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"CERTAINTY IS FOR THE ANGELS; 

FOR MEN, THERE ARE ONLY PROBABILITIES" 

Pierre Simon De Laplace 
(1749 - 1827) 
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PSYCHOPHYSICAL MODELS FOR SIGNAL DETECTION 

'IUTH T.IME VARYING UNCERTAINTY 

by 

Eliezer Gai 

Submitted to the Department of Aeronautics and Astronautics, 

Massachusetts Institute of Technology, on January fS,l975, in 

partial fulfillment of the requirements for the degree of Doctor 

of Philosophy. 

ABSTRACT 

Psychophysical models for the behavior of the hUlnan . I 
operator in detection tasks which include change in detectabi
lity, correlation bet,veen observations, and deferred decisions 
are developed. Classical Signal Detection Theory (SDT) is 
discussed and its emphasis on the sensory processes is con
trasted to decision strategies which are the subject of analysis 
in this thesis. The analysis of decision strategies utilizes 
detection tasks with time varying signal strength. The classical 
theory is modified to include such tasks and several optimal 
decision strategies are explored. Two methods of classifying 
strategies are suggested. The first method is similar to the 
analysis of ROC curves, ",hile the second is based on the relation 
between the criterion level (CL) and the detectability. 

Experiments to verify the analysis of tasks with changes 
of signal strength are designed. The results show that subjects 
are a",are of changes in detectability and tend to use strategies 
that involve changes in the CLls. 

The effect on the decision strategy of correlation between 
successive observations is studied. It is found that the 
present decision of the subject is dependent on his previous 
decision ",ith a strong tendency to repeat the last decision 
even if it is wrong. The bias effects of correlation are des
cribed with the use of Markov process theory and the relation 
to classical SDT is also sho"m. 

The case of deferred decisions applies to tasks in which 
the information rate is so high that the subject cannot make a 
decision after each observation. Thus, he is allowed to make 
more than one observation, but is asked to minimize the detection 
time. Such detection tasks are usually related to problems of 
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failure detection. The model that is suggested consists of 
two stages: linear estimation and a sequential decision 
mechanism ,,'hose decision function is the integral of the 
observation error. This model is found to be effective in 
predicting subjects performance in experiments that include 
"well behaved" processes. The model is also applied to the 
task of monitoring automatic landings for instrument failures. 
Although the processes that are involved are obtained by a 
non-linear high order time varying system and although the 
task is multidimensional, the predictions of the model fit 
the experimental data well. 

Thesis Supervisors: Renwick E. Curry, Chairman 
Associate Professor of Aeronautics and 
Astronautics 

Laurence R. Young 
Professor of Aeronautics and Astronautics 

Thomas B. Sheridan 
Professor of Mechanical Engineering 

John J. Deyst 
Associate Professor of Aeronautics and 
Astronautics 
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CHAPTER I 

J!NTRODUCTION 

1.1 Background, Motivation and Problem Statement 

Psychophysics is that pa.t of experimental psychology 

which deals with the quantitative relationship between 

stimuli and response of living mechanisms. The general frame-

work can be CI.ivided into three different fields: detection, 

recognition, and scaling. Detection deals with the question 

of the smallest amount of a'stimulus that is needed to elicit 

a response. Recognition deals with the question of resolution 

or the minimum difference between two stimuli that can be re-

solved. The problem of relation between the strength of the 

stimuli and the amount of response is referred to as scaling. 

These three problems were the subject of extensive research 

in the last century when they were first posed in a methodical 

way by G.T. Fechner in 1860 (S\vets, 19661. Fechner also 

seems to have been the first one to notice the probabilistic 

nature of the problems, although this approach had already 

been implied by Laplace in his quote which \vas used as an 

epigram to this thesis. The probabilistic approach was needed 

because of the the large variability in the sensitivity to the 

stimuli due to individual differences as well as internal and 

external conditions of the subject. Therefore, Fechner 

J ... 

'.'.1 , 
i' 

'I 

~ , . 

. , 
suggested the use of the method of replication, namely, to get ~;I 

repetitive yes/no responses of a subject to different stimuli .. ~ 
,{j 
, 1 

l?l 
I~! i i! . ···.··1 

~'::h, .. p. '9'"",,'. ',.' ""',', ...,., . "" .~"."" .• ' "',t,",·,., .. ,~., """"': ., .. , .... ,\.. , .. ,~., .• ",'.' ..... ,.,.", .... """, , .• '::' •• , ... ", .... "'''... , .. ' ... ".", "'c'''''''''''''", ,'0""":' .',',.,.... . •. ,. "',', ." •... JtU 
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and to plot the proportion of positive responses as a function 

of stimulus magnitude. T~is method seems to be the backbone 

of any psychophysical research. The next step fon~ard was 

taken by Thurstone in 1927 (Thurstor.e, 1927). He suggested 

that the stimulus can be represented as a random variable with 

some density fWlction, and the recognition problem is that of 

separating two random variables on the psychological continuum. 

He also suggested the use of this method for cases in which 

the stimulus was not susceptible to physical measurements. A 

further step'was made by Blackwell (1952) who related the 

psychophysical problems to the statistical theory of hypothesis 

testing. 

The mathematical approach to hypothesis testing was 

formulated by Neyman and Pearson (1933) and was generalized 

later by Wald (1950). The appl,~ation of this theory was 

first employed in communication theory for detection of elec-

tromagnetic signals in the presence of noise. It was further 

advanced because of its importance to the design of radar 

receivers during World War II, and it was then that the form-

ulas and terminology of "false alarm", "hit" and "miss" ,,7ere 

introduced. 

The first rigorous presentation of what is nO\~ referred 

to as Signal Detection Theory (SDT) was given by Peterson et 

al (1954). It was followed by the work of Tanner and Swets 

(1954) which suggested the use 01: the theory in psychophysical 

:~ 

I 
! ' 
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experiments. Later Swets et al (1961) embodied the theory 

in a psychophysical mode~ for detection of visual signals. 

Most of the classical theory as well as the basic experiments 

were collected and summarized in books by Green and Swets 

(1966), Swets (1964) and Luce (1963). A good summary of the 

historical development of SDT and its applications was recently 

published by Swets (1973). 

The principle appeal for utilizing SDT in psycho-

physical research was its ability to separate the detect~on 

process into two components, namely, the sensory process and 

the decision strategy. For the psychologists who were inter

rested mainly in the threshold mechanism, the sensory process 

seemed the more important of the blO, and the separation char

acteristic was used only to eliminate the subjective bias of 

the subject that was reflected through his decision strategy 

(Trieshman and iVatts, 1966). This approach motivated the 

use of a fixed signal strength within each experimental 

session and the evaluation of the results by Relative Oper-

ating (Receiver Operator) Characteristics (ROC) curves \,lhich 

are the heart of classical SDT. This approach was used in a 

wide field of applications which ultimately manifested the 

validity of the theory. The applications included cases in 

which a well defined signal was to be detected when the back

ground noise had a knOlm density function. Those experiments 

tested several sensory systems including vision (Tanner et al r 

····.1 ',' 
:.; 

',f 
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1953), auditory (Green, 1960) and tactile (Gaussin Hupet, 

• 1972). However, it was also utilized in cases where the 

noise was the internal uncertainty of the decision maker 

due to the limited resolution of his senses. S1.1,ch experi-

ments were carried out for the detection of motioll 

(Kinchala, 1969), visual monitoring (Gai and Curry, 1973), 

and manual control (Cohen and Ferrel; 1969). 

Much less attention was paid to the second component 

of the detection process, that is, the decision strdtegy, 

al though it. seems that there are several areas in which this 

component is the dominant one. One such area is a more com-

plicated visual monitoring task in which the signal strength 

is changing from one decision interval to the next. Such 

detection processes occur, for example, ,,'hen a pilot uses 

traffic situation displays to avoid collisions with intruders. 

Since the input to the display is updated with radar infor-

mati on only every four seconds, the signal strength is fixed 

within the decision intervals but varies between the intervals. 

This is therefore the discretLo case of signal detection with 

time varying signal strength. The main interest in such 

tasks lies in the decision strategy or more exactly in the 

subject's changing of his decision criterion ,'lhen the signal 

strength is changed. These questions provided the motivation 

for the work presented in the first part of this thesis. 

Little research ,'lork could be found in the literature 

concerning this approach to detection problems. Some ,'lork on 

U 
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the problem of signal detection \-lith varying signal strength 

was done by Kinchala and'Smyzer (1967), Glorioso et al (1968) 

and Thurmond et al (1970). However none of this vlOrk addressed 

the question of decision strategy. Ot.her vlork by Swets et al 

(1967) and Birds~ll and Roberts (1965, 1966) analyzed the 

change of criterion between decision intervals but with fixed 

signal strength. Decision strategie.s that ,qere not based 

on SDT ,qere suggested by Parks (1966) and Thomas and Legge 

(1970). Also, the problem of sequential effects between 

decision intervals ,qas analyzed by Kinchala (1965), Speeth 

,~nd Mathews (1961), and Tanner et al (1970, 1967). 

This thesis suggests a unified theoretical analysis 

of the problem as well as experimental analysis to support 

the theory. It is shown that classical SDT can be modified 

to analyze these problems " if the updating rate is slow 

enough so that the signal strength is constant within each 

decision interval. The difference between independent and 

correlated input stimuli is also dealt with. 

If, however, the information flow is fast or even 

continuous, the problem is that of testing stochastic pro-

cesses rather than random variables. A.n example of such 

detection tasks is a pilot monitoring the displayed outputs 

of an automatic landing system based on ILS information 

(Decelles et aI, 1970). This problem is related to the 

design of Failure Detection and Isolation (FDI) algorithms 

i; 
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for fully automatic systems. The question was first anal-

yzed by control engineers-using linear filtering (Jazwenskii, 

1970) and optimal control (Bryson and Ho, 1969) techniques 

to design optimal systems (Athans, 1971). Later the same 

ideas were used by man-machine researchers to model the human 

as a controller (Kleinman et al, 1970). This model was also 

used by Levison (1971) and Levison and Tanner (1971) to model 

the human monitoring performance, The problem of the human 

operRtor as an FDI system was investigated by Neimala and 

Krendel (1974) and Phatak et al (1969, 1972}. 

The second part of this thesis suggests still another 

approach to modelling the human operator as an FDI system 

which is based on sequential analysis techniques (Wald, 1974). 

This approach is similar to the method used by Chien (1972) 

in the design of FDI algorithms for strapdo\>ln inertial sys

tems. EXperiments were run to support this approach and the 

question of closed and open decision intervals is dealt with. 

The theory is also modified to multi-decision tasks where a 

share of attention was needed. This compound model is then 

applied to the case above, that is, a pilot monitoring an 

automatic landing system \vhere his task is only to detect 

failures but not to identify and compensate them. 

;" 
) 
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1. 2 Thesis Organization 

• Chapter ~vo includes a detailed description of Signal 

Detection Theory (SDT) which is the foundation for the work 

presented in this thesis. In the discussion of SDT, \ve tried 

to combine the approaches of the psychophysicist and the 

communications. engineer, as \vell as to emphasize the points 

that are important to our use of SDT in time-varying signal 

detection problems. 

Chapter Three generalizes classical SDT to detection 

tasks with time varying detectability. Several decision 

strategies are discussed and the concept of Decision Rule 

(DR) curves is introduced for use in the analysis of these 

strategies. An alternative method for analyzing decision 

strategies when th( .. underlying distributions are knOlvn is 

also described. 

Chapter Four provides the description and the results 

of a visual discrimination experiment in which the signal 

strength is changed in a random order to avoid correlations 

between successive decisions. A model is suggested which 

describes the subjects behaviour and leads to the use of SDT. 

The results are used to verify the strategies that are sug

gested in Chapter Three. 

In Chapter Five, correlation effects on the decision 

strategies are discussed. An experiment similar to the one 

in Chapter Four is described. In this experiment, the order 

1 
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of presentation is changed,to sequential in order to introduce 

correlations. The bias effect of the correlation is described 

as a repitition or alternate strategy. The analysis is based 

on the theory of Markov processes, and the relation to cl?ss-

ical SDT is also discussed. 

Chapter Six deals with those detection tasks in which 

the information rate is high and a decisio11 is not required 

after each observation but can be delayed. The suggested 

model for the detection process consists of two parts: a 

linear estimation mechanism and a decision mechanism. There-

fore, the chapter includes a short summary on linear estimation 

and sequent.ial analysis. Results of a set of experiments that 

support the model are described for both open and closed 

decision intervals. 

Chapter Seven presents an implementation of the model 

that is suggested in Chapter Six for the specific problem of 

modelling the behaviour of a pilot in monitoring an automatic 

landing system for failure detection. Detailed discussion of 

the problem, its simplifications, and the use of the previous 

model for multidimensional tasks are described. 

Finally, in Chapter Eight, we summarize the results 

and conclusions, and suggest some ideas fo~ future research. 

Il , 
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CHlI..PTER II 

CL~SSICAL SDT AND PSYCHOPHYSICS 
• 

2.1 General Discussion 

Classical Signal Detection Theory is the foundation 

of the work done in this thesis. It is, therefore, important 

to repeat in some detail the basic concepts of the theory and 

its application. An historical background of the development 

of the theory was given in Chapter I. 'I'his chapter is a sum-

mary of the basic concepts of SDT and is primarily based on 

two references representing t,.o points of vie,.. One is the 

communication engineer's approach (Van Trees, 1968) and the 

other is the psychologist's approach (Sreen and Swets, 1966). 

In addition, some of the results are presented in still another 

form in order to clarify the generalization of the classical 

theory to include the case of time varying signal strength 

which is the topic of this thesis. 

2.2 General concep·.:s of SDT 

Signal detection is a theoretical approach to the problem 

of discriminating between several hypotheses or states of the 

world. It is assumed that there exist M well-defined states 

of the ~TOrld, each of them affecting in some wayan entity 

which is available to the decision mechanism and is referred 

'·.'·1' 
.~, , 
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to as the observation. Based on these observations, the mech

anism must decide which of the possible states of the 'l'lOrld 
• 

is true. 

The simplest case of signal detection arises when there 

are only two possible states of the world, sometimes referred 

to as a simple binary hypothesis test, simple in the sens(~ that 

the statistical 'characteristics of the siqnals are completely 

kno,qn. Analysis of this simplifed problem allmv-s a reduction 

in the algebraic work required in the derivation of the equa

tions without any loss of generality. The generalization to 

the composite ~1 hypothesis case is straiqhtforward and can, 

be found in the literature (Van Trees, 1968). Therefore, in 

this ,v-ork "le will concentrate only on the simple binary case. 

We vlill also assume that a decision must be made after each 

observation, and that the observation is a scalar quantity. 

The generalization to the vector case with a fixed number of 

observations is given in Van Trees (1968). The case of a 

free number of observations is dealt ,qi th in section 6.3 of 

this work. 

Let us assume that there are only two hypotheses HO and 

Hl • Under hypothesis HO the state of the world is So and under 

hypothesis Hl the state of the ,wrld is 81 , It is further 

assumed that the a pl'iori probability of' the appearance of So 

and Sl' P(SO) and P(Sl) are known and that 

(2.11 

I 
I -,' 
I • • , 
! , 
I 
j 

I 
! 
; 

! 
I • , 

i 

I U .on 
I ~;. -! 

i , 
! 'i , . 

.~ 1 

'j 



L . 
25 

The observer receives a sequence of N successive observations, 

and he must make a decision after each of these observations. 

Each response or answer A may take one of the t\,lO possible 

values 

AO - state So has happened 

Al - state Sl has happened 

It is assumed that all observations are statistically indepen-

dent. 

The results of such procedures can be categorized into 

four groups: 

n (AO/SO) = number of decisions in which the answer \'las 

AO and the state of the world was So 

n (Al/S O) = number of decisions in which the ans,.,er \,las 

Al and the state of the world was So 

n(Ao/S l ) = number of decisions in which the answer was 

AO and the state of the world \.,as Sl 

n (Al/S l ) - number of decisions in ,.,hich the answer ,.,as 

Al and the state of the world was Sl 

Clearly n(AO/S O) and n(Al/s l ) represent the number of correct 

decisions while n(AO/S l ) and neAl/SO) are the number of errors. 

These four numbers can be normalized and transformed into con-

di tional probabilities as follmls: 

Let n = pes ) oN = number of presentations of So 
So 0 

in N trials 

I 

1\ 
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nS = P (51) 'N = number of presentations of 51 
1 

• in N trials 

P (AO/SO) = n(AO/sO'/ns = probability of a hit 
a 

P (AI/So' = n(Al/SO)/ns = probability of a miss 
. a 

P (AO/S l ) = n(Ao/sl,/ns = probability of a false 1 alarm 

P(AI/Sl ) = n(Al/sl)/nS = probability of a correct rejection 
1 

Tl'" above names are invoked out of tradition from the communica-

bion engineers who first used them in radar applications ,qhere 

state So was the appearance of a signal and state 51 was the 

appearance of noise ,qithout a sigr. .. 

probabili ties are related as follmqs: 

P(AO/SQ) + peAl/sO) = 1 

P(AO/Sl' + peAl /51) = 1 

These four conditional 

(2.2) 

Equation (2.2) shows that only two of these conditional proba-

bilities are needed to completely specify the expected results 

of the experiment. The t",O that are usually chosen are the 

probability of a hit P (AO/SO) and tr8 probability of a false 

alarm P(AO/S l ). The two quantities are a measure of the per

formance of the decision process. 

The original goal in communications theory was to find 

a method of receiver design that optimized some performance 

measure. It vias suggested that if the observation is repre-

sented as a random variable ,qhose density function under both 
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states of the ,~orld is completely knm~n, then a sufficient 

statistic would be the likelihood ratio (Van Trees, 1968) 

given by 

R.(x) == (2.3) 

,,,here P (X/3 D) is the conditional probability of x given So 

and P(x/S l ) is the conditional probability of x given 51' 

It has been shown (Green and S,'lets, 1966) that if the set on 

1tlhich x is defined is divided into two subsets, one of which 

includes all those x which satisfy 

R. (x) > S (2.4) 

while the other contains all x which satisfy 

R.(x) < S (2.5) 

then the decision stra.tegy (choosing a state of the world 

based on the value of R. (x) ,'lith respect to S) ,~ill be optimal 

for the following performance measures: 

1. Maximizing the weight,ed combination 

2. Maximizing the expected value of the cost 

3. Maximizing the percentage of correct responses 

4. Minimizing the expected penalty for errors 

5. Satisfying the Neyman-Pearson objective, namely, 

c 

1 

.J 
, j ! 

I I 
1 

, I 
1 

J 

I 
I 
\ 1 

" 

'I 
, I 
",j 

:j 
, , 
" j 
, 
I 

,': , 
, i 
.( i 

i 

i 
'] I 

j 

(. 
c~ 

:i 



I 
~ ~, 

28 

The likelihood ratio criterion level (LRCL) ~ will take differ-

ent values depending on the specific performance measure. 

The discussion above suggests the likelihood ratio ~(x) 

as a decision function. From a psychological point of view, 

the question is whether such a model can characterize human 

behavior. It is, therefore, to be assumed that the sensory 

experience of the operator is somehow transformed onto a 

psychological continuum ",hich is equivalent to the likelihood 

ratio. It is still not clear how such a transformation is 

accomplished. However, it has been found that after a period 

of training, the performance of the subjects is similar to the 

perform~nce which is predicted by the likelihood ratio model. 

Evidence for such performance is found in experiments in a 

wide range of applications of detection tasks (Swets, 1973). 

The major appeal of the SDT model to psychologists i8 

its potential ability to separate the two processes 'Ivhich are 

involved in the detection task. One of the processes is the 

sensory process which is characterized by some distance measure 

bet'lveen the two states of the world So and Sl. It is usually 

referred to as the detectability of the signals and is written 

as d'. The value of d' is a function of the parameters of the 

ensemble density fun0tion of the stimulus. The other process 

is the decision strategy or the way in which the LRCL ~ is 

chosen. These two processes, represented by d' and ~, determine 

the performance of the subject. Therefore the performance may 

be written as: 
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P(AO/S O) = gl(d', ~) 

P(AO/S l ) = g2(d', ~) 
(2.6) 

It should be noted that both d' and ~ might themselves be 

functions of several variables; however, those variables that 

affect ~ do not affect d'. 

If two inverse functions can be found such that equation 

(2.6) can be ,0,7ritten in the following form 

d' = g3(P(AO/S O) , P(AO/S l » 

~ = g4(P(AO/AO), P(AO/Al» 

then the t\'l0 processes are completely sep<-,able. 

(2.7) 

A necessary 

condition for this separation is that the density functions 

f (x/SO) and f (x/Sl ) are completely knmm. In many psycho

physical applications this condition is difficult to satisfy. 

In most of the past studies in psychophysics, the 

concentration was on the sensory process alone and the separ-

ation property was used only to eliminate-the subjective bias 

of the subjects. In these cases there is a simple way to avoid 

the difficulties mentioned above. This is done by fixing the 

value of d' for the \~hole experimental :;;ession, while changing 

~ in the range [-~, +00]. The performance is then a function of 

~ alone for some fixed value of d'. Using equation (2.6) the 

results can be plotted in the P(AO/SO)-P(AO/S l ) plane, yielding 

the Receiver (Relative) Operating Characteristic (ROC) curve. 

I 
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By repeating the experiment ,,,i th different values of d', a 

family of curves representing the sensory process is generated. 

A typical ROC curve based on experimental data is shown in 

Figure 2.1. 

In the ROC approach, it is necessary to make the subject 

change his LRCL S. This LRCL is a function of three factors: 

1. The a priori possibilities of the state of the 

world peso) and P(Sl) 

2. The rewards given for the correct decision and the 

penalties for errors 

3. The detectability d'. 

since the detectability d' is fixed, only the first two can be 

used. If n diffenmt values of S are used, the experiment 

will be n times longer. In order to shorten the total experi-

ment time, it is possible to obtain different values for S 

by requesting the subject to give rated answers rather than 

only two. For example, the following rated answers might be 

used: Sure SO' Think SO' Indifferent, Think Sl' Sure Sl' 

For n rated answers the subject must choose n-l LRCL's and 

therefore produce n-l values for S. Let these rated decisions 

be Ri (i = l, ••• ,n). Then the performance is a function of 2n 

variables because for each decision R. the state of the ~lOrld 
~ 

might be So or Sl' Hm"ever only 2 (n-l) of these are independent. 

We ,,,ill use the follm"ing notation 

I '~.: .... 
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FIGURE 2.1 ROC DATA OBTAINED IN A VISUAL DETECTION TASK 

(FROM GREEN MID SHEETS 1966) 



32 

P (Ri/S O) = g2i-l (d' , 8i , 8i - l ) 
i - 1, •.. r n-l (2.8) 

P(Ri/Sl) = g 2i (d' , 8.,13. 1) J.. J..-

where 

8i+l > 8. - J.. 

13 0 = -00 13n = +00 

It might be noted that if the results of the experiment can be 

"l'lritten in the form of equation (2.7), namely as a function of 

d' and 131 , ••• , 13n-l, only n parameters are needed so that the 

number of parameters can be reduced by n-2. 

Another approach to define the If detectabili ty" ,.li thout 

knowledge of the underlying density function is to use a non-

pa.rametric measure (Hammerton and Altman, 1972). The measure 

is based on the outcomes of a confidence rating experiment 

with n possible answers. A random variable y is defined on 

the set of all possible responses by assigning the value i to 

the response Ri . The probability of y ~ i is therefore: 

(2.9) 

Also two conditional expectations can be defi.ned as follows: 

n 
Yo = E(y/SO) = E iP (Ri/S O) 

i=l (2.10) 

n 
Yl = E (Y/Sl) = E iP(Ri/Sl ) 

i=l 

T~e nonparametric measure of detectability is then defined by: 

I 
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C = (2.11) 

It should be noted that although this measure does give in for-

mation on the detectability of the signals, it is not equi-

valent to d'. It can be shown (Morgan, 1973) that C is a 

function not only of the parameters of the density functions 

of the signals but also a functiOl, of the LRCL's. This means 

that by using C the separation property of SDT is lost, and 

therefore the approach is not often used. 

Another important property of the ROC analysis is that the 

area under the ROC curve in the P(AO!SOl-P(Al!Sl) plane is equal 

to the expected percent of correct ansl,ers in a four alternative 

forced choice experiment (Green and 51-lets, 1966). 

The above methods enable the analysis of data from 

psychophysical experiments Ivithout the lenmdedge of the under

lying distribution. HOI'lever, if this information is available, 

much more pOlverful results can be obtained. 

. 
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2.3 Mathematical formulation of SDT \'d th knOlffi distributions 
• 

From the discussion in section 2.2 it is clear that if 

the underlying distributions are known, the values of d ' and 

the LRCL's might be found so that the performance can be ex

pressed in the form of equation (2.7) and the separation of 

the two processes is complete. Also an analytical expression 

can be found for the ROC curves in the form of 

where 

PA /S (G',a) = 
o 0 

{p A /S (d I, B)} 
o 1 

d I = constant -ex> < a < +ex> 

(2.12) 

(2.13) 

These theoretical curves can be dralffi and the subjects per-

formance can be compared to the predicted performance. 

In those experiments where both the signal and noise are 

included in the stimulus and the internal noise of the subject 

is considered negligible in comparison to the external noise, 

the statistical characteristics are virtually knOlffi (Lee, 1963). 

Then, the theoretical ROC curves can be plotted analytically 

before the experiment starts. HOI'leVer, for many other cases 

in I'lhich the internal noise is the main source of uncertainty, 

the experimenter has to assume the functional form of the 

density function, and then, on the basis of the outcome of the 

experiment, find its parameters. The general problem is, there-

fore, a parameter optimization problem and many algorithms 

have been suggested for the solution. For the particular 

I 

,& 



_~ ____ J__ 'j 

, 
j 
1 , 

J 

1 

i 
I 

:1 

Ii 
!I 

35 

problem of fitting distributions to confidence rating experiments, 

algorithms were suggested. by Ogilvie and Creelman (196B), 

Dorfman and Alf (196B), Abramson and Levitt (1969), and Grey 

and ~1brgan (1972). A further discussion of this problem and a 

suggestion for another algorithm are given in section 4.4. and 

Appendix A. 

2.3.1 The Gaussian assumption 

By far the most commonly used assumption is that the 

underlying probability density is Gaussian. In those cases 

where the simulated noise is the dominant factor, this dis-

tribution is chosen becr_'.:ise of the ease with \'lhich it can be 

created. Moreover it has some appealing characteristics: 

J.. 

2. 

3. 

The distribution is completely defined by two 

parameters, the mean mx and the standa.rd 

deviation ax. 

Gaussian random variables remain Gaussian under 

linear operations. 

Two jo' ntly -Gaussian random variables which are 

uncorrelated are also independent. 

In the cases where the internal noise is the dominan"t 

noise source, the Gaussian assumption is supported by the 

central limit theorem. This theorem states that the distri-

bution of the sum of a large number of indE"psildent random 

variables with equal distributions and with finite first and 
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second moments is approximately Gaussian regardless of their 

individual distributions •• Since the sensory events are often 

considered to be composed of many similar but simple events, 

this theorem might apply. However, when the assumption about 

the distribution is based on this argument, the results should 

go through a careful significance test. 

Using the Gaussian assumption, the conditional densities 

are given by: 

1 (x' 2 
- mOl 

f(x'/So) = exp{- } 

maO 
2 2aO 

2 
(2.14) 

1 (x' - ml ) 
f (x' /Sl) = exp{- 2 

} 

mal 2a l 

and the likelihood ratio is given by 

(x' 2 (x' 2 
a l - ml ) - mOl 

~ (x ') = exp{ 
2C1 2 

} (2.15) 
a O 2°1 

2 
a 

The likelihood ratio is, therefore, a function of four para-

Since the decision is made by com-

paring the likelihood ratio to the LRCL, the performance would 

be invariant under a linear transformation. Therefore, let 

x = 
°1 

so that equation (2.15) becomes 

l!. (x) 
1 x 2 

=oexPT-
(x - m)2 

2a
2 

(2.16 ) 

(2.17) 

l 
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where 
(2.18) 

(2.19) 

so that the likelihood ratio is now a function of only t,'lO 

parameters. The decision is, as before, made as follows: 

if R.(x) :> (3 choose 
-

if (x) < (3 choose 

Let K be that value of x which satisfies 

R. (x) = (3 

Then the performance of the decision maker 

P (AD/SO) = PIOb (R. (x) .:: (3/S0) 

1 = 
rna 

1 
= 

/2i?cr 

Defining 

'" 
J exp{-1;2/2}dl; 

K-m 
a 

'" J exp {-1;2/2}d1; 
K-m 

cr 

1 

/2'lT'cr 

So 

Sl 

is given by: 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

"There q; is the Gaussian distribution function, equations (2.22) 

and (2. 23) are ';lri tten 
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(2.25) 

In order to express the performance in the form of 

equation (2.7), K in equation (2.25) is replaced by a function 

of 8, m, and cr •. From equations (2.17) and (2.20): 

1nl'l 
(K-m) 2 

2 cr2 
1ncr (2.26) 

The value of K is found to be the solution of the following 

quadratic equation: 

and this equation has a real solution only if 

m2 + 2 (cr 2 - 1) (lncr + 1nl'l) >0 

When such a solution does exist then: 
= 

(2.27) 

Thus the detectabi1ity d' is a function of two variables m and 

a; however, the analytic expression for this relationship can 

not be found. 

From equation (2.25) it is possible to get the equation 
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for the ROC curve in the P(AO/SO)-P(AO/S l ) plane. If d' is 

constant, P (AO/SO) and P (1\O/Sl) are functions of I( only. By 

eliminating K from equation (2.25), the ROC equation is 

(2.28) 

where <I>-l(a) is the inverse of <I>(a) and can be found in math-

ematical tables; For each curve in the family, m and (J are 

constant, i.e. d' is constant. Such a family of curves for 

different values of m and (J is shown in figure 2.2. Because 

these curves are usually used to validate experimental results, 

it would be helpful if the curvature could be eliminated. 

This can be done, by using a unit deviate scale rather than a 

linear one. Let: 

(2.29) 

Then the ROC is given by a straight line 

(2.30 ) 

Therefore, if the Gaussian assumption holds, the experimental 
, 

data points for fixed (J and m should be on a straight line. 

However, even these curves do not alleviate the problem of 

unique measU)_-ement of detectability since it is a function of 

both the slope and the zero crossing point. 

:p 
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2.3.2 Special Cases: 

The fact that the detectability in the general Gaussian 

case is a function of two variables and that it is difficult 

to express the performance through d' and B, leads to further 

assumptions in ~lhich these problems do not arise. 

One assumption is that the distributions under both 

states of the world have the same variance, or: 

---"J> a = 1 (2.31) 

In those cases where the simulated noise is dominant, it is 

easy to satisfy the assumption. In the cases where the internal 

noise is dominant, the justification of the assumption is that, 

as the signals are deterministic, the internal noise source is 

the same for both signals, hence the variance of the stimuli 

is the same, Under this assumption, equation (2.26) which 

relates lnB to K is: 

2 - (K - m) /2 

Therefore, lnB is linearly related to K: 

lnB = Km - m2/2 (2.32 ) 

The performance of the decision maker is given I .... ·. , .J" 

P(AO/S O) = 1 - <iJUhB/m - m2/2) 

P(AO/S l ) = 1 - <J>(lnB/m + m2/2) 
(2.33) 

Therefore, the detectability of the si:J:rnals in equation (2.331 

is a function of only one quantity, so we may define 

l 
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d' = m = 

It is clear also that in this case the performance can be 

represented by u' and B. 

The ROC curve is given by the follo~ling equation 

or if we use the unit deviate scale 

z = Z + d' 2 1 

(2.34) 

(2.35) 

This is a family of parallel straight lines with unit slope, 

and with intercept d'. The detectability'is, therefore, the 

distance of the line from the origin multiplied by' /l'; 

Figure 2.3 shows ROC curves for equal variance Gaussian 

distributions in the P(AO/SO)-P(AO/S l ) plane. Figure 2.4 

shO\~s the same ROC curves in the Z2-Z1 plane. 

Another possible assumption is that the means of both 

signals are the same and the variances differ, namely, 

m = 0 (2.36) 

In most of these cases both means are zero. The decision is 

therefore made on the basis of the difference between the 

variances of the signals. Equation (2.26) is reduced to 

lnB = 
K2 K2 

lna -2- - 2cr2 -

Therefore, from (2.27), K is given by: 

;J 

.~ 
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K - + J2(lnf3 + Ina) I - _a 2 • 
a-I 

(2.37) 

In contrast to the former case, the linear relationship between 

Inf3 and d' does not hold, and the relation does not yield a 

unique answer. By '3ubsti tuting K from (2.37) into equation 

(2.25) (with m = 0), the performance of the decision maker 

is given by: 

P (AD/SO) = 1 - <p(:!:. 2(lnf3a)' ) , 2 a -1 (2.38) 

P (AD/51 ) = 1 - Ij> (:!: a 2 (lnf3a) ') 
2 

\ a -1 

Again the detectability of the signals affects the expected 

perfol."IlIance of the subj ects through one quantity. Therefore 1 

the detectability can be defined as: 

The ROC curves for t~i;, special case are ·defined by the 

equation 

(2.39) 

(2.40) 

(2.41) 

This is a family of straight lines with different positive 

.. J 
·.·.·.··.1· 
'., 
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slopes, all passing through the origin. The detectability is 

given by the slope of the line. Note, however, that the 

detectabili ty is a minimum when a = 1, and it grows as a function 

of 1 a - 11. 

2.3.3 'The' Logistic distribution assumption 

Although in most applications in psychophysics the 

G~ussian assumption is used, several other density functions 

~~ve been tried (Ogilvie et al, 1966). In particular, the 

class of density functions f(x) that satisfy the condition 

(~~omas and Myers, 1972) 

a2 ln[f (xl J > 0 

dX 2 
for all x (2.42) 

~~ found applicable in ROC analysis. This class includes 

~e Gaussian, Logistic, Gamma, and Exponential distributions. 

The Logistic distribution is sometimes preferred to the 

';:;:;'l;t5sian distribution because the cumula':,;,ve distribution 

~lUction can be expressed in a closed form. This property is 

~-so useful in simplifying any parameter optimization algorithm 

~at is used to fit the distribution. Furthermore, it has been 

:'::1lnd that the form of the ROC curves in the P (AO!SO) -P (AO!Sl) 

~ane is very similar to the form under the Gaussian assumption 

:iuce, 1963}. 

The two conditional densities under this assumption are: 

., 

'J 

11 
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exp{-
Cf O 

f ex • /5 0 ) = --------"---
x-mo ·2 
--}] 

Cf O 
[1 + exp{-

x'-m 
-::--,-1 } 

"1 
f(x'/Sl) = -----:;:.---

exp{-

[1 + exp{-

I 

(2.43) 

where mO ~nd ml are the means, and Cf O and Cf are the variances 
1 

of the distribution. The likelihood ratio is given by: 

.Q.{x') = 

x'-m 
---,_.:..O} [1 + exp { -

Cf O 

[1 + exp{-

(2.44) 

The likelihood ratio is again a function of four variables; 

hO\'lever, the same likelihood transformation as in equation 

(2.16) can be used so that: 

where 

J!.(x) = 
exp{x - ~}[l + exp{-x}]2 cr 

[1 + exp{x-m }]2 
Cf 

cr = 

(2.45) 

..... J 

.. 
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The performance of the subject is given by: 

• 

{ K-m}1-1 
PCAO/SO) = [1 + exp - a 

Where K satisfies 

9, (K) = 13 

The equation for the ROC curves is 

Defining new coordinates 

(2.46) 

(2.47) 

(2.48) 

The ROC is again a straight line characterized by t\vO parameters 

cr, m: 
(2.49) 

In order to express the performance as a function of d' and 

13-, the value of K has to be founq by solving the equation: 

In13 = (1 - l/a)K + m/a + 2 (In [j ~ pxn{-K}]) 

- 2(ln[1 + exp{-(K-m)/a}]) (2.50 ) 

A closed form solution for this equation is not feasible, GO a 

further assumption has to be made. One such assumption is 

1 
'I' 
.... , 
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cr 
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In this case 

K = 1n{M' - 1 } 

1 - Is/em I 

49 

cr = 1 

and the performance is given by: 

1 - Is/em; -1 
P{AO/SOl = [1 + 

Isem - 1 

/B"Ieffi' -1 
P {AO/S 1l = [1 + 1 - S/e m] 

£iii' e 
,Se - 1 

(2.51 1 

{2.52l 

The performance is a function of only one parameter with respect 

to detectability; so we can define 

d' = m = (2.53 ) 

which is equivalent to the definition of detectabi1ity in the 

Gaussian case. The ROC curves \dll be straight lines with a 

slope of unity in the Z2-Z1 plane. 

It can be shm'/n that if the assumption of equal means is 

made, the detectabi1ity is defined by: 

(2.54) 

and again the ROC curves and performance are similar to the 

Gaussian case. 

/ .. j 
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CHAPTER III 

ANALYSIS OF SIGNll.L DETECTI,ON ''lITH VARYING SIGNAL STRENGTH 

3.1 General Discussion 

As has already been sho~m in the last chapter the 

performance of any decision mechanism in a binary detection 

task can be characterized by the quantities P(AO/S O) and 

P(AO/S l ). Each of these quantities is itself a function of 

two other parameters, the detectability d' and the likilihood 

ratio criterion level (LRCL) 8, which are controlled by either 

the experimenter or the subject. Therefore, the .most general 

question to be posed is how does the performance change ""hen 

both d' and 8 are changed ,~ithin their full range? Since both 

P (AO/SO) and P (AO/S l ) are functions of the same para.neters, 

any change in either 8 or d' \~ill change both of them. There-

fore, in general, the following relationship is sought: 

(3.1) 

,~here 

-00 < B < +'" O<d'<'" (3.2) 

The fact that d' is a measure of the performance of the sensory 

process alone, \~hile 8 is a measure of the decision strategy, 

enables us to reduce the general case to some special interest-

ing cases. 

I 
J 

:';~ 1 -, , 
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In Chapter 2 we deal t ~'li th the analysis of the sensory 

process. This is a special case of equation (3.1) in ~'lhich 

d' is kept constant. In this chapter we investigate the 

manner in ~'lhich the LRCL B, or decisiOl: strateqy, is changec'!. 

A simple approach to this problem might be a dual approach 

to the ROC method, namely, to look at another special case of 

equation (3.1) in which B is kept constant. However, this 

approach cannot be justified as easily as in the sensory 

analysis case. There, the fixed detectability assumption 

could be based on the follm'ling arguments: If both signal 

and noise are simulated and the internal noise is n"'gligible, 

then it is possible to a priol'{ fix the detecta::ili tv ,a,1d by 

so doing to satisfy the assumption. If the internal noise 

is dominant, it can still be argued that the sensory process 

is prior to the decision mechanism so that the value of d' 

does not depend on B. Therefore, if the stimuli are kept 

constant, the internal noise .Iill be stationary and d' is 

constant. 

Those arguments cannot be used in the analysis of the 

decision strategy. The main reason is that the LRCL B, being 

ba~ed on the output of the sensory system, may depend on the 

value of d'. If we force the subject to fix his LRCL, we are 

actually dictating his strategy. Therefore, if the'decision 

strategy is to be determined on the basis of the performance 

of the subject, the correct question to ask is how does the 
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decision strategy change with the change of d'. 

It should be noted that d' is the distance measure of the 

two states of the world and is referred to by several names. 

Co~~unications engineers use the names detectability or signal

to-noise ratio (SNR), while psychophysicists use the name signal 

strength. We will use these names interchangeably, according 

to the particular use of d'. Since we are interested in the 

analysis of the decision strategy, we have to deal with det

ection problems in which d' is changing in order to find hot'/' 

the LRCL is changed with d'. 

,-
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3.2 DecisiG~ Rules 

Since in many practical cases in psychophysics the 

underlying density functions are not knO\~n, it is desirable 

to ,~ork "'7ith the experimental raw data, namely, the various 

values of P(AO!SO) and P(AO!Sl)' This leads to the analysis 

of the decision strategy in the P(AO!SO)-P(AO!Sl) plane, the 

same plane which is used in the ROC analysis. In this plane 

we are looking for curves given by equations (3.1) and (3.2), 

under the assumption that the changes in S are the result of 

the decision strategy. Therefore, the bias factors that control 

S, namely, the a priori probabilities P(l'o) and P(Sl}' as well 

as the rewards for correct decisions and penalties for errors 

must be kept constant. The resultant curves in the P(AO!SO)

P (AO/S 1) plane ,,,ill be referred to as the Decision Rule (DR) 

curves. The shape of these curves is determined by the deci-

sion strategy of the subject. 

The first strategy is the one already mentioned, namely, 

a fixed LkCL decision rule. This means that the subject ig

nores changes in the detectability so'that S is kept constant, 

and this constant value is predetermined on the basis of thG 

bias factors. Therefore, in this strategy, the performance 

will be a function of d' alone. As in the ROC analysis, an 

analytic expression for the DR curve in this strategy is not 

available unless the underlying distributions are known. It 

l 
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should be noted that this strategy is optimal with respect to 

all the criteria that wer~ discussed in section 2.2 except for 

the N.P. objective. 

A second strategy is to try to satisfy the Neyman Pearson 

(N.P.) objective. In this strategy, the subject fixes his 

probability of false alarm P(AO!Sl) while maximizing his prob

ability of hit. This strategy can be defined by 

PA /S (e,d')~max 
o a 

(3. 3) 

Two properties of this strategy are: 

1. For a fixed false alarm rate, increasing d' \vill 

2. 

make the task easier so the probability of hit 

should increase. 

By decreasing the false alarm rate, the subject 

also decreases his probability of hit for the 

same value of d'. 

since this strategy is 90verned directly by P(AO/S O) and 

P{AO/S l ) rather than through d' and S, the DR curve is independent 

of the distribution function. The shape of the DR curve is a 

vertical straicrht line. A fam:ilv of such DR lines, .,here the 

magnitude of P{AO/S l ) is the parameter, is shown in figure 3.1. 

Vertical lines are not the only possible shape of the DR 

curves under the Neyman Pearson strategy. In a dual strategy 

to the one defined by equation (3.3) the sQ~ject might decide 

l 
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to fix his probability of miss P (AI/SO) and maximize the 

pr.obability of correct rejections. This is formulized as 

(3.4) 

The use of equation (3.4) rather than (3.3) might happen when 

the magnitudes of P(AI/S O) and F(AI/S l ) are more important to 

the decision maker than the magnitudes of P(AO/S O) and P(AO/S l ). 

If the P(AO/SO)-P(AO/S l ) plane is used to draw the DR curves, 

their shape in this strategy ,,,ould be that of horizontal straight 

lines. A family of such DR lines, where the magnitude of 

P(AI/S O) is the parameter, is shown in figure 3.2. 

In some cases the subject might use a strategy tllat in-

volves both equation (3.3) and (3.4). This might happen in 

t.hose cases vlhere there i's more than one LRCL to be determined, 

as in a confidonce ratin0 experimGnt. If the two states of the 

world are two signals rather than a signal and noise alone, the 

subject might use equation (3.3) for the-LRCL for the sure 

state AO' while using equation (3.4) for the LRCL determining the 

sure state AI' The resultant DR lines under this strategy in 

a case of four LRCL's are shown in fi9ure 3.3. 

If the a priori probabilities of P(SOl and P(Sll are not 

known to the subjPct, he might use still another strategy. HOV1-

ever all the costs must be known to him: 
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Cll = cost for deciding Al when Sl is true 

• 
coo = cost for deciding AO when So is true 

COl = cost for deciding AO when Sl is true 

CIO = cost for deciding Al when So is true 

I 

Then the expected value of the total cost of making the decision 

is a function of, P (SO) and there "'ill be some value of P (SO) 

for which the total cost is maximized. The strategy then is to 

minimize this maximum total cost, referred to as a minimax 

strategy. The DR curves for the minimax strategy are given by 

(Van Trees, 19G8): 

C - C 
_1=:1=--_.;;..0=.1 P (A IS ) + 

COl COO 0 1 
(3.5) 

Equation (3.5) represents straight lines with negative slopes. 

A family of such curves is shown in figure 3.4. Again these 

DR lines are independent of the underlying distributions. 

Once the experimental P(AO/SO) and P(AO/Sl) are found, 

the DR curves can be drawn. If these curves are vertical or 

horizontal straight lines, then it can be said that the 

Neyman Pearson rule was used. If the straight lines have a 

negative slope, than the strategy is equivalent to the minimax 

rule. If, however, the DR curves are not straight lines. little 

can be said unless an assumption about the distributions is made. 

In those cases where the distributions are kno"1!1, the 
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decision rules can be expressed in somewhat different form. 

The performance of the subject can be described by ~ and d' 

directly, rather than through P(AO/SO) and P(AO/S l ). Since 

d' is independent of the decision strategy and is the only 

variable, the decision rule is defined by the relation 

~ = f (d ' ) (3.6) 

In equation (3.6) the decision rule can be viewed as a relation 

between a stimulus (d') and a response (~). possible decision 

rules are: 

1. S; is independent of d'. 

2. S is a monotonic function of d'. 

3. B is a nonmonotonic function of d'. 

Clearly, any decision rule that is given by equation 

(3.6) can also be expressed as a DR in the P(AO/SO)-P(AO/S l ) 

plane. For example, case 1 above is equivalent to the fixed 

LIlCL DR. The analysis can, therefore, be done either \'laV 

depending on the case in hand. EO\~ever, whenever possible 

both methods should be used for a complete analysis. 

i,: , 

{j 
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3.3 Decision Rules for the Gaussian Case 

• 
As explained in section 2.3, the assumption that is 

usually made and the one that agrees with experimental results 

is that the underlying distributions are Gaussian. Equation 

(2. 27l, '''hich relates the performance of the decision maker to 

Band d', provides a basis for starting the DR analysis. How-

ever, for the general Gauqqi.?n case the detectrt ... ility cannot 

be expressed by one pa . .;.meter, d', but with two parameters, m 

and a; the easiest way to express the relationships describing 

the DR curve equations is the parametric form given by equation 

(2.27) with B, In, and a as parameters. 

The DR curve equation for constant LRCL strategy is 

derived by eliminating both m and a from equation (2.27). 

Ho,,,ever, since there are t,,,o equations, only one parameter can 

be eliminated so that a closed forM expression for the DR 

curve is not feasible, and the parametric form (2.27) is used. 

In order to satisfy the Neyman Pearson criteria in the 

general Gaussian case, one of the following relations should 

hold 

(3.7) 

substituting from equation (2.27) into (3.7) 

- m ± aim" 2(a 2 
- l)lnBa (3.8) 
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- mG ± 1m 2 
- 2(a~ - l)lnaa' = 
a 2 

- 1 

where C
l

, C2 , C
3

, and C
4 

are constants. 

1 

(3.9) 

Therefore the Neyman Perarson strategy in the form of 

equation (3.6) is 

m2 [C
3 

(a 2 - 1) + m]2 
lna = - ln a (3.10) 

2{a 2 - 1) 2a 2 {a 2 - 1) 

or 

m2 [C 4 (a 2 - 1) + mal 
lna = - lna (3.11 ) 

2{a 2 - 1) 2{a 2 - 1) 

The relations obtained for the general Gaussian case 

are rather complicated and further simplifications will be 

made. The first assmnption is that of equal variances, that is, 

a = 1. Now the detectability is defined by one quantity d' = m, 

and the performance can be specified directly by a and d'. For 

the strategy of fixed LRCL or a = constant, the DR equation is 

obtained by eliminating m from equation (2.33). Rewriting 

(2.33): 

m/2 ~-l[l-P(AO/SO)] = lnS/m 

$-l[l-P(AO/S l )] = lnS/m + m/2 

Squaring both sides of the above equations and then substituting 

the second into the first, 'lIe get: 

:,',:,',1 

"'·1 
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(3.12) 

• 

Equation (3.12) is the analytic expression for the DR curve in 

the P(Ao/So)-P(AO/Sl) plane for a fixed threshold strategy. A 

family of such curves with S as a parameter is shown in figure 

3.5. For the special case where S = I, equation (3.12) reduces 

to: 

(3.13) 

which are straight lines on the two diagonals of the P(AO/SO)

P(Ao/S1) plane as shown in figure 3.6. It should be mentioned 

that for S = I, these DR lines are also the DR lines for the 

general Gaussian case. 

Using unit deviates, the equation of the DR curve is 

Z2 _ Z2 = -2(lnS) 
1 2 (3.14) 

This is a famIly of hyperbolas that can be seen in figure 3.7. 

The asymptotes of the hyperbolas are obtained for S = 1. As 

in the ROC analysis, it is helpful to transform the DR curves 

into. straight lines. Then the following transformation is 

made: 

2:2 = Z2 
2 

so that the DR curves are: 

~2 - ~l = -2(lnS) 

~l = Z2 
1 

(3.15) 
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A f~~ily of such curves on a unit deviate squared scale is 

shown in figure 3.8. 

To satisfy the Neyman Pearson objective,equation (3.7) 

should hold. In the aqual variance Gaussian case, this means: 

or 

1 - ~(lnS/d' - d'/2) = Cl 

1 - ~(lnS/d' + d' /2) = C 2 

(3.l6) 

Therefore this decision strategy in the form of equation (3.7) 

is: 

(3.l7) 

(3 .18) 

where Cl ' C
2

' C
3 

and C
4 

are constants. The Neyman Pearson 

criterion implies a quadratic relation between the log LRCL 

and the detectability. It is important to note that in this 

strategy S might not be monotonic ~lith d'. 

Since ,'Ie have already seen a decision rule in which S 

is constant, and the Neyman Pearson decision rule implies a 

quadratic relation between lnS and d', it seams reasonable to 

suggest another decision rule in which lnS is linear l'lith d'. 

Such a decision rule might be: 

lnS - C + C d' - 5 6 (3.l9) 

where Cs and C6 are constants. Substituting equation (3.19) 
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into equation (3.12), we get the performance of the decision 

maker as a function of dr. When d' is changed in the range 

[o,~] points on the DR curve are obtained. A family of such 

curves in the P(AO/SO)-P(AO/S l ) plane, with Cs and C6 ~s para

meters, is sho,oTn in figure 3.9. 

Another interesting special case of the Gaussian assump-

tion is the case of two Gaussian distributions with equal means 

and different v<'xiances, where m = O. In this case" the det-

ectability is defined as a, and the performance is a function 

of only f3 and a. In order to get an equation for the constant 

threshold decision strategy a must be eliminated from equation 

(2.38). Rewriting equation (2.38) 

(3.20) 

subtracting the two: 

but from equation (2.40) 

Therefore the equation for the DR is given by 

(3.2l) 

, 
\ 

.,' .... -- ",,-
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When the Neyman Pearson decision strat.egy itl used, the 

following equation holds (from ego (2.37» 

1 _ rp (/2 (lne + Incr) I) = C
l cr 2 _ 1 

or 

Therefore 

)2 (InS + 
I 

Incr) = C3 cr 2 _ 1 

or 

/2 (InS + Incr) I 
= C4/o cr 2 _ 

1 

This decision strategy in the form of equation 

or 

since 

cr 2 » Incr for cr > 1 

(3.7) is 

The decision rul.' given by (3.24) and (3.25) is, therefore, 

(3.22) 

(3.23) 

---

(3.24) 

(3.25) 

approximately quadratic, as was true in the equal variance case. 

Again a third decision rule might be suggested in which InS 

is linear with cr. 

It should be noted that similar expressions for the 

'~- , 

-{ 
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possible decision rules can be derived for other distributions 

satisfying equation (2.41). The derivations are similar to the 

ones for the Gaussian dis,tribution and therefore will not be 

repeated. 
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CHAPTER IV 

DETECTION- OF SIGNALS WITH UNCORRELATED SIGNAL STRENGTH 

4.1 General Discussion 

Chapter 3 dealt with a theoretical approach to the 

analysis of decision strategies in signal detection tasks. An 

important conclusion of that discussion was that any study of 

decisio:1 strategy should include experiments in ~lhich the 

signal strength (the detectability) is time varying. Among the 

fe,,, experiments of this type that have been reported are Kinchala 

and Smyzer (1967), Donaldson and Murdock (1968), Glorioso et al 

(1968), Thurmond et al (1970) and Healy and Jones (1973). To 

support the theoretica:. analysis of earlier chapters, we col-

lected our O\Yn data from experiments designed to explore the 

decision strategy of the subjects. A description of this exp-

eriment and the results are given in this chapter. 

Since our major concern was the general concept of deci-

sion strategy, the question of which sensory system to use was 

of minor importance. We chose to test the decision strategy 

in a visual discrimination task because a computer with a 

graphics terminal was available so that the simulation of 

visual stimuli ,"as relatively easy. 

A major preliminary question in any experiment with 

varying signal strength concerns the time structure of these 

l 
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! 
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changes. In classical signal detection, it is assumed that 

although repetitive decisions are made in each experimental 

session, these decisions are statistically independent. This 

implies that in cases with time varying signal strength, the 

change in signal strength should be designed in such a way as 

to prevent correlation between successive decisions. One 

possible way to avoid correlation is to change the sigr.al 

strength in a random manner. It might be argued that in real 

life situations random changes rarely occur, so that such an 

approach is impractical. However, since we intend to relate 

our results to classical SDT, we chose to start the analysis 

with experiments in which the decisions would be uncorrelated. 

Once the decision strategy in this basic case is evaluated, it 

will be easier to analyze the more complicated experiments 

which involve correlations. 

In order to simplify the experiment as much as possible 

without -affecting the generality of the results, the follo~ling 

three constraints \~ere adopted: 

1. The input signals are deterministic so that the 

uncertainty is due only to the internal uncertainty 

of the subject. 

2. The change in signal strength is instantaneous; 

namely, there are no dynamic~ and, therefore, no 

transient effects. Thus \~i t.hin each presentation 

the signal strength is fixed, and the transient 
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process of changing levels between presentations 

is not shown to the subject. 

3. No feedback is given to the subject after his 

decision is made. Also, his decisions do not 

affect in any way the format of the data present-

ations. 

The principal aim of the experiment is to determine the 

decision strategy of the subject in the form of DR curves as 

wbll as the functional relationship between the change in 

Likelihood Ratio Criterion Level (LRCL) and the detectability. 

Since the input signals are deterministic and the associated 

noise is attributed to internal noise, two more questions should 

be answered: 

1. Can the assumption of Gaussi~:n distributions \~ith 
. 

equal variances be used fLr this particular visual 

task? The answer to this qU8stion is important 

because only if the answer is positive can the 

major results of Chapter 3 be employed. 

2. How does the ensemble discrimination of the subject 

relate to the signal strength in the presentation? 

This relation is important because it might be 

used to describe the error sources in the subject's 

behavior. 

, . 
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4.2 Experimental Method 

4.2.1 Motivation 

In the previous section, we discussed the general impor-

tance of signal detection experiments with time varying signal 

strength. However, the specific motivation for the experiment 

that is discussed in this chapter was the study of the decision 

task of a pilot who uses a traffic situation display to avoid 
i; 

collisions. Such a display shows the pilot the relative posi-

tion of the intruder and updates this position every four seconds. 

The pilct I s task is to decide \~hether the intruder will pass to 

his left or right. Since the decision becomes easier when the 

intruder is closer, the pilot faces a signal detection task with 

time varying uncertainty. A simplified version of this problem 

is discussed in this chapter, and the correlation effects are 

studied in Chapter 5. 

4.2.2 Apparatus 

The ADAGE Model 30 graphics computer with a 17 inch CRT 

was used to simulate and display the input data. The function 

switch box which contains 12 push buttons was used to sort the 

decisions of the subject which were stored for data analysis. 

A horizontal line in the center of the screen along with 

a small vertical cursor would appear on the CRT during all the 
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experimental sessions. In addition, a pair of quarter inch 

circles appeared at the beginning of each decision interval 

and disappeared at the end of the interval. The presentation 

on the display during an arbitrary decision interval is shown 

in figure 4. 1. 

~he location of the circles relative to the cursor is 

changed from one decision interval to the next and can take 

ten different values. Let (Xl' Yl) define the center of the 

upper circle, (x2 ' Y2) define the center of the lO~ler circle, 

and the height of the CRT be 2L. Then the ten locations of the 

pairs are given by 

= ±!4(i-l)L 
1500 

Yl 

Y2 

= 

= 

l2-2iL 
10 

1l-2~L 
10 

i = 1, •• ,5 (4.1) 

i = 1, .. ,5 (4.2) 

Note that five of the pairs are on a straight line \vith a slope 

of 7/150, while the remaining five pairs are on a straight line 

\vith a slope of -7/150, as can be seen in figure 4.2. 

These pairs represent the visual stimuli. The subject's 

task was to indicate ,vhether the pair that \Vas presented was to 

the left or the right of the vertical cursor. Since,the loca-

tion of each pair \Vas fixed \Vi thin each decision interval and 

\Vas al\Vays either to the right or to the left of the cursor, 

the stimuli can be considered as deterministic (no noise). Any 

, 
\ 

-;;! 
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the experiment would take around four hours for five SNR levels. 

This \'las found to be the limit for our subjects' patience. 

Furthermore, five points seemed to be sufficient to draw DR 

curves. 

4.2.3 Subjects 

Six subjects participated as observers in the experiments. 

All six subjects were graduate students in the ~an Vehicle 

Laboroatory of M.l.T. Each one of them had a basic knowledge 

of probability theory and hypothesis testing, and they all 

were familiar with the terminology used in psychophysical 

experiments. 

The subjects' participation was on a voluntary basis. 

However, in order to motivate them to perform their best, they 

were told that they ,.;ere competing against each other. The 

competition was based on the total score of each subject, and 

after all the subjects finished their task, the table of the 

individual ~'cores was posted. An informal preliminary test 

showed that the competition factor impl·oved subject IS per-

formance considerably. 

4.2.4 Procedure 

The subject sat in front of the CRT while holding the 

function switch box in his hand. He could adjust his distance 

from the display so that he could get the best vie", of the 

.i, i 
... ! ..•. , 
{~ .. 
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stimuli. The pair of circles would appear on the display and 

remain for 4 seconds; the pair would then disappear for 2 seconds 

and reappear at a different location for 4 more seconds and so 

on. 

The two second blanking interval was used in an attempt 

to clear the subject's memory and thereby prevent him from 

making judgements on the basis of the previous stimuli. 

The position of the pair at each four second decision 

interval was determined by a random number generator. This 

random number generator picked one of the ten possible loca-

tions (see Figure 4~2)'during the blanking interval in such 

a way that the probability of each location appearing \'ias equal. 

Since the subj ect vias told a priopi about the random order, he 

kne~1 that the present position vias statistically independent 

from any previous presentation. Therefore, it was expected 

that the successive decisions of the suoject would also be 

statistically independent as was demanded by the experimental 

design. 

During each decision interval which included 4 seconds 

of stimulus presentation and 2 seconds blanking period (6 seconds 

total), the subject I'las to indicate \'ihether the pair of circles 

was to the right or the left of the cursor. The response was 

given by pushing one of the three buttons on the function switch 

box vlhich corresponded to j:: 

), 
.\1: 



. __ L .. __ 

83 

THINK LEFT 

DON 'T KNOW (4.3) 

THINK RIGHT 

The subject was told that his decision could be given at any 

time during the 6 second interval and the scoring method 

accounted only for his correctness but not for the time of 

response. Only a single decision could be given, and the 

subject was not allowed to change his decision within the 6 

seconds. 

In classical signal detection, rated decision procedures 

with n possible decisions provide (n-l) points for drawing 

the ROC CU1:ve. In Viel'l of this aim, the use of only three 

possible decisions may seem insufficient. However, it should 

be remembered that in dealing with the decision strategy, the 

objective is to obtain the DR curves rather than the ROC curves, 

and the number of points on a single DR curve is related to the 

number of SNR levels and not to the number of response categocies. 

It should be noted that 3n increase in the number of response 

categories also increases the overall number of decision inter-

vals to be used in one session, (to get sufficient data) and the 

length of the experiment is increased. We decided to choose the 

minimal number of response categories required for a, confidence 

rating experiment, and therefore, chose three categories. 

The odd number of categories is also helpfUl to avoid a central 

DR curve ,.hich leads to the choice of t3 close to uni ty, a case 

in which the decision of ',hich strategy was used is more compli-

cated. (For example, for t3 = 1 the DR for fixed thresholds and 

l. 
~ j 

" .1 
, 1 
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for linear strategy might be the same,as can be seen by comparing 

figure 3.6 to figure 3.9 

A standard set of instructions was read to the subjects 

describing the experimental set-up. They were told that the 

probability of a left or a right presentation was 0.5. They 

were also introduced to the scoring method which vlaS as follo'l1S: 

+3 points for a correct deci 

-3 points for an incorrect decision 

0 points for "Don't know" decision 

The ten possible lucations of the pairs on the CRT v.'ere shown 

to them, and the fact that all pairs lie on one of the two 

straight lines (figure 4.2) \.;as explained. 

There was no feedback after each trial, and the subjects 

were not advised as to what level of confidence they should 

choese in making a positive decision. 

Each of the subjects had a ten minute practice session 

during which he could interrupt in the event that he had any 

questions or problems. After practice, the first half hour 

session of 300 decisions was started. Later the subject part i-

cipated in three more half hour sessions, each on a different 

day. Each subject had made a total of 1200 decisions or 200 

decisions per SNR level. The data analysis was based on the 

1200 pooled decisions, rather than on the results from each 

session. One of the subjects (L.L.) participated in only two 

sessions. 
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4.3 A Model for the Change in Subject uncertainty 

In Chapter 3 we dealt with the analysis of decision 

strategies in a general SDT experimunt. In the previous section 

we described in detail the experimental design. In this section 

we suggest a model that describes the particular decision pro

cess that might apply to our experiment. 

Since it \vas assumed that the decision made by the subject 

in each decision interval is independent of decisions in other 

intervals and since at each interval the task is the same, it 

is reasonable to further assume that the method of decision used 

by the subject in each interval is also the same. Therefore, 

we shall limit our discussion to the subject's performance 

wi thin one arbitrary decis ion in te.,val. The information 

given to t'· ~ubject within this interval is time invariant 

and is shm-". ~n figure 4.1. 

Figure 4.3 shows the displayed information but includes 

additional notation that is needed for the analysis. The 

horizontal line on the screen is the line SS'. The vertical 

cursor crosses this line at point C. The lines OA and OE are 

the lines on which the pairs may be located as \Vas sho\Vn in 

figure 4.2. The lengths of the t\Vo intervals CE and CA are the 

same and are given by 

(4.4) 

, , 
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In a coordinate system with origin at C, the y axis in the CO 

direction, and the x axis in the CE direction, the location of 

the centers of the pair of circles are at points (xl' Yl) and 

(x 2.' Y2). The length of the line CO is L, and the angle between 

OC and OE is Cia. 

The task of the decision maker is to decide \~heth~r the 

b10 circles are to the left or to the right of the cursor. A 

possible method to do the discrimination (particularly in view 

of the subjects' knOlvledge that the pairs lie on a straight 

line) is to extrapolate the straight line that passes through 

(xl' Yl) and(x2 , Y2) and to find the intersection point with 

55'. For a perfect sensory system those intersection points 

would be either A or E according to the state of the world at 

this decision interval. However, because of his internal 

noise, the subject might reach point F rather than E when the 

state of the world is R (Right). The length of the line CF is 

CF = d
l 

(i) (4.5) 

",here i is the 5NR index and changes from 1 to 5. The distance 

d
l 

is a function of the 5NR index since the discrimination is 

"as '.qr if the circles are closer to 55 1 and therefore the dif-

ference (d l - dO) decreases as i increases. In the limit, I,hen 

the 10'ler circle almost touches 55': 

(4.6) 

l :: l . 
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It should be noted ~hat the value of dl(i) is a random 

variable. 

Once the location of point F is found the decision is 

straightforward. If the subject were forced to a right/left 

decision, he would choose point C as a CL (note that this CL 

is not the LRCL, but the value of K that is defined in equation 

(2.21» and decide 

Right - if F is to the right of C 

Left if F is to the left of C 

Since he is given the option of saying Tldo not know", he will 

choose two CL's at points B and D and decid'~ 

Right - if F is to the right of D 

Left if F is to the left of B 

Don't know if F is between D and B 

In any of these cases, this model leads to the use of classical 

SDT for I:ne analysis of the exper imental data. 

The second qupstion that was posed \-Ias how to relate the 

internal uncertainty of the subject uti) to the SNR. The 

uncertainty of the subject is defined as the reciprocal of the 

detectability of the signals, or the reciprocal of the normalized 

difference between the values of dl(i) (see equation (2.34». 

Let us use the notation dR(i) for dl(i) when the state of the 

world is right, and dL (i) when tIp state of the \"lOrld is left. 

Therefore 

·.···.i···.·····l. 
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dR(i) = dO + fidei) 

dL(i) = -dO + fidei) 
(4.6) 

where fidei) is the error of the subject in locating the point 

E or A and is a random variable. Becuase of the symmetry of 

the deterministic stimuli, the same d(i) which is still a function 

of i can be used for both states of the lvorld. From equation (4.2) 

y = (12 - 2i)L/lO i=l, ••. ,5 

Since a O is a small angle (7/150 radians), a good approximation 

for fidei) is (see figure 4.3): 

fidei) = (12 - 2i)Lfia(i)/10 (4.7) 

where ~a(i) is the angular error that the subject makes when 

he tries to extrapolate the line OE. Also from figure 4.3, 

dO can be approximated by 

(4.8) 

The angular error fia(i) is a random variable and a function of i. 

How'ever, since the angle a O is the same for every i, we might 

assume that the statistics of ~a(i) are stationary with respect 

to i, namely 

, 
! 
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l:i:J. (i) = -r:,a. (4.9) 

Therefore substituting (4.9) into equations (4.7) and (4.6) 

dR (i) = dO + [(12-2i) /10] Lr:,a. 
(4.10) 

dL(i) = -dO + [(12-2i)/10]Lr:,a. 

and the standard deviation of dR(i) and dL(i) are: 

(4.11) 

\vhere Cl and C2 are constants. 

r:,a. is a measure of the internal bias (to the left or to 

the right) of the subject in estimating the angle a. O' For an 

unbiased observer r:,a = O. On the other hand, crL and cr
R 

are 

possible measures of the uncertainty of the subject in locating 

the points A and E. Since the stimuli are syn:metric with res-

pect to the y axis, crR and crL are equal as shmm in equation 

(4.11). Equation (4.11) also shmvs that crL and crR are linearly 

decreasing with increases of the SNR index i. 

It should be noted that the values dR(i), dL(i), crR, and 

crL are not included implicitly in the data collected in the 

eXperiment. In order to evaluate them it is necessary to make 

an assumption about the underlying fiistribll':ion function of 

dR(i) and dL(i). Using the arguments of section 2.3, \ve might 

assume the distribution functions to be Gaussian. Alelo from 
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equation (4.11) we deal with Gaussian distributions with equal 

variances. For these assumptions, the detectibility d' is 

defined by 

and therefore the uncertainty is 

(4. 12) 

so the uncertainty is linearly related tOlaR' Substitutingv(4.11) 

into (4.12): 

(4.13) 

,,,here C3 and C4 are constants. Note that the uncertainty as 

defined by equation (4,13) is independent of the bias l1a. 

The uncertainty u and the bias na can be found from the 

ra"; data by fitting Gaussian distri~utions to the experimental 

results as will be shol'in in the next section. However, the 

values of uR' dR(i), and dL(i) that are found as a solution to 

the optimization problem and are used to evaluate u and 11fJ., 

are not unique under linear transformations (see Appendix A). 

Nevertheless, by defining u as in equation (4.12) it can be 

shol,,-n (appendix A) that this expression for the uncertainty 

is invariant to the transformation mentioned above. 
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4.4 Data Processing 

The ra\v data collected in a rated decision signal 

detection experiment with n possible outcomes consists of 

2n numbers that represent conditional probabilities as de~ined 

by equation (2.2). Without any additional information, the 

analysis is limited to the use of the P (AO/SO )._p (AO/S l ) plane, 

namely, drawing the ROC curves in classical SDT and drawing 

DR curves for SDT \vith changing signal strength. Since only 

finite (and usually small) numbers of points are used to dra\v 

the curves, an efficient method of curve fitting is needed to 

compare the raw data points to the analytic results. Tanner 

and Swets (1954) suggested the use of a visual fit for data. 

This might seem reasona.ble if the aim is to test whether the 

underlying distribution is Gaussian since the Gaussian assump-

tion implies that the ROC curves are straight lines on a 

Gaussian unit deviate scale. Hm·lever, if the aim is to obtain 

estimates for all the para~eters that define the underlying 

distribution as \vell as the n-l thresholds, a more rigorous 

method should be used. 

As a start, an assumption has to be made about the 

functional form of the undcrlying djstributions. These dis-

tributions are usually assumed to be continuous and unimodal 

and also satisfy equation (2.42). Once the functional form 

of the dist.ribution is chosen, the unknm.;ns in the problerr. 

are the parameters that define the distribution and the n-l 
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LRCL's. The problem now is ho,",' to choose values for these 

unknowns so that some criterion will be optimized. Since all 

the parameters are completely unknovm, the rr.axill'um likelihood 

is an appropriate criterion, (Ogilvie and Creelman, 1968; 

DorfIl'.e.n and Alf, 1968; Abramson and Levitt, 1969; Grey and 

Morgan, 1972). Under this criterion, we ~re seeking those 

values of the unknown parameters which are most likely to 

produce values that are equivalent to the experill'ental results. 

since decisions are taken repetitively and since the 2n 

possible outcomes define mutually exlusive and exhaustive 

events, the distribution Vlhich is associated with these events 

is multinomial (for n=l, the specia.l case of the binoll'ial 

distdbution is obtained). A simple example explaining the 

occurence of such a distribution is I"hen a die is thrown. 

The probability of getting anyone of the numbers 1 to 6 in a 

single toss is assumed to be knOl-in and is referred to as p. 
~ 

(for an unbiased die, p. = 1/6 for i = 1, ••• ,6). l'i'hen the die 
~ 

is thrown N times, it wculd show the number i n. times where 
~ 

6 
E 

i=l 
n. = N 
~ 

The probability that a set of given n. = m. vlill occur is 
~ ~ 

Pin. =m.) = 
~ ~ 

6 
N! II 

i=l 
(4.14) 

Equation (4.14) defines the multinomial distribution. In our 

optimization problem, the values of the m.'s are given by the 
~ 

raw data and,therefore, are knmm. However, the probabilities 
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Pi are not known explicitly, but are functions of the unknown 

parameters. Our optimization prob1err: is to find the parameters 

in such a ~lay that they will ffiaxiroize the probability that the 

mi did appear, ~lhere this probabilj ty has the form of equation 

(4.14) • 

Several parameter optimization techniques have been 

suggested for the solution of such problems, such as the 

gradient method, the conjugate gradient method, and the Davidon 

method (Vander Velde, 1972). These methods were used to solve 

the specific problem of fitting an underlying distribution to 

data from SDT experiments by the authors mentioned above. In 

this work we applied still another method that was sugyested 

recently by Jacobson and Oksman (1971) which seems to converge 

more rapidly t'1an other methods. 

The algorithm fits in its general case, two Gaussian 

distributions with different means and different variances; 

hOI-lever many special cases can be implemented. Since \'ie deal 

wi th experiments in l'1hich d I changes, ne\Oi values foJ:' the un-

kno\m parameters must be computed for each level of signal 

strength. ~rhe algorithm has been programmed to repeat itself 

automatically as many times as required, so that all necessary 

information is available in one run. When a set of ·ne~i values 

are found, a special subroutine checks the goodness of fit by 

the use of a chi square test. A detailed description of the 

algorithm is given in Appendix A. Since the expressions in-

volved in the corr,putation are all rather cOlT'plicatec., the 

····'.····.,'1 ~ • 

': , 
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probability of prograwming errors is high. In the same Appen-

dix, we suggest a method 1:;0 test the algorithm ~lit.h simulated 

data; a method that proved to be very helpful in our 110rk. 
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4.5 Expe-rimental Results 

As has been discussed before, the DR curves can be dra~m 

dir, ctly frcm the raw' data in the P (AO/SO) -P (AO/Sl ) plane. Since 

in our experiment there were' three possible decisions fer each 

subject, \'le ~;ill get .. ,'0 DR curves. Thes '! two DR curves for 

eaoh subject are shown in figures 4-4 to 4-9 and are referred 

to by the I.RCL's (31 and (32' Without any further data processing 

the only \vay to analyze these results is by visual inspecticn, 

that is, comparing these curves to the theoretical curves that 

~'ere Grawn in the P(l',O/SO)-P (A.O/S l ) pl<,.ne in Chapter 3. In many 

cases, the decision is quite complicateG so the question has to 

be resolved on the basis of the processed data. Table 4.1 

sUl!'.marizes the conclusi.ons of the visual inspection methoCi. 

From table 4.1 it is clear that all possible decision 

rules \'lere used, and there does not exist one dominant strategy. 

FUrthermore, for most subj ects the visual inspection ShO\,1S a 

mixed strategy, i. e. r the subject used different strategies in 

obtaining 1\ and 13 2 , The decision strategies that are sho~m 

in brackets in table 4.1 indicate the strategy that would best 

fit both DR curves. A clear understar.ding of the decision 

strategy is expected on the basis of data processing results) 

hO\1eVer 1 it should I:;c.! noted that statistical analysis for 

testing the decision rule that \vas use.:! on the basis of ra\v 

data alone is possible and was done by Curry (1974).' 
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Subject 

J.TA. 

L.L. 

J.TO. 

A.E. 

C.B. 

~ 

L.M.L. 
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Fig No 11. R. for 13 1 
D.R. for 13 2 

4.4 constant 13 N .P. (constant 

===tr =-0 tf(llft'WIC &I___=_ m 

4.5 N.P. (constant (3) constant 13 

4.6 linear linear 

4.7 N.P. linear (N. P. ) 

4.8 constant 13 linear 
(linear) 

-

4.9 N.P. ( linear) linear 

Table 4.1 Decision Rules based on DR Curves in 

the P(AO/SO)-P(AO/S l ) Plane (N.P. -

Neyman Pearson) 

J 1 I 
I 

(3) 
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In order to better understand the detection process, it 

was assumed that the underlying distributicns were Gaussian, 

and the parameter 'estimation algorithm described in Appendix A 

was used. Since the left and right signals had the same 

magnitude (but different signs), it was further assumed that 

both distributions have the same variance. Ho\~ever 1 it was 

expected that each subject might have some bias to the right 

or left, therefore we chose 6a 'I 0 or 

i=1, .... ,5 (4.15) 

To test for the significance of these assumpticns, the chi square 

test was used. The results of this test for each subject and 

for each signal level are shown in table 4-2. 

The values that are presented in table 4-2 are derived 

from a chi square distribution with one degree of freedom (see 

Appendix A). Each of these numbers represents the probability 

that the observed chi square values (or smaller values) ~7ill 

be obtained if the experiment were repeated a large number of 

times with the unkno~m parameters taking the values that "Jere 

found as a solution to the optimization algorithm (Hoel, 1966). 

The probo.bilities tho.t \.;ere obtained indicate that the hypothesis 

that the underlying distribution is Gaussian cannot.be rejected. 

The data processing algorithm provides the values of d' 

(and u = l/d') as a function of i. The values uti) for each 

subject are summarized in table 4-3 (as a function of i). They 

are also drawn as a function of the SNR index i in figures 

4.10 to 4.15. 

I 
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SNR 1 2 3 4 5 

SUBJECT Percentage Points of the X2 Test 

J.TA. 0.50 0.75 0.90 0.90 0.60 

L.L. 0.90 0.70 0.40 0.55 0.90 

J.TO. 0.25 0.70 0.92 0.88 0.92 

A.E. 0.50 0.75 0.75 0.85 0.25 

C.B. 0.70 0.85 0.85 0.70 0.55 

L.~1.L. 0.85 0.80 0.90 0.90 0.85 

Table 4.2 Results of X2 Significance Tests 

I 

.1f.1 
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SNR 1 2 3 4 5 TESTS 

SUBJECT UNCERTAINTY fUi t 

J.TA. 5.50 1. 32 0.66 0.43 0.12 -0.56 1.90 

L.L. 2.30 1. 66 0.88 0.50 0.12 -0.99 6.10 

A.E. 3.80 2.90 1.10 0.63 0.27 -0.86 3.80 

J.TO. 1. 80 1.10 0.95 0.60 0.14 -0.99 3.70 

C.B. 7.60 3.55 1.58 0.88 0.38 -0.93 2.96 

L.M.L. 2.66 1. 95 0.96 .0.70 0.34 -0.96 9.60 
i 

Table 4.3 Uncertainty u as a Function of SNR i 
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The model that \>las suggested in section 4.3 implies a 

linear relationship between the uncertainty u and the SNR 

index i in such a way that u is decreasing vlith i increasing. 

Therefore, linear regression was used to fit a straight line 

to the data points. The correlation coefficient Pui was 

computed as a figure of merit to the linearity assumption. 

The computed values for Pui are shown in the sixth column of 

table 4-3. For five of the subjects, these coefficients were 

close to one which indicates a strong tendency to li~earity. 

For one subject (J.TA) the value was relatively low; however, 

this was due for the most part. to one data point. When this 

point was eliminated, Pui jumped to 0.97. It is also desirable 

to test the hypothesis that u and i are not linearl:." related. 

Since the number of the data points is small, either the t or 

the F test should be used. It can be shown (Draper and Smith, 

1966) that for inferences concerning linear regxession, these 

tests are equivalent. The t value for the test is evaluated 

as follows: 
5 

t = b ( k (i_I»1/2 (4,16) 

S i=l 

where b is the slope of the regression line and S is given by 

J 
5 \ 

1 2 
S . = ---2 L (u(i)-U\ll) 

. n-
i=l 

(4.17) 

The t scores for each of the subjects are shown in the last 

column of table 4-3. Using tables of the t distribution, it 

can be seen that the hypothesis of .nonlinearity can be rejected 

'I 
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for five of the six subjects. 'I'he probability for an error 

of type I, namely, rejecting th,! nonlinearit~· hypothesis when 

it is actually true, is 0.01 for the subjects L.L. and L.M.L. 

and 0.05 for the subjects C.B., A.E., and J.TO. For the sixth 

subject (J.TA.) the nonlinearity hypothesis can b~ rejected 

with a probability of error of 0.2. Therefore, we might con

clude that the experimental results agree with the data that 

,.,as predicted by the model suggested in section 4.3. 

As sho,'1n in Appendix A, the results ot the optimization 

algorithm include, in addition to the parameters of the dis-

tributions, the two values I{l and I{2 which satisfy 

R.(I{ _) = B. 
J J 

j = 1,2 (4.18) 

Since we assumed that the distributions have equal variances 

and since the value of m is knmm, equation (2. 3 ) can be us ed 

in calculating the values of lnBl and ln13 2 • ~'hese values ar .. 

summarized in table 4-4 as a function of the SNR index for each 

subject. However, we are interested in the relation 

InS. = f(d'.) J . j = 1,2 (4.19) 

in order to classify the decision strategy. Under our assump

tion (Gaussian distributions, equal variances) the following 

strategies might be considered: 

1. ln13, = constant (fixed LRCL decision strategy) 
J 

2. ln13 j = C5 + C d' 6 (linear decision strategy) 

3. lnB· = C d' ± d,2/2 (N. P. decision strategy) 
J 3 

. ,,~ 
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SUBJECT 

9..nB l 

J.TA. 
9..nB 2 

9..nB l 

L.L. 
9..nB 2 

9..nB l 

A.E. 
9.. n i3 2 

9.. n i3 1 

J.TO. 
9..ni3 . -- 2 

~. 

-
9.. n i3 1 

C.B. 
9.. n 13 2 

9.. n i3 1 

L.M.L. 
9.. n i3 2 

Table 4.4 
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2 3 4 5 

LRCL's 

-0.27 -0.92 -2.05 -1.3 

0.20 0.63 0.53 0.04 

-1.10 -1.10 -0.95 -0.75 

0 0.018 0.018 -0.015 

-0.58 -0.57 -1.10 -1. 70 

-0.03 -0.08 -0.18 -0.08 

-0.30 -0.35 -0.22 0 

-O.lS " ~, u. j ... 0.37 0.38 

-0.13 -0.18 1-0.24 -0.09 

0 0.06 0.24 0.57 

-0.37 -0.41 -0.54 -0.33 

0.07 0.16 0.50 0.86 

-

9..ni3. as a Function of SNR Index i 
1. 

b. 

, .; , 
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Since both 6j and d' are knmvn for each level of SNR, InS. 
J 

can be found as a direct function of d'. Figures 4-16 to 4-21 

sho,., In!>l and In6 2 as a function of d' for each of the subjects. 

Table 4-5 indicates for each subject which one of the 

three strategies was used (on the basis of visual inspection). 

The strongest conclusion dra'1n from the figures is that in 

most cases the threshold ,.as changed with the SNR level. This 

finding cannot be predicted on the basis of classical SDT 

(Donaldson and Murdock, 1968); however, similar data was ob-

tainud by Kinchala and Smyzer (1967) and Healy and Jones 

(1973) • 

Although the use of the data processing results helped 

in showing the change in the LRCL, still for four of the six 

subjects mixed strategy gave the best fit. An attempt to 

settle this question ".'as made by Curry et al (1974). Their 

argument was that the subject is actually using only one 

decision rule, and this d~~ision rule is one of those that 

were discussed above. However, instead of using the objective 

probabilities to form the likelihood ratio, the subjects used 

subjective probabilities which are linearly related to the 

true values. The fit of DR curves on this strategy, for the 

results in our experiment are given ill the above reference. 

',;1', 
, 

"j , 

j.: 

i I -,!-

~ '1 
, i,li 

" 
! 

-: . 
,t 



1 

0 

-1 

1 -

o 

-1 -

111 

In a 
0 In a 

1 

I!l In a 
2 

~. • 

~ 
2 

• 

FIGURE 4.16 In B AS A FlTNC'flON OF d t (SUB,JEGT 'f .A) 

o 0 

• 
• 

• 

• 

t 2 

o In B 
1 

!!l In B 
2 

FIGL~E 4.17 In B AS A FUNCTION OF d t (SUBJECT L.L) 

l 

.-) 

d t 

d t 



In e 

1 

o 

In B 

1 

o 

-1 

J I ___ J _J ______ J ._.~ . 
112 

D 

• 
• 

2 

@ In e 
1 

~ In e 
2 

FIGUl\E 4.18 1n!l AS A FUNCTION OF d' (SUBJECT J. TO) 

• • 
1 2 

FIGUl\E 4.19 In e AS A FUNCTION OF d' (SUBJECT A.E) 

, 

i 
, 

d' i : 

i , I . , 

I 

a' 



1n e 

1 

o 

-1 

1n e 

1 

o 

-1 

I 
113 

0 1n e 
I 

I!l 1n e 
2 

0 

d' 

o 

FIGURE 4.20 1n 13 AS A FUNCTION OF d' (SUBJECT C.B) 

o 1n S 
I 

1 2 

FIGURE 4.21 In ~ AS A FUNCTION OF d' (SUBJECT L.H.L) 

1n e 
2 

d' 
I e, 

,;. ! 
" .. 

.« , 



-

114 

• 

:Subject Fig DR for 13 1 
DR for 13 2 

J. 'fA. 4.16 N.P. N.P. 

L.L. 4.17 N.P. constant. S 

J.TO. . 4.18 linear linear 

A.E. 4.19 linear constant 13 

C.B. 4.20 constant 13 
I 

linear 

L.M.L. 4.21 constant i3 linear 

Table 4-5 Decision strategy evaluation on the 

basis of the processed data 
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CHAPTER V 

• 
DETECTION OF SIGNALS WITH SEQUENTIAL CHANGE 

OF SIGNAL STRENGTH 

5.1 General Discussion 

In the previous chapter we limited our discussion of 

decision strategies to those cases in which the effect of 

correlation between successive decisions could be n8g1ected. 

'fhe lack of correlation \vas due to the follo\ving properties 

of the i~put data: 

1, The order of changes in the signal strength 

were chosen \vith the use of a uniformly dis-

tributed random number generator. Therefore, 

the subject was unable to predict on the basis 

of the past information and had to consider 

each stimulus independently. 

2. A blanking period of two seconds was introduced 

between successive decision intervals to help the 

subject fOl':get the location of the circles in the 

previous presentation, 

However, both of these properties are somewhat artificial and 

were chosen to satisfy classical SDT assumptions of independent 

decisions. In particular, property 1 implies that the input 

signal has no time structure, a property which is usually 

associated wtih noise rather than with signals. For most real 

1 
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life detection tasks in \-Thich the signal is changing, the 

change is governed by som~ specific rule that determines the 

mean time structure. In such cases, this rule might be used 

by the decision maker to base his decision not only on the 

current information but also on the pas~ information. There-

fore, his decisions will be correlated in some yet unspecified 

manner. 

since we have already studied decision strategies under 

independent decisions, we are nOl., in a position to analy ze by 

comparison the effect of .the temporal correlation of the signal 

on the overall performance of the subject. It should be noted 

thdt ',;:'Jr main interest is the effect of the correlation, so 

that the functional form of the time structure is of secondary 

importance as long as it introduces correlation effects into 

the subject's strategies. 

The time structure that ,vas chosen is referred to as a 

"sequential" change of SNR, and is related to some practical 

decision tasks that are ~f interest. The definition of sequen-

tial change of SNR is as fol10\Vs: 

1. The true state of the \Vorld is the same for all 

decision intervals ",ithin a sequence. with the 

use of a uniform random number genera~or, this 

state of the world is determined before the 

presentation of the sequence in such a \Vay that 

all states of' the \-Torld are equiprobable. 
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2. The 5NR level is fixed \vi thin each decision 

3. 

interval, bui,: increases with the index i of 

the interval ",ithin the sequence. 

There is no blanking period between the 

decision intervals so that the current 

decision interval starts when the previous 

interval ends. 

The signal st:rength in each sequence is a deterministic 

process. Huwever, randomness does exist and is due to the 

random choice of the state of the world, which is determined 

at the beginning of the sequence. Once the state of the world 

is determined, the sequence is deterministic. Therefore, there 

are bolO poss ible sequences for ,,'hich the magni tude of the 

signal is the same but the sign is different depending on the 

true state of the world (50 or 51)' and the appearance of each 

of these is equiprobable. 

The real life decision task that ,ole had in mind, while 

using the sequenti al presentation was that of a pilot \olho is 

using a traffic situation display (T5D) to avoid mid air 

collisions. Let us again consider such a case and assume that 

the T5D is updated by radar information with a change in in for-

mation every four seconds to show the present and previous 

(four seconds before) position of all intruders. This in for-

mation is al\olays translated in such a way that the plane of 
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of the TSD user stays in the center of the display. We further 
• assume that all airplanes are flying in a linear' motion with 

constant velocity; an assumption that usually holds near air-

fields. The pilot must decide whether a specific intruder is 

going to pass to the l:ight or to the left. If we consider each 

4 second interval bet,veen radar updating as a decision interval, 

these decision intervals, starting \vhen the J:ntruder is at the 

far end of the display and ending when it is closest to center, 

constitute a sequence with the aforemention~d properties. 

Clearly the true state of the \vorld . (namely, the intruder 

passing to the left or right) does not change ,dthin this 

sequence (property 1). Also the discrimination becomes easier 

as the intruder approaches the center, so that the SNR is 

increasing with time (property 2). Finally, there are no 

blanking periods bet\veeon these intervals (property 3). There-

fore, the pilot's task is a decision task with sequential 

change of SNR which might lead to correlation between succes-

sive decisions. 

To analyze the results of a signal detection experiment 

wit}). correlated signal presentations, the classical methods 

(chapter 2) have to be modified. In particular, the outcome 

is not based on the current decision alone, but must be further 

so:J:i:ed on the basis of past decisions. This might not be 

feasible if the capacity of the memory involved were large 

enough to store all the information from the start of the 

.1 
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~equence. However, it seems reasonable to assume that the 
• 

decision maker has a finite memory and that his present 

decision is correlated only to the previous one while all 

further past info~~ation is ignored. This assumption reduces 

the sorting problem considerably and leads to the use of 

the well established. theory of Markov processes. Since Markov 

models "dll be used in the analysis of the data, some not

ation and terminology of this theory will be presented in 

the next section. 

~. 
, 



r~~{ _~I_. ___ L_""". ____ "L J 1 __ ." . J 
120 

i 
5.2 Discrete Markov Processes 

Let us start with a sequence of discrete random variables 

{XCi)} i = 1, ... IN (5.1) 

where each X(i) can take its value from a finite set of real 

numbers 
p = 1, ..• ,M (5.2) 

The set {Sp} defines the state of the system and the equation 

X (i) = S 
P 

defines the state of the system to be S at interval i of the p 

sequence. In our particular application X(i) is the decision 

of the subject at the decision interval i and the states are 

and therefore M = 2. 

If the random variables X(i) are independent (as was the 

case in Chapter 4), the state of the system in each interval 

does not depend on its states in the past. Therefore, all that 

.was needed to describe the system were the probabilities 

p{x(i) = S } 
P 

i = l, ••. ,N) P = l, ••• ,M (5.3) 

However, if the random variables are dependent, then the prob-

abilities that define the system are the joint probapilities 

Prob{X(l) = S , X(2) = S , •.• ,X(N-l) = S , X(N) = Sn}I(5.4) 
p q r N 

or using Bayes rule 

Prob{X(N) = S!I,/X(l) = S , •.• ,X(N-l) = S }Prob{X(l) 
p r 

• \ 

= S , ••• X(N-l) = S } 
P r 

(5.5) 
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Equation (5.5) implies that the joint probability at time N 

is a function of the conditional probabil:ty that depends on 

all past history. In some cases though, this dependence can 

be relieved by limiting it only to the previous decision in

terval. Then the follm.,ing relation holds: 

Prob{X(N) _= SR,/X(l) = Sp"" ,X(N-l) = Sr} 

Prob {X(N) = SR,/X(N-l) = Sr} 

= 

(~. 6) 

Equation (5.6) is usually referred to as the Markov assumption 

and a sequence {XCi)} that satisfies it is called a discrete 

Markov process. Therefore., a Harkov process is completely 

defined if: 

2. Prob {XCi) = SR,/k(i-l) = Sn} i = 2, ••• N 

are known. 

To simplify our notation, the conditional probabilities 

defined in (5.6) above, will be written as follows: 

Prob (X(i) = Sk/X(i-l) = SQ.) = Pk,R, (i,i-l) (5.7) 

where: 

i = il ... rN; k = 1, ••• rM; £ = If ••• ,M 

They are referred to as the one step transition probabilities. 

If the number of states of the process is 1-1, equation (5.7) 

----~ ---- - \) .-·:.-1· 
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defines M2 such probabilities, '''hich can be written in 

matrix notation as • 

Pl,l (i,i-l) . . . . . . . . P ,," 1) 
1 , ... \~t~-

t .. ',1 

P(i,i-l) = (5.8) 
• 

The matrix P is called the one step probability transition 

matrix. since at each interval thp system must be in one of 

the states 
M 
E Pk ~(i,i-l) = 1 

~=l ' 
(5.9) 

i.e. the elements in each row of p(i,i-l) sum to unity. A 

stationary Markov process is a Harkov process for "lhiah the 

one step probability transition matrix satisfies 

P(i,i-l) = P{i -(i-l» = pel) i = l, ... ,N (5.10) 

In many cases we are interested in transitions which 

include more than one step. We therefore define 

and the probability transition matrix is defined as 
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cfl 1 ,I(i,j) . . . . . . • cfll,.M(i,j) 

<I>(i,j) = • • 
• (5.11) 

cfl1-l,1 (i,j) cflM,M(i,j) 

by definition 

<I> (i,i) = 0 <I>(i,i-I) = P(i,i-I) (5.12) 

Also it: can be shown (Howard, 1971) that 

r = i-j-I 

<I> (i,j) = Jl p(i-r ,i-r-1) (5.13) 
r=o 

If the process is stationary, equation (5.13) is reduced to 

__ pi-j <I> (i-j) (5 .• 14 ) 

Also of interest is the probability of being at a state 

p in the interval i, regardless of the state in the interval 

(i-I). We therefore define 'chis probability as 

(5.15) 

If the number of states is M, there are M probabilities n (i) 
p 

so that an M dimensional vector can be defined 

(5.16) 

It can be shown (Howard, 1971) that the following relation 

holds for stationary processes 

JI til = Hi) JI (0) (5.17 ) 

, 
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5.3 Experimental Method and Preliminary Rs,,"'ts 

• 

In order to study the effect of the correlated signals 

on the decision strategy, an experiment was designed in which 

the subject participated in two tasks (each in a different 

session) with equivalent stimuli, but with different order 

of presentation. In the first task, the signal strength was 

changed in a random order (as in the experiment in Chapter 

4) and, therefore, independent decisions were expected, while 

in the second task the data was presented in a "sequential" 

order to induce correlation. 

The detailed description of the data presentation in 

the experiment with random change of signal strength \~as 

given in section 4.2. Since the SNR level in that experiment 

is ·time varying, it was easy to modify the presentation to 

"sequential". Each sequence included aIlS levels of SNR 

(N = 5) in increasing order to satisfy property 2 in section 

5.1. For each SNR level the pair of circles could be either 

on the right or on the left (Figure 4.2). In order to satisfy 

property 3, the two seconds blanking period bet\>leen decision 

intervals \>las eliminated. Before displaying the first pair 

of circles of a new sequence, a random number genera:tor was 

used to choose "hethe::: the state of the world during this 

sequence was So or Sl with the following probabilities: 

0.5 
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The subject had the same decision task as in the previous 

experiment, i.e. to discri~inate right from left, except that 

now he has four response categories (n = 4). 

SURE LEFT 

THINK LEFT 

THINK RIGHT 

SURE RIGHT 

The reason for the change from three to four response categories 

was mainly due to the use of }iarkov· models for the analysis. 

Four response categories imply a Markov process with four 

states, however, by combining the sure and think st~t6S together 

the number of states can be ;'edllced to two. Such a reduction 

simplifies the c,-'mputations as \~ell as the analysis of the 

decision strategy. Clearly such a reduction is not feasible 

for an odd number of response categories. 

Tv/o new subjects (\~ho did not take part in the previous 

experiment) participated in this experiment. Both \~ere grad

uate students in the Man Vehicle Laboratory at M. I. T. and 

were participating on a voluntary basis. Each subject took 

part in 4 experimental sessions. In two half hour sessions 

the presentation was in a sequential order and each subject 

made a total of 900 decisions. In the other two ses.sions of 

45 minutes each, the presentation was in a random order and 

again, the total number of decisions was 900. One of the 

subjects started with the sequential presentation, \~hile the 

other started with the random prGsentation in order to balance 
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learning effects. Instructions and the training session 

were the same as in the pr~vious experiment. 

For a preliminary comparison of the performance of the 

subjects in the two tasks, the DR curves in the PH-PFA plane 

were used. Two of the DR curves (those between sure and think) 

are sho,'1n in Figures 5.1 and 5.2. Those figures show that a 

difference in performance does exist; and, in particular, there 

is an increase in the probability of a false alarm for the 

task with the sequential presentation. Nhen the data processing 

program (section 4.4) was used, the performance could be 

expressed in terms of B and dr. Figures 5.3 and 5.4 show the 

same two LRCLr s as a function of dr, and again there is a 

difference in performance between the two tasks. It should 

be noted that a difference in performance due to corr~lated 

decisions in auditory signal detection experiments was 

reported by Speeth and Matthews (1961) t and by McGill (1954). 

The next step is to descri.be these differences and to 

provide a modification totpe theory of uncorrelated decisions 

that would describe the subj ect r S behavior \'Ihen correlations 

are present. Furthermore, since analysis through SDT can 

separate the sensory and decision processes, it might be pos-

~1ible to find whether the change is due to only one of these 

processes or both. 

l . 
, 
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5.4 A Model for the Decision Strategy 

• As was suggested in section 5.1, a basic assumption that 

we will make is that the subject has a "limited" memory, so 

that a correlation exists between each successive decision 

interval, but is weak enough to be neglected betvleen intervals 

that are more than one interval apart. This assumption leads 

to the use of the Markov models that \1ere discussed in section 

6.2. 

Markov processes have previously been used in psycho-

physics for modelling human behavior in auditory recognition 

tasks (Tanner et aI, 1961). In these experiments, the subject 

was asked to discriminate between two signals \1i th the same 

tone but two different amplitudes which were presented in a 

random order. Tanner suggested that the recognition vias based 

on the difference between the present and previous amplitudes 

rather than on the current stimulus alone. They also assumed 

that the subjects used two LRCL's in such a way that a high 

amplitude was chosen if the difference was larger than the 

higher LRCL, and the low amplitude was chosen if it were smaller 

than the the lower LRCL. If the difference was between the 

two LRCL's, the previous decision would be repeated. 

The main argument to support this model, which is based 

on the difference between successive stimuli, is that within 

each recognition interval the subject does not have any objective 

reference on which he can base his judgement. In our detection 

:. I 
" ~ 



~--' j 
131 

experiments, the situation differs because the reference is 

presented in each interval so that no external references are 

needed. Since, the results shol-l that a change does 

exist, we would assume that the decisions are based on the 

current information only. If there is no accumulation of 

information from one interval to the next, the information 

is the same for both random and sequential presentations, and 

we might conclude that tne difference in performance is d~ue 

to the effects of past' decisions, rather than past information. 

The suject~s motivation for dependency on past decisions can 

be explained by his knowledge that the state of the world 

is the same during an entire sequence, and by changing 

decisions he admits previous errors. 

The hypothesis that the change in performance is due 

to a previous decision and not to past information can be 

tested by the use of the separation property of SDT. If this 

hypothesis is true, then the detectibility d', which is sensi

tive only'to changes in input information, should be the same 

for both presentations, and the linear relationship betl'leen d' 

and the SNR index i that was found for the random presentation 

should hold for the sequential presentation. If that is so, 

the change in performance can be attributed to the decision 

strategy alone, and the model I'lhich will be su,:!gested l'lill 

apply to the decision process in the detection task, 

l 



J I .... J 
132 

For simplic:l ty, we \'I'ill start our discussion of the 

decision strategy with the assumption that the subject can 

make only tvlO decisions, AD and Al (n=2). Therefore his 

performance in each decision interval i is given by the 

pair: 

Since the true state of the \'lOrld is the same for all intervals 

in the sequence, equation (5.18) can be written as: 

(5.19 ) 

Now if we assume a l>1arkov mode] in which the current decision 

is based on the previous one, then: 

PH(i} = P(AO(i}/SO,AO(i-I)}P(AO(i-l» + 

P(AO(il/SO,AI(i-I»P(Al(i-l» 

PFA (i)= P (AO (i)/Sl'AO (i-l»P (AD (i-I» + 

P(AO(i)/SI,Al(i-l»P(Al(i-l» 

(5.20 ) 

Since there are two response categories, the number of 

states in the process is t,.,o. Ho,.,ever, for our discussion, 

it ,.,ill be convenient to define t,'lO (rather than on~) pro-

cesses: one in which the subject was correct in his previous 

decision and the other in which he \o1aS wrong. 
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Using the notation of section 5.2, the one step trans-

ition probabilities for the "correct" process are: 
• 

pCOICi,i-l) = P(AO(i)/Sl,Al(i-l» 
(5.21) 

pCIO(i,i-l) = P(Al(i)jSO,AO(i-l» 

pC 11 (i,i-l) = P(A1 (i) jSl,A1 (i-l» 

and the same probabilities for the "incorrect" processes are: 

pNC (" . -1) 00 ~,~ = P(AO (i)jSl,Ao (i-I» 

pNC 01 (i, i-l) = P(AO(i) jSO,A1 Ci-l» 

pNC10 (i,i-1) = P{A1 (i) jS1,AO(i-l» 

pNC 11 (i,i-1) = P(A1(i)jSO,~(i-1» 

or in matrix notation 

and 

pC
10

(i,i-1) 

NC (. . 1) p 00 ~,~-

pC 01 (i,i-1) 

NC (. . 1) p 01 ~,~-

NC (. . 1) P 11 ~,~-

(5.22) 

(5.23) 

(5.24 ) 

'.1 l 
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Note that the elements in each row of the above matrices 

sum to one. • 
If the detection is perfect for all intervals in the 

sequence: 

and for pure guessing: 

PNC (~, ~ -1) pC (. . 1) 
~ ~ = ~,~- = 

= rlO loll pNC (i,i-l) ~ d 

0.5 0.5 

0.5 0.5 

(5.25) 

(5.26) 

These performances are the two extremes which are not expected 

in well designed experiments. 

The values which are found for these matrices can show 

whether or not the subject was biased by his previous decisions. 

An unbiased subject is expected (since the SNR is increasing) 

to stick to his previous decision if he was correct and to 

change his decision if he was wrong. 

The strategy of an unbiased decision maker is, therefore, 

defined by the follo\~ing inequalities: 

(5.27) 

NC (. . 1) 0 5 
p 01 ~,~- . > • (5.28) 

The values for these probabilities should increase with the 

~ 
I , 
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value of i and in the final interval (i = 5) should approach 

• 
unity. Such an unbiased decision strategy would lead to per-

formance that is similar to the performance of the subject 

in an experiment with independent decision intervals. 

The biased subj ects can be divided i.nto t,'lO types r those 

\-Tho repeat and t~ose "ho alternate. A repeat strategy (RS) 

subject would prefer to repeat his previous decisions "hether 

he ,V'as right or wrong. For such a decision maker, the in-

equalities in (5.28) are reversed 50 that: 

pNC
IO 

(i,i-l) < 0.5 (5.29) 

On the other hand, an alternate strategy (ALS) subject \vill 

tend to change his decisions even if he \-laS correct before. 

For this t~{pe of decision maker, the inequalities in (5.27) 

are reversed 50 that 

(5.30) 

Since the simplest method to define a decision strategy 

is through the DR curves, it is important to analyze the effect 

of the three strategies that were suggested above through these 

curves. It has already been noted that the performance of an 

unbiased decision maker is similar to the performance in a 

random data experiments; therefore, the DR curves \-Till be sim-

ilar to those found in section 4.5. 

I 
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For the analysis of the strategy of the biased subject, 

let us re~.,ri te equations (S, 20) • 

pNC (i,i-l)P(Al(i-l» 
01 

PFA (i) = pN~O (i, i-l) P (AO (i-l» + pC 01 (i, i-l) P (Al (i-l) ) 

(S.31) 

since the probabilities P(AO(i-l» and P(Al(i-l» are not known, 

it \'lould be helpful to separate the performance of the subject 

into two categories. His performance conditioned on a previous 

decision of AO' is given by 

o (.) = pNC (. . -1) PFA ~ 00 1,1 (S.32) 

and his performance conditioned on a previous decision Al is 

given by: 

(5.33) 

Each of the equations above, (S.32) and (·S.33), defines a dif-

ferent DR curve for values of i from 1 to 5. So, for every 

LRCL there are two DR curves, and if there were n .response 

.categories, the number of DR's ,.;ould be 2(n-l). It should be 

noted, though, that the family of DR curves defined by equations 

(S.32) and (5.33) cannot be plotted in the same PH-PpA plane 

because the functional relationship between the above probabil

ities is not known. Using the superscript terminology defined 

above, equation (s.29) can be rewritten as: 

,1 
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PFOA(i) = 1 - pN~(i,i_l) 1> 0.5 
10 

• 
(5.34) 

These inequalities characterize the behavior of the RS 

subjects, as they describe the tendency of this type of biased 

subject to repeat his decisions when he is \'lrong. Furthermore, 

iL is reasonable to assume that he will repeat his. decisions 

when he is correct, therefore 

P~(i) > 0.5 P~A(i) <0.5 (5.35) 

substituting these inequalities into equations (5. 32) and 

(5.33) defines the two DR curves of an RS subject \'Ihich are 

shown in Figures 5.5 and 5.6. The straight lines in these draw-

ings are the DR curves based on the N.P. strategy, and the 

curved lines are based on a fixed LRCL. In a similar way, the 

inequalities which describe the behavior of the ALS subject 

are (from 5.30) : 

P~(i) < 0.5 P~A(i) > 0.5 (5.36) 

and again we might add that this type of decision maker will 

also tend to change his mind '''hen he is wrong, therefore: 

P~(i) > 0.5 P~A(i) <0.5 (5.37) 

The DR curves for an ALS subject are reversed as compared 

to those of an RS subject and are shown in Figures 5.7 and 5.8. 
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The difference between the two DR curves (one given that 

the decision before was AO and the other given that it was 

AI)' can easily be explained on the basis of classical SDT. 

Figure 5.9 shows the conditional probability density of the 

observation under the two staLes of the world. Let us now 

assume that peSO) = P(Sl) = 0.5 and also that the regret 

ratio is equal to 1. under these conditions, an unbiased 

decision maker will choose 13 0 as his LRCL. However, if 

the subject is RS he will tend to repeat his previous deci-

sion. Therefore, if his previous decis ion '~as AD, he ,,'ould 

move his threshold to SAO so that 

This will increase his probability of hit, but ,~ill also 

increase his probability of false alarm, \~hich is in agree-

ment with equations (5.34) and (5.35). If his previous 

decision was AI' then he will: move his threshold to 13
Al 

such 

that 

SA > So 
1 

Therefore, both plH(i) and plFA(i) will decrease, which is 

again in agreement with equations (5.34) and (5.35). An ALS 

subject "Till behave in the opposite way (see Figure 5.10). 

If his previous decision was AO' he would choose the LRCL 

SA rather than So such that: 
o 

____ 1 
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FIGURE 5.9 LRCL CHANGE FOR "'REPEAT" BIAS 
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FIGURE 5.10 LRCL CHANGE FOR "ALTERNATE" BIAS 

1 d 
~i ,·)1 

'1 '>' 

1 
n 
;1 

~ 9 
" ,,~-

:f 
~ -, 
~I 
~I 
~- ; 
~; 

,I 
,~ , 

,.~) 1 
I 

i:; 
-~": 

"t 
-"1 

'I JI 
~, i 

! , 
; 

I , 
.', I , 
; ., 

.!, , 
'"" 
, 

\"; 



1 1 
142 

SA > 13 0 a 

Therefore, pO H (i) and pO FA (i) vIill both decrease which is 

in agreement ... lith equations (5.36) and (5.37). If his 

previous decision \vere Al , the LRCL 13
A 

,qill satisfy 
1 

13A < 13 0 1 

and plH(i) and plFA(i) will increase. 

Finally, we would like to discuss the method by which 

the subject might change his LRCJ .. for the various decision 

rules that are used. If the decision rule is to satisfy the 

N.P. objective, then the LRCL is based on the probability of 

false alarm and the subject is working vIi th two values of 

PFA rather than one. For an RS subject, the 

i wi 11 be much larger than the value for P FA' 

a 
value for P FA 

and for an ALS 

subject, the opposite will happen. If the decision rule is 

to keep the LRCL S constant, the value of So in classical 

SDT is determined by (Van Trees, 1968) 

(5.38) 

Where COO' Cal' CIO and Cll were defined in Section 3.2 and 

represent the costs that are associated with the four out

comes of the experiment. From a nai:.hell'.at±cal 'point of. view, . in order 

to change 13 0 , the subject can eith8r change his current values 

of the apriori probabilities P (SO) and P (Sl)' or the regret 



ratio (the expression in square brackets). From psychophysical 

aspects, it is more reasonable to assume that the apriori 

probabilities \vere changed. For example, an RS subject will 

tend to increase pesO) if his last decision was AO or to 

increase P (81 ) if his last decision \vas Al (recall that 

peSO) + P(Sl) = 1). Therefore, for biased subjects equation 

(5.38) has to be modified to: 

j = 0,1 (5.39) 

For an RS subject: 

(5.40) 

and for an ALS subject: 

(5.41) 

It should be noted that the values of Kj in equation (5.39) 

are functions of the decision interval index i. 

The same arguments chat were used in developing the 

above model can be generalized to confidence rating SD experi-

ments. If there are n response categories, a Markov model 

with n states will be used. A biased subject \vill alter his 

(n-l) LRCL's in a way that is similar to the case of a single 

threshold as described above. For a particular type of decision 

maker, all LRCL's will be moved in the same direction.for a 

given previous decision. However, the magnitude of this move-

ment may differ for different LRCL's. 
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5.5 Experimental Results 

As mentioned in section 5.3, the preliminary results 

of the experiment showed that a difference in performance 

between sequential and random presentation did exist for 

both subjects. The first question to be raised concerning 

the validity of the model is whether our assumption that 

the detectability d' was almost the same for both present-

at ions is supported by the experimental results. Figures 

5.11 and 5.12 show the values of d' as a function of the 

decision interval index i for both SUbjects. As in the 

previous experiment, the linear relation seems to hold as 

follows: 

u = lid' = a + bi (5.42) 

l:he least square estimates for the parameters a and b (using 

linear regression) are shown in 'J.'able 5-1. This table also 

includes the value for the correlation coefficient p which 

indicates the "goodness" of the linear relationship: 

SUBJECT DATA a b p 

Seq. 0.44 0.29 0.98 
A.C. 

Ran. 0.36 0.35 0.91 

Seq. 0.24 0.13 0.98 
A.T. 

Ran. 0.22 0.32 0.94 

Table 5-1 Summary of Linear Regression Results 



-~J_--~ ___ l.___J_ .J ___ J .. _ .. __ L __ , 11 

146 ! il 
Iq 

1 

2 

1 

1 

FIGURE 5.11 

lid f 

El SEQUENTIAL 

o RANDOM 

2 3 4 

UNCEIlTAINTY AS A FUNCTION OF l:\TERVAL lNflEX FOR 
Ri\NDO~l A."iD SEQUEl:TIAL I'RESr::n :PONS (SUBJECT, 

El SEQUENTIAL 

o RANDOM 

o 

;,1 

~ 
~'i 

:1 
!l 
II 
'I oi j . , 

b 'I 
• 

~ 

~'.i :;! 
'i }~i 
'~")1 

.,-; 

{. 

.; 

ij 
i~~ 

.. 
i ..... j 
s 

FIGURE ~ .12 UNCERT~INTY AS A F~NCTION OF I~n:R\,AL WflEX FORitj 

P-'-G PAGE BLANK ';:'=~F'''~ '~'~"mm" ("""~':') ........ __~.Jt 



147 

Although the regression lines for random and sequential 

presentations indicate that d' ,vas almost the same for both 

presentations, a statistical test should be used. As men-

tioned in section 4.4 the use of our data processing program 

does not provide information about the variance of the com-

puted parameters d' and B. Therefore, we vlill base the 

analysis on a method that was suggested by Gourevitch and 

Galanter (1967) which provides good approximations (Marasculo, 

1970). For this analysis the data should be regrouped to a 

form with one LRCL. This can easily be done by pooling the 

"think" and "sure" decisions for both A and B. Horeover, 

since the analysis of the decision strategy is easier for 

a two state Markov model, this regrouping will be useful 

for later discussions. After" the regrollping, the experi-

mental results are defined by only two parameters: 

An approximation for the mean value of d' is given by 

(Gourevitch et aI, 1967) 

(5.43) 

where <i> is defined by equation (2.,24). It is further 

assumed that d' is a Gaussian random variable with the above 

mean (5.43) and variance: 

t 

Ii I' , 
! ; 

., 

"!' ;" 

!I 
, , 

"' 
1 

! 



I 
I 
! 

I , 

148 

PH (I-PH) 
--~---------- + (5.44) 

N
O

[ORD(1-P
H

»)2 

where NO and Nl are the total number of presentations of So 

and Sl respectively, and 

ORD(a) = __ 1 __ exp[-~;?) 
I27r 

(5.45) 

Let d'R denote the'detectability for random presentations 

and d's the detectability for sequential presentation. We 

\~ish to test the null hypothesis 

HO: d' = d' R S 

Therefore, let us define: 

Z = 
ii' - d' R S 

and the null hypothesis can be rejected with a confidence 

level of 95% if 

I z I > 1. 96 

Table 5-2 presents the values of dlR' dIs' cr 2
d 'R and 

as a function of the decision interval index for both 

(5.46) 

subjects (for NO = Nl = 60). As can be seen from the table, 

only blO out of the ten Z values shown are greater than 1.96, 

\vhile all the others are considerably less. Therefore, the 

hypothesis that dlR = dIs cannot be rejected even if a larger 

confidence level is used. 
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SUBJECT SNR 1 2 3 4 5 LEVEL 

~ 

d' R 0.890 0.840 1. 310 1.870 5.960 

~ 

d' 0.660 0.650 0.910 1. 680 3.960 
S ., 

A.C. SE2 
R. 

0.060 0.056 0.063 0.075 10 3 

SE2 
S 0.035 0.035 0.036 0.055 10 3 

Z 0.746 0.631 1. 260 0.520 "'0 

~ 

d' R 0.060 1.230 1.140 2.560 3.800 

~ 

d' S 0.900 1.030 1. 840 2.750 7.800 

A.T. SE
2 

R 0.055 0.071 0.059 0.092 10 3 

.... 

SE2 
S 0.042 0.040 0.046 0.068 10 3 

Z 2.700 0.598 2.140 0.475 "'0 

TABLE 5.2 Values found for Significance Test of 
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Now that we have sho\-Tn that the change in performance 

is essentially not due to a change in the detectability, we 

can test our model for the decision strategy. As stated 

before, the two state Markov model Ivill be used. The one 

step probability transition matrices for i = 2, ••• ,5 for 

both subjects are shown :;'n Table 5-3. In this table both 

pC(i,i-l) and ~NC(i,i_l) are shown. These matrices clearly 

shmv the tendency of the hvo subjects to repeat their pre

vious decisions even though they were wrong. Both subjects 

show a biased strategy \-Thich \-Ie refered to as RS I however, 

subject A.C. was more biased than subject A.T. It can also 

be seen that the bias effect decreases 'tlhen the S', R increases, 

so the Markov process is non-stationary. This dependency of 

C NC C NC 
P 00' P 00' P 11 and p- lIon the decision interval index i 

is shmvn in Figure 5.13. It should be noted that th:::se four 

probabilities completely define the RS bias of th= subject. 

The DR curve in the sequential presentation task in 

the PH-PFA plane are sho\'I'n for both subjects ;"n Figure 5.14 

and 5.15. Since there are only hlo states, there is only 

one pair of DR curves for each subject. Although e~ch one of 

o 0 the DR curves should be shown in a separate plane (P H-P FA 

and 1 1 p H-P FA) the same drawing was used Ivith one axis used 

for o 1 0 1 p Hand P H and the other for P FA and P FA. These two 

DR curves are referred to in the dra\~ing - &S_O (for a previous 

decision of AO) and 1 (for a previous decision All. The curves 

agree well with the theoretical curves predicted by the model 

for an RS subjact. In order to see the effect of the corre

lation, the same DR curves for the random presentation task 

l 

c< 

." 
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Subject A.T A.C 

I~ pC(n,n-1) nc ~ C(n,n-1) ~c (n,n-1) p (n,n-1) . 

'1 - ,-- - - - r-- -
0 0.94 0.06 0.93 0.03 0.86 0.14 

2 

0.03 0.97 o .J: 1 0.89 0.08 0.92 0.14 0.86 

- - - - i-- - '-- -
r--- - ,-. - ,- - - -
0.97 0.03 0.67 0.33 0.97 0.03 0.84 0.16 

3 

0.03 0.97 0.52 0.48 0.08 0.92 0.17 0.83 
'-- - ~ - t- - - -
- - ,...- - - - r- -
1 0 0.72 0.29 1 0 0.74 0.26 

4 

0 --2; :2..:.l7 O. !£ ,L ..1 &11 O.~ 
-' . 

- - ;- - - - - -
1 0 0 1 1 0 0.04 0.96 

5 

0 1 i 1 0 0 1 0.92 O. ?sj 
r- ~ i=-=' - F-- - -

TABLE 5-3 Two Dimensional Probability Transition Matrices 



i .L. J .J ... L ............. 1 J .'l 

, j 
. 

--~-. ---". 

152 
" 1 '. 

· 

r ·l 
I 

C!) CORRECT 

[!J NOT COnRECT 

P11'l 
I 

;,1 · , 

100 
,. I · , 

• • • -} 

• 

50 

'\ i 
.,:, . ' 

1 2 3 4 I 
.\ 

I .', . 

I 
I 

P 
0 

I 
j , 

100 • • 
• 
• • 

I 

50 I 
I 
I 

i 

FIGURE 5.13 TRANSITION PROBABILITIES OF THE MARKOV 

~'ROCESS AS A FUNCTION OF THE INTERVlIL 

INDEX (SUBJECT A.C) 



0.75 

0.50 

0.25 

FIGURE 5.14 

0.75 

0.50 

0.25 

153 

GIVEN A 

0.25 0.50 

o SEQUENTIAL 

b, RANDOM 

0.75 

CONDITIONAL DR CURVES FOR SEOTJENTIAL AND 
RANDOM PH.ESn:TATIONS. SGBJECT A.C 

GIVEN A 

0.25 0.50 

o SEQUENTIAL 

b, RAND0l1 

0.75 

FIGURE 5.15 CONDITIONAl. DR CURVES FOR Sl>QUENTIAL AND 
RANDOH PRESENTATIONS. SUBJECT A. T 

t 
I 



J 

154 

are also shOlvn in figures 5.14 and 5.15. These curves show 

that the strategy of the same subjects I \-Ihen the correlation 

\.as eliminated I \'as unbiased. 

Since in our experiment the subject had four response 

categories, a four state ~1arkov model can also be 

applied. Hmvever the larger number of states has some dis-

advantages: 

1. The number of decisions that were collected 

per state \.ill decrease by a factor of two. 

Since we used a small number of decisions, 

the data collected might not be sufficient 

for statistical analysis. 

2. Since there are hlO states of the world and 

four Markov states, there are three different 

LRCLs. One LRCL is actually separating the 

st,ates of the \.orld I \,lhi1e the other two 

represent different confidence levels for 

each of the two states of the world. 

In spite of these disadvantages, the four state analysis 

was carried out using the following notation: 

Rl The decision is Sure So 

R2 The decision is Think So 

R3 The decision is Think Sl 

R4 The decision is Sure Sl 

I .. 

,~ 
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13 1 Threshold between Rl and R2 

13 2 Threshold between R2 and R3 

13 3 Threshold bebleen R3 and R4 

Tables 5-4 and 5-5 show the one step probability transition 

matrices for both subjects for i = 2, •.. ,5. 

These tables show again the RS bias of the two subjects 

when they I"ere in one of the two sure states Rl or R4 . For 

the two think states R2 and R3 1 the tendency to repeat the 

previous decision Ivas Iveaker. When they did not repeat their 

think decision, they changed it to the sure decision for the 

same states of the world even if this state of the world was 

not correct and even though the SNR had increased. This can 

be explained as a result of the subject's knowledge that a 

think decision should be followed by a sure decision, other-

wise they are admitting an error. 

Since this is a four state model, there are three LRCLs 

and six DR curves for each subject (two DR curves for each 

LRCL). Figures 5.16 and 5.17 ShOl'1 the tlVO DR curves that 

are related to f3? for each of the sUbjects. In these curves, ,. 

the same RS bias that was implied by the two state model is 

exhibited. The DR curves given Rl and R2 are closer to the 

line pOR = 1, w~ile the DR curves given R3 or R4 are close 

to the line plFA = O. 

In Figures 5.18 and 5.19 the DR curves that are related 

. to the LRCL 13 1 are shol'1n. The DR curves given Rl , R4 and R3 

i 
~ , , 
~ 
i 

I 
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C 
~ (n,n-l) ~NC(n,n_l) 

n 

- ~ 
-

1 0 0 0 0 0 0 

n=2 
0.175 0.8 0.025 0 0.223 0.629 O.Ll 0.037 

0 0.083 0.652 0.265 0 0.166 0.727 o .ll::: 

0 0 0 1 0 0 0 1~ 
- - --

:--
0.875 0.125 0 0 0.875 0 0.143 0 

n=3 
0.725 0.25 0.025 0 0.434 0.392 0.174 0 

0 0.1 0.12 0.78 0 0.23 0.192 0.577 

0 0.04 0 0.96 0 0 0 1 

- ---' 

1 0 0 0 0.75 0 0.125 0.125 

0.882 0.118 0 0 0.601 0.133 0.133 0.133 

n=4 0 0 0 1 0.17 0.17 0.33 0.33 

0 0 0 1 0 0.044 0.174 0.782 

- .-

-
0. 818 1 1 0 0 0 0 0.046 0.136 

1 0 0 0 0 0 0 1 

n=5 0 0 0 1 1 0 0 0 

0 0 0 1 0.88 0 0 0.12 

- -

TABLE 5-4 Probability Transition Matrices for Subject A.C 

J 
- , 
-~ 

-
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.1=2 

n= 3 

:1= 4 

.... 

11= 5 
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. 

~C(n,n-l) p NC (n,n_l) 

. 

,.-- -
0 0 0 0 0 0 0 0 

0.364 0.636 0 0 0.059 0.882 0.059 0 

0.026 0 0.781 0.253 0.02 0.078 0.902 0 

0 0 0 0 0 0 0 1 
I p 

r-

1 0 0 0 1 0 0 0 

0.8 0.16 0 0.04 0.357 0.215 0 0.428 

0.017 0.017 0.078 0.896 0.288 0.244 0.156 0.342 

0 0 0 1 0 0 0 1 

--
1 0 0 0 0.9 0 0 0.1 

0.615 0.385 0 0 0.25 0 0 0.75 

0 0 0 1 1 0 0 0 

0 0 0 1 0.5 0.25 0 0.25 

1 0 0 0 0 0 0 1 

0.4 0.6 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 1 0.5 0.5 0 0 
'-'--

.. -
TABLE 5-5 Probability Transition Matrices for Subject A.'f 
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are similar to the ones for B2 , However, the DR curve given 

R2 shows different bias, This bias can be explained by 

recalling that Sl represents a threshold between two confi

dence levels of the subjects and not bebleen the t\olO states 

of the ,~orld, so the bias is expressed by moving S2 rather 

than 81 , A symmetric phenomenon exists for DR curves related 

to S 3 which are s .. own in Figures 5,20 and 5,21, The DR 

curves given R1 , R2 , and R4 are similar to the ones for Bl , 

while the DR curve given R3 shm~s the same bias as in R2 

for S l' 

The location of these six DR's show that all of them 

are shifted according to the bias of the decision maker, but 

the magnitude of the shift is different for different LRCLs, 

!:--
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CHAPTER VI 

DETECTION OF A CHANGE IN RANDOM PROCESSES 

6.1 General Discussion 

In the previoL1s chapters ,~e dealt with detection tasks 

which required a decision after each observation. However, 

in some tasks the observation rate is too high (the observation 

might be continuous at the extreme) so that the decision maker 

is allowed to delay his decision and take more observations 

until he collects enough information to make a decision. In 

binary decision tasks of this form, the decision maker is 

told to use t\~O CLs as ,,ras the case in the experiments that 

~Iere described in Chapter 4; hm-Iever, instead of giving 

"I do not knO\~" as a decision, he takes another obse.l"vation. 

A typical case of a deferred decision situation is the 

task of failure detection. In such cases the observation 

gives the subject information about the state of some oper-

ating system. The decision maker must decide on the basis 

of this observation \~hether the system is operating in its 

no~-mul mode HO or in the failure mode HI' The subject is 

free to take more than one observation before making a 

decision, but he is asked to minimize the time behlcS!n 

the occurance of the failure and its detection. 

Since the observation under both modes of operation 

is a stochastic process, it is assumed that ~he detection 

process consists of tIVO steps. In the first step the 

I 

I 
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subject tries to estimate the statistical parameters of 

the observation, and then on the basis of his estimates, 

he makes the decision. 

The next two sections in this chapter include a 

short discussion of linear estimation theory and sequential 

analysis "'hich provide the theoretical basis for our model. 

The model itself is described in sections 6.4 and 6.5. 

The last tlvO sections deal 11i th the experiments that Ivere 

run to verify the validity of the model. 
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6.2 Linear Estimation 

• 
Estimation theory deals with the problem of obtaining 

the best estimate, in some Ii;ense, of a process ~lhich cannot 

be exactly measured because of the associated measurement 

noise (Lee, 1964). If the statistics of all noise sources 

are completely known, the problem is sometimes referred to 

as Bayesian estimation (Schweppe, 1973). Linear estimation 

is a special case in which the estimates are constrained to 

be linear functions of the measurements. The most common 

criterion for optimality in the linear Bayesian problem (LBP) 

is the minimization of the mean square error. 

There have been two approaches to the LBP which lead 

to the same solution, and the corresponding numerical effort 

was basically the same (Kailath, 1974). The first approach 

is the so called Wiener filtering theory (Wiener, 1949) in 

which the information about the signal to be estimated is 

given by its covariance matrix. The secon~ and more recent 

approach is that of Kalman filtering theory (Kalman, 1960) 

in which the signal is represented as the output of a dynam-

ical system which is driven by a white process. Because of 

the identical results of the two methods and the equivalence 

of their numerical difficulty, the choice between the two is 

usually bas8d on the way in which the problem at hand is 

posed. Since in our case the dynamical model or the "shaping 

filter" of the signal is known, it would be practical to use 
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the second met..hod, namely ·the Kalman filter (Kalman, BUcy, 

1961). 

Therefore let us assume that the signal to be estimated 

~(t) is given by 

~(t) = H(t).?!(t) (6.1) 

where x(tl is the state vector of the shaping filter given by 

. 
x(t) = F(tl.?!(tl + G(t)~(t) (6.2) 

Here ~ (tl is a zero mean I'Thi te process I'li th covariance matrix 

and H(t), Fet), G(t), and ott) are known matrices. Also the 

first and second order statistics of .?!o are given by 

and ~U and ~(t) are uncorrelated: 

The solution to (6.2) is given by (Deyst, 1972): 

~(t) = ~(t,tO).?!O + 
t 

t J ~(t,T}G(T)u(T)dT 
o 

(6.4) 

~lhere ~ (t,tO) is the state transition matrix which satisfies 

• 
.p(t,tO) = F(t)~(t,to) 

The observation vector yet) is expressed as 

z(t) = H(t).?!(t) + "y(t) (6.5) 
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"There v (t) is the observation noise '''hich is assumed to be 

a zero mean white process with covariance matrix 

R(t)1l (t-s) (6.6) 

and it is also uncorrelated to the process noise ~(t) and 

to ~O 

" The optimal estimate of the observation ~(t) is then (Deyst, 

1972) 

" " Z(t) = H(t)~(t) (6.7) 

" where x(t) is the state estimate given by the differential 

equation . 
"" " x(t) = li'(t)~(t) + K(t) [y(t)- H(t)~(t)J (6.8) 

The term in the square brackets is referred to as the 

measurement residual, and K(t) is the Kalman gain: 

K(t) = P(t)H(t)R-l(t) 

P(t) is the error covariance matrix of the state, namely, 

which is the solution to the Riccati equation: 

P(t) = p(t)P(t) + p(t)pT(t) + G(t)Q(t)GT(t) 

~(t)HT(t)R-l(t)H(t)P(t) 

with 

(6.9) 

(6.10) 

(6.11) 
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Equations (6.7) through (6.11) are the equations of the 

continuous Kalman filter and their recursive characteristics 

makes them easily adaptable to solution on a digital 

computer. 

In most practical cases the observation are taken 

in a discrete manner rather than continuously. Also, because 

of the use of a digital computer, even the state equation 

must be transformed into its discrete form. Therefore the 

optimal filter is the solution to a set of difiference 

equations rather than differentLal equations. The trans-

formation must be carried out carefully because of the 

stochastic nature of the problem. Hore details about the 

practical implementation of the filter are given in 

Appendix B. 

A special case of equations (6.8) through (6.11) is 

the time invarient case, for ,,;hich the matrices H,F,G,Q, 

and R are time invariant. The filter will still be time 

varying b~cause of the variation of the gain K(t) through 

the covariance pet). HO\~ever, if the system given by 

equation (6.1) and (6.2) is completely controllable and 

observable and if Q > 0 and R > 0, the covariance matrix 

will reach a steady state value Pss (Sc!lWeppe, 1973). 

This value can be evaluated as the positive definite 

solution to (6.11) under the stationary assumption: 

. 
P (t) : 0 (6.12) 

", ~ 
" 
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J 
'1 , 



1 j 
168 

l ';1 

1 , l 

The filter then becomes a time invariant system. It is 
'i 

" 

interesting to note that the steady state requirements do -, 

not include the stability of the original system (6.2). " 

, 
';'; 

The quant.ity in the square brackets in equation (6.8) 

.j 

A 

E. (t) = x..(t) H(t)~(t) (6.13) ;;j. 

has an iml?ortant role in filtering theory. I'le referred ,to it 

as the residual, but it is also called the innovation, the 

nm., information, "or the measurement error. It can be shown 

(Deyst, 1972) that this residual is orthogonal to all the 

~l :~' 

i 

fl 
Ii 
~I 
~: , 

past measurements. This means that the filter gleans all 

the nel1 information out of each measurement. Also, it has 

; I 

~ 
'~,:i 
I 

been shown that the residual is a zero mean white process ,~ 
f1 

(Kailath, 1970) with covariance }i 
ij 
'}.' 1 

~l! 
.!' 

(6.14) ,,;.' 

• " 

This property of the residual is used for evaluation of the 

system model or the implemented filter algorithm. 

Up to this point nothing has been said about the dis-

}l i} 

jj 
'I ','r 

i 
?:, 

tribution functions of the stochastic processes involved; 
D 

, 
y , 
" 

f. 
only the first and second order moments were used. This is t, 

",~ 
a result of the mean square error criterion and the'linearity ':1 

''{J 

'. , 
constraint on the filter. Under these conditions only first 

and second order statistics are needed to obtain the best 
Ii i1' 

, 

linear filter (Vander Velde, 1972). If, however, all the 

I',hi te processes are assu'TIed to be Gaussian, then, b",cause 

Gaussian random variables are invariant under linear trans-
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" " formations,~(t), ~(t), and ~(t) will also be Gaussian. 

Furthermore, it is possible to show that x(t) given by (6.8) 

is also the conditional expectation estimate (Schvleppe, 1973). 

Therefore, for Gaussian processes the Kalman filter is not 

only the best linear filter but also the best possible filter. 

Since in our application the Gaussian assumption is used, 

we will refer from here only to the Gaussian case. 

As stated before, if the system model is correct, the 

residual ~(t) vli11 be a zero mean white Gaussian process. If 

the system is time invariant and controllable and observable, 

the filter will achieve steady state and ~(t) becomes a 

stationary Gaussian process with covariance: 

(6.15) 

Let us assume now that a failure has o~curred in the system 

so that the measurement ¥. (t) is nOvl 

¥.(t) = H~(t) + 2(t) + m (6.16) 

rather than the value given by (6.5). Furthermore, let us 

assume that the adJ .tional signal ~ in (6.16) is a deterministic 

constant. Since m is deterministic it vlill not affect the 

covariance of either~(t) or ~(t) but ,viII certainly alter 

their means. Because the filter is linear, the superposition 

" property can be used to find the change in the means of ~(t) 

and ~(t) by computing the response of the filter to a step 

. 

( 
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:liunction with magnitude m. As the filter has already reached 

its steady state, the Laplace transform can be used. Trans-

forming equation (6.8) we get 

" = [F - KH]~m (S) + Km(S) 

where Xm is the Laplace transform of the state estimate due 

to malone. Now let 

x = 0 
-lIlO 

~ (S) 
1 

= s~ 

then 

. &n(S) = lSI - F + KH)-lK(l/s)m (6.17) 

and the residual due to m alone is 

. f.m(S) = (l/S)~ - HX(S) = {I - H[SI - F + KH]-lK}(l/S)~ 

(6.18) 

In particular, the steady state value of the is given by m 

E = liD {I - H[SI - F + KH]-lK}m 
-mSS S .. O 

(6.19) 

From equation (6.18) it is clear that, after the filter has 

reached steady state with respect to the failure, the new 

residual will be a white Gaussian process \.,ith mean' E 
mSS 

and covariance given by (6.15) 

The detection of the failure can be accomplished on 

the basis of the change in the residual mean. The problem is 
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that of discriminating bet\-leen two Gaussian processes with 

equal variances but unequal means. A possible method to 

perform such discrimination is described in the next Fection. 
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Sequential analysis deals with those cases of hypo

thesis testing for which the sample size is not fixed, 

namely, the decision maker is fr,ee to take as many obser

vations as he wants before making a decision of some 

prescribed confidence. The mathematical theory of the 

optimal strategy in such situations is usually associated 

with the name of Abraham Wald (1949). The use of this 

method in the analysis of signal detection experiments 

'~as suggested by Birdsall et al (1965), and later by 

Phatak et al (1972) and Sheridan and Ferrell (1974). 

For simplicity, but without loss of generality, let 

us assume that the decision task is to test. between two 

hypotheses HO and HI' Two further assumptions will be 

made: 

1. The hypotheses to be tested are simple 

hypotheses. This means that under either 

hypothesis the der,sity function of the 

observed random variable is completely 

known. 

2. The observ~tions that are made are 

independent. 

j 

Under those assumptions the problem is forIDulated as follows. 

Let x be a random variable whose density function is given 

by 

1\ 
:;: 
-", 
,c· 

~, I 
,:j - , 
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Under hypothesis HO - f(x,6 0 ) 

under hypothesis HI - f(x'?l) 
(6.20) 

where Sl and So are two values for the distribution parameter S. 

Now assume that m observations have been made with the random 

variable taking the values xi' i = 1,2, ••• ,m. Then the like

lihood of hypohtesis HO given m observations is defined by 

p = Om 

m 
11f(x.,SO) 

. 1 1. 1.= 

and the likelihood of hypothesis III is 

P lm = 
m 
11 f (x. '01) 

i=l 1. 

(6.21 ) 

(6.22) 

since the test of a simple hypothesis (Hl ) against another 

simple hypothesis (HO)' the Neyman Pearson I,emma (Hoel, 1971) 

suggests the use of the likelihood ratio 

(6.23) 

to decide b~tween Hl and HO' The idea of using the likelihood 

ratio a~ the decision function is similar to its use in class-

ical SDT. There the decision is done by choosing one LRCL S 

and deciding 

In sequential analysis two ~RCL's A and B are set so that 

the decision has three possible outcomes: 

1 

'11 
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Hl if Plm/P Om > A 

HO if Plm/P Om < B 

I 

3. Continue the observation if 

B < P, /P O < A _m m 

1 

(6.24) 

The next problem is to choose the LRCL in some optimal 

way. Intuitively it would seem desirable to choose the two 

LRCLs A and B in such a Ivay that vlOuld relate them to some 

prescribed values of the tvlO types of error defined as: 

probability of rejecting HO when HO is true 

Pmiss - probability of accepting lID Ivhen HI is true 

The values of these two errors are predetermined by the 

decision makbr. Unfortunately the exact functions 

are not available. H.owever, very good approximations were 

found by Wald (1947). These approximations are 

(6.25) 

The use of equations (6.24) and (6.25) is referred to as 

the sequential probability ratio test. 

Some advantages of this test are: 

1. There is no need to derive the density function 

of a statistic such as t or F to carry out the 

test. 

I .1 . .:j 
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2. The desired size of the t\vO types of error can 

be chosen apriori to the test. 

3. Although the number of samples needed to 

terminate the process is a random variable, the 

mean of this random variable can be computed. 

It i~ our interest to use this sequential ratio test 

for detection of failures in linear systems driven by white 

Gaussian process. It has already been shown in the previous 

section that if the detection is based on the first and second 

order statistics of the residuals of the optimal filter, the 

problem is that of testing behleen bvo sta·tionary Gaussian 

processes \vith equal variances and different means. Next 

\'le shall find the LRCLs for this special case. 

For the above problem the density functions under the 

two hypotheses are 

under HO - f(x,,6) = 1 exo{_l (x. - 8 )2} 
~ I21r' -2 ~ 0 

under Hl - f(xi,S, = 1 exp{-~ (Xi - Bl)2} 
127i' 

(6.26) 

Substituting in equation (6.23) using equations (6.21) and 

(6.22) 

m 
11 

i=1 

using this expression in (6.24) 

B < 
m 
1: (x. -

1=1 ~ 

m 
1: (x. -

i=1 ~ 
< A 

.\ 

"'. 

s 
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m 
BO)E x. + (6 0

2 
-

. 1 ~ 
~= 

A 

Taking logarithms and substituting for the values for A and B 

Therefore if 61 > 6 0 the decision would be 

choose HO if 
m 
E x. < 

i=l ~ 

l-P . 
< ln m~ss (6.27) 

PFA 

(6.28) 

Choose Hl if 
m 
l:: x. > 

i=l ~ 

and continue if (6.28) is not satisfied. If 81 < BO' the 

decision would be 

choose HO if 

choose Hl if 

m 
l:: x. > 

i=l ~ 

m 
E x. < 

i=l ~ 

1 l-P. 
{ m~ss - e -6 ln + (6 1+6 0 )mj2} 

1 0 PFA 

and continue if (6.29) is not satisfied. These decision 

regions for both cases are shOl~n in Figures 6.1 and 6.2. 

(6.29) 

The above basic theory has to be modified if it is to 

be applied to modelling failure detection mechanisms. Since 

the theory is limited to the testing of simple hypotheses, 

the values of 60 and: Ell should be completely knOl-m apriori 

-to the test. In failure detection, the value of 60 (the 

normal mode) is kno,m, however the value of Bl .(the failure) 

b , 
, , 

··.·.·····.·1' 

'. 

~' 
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is not known. A solution to this problem Vias suggested by 

Wald (1949). His suggestion \·ias to choose on the basis of 

the physical properties at hand, an artificial parameter 8
1 

that would replace 61 in equation (6.27) . 

A more severe difficulty is that in the basic sequential 

test no transition of modes is assumed to occur during the 

Vlr.ole observation process, while the failure detection task 

is characterized by such a transition. A method to overcome 

this difficulty \~as suggested by Chien (1972}. His idea is 

based on the fact that in f~ilure detection tasks, a decision 

in favor of the normal mode leads the subject to take more 

observations Rince he is not asked to report when the systell' 

is in its normal mode. Therefore, a suboptimal strategy 

would be to reset the decision function to its initial value 

whenever the current value is in the region indicating that 

the normal mode is more likely (the shaded area in figures 

6.1 and 6.2). In this way, when a failure does occur, the 

number of observations required to drive the decision function 

into the failure region is less than if there had been no 

resetting (Chien, 1972). Therefore, this resetting helps to 

reduce the time bet\~een the onset of a failure and its 

detection and thereby eliminates the effect of the unknown 

transition time. 

i:j 
• J , , 

~, ' 
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From a system engineer I s point of Vie\'l, the resetting 

procedure is equivalent to the addition of a feedback loop 

to the decision mechanism. The decision function is defined 

(equations (6.28) and (6.29)) as: 

l'(m) = 
m 
E 

i=l 
X. 

J. 

or in a recursive form: 

'X (m) = X' (m-l) + xm 

By employment of the resetting, the modified decision 

function is 

A (m) =A (m-l) + x + S m m 

\'lhere sm is the feedback. Let i;b be defined as 

S 
(SO+Sl)m 

= b 2 

(6.30) 

(6. 31) 

then from equations (6.28) and (6.29) sb is the border between 

the normal and failure mode.; (see also figure 6.1). Therefore 

the value of Sm in equatio~ (6.31) for 61 > 60 is 

i;m = 0 if A (m-l) + xm > sb 

i;m = sb-A(m-1)-xm if A(m-l) + xm < Sb 
(6. 32) 

and for 81 < eO is 

.' . ~""<" , .... ,' ~,-.,-; 

l 

1 

i 
i 
tl 

1 r -.,."u··,., 

~, 
-

~ 
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Sm = -~b - A(m-l) - xm 

Sm = 0 

A(m-l) + xm > -sb 

A (m-l) + xm < -sb 
(6.33) 

The effect of the feedback on the decision function is shown 

in figure 6.3. When the mc.di:t:;ed decision function A(m) is 

used, only one CL is needed since the CL for the normal 

mode I·lill never be met due to the feedback. However if the 

same CL that was suggested by Wald (equation 6.25) is used, 

more false alarms should be expected due to the feedback. 

In order to keep the same mean time between tl~O false alarms, 

as in the original sequential test, the CL A in equation 

(6.25) should be modified to Al' where Al is given by the 

solution to the following equation (Chien, 1972): 

A···· 1 = - [lnA + 1- .:-a1nB ) (6.34) 
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6.4 A Model for Decision Strategy 

The discussion of estimation theory and sequential 

analysis in the iase two sections provides the basis for our 

model of the human operator in failure detec"ion tasks. 

Let us assume that the process which is displayed to 

the subject is unidimensional, namely .!:(t) in equation (6.1) 

is a scalar. As the subject Observes zit), his observations 

are corrupted by additive noise vet) ,\'hich is modelled as a 

zero mean white-{;aussian process (Levison et .;;1, 1969). Thus 

the input to the failure detection system yet) can be described 

by equation (6.5). Since this input is a stochastic process, 

the detection system is assumed to consist of tvlO stages; 

linear estimation and decision mechanism (Levison, 1971; Phatak 

et aI, 1972). The functional block diagram of the detection 

system is shown in figure 6.4. 

z (t) +;;. Y (t) linear decision Decision 
estimation mechanism 

+ T vet) 
Detection System 

Figure 6.4 Functional Block Diagram of necision 

Me.chanism 

We '''ill now assume that the matrices "E' (t), G (t), and 

H(t) in equations (6.1) and (6.2) are knovm, so that the input 

... ~~ 

~.;.j.·I· 
'/ 

~\ 

i) , 

,. 
~r 
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y(t) is given by the state space description of the "shaping 

filter" • Therefore, the overall optimal filter (recall that 

z (t) is Gaussian) , is given by equations (6.7) through (6.10) , 

and its block diagram is shO\~n in fiC:"lre 6.5. As seen from 

the block diagram the Kalman estimator is a linear system 

of the same order as the shaping filter. If the shaping 

filter is of high order, it is re~sonable to assume that 

a 101'1 (second or third) order approximation lvill suffice 

for the human operator. As the estimator \Vill also be of 

this order, it could be implemented easily. If the con

ditions that were specified in section 6.2 hold, the esti-

mator \Vill also be a.time invariant system. This means 

that the data processing done by the subject prior to the 

decision mechanism is equivalent to low pass filtering. The 

linear estimation approach 'rovides us \Vith an elegant way 

to define til "trameters of this 10\~ pass filter. 

Since both the shaping filter and the estimator are 

linear and the input is zero mean Gaussian process, both 

the state estimates anr'! the observation estimate are zero 

mean Gaussian processes, and both can be used as inputs to 

the decision mechanism. It seems more reasonable to use 

the observation estimates in the model for the follo\Ving 

reasons: 

1. The states are abstract non unique variables 

that can be defined in different ways while 

the observatic:l is unique and \Vell defined 

for the sUbject. .

••. t.:·.,.ll 

I.~ 
r.l ......... ,.f.' .•. ; ... l 
tl~l 
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2. The dimension of the state is usually larger 

than the dimension of the observation so that 

using the observation estimates simplifies the 

decision algorithm. 

It is further assumed that the input to the decision mechanism 

is the observation error (residual) rather than the observation 

itself. Th~ reasons for this assumption are: 

1. The error is more sensitive to the effect of 

failure than the observation estimate (Schweppe, 

1973). 

2. The observation error is a \~hi te Gaussian 

process, so successive observations are in-

dependent. 

Once the observation residual is used as the input to the 

decision mechanism, tile question of the dimension of the 

observation arises. Although only a scalar observation 

(position) is directly presented to the subject, there is 

some evidence to claim that independent direct measurements 

of the rate are also taken. This claim is supported by the 

fact that in some animals there are cells that are sensitive 

only to the rate of the input. Also, in the mod~l of the 

hQman operator as a controller (Kleinman and Baron, 1970), 

the addition of the rate con,ponent improved the fitting 0'" 

the model to the experimental data. In our model the addi-

tion of direct rate measurements did not improve the results, I 
t 

1 
.\\ 
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but only complicated the decision algorith~. Therefore, we 

decided to use a scalar (position) measu.rement. 

since the covariance of the residual is also known 

(equation (6.15», the actual input to the decision mechanism 

is the normalized residual. Therefore, for the normal mode, 

the residual is a zero mean white Gaussian process with unit 

variance; and, for the failure mode the residual is also a 

,.hite Gaussian process with unit variance but with a specified 

mean. 

Our first approach was to base the decision on the 

instantaneous values of the residual. Hm'lever, checldng the 

value of the residual at the particular time \'lhich the subject 

pressed the button (minus his reaction time) showed that this 

value did no';; have any special property that would explain why 

the detection occurred there. 'rherefore, we ,~ssumed that the 

decision \vas based on the accumulated information and decided 

to use the sequential analysis. 

Let E. be the value of the residual at the observation 
1. 

interval i, and let us assume that the failure is positive in 

sign, Le. 

m (t) > 0 (6.35) 

then by addin';! the bias term in equation (6.28) to the decision 

function in equation (6.30) 

'), 

X(m) = 
m 
E (E:. 

. 1 1. 1.= 

- i; ) 
b 

(6.36 ) 

',1 
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\>lith the resetting feedback the decision function takes the 

form 

A(m) = J:(m) 

A (m) = 0 

if X'(m) > 0 

if '" X (m) < o 

where X'(m) is given by the recursive equation 

(6.37) 

A block diagram of the decision mechanism is shol·m in figure 

6.6 ,qhere the CL Al is defined by equation (6.34). 

In real life detection tasks, assumption (6.37) cannot 

usually be made because the sign of the failure is not known 

apriori. Even in predcsigned experiments it is preferred 

that the sign of the failure not be known to the subject 

apriori. The reason is that this ullcertainty prevents the 

subject fr~m guessing if he has to identify the sign of the 

failure in addition to detecting it. Therefore, we assumed 

that the decision maker is actually involved with the following 

two simultaneous hypothesis tests. The first is: 

H+ 
1 

E (tj = m(t) > 0 

HO E (t) = 0 

and the other is 

HI : E(t) = -m(t) 

HO : E (t) = 0 

For the first test the decision function is defined by 

equation (6.37) ,qhile for the second test the decision function 

is 

;,< 
I', 
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= 3: (m) 
(6.38) 

,.;here 3:- (m) is given by the recursive equation 

(6.39) 

A block diagram of the complete model for the decision 

mechanism is shmm in figure 6.7. 

A simulation of the model for a process that is the 

ou~put of a second order shaping filter with 

1; = 0.7 '';0 = 4.24 

was implemented. Th~ performance of the model for four levels 

of step failures is shown in figure 6.8. Since the detection 

time td is a random variable, both its mean and variance are 

sho,.;n (computed on the basis of 40 samples). 

The sensitivity of the mean detection time to several 

~arameters of the model was also studied. Figure 6.9 shows 

the sensitivity to the value of the t,.;o types of errors Pmiss 

and PFA• The curves show a strong decrease in the mean detec

tion time ,.,hen the value of these errors is increased. Figure 

6.10 shows the sensitivity to the parameter that defines the 

fai~ ·lre Ell' An increase in Ell decreases the mean detection 

time. Finally, figure 6.11 shows the sensitivity to the ratio 

between the variance of the observation process cr~ and -the 

variance of the measurement noise. 'Phe effect of the measure-

ment noise is minimized due to the good performance of the 

filter. 

" , i. 
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6.5 Closed and Open Decision Intervals 

In the model that \'las discussed in the previous section, 

a basic o.~sumption was that the decision maker is free to 

take as many observations as he needed so that the length of 

the decision interval depe:·.ed only on his per:ormance. We 

will refer to such decision intervals as open decision intervals. 

However, in many real life situations, the observation 

interval is limited because the observed process has a pre-

determined finite duration. For example, consider the human 

operator whose task is to monitor the airplane instruments 

during the final phase of an automatic landing. vie will 

refer to these types of observation intervals as closed 

decision intervals. 

It is obvious f,om out discussion of sequential analysis 

(section 6.3) that the classical theory does not apply to such 

closed decision interval tasks, and some modifications must be 

made. In particular, in the classical sequential analysis, it 

is assumed that the value of the probability of the two tyPp.s 

or error, P. and P""A' are kept constant during the \o1hole 
m~ss " 

observation interval. However, when the observation interval 

is limited, the subject might consider changi~g these probab-

ilities (Birdsall et aI, 1965). In the exp~rimBnt that is 

described in the, next section, the subject was told apriori 

that a change must occur within each interval. Therefore, it 

seems r~asonable to assume that as time goes by the subject's 

vdllingness to accept the hypot.hesis HI will i'.lcrease. This 

1 
1 
l 
.I 
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means that the subject is increasing PFA with time. This time 

dependency of PF.l\ can take several functional forms. Ive ob

tainr,d the best fit to the subject's data when the fo1lol,7ing 

relationship 11as used: 

PFA (i) = PFA (T) (1 + tanh (I2 - 5» i = 1,60 

,.here i is the observation index. This time depenuency is 

shown in figure 6.12. 

1· - (T) 
FA 

L----===:;:::=--------·II-----'ll>-
30 60 

Figure 6.12 Tum DEPENDSNCE OF f-FA 

Figure 6.13 shmlS the performance of the model that is des-

(6.40) 

cribed in the previous section l'li th the modification of equation 

(6.40). The failures are four levels of step failures equi-

valent to the ones that were used to produce the data for 

figure 6.8. i\1hen compared to the open interval r",sults I these 

results show a decrease in the mean detection time; however, 

this decrease is at the expense of an increase in PFA • 

I 

I 
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6.6 Experimental Method 

6.6.1 Apparatus 

Again, the Adage Model 30 graphics computer was used 

for the simulation and display of the observed variables. The 

computer function switch box was used as a control by the 

subject to make his decisions. 

The displayed information included two fixed cursors 

that indicated the horizontal (x) axis. Also, a horizontal 

bar :represented the displacement of the process to be monitored 

from the x axis (see figure 6.14). This displacement z(t) 

was a zero mean Gaussian process which was generated by driving 

a time invariant second order system with a white Gaussian 

sequence. The transfer function for the second order system 

was 

G (s) = 1 (6.41) 

where 

I; = 0.7 '''0 = 4.24 

The covariance of the white sequence was chosen in such a 

,,,ay that the s·teady state standard devia·tion of the observed 

variable 'vas 1/16 of the display height. The continuous 

process was approximated by its discrete equivalent at a time 

i~terval of 0.2 seconds (see Appendix B). 

The failure in the process was defined by a change in 

the mean of z(t), and this change was adC:ed directly to the 
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output of the system so that the states of the dynamic system 

remained unchanged. Therefore in the normal mode HO' the 

output was a Gaussian process with 

H : ~It) = 0 cr It) = L/4 o z 

,.here L is the display height. In the failure mode z It) was 

a Gaussian process with 

6.6.2 Subjects 

cr (t) = L/4 z 

T,vo subjects participated as observers in the experi-

ment. Both were graduate students in the Man-Vehicle Laboratory 

and were familiar with decision analysis terminology. Their 

participation was on a voluntary basis, and no rewards were 

given on the basis of performance. 

6.6.3 Procedures 

All of the experimental sessions consisted of 160 

observation intervals. In each interval the subject made a 

single decision. The subject sat in front of the display 

while holding the function s\.itch box in his hand. Every 

observation interval started with the process in its normal 

mode (HO)' Failures (changes to HI mode) occurred in each 

interval, and the time of occurance was determined by a 

random number generator. The generator picked with equal 

probabilities one of the follO\'ling four values for t f (seconds) 

3.50 3.75 4.25 4.50 

.·.·1· 
, 
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The subj ect 's task \vas to indicate as soon as poss ible whether 

he had perceived a change. 

Closed and open intervals were used in different expe,d-

mental sessions. In the closed interval sessions, tennination 

of the observation occurred after exactly ten seconds. In I:he 

open interval sessions, the termination occurred immediately 

after the subject made his decision. For both sessions, each 

observation interval '"as follo\'led by a tvlO second blanking 

period, after which a new observation was started. 

To minirr.ize subject guessing, he was asked to use blo 

push buttons: to press one when the change in the mean \vas 

positive and the other when the change in the mean \vas neg-

ative. positive and negative changes in the mean had the 

same magnitudes, but the opposite sign, and each happened 

with equal probability. 

In each interval, one and only one change occurred, 

and the subject vias made aware of this fact. He was also 

told that he had only one chance to make a decision, and 

he \vould not be allowed to change his mind after he pressed 

one of the bu !:tons. The level of the change (i. e., the 

magnitude of m(t» had four different values, so that 

four levels of difficulty or SNR were presented. The appear-

ance of each level \'las equiprobable and was determined by 

a random number generator. 
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Each of the subjects participated in three different 

sessions. In the first session, the length of the observation 

interval "as open, i.e., the observation Ivas terminated only 

after the subject pressed a decision button. 

the process was a step function so that 

The change in 

m(t) = C. 
J 

j=1, ••• ,4 (6.42) 

where 

As stated before each of.the Cj could be positive or negative 

with equal pr(",bability. In order to prevent the subject from 

making his decision on the basis of the instantaneous jump, this 

jump was replaced by a one second ramp that. Changed z(t) from 

zero to Cj . It should be noted that this transient time 'vas 

short compared to the average decision time. 

In the second session, the same failure modes that are 

described above were reused. HOl.'lever, this time the length of 

the observation interval was fixed to 10 seconds. The obser-

vations were not terminated when detection occurred, and the 

system operated in the failure mode until the end of the 10 

second period. 

In the third session, the length of the observation 

interval I"as free again, hOI-lever, the changes in the mean of 

z (t) I-lere ramp functions, so: 

j=I, ••• ,4 (6.43) 
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Before the beginnin~ of each session, a standard set 

of instructions \~as read to the subj ects. They were told 

that they were allowed to make only one decision per interval 

and that a change definitely occurred in each interval. They 

were also told that there \~ere four levels of failure and 

all levels, as well as their signs, are equiprobable. The 

subjects were not advised what value of Pmiss or PFA to use; 

however r they \~ere told that the penal ties and rewards were 

the same. 

After the instructions, the normal mode was presented 

to the subjects until they declared that they were familiar 

\~i th .the process. Before the second session, the normal 

mode \~as shown in intervals of ten seconds to acquaint the 

subjects with the fixed interval length. Then some samples 

of the failure mode \~ere shown. This \~as followed by still 

another observation interval in "lhich there \.;as no change 

from normal mode to further increase their familiarity with 

this mode before the detection intervals started. 
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6.7 Experimental Results 

Ps stated in the previous section, the experiments were 

divided into three different sessions. In the first session, 

four levels of step failures wi 1 open observation intervals 

were included in the presentation. The mean E(d
t

) and the 

standard deviation 0td of the detection time for both 

subjec·ts are sho~m in Table 6.1 (j - level of failure, see 

equation (6.42». 

Subject j 1 2 3 4 

E ltd) 20.90 11. 50 5.15 4.17 Seconds 
Otd 10.00 4.50 1.50 1. 30 

A.C. Seconds 

Kj 
0.62 0.69 0.62 0.75 

-2 
OK. 0.09 0.07 0.03 0.05 

J 
E (td) 17.00 7.50 4.20 3.10 Seconds 
Otd B.OO 3.30 1. 50 0.90 

B.C. Second"" 

K. 0.51 
J 

0.45 0.50 0.56 

of: K
j 

0.06 0.04 0.03 0.03 

TABLE 6.1 Results from First Experimental Session 

The mean detection times that were found justify our 

assumption that the transient in the failure (1 second) is 

negligible compared to the detection time. 
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shown in Figures 6.15 and 6.16. Those figures include, in 

addition, the mean detection time that is predicted by our 

mode], using the following parameters: 

SNR = 36 P. = P = 0.05 
ml.SS FA 8'1 = 1/4 (6.44) 

The numher for PpA ,vas determined on the basis of the actual 

nUmber of false alarms for the subjects (8 out of 150). A 

fa] ".':' alarm was scored ~lhen the subject pressed the button 

before the occurence of the failure. 

Equations (6.36) and (6.37) show that the value of the 

dec~sion function in the period between occurence and detection 

of a failure is given by 

A(t) = 
iy 
E 
ix 

where i is the first obsenTation after thE failure had x 

(6.45) 

occurred and iy is the observation after which detection was 

made. If ~b is small compared to Dei t~an equation (6.45) 

implies that the subject is integrating the residual and makes 

a decision ,,,hen this J.ntegral is equal to some CL. Therefore, 

for all levels of failures the follo,:;ing relation holds: 

td 
t J e(t)dt = constant 

f 

\'lithin the integration interval 

(6.46 ) 

(6.47) 
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where En(t) - value of th~ residual for the 
• normal mode 

Em(t) - filter response to the deterministic 

failure 

Therefore, equation (6.43) can be written: 

since 

td 
+ t J 

f = constant (6.48) 

taking the expectation value of equation (6.48) the first 

integral vanishes and the result is 

td 
E{ t J Em(t)dt} 
. f 

= constant 

For the first experimental session 

E (t) = exC. 
m J 

j = 1, ••• ,4 

where ex is the steady state attenuation of the filter. 

stituting into equation (6.49) gives 

C.E{(td - t f ).} = K. = constant j = 1, ••• ,4 
J J ] 

(6.49) 

Sub-

(6.50 ) 

Equation (6.50) shmvs that for a step failure the product of 

the magnitude ~f the step and the mean time to detection is 

a constant value. The Kj values for both subjects are sho~m 

in Table 6.1 as well as 0- 2 \vhic.h is defined as 
k· ] 

_J 

~ .• ,........; ...•. ~> ............ : ........ . y..... . ... .., . .... ...... . . .. .. 
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(6.51) 

• 
Let us .no\'1 test the null hypothesis HO: 

using analysis of variance. The ratio of variances F is 

defined as follo,,!s) 

where 

cr 2 = 
p 

'b
2 = 

and 

F = ncr 2/cr 2 
b p 

1 r 
E cr 2 . r j=l J 

1 r 

r-l E (K. -
j=l J 

K) 

n - number of samples within each group 

r - number of groups 

K - the mean of Kj j=l, ... ,r 

The results are summarized in Table 6.2. 

Subject K n r (12 (12 
b _l? 

A.C. 0.67 32 4 0.0039 0.06 

B.C. 0.50 32 4 0.0020 0.04 

F 

2.08 

1.60 

F.05 

2.68 

2.68 

TABLE 6.2 Results of Analysis of Variance for K 

(6.52) 

The results of table 6.2 show that the hypothesis HO cannot 

be rejected. 

In the second session, the same step failures as in 

the first session were included in the presentation but with 
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a closed observation interval of ten seconds. Table 6.3 giv~s 

• 
i:he mean and variance of the detection time for both subjects. 

Subject 1 2 3 4 

E (t
d

) 4.40 3.52 2.82 2.57 

A.C. 
0 
td 1.25 1.15 0.90 0.57 

E (t
d

) 4.82 4.22 3.42 2.45 

B.C. 

°t d 
1. 65 1.27 0.80 0.55 

TABLE 6.3 Results from Second Experimental 

Session (seconds) 

These results are also shown in figures 6.17 and 6.18. The 

figures also include the prediction of our model wit.h the 

same parameters as in (6.43) but with the modification for 

closed intervals (equation 6.40). The results shm~ considerable 

decrease in detection times as expected. Also, the hyperbolic 

relation of equation (6.50) does not hold because the CL is 

time varying. 

In the third session, the failures were ramp functions 

of time with open observation intervals. The .. main objective 

for including time dependent failu~es was to test the integ-

ration property that is suggested by equation (6.46). For 

ramp failures, the valae of Emit) is given by 

Em (t) = [3(:. (t - t
f

) j = 1, ••• r 4 
J 
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substituting into equation ('.!.46): 

• 
!{. = constant 

J 
j = 1, ••• ,4 (6.53) 

Table 6.4 shows the mean and the variance of the detection 

time (td - t f ) for hoth subjects (based on 128 samples, 32 

for each level)., The table also shows the values of!{ and 

These results are also plotted in figures 6.19 and 6.20. 

2K'\! CJ • 

The figures also include the prediction of our model with the 

following parameters: 

SNR = 36 Pmiss = PFA = 0.05 9'1 = 1/4 

The predictions seem to fit the experimental results well. 

Next"the ~elation that is suggested by equation (6.53) is 

tested to show that the decision function is the integral of 

the residuals. The hypothesis HO to be te ted by the analysis 

of variance is: 

!{l ,= ~2 

The results of the test are summarized in Table 6.5 and show 

that the hypothesis HO cannot be rejected. 

The results that were presented in this section were 

based on the first and second order statistics of ~he data that 

was collected from the subjects and the simulation. In order 

to complete the analysis, the values of the decision function 

A(m) at each detection time that was fotmd in the experiment 

were computed from the simulation. Figures 6.21 to 6.24 
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• 
1 2 3 4 

E (tdl 12.30 9.22 6.77 5.32 

crt 3.35 2.27 1.32 1.05 

d 

K 0.41 0.45 0.47 0.44 

cr~ 0.050 0.042 0.035 0.038 
K 

E(tdl 13.20 9.85 7.07 5.70 

crt 3.80 2.36 2.27 1.025 

d 

K 0.47 0.51 0.54 0.50 

cr~ 0.048 0.046 0.230 0.032 
K 

Results from Third Experimental Session 

and crt are in secondsl 
d 
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• I!l Subject 
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FIGUP£ 6.19 DETECTION TIME FOR RAMP FAILURES (SUBJECT A.C) 
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FIGURE 6.20 DETECTION Tll1E FOR RA}W FAILURES (SUBJECT B.C) 



Subject -K n r 0
2 

b 
0 2 

p 
F F.OS 

A.C. 0.44 32 4 0.041 0.00063 0.49 2.68 

B.C. 0.50 32 4 0.081 0.00086 0.34 2.68 >i 

~ 

TABLE 6.5 Results of Analysis of variance for K 
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6.21 VALUES OF THE DECISION FUNCTION AT THE ACTUAL DETECTION 
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show the values of the decision function for the four failure 

levels in the first experim~ntal session (open intervals, step 

failure). Figures 6.25 to 6.28 shm'l these values for the 

second experimental session (closed interval, step failure). 

These figures also show the LRCL that was used in the simulation. 

Those results that are due to the two stage operation of the 

model give a unfque opportunity to observe an internal quan

tity which cannot be directly measured. 
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CHAPTER VII 

• THE USE OF THE FAILURE DETECTION MODEL FOR MONITORING 

AUTOMATIC LANDINGS 

7.1 Gene:ce.l Discussion 

In Chapter 6 \'le presented a model for the human observer 

in a failure detection task. The experiments that were run 

for the evaluation of the validity of the model included a 

"well-behaved" process for the normal mode of operation. In 

particular, the shaping filter was a stable linear second 

order time invariant system and the obsexvation was a scalar. 

These characteristics simplified the implementation of the 

detection model so that its performance could be easily com-

pared to the performance of the subjects. 

In this chapter we .... lOuld like to show that the suggested 

model can be applied in more complicated situations that arise 

in real life detection tasks. Even if the processes involved 

do not have any of the nice properties that characterized the 

former experiments, the model can still be used with some 

modifications. 

The task of monitoring airplane instruments during an 

automatic landing is an appropriate example. The processes 

that are involved are characterized by a non linear, high order 

and time varying system. In addition, there are several in-

struments to be monitored simultaneously, so that the obser-

vations are multidimensional. other reasons for this choice 
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are the current interest in the problem due to the introduction 

• 
of "all weather" landing systems and the availability of the 

equipment to perform an accurate simulation of the task. 
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7.2 Simulation of a Jet Transport during Automatic Landing 
• 

This section deals with the description, of the equations 

of motion for a jet transport during automatic landing. These 

equations are the basis for the simulation that ",as used in 

our experiments. 

Let us define a coordinate system (X', Y', Z') ",ith the 

origin at the touch down point, the X, axis in the direction of 

the north, z' is perpendicular to the ground (positive upward) 

and the y' axis completes the right orthogonal triad. If the 

initial position (at t = to) of the airplane (X'o' Y'O' Z'O) 

is given, then its position at any future time (t > to) is 

completely defined by the following three variables 

vet) airplane velocity 

wet) - course (rotation of the velocity vector 

with respect to the Z' 'axis) 

yet) - vertical inclination (rotation of th8 

velocity vector with respect to the Y 

axis) 

where the frame (X, Y, Z) is obtained by rotation of the 

frame (X', Y', Z') by wet) around the Z' axis. 

For a complete knowledge of the airplane attitude, tnree 

additional variables are needed and are defined by: 

aCt) - angle of attack 

$(t) bank angle 

Set) - side slip angle 
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• 
These six time functions are the state variables that define 

the motion of a rigid body with six degrees of freedom when 

angular accelerations are neglected. The state equations are 

given by 

• v = 

• 1jJ = 

• y = 

• a = 

• 
(3 = 

• q, = 

where 

~ (Tcoscwos 13 - D - Lsina - ,.,slny) 

wv60s y (Lsinq, - Tcosasin13cosq,) 

~[ (Lcosa + Tsinacos(3)cosq, - wcosy] 

qcos13 .. psin13 - • ycos 13 - • ljJcosysinq, 

• ljJ(cosacosycosq, - sinasiny) • - ycosasinq, 

pcosacosB + qcosasinS + rsina + $siny 

g - gravitational acceleration 

w - airplane weight 

T thrust 

D - drag 

L - lift 

- r 

The weight during landing and the coefficients of drag and 

lift for a DCB (,.,hich is similar to a Boeing 707) were taken 

from Tepper (1969). The three variables p, q, and r in 

equatio" (7.1.) are the control angUlar velocities of the 
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airplane around the roll, pitch and yaw axes respectively,. 
• 

and are given by: 

1 [ 2 
q = y k3ScV 

'y 
+ k 6 (Lcosacos$ - wcosy)] 

r = i [k4(~ + ~- l2490rjv)v2 
- kS$cV2 ] 

z C 

(7.2) 

where Sc' $c' ~c are the pitch, :1:011 and yaw cOllunands w'hich 

are given by (Ephrath, 1975): 

• 
Sc = O.SFDp + 3FDp 

• (7.3) 
~c = FDr + 3FDr 

$c = -3~ 

FDp and FDr are pitch and roll couunands of a linear flight 

director system and their Laplace transform is given by 

(Weir et al, 1970) 

where: 

FD = -O.0003he 
- 0.3s S 

P s + 0.34 

= -0.62s(8.6~ + 0.9$ + 180E) 

(s+1.06) (s+0.16) 

(7.4) 

- 0.2,7$ - l.S6E 

h - vertical error between aircraft position 
e 

and glides lope beam 

E ::::::::a:n:n:::i:::o:e::t~= aircraft ! J 
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An additional feedback loop that changes the thrust in such a 

way as to keep the velocity tons ant (v ~ 0) is also included. 

The above equations \llere used by Ephrath (1975) for a 

simulation of an automatic landing with the Adage model 30 

graphics computer and a Boeing 707 fixed-base simulator. A 

detailed description of the derivation of the equations and 

the simulator is given in Ephrath (1970). 

Since the landing of the airplan~ is fully automatic, 

the pilot task is monitoring and detecting failures. The 

instruments which are displayed in the cockpit and which the 

pilot can use for his monitoring tasks are (the variables 

that are displayed by each instrument are shown in brackets) 

where 

he 

~ 

e 

Glide slope indicator [he] 

Localizer indicator [~] 

Attitude indicator [e,~] 

Horizontal situation indicator [w,B,~] 

Air speed indicator [v] 

Altimeter [z] 

vertical speed indicator [~] 

z tan (-3 0
) = x 

(z, x are in 

= 
y (y, x are in 

1.23-x 

= a+ y - 2 (degrees) 

ft) 

nm) (7.5) 

and the frame (X, Y, z) is obtained by rotation of the frame 

(X', Y', Z') by 35 0 clockwise around the z' axis. 
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7.3 Simplification of the Airplane Dynamics 

, 

As mentioned in the previous section equations (7.1) 

and (7.2) were used to simulate the dynamics of a Boeing 707 

during landing. Several professional 707 pilots landed the 

simulated airplane and were completely satisfied by the re~ 

semblance bebleen the simulated dynamics and the perf o l."lT\an ce 

of the real airplane. Furthermore, when the automatic landing 

system was applied, it proved to be capable of landing the 

airplane within the designed specifications. Also, the mean 

values of all the variables that were presented to the monit

oning pilot had the specified nominal values, with perturbations 

due to outside disturbances. Therefore it is reasonable to 

assume that for the analysis of the performance of the monitor

ing pilot, it is possible to linearize equations (7.1) and 

(7.2) around the nominal values. Such an assumption is usually 

made for a preliminary design of the control loops (Blacklock, 

1965). 

Even when the sy~tem linearized, the dimension of the 

state vector is large (9), a fact that considerably complicates 

the computations. Therefore, for design purposes, another 

simplification is made by assuming that there is no coupling 

between the longitudinal and lateral dynamics. Instead of 

dealing with one nine state system, there are two independent 

four state subsystems and one scalar subsystem. This last 

scalar subsystem controls the airplane velocity, and is needed 

to guarantee proper behavior of the longitudinal control 

(Blacklock, 1965). 

f 
I 
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The basic Dlock diagrams for the three control loops 

• 
were taken from Blacklock (1965). The velocity control loop 

is shown in the following block diagram: 

·0 u +,.. 
OU 

r (5 + .1) K 
~ - v (5+10)(52+.0095+.00186) 

where oUr is the perturbation around the nominal velocity and 

is modelled as a zero mean white Gaussian process with variance 

0- 2 .•• The real pole represents the throttle servo, and the 
ur 

complex pair, the phugoid oscillations. The root locus of 

the veloci ty contrnl system is shown in Figure 7.1. For Kv 

equal to 10, the closed loop transfer function is given by: 

outs) = 10(5 + O.l) (7.6) 

our(s) (s + 8.8) (s + 0.98) (s + 0.13) 

The transfer function for the vertical inclination control is 

where 

oy (5) 

o e (5) 
= 

0.535 

s+0.585 
(7.7) 

In 
I 
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FIGURE 7.1 ROOT LOCUS FOR AIR SPEED CONTROL SYSTEH 
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FIGURE 7.2 ROOT LOCUS FOR HEADING CONTROL SYSTEH 
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'53~5(s + 0.58'5) (7.8) 
(9 + 0.5) (s + 5.5) (s2 + 5.4s + 11.4) 

Again, oar is the perturbation around the nominal pitch 

angle and is modelled as a zero mean white Gaussian process 

with variance cr~r' Sustituting equations (7.8) into 7.7): 

oy (s) = 
Sa (s) 

r 

31.3 (7.9) 
(s + 0.5) (s + 5.5) (s2 + 5.4s + 11.4) 

The third control loop is the heading control and is shown 

in the following block diagram 

ol)! + 
KI)! 

0$1:. 92 
0$ iiI)! r ....'.L ." ..... - 2 vos . (s+L57Xs +10.7s+58.9) 

. . 

where Vo is the nominal air speed (150 knots), and lil)!n is the 

heading perturbation modelled as zero mean white Gaussian 

process. The root locus for the heading control system is 

shown in Figure 7.2. For KI)! = 3.8, the closed loop transfer 

function is 

= 
47 (7.10) 

(s2 + 11s + 58) (s2 + 1.5s + 0.81) 

. 
" 
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The position of the airplane (x, y, z) is a function of the 

three controlled variables and is given by: 

.0-

x = V COSW cosy 

• sinW y = v cosy (7.11) 

• siny z = y 

.. ~ . 
Since YO is small (3.0') a small anglE> approximation can be 

used, so that 

• x = v cosw 
• y = v sinW (7.12) 
• z = vy 

The perturbations in the airplane position ox, oy, oz around 

the nominal values are therefore 

• oX = COSWoov - vOsinwOow 
• oy = sinwOov + vOCOSWOoW (7.13 ) 

• yoov + vooy oz = . i 

i 

r 
I 

where the nominal values are: 

Equations (7.6),(7.9), (7.10) and (7.13) imply that the 
, 

state space description of the whole system inovlves a total of 
! . 

14 states. Although these states can be divided into three 

independent groups of four, five'and five states respectively, 

it is assumed that the monitoring pilot bases his decision on 

a further simplified system in which he uses only the dominant 

poles. Therefore, the next step would be to simplify the three 
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basic subsystems given by equations (7.6), (7.9) and (7.10). 
• 

For the velocity control system "Ie will neglect the pole at 

s = -8.8, and also assume that the zero is cancelled by one 

of the other poles. Also the gain is adjusted to give an 

equivalent steady state gain. The simplified transfer function 

is therefore as·follows: 

ou (s) 

our(s) 
= 1/ (s+1) 

for the vertical inclination control loop only 

poles would be used so the transfer function is: 

1.35 
= ~------~------- = 

1. 35 

(7.14 ) 

two real 

s2 + 3. 2s + 1. 35 (s + 0.5) (s ;. 2.7) (7.15) 

The new pole and the new gain were chosen in such a way that: 

the steady state gain, as well as the steady state variance 

for a given stationary random input ,.,ould be the same as for 

the original system (7.9). The time response of the original 

and simplified system to a step input are shown in Figure 7.3. 

The difference in the transient seems to be small enough to 

justify the approximation. 

For the heading con"rol system the far left half plane 

pair of complex poles waR omitted and the gain was adjusted 

to give an equivalent steady state gain. The simplified 

transfer function is: 

= 
s2 + 1.5s + 0.81 

0.81 (7.16) 
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• 

@ 4th Order 

o 2nd Order 

3 5 7 9 11 

FIGURE 7.3 RESPONSE TO A UNIT STEP INPUT OF ORIGINAL AND 
SIHPLIFIED VERTICAL INCLINATION CONTROL SYSTE.'I 

@ 4th Order 

o 2nd Order 

1 2 3 4 5 

FIGURE 7.4 RESPONSE TO A UNIT STEP INPUT OF ORIGINAL AND 
SlllPLIFIED HEADING CONTROL SYSTEN 
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The time response of the,simplified and original systems to 

a s~sp input are shown in Figure 7.4. 

ference justifies the simplification. 

Again the small dif-

The simplified version is eight dimensional, and can 

be divided into three independent subsystems of order two, 

three and three respectively. Let ~ be the eight dimensional 

state vector 

and let us define 

= 01/1 (7.17) 

also let 

(7.18) 

then the state equation for the three subsystems is given 

by: 

• 
x3 0 1 

• x 4 = 0 0 

• 
x5 0 -1. 35 

L 

and 

0 Xl 

1 x 2 + 
-3.2 x3 

ou 
r 

0 

0 

1.35 

(7.19) 

oar (7.20 ) 
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• 
XG 0 1 o • X6 0 

• 1 -\-x 7 
0 0 x7 

0 oWr 
(7.21) 

• 
Xs 0 -O.Sl -1.5 Xs O.Sl 

Let Fl , F 2 , and F3 be the state matrices defined in equations 

(7.19), (7.20) 'and (7.21) respectively. Then the eight dim-

ensional system is given by the vector differential equation: 

• x = Fx + Gu (7.22) 

where 

Fl 0 0 0 '1 0 0 .0 0 0 0 

-T 1.350 F = 0 F2 0 G = 0 0 0 0 0 0 (7.23) 

0 0 F3 0 0 0 0 0 0 0 .S 

and 

uT = (our' oar' o1)ir) (7.24) 

Since equation (7.22) represents a linear time invariant 

system, the transition matrix can be found by the use of the 

Laplace transform. Furthermorr; r since the matrices in (7.23) 

can easily be I:educed to three independent subsystems (7.19), 

(7.20), and (7.21), the same expression for the transition 

matrix that was described in appendix B can be 

slight modifications. 

used with 

The perturbations of the outputs that were presented to 

the monitoring pilot in the simulation that is described in 

section 7.2 can now be expressed as iinear functions of the 

1 1 
j 

J 
I 

;j 
I ,i ; 

: I 
i 
• r 
i' .' 
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state variables. substituting the state variables from (7.17) 
• 

to (7.13) 

OX .- (COSWO)x2 
• oy = (sinwO) x2 + 
• oz = YOx2 + vOx4 

and using equation (7.18) 

OX = cosWOxl - vOsinWOx6 

oy = sinWOxl + vOcosWOx6 

oz = YOxl + vOx3 

also, from equations (7.5) 

Ohe = -1/X2
n (oX) + l/xn(oz) 

oe = 1/(1.23 - Xn)2(oX) + 1/(1.23 - xnl (oy) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

where xn is the nominal x value which is time varying. There

fore, using the state variables, the perturbations of the dis

played variables yare as follows: 

1. Glide slope indicator 

I 

I 

I 
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2. Localizer: • 

Y2 = [cos$0/(1.23 - Xn)2 + sin$0/(1.23 - Xn)]Xl 

+ [VoCOS$0/(1.23 - Xn) - v osin$0/(1.23 - xnl2]X6 

3. Attitude indicator: 

4. Horizontal situation display: 

5. Air speed indicator: 

Y6 = x2 

6. Al timeter 

7. Vertical speed indicator 

It should be noted that Yl and Y2 are time varying linear 

,functions of the state while Y3 - YS are time invariant. ! 

fI; 
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7.4 The Multidimensional> Failure Detection Model 

From the desc:r.lption of the equations of motion and 

the control loops that were discussed in section 7.2, it is 

clear that the processes with which the subject has to deal 

in this task differ considerably from the processes that vlere 

involved in the experiments described> in Chapter 6. The main 

differences are: 

1. The equations are highly nonlinear. 

2. The order of the system is high. 

3. The statistics of the observed variables 

are time varying. 

4. The observation is multidimensional. 

The nonlinearity difficulty can be relieved by linear

ization of equations (7.1) around the nominal values of the 

states. This is possible because the control loops are ex

pected to keep the state variables at their nominal values 

so that only the perturbations are exposed to the subject. The 

linearization of the system is described in detail in section 

7.3. 

The second problem, that of the high dimensionality, 

can be solved by the decoupling of the system into several 

subsystems of Imver order. If, after the decoupling, the 

subsystem.': are still of high order, we will assume that the 

human observer considers only the most important modes. In 
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general, it is felt that the human observer will not consider 

more than three dominant mode~. The reduction of the dim-

ension of the problem at hand is described in the previous 

section. It should be noted that although the state equations 

can be decoupled, an eight dimensional Kalman filter should 

be used due to the coupled form of the observation. 

Once the processes are simplified to the level that is 

shown in section 7.3, our model can be applied. The time 

variability of the observation does not affect the performance 

of the linear estimator, and the only disadvantage is that 

the Kalman gain K(t) ,,,ill not reach steady state. This means 

that the operator must update the gain with each observation. 

The fourth point that is mentioned above is the multi-

dimensionality of the observation. This means that the 

operator must share his attention among several instruments. It 

was found (Yntema, 1963; Senders et aI, 1966) that in such cases 

the human observer will concentrate only on the most important 

instruments ,"hile using the others for verification purposes. 

In monitoring the automatic landing, it is expected that the 

pilot will spend 90% of his time monitoring the glideslope 

localizer and airspeed indicators. 

When a linear estimator is used in the model, it is 

Fossible to account for this sharing of attention through the 

observation noise (Levison et aI, 1971). If the subject is 

observing more than one instrument, then his internal observa-

tion noise fur each of the observations is increased by a con-

stant factor that is inversely proportional to the time that 
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the subject spends in monitoring that specific instrument. 

Let t. be the total time that the subject is spending observing 
~ 

instrument i during the whole observation interval. Define: 

K. = 
~ 

N 
t./ L 
~ i=l 

t. 
~ 

(7.29) 

\'1here N is the total number of instruments that are observed. 

The observation noise that is associated with the ith instru-

ment is then multiplied by a factor of l/Ki • 

For example, let us consider the situation in \"hich the 

pilot spends 40% of his time monitoring the glides lope indicator, 

40% monitoring the localizer and 10% monitoring the airspeed 

indicator. The block diagram of our model for such an assumption 

is shOl'ln in Figure 7.5. It should be noted that since all the 

instrument variables are linear functions of the state, the 

number of observations included in the model is not limited; 

however, any increase will cause more complicated numerical 

computations. 
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7.5 Experimental Method 

• 
7.5.1 Apparatus 

The Adage Model 30 graphic computer was used to simulate 

the full equations of motion (7.1). All of the outputs that 

were defined in seciton 7.2 were fed into the instrument panel 

of a fixed base Boeing 707 simulator. This panel is shown in 

Figure 7.6. The simulation included only the last five minutes 

of flight prior to touch do,vn, and the landing was fully auto-

matico The failures that were defined were instrument failures 

so that they affected only the output variables but were not 

fed back into the system. In order to minimize the dimension-

ality of the task but still have a multidimensional task, 

failures occured in two instruments. Those instruments 'vere 

the glide slope indicator (GS) and the air speed indicator (AS). 

Four levels of failures were included for each of the two 

instr.uments. All failures were deterministic step changes 

that were fed to the instrument through a 10\. pass .'ilter with 

0.1 second time constant. The magnitude of the failures for 

the AS indicator l<1ere 

ar.d for the glideslope indicator 

C 4 (7.30) 

; 
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TI~o random number genElrators were used to choose the 

failure in each run, One determined the instrument and the 

other the size of the failure. In addition, a third random 

number generator vIas used to determine the time of failure t f • 

The value of t
f 

had four discrete magnitudes with time difference 

of 15 seconds. The mean of these four values was the time at 

which the airplane passed the outer marker. 

There I~as a single failure in 90% of the runs. The high 

percentage of runs with failures provided enough data in a 

reasonable experimental time. There was no feedback to the 

pilot concerning his performance. It I~as felt that feedback 

would induce correlations between successive runs, and therefore, 

it was not used. 

7.5.2 Subj~cts 

Two subjects participated in the experiment. One did not 

have any practical flight experience; however, he did have a lot 

of experience flying the simulated airplane (he was using it for 

his own experiments). The other subject had experience as an 

Air Force pilot where he flew a T38 jet trainer. 

In the first set of experiments, the p2rticipation was on 

a voluntary basis. At the end of this set it I~as evident. that 

the enthusiasm of the subjects had faded due to the fact that 

their task was only monitoring. Therefore, it was decided that 

in the next set of experiments, the subjects lvould be paid $4 

an hour in order to keep the same level of performance as in the 

first set. 

:j 
·;1' 
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7.5.3 Procedure • 

As has already been mentioned, there ,~ere b~o sets of 

experiments and the same subjects participated in both. The 

two sets were equivalent except for the differences in distur-

bance characteristics. In the second set the frequency of the 

disturbances our ,09 r , oW r were reduced by a factor of ten 

(compared to the first set in which this frequency was n/6). 

The first set consisted of three experimental sessions. 

Each session included 16 runs with a ten minute intermission 

after 8 runs. The second set consisted of only one session 

with 26 runs and two intermissions. 

The subject was seated in the COL.Jl:pit in the pilot's seat; 

hO,"lever, the presentation ,~as completely automatic and he could 

not affect its behavior. Bach run started '''hen the airplane 

was ten miles out from the touch down point and at an altitude 

of 2500 feet. The three random numbers that controlled the 

failures '''ere typed in by the experimenter before the start 

of each run. When the pilot detected a failure he pressed a 

button and the run was terminated. Then the subject ,,,as asked 

to fill out a form in which he stated '''hich instrument failed 

a.nd hm" he detected the failure. 

At the beginning of each session, a set of instructions was 

read to the subject. In particular he was told that failure 

·.,c, .,~d either be in the AS or GS indicator, but he could use 

other instruments for the detection. Then the subject was 
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shown two runs i~ithout failures, and then two runs with failures: 

one in the AS and one in the GS. The data runs follm'led these 

familiarization trials. 

I I.,! 
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7.6 Experimental Results. 

The results from the first experimental set in \,lhich the 

fr'equency of all disturbances was 7f/6 radians per second are 

summarized in Table 7.1. The table ShO\,IS the mean and stan-

dard deviation of the detection time for the failures in the 

AS and GS indicators for the two subjects. 

The results are also shown in Figures 7.7 through 7.10. 

These figures include the mean detection times that were pre-

dieted by the model using the 0.1 seconds filter for the 

failure. The following parameters were used in the model 

SNR = 36 ~l = 1/4 (7.32) 

Again, the level of the PpA was determined on the basis of the 

actual false alarm rate that was found in the experimental data. 

Por both subjects, the predicted results seem to fit the exper-

mental data well. It should be noted that a better fit for the 

data from subject C.C. can be obtained by changing the parameters 

in (7.32). 

The results from the second experimental set, in which the 

frequency of all disturbances was reduced to 0.5 radians per 

second, and the time constant of failure appearance was raised 

to 20 seconds, are summarized in Table 7.2. 

It should be noted that the values for ~j j = 1, ... ,4 for 

GS failures are only one half of the values in (7.31), namely 

~l = O.soGS ~2 = 0.7so
GS ~ = 4 
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• 

SUBJECT INSTR. C1 C2 C3 

B.M. 

e.e. 

E(td ) 20.80 13.80 10.80 

A S 

crt 5.9 2.7 2.1 
d 

E(t
d

) 16.40 9.80 7.70 

G S 

crt 3.6 4.9 2.4 
d 

E (td ) 25.40 20.80 16.90 

A S 

crt 5.9 4.0 2.5 
d 

E(td ) 14.00 6.90 6.30 

G S 

crt 2.8 1.0 0.9 
d 

TABLE 7.1 Subjects Performance in First 

Experimental set (seconds) 

C4 

6.30 

2.7 

5.98 

1.1 

8.20 

2.8 

5.00 

0.9 
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• 

! 
'SUBJECT INSTR. C1 C2 C3 C4 

E (t
d

) 62.40 42.80 32.90 20.20 

A S 

°t 6.0 8.5 5.2 3.0 

B.l1-. d 

E(td ) 14.20 9.00 6.50 4.90 

G S 

Cit 2.0 2.1 3.0 1.6 
d , 

E(td ) --- 46.80 34.20 28.40 

A S 

°t --- 5.8 3.2 3.8 

C.C. d 

E(td ) 28.50 14.20 8.90 5.90 

G S 

°t 4.0 1.4 2.3 1.3 
d 

TABLE 7.2 Subjects Performance in Second Experiment 
(seconds) 

1 
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The increase in detection time is mainly due to the change in 

• 
the failure time constant. The results are plotted in Figures 

7.11 through 7.14. The figures also include the predictions of 

the model with the parameters SNR, PFA and PMS as in (7.32). The 

values of the parameter fll were changed to obtain a good fit. 

The values of fll that were used are shown in the figures. 
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CHAPTER VIII 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

8.1 Conclusions 

This thesis investigated some psychophysical aspects of 

the behavior of a human operator in several signal recognition 

tasks. The study was based on classical SDT, but the emphasis 

vTas not on the capability of the sensory system, but on the 

decision mechanism of the operator. Since almost all optimal 

decision strategies'lead to the use of the likelihood ratio 

as the decision function, the decision strategy can only be 

analyzed through the detection tasks with time varying detec-

tability. The analytical study included a discussion of several 

possible decision strategies as vTell as a suggestion of two 

methods for the classification of these strategies on the basis 

of experimental results. One of these methods is similar to 

the well known ROC analysis in classical SDT, and used decision 

rule (DR) curves in the PH-PFA plane. The other method, which 

can only be used when the underlying distributions of the obseL-

vations are knmm, relates the likelihood ratio criterion levels 

(LRCL) to the detectability. 

Experiments in "hich the subject vTas to detect signals with 

discrete change o.f signal strength were described. The obser

vations were designed to be independent and the subject had to 

make a decision after each observation. The main conclusion 

that can be drawn on the basis of the experimental results is 
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that the subject is a\'lare of the change in the uncertainty I and 

changes his LRCL accordingly. However, no one strategy could 

be identified, and the subject's performance revealed that 

different subjects used different strategies. 

The next step was to study the effect of correlated signal 

presentations on the performance of the subjects. It was found 

that the correlation did not affect the sensory process (the 

detectability) in our experiments, but caused the subjects to 

modify the parameters of the decision strategy (the LRCL's). 

The theory of Markov Processes was applied to the experimental 

data, and the probability transition matrices showed that the 

LRCL of the subject in the current decision interval was strongly 

dependent on the previous decision, regardless of it's correctness. 

In particular, when the signal strength was changed in a sequen-

tial order, the decisions along the sequence were influenced by 

the decision in the first interval, although the detectability 

in this interval was the lowest. These results can be explained 

on the basis of classical SDT when the LRCL's are modified by 

biasing the a priori probabilities. 

In some detection tasks, the information rate is too high, 

so that the subject cannot respond after each observation. In 

such cases, the subject is allowed to take more than one obser-

vation, but he is asked to minimize the detection time. This 

type of detection task is often related to failure detection 

problems. It was found that the subject's behavior can be 

modelled as a t,,10 stage process. The first stage consists of a 
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linear estimator whose measurement residual is fed to the 

second stage ."hich is the decision mechanism. The main con-

clusion from our experimental results is that the decision 

function is a pure integration of the observation error, and a 

decision is made when some CL is reached. It was also found that 

if the monitored process is of finite (short) le~gth, and if 

the decision maker knows that a change will occur, his proba-

bility~f false alarm is time varying and causes changes in 

the criterion level. 

An application of the above model to predict the performance 

of a pilot in a task of failure detection in automatic landings 

showed that the model is applicable even •• hen the processes 

that are involved are complicated. In particular, the experi-

ment showed that a simplified linearized model gives good 

prediction even if the system is nonlinear, the order of the 

dynamical system is high, and the observations are time varying 

and multidimensional. 
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8.2 Suggestions for Further Research 

The theory and results that are presented in this thesis 

could be extended by further research in the following directions: 

1. The analysis of experimental results of signal detec-

2. 

3. 

tion experiments with time varying uncertainty as well 

as the decision strategies that were discussed are 

not limited to visual discrimination tasks. The 

general results can, therefore, be verified by appli-

cations of the theory to other sensory processes such 

as auditory and tactile processes and other detection 

tasks that have been analyzed with the use of the 

classical theory. 

In many detection tasks, the human operator is a part 

of the control loop so that the pilot is not only 

monitoring but can also influence the system before 

and after a failure. This additional control task 

might affect the performance of the subject as com-

pared to his performance in monitoring tasks. It is 

therefore suggested to modify the model to include 

this additional task and design experiments that can 

show its validity in these cases. 

Our experiments did not include feedback: . hoy/ever, 

it is fe'lt that the addition of feedback may change the 

performance of the decision maker. Feedback. can be 

given directly to the subject or only to the system 
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or to both. The study of the effects of feedback 

seems to be very valuable in increasing our knowledge 

of the decision strategies of the human operator, 

because feedback is used in many real life detection 

tasks. 

4. This research considered only the psychophysical 

aspects of signal detection, and the question of how 

~he processing is actually done was avoided. Lately, 

'the use of EEG measurements has been found to be very 

valuable in arousal studies. The use of EEG tech-

niques in experiments of signal detection with time 

varying uncertainty might give more insight into the 

reactions of subjects to the change in the difficulty 

of the task. 

5. In our model of the human observer as a failure 

detection system there are three parameters that 

control the performance. The value for these 

parameters were chosen by "trial and error" method. 

Since the running of the simulation is relatively 

expensive a more efficient method to find the 

parameters that best fit the experimental data is 

needed. Systems identification techniques 'can be 

applied for this purpose. 

6. In Chap~er 7, we applied our model of the human 

observer to the task of monitoring automatic landings. 

This task should be reexamined to include failures on 

all instruments as well as failures of the system 

'I '( i 
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~tself (airplane or control). Also, the experimental 

sessions should be spread over a longer period of 

time so that the pilots can face realistic situations 

of only a few landings per session (day), and a low 
; I 

failure rate. 
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APPENDIX A 

ALGORITHM FOR FITTING GAUSSIAN DISTRIBUTIONS TO DATA FROM SD 

EXPERIMENTS 

Problem Statement 

Consider a signal detection (SD) experiment with two states 

of the world (SO and Sl) and n response categories. There are 

a total of N decision intervals, in NO of which the true state 

of the world is SO. Therefore, the state of the ,~orld Sl will 

appear in Nl intervals, where: 

(A.l) 

After the experiment is finished, the decisions of the subject 

can be sorted into 2n categories as follo,"IS. LetD. (j=l, ..• ,n) 
J 

define the set of intervals in which the subject has decided on 

category j. This set can be divided into two subsets DOj and 

Dlj in which the state of the ,"10rld is So or Sl respectively. 

The DOj and Dlj for j = 1, •.• , n constitute 2n exclusive and 

exhastive events. The number of decisions that correspond to 

the event DOj is NOj (j = 1, •.. , n) and the number of decisions 

that correspond to Dlj is Nlj (j = 1, ••• , n). Clearly the 

following relations hold 

n 
l:: 

j=l 

n 
l:: 

j=l 
(A.2) 

Nm~ we assume that the raw data represented by NOj and 

Nlj corresponds to the results of an optimal procedure to dis

criminate bet,~een two random variables with continuous distri-

bution functions. The first step is to make a decision about 
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the fUllctional form of the distributions to be used. For this 

discussion we will assume that the distribution functions for 

both variables are Gaussian. These variables have means mO 

and ml and variances of cr~ and cr~. 

The decision procedure is assumed to be based on a choice 

of (n-l) criterion levels K., j = l, •.• ,n-l, thereby dividing 
J 

the observation space into n exclusive and exhaustive subspaces 

each corresponding to one of the n response categories. Figure 

A-I shows this procedure for n = 3. 

Although the functional f.orm of the distributions is nO\"I 

established; the parameters of the distributions as well as 

the· eL's are still unknown. Let us define an n+3 dimensional 

vector of all the unknm.,.n variables: 

(A.3) 

If the value of the vector X is known, then it is possible to 

find the probability that each one of the 2n events would happen. 

Those probabilities are the areas under the Gaussian distribution 

which are shO\"ln in Figure A-2 for n = 3. The analytic expressions 

for these probabilities are 

j = I, ... ,n 

(A. 4) 

j = l, ... ,n 
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f (x/R) 
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FIGURE _\-1 DECISION PROCEDURE \nTH mo CL'S 
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Defining 

1 
k =(;- mol 

<PO(k) = --- J exp{ } 

rn 0
0 

-OJ 20 2 
0 

(A.5) 

1 
k - (;- ml

) 

<Pl(k) = J exp{ } 

12'lf 01 -'" ? 2 ,.a l 

Then 

POj = <PO.(k j ) - <PO (k j _ l ) 
(A.6) 

Plj = <Pl(k j ) - <PI (k j _ l ) 

On the basis of these probabilities, the expected number of 

decisions for each event is 

j = l, •.• ,n (A.?) 

Our problem is to find these probabilities POj and Plj 
that 

would give rise to NOj and Nlj and that are as close as possible 

to the experimental results. These probabilities are functions 

of the vector X; therefore, the problem is to find a value for 

this vector rather than the probabilities. Since the components 

of X are completely unknown (their distributions are not known) 

a feasible criterion to be used is to maximize the likelihood 

function. Under this criterion we try to maximize the conditional 

probability that the data values NOj and Nlj occurred, given some 

value for X. This conditional probability is referred to as 

the likelihood func~ion L and is given for our case by 
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(A.8) 

Since only the value of X that maximizes L is of interest and 

since the In function is monotonic with its argument, it is 

possible to maximize lnL rather than L where: 

n 

lnL = InN! + E[No·lnP o · '+ NlJ·lnP lJ· - In(NoJ.!NlJ.!}] 
j=l J J 

Since the In(NOj!Nlj !} and InN! terms are not functions of X 

they can be dropped from the expression to be maximized. 

(A. 9) 

Substituting from (A.6) into (A.9) the final cost function is 

C(~} = 
n 
E 

j=l 

C (~) is now a function of the 

and the CL's through <1>0 and <1>1· 

transformation is applie.l to I; 

I; - m 
n = cr 

Equation (A.5) can be written as: 

<PO(k} 
1 k-m% o 

= f 
1211 °0 

-<X> 

<Pl(k} 
k-ml/ol 

= f 
I2i °1 

-<X> 

(A.lO) 

parameters of the distribution 

Ho,o;ever, if the following 

(A.H) 

eXp{-n 2
/ 2} dn 

(A.12) 

exp{-n 2 / 2} dn 
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Therefore the components of the unkown vector X affect the cost 

function through the expressions 

, 
k. - ml J , j=l, ... ,n (A.13) 

Relation (A.13) implies that the solution for the minimization 

problem is invariant to a linear transformation. Specifically, 

if: 

is a solution that maximized C(~) then ~ given by 

is also a solution. c l and c 2 in the above expression are 

arbitrary constants. 

The conclusion to be drawn from the above ambiguity is 

that if the algoritp~ is to be used repeatedly and the results 

are to be compared, the basis for comparison should be the 

invariant expression (A.13) rather than the actual parameters. 

Optimization Method 

A necessary condition for an extremum point ~ of the cost 

function C(~) given by (A.10) is 



= ae (X) 
ax 

X=X 
-~ 

266 

= 

j J I 

o (A .14) 

where g(~) is the gradient of e(~) with respect to~. Equation 

(A.14) is a set of n+3 nonlinear algebraic equations, and their 

explicit form for the Gaussian case is given in Table A.l. 

Several numerical methods were suggested for the solution 

of this parameber optimization problem. The most popular method 

is the Davidon algorithm (Fletcher and Powell, 1963), \vhich is 

available as a subroutine in the IBM Scientific Subroutine 

package. However, in this work we decided to use a more 

recent algorithm that was suggested by Jacobson and Oksman 

(1970). This algorithm seems to be superior to the Davidon 

algorithm in the following ways: 

1. It converges to the minimum in fewer iterations for 

some classical test functions (Rosenbrook function, 

helical valley, etc.) 

2. It does not require that a minimum be found along a 

line for each iteration. 

3. It converges in (n+2) iterations for a homogeneous 

cost function, namely, cost functions that satisfy: 

(A.15) 

where 

m dimension of X 

~ - the value of X that maximizes e(X) 

~(X) the gradient of C(~) 

d - constant 
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It should be noted that the class of functions that satisfies 
, 

(A.1S) is much larger than the class of quadratic functions 

for which the Davidon method converges in (n+l) iterations. 

The method also has some disadvantages: 

1. A strong step size control is needed to avoid divergence 

of the algorithm in the initial iterations 

2. The algorithm does not provide an approximation to 

the matrix of second derivatives: 

and therefore a posteriori error analysis is not 

feasible. 

A detailed description of the algorithm is given in the 

original report of Jacobson, so it will not be repeated. 

Listing of the algorithm in FORTRAN IV is given in Appendix 

B of a progress report by Curry (1973). 

Notes on the program 

Although the FORTRAN program was written for the general 

Gaussian case, some special cases can be applied by changing 

some code numbers (Curry, 1973). These special cases include: 

1. A case without bias (symmetric means) ,-lith equal 

variances for ,vhich 

m ='-m o 1 

2. A case that includes bias with equal variances for 

which 
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3. A case without bias and "lith unequal variances for 

which • 

In addition the number of eL's (n-l) can be varied from I 

to 25. 

The stopping condition f;.,r tl:e algorithm ,~as based on the 

yalue of the norm'of the gradient, namely, 

II g (~) II < O. I 

Hov.'ever, other values can be used as well, such as the use of 

where M is the iteration number. The "goodness of the solution 

was tested by the use of the Chi Square', test. The values for the 

Chi Square test were computed as foIIO\~s: 

n-l 
L 

j=l 

{[NOj - NO{'O{k j +l ) - 'o{k j ))]2 

'0 (k j + l ) - 'O{k j ) 

+ [Nlj -NI{'I{k j +l ) - 'l{kj ))]2} 

'1 (k j +1 ) - 'l{k j ) 

The number of degrees of freedom is: 

2{n-l) - number of estimated parameters. 

,i 
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Apriori test for the algorithm 

Since a parameter optimization program is usually involved 

with complicated expressions and since in our particular use 

the equations for the gradient (Table A.l) are also complicated, 

programming errors are very likely to happen. Therefore, it 

might be useful to use an apriori test to check the validity 

of the program before it is used. 

The method that is suggested here seems to be more general 

than the ones suggested by Grey and Morgan (1972). The idea is 

to synthesize artificial data NOj and Nlj for which the solution 

is known, and check whether this solution is actually obtained 

from the algorithm. 

Let us choose some arbitrary values for the components of 

X. These values will be 

(A.16 ) 

On the basis of this vector \'1e define the data as follows: 

NOj = 4> 0 (k j + 1) 4>o(k j ) 

j = 1, ••• ,n (A.17) 
Nlj = 4>1 (kj+l) - 4>l(k j ) 

where 
k = -00 k = +00 

0 n 

For the data given by (A.17) it is possible to shm'1 that Xl 

as given by (A.16) satisfies the necessary conditions (A.14) 

and, therefore, constitutes a possible solution. To prove this 

1 , 

1 
.1 

1 ,i I 
, 

C ~ "i 
'1 
I 
,j 
!i 
1 

~l 
,{ i 

" II ;j 

.1 1-1 
" ! , I 

1 I 
;', rI , 
, , 31 ~ 

~ j 
':'1 
:. 
:: 
1 i 'j. 

,:;: 1i 

i 
" 1 

f 
1, 

~~. 

Ji 
';. • 

1 

;0,' 

I , 

'. 

~ , 
! 



I 
1 

I 

I 
I 
I 

271 

statement (A.16) and (A.I?) must be substituded into the 

components of the gradient in Table A.I and the results should 

zero the gradient. 

No\.; let 

T(X) 
9 - = (gl' 9 2' ••• , gn+3) 

and consider each component by itself. From Table A.l 

- (k. 2 

1 n NO . I - m ) 
E 

,]- {exp{ ] o } 
gl = 

121T aO j=l <I> (k j ) - <I> (k. 1) 2 a 2 

. ]- 0 

-(k. 1 -
2 

mOl 
exp{ ]- }} 

2 a 2 

0 

therefore 

-(kO 
2 

exp1kn 
2 

I 
- m ) - mOl 1 

OJ = {exp [ o 1 - } 
1 .t21T aO 

2a 2 2a 2 

0 0 

(A. 19) 

and because of (A.IS) this expression is equal to zero. The 

expression for g3 is equivalent to (A.19) when the subscript 

o is changed to 1. Therefore the expression for g3 is also 

equal to zero. Again from Table A.l: 

n 
E 

j=l 
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Therefore, by carrying out the summation 

k -m (k-mo)2 kO-mO 
2 

1 
(kO-mO) 

{ n 0 exp[- n J exp[-
g2 = - J} 

fi 0 0 
12 0 0 

20 2 12 0 0 
20 2 

0 0 

(A. 20 l 

substituting from (A.18) and using the limit 

2 
lim ye-Y + 0 

Y+«> 

g2 is equal to zero. Again the expression for g4 is similar to 

(A.20) if we replace the subscript 0 with 1. Therefore, g4 is 

also equal to zero. gl to g4 were the derivatives of C(~) \~ith 

respect to the parameters of the distribution, and gj' 

j = 5, ... ,n+3 are the derivatives of C)~) with respect to the 

CL's. From Table A.l: 

1 .l...[ NO '1 NO . 2 
{ 

,J- ,J- J 
gj = - --

121f 0 0 <PO{kjl - <PO (k j
_ l ) <PO (k j

_ l
) - <PO (k j _ 2 ) 

2 
..l...[ Nl , j-l (k. -mOl 

exp(- J ) + 
20 2 01 $l(k j l -2$1(k j - l ) 

0 
Nl . 2 (kj-ml' 

,J- JeXp(- ) } 

$1(k j _ l '-$1(k j _ 2 ) 20 2 
1 

j = 5, •.• ,n+3 

Substituting (A.17) into the above, the expressions in the 

square brackets are equal to 0, and therefore, gj' j=5, ••• ,n+3 

are equal to O. This completes the proof of our statement that 

~l satisfies the necessary conditions if the data in (A.17) is 

used. 

'j 

;,1 , 

, 
',j 



I 
I 

I 
J1 

273 

APPENDIX B 

SIMULATION FOR THE EXPERIMENT OF CHAPTER 6 . 

This appendix gives a detailed description of the 

analytical and numerical methods that were used to simulate 

the displayed process used in the experiments of Chapter 6. 

Reference is made to Figure B.l. 

1 
W (t) y (t) 

input process observat~on 

Shaping Filter 

Figure B.l Simulation of the Observed Process 

Input Process 

The input process to the shaping filter is a scalar zero 

mean white Gaussian process. Since a digital computer is used, 

\ve want to form a \vhite Gaussian sequence tv (t ), where for 
n 

every tn w (t ) is a Gaussian random variable "'lith zero mean 
n 

and unit variance. 

The autocorrelation function of such a process is: 

<!J . (t) = (1 - \.\Il>t) 
W\v 

\. \ < l>t (B.l) 

= 0 \. \ > l>t 

where l>t = t - t = constant for all n 
n-l n 

If l>t is much smaller than the time constant of the shaping 

filter,w(tnl can be considered a white process over the band

\vidth of the shaping filter. 
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A random number generator has to be formed, from \~hich 

random numbers can be drawn at each t. To generate random 
n 

numbers ",ith uniform distribution, the linear congruential 

method is used (Knut, 1969) in the following way: 

nn+l = (an + 
n 

c) modulo m 

where: 

nn+l = new random number 

nn = last random number 

If: 

1. c is relatively prime to m 

2. (a-l) is a multiple of every prime dividing m 

3. (a-l) is a multiple of 4, if m is a multiple of 4. 

Then the sequence defined by equation (B.2) has a period of 

length m. Therefore, the numbers 

~n = (2/m)nn - 1 

(B. 2) 

are uniformly distributed in the interval [-1, +11. To obtain 

rap-lom numbers with a Gaussian distribution, t\~elve successive 

va~ues of ~ are summed. Therefore, 
n 

n = 12r+ll 

/;r = E 
n = 12r 

(B. 4) 

T is a Gaussian random variable with zero mean and unit variance. 
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Shaping filter 

In order to form the displayed process yet), the white 

sequence is passed through a second order shaping filter with 

natural frequency ~lD and damping ratio c l • The transfer 

function of the shaping filter is 

y (s) = 
w (s) 

1 

Let xl(t) and x2 (t) be the states of this system 

Xl (t) = yet) 

x2 (t) = xl(t) 

fined as 

Then the state space description of the system is given by 

= 

and yet) = xl(t) 

(B.5) 

(B.7) 

Since the system is time invariant, the state transition 

matrix can be found with the use of the Laplace transform and 

is given by: 

cP (t,D)= 

=Wo e-Woclt 

,I 1-c z 
1 

c 
w t- 1 

1 ,11-c < 
1 

sin 
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If u(t) is a zero mean Gaussian white process with covariance Q 

eq. (B.6) is a stochastic differential equation with the 

solution 

where 

The last term in equation (B.9) is a two dimensional vector 

random var iable v (t ), "lith mean 
- n 

vet ) = 
- n 

t 0 _ 
f n q, (tn' 1:) (l)w(1:)d1: 

o 

and covariance matrix: 

C = E[v(t )vT(t )] = 
v - n - n 

t 
f nq,(tn ,1:) (~)Q(O 
o 

= 0 

(B.9) 

(B .10) 

Therefore, to form v (t ) blo random numbers I;; and 1;;2 are drawn 
- n 1 

from the generator, in such a ,'lay that the correlation beb'leen 

vl(tn ) = Cl;;l 

v 2 (tn) = al;;l + bl;;2 

where a, band c satisfy the follo''ling equations: 

ca 

(B.12) 

, 
\' 
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j 1 

~:CI .!Q~ 

j 

11 

therefore: 

lB.14) 

The last variable to be determined is the value of Q. Let 

the covariance matrix for the state be defined as 

E[x(t) xT(t)] = pet) - -
(Bo15) 

this matrix is the solution of the following differential 

equation 

pet) = FP + PFT + GQG
T (B.16) 

where 

F = r 0 

tw~ 
Q is now chosen in such a ",ay to prvduce in the steady state a 

displayed output which is a zero mean GaussLm random variable. 

VIi th variance 0 (0 is knovm) . ss ss 
using equation (B.7) 

(B .17) 

also, for the steady state, equation (B.16~ is 

FP + PFT + GQG
T = 0 

Solving for the above F matri:·" 

= - 0 (B .18) 

(B.19) 

Therefore 
(B.20) 
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i 
The integral in (B. II) is computed numerically using 

rectangular integration with step size t n/20 and with Q taken 

from (B. 20). Then t\'lO Gaussian random numners are dralrm and 

v(t ) is found using (B.14). Since the system is time invariant, 
- n 

the state transition matrix can be computed apriori to the 

integration from (B.8). Therefore, the integration of (B.G) is 

given by the following iteration scheme: 

(B.21) 
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