional signal m in (6.16) is a deterministic
congtant., Since m is deterministic it will not affegt the
covariance of either_%(t) or e(t} but will certainly alter
their means. Because the filter is linear, the superposition
property can be used to find the change in the means of %(t)

and e(t) by computing the response of the filter to a step
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function with magnitude m. As the filter has already reached
its steady state, the Laplace transform can be used. Trans-
forming equation (6.8) we get

S%js) - X, = [F- KH]%m(S) + Km(8)
0

e

where Xm is the Laplace transform of the state estimate due

to m alone. Now let

, _ , o1
Emo = 0 ﬂ(S) = g
then
"X, (8) = [ST - F + k] R (1/8)m (6.17)

and the residual due to m alone is

g (S) = (1/S)m - HX(S) = {I - HISI - F + xu]} " K} (1/8)m

(6.18)
In partictilar, the steady state value of the o is given by

£ = 1lim {I - H[SI - F + KH]"l

En K}m (6.19)
85 50

From equation (6.18) it is clear that, after the filter has
reached steady state with respect to the failure, the new
residual will be a white Gaussian process with mean €

and covariance given by (6.15) i

The detection of the failure can be accomplished on

the basis of the change in the residual mean. The problem is
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that of discriminating between two Gaussian processes with
equal variances but unequal means. A possible method to

perform such discrimination is described in the next s=ection.
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6.3 Sequential Analysis

Sequential analysis deals with those cases of hypo-
thesis testing for which the sample size is not fixed,
namely, the decision maker is free to take as many obser-
vations as he wants before making a decision of some
prescribed confidence. The mathematical theory of the
optimal strategy in such situations is usually associated
with the name of Abraham Wald (1949). The use of this
method in the analysis of signal detection experiments
-vas suggested by Birdsall et al (1965), and later by
Phatak et al (1972) and Sheridan and Ferrell (1574).

For simplicity, but without loss of generality, let
us assume that the decision task is to tesi between two
hypotheses Hy and Hl' Two further assumptions will be
made:

1. The hypotheses to be tested are simple
hypotheses. This means that under either
hypothesis the density function of the
observed random variable is completely
known,

2. The observations that are made are

independent.

Under those assumptions the problem is formulated as follows.

et x be a random variable whose density function is given

bv

-
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Under hypothesis Hy - f(x,eo)

(6.20)
Undex hypothesis Hy - f(x,el)

where 61 and 60 are two values for the distribution parameter 6.
Now assume that m observations have been made with the random
variable taking the values x., i=1,2,...,m, Then the like-

lihood of hypohtesis Hy given m observations i§ defined by

and the likelihood of hypothesis By is
m

le = ‘ﬁ f(xi,Gl) (6.22)
i=L

Since the test of a simple hypothesis (Hl) against another
simple hypothesis (HO), the Neyman Pearson Lemma (Hoel, 1971)

suggests the use of the likelihood ratio

le/POm {(6.23)

to decide between Hy and Hye The idea of using the likelihood
ratio as the decision function is similar to its use in class-
ical SDT. There the decision is done by choosing one LRCL B

and deciding

H, if P

0 in’Fom S B

Hy if Py /Popm > B

In sequential analysis two ERCL's A and B are set so that

t+he decision has three possible outcomes:
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1. Hy if le/POm > A
2. H, if P, /P < B

¢ im0 — (6.24)
3. Continue the observation if

B < le/POm <A

The next problem is to choose the LRCL in some optimal
way. Intuitively it would seem desirable to choose the two
LRCLs A and B in such a way that would relate them to some

prescribed values of the two types of errox defined as:

PFA ~ probability of rejecting H0 when HO is true

Pliss ~ probability of accepting HO when Hl is true

The values of these two errors are predetermined by the

decision maker. Unfortunately the exact functions

A = g(P )

= g(PFA’Pmiss)' miss’PFA

are not available. However, very good approximations were

found by Wald {19%47). These approximations are

A= (1-P ) /Poa B = Pmiss/(l - PFA) (6.25)

miss

The use of equations (6.24) and (6.25) is referred to as
the seguential probability ratio test.
Some advantages of this test are:
1. There is no need to derive the density function
of a statistic such as t or F to carry out the

test.
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2, The desired size of the two types of error can
be chosen apriori to the test,
3. Although the number of samples needed to
terminate the process is a random variable, the
mean of this random variable can be computed,
It is our interest to use this sequential ratio test
for detection of failures in linear systems driven by white
Gaussian process., It has already been shown in the previous
section that if the detection is based on the first and second
order statistics of the residuals of the optimal filter, the
problem is that of testing between two stationary Gaussian
processes with egqual variances and different means. Next
we shall find the LRCLs for this special case.

For the above problem the density functions under the

two hypotheses are

- 1 1 2
under H, - £(x,,8) = —=— exp{-5 (x. - 6.)°}
0 . V21" 2 * 0 {6.26)
under H, - f(xi,a) _ 1 exp{—% (x. - el)2}
yan .

Substituting in equation (6.23) using eqguations (6.21) and
(6.22)
m

1 2y, 1 expl-L
T expi-5 (%, =6,)7}/ I expl{-5 (x., - 6,}
i=1 2 i 1 i=1 2 i 0

2
le/POm = }

using this expression in (6.24)

m m
B < exp{-% b (xi - 81)2 + % I (x, - 8 )2} < A

i=1 i
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m
B x exp{(f; - 00E x5 + (902 - Glz)m/Z} < A
i=1

Taking logarithms and substituting for the values for A and B

m 1-P_ .
< 0ay - 0g) B X 4 (02 - 0,2)m/2} < ln—=="" (6.27)
i= P

rA FA

Pmiss
1-p

1n

Therefore if el > 80 the decision would be

m P .
. 1 miss
choose Hy if _E X £ 5TB in + (81+60)m/2
i=1 1 70 l—PFA
{6.28)
m 1 1-Phiss
Choose H. if L X, > in + (8,+06,Im/2
1 e RS - N 17Y0
j=1 1 70 P
FA
and continue if (6.28) is not satisfied. If Bl < 80, the
decision would be
m 1 ijﬂs
choose H, if .E X; > w{g —5—1n + (Bl +80)m/2 }
i=l 1 70
(6.29)
m ) 1-P_ .
choose H, if T %, < =1 1 1n misSS + (8.+6,)m/2}
1 . i = g,-6 170
i=1 170 PFA

and continue if (6.29) is not satisfied. These decision
regions for both cases are chown in Figures 6.l and 6.2.

The above basic theory has to be modified if it is to
be applied to modelling failure detection mechanisms; Since
the theory is limited to the testing of simple hypotheses,
the wvalues of 80 and 181 should be completely known apriori
- o the test, In failure detection, the value of 80 (the

normal mode) is known, however the value of el (the failure)
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is not known. A solution to this problem was suggested by
Wald (1949). His suggestion was to choose on the basis of
the physical properties at hand, an artificial parameter 8;
that would replace 6, in equation (6.27).

A more severe difficulty is that in the basic sequential
test no transition of modes is assumed to occur during the
whole observation process, while the failure detection task
is characterized by such a transition. A method to overcome
this difficulty was suggested by Chien (1972,. His idea is
based on the fact that in failure detection tasks, a decision
in favor of the normal mode leads the subject to take more
observations since he is not asked to report when the system
is in its normal mode. Therefore, a suboptimal strategy
would be to reset the decision function to its initial value
whenever the current value is in the region indicating that
the normal mode is more likely {the shaded area in figures
6.1 and 6.2). In this way, when a failure does occur, the
number of observations reguired to drive the decision function
into the failure region is less than if there had been no
resetting (Chien, 1972). Therefore, this resetting helps to
reduce the time between the onset of a failure and its
detection and thereby eliminates the effect of the unknown

transition time.
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From a system engineer's point of view, the resetting
procedure is equivalent to the addition of a feedback loop
to the descision mechanism. The decision function is defined

(equations (6.28) and (6.29)) as:

Ym) =
i

e

X, (6.30)
1 3

or in a recursive form:

Yim) = X(m-1) + x_ Ny =%

By employment of the resetting, the modified decision

function is
Am) =x(m-1) + x_ + & A1) = X () (6.31}

where £ is the feedback. TLet & be defined as

: =(Bd+61)m
b 2

rhen from equations (6.28) and (6.29) Eb is the border between
the normal and failure modes (see also figure 6.1). Therefore

the value cof Em in equationa (6.31) for 81 > 60 is

gm = 0 if A{m-1) + X > Eb

g, = Ep~A(m-1)-x, if AMm=1) + x < &y (6.32)

and for &, < 60 is
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it

m

gm = 0 Alm-1) + R < -gb

—gb - A{m-1) - X Af{m-1) + Xy » -gb 6. 33)

The effect of the feedback on the decision function is shown
in figure 6.3. When the mcdified decision function A (m) is
used, only one CL is needed since the CL for the normal

mode will never be met due to the feedback, However if the
same CL that was suggestéd by Wald (equation 6.25) is used,
more false alarms should be expected due to the feedback.

In order to keep the same mean time between two false alarms,
as in the original seguential test, the CL A in equation
(6.25) should be modified to A,, where A, is given by the

solution to the following equation (Chien, 1972):

-~ inpy - 1= -[1nA + A Yy0m] (6.34)

A -

1
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6.4 A Model for Decision Strategy

The discussion of estimation theory and seguential
analysis in the last two sections provides the basis for our
model of the human operator in failure detection tasks.

Let us assume that the process which is displayed to
the subject 1s unidimensional, namely z(t) in equation (6.1)
is a scalar. As the subject okserves z(t), his cobservations
are corrupted by additive noise v(t) which is modelled as a
zero mean white -Gaussian process (Levison et zl, 19269). Thus
the input to the failure detection system y(t) can be described
by equation (6.5). Since this input is a stochastic process,
the detection system is assumed to consist of two stages;
linear estimation and decision mechanism (Levison, 1971; Phatak
et al, 1972). The functional block diagram of the detection

system is shown in figure 6.4.

: . linear decision .
z(£) +, y (t) estimation mechanism Decision
¥
v(t)

Detection System
Figure 6.4 Functional Block Diagram of Decision

Mechanism

We will now assume that the matrices F(t), G(t), and

H(t) in eguaticns (6.1) ard (6.2) are known, so that the input
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y(t) is given by the state space description of the "shaping
filter". Therefore, the overall optimal filter (recall that
z(t) is Gaussian), is given by equations (6.7) through (6.10),
and its block diagram is shown in ficure 6.5, As seen from
the block diagram the Kalman estimator is & linear system
of the same order as the shaping filter. If the shaping
filter ig of high ovrder, it is reasonable to assume that
a low (second or third) order approximation will suffice
for the human operator. As the estimatox will also be of
this order, it could be implemented easily. If the con-
ditions that were specified in section 6.2 hold, the esti-
mator will also be a.time invariant system, This means
that the data processing done by the subject prior to the
decision mechanism is equivalent to low pass filtering. The
linear estimation approach rrovides us with an elegant way
to define tu - , irameters of this low pass filter.

since both the shaping filter and the estimator are
linear and the input is zero mean Gaussian process, both
the state estimates and the observation estimate are zero
mean Gaussian processes, and both can be used as inputs to
thé decision mechanism, It seems more reagsonable to use
the observation estimates in the model for the following
reasons:

1. The states are abstract non unique variables

that can be defined in different ways while
the observaticn is unigue and well defined

for the subject.
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2. The dimension of the state is usually larger
than the dimension of the observation so that
using the observation estimates simplifies the
decision algorithn.

It iz further assumed that the input to the decision mechanism
is the observation error (residual) rather than the observation
itself, The reasons for this assumption are:

1. The error is more sensitive to the effect of
failure than the observation estimate (Schweppe,
1973}).

2. The observation error is a white Gaussian
process, so successive observations are in-
dependent.

Once the observation residual is used as the input to the
decision mechanism, tiie guestion of the dimension of the
observation arisés. Although only a scalar observation
(position) is directly presented to the subject, there is
some evidence to claim that independent direct measurements
of the rate are also taken. This claim is supported by the
. fact that in some animals there are cells that are sensitive
only to the rate of the input., Also, in the model of the
human operator ag a controller (Kleinman and Baron, 1970),
the addition of the rate conponent improved the fitting of
the model to the experimental data. In our model the addi~

tion of direct rate measurements-did not improve the results,
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but only compiicated the decision algorithm. Therefore, we
decided to use a scalar (position) measarement.

Since the covariance of the residual is also known
(equation (6.15)), the actual irput to the decision mechanism
is the normalized residual. Therefore, for the normal mode,
the residual is a zero mean white Gaussian process with unit
variance; and, for the failure mode the residual is also a
white Gaussian process with unit variance but with a specified
mean.

Our first approach was to base the decision on the
instantaneous values of the residual. However, checking the
value of the residual at the particular time which the subject
pressed the button (minus his reaction time) showed that this
value did not have any special property that would explain why
the detection occurred there. Therefore, we cssumed that the
decision was based on the accumulated information and decided
to use the sequential analysis.

Let g, be the value of the residual at the observation
interval 1, and let us assume that the failure is positive in

sign, i.e.

m{t) >0 t > tf (6.35)

then by addiny the bias term in equation (6.28) to the decision

function in equation (6.30)

Yim) = - £ (6.36)

=
oy

i
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with the resetting feedback the decision function takes the

form

i

Am) = X(m) if X¥(m) > o0
N (6.37)
X

A (m) 0 if

where X (m) is given by the recursive equation

Xm) = atm-1) + (e - Ep) Y@y = e - &y

A block diagram of the decision mechanism is shown in Iigure
6.6 where the CL Al is defined by eguation (6.34}.

Tn real life detection tasks, assumption (6.,37) cannot
usually be made because the sign of the failure is not known
apriori. Even in predesigned experiments it is preferred
that the sign of the failure not be known to the subject
apriori. The reason is that this uncertainty prevents the
subject from guessing if he has to identify the sign of the
failure in addition to detecting it. Therefore, we assumed
that the decision maker is actually involved with the following

two simultaneous hypothesis tests. The first is:

H; . T(e) = m{t) > 0
Hy e(ty =0
and the other is
Hy @ e{t) = -m{t)
H0 + e(t) =0

For the first test the decision function is defined by
equation (6.37) while for the second test the decision function

y

1S
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y(t) + e(t)

Sfdt

K (t)

FIGURE 6.5 LINEAR ESTIMATOR (KALMAN FILTER)

€,

* + A (m) 1 Decide
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? delay

If A(m-1)>0

FIGURE 6.6 DECISION MECHANISM
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A" (m) = 0 if X (m) > 0
g N . (6.38)
A (m) = A(m) if X (m) < 0
where A (m) is given by the recursive eguation
- - e,
T m) =X (m-1) 4 (g, + Ey) XL = e + Ky (6.39)

A block diagram of the complete model for the decision
mechanism is shown in figure 6.7.
A simulation of the model for a process that is the

output of a second order shaping filter with

E = 0.7 Wy = 4,24

was implemented. The performance of the model for four levels
of step failures is shown in figqure 6.8. Since the detection
time ty is a random variable, both its mean and variance are
shown (computed on the basis of 40 samples).,

The sensitivity of the mean detection time to several
marameters of the model was also studied. Figure 6.2 shows
the sensitivity to the value of the two types of errors P ...

and P The curves show a strong decrease in the mean detec-

FA*
+ion time when the value of these errors is increased. Figure
6.10 shows the sensitivity to the parameter that defines the
failwxe 31. An increase in %1 decreases the mean detection
time. Finally, figure 6.11 shows the sensitivity to the ratio
between the variance of the observation process c; and the
variance of_the measurement noise. The effect of the measure-

ment noise is minimized due to the good performance of the

filter.
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6.5 Closed and Oven Decision Intexvals

Tn the model that was discussed in the previous section,
a bhasic assumption was that the decision maker is free to
take as many observations as he needed so that the length of
the decision interval depe: .ed only on his performance. We
will refer to such’decision intervals as openh decision intervals.

However, in many real life situations, the observation
interval is limited hecause the observed process has a pre-
determined finite duration. For example, consider the human
operator whose task is to monitor the airplane instruments
during the final phase of an automatic landing. We will
refer to these types of observation intervals as closed
decision intervals.

it is obvious from out discussion of sequential analysis
(section 6.3) that the classicél theory does not apply to such
closed decision interval tasks, and some modifications must be
made., In particular, in the classical sequential analysis, it
is assumed that the value of the probability of the two types

or erxror, P and P

D are kept constant during the whole
miss

FA'
observation interval. However, when the observation interval
is limited, the subject might consider changing these probab-
ilities (Birdsall et al, 1965). In the experimert that is
described in the next section, the subject was told apriori
that a change must occur within each interval. Therefore, it

seems reasonable to assume that as time goes by the subject's

willingness to accept the hypothesis Hl will increase., This
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means that the subject is increasing PFA with time. This time
dependency of P, can take several functional forms. We ob-
tainnsd the best fit to the subject's data when the following

relationship was used:

Pop (i) = Po, (D) (1 + tanh(%—z— - 5}) i=1,60 (6.40)

where i is the observation index. This time depenuency is

shown in figure 6.12.

P

Ba
vFA(T) -
///
t } i
30 60
Figure 6.12 TIME DEPENWNDENCE OF PFA

Figure 6.13 shows the performance of the model that is des-
cribed in the previous section with the modification of egquation
(6.40). The failures are four levels of step failures equi-
valent to the ones that were used to produce the data for

figure 6.8, When compared to the open interval results, these
results show a decrease in the mean detection time; however,

this decrease is at the expense of an increase in PFA'
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6.6 Experimental Method

6.6.1 Apparatus

Again, the Adage Model 30 graphics computer was used
For the simulation and display of the observed variables. The
computer function switch box was used as a control by the
subject to make his decisions.

The displayed information included two fixed cursors
that indicated the horizontal {x) axis. Also, a horizontal
bar represented the displacemeﬁt of the process to be monitored
from the x axis (see figure 6.14). This displacement z(t)
was a zero mean Gaussian process which was generated by driving
a time invariant second order system with a white Gaussian
sequence. The transfer function for the second order system
was

G(S) = (6.41)
s? + 2Ew,s + w02

where

£ = 0.7 Wy = 4.24

The covariance of the white sequence was chosen in such a
way that the steady state sﬁandard deviation of the observed
variable was 1/16 of the display height. The continuous
process was approximated by its discrete equivalent at a time
interval of 0.2 seconds (see Appendix B).

The failure in the process was defined by a change in

the mean of z(t), and this change was added directly to the
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T Z(t)
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N f /

FIGURE 6.14 DISPLAY PRESENTATION FOR THE EXPERIMENT
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output of the system so that the states of the dynamic system
remained unchanged. Therefore in the normal mode HO’ the

output was a Gaussian process with
H : z(t) =0 Uz(t) = L/4

where I is the display height. In the failure mode z(t) was

a Gaussian process with
Hy @ zZ(t) = m cz(t) = 1,/4
6.6,2 Subjects

Two subjects participated as observers in the experi-~
ment. BRoth were graduate students in the Man~Vehicle Laboratory
and were familiar with decision analysis terminology. Their
participation was on a voluntary basis, and no rewards were

given on the basis of performance.
6.6.3 Procedures

A1l of the experimental sessions consisted of 160
observation intervals. In each interval the subject made a
single decision. The subject sat in front of the display
while holding the function switch box in his hand., Every
observation interval started with the process in its normal
mode (HO). Failures {(changes to H, mode) occurred in each
interval, and the time of occurance was determined by a
random number generator. The generator picked with equal
probabilities one of the following four values for t. [seconds)

3.50 3.75 4.25 4,50
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The subject's task was to indicate as soon as possible whether
he had perceived a change.

Closed and open intervals were used in different experi-
mental sessions., In the closed interval sessions, termination
of the observation occurred after exactly ten seconds. In the
open interval sessions, the termination occurred immediately
after the subject made his decision., For both sessions, each
observation interval was followed by a two second blanking
period, after which a new observation was started.

To minimize subject guessing, he was asked to use two
push buttons: to press one when the change in the mean was
positive and the other when the change in the mean was neg—:
ative., Positive and negative changes in the mean had the
same magnitudes, but the opposite sign, and each happened
with equal probability.

In each interval, one and only one change occurred,
and the subject was made aware of this fact. He was also
told that he had only one chance to make a decision, and
he would not be allowed to change his mind after he pressed
one of the buttons. The level of the change (i.e., the
magnitude of m(t)} had four different values, so that
four levels of difficulty or SNR were presented. The appear-
ance of each level was eqguiprobable and was determined by

a random number generator.
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Each of the subjects participated in three different
sessions., In the first session, the length of the observation
interval was open, i.e., the observation was terminated only
after the subject pressed a decision button, The change in

the process was a step function so that

m(t) = C, J = leee,d (6.42)
where
1
el =50, lc,l =0, lcgl = 20, eyl = 30,

As stated before each of.the Cj could be positive or negative
with equal probability. 1In order to prevent the subject from
making his decision on the basis of the instantaneous jump, this
jump was replaced by a onea second ramp that changed z{t) from
zero to Cj. it should be noted that this transient time was
short compared to the average decision time.

In the second session, the same faillure modes that are
described above were reused. However, this time the length of
the observation interval was fixed to 10 seconds. The obser-
vations were not terminated when detection occurred, and the
system operated in the failure mode until the end of the 10
second period.

In the third session, the length of the observation
interval was free again, however, the changes in the mean of

z(t) were ramp functions,; so:

m{t) = Ej(twtf) = Lyue.,d (6.43)
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where

El = f%(oz/sec) &2 = %(cz/sec) 83 =‘%(GZ/5662 84 = %(GZ/SEC)

Before the beginninyg of each session, a standard set
of instructions was read to the subjects. They were told
that they were allowed to make only one decision per interval
and that a change definitely occurred in each interval. They
were also told that there were four levels of failure and
all levels, as well as their signs, are equiprobable, The
subjects were not advised what value of Poiss ©F Pea to use;
however, they were told that the penalties and rewards were
the same.

After the instructions, the normal mode was presented
to the subjects until they declared that they were familiar
with_the process. Before the second session, the normal
mode was shown in intervals of ten seconds to acquaint the
subjects with the fixed interval length. Then some samples
of the failure mode were shown, This was followed by still
another observation interval in which there was no change
from normal mode to further increase their familiarity with

this mode before the detection intervals started.
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6.7 Experimental Results

2s stated in the previous section, the experiments were

standard deviation th

divided into three different sessions.

were included in the presentation.

subijects are shown

equation (6.42)).

In the first session,

four levels of step failures wi 1 open observation intervals

The mean E(dt) and the
of the detection time for both

in Table 6.1 (j - level of failure, see

Subject j 1 2 3 4
Eltg) 20.90 | 11.50 5.15 4.17
Seconds
Cta 10.00 4.50 1.50 1.30
a.c. Seconds
Ej 0.62 0.69 0.62 0.75
“ﬁj 0.09 0.07 0.03 0.05
E(tg) 17.00 | 7.50 4.20 3.10
Seconds
Otg 8.00 3.30 1.50 0.90
B.C. Seconds
ﬁj 0.51 0.45 0.50 0.56
Gﬁj 0.06 0.04 0.03 0.03
TABLE 6.1 Results from First Experimental Session

The mean detection times that were found justify our

assumption that the transient in the failure (1 second)} is

negligible compared to the detection time.

The results that are presented in Table 6.1 are also
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shown in Figures 6.15 and 6.16. Those figures include, in
addition, the mean detection time that is predicted by our

model using the following parameters:

SNR = 36 P iss = Ppp = 0.05 'él = 1/4 (6.44)

The number for Pop Was determined on the basis of the actual
number of false alarms for the subjects (8 out of 150). A
fal~. alarm was scored when the subject pressed the button
before the occurence of the failure,

Equations (6.36) and (6.37) show that the value of the

decision function in the period between occurence and detection

of a failure is given by

Yy

A{t) = E (ai + gb) (6.45)
%

where iX is the first observation after the failure had

occurred and iy is the observation after which detection was

made, If gb is small compared to Gei than equation (6.45)

implies that the subject is integrating the residual and makes

a decision when this integral is egual to some CL. Therefore;

for all levels of fezilures the following relation holds:

tq

" I e{t)dt = constant ) (6.46)
£
within the integration interval

e(t) = En(t) + Em(t} tf < o < td (6.47)
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where an(t) - value of thé residual for the
norﬁal mode
em(t) - filter response to the deterministic
failuré

Therefore, eguation (6.43) can be written:

y ! . +
S dsn(t)dt + i) d

£ o _
tf tf m(t)dt = gonstant (6.48}

since

E{an(tD } = G

taking the expectation value of eguation (6.48) the first
integral vanishes and the resulk is

ta

E{ E f g_{(t)dt } = constant (6.49)
. £ m

#or the first experimental session

Em{t) = uCl j = 1"-.'4

J

where o is the steady state attenuation of the filter. Sub-

stituting into equation (6.49) gives
CjE{(td - tf)j} = Ej = constant j = l,...:;4 (6.50)

Equation (6.50) shows that for a step failure the product of
the magnitude of the step and the mean time to detection is
a constant value. The ﬁj values for both subjects are shown

in Table 6.1 as well as Uzk' which is defined as
3 -
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o2 = C.%0? (6.51)
Let us now test the null hypothesis HD:
H,: K =K =K =K
0 1 2 3 4
using analysis of variance. The ratio of variances F is
defined as follows
- 2 2
F = noy /cp (6.52)
where
r
2 =% & o2,
P r g=1 3
r
2 1 =
= =T Z (K - K)
% r-1 j=1 1
and

n - number of samples within each group
r - number of groups

¥ - the mean of K.

J j=l’--l'r

The results are summarized in Table 6.2.

. . ==y 2 2 ri

Subject K nilrxr a7y o] o F P.OS
A.C. 0.67! 321 4| 0.003% (0.06 {2.08 |2.68
B.C. 0.50| 32| 4| 0.0020 (0.04 |1.60 |2.68

TABLE 6.2 Results of Analysis of Variance

for K

The results of table 6.2 show that the hypothesis H, cannot
be rejected.
In the second session, the same step failures as in

+he first session were included in the presentation but with
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a closed observation interval of ten seconds, Table 6.3 gives

+-he mean and variance of th; detection time for both subjects.

Subject 1 2 3 4

E(td) 4.40! 3.52] 2.82| 2.57

A.C- [l
“td 1.25¢ 1.15] 0.90| 0.57
E(t,) | 4.82| 4.22 3.42] 2.45
B.C.
°td 1.65| 1.27| 0.80{ 0.55

TABLE 6.3 Results from Second Experimental
Session (seconds)

These results are also shown in figures 6.17 and 6.18., The
figures also include the prediction of our model with the

same parameters as in (6.43) but with the modification for
closed intervals (equation 6.40)., The results show considerakle
ddgcrease in detection times as expected. Also, the hyperbolic
relation of equation (6.50).does not hold because the CL is

time varying.

In the third session, the failures were ramp functions
of time with open observation intervals. The.main objective
for including time dependent failures was to test the integ-
ration property that is suggested by equation {6.46). For

ramp failures, the value of emft) is given by

Em(t) = B'aj (t - tf) j = l,no-gd‘—
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Substituting into eguation (5.46):

&

(Ej/z)E[(td - tg)?] = kj = constant 3§ = 1l,...,4 (6.53)

Table 6.4 shows the mean and the variance of the detection

time (td - tf) for bhoth subjects (based on 128 samples, 32

—

Ny
for each level). The table also shows the values of ﬁ and g2E.
These results are also plotted in figures 6.19 and 6.,20.

The figures also include the prediction of our model with the

following parameters:

SNR = 36 P .. = Pp, = 0.05 El = 1/4

The predictions seem to f£it the experimental results well.
Next,,the relation that is suggested by equation ({6.53) is
tested to show that the decision function is the integfal of
the residuals. The hypothesis Hy to be te ted by the analysis

of variance is:
H: B.o=% =% =K%

The results of the test are summarized in Table 6.5 and show
that the hypothesis Hg cannot be rejected.

The results that were presented in this section were
based on the first and second ordexr statistics of the data that
was collected from the subjects and the gimulation. In ordexr
to complete the analysis, the values of the decision function
A(m) at each detection time that was found in the experiment

were computed from the simulation. Figures 6.21 to 6.24
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Subject| 1 2 3 4
E(td) 12.30 9.22 6.77 5,32
g 3.35 2.27 1.32 1.05
t3
A.C. —
K 0.41 0.45 | 0.47 0.44
c% 0.050 p.042 0.035 0.038
E(td) 13.20 9.85 7.07 5.70
g 3.80 2.36 2.27 1.025
ta
B.C. —
K 0.47 0.51 0.54 0.50
c% 0.048 0.046 0.230 0.032

TABLE 6.4 Results from Third Experimental Session

(8{t.,) and o are in seconds)
a tq
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. - 2 2
Subject K n r 9%y g p F F.OS
A.C. 0.44 32 4 0.041} 0.00063| 0.49| 2.68
B.C. 0.50 32 o.081! o.o0086! 0.34| 2.68

TARLE 6.5 Results of Analysis of Variance for ®
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6.23 VALUES OF THE DECISION FUMCTION AT THE ACTUAL DETECTION

TIME OF THE SUBJECT (CLOSED INTERVALS, cj = 2)
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show the values of the decision function for the fdur failure
levels in the first experimental session (open intervals, step
failure). Figures 6.25 to 6.28 show these values for the

second experimental session (closed interval, steﬁ failure);
These figures also show the LRCL that was used in the simulation.
Those results that are due to the two stage operation of the
model give a unigue opportunity to observe an internal gquan-

ity which cannot be directly measured.
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FIGURE 6.28 VALUES OF THE DECISION FUNCTION AT THE ACTUAL
DETECTION TIME OF THE SUBJECT (OPEN INTERVALS cj = 3)
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CHAPTER VII

L
THE USE OF THE FAILURE DETECTION MODEL FOR MONITORING

AUTOMATIC LANDINGS

7.1 Genexzl Discussion

In Chapter 6 we presented a mo@el for the human observer
in a failure detection task. The experiments that were run
for the evaluation of the validity of the model included a
"yell-behaved" process for the normal mode of operation. In
particular, the shaping £filter was a stable linear second
order time invariant system and the observation was a scalar.
These characteristics simplified the implementation of the
detection model so that its performance could be easily com-
pared to the performance of the subjects.

In this chapter we would like to show that the suggested
model can be applied in more complicated situations that arise
in real life detection tasks. BEven if the processes involved
do not have any of the nice properties that characterized the
former experiments, the model can still be used with some
modifications.

The task of monitoring airplane instruments _during an
antomatic landing is an appropriate example. The processes
that are involved are characterized by a non linear, high order
and time varying system. In addition, there are several in-
struments to be monitored simultaneously, so that the obser-

vations are multidimensional. Other reasons for this choice
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are the current interest in the problem due to the introduction
of "all weather® landing systems and the availability of the

equipment to perform an accurate simulation of the task.
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7.2 Simulation of a Jet Transport during Automatic Landing

L

This section deals with the description of the equations
of motion for a jet transport during auvtomatic landing. These
egquations are the basis for the simulation that was used in
our experiments.

Let us define a coordinate system (X', ¥', 2"} with the
origin at the touch down point, the X' axis in the direction of
the north, Z' is perpendicular to the ground (positive upward)
and the ¥' axis completes the right orthogonal triad. If the
initial position (at t = to) of the airplane (X'O, Y'O, Z'o)
is given, then its position at any future time (t > to) is

completely defined by the following three variables

v{t) ~ airplane wvelocity

1 (t) - course (rotation of the velocity vector
with respect to the Z' axis)

v{t) - vertical inclination (rotation of the
velocity.vector with respect to the ¥
axis)

where the frame (X, ¥, Z) is obtained by rotation of the
frame (X', ¥', 2') by ¢ (t) around the 2' axis.

For a complete knowledge of the airplane attitude, three
additional variables are needed and are defined by:

a(t) - angle of attack

${t} - bank angle

B{t) -~ side slip angle
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These six time functions are the state variables that define

the motion of a rigid body with six degrees of freedom when

angular accelerations are neglected.

given by
v = %(Tcosacoss - D - Lsing - wsiny)
i = ﬁg%ag?ﬁLsin¢ - TcosasinBcosd)
% :'#%{(Lcosa + Tsinacosé)cos¢ - weosy)
o = gcosf - psinB - %coss - @cosysin¢
B = @(cosacosycos¢ - ginasiny) - %cosasin¢ - r

¢ = pcosccosf + gecosasing + rsing + @siny

where

gravitational acceleration

airplane weight

W -
T -~ thrust -
D - drag
L - 1lift

The state eguations are

{7.2)

The weight during landing and the coefficients of drag and

1ift for a DC8 (which Is similar to a Boeing 707) were taken

from Tepper (

equation (7.1

1969). The three variables p, 4, and r in

) are the control angular velocities of the
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airplane around the roll, pitch and yaw axes respectively,.
14

and are given by:

= L 2
P = IX(K1¢C + k2wc) v

q = % {k3ecv2 + kg (Leosacosd - wcosy) ] (7.2)
4

Hs
|

21 '
Tz[k4(¢c 4+ B— 12490r/v)v? - k5¢cv2]

where BC, ¢c, wc are the pitch, roll and yaw commands which

are given by (Ephrath, 1975)

9 = 0.5FD_ + 3FD

c p P
= FD, + 3FD, (7.3)
¢ = ~38

FDP and FD, are pitch and roll commands of a linear flight
director system and their Laplace transform is given by
(Weir et al, 1970)

¥D_ = -0.0003h_ - 0:35 4

P s + 0.34
(7.4)

D = -0.62s(8.6¢ + 0.9¢ + 180e) 0.27¢ - 1.56e

(s+1.06) (s+0.16)

where:
he - vertical error between aircraft position
and glideslope beam
e - horizontal angular erxor between aircraft

position and localizer beam
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an additional feedback loop that changes the thrust in such a
way as to keep the velocity ‘consant (v = 0) is also included.
The above eguations were used by Ephrath (1975) for a
simulation of an automatic landing with the Adage model 30
graphics computer and a Boeing 707 fixed-base similator. A
detailed description of the derivation of the eguations and
the simulator is éiven in Ephrath (1970}.
cince the landing of the airplane ig fully auntomatic,
the pilot task is monitoring and detecting failures. The
instruments which are displayed in the cockpit and which the
pilot can use for his monitoring tasks are {the variables
that are displayed by each instrument are shown in brackets)
Glide slope indicator [he]
Localizer indicator I[el
Attitude indicator [8,9]
Horizontal situation indicator i¢v,B,el
Air speed indicator [Vl
Altimeter [2z]

Vertical speed indicator %1

where
h, = % tan(-3°) (z, x are in £t)
g = —% {y, % are in nm) {7.5)
1.23—}?.'.
8 =oat vy - 2 (degrees)

and the frame (X, Y, Z) is obtained by rotation of the frame

(v, ¥', 2') by 35° clockwise around the Z' axis.
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7.3 Simplification of the Airplane Dynamics

As mentioned in the previous section equations (7.1}
and (7.2) were used to simulate the dynamics of a Boeing 707
during landing. Several professional 707 pilots landed the
similated airplane and were completely satisfied by the re=
senblance between the simulated dynamics and the performance
of the real airplane., Furthermore, when the automatic landing
system was applied, it proved to be capable of landing the
airplane within the designed sgpecifications. Also, the mean
values of all the variables that were presented to the monit-
oving pilot had the specified nominal values, with perturbations
due to outside disturbances. Therefore it is reasonable to
assume that for the analysis of the performance of the monitor-
ing pilot, it is possible to linearize equations (7.1) and
(7.2) around the nominal values. Such an assumption is usually
made for a preliminary design of the control loops (Blacklock,
1965).

Even when the system linearized, the dimension of the
state vector is large (9), a fact that considerably complicates
the computations. Therefore, for design purposes, another
gimplification is made by assuming that there is no coupling
between the longitudinal and lateral dynamics. Instead of
dealing with one nine state system, there are two independent
four state subsystems and one scalar subsystem. This last
scalar subsystem controls the airplane velocity, and is needed
to guarantee proper behavior of the longitudinal control

(Blacklock, 1965).
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The basic olock diagrams for the three control loops
were taken from Blacklock (1965). The velocity control loop

is shown in the following block diagram:

-Sur du

X (s + .1}
(s+10) (s2+.009s+.00186)

where §u,. is the perturbation around the nominal velocity and

is modelled as a zero mean white Gaussian process with variance

g?.. . The real pole represents the throttle servo, and the

Uy

complex pair, the phugoid oscillations. The root locus of

the velocity control system is shown in Figure 7.1l. For K/

equal to 10, the closed loop transfer function is given by:

~su(s) _ 10(s + 0.1)
Sur(s) (s + 8.8) (s + 0.98){s + 0.13)

(7.6)

mhe transfer function for +he vertical inclination control is

ey (s) 0.535 (7.7)
§6 (=) s+0.585

where
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r=2
“T-0.6

FIGURE 7.1 ROOT LOCUS FOR AIR SPEED CONTROL SYSTEM

T

=4

=4

FIGURE 7.2 ROOT LOCUS FOR HEADING CONTROL SYSTEM
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8efs) _ 5395(s + 0.585) =~ -
86, (s) (s + 0.5)(s + 5.5)(s2 + 5.4s + 11.4)

(7.8)

Again, 6Br is the perturbation around the nominal pitch
angle and is modelled as a zero mean white Gaussian process

with variance o% . Sustituting equations (7.8) into 7.7):

hal
§y{s) _ 31.3 (7.9)
Ser(s) (s + 0.5) (s + 5.5) (s° + 5.4s + 11.4)

The third control loop is the heading control and is shown

in the following block diagram

SU_+ I 5 86 59

3 (s+L57Xs°+1075+58.9) Vo

where v ig the nominal air speed (150 knots), and 5¢n is the
heading perturbation modelled as zero mean white Gaussian
process. The r06£ locus for the heading control system is
shown in Figure 7.2. For K,6 = 3.8, the closed loop transfer

L

function is

SP(s) _ 5 47 (7.10)
§9_(s) (s + 11s + 58)(s? + 1.5s + 0.81)
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The position of the airplane (x, y, 2) is a function of the

three controlled variables and is given by:

§ = ¥ cosy Ccosy
v = v siny cosy {(7.11)
z = v siny

w

I

since v, ijs small (3.0°) a small angle approximation can be

used, so that

X =V cosy
¥ = v sin (7.12)
Z = VY

The perturbations in the airplane position éx, 8y, 8z around

+he nominal values are therefore

§x = cosy,dv - vosinwoﬁw
6§ = sinwoav + vocoswoﬁw _ (7.13)
8z =

YOGV + voay

where the nominal values are:

Vg = 150 knots; Yp = -3,0°;: wo = 35°

Equations (7.6),(7.9), (7.10) and (7.13) imply that the
state space description of the whole system inovlves.a total of
14 states. Although these states can be divided into three
independent groups of four, five and five states respectively,
it is assumed that the monitoring pilot bases his decision on
a further simplified system in which he uses only the dominant

poles. Therefore, the next step would be to simplify the three
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basic subsystems given by ?quations (7.6), (7.9) and (7.10).
For the velocity control system we will neglect the pole at

s = -8,8, and also assume that the zexo is cancelled by one

of the other poles. Also the gain is adjusted to give an
equivalent steady state gain. The simplified transfer function

is therefore as .-follows:

Suls) - 1/(s+1) (7.14)
aur(s)
for the vertical inclination control loop only two real

poles would be used so the transfer function is:

§y(s) _ 1.35 : 1.35

50_(s) s°+ 3.25 + 1.35 (s + 0.5)(s ¥ 2.7) (7.15)

The new pole and the new gain were chosen in such a way that
the steady state gain, as well as the steady state variance
for a given stationary random input would be the same as for
the original system (7.9). The time response of the original
and simplified system to a step input are shown in Figure 7.3.
The difference in the transient seems to be small enough to
justify the approximation.

For the heading con*rol system the far left half plane
pair of complex poles was omitted and the gain was.adjusted
to give an equivalent steady state gain. The simplified

transfer function is:

Syls) . . 0.81 (7.16)
5¢r(5) s + 1.55 + 0,81
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The time response of the, simplified and original systems to
a s*zp input are shown in Figure 7.4. Again the small dif~
ference justifies the simplification.

The simplified version is eight dimensional, and can
be divided into three independent subsystems of oxder two,
three and three respectively. Let x be the eight dimensional

state wvector

xT==(xl, Xorenss xg)

and let us define

= §u Xy = 8y %, = 8¢ (7.17}

il = X,y iB = Xy i4 = Xgy %6 = X i7 = Xg (7.18)

then the state equation for the three subsystems is given

by:

% | 0 1 % 0
x2 0 1 x2 1

L.

p--. —_—ry wnaand rt—— -1
XB 0 l. 0 Xl 0 _
Xy | = 0 0 1 X, 41 0 86, {7.20)
X g -~1,35 —3;3£ Xy 1.35

and



Xg 0 1 g, Xg 0
§;7 — |0 0 i xo |4l 0 |8, (7.21)
g 0 =-0.81 =-1.5} | %g| [0.82

Let Fqis For and Fa be the state matrices defined in equations
(7.19), (7.20)-and (7.21) respectively. Then the eight dim-

ensional svystem is given by the vector differential eguation:

g = FX + Gu (7.22)
where
g, 0 0 | 5 1 0 0.0 0 0 0
~p
P=1]0 Fz 0 ¢c=1]o o o 0o 1350 0 0 {7.23)
0 0 F3 0000000-31
and
o ..P
u = (Bur, Ser, Gwr} (7.24)

Since equation (7.22) represents a linear time invariant
system, the transition matrix can be found by the use of the
Laplace transform. Furthermor:, since the matrices in (7.23)
can easily be reduced to three independent subsystems (7.19),
(7.20), and (7.21}, the same expression for the transition
natrix that was described in appendix B can be used with
glight modifications.

The perturbations of the outputs that were presented to
the monitoring pilot in the simulation that is described in

section 7.2 can now be expressed as i1inear functions of the



state variables. Substituting the state variables from (7.17)
14

to (7.13)
8% = (coswo}x2 - votsin¢03x7
§y = (siny,)x, + vjlcospylx, (7.25)

8z = Yo¥o t Vg¥y
and using equation (7.18)
§x = cosyyx, - vosinwoxs

8y = sinygyx, + vocoswox6 - (7.26)
6z = Yo%, + VX3
also, from equations (7.5}
- 2
She = =-1/x% n(Sx) + l/xn(ﬁz) (7.27)

de

1/(1.23 - xn>2c5x) +1/(1.23 - x) (§y) (7.28)

where X is the nominal x value which is time varying. There~

fore, using the state variables, the perturbations of the dis-

played variables y are as follows:

1. Glide slope indicator

) 2
¥, = (~cos¢0/x n + Yo/xn)xl + v0x3/xn

. 2
+ v051nw0x6/xn



2., Localizer:

y, = lcospy/(1.23 - x )2 + sinyg/(1.23 = %) 1%y

. 2
+ [vocos¢0/(1.23 - xn) - v051nw0/(1.23 - xn) ]x6
3. Attitude indicator:

Y3 = x5/0.585 + %,
va = Vg¥g/9

4. Horizontal situation display:
Y5 = *7

5. Air speed indicatox:
Yg = *2

6. Altimeter
Y7 = Yo¥1 * Vo¥3

7. Vertical speed indicator
Yg = Yo*2 ¥ Vo¥a

Tt should be noted that ¥y, and y, are time varying linear

. functions of the state while vy, = yg are t+ime invariant.



7.4 The Multidimensional Failure Detection Model

From the description of the equations of motion and
the control loops that were discussed in section 7.2, it is
clear that the processes with which the subject has to deal
in this task differ considerably from the processes that were
involved in the experiments described in Chapter 6. The main

differences are:

1. The equations are highly nonlinear.

2. The order of the system is high.

3, The statistics of the observed variables
are time varyingd.

4. The observation is multidimensional.

The nonlinearity difficulty can be relieved by linear-
ization of equations (7.1) around the nominal values of the
stateé. This is possible because the control loops are ex-
pected to keep the state variables at their nominal values
so that only the perturbations are exposed to the subject. The
linearization of the system is described in detail in section
7.3.

The second problem, that of the high dimensionality,
can be solved by the decoupling of the system into-several
subsystems of lower order. If, after the decoupling, the
subsystemz are still of high order, we will assume that the

human observer considers only the most important modes. In
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general, it is felt that the human observer will not consider
more than three dominant modes. The reduction of the dim-
ension of the problem at hand is described in the previous
section. It should be noted that although the state equations
can be decoupled, an eight dimensional Kalman filter should
be used due to the coupled form of the observation.

Once the processes are simplified to the level that is
shown in section 7.3, our model can be applied. The time
variability of the observation does not affect the performance
of the linear estimator, and the only disadvantage is that
the Kalman gain K(t) will not reach steady state. This means
that the operator must update the gain with each observation.

The fourth point that is mentioned above is the multi-
dimensionality of the observation. This means that the
operator must share his attention among several instruments. It
was found (¥Yntema, 1963; Senders et al, 1966) that in such cases
+he human observer will concentrate only on the most important
instruments while using the others for verification purposes.
In monitoring the automatic landing, it is expected that the
pilot will spend 90% of his time monitoring the glideslope
locaiizer and airspeed indicators.

When a linear estimator is used in the model, it ;s
possible to account for this sharing of attention through the
observation noise (Levison et al, 1971). If the subject is
observing more than one instrument, then his internal observa-
tion noise for each of the observations is increased by a con-

stant factor that is inversely proportional to the time that
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the subject spends in moniforing that specific instrument.
Let ti be the total time that the subject is spending observing

instrument i during the whole observation interval. Define:

N

Ky = t,/ Tty (7.29)
i=1

where N is the total number of instruments that are observed.

th instru-

The observation noise that is associated with the 1
ment is then multiplied by a factor of 1/K,.

¥or example, let us consider the situation in which the
pilot spends 40% of his time monitoring the glideslope indicator,
40% monitoring the localizer and 10% monitoring the airspeed
indicator. The block diagram of our model for such an assumption
is shown in Figure 7.5. It should be noted that since all the
instrument variables are linear functions of the state, the
number of observations included in the model is not limited;

however, any increase will cause more complicated numerical

computations,
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7.5 Experimental Method

7.5.1 Apparatus

The Adage Model 30 graphic computer was used to simulate
the full equations of motion (7.1). All of the outputs that
were defined in seciton 7.2 were fed into the instrument panel
of a fixed base Béeing 707 simulator. This panel is shown in
Figure 7.6. The simulation included only the last five minutes
of flight prior to touch down, and the landing was fully auto-
matic. The failures that were defined were instrument failures
so that they affected only the output variables but were not
fed back into the system. In order to minimize the dimension-
ality of the task but still have a multidimensional task,
failures occured in two instruments. Those instruments were
the glide slope indicator (GS) and the air speed indicator (AS).
Four levels of failures were incluvded for each of the two
instruments. All failures were deterministic step changes
that were fad to the instrument through a low pass filter with

0.1 second time constant. The magnitude of the failures for

~the AS indicator were

Cy = 20, C, = 30, C, = 4o, ¢, = 50, - (7.30)
and for the glideslope indicatox
Ci = Ogg C, = 1.504¢ Cy = 205 €y = 2.50,, (7.31)
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7.6 THE INSTRUMENT PANEL
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Two random number gendrators were used to choose the
failure in each run. One determined the instrument and the
other the size of the failure. In addition, a third random
number generator was used to determine the time of failure tf.
The value of tf had four discrete magnitudes with time difference
of 15 seconds. éhe mean of these four values was the time at
which the airplane passed the outer marker.

There was a single failure in 90% of the runs. The high
percentage of runs with failures provided enough data in a
reasonable experimental time. There was no feedback to the
pilot concerning his performance. Tt was felt that feedback

would induce correlations between successive runs, and therefore,

it was not used.
7.5.2 Subijects

Two subjects participated in the experiment. One did not
have any practical flight experience; however, he did have a lot
of experience flying the simulated airplane (he was using it for
his own experiments). The other subject had experience as an
Air Force pilot where he flew a T38 jet trainer.

Tn the first set of experiments, the participation was on
a voluntary basis. At the end of this set it was ewvident that
the enthusiasm of the subjects had faded due to the fact that
their task was only monitoring. Therefore, it was decided that
in the next set of experiments, the subjects would be paid $4
an hour in order to keep the same level of performance as in the

first set.
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7.5.3 Procedure .

As has already been mentioned, there were two sets of
experiments and the same subjects participated in both. The
two sets were equivalent except for the differences in distur-
bance characteristics. In the second set the frequency of the
disturbances Sur,éer, 6wr were reduced by a factor of ten
(compared to the first set in which this frequency was 1/6) .

The first set consisted of three experimental sessions.
Bach session included 16 runs with a ten minute intermission
after 8 runs. The second set consisted of only one session
with 26 runs and two intermissions.

The subject was seated in the couxkpit in the pilot's seat;,
however, the presentation was completely automatic and he could
not affect its behavior. Each run started when the airplane
was ten miles out from the touch down point and at an altitude
of 2500 feet. The three random numbers that controlled the
failures were typed in by the experimenter before the start
of each run. When the pilot detected a failure he pressed a
button and the run was terminated. Then the subject was asked
to Fill out a form in which he stated which instrument failed
and how he detected the failure.

At the beginning of each session, a set of instructions was
read to the subject. In particular he was told that failure
s, 1¢ either be in the AS or GS indicator, but he could use

other instruments for the detection. Then the subject was
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shown two runs without failures,
one in the AS and one in the GS.

familiarization trials.

and then two runs with failures:

The data runs followed these
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7.6 Experimental Results ,

The results Ffrom the first experimental set in which the
frequency of all disturbances was w/6 radians per second are
summarized in TPable 7.1. The table shows the mean and stan-
dard deviation of the detection time for the failures in the
AS and GS indicators for the two subjécts.

The results are also shown in FPigures 7.7 through 7.10.
These figures include the mean detection times that were pre-
dicted by the model using the 0.1 seconds filter for the

failure. The following parameters were used in the model

SNR = 36 P = Pyg = 0-05 %l = 1/4 (7.32)

Again, the level of the P_, was determined on the basis of the

FA
actual false alarm rate that was found in the experimental data.
For both subjects, the predicted results seem to fit the exper-
mental data well. It should be noted that a better fit for the
data from subject C.C. can be obtained by changing the parameters
in (7.32).

The results from the second experimental set, in which the
frequency of all disturbances was reduced to 0.5 radians per
second, and the time constant of failure appearance was raised
to 20 seconds, are summarized in Table 7.2.

It should be noted that the values for Ej j=1,...,4 for

GS failures are only one half of the values in (7.31), namely

& = 0.50 B = 0.750 ¢ =g ¢, = 1.250,

1 GS 2 S 3 GE 4 5
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SUBJECT{ INSTR. cl Cc2 c3 Cc4
E(td) 20.80 13.80 10.80 6.30
A S —
o 5.9 2.7 2.1 2.7
ta
B.M.
E(td) 1l6.40 9.80 7.70 5.98
G S
o 3.6 4.9 2.4 1.1
€
d
E(td) 25.40 20,80 16.90 8.20
A S
(o] 5.9 4,0 2.5 2.8
ta
CICC
E(td) 14.00 6.90 6.30 5.00
G S .
4] 2.8 1.0 0.9 0.9
ta
TABLE 7.1 Subjects Performance in First

Experimental Set

{seconds)
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30
td
[}
[¥] Subject
t ® Model
20 - 1
[¢]
(=)
10 -
| 1
o 2g Failure
G5 G5 Magnitude
FIGURE 7.7 DETECTION TIMES FOR GS TATLURES (FIRST SET, SUBJECT B.M)
30
td
[¢] Subject
() Model
20 -

10 3

o,

2c % by Failure
v v v

Magnitude
FIGURE 7.8 DETECTION TIMES FOR AS FATLURES (FIRST SET, SUBJECT B.M)
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30 | td
[ ]
/A subject
® Model
20
10 - T
£\
O
g Failure
GS Magnitude
FIGURE 7.9 DETECTION TIMES FOR GS FAILURES (FIRST SET, SUBJECT C.C)
td
1&; Subject
30 -
@ Model
20 -~

0O

R

A

FIGURE 7.10 DETECTION TIMES FOR AS

2a
v

¥

4g
v

FAILURES (FIRST

1

Failure
5a

v  Magnitude

SET, SUBJECT C.C)
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!

(seconds)

3UBJECT| INSTR. ci C2 c3 c4
E(td) 62.40 42,80 32.90 20.20
A S
O, 6.0 8.5 5.2 3.0
d
B .M'.
E(td) 14.2¢ 9.00 6.50 4.90
G S8
Gy 2.0 2.1 3.0 1.6
d
E(td) ——— 46.80 34.20 28.40
A S
Utd -— 5.8 3.2 3.8
c.C
E(td) 28.50 14.20 8.90 5.90
G 8
g 4.0 1.4 2.3 1.3
g
TABLE 7.2 Subjects Performance in Second Experiment
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The increase in detection time is mainly due to the change in
the failure time constant.' The results are plotted in Figures
7.11 through 7.14. The figures also include the predictions of
the model with the parameters SNR, Py and Pyg @S in (7.32). The
values of the parametex %l were changed to obtain a good fit.

The values of %l that were used are shown in the figures.
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W e

+d

[*1 Subject
® Model
%1 = 1/8

[o]

©

' ‘ Failure

O'SGGS 195g Magnitude

FIGURE 7.11 DETECTION TIMES FOR GS FATLURES (SECOND SET, SUBJECT B.M)

30

20

10

- td
[#] Subject
@® Model
v
8y = 1/2
®
(=
[e
1 i i .
Fzilure
20v lmv SGV Magnitude

FIGURE 7.12 DETECTION TIMES FOR AS FAILURES (SECOND SET, SUBJECT B.M)
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FIGURE 7.13 DETECTION TIMES FOR GS FAILURES (SECOND SET, SUBJECT C.C)
304 td
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@ Model
By = 1/4
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10 - g
(=)
£\
] 1 | .
Failure
2Uv &Gv SUV Magnitude

FIGURE 7.14 DETECTION TIMES.FOR AS FATLURES (SECOND SET, SUBJECT c.C)
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CHAPTER VIIL

CONCLUSIONS AND SUGGESTIONS FCR FURTHER RESEARCH

8.1 Conclusions

This thesis investigated some psychophysical aspects of
the behavior of a human operator in several signal recognition
t+asks. The study was based on classical SDT, but the emphasis
was not on the capability of the sensory system, pbut on the
decision mechanism of the operator. since almost all optimal
decision strategies lead to +he use of the 1ikelihood ratio
as ‘the decision function, the decision strategy can only be
analyzed through the detection tasks with time varying detec-
tability. The analytical study included a discussion of several
possible decision strategies as well as a suggestion of two
methods for the olassification of these strategies on the basis
of experimental results. One of these methods is gimilar to
the well known ROC analysis in classical SDT, and used decision
rule (DR) curves in the PH—PFA plane. The other method, which
can only be used when the underlying distributions of the cbser-
vations are known, relates the 1ikelihood ratio criterion levels
(LRCL) to the detectability.

Experiments in which the subject was to detect signals with
discrete change of signal strength were described. The obser-
vations were designed to be independent and the subject had to
make a decision aftexr each observation. The main conclusion

that can be drawn on the basis of the experimental results is
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that the subject is aware of the change in the uncertainty. and
changes his LRCL accordingly. However, no one strategy could
be identified, and the subject's performance revealed that
different subjects used different strategies.

The next step was to study the effect of correlated signal
presentations on the performance of the subjects. It was found
that the correlation did not affect the sensory process (the
detectability) in our experiments, but caused the subjects to
modify the parameters of the decision strategy (the LRCL'S).

The theory of Markov Processes was applied to the experimental

data, and the probability +ransition matrices showed that the

1,RCL of the subject in the current decision interval was strongly

dependent on the previous decision, regardless of it's correctness.

In particular, when the signal strength was changed in a sequen-
ial order, the decisions along the sequence were influenced by

the decision in the first interval, although the detectability

in this interval was the lowest. These results can be explained

on the basis of classical SDT when t+he LRCL's are modified by

piasing the a priort probabilities.

In some detection tasks, the information rate is too high,
so that the subject cannot respond after each observatlon. In
such cases, the subject is allowed to take more than one cbser-
vation, but he is asked to.minimize the detection time. This
type otf detection task is often related to failure detection
problems. It was found that the subject's behavior can be

modelled as a two stage process. The first stage consists of a
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linear estimator whose measurement residual is fed to the

second stage which i4 the decision mechanism. The main con-
clusion from our experimental results is that the decision
function is a pure integration of the observation error, and a
decision is made when some CL is reached. It was also found that
if the monitored process is of finite (short) length, and if

+he decision maker knows that a change will occur, his proba-
bility of false alarm is time varying and causes changes in

the criterion level.

An application of the above model to predict the performance
of a pilot in a task of failure detection in auntomatic landings
showed that the model is applicable even when the processes
that are involved are complicated. In particular, the experi-
ment showed that a simplified linearized model gives good
prediction even if the system is nonlinear, the order of the
dynamical system is high, and the observations are time varying

and multidimensional.
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8.2 Suggestions for Further Research

The theory and results that are presented in this thesis

could be extended by further research in the following directions:

1.

The analysis of experimental results of signal detec- -
t+ion experiments with time varving uncertainty as well
as the decision strategies +hat were discussed are

not limited to visual discrimination tasks. The
general results can, therefore, be verified by appli-
cations of the theory to other sensory processes such
as auditory and tactile processes and other detection
tasks that have been analyzed with the use of the
classical theory.

in many detection trasks, the human operator is a part
of the control loop SO +hat the pilot is not only
monitoring but can also influence the system before
and after a failure. This additional control task
might affect the per formance of the subject as com-
pared to his performance in monitoring tasks. It is
therefore suggested to modify the model to include
this additional task and design experiments that can
show its validity in these cases.

Our experiments did not include feedback: - however;,

it is felt that the addition of feedback may change the
performance of +he decision maker. Feedback . can be

given directly to the subject or only to the system
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or to both. The study of the effects of feedback
seems to be very valuable in increasing our knowledge
of the decision strategies of the human operator.
because feedback is used in many real life detection
tasks.

This research considered only the psychophysical
aspects of signal detection, and the gquestion of how
+he processing is actually done was avoided. Lately.
the use of EEG measurements has been found to be very
valuable in avousal studies. The use of EEG tech-
nigques in experiments of signal detection with time
varying uncertainty might give more insight into the
reactions of subjects to the change in the difficulty
of the task.

Tn our model of the human observer as a failure
detection system there are three parameters that
control the performance. 7he value for these
parameters were chosen by "trial and error" method.
gince the running of the simulation is relatively
expensive a more efficient method to find the
parameters that best fit the experimental data is
needed. Systems identification technigques ‘can be
applied for this purpose.

In Chapter 7, we applied our model of the human
observer to the task of monitoring automatic landings.
This task should be reexamined to include failures on

all instruments as well as failures of the system
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1tself (airplane or control). Also, the experimental
sessions should be spread over a longer period of
time so that the pilots can face realistic situations
of only a few landings pexr session (day), and a low

failure rate.
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APPENDIX A

ALGORITHM FOR FITTING GAUSSIAN DISTRIBUTIONS TO DATA FROM SD

EXPERIMENTS

Prcocblem Statement

Consider a signal detection (SD) experiment with two states
of the world (S0 and Sl) and n response categories. There are
a total of N decision intervals, in NO of which the true state
of the world is S,- Therefore, the state of the world S, will

appear in N; intervals, where:

Nl = N - NO (A.1)

After the experiment is finished, the decisions of +he subject
can be sorted into 2n categories as follows. Let Dj {7 = 1,...,0)
define the set of intervals in which the subject has decided on
category j. This set can be divided into two subsets Dgg and

D1j in which the state of the world is Sy or 81 respectively.
The DOj and Dlj for j = lseeer D constitute 2n exclusive and
exhastive events. The number of decisions that correspond to
the‘event Doj is NOj {(j = Leeoos n)} and the number of decisions
that correspond to Dlj is Nlj (3 = lrevar 0). Clearly the

following relations hold

n

. N I N,. =N (A.2)
1 0J 0 j=1 13 1

el
=
I

3

Now we assume that the raw data represented by NDj and
Nlj corresponds to the results of an optimal procedure to dis-
criminate between two random variables with continuous distri-

bution functions. The first step is to make a decision about
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the functional form of the distributions to be used. Foxr this
discussion we will assume that the distribution functions for
both variables are Gaussian. These variables have means m,
and m; and variances of GS and ci.

The decision procedure is assumed to be based on a choice
of (n~1) criterion levels Kj’ j=1,c..,n-1; thereby dividing
the observation space into n exclusive and exhaustive subspaces
each corresponding to one of the n response categories. Figure
A-1 shows this procedure for n = 3.

Although the functional form of the distributions is now
established; the parameters of the distributions as well as

the ~ CL's are still hnknown. Let us define an n+3 dimensional

vector of all the unknown variables:

X = (TBO; UD' ml,c ] kl' szt-.r kn"’l) (A-3)

If the value of the vector X is known, then it is possible to

find the probability that each one of the 2n events would happen.

Those probabilities are the areas under the Gaussian distribution

which are shown in Figure A-2 for n = 3. The analytic expressions

for these probabilities are

P . = V—E*# ékj {-fé:mglz}dg =1 n
. = =z
03  v2m 95 Ky 20
(2.4)
__1 k. —(E-mp)? C
Plj—T—T'r'-'"OTl }Q.j { —?zl—}di i=1,...,n
j—1 1
where
k = .~ k = J
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Choose L

ES CORRES'E‘OHDING TO POSSIBLE DECISTONS

FIGURE A-2 PROBABILITI
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Defining
. o J_k; {:(E" mo)}
k) = — exp{ —— dag
0 Y21 o —oo 262
0 0
(a.5)
1 k - {&- ml)
@1(k) = —= r expl —} d§
yam oy ~% zni
Then
Poy = 8, (k) = 8 kg q)
(a.6)

on the basis of these probabilities, the expected number of

decisions for each event is

-

. = P,.N N, . )
Ng5 0170 13 ij 1

it
1)
2

= lyeaes (A.7)

our problem is to £ind these probabilities POj and plj that
would give rise to Noj and Nlj and that are as close as possible
to the experimental results. These probabilities are functions

of the vector X; therefore, the problem is to find a value for
+his vector rather than the probabilities. gince the components
of X are completely unknown (their distributions are not known)

a feasible criterion to be used is to maximize the likelihood
function. Under this criterion we try to maximize the conditional
probability that the data values NOj and Nlj occurred, given some
value for X. This conditional probability is referred to as

+he likelihood function L and 1is given for our case by
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N

L = P(Nf)l' Nozp-o'; Non’ Nllro--’ ln)

n
me
j=1

N

Plj /(NOjENl.l) (A.8)

0j ;|

Since only the value of X that maximizes L is of interest and
since the ln function is monotonic with its argument, it is
possible to maximize lnL rather than L where:

n

1nL = 1nN! +j§£ﬁojlnPoj'+ NljlnPlj - 1n(N0j1Nlj1}] (A.9)

Since the 1n(N0j!Nlj!) and 1nN! terms are not functions of X

they can be dropped from the expression to be maximized.

Substituting from (A.6) into (A.9) the final cost function is

c(x) = Ny yin(og (ky) = 0glky )]

I o3
2

+ Ny lnley (k) = @y (kg 501 (A.10)

lj ]
C(X) is now a function of the parameters of the distribution
and the . CL's through ¢, and @,. However, if the following

transformation is applied to £

E-m (A.11)

Equation (A.5) can be written as:

k-m./0
bolk) = _} : ;90 oxp{-n2/2} dn
Y21 9y —a
(A.12)
k—ml/cl
¢q(k) = —— f exp{-n?/21 dn
/2% O ~eo

1



Therefore the components of the unkown vector X affect the cost

function through the expressions

1 1 4= 1p.0., D (A.13)

Relation (A.13) implies that the solution for +he minimization
problem is invariant to a linear transformation. Specifically,
if:

XT

= (dopr %o d

Lr O By (3= Loeeer 1)

is a solution that maximized C(X) then Xm given by

ny
XT =

=m (cldOm ~Cogr €1%0m c

o, , Cad

199m "~ %2 “1%iw’

clkjm" 02(j = l,ee. 1))

is also a solution. ¢y and ¢, in the above expression are
arbitrary constants.

The conclusion to be drawn from the above ambiguity is
that if the algorithm is to be used repeatedly and the results
are to be compared, the pasis for comparison should be the

invariant expression (A.13) rather than the actual parameters.

Optimization Method

A necesgary condition for an extremum point X of the cost

function C(X) given by (A.10} is
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= 0 (A.14)

ke

X=X
~m

where g(X) is the gradient of C(X) with respect to X. Eguation
(a.14) is a set of nt3 nonlinear algebraic equations, and their
explicit form for the Gaussian case is gilven in Table A.l.
Several numerical methods were suggested for the solution
of this parameter optimization problem. The most popular method
is the Daviden algorithm (Fletcher and Powell, 1963), which is
available as a subroutine in the IBM Scientific gubroutine
Package. However, in this work we decided to use a moxe
recent algorithm that was suggested by Jacobson and Oksman
(1970). This algorithm seems to be superior to the Davidon
algorithm in the following ways:

1. Tt converges to the minimum in fewer iterations for
some classical test functions (Rosenbrook function,
helical valley, etc.)

2. Tt does not require that a minimum be found along &
iine for each iteration.

3. It converges in (n+2) iterations for a homogeneous

cost function, namely, cost functions that satisfy:

C(E) = C(Em) + ag_(§m)(§ - Em) (A.15}
where
m - dimension of X
Em - the value of X that maximizes C(X)
g(X) -~ the gradient of C(X)
d - constant



ol Ny . (k, - m)* (e, o - m)>
g =~ __l_ z 0zt {exp(- ——J——Q—‘) - exp(- —=% - 0y}
vZu 9 =2 @O(kj) —QO(kj._l) 200 20,
o+l N . k., - m (., -m )2 -0 k, . - ®m )2
£, - _ 1 5 0,4~1 { i Oexp(~ 12 0 y - i~1 0] exp (- _j__ll.___(l__)}
Vi 9, j=2 QO(kj) - 04( ks ) V2 % 20 J2 On 262
1 o+l Ny oag (k, - ml)2 (k‘]__1 - ml)?‘
By = = L 2] {exp(- -—]——-———) ~ exp(~ . 1}
2T Oy j=2 Ql(kj) -fbl(kj_l) 201 | 201
n+l N, ._ k, ~m (k - m,)? k. ,~m (k, , - ®m )2
g, = J"l T 1.3-1 {—3]}'_ L exp (-~ ] " L - '?/_l L exp(- Nt S " L 1}
= - 9
i 01 j=2 @l(kj) cI>1(kj_l) 2 9y 205 24 201
1,1 Ny, 4-1 Yo, 4-1 (e, = mg)”
By T T = ] - - Yexp (- )
Vam 00 QO(kj) - (DO(kjwl) dJO(kj_l) - (I*O(kj_zj 0
N,, N, .. (k. - m )2
+ 2 1,3-1 _ 1,3-1 Yexp (- _J__z_l___)
o) & )) - &0y ) 0, Cley_g) = @y Cy ) 203

Table A.1 Components of the gradient £(x)

L9¢
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It should be noted that the class of functions that satisiies
(A.15) is much larger tha; the class of quadratic functions
for which the Davidon method converges in (n+l) iterations.
The method also has some disadvantages:
1. A strong step size control is needed to avoid divergence
of the algorithm in the initial iterations
2, The algorithm does not provide an approximation to
the matrix of second derivatives:

32C (X)
3x?

A =

and therefore ¢ posteriori error analysis is not
feasible.

A detailed description of the algorithm is given in the
original report of Jacobson, so it will not be repeated.
Listing of the algorithm in FORTRAN IV is given in Appendix
B of a progress report by Curry (1873).

Notes on the program

Although the FORTRAN program was written for the general
Gaussian case, some special cases can be applied by changing
‘some code numbers (Curry, 1973). These special cases include:

1. A case without bias (symmetric means) with equal

variances for which

mg = - My 0, = 0O

2. A case that includes bias with equal variances for
which

mg 7 =Ty G, = O
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3. A case without bias and with unequal variances for

which
mg = iy og 7 O3

Tn addition the number of o1,'s {n—-l1l) can be varied from 1

to 25.
The stopping condition for the algorithm was based on the

vvalue of the norm of the gradient, namely,

[lgxy |l < 0.1
However, other values can be used as well, such as the use of
|C (1) ~ )]

where M is the iteration number. The "goodness of the solution

was tested by the use of the Chi Square. test. The values for the

Chi Square test were computed as follows:

% 2
= 0y (k)]

a-1 [N.. = No(@,(k,, )
i (0 o541
i=1 (bO(kj+l) - ‘I’O(kj)

Ny —Np (0 Oeyy) = @1(kj))12}

+

The number of degrees of freedom is:

2 (n-1) - number of estimated parameters.
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Apriori test for the algorithm

Since a parameter optimization program is usually involved
with complicated expressions and since in our particular use
the equations for the gradient (Table A.l) are also complicated,
programming errors are very likely to happen. Therefore, it
might be useful to use an apriori test to check the validity
of the program before it is used.

The method that is suggested here seems to be more general
+han the vnes suggested by Grey and Morgan (1972). The idea is
to synthesize artificial data NOj and Nlj for which the solution
is known, and check whether this solution is actually obtained
from the algorithm.

Let us choose some arbitrary values for the components of

X. These values will be

XT

R = (mgys Ogpr Mygr Tpp0 K

500 = Liewam=1)) (A.16)

on the basis of this vector we define the data as follows:

NOj = ¢0(kj+l) - Qo(kj)
j=11,....n (A.17)
Npgy = @y lkgyy) = o lky)
where
].;0 = =0 kn = 4m

For the data given by (A.l7) it is possible to show that X;
as given by (A.l16) satisfies the necessary conditions (A.14)

and, therefore, constitutes a possible solution. To prove this
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statement (A.16) and (A.17) must be substituded into the
components of the gradient in Table A.l1 and the results should
zero the gradient.

Now let

T -
g (X) = (gl' Ior==rvs gn_,_3)

and consider each component by itself. From Table A.1

2
n N s -(k- - m)
gl = ___l.__._.. T 0,3-1 {exp{ | 20
/2% o, j=1 @(kj) - @(kj~l) 2 o,
2
- (ks _, - mg)
- expi Rlad " L b}
2 00
therefore
2 2
—{k, ~ m.) (k. - m,}
g, = 1 fewpl—2——0 1 - exp [0} (A.19)
V2T o4 205 203

and because of (A.18) this expression is equal to zero. The
expression for 9, is equivalent to (A.1l9) when the subscript
0 is changed to 1. Therefore the expression for 93 is also

equal to zero. Again from Table A.1l:

' 2
n N, . k, - m (k. - mg,)
5y = 7:1___ I 0,3j-1 = 0 expl- _1,;_9_.}
2% Sy j?l QO(kj) - ®O(kj 1) Ve 95 . 200
2
k. . - m (k;_q — my)
_ -1 Oexp[ -1 "0

Jﬁdo 20
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Therefore, by carrying out the summation

2 2

_ k. _~m (kn— mo) ko—m0 (LO mo)

= — expl- " 5 expl- '—*‘7;“-"1}
YT 9 2 20 2 9, 20

(A.20)

92

Substituting from (.18) and using the limit
42

lim ye Y + 0

N isad
9, is equal to zeroc. again the expression for g, is similar to
(n.20) if we replace the subscript 0 with 1. Therefore, 9, is
also equal to zero. g, to g, were the derivatives of C{X) with
respect to the parameters of the distribution, and gj,
3 = 5,...,0+3 are the derivatives of C)X) with respect to the

CL's. From Table A.l:

S S g B No,j-1  _ _0.372 ]
J o - - )
2
(k Miaai 11} ) N .
0 1 1,3-1
exp (- “'32 . ) — 5 1 o
N. . (k.-m,)
l; ""2 l
i 3@ jexp (- ———)
L (ko) =g (kg 203

j = 5,eesnt3

gubstituting (A.17) into the above, the expressions in the

square brackets are equal to O and therefore:. gj, j=5,...,n+3

are equal to 0. This completes the proof of our statement that

X satisfies the necessary conditions if the data in (A.17) is

used.
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APPENDIX B

SIMULATION FOR THE EXPERIMENT OF CHAPTER 6 -

This appendix gives a detailed description of the
analytical and numerical methods that were used to simulate
the displaved process used in the experiments of Chapter 6.

Reference is made to Figure B.1l.

1

wit) 5% + 2w Cy8 * wg y ()

input process observation

Shaping Filter
Figure B.1 Simulation of the Observed Process

Input Process

The input process to thé shaping filter is a gcalar zero
mean white Gaussian process. Since a digital computer is used,
we want to form a white Gaussian sequence w(tn), where for
every tn w(tn) is a Gaussian random variable with zeroc mean
and unit variance.

The autocorrelation function of such a process 1is:

b

1

(£) (L - |t|/at) |T] < At

W (B.1)

= 0 |t] > &t

where At = t - + = constant for all n
n-1 n

If At is much smaller than the +ime constant of the shaping
filter,'w(tn) can be considered a white process over the band-

width of the shaping filter.
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A random number generator has to be formed, from which

random numbers can be drawn at each tn' To generate random

numbers with uniform distribution, the lineax

congruential

method is used (Xnut, 1969) in the following way:

nn+1 = (ann + ¢) modulo m
where:

nn+l = new random number

nn = last random number
If:

1. ¢ is relatively prime to m

2. f(a-1l) is a multiple of every prime di

(8.2)

viding m

3. (a-1) is a mulitiple of 4, if m is a multiple of 4.

Then the segquence defined by eguation (B.2) ha

length m. Therefore, the numbers

&, = (2/m}n_ - 1

are uniformly distributed in the interval [-1,

s a period of

+1]. To obtain

rardom numbers with a Gaussian distribution, twelve successive

varues of En are summed. Therefore,

n = 12r+ll
C = z g
x n = 1l2r n

(. is a Gaussian random variable with zero mea

(B. 4)

n and unit variance.

?
o
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Shaping filter

In order to form the displayed process v(t), the white
sequence 1s passed through a second order shaping filter with
The transfer

natural fregquency v, and damping ratio cy -

function of the shaping filter is

yis} = 1 :
2 2 B.5)
w(s) 5% + 2w0clS+ W

Let xltt) and xz(t) be the states of this system fined as
xl(t) = y(t)
xz(t) = xl(t)

Then the state space description of the system is given by

and y(t)

Since the system is time invariant,

xl(t)

w(t) (B.6)

(B.7)

the state transition

mafrix can be found with the use of the Laplace transform and

is given by:

e

3 3
e—clw°t[ cos wyt+ ¢y sin w t e 1%t .
s1in wlt
f-t"_z-_—_
o (t,0)= I-c; Wo¥==Cy
—Vo e Mo " sin w,t —c v, t 1 :
P 1 e €1V ['cos wlt- " sin wlf]
i 1"01 i
L__ ) !

o e 2
wl-wo‘/lcl

1
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1f u{t) is a zero mean Gaussian white process with covariance Q

eg. (B.6) is a stochastic differential equation with the

solution £
I

x(t,) = ¢t ,0) x(0) + J bty T )[g)u(t) dz (B.9)
0

where

k(e ) = (g (t) ., XplEg) )

The last term in equation (B.9) is a two dimensional vector

random variable v(tn), with mean
= tn 0,-—
= )
v(tn) OI ¢(tn, T‘(l)W(T)dT

0 (B.1D)

and covariance matrix:
T tn 0 T
c, = Blu(t)v (e)] =/ ¢l 1) (DO Vo (g, mdr (B.11)
Therefore, to form v(t ) two random numbers &y and g, are drawn
from the generator, in such a way that the correlation between

vl(tn) and VZ(tn) will equal Cvlz. L,et us define

v, (t ) = ci
o ! (B.12)

vz(tn) a;l + b;z

where a, b and c satisfy the following equations:

c = /T .
1l
24020
Va2
ca = C
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therefore:
vy(Ey) =VCvIl gy
(B,14)
2 .
CV.2 Cylz
v,{t) = 2 L, o+ C. === L
2°n /Gy L 7+7 Ty OV 2

The last variable to be determined is the value of Q. Let

+he covariance matrix for the state be defined as
Elx(t) x (£)] = P(%) (B.15)
this matrix is the solution of the following differential
equation
p(t) = FP + PFT + GOGT P(t,) = P (B.16)
where
0 1 T 0—’
F = 5 G =
g -ZClwo 1

0 is now chosen in such a way to pruduce in the steady state a

displayed output which is a zero mcan Caussian random variable

with variance Ogg (USS is known). Using equation {(B.7)
58
also, for the steady state, egquation (B.16) is
FPp + PFT + GQGT = 0
Solving for the above F matrix
P = P = 0 {(B.18)
1255 22ss
B - 3 ‘
Poy = WwoPyq Py = Q/4clw0 (B.19)
ss ss ss
Therefore
(B.20)

_ 3
Q= 4cssclw0
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The integral in (B.11l) is computed numerically using
rectangular integration with step size tn/20 and with Q0 taken
from (B.20). Then two caussian random numbers are drawvn and
g(tn] is found using (B.14). Since the system is time invariant,
the state transition matrix can be computed apriori to the
integration from (B.8). Therefore, the integration of (B.6) is

given by the following iteration scheme:

x(t ) = ol £y g) ElEg ) + () (B.21)
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