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1.	 Formulation of a Fast Iterative Method

for Transonic Flow Calculations

Reliable but slow methods for calculating transonic

flows have been developed in recent years [1,2,31. These

use central difference formulas in the sv^)sonic zone and	 •^

upwind difference formulas in the supersonic zone to ensures

the proper region of dependence and jump conditions. The

resulting difference equations are then solved by an itera-

tion procedure derived from the method of successive

overralaxation.	 This note describes results obtained by	 s

using a fast Poisson solver to accelerate the rate of

convergence of the iterative scheme.

Note:	 This work was also partially supported by NASA
Grants NGR-33016-167 and -201.
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It was proposed by Martin and Lomax (4) that a fast

elliptic solver could be used to generate an iterative

scheme for solving the difference equations appearinj in

compressible flow calculations. In the simplest case

consider the small disturbance equation

( 1
-M2) ^xx +	

0
^yy = 

where ^ is the velocity potential, and M :s the local

Mach number, which is related to the free streatu Mach

number M. by the formula

M 2 = M? (1 + (Y+1) fix ) .

An iterative scheme can be constructed by putting the

Laplacian on the left and the nonlinear terms on the right.

Let vn be the solution for ^ at the nth iteration. The,,

_ 2 a2^vn+1	 M 

ax 
vn

To see that this can be expected to converge consider the

linearized equation where M2 is replaced by M?. If P

and Q are nonnegative finite difference operators represent-
2	 2

ing - 
a2 and - a2 we have

ax	 ay

( P+Q) vn+ 1 = M2 PV 
or

P1/2vn+1 = M2 K P1/2 V 

whe re

K = P
1/2

(P+Q) -1 P

r ,a
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Th us

II P 112 vn+l q < M2 0 KU II , 
1/2 

V 1ll

and since K is Her.utian

II KII = 
Xmax (K)

= max (x,Kx)
(x, x)

i
(Y'P1V)= max ^y.P

Y) + (Y,QY)

where

P1/2 y = K 1/2 x

Th us

II P 1/2 vn+l ll < M 2 11 P 1/2 vn 11 .

This estimate serves to indicate that for subsonic flows

the scheme should converge at a rate independent of the

mesh size.

The above analysis also suggests -hat it is doubtful

whether such a scheme would converge for a superson.c flcw

with M > 1. The arcument presented in the Appendix

in fact indicates that the scheme would aefinitely not

converge for a linearized supersonic flow. It thus

appears that the fast elliptic solver used on its own is

not likely to lead to good conve y ence when the supersonic

zone is large. If, however, it could be suppleme-ited with

another scheme which give fast convergence in the super-

sonic zone, the `.wo in combination might produce an

-3-



effective iterative scheme. In fact the standard line

relaxation method for transonic flo g calculations is such

a scheme. r'or the small disturbance equation, or in the

case cf the full potential equation with the flow aligned with

one coordinate direction,	 the method consists of freez-

ing the nonlinear coefficients at values determined from

the previous iteration and solving the resulting wavy

equation	 in the supersonic zone by a marching procedure.

Thus an exact solution of the supersonic zone could be

obtained in one step if the correct coefficients and data

at the sonic line could be inserted.

Titus the following scheme is proposed: use a two

stage iteration, in which the first stage is a step using

the Laplacian on the left-hand side, and the second stage

consists of a fixed number of relaxation steps to stabilize

the supersonic zone. For the case of flow aligned with

the coordinate system a single relaxation step should be

sufficient. The full potential equation in a curvilinear

coordinate system with an arbitrary flow direction requires

the use of a rotated upwind difference scheme [ 3] . Then a

simple marching scheme can no longer be used in the super-

sonic zone, and :,everal relaxation steps may be required

in the second stage.

-4-
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2.	 Application to the Transonic Potential Flow Eq uation in

a Mapped Domain

The use of a fast Poisson solver requires a simple domain

such as a rectangle. This leads to a difficulty in applying

the proposed method to an exterior flow problem with an infinite

domain. This can be circumvented by using the full potential

equation and mapping the exterior of the profile onto the

interior of a circle. If 2nE is the circulation it is conveni-

ent to use a reduced potential G defined by

= G + Cos 6 _ E 0.

Then G is finite and single valued. Now a fast solver for

Poisson's equation in polar coordinates can be used in the

first stage of the iteration. For this purpose a scheme using

the B uneman algorithm in the 0 direction has been programmed.

Two variants of this approach have been tried. The first

treats the potential equation in quasilinear form. The residual

at each point is evaluated as

R = ( a 2 -v2 ) r 
ar 

(r G r ) + (a2-u2) G80 - 2uv r(G rO+G 6 - E)

+ ( u 2 -v 2 ; r G r + ( u 2 +vZ ) ( r H O + v Hr)

where H is the modulus of the transformation to the exterior

of the circle, u and v are the velocity components

r(G O -E) - si.i 6	 r 
2 
G r - cos 0

U = H	 '
V =

and a is the speed of sound. If y is the ratio of

-5-
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specific heats, a is determined Af rom the stagnation speed

of sound a 0 by the relotior

a2 = a2 - ^ ( u 2+v 2 )

In evaluating R upwind differencing is used in the usual

manner at supersonic points. In the first stage of the

iteration the correction C is determined by solving

r ar (r Cr ) + C Q© = Rz
3

and then G is updated by the rule

G+ G + w C

where the superscript + denotes the new value, and

W is an overrelaxation factor. In the second stage of

the iteration an ordinary relaxation step is used.

Results with this approach have been quite promising.

Numerical :asts have confirmed that the scheme sometimes

diverges when the relaxation step is not included.When it is

included fast convergence has been obtained. Figures 1

and 2 show typical results. In each calculation the

calculation was performed first on a mesh with 64 cells in

the A direction and 16 cells in the r direction, and then

on a mesh with 128 x 32 cells. The interpolated coarse mesh

solution was used as the starting point for the fine mesh

calculation. The largest absolute value of the residual

anywhere in the field was used as a measure of convergence.

-6-



The first example is the 64.410 airfoil at Mach .720.

In this cese the residual was reduced from ti10-1 to 10-9

in 26 cycles on the coarse mesh, and then from ti 10
-3 

to 10-9

in 21 cycles on the fine mesh, each cycle consisting of

one Poisson step plus one relaxation .tep. The Poisson

step takes about the same time art 2 relaxation steps, so

each complete cycle requires about the same time as 3

relaxation steps. On the CDC 6600 at the ERD11 Computing
r

Facility at New York University one complete cycle on the

fine mesh takes about 1.5 seconds. The entire calculation

for the 6411410 took 48 seconds. The second example shows

a shock-free supercritical airfoil designed by Garabedian [6].

In this case 27 cycles were required to reduce the largest

residual to 10 -9 on the coarse mesh, and ano`:her 27 cycles

to reduce it to 10 -9 on the fine wesh. In corresponding

calculations using relaxation steps without the Poisson

steps the largest residual was still ,,10 -6 after 2.000 cycles

on the fine mesh.

The second variant treats the potential equation in

conservation form using a rotated difference scheme in the

supersonic zone [5]. In this case the residual is evaluated

as

R = r a
	

(r pV) + a© (pU)

where ^a

U = G - E_ sin 0	 V= r G - 
cos

8	 r	 r	 r

and p is the density. If M,* is the free stream Mach

-7_
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number p is determined from the speed of sound a

by the relation

P	 " M2 a2 .

Now in the first stage of the iteration the correction C

is determined by solving

'	 r Tr_ 
fr C r ) + C 06 = P

The second stage consists of k relaxation cycles. Typically

k =	 .

In this case also the combined iteration has prcved

to give faster convergence than the simple relaxation

method.	 The improvement is not as great as with the

first variant, however, becaus- , of the need to use more

relaxation steps than Poisson steps. As an example of

the application of the method, Figure 3 shows the pressure

distribution for the 64A410 at Mach .720 recalculated using

conservation form.	 The proper theoretical jump condition

is now satisfied, as can be seen. In this calculation

the number of cycles required to reduce the largest residual

to 10
-g
 was 37 on the coarse mesh and 40 on the fine mesh.

Each cycle consisted of 1 Poisson step plus 5 relaxation

steps, and took about the same amount of time as 7 relaxa-

tion steps, so the fine mesh calculation is equivalent to a

little under 300 relaxation steps, which would be enough

to reduce the largest resi A,ial to ti10 -5 using relaxation

alone.

-8-



--R	 IIP-

3.	 Conclusion

It is concluded that the use of a fast elliptic solver

in .ombination with relax..-ion is an effective way to

accelerate the convergence of transonic flow calculations,

particularly when a marching scheme can be used to treat

the supersonic zone in the relaxation process. Other

methods of preventing divergence in the supersonic zone

should be investigated. Possibly it would be sufficient

to sweep only the supersonic zone in the second stage of

the iteration. This would lead to further useful savings

of computer time.

b
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Appendix. Analysis of the Poisson Iteration for the

Linearized Equation with M > 1.

Let the equation

(1-M2 )© xx + myy = 0

with M 2 a constant > 1, be approximated with equal mesh

spacing in the x and y directions by the Murman difference

scheme

2
(1-M )(mij-2^i-l,j+^i-2,j) + y

iIj+l - 2^ ij + mi,j-1 = 0

in which an upwind difference formula is used for ^ xx'

Denoting updated values by the superscript +, consider the

iteration

i+1,j	 ij	 i l,j	 i,j+l	 ij	 i,j-1

_	 2

= ^i+l,j	 2^ij + ^i-1,j + (M -1) (4)ij- 2,ri-l,j+d)i-2,j).

Let i and j both run from 1 to n and define the n x n matrix

-2 1

1 -2 1

T = 1 -2 1

1 -2	 1

Also define the n x n matrix

4
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1

-2	 1

'r R =	 1 -2	 1

1 -2	 1

j	 and let 4) be the ma cri x with entries ^i	 Then the

iteration can be written as

T 4)
+
 + 4)+T = (T + aR)

Yihe rF-

U = M 2-1 1 0

Also it is easily verified that

R = T S

where

0	 -1/(n+1)

1	 0	 -2/ (n+l)

y S =	 1	 0	 -3/(n+1)

	

4	 1	 0	 -4/ (n+1)

f
t

	

r	 Th us

T (D
+
 + (D+T = T (I + aS) 4)

If

then	 (with its elements suitably ordered to form a vector)

is an eigenvector of the iteration matrix. Consider the

form

,^ = uvr

-15-
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where v is an eigenvector of T

T v = u v

Then (P is an eigenvector if

T (I + aS) uv r = A (TuvT + uvTT)

- A (T + WI) uvr

'Phis is satisfied if

Puu = a u

where

P IS = ( T+uI) -1 T(I+aS) .

Thus the eigenvectors of the iteration matrix can be

expressed as

u v
T

where v is an eigenvector of T with eigenvalue U and

u is an eigenvector of P „ , and the eigenvalues of the

iteration matrix are the eigenvalues of P 	 for

P = u-1 " 2 1 • • • "n' For large n the smalh.:st eigenvalue

u of T is of order lZ. But as u	0 the eigenvalues
n

of P ly approach those of

P O = I + as

and correspondingly some of the eigenvalues of the itera-

tion matrix approach

1 + a ai

where X  are the eigenvalues of	 Nov

-16-



det M-S) - an + n+1 ^n-1 .•• + n+l

Thus if the polynomial

j  = (n+l) an + n Xn-1 ... + 1

has a root in the right half plane the corresponding

eigenvalues of P D will lie outside the unit circle.

Applying the Routh Hurwitz test, it can be verified

that J 	 has at least one root in the right half plane

when n > 4.

-17-
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This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any perscn acting on behalf of the
Administration:

A. "akes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any in forma ^,ion, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.
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