General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A MULTILEVEL CONTROL SYSTEM FOR

 THE LARGE SPACE TELESCOPE
FINAL REPORT CONTRACT NO. NAS 8-27799 JANUARY 20, 1974 - JULY 1, 1975

```
(NASA-CP-143941) A MOLTTLEVEL CONTROL
SYSTEM POR THP LAPGE SPACE TELESCOPE Final
```

Report, 20 Jan. 1974 - 1 Jul. 1975 (Santa

```
Report, 20 Jan. 1974 - 1 Jul. 1975 (Santa
clara Univ.) 101 p EC $5.25 CSCL 14B
```

clara Univ.) 101 p EC \$5.25 CSCL 14B

```

\author{
D. D. Šiljak \\ Principal Investigator \\ S. K. Sundareshan Investigator \\ M. B. Vukčević \\ Investigator
}

\section*{The University of Santa Clara - California}

\section*{TABLE OF CONIENTS}
1. INTRODUCTION ..... 1
2. DEVELOPMENT OF A MODEL FOR THE LST ..... 3
3. STABILIZATION ..... 11
3.1 Multilevel Control ..... 11
3.2 An Illustrative Example ..... 17
3.3 Local Stabilization ..... 20
3.4 An Illustrative Example ..... 25
3.5 Application to LST ..... 29
4. OPTIMAL CONIROL ..... 36
4.1 Problem Formulation ..... 36
4.2 Multilevel Optimization ..... 41
4.3 An Illustrative Example ..... 46
4.4 App1ication to LST ..... 49
5. CONCLUSIONS ..... 53
6. REFERENCES ..... 54
APPENDIX: COMPUTER APPLICATION ..... 56
A. 1 Stabilization Program ..... A. 1
A. 2 Optimization Program ..... A. 32

\section*{1. INTRODUCTION}

The principal objective of this report is to outline a multilevel control sureme for the Large Space Telescope (LST). The concept and methodology of the scheme is based upon the decomposition-aggregation stability analysis of large-scale systems [1-3], which was used to study structural properties of the control system for a spinning flexible spacecraft [4,5].

The two-level analysis of the decomposition-aggregation method is ideally suitable for designing a multilevel feedback control [6-10] for dynamic systems composed of interconnected subsystems. Local controllers on the subsystem level are used to stabilize (or optimize) the decoupled subsystems. On the second hierarchial level the global controllers are used to minimize the interactions among the subsystems, and make the control system meet the required performance characteristics for the overall system. This multilevel strategy can solve complex control problems "piece-by-piece" and make the conputer use attractive in cases when the direct approach is either not feasible (excessive computer storage), or it is uneconomical (excessive computer time).

The detailed plan of the report is as follows:
In Section 2, we wiil develop a nonlinear model for the LST which is based upon the linear model described in [11]. The nonlinear representation will serve as a realistic model for evaluating the potentials of the multilevel schemes for control of the LST.

In Section 3, we will outline the general multilevel stabilization algorithm [6-8]. Both local and global controllers are involved. The local controllers are used to stabilize each decoupled subsystem by any of the classical techniques such as pole-shifting, root-locus, parameter plane, etc. The role of the global controllers is to minimize the effect of interactions among the subsystems. Finally, the aggregate system is constructed on the higher hierarchial level to conclude stability of the owerall composite system. We
will consider a class of dynamic systems [12] which can always be stabilized by the proposed scheme using local controllers only. Since the LST model developed in Section 2 is in that class, we will be able to effectively design the feedback control which stabilizes the LST.

In Section 4, we will present a multilevel optimization scheme for control of large-scale systems [9, 10]. The local controllers are used to optimize the decoupled subsystems with respect to quadratic cost. The global controllers are applied to reduce the subsystem interactions, or entirely decouple the subsystems as is the case of the LST. While this control scheme results in a suboptimal performance when the effective interactions are present, it produces an optimal control when the total decoupling takes place. Thus, the design procedure can effectively be used for constructing an optimal control system for the IST.

Both the stabilization and the optimization multilevel schemes are entirely computerized. The description of the programs is provided in the Appendix.

This report is written under the supervision and with the participation of the Principal Investigator, D. D. Siljak. Investigator S. K. Sundareshan developed the model of LST in Section 2, and Sections 4 and A. 2 on multilevel optimization. Investigator M. B. Vuirčevic developed the multilevel stabilization scheme presented in Sections 3 and A.1.

\section*{2. DEVELOFMENT OF A MODEL FOR THE LST'}

The Large Space Telescope (LST) is modeled as a rigid body with three orthogonally mounted reaction wheel actuators and is considered to be subject to gravitational and magnetic disturbance torques. Unlike in the earlier analyses [11], nonlinear coupling phenomena are not ignored and a complete threeaxes model for the spacecraft is obtained as a nonlinear interconnected system. The interconnections represent the coupling between the motions along the individual axes. Hence this model will be a more accurate description of the LST, which however, is necessary due to the precision pointing requirements demanded of the control system.

The spacecraft's equation of motion can be written down from the Euler equations [11], as
\[
\begin{gather*}
I \cdot \dot{\omega}+\omega \times I \circ \omega+\sum_{i=1}^{3}\left\{\omega \times \omega_{i} \operatorname{tr} I_{i}+2 \omega_{i} \times I_{i} \cdot \omega+I_{i} \cdot \dot{\omega}_{i}\right. \\
\left.+\omega_{i} \times I_{i} \circ \omega_{i}\right\}=M \tag{2.1}
\end{gather*}
\]
and
\[
\begin{align*}
& I_{i} \cdot \dot{w}_{i}+\omega \times I_{i} \cdot \omega+\omega \times \omega_{i} \operatorname{tr} I_{i}+2 \omega_{i} \times I_{i} \cdot \omega \\
&+I_{i} \cdot \dot{\omega}_{i}+\omega_{i} \times I_{i} \cdot w_{i}=M_{i}, i=1,2,3 \tag{2.2}
\end{align*}
\]
where
I is the inertia tensor of the LST given by
\[
I=\left[\begin{array}{lll}
I_{x} & 0 & 0 \\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right],
\]
\(I_{x}, I_{y}, I_{z}\) denoting the components along the three axes constituting an inertial reference frame \(I_{r f}\);
\(I_{i}, i=1,2,3\), are the inertia tensors of the three reaction wheels that are mounted orthogonally and parallel to the
axes constituting the standard body-fixed reference frame \(\mathrm{B}_{\mathrm{rf}}\) and hence can be expressed as
\[
\begin{aligned}
& I_{I}=\left[\begin{array}{ccc}
I_{I x} & 0 & 0 \\
0 & I_{I y} & 0 \\
0 & 0 & I_{I y}
\end{array}\right] ; I_{2}=\left[\begin{array}{ccc}
I_{2 z} & 0 & 0 \\
0 & I_{2 y} & 0 \\
0 & 0 & I_{2 z}
\end{array}\right] ; \\
& I_{3}=\left[\begin{array}{ccc}
I_{3 x} & 0 & 0 \\
0 & I_{3 x} & 0 \\
0 & 0 & I_{3 z}
\end{array}\right]
\end{aligned}
\]
\(\omega\)
is the angular velocity vector of the LST relative to the frame \(I_{r f}\);
\(w_{i}, i=1,2,3\), are the angular velocity vectors of the reaction wheels relative to the frame \(I_{r f}\);
\(M\) is the total external torque acting on the LST; and
\(M_{i}, i=1,2,3\), are the internal torques on the reaction wheels.

The angular velocity \(\omega\) can be expressed in terms of the rates of angular deviations along the three axes of \(I_{r f}\) as
\[
\omega=\left[\begin{array}{l}
\dot{\phi}  \tag{2.3}\\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
\]
where \(\phi\) is the roll angle, \(\theta\) is tine pitch angle and \(\psi\) is the yaw angle. Similarly the angular velocities \(\omega_{i}\) of the reaction wheels can be expressed
ini terms of the components as
\[
\omega_{I}=\left[\begin{array}{l}
u_{1}  \tag{2.4}\\
0 \\
0
\end{array}\right] ; \omega_{2}=\left[\begin{array}{l}
0 \\
v_{2} \\
0
\end{array}\right] ; \omega_{3}=\left[\begin{array}{l}
0 \\
0 \\
v_{3}
\end{array}\right] .
\]

Equations (2.1) and (2.2) can now be simplified into the following four sets of scalar equations:
(i) Equations governing the motion of the LST body:
\[
\left.\begin{array}{l}
I_{x} \ddot{\phi}+\dot{\phi} \dot{\psi}\left(I_{z}-I_{y}\right)+I_{3 z} \nu_{3} \dot{\theta}-I_{2 y} \nu_{2} \dot{\psi}+I_{1 x} \dot{v}_{1}=M_{x} \\
I_{y} \ddot{\theta}+\dot{\phi} \dot{\psi}\left(I_{x}-I_{z}\right)+I_{1 x x_{1}} \dot{\psi}-I_{3 z} \nu_{3} \dot{\phi}+I_{2 y} \dot{y}_{2}=M_{y} \\
I_{z} \ddot{\psi}+\dot{\phi} \dot{\theta}\left(I_{y}-I_{x}\right)+I_{2 y} \nu_{2} \dot{\phi}-I_{1 x v_{1}} \dot{\theta}+I_{3} \dot{v}_{3}=M_{3} \tag{2.5}
\end{array}\right\}
\]
(ii) Equations for the Reaction wheel mounted parallel to x -axis:
\[
\left.\begin{array}{l}
I_{1 x} \ddot{\phi}+I_{1 x} \dot{v}_{1}=M_{1 x} \\
I_{1 y} \ddot{\theta}+\left(I_{1 x}-I_{1 y}\right) \dot{\theta} \dot{\dot{\psi}}+I_{1 x} v_{1} \dot{\psi}=M_{I y} \\
I_{1 y} \ddot{\psi}+\left(I_{1 y}-I_{1 x}\right) \dot{i} \dot{\theta}-I_{I x} v_{1} \dot{\theta}=M_{1 z} \tag{2.6}
\end{array}\right\}
\]
(iii) Equations for the Reaction Wheel mounted parallel to \(\gamma\)-axis
\[
\left.\begin{array}{l}
I_{2 z} \ddot{\phi}+\left(I_{2 y}{ }^{-} I_{2 z}\right) \dot{\dot{\phi}} \dot{\psi}+I_{2 y}{ }_{2} \dot{\dot{\phi}}=M_{2 x} \\
I_{2 y} \ddot{\theta}+I_{2 y} \dot{v}_{2}=M_{2 y} \\
I_{2 z} \ddot{\psi}+\left(I_{2 z}-I_{2 y}\right) \dot{\theta} \dot{\psi}-I_{2 y} v_{2} \dot{\psi}=M_{2 z} \tag{2.7}
\end{array}\right\}
\]
(iv) Equations for the Reaction theel mounted parallel to \(z\)-axis:
\[
\left.\begin{array}{l}
I_{3 x} \ddot{\dot{\theta}}+\left(I_{3 x}-I_{3 y}\right) \dot{\phi} \dot{\theta}+I_{3 z} v_{3} \dot{\theta}=M_{3 x} \\
I_{3 x} \ddot{\theta}+\left(I_{3 z}-I_{3 x}\right) \dot{\phi} \dot{\theta}+I_{3 z} v_{3} \dot{\dot{q}}=M_{3 y} \\
I_{3 z} \ddot{\psi}+I_{3 z} \dot{y}_{3}=M_{3 z} \tag{2.8}
\end{array}\right\}
\]

For further simplificarion, we will assume that the reaction wheels are small so that \(I_{1 x} \ll I_{x}, I_{2 y} \ll I_{y}, I_{3 z} \ll I_{z}\) and they have one degree of freedom mily. With these, equations (2.5)-(2.8) can be simplified into,
\[
\left.\begin{array}{l}
I_{x} \ddot{\phi}+\dot{\theta} \dot{\psi}\left(I_{z}-I_{y}\right)+I_{1 x} \dot{v}_{1}=M_{x} \\
I_{y} \ddot{\theta}+\dot{\phi} \dot{\psi}\left(I_{x}-I_{z}\right)+I_{2 y} \dot{v}_{2}=M_{y} \\
I_{z} \ddot{\psi}+\dot{\phi} \dot{\theta}\left(I_{y}-I_{x}\right)+I_{z z} \dot{v}_{z}=M_{z} \tag{2.9}
\end{array}\right\}
\]
and
\[
\begin{align*}
& I_{1 x} \ddot{\phi}+I_{1 x} \dot{x}_{1}=M_{1 x}  \tag{2.10}\\
& I_{2 y} \ddot{\theta}+I_{2 y} \dot{y}_{2}=M_{2 y}  \tag{2.11}\\
& I_{3 z} \ddot{\psi}+I_{3 z} \dot{v}_{3}=M_{3 z} \tag{2.12}
\end{align*}
\]

Substitution of (2.10)-(2.12) into (2.9) will result in the following three equations describing the motions along the individual axes and their interconnections:
\[
\left.\begin{array}{l}
I_{x} \ddot{\phi}+\left(I_{z}-I_{y}\right) \dot{\theta} \dot{\psi}=\left(M_{x}-M_{1 x}\right) \\
I_{y} \ddot{\theta}+\left(I_{x}-I_{z}\right) \dot{\phi} \dot{\psi}=\left(M_{y}-M_{2 y}\right) \\
I_{z} \ddot{\psi}+\left(I_{y}-I_{x}\right) \dot{\theta} \dot{\phi}=\left(M_{z}-M_{3 z}\right) \tag{2.13}
\end{array}\right\}
\]

It is now necessary to evaluate the various torques. Since the internal torques on the reaction wheels are small, it may be assumed that these are proportional to the control signals actuating the wheels. Hence,
\[
\left.\begin{array}{l}
M_{1 x}=-K_{1} u_{1}  \tag{2.14}\\
M_{2 y}=-K_{2} u_{2} \\
M_{3 z}=-K_{3} u_{3}
\end{array}\right\}
\]

Whare \(K_{1}, K_{2}\) and \(K_{3}\) are the drive motor constants the negative signs in (2.14) merely indicate the directions of these torques).

The external torques acting on the body of the LST are mainly environmental disturbance forces and are composed of gravity-gradient, magnetic, aerodynamic and solar pressure torques. The latter two will be negligibly small compared to the others and will usually be accounted for in control system designs by considering them as equivalent zero-mean stationary white noise processes. The gravity-gradient and magnetic torques can be represented as purely deterministic signals involving a constant term and a sinusoidal function of time with twice orbital rate. Hence, following the analysis in [11] the external torques can be obtained as,
\[
\left.\begin{array}{l}
M_{x}=\left\{\gamma_{11}+\gamma_{12} \cos (\omega t+x)+s_{1}\right\} I_{x} \\
M_{y}=\left\{\gamma_{21}+\gamma_{22} \cos (t+x)+s_{2}\right\} I_{y} \\
M_{z}=\left\{\gamma_{31}+\gamma_{32} \cos (t+x)+s_{3}\right\} I_{z} \tag{2.15}
\end{array}\right\} \text {. }
\]

Where \(\quad \gamma_{i j}, i=1,2,3\), are constants that can be determined [11] from the inertia components \(I_{x}, I_{y}, I_{z}\), the magnitude of the LST dipole moment and the earth's magnetic field intensity; and \(s_{i}, i=1,2,3\), are white-noise processes characterizing the aerodynamic and solar pressure torques.

Substitution of (2.14) and (2.15) in (2.13) and further simplification results in the following system of equations:
\[
\left.\begin{array}{l}
\ddot{\phi}+\alpha_{1} \dot{\theta} \dot{\psi}=\beta_{1} u_{1}+M_{x}  \tag{2.16}\\
\ddot{\theta}+\alpha_{2} \ddot{q}=\beta_{2} u_{2}+M_{Y} \\
\ddot{\psi}+\alpha_{3} \dot{\phi} \dot{\theta}=\beta_{3} u_{3}+M_{z}
\end{array}\right\}
\]
where \(\alpha_{1}=\frac{\left(I_{z}-I_{y}\right)}{I_{x}}, \alpha_{2}=\frac{\left(I_{x}-I_{z}\right)}{I_{y}}, \alpha_{3}=\frac{\left(I_{Y}-I_{x}\right)}{I_{z}}, \beta_{1}=\frac{K_{1}}{I_{x}}, \beta_{2}=\frac{K_{2}}{I_{y}}\),
\(\beta_{3}=\frac{K_{3}}{I_{z}}\) and \(M_{x}, M_{y}, M_{z}\) are the external disturbance torques given by (2.15).
It is now simple to obtain a state-space representation of the LST by choosing the state-vector
\[
\begin{equation*}
x=[\phi, \dot{\phi}, \theta, \dot{\theta}, \psi, \dot{\psi}]^{\mathrm{T}}, \tag{2.17}
\end{equation*}
\]
which results in the time-invariant model,
\[
\begin{equation*}
\dot{x}=A x+B L x+h(x)+F M \tag{2.18}
\end{equation*}
\]
where
\[
\begin{aligned}
& A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad B=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\beta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & \beta_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & \beta_{3}
\end{array}\right] \\
& h(x)=\left[\begin{array}{c}
0 \\
-\alpha_{1} \dot{\theta} \dot{\psi} \\
0 \\
-\alpha_{2} \dot{\phi} \dot{\psi} \\
0 \\
-\alpha_{3} \dot{\phi} \dot{\theta}
\end{array}\right]
\end{aligned}
\]

The diagonal structure of the matrices \(A, B\) and \(F\) permits us to partition the state-vector as,
\[
\begin{equation*}
x=\left[x_{1}, x_{2}, x_{3}\right]^{T} \tag{2.19}
\end{equation*}
\]
where
\[
x_{1}=\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right]=\left[\begin{array}{l}
\phi \\
\dot{\phi}
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
x_{31} \\
x_{32}
\end{array}\right]=\left[\begin{array}{l}
\psi \\
\dot{\psi}
\end{array}\right] .
\]

With this, (2.18) can be described as a set of interconnected subsystems,
\[
\begin{equation*}
x_{i}=A_{i} x_{i}+b_{i} u_{i}+h_{i}(x)+f_{i} d_{i}, i=1,2,3, \tag{2.20}
\end{equation*}
\]
where
\[
A_{i}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad b_{i}=\left[\begin{array}{l}
0 \\
B_{i}
\end{array}\right], \quad f_{i}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad i=1,2,3,
\]
and
\[
h_{1}(x)=\left[\begin{array}{l}
0 \\
-\alpha_{1} x_{22} x_{32}
\end{array}\right], \quad h_{2}(x)=\left[\begin{array}{l}
0 \\
-\alpha_{2} x_{32} x_{12}
\end{array}\right], \quad h_{3}(x)=\left[\begin{array}{l}
0 \\
-\alpha_{3} x_{12} x_{22}
\end{array}\right]
\]
with \(d_{1}=M_{x}, d_{2}=M_{y}\) and \(d_{3}=M_{z}\) being the external disturbances.
It may be observed that when \(h_{i}(x) \equiv 0, i=1,2,3,(2.20)\) represents three decoupled subsystems which describe the motions of the spacecraft along the three axes. However, \(h_{i}(x)\) are not zero and constitute the interconnections among the subsystems, thus making an analysis based on the smaller-dimensional decoupled subsystems alone inaccurate.

The system represented by \((2.20)\), is driven by the disturbance forces \(d_{i}\) in addition to the control signals \(u_{i}\). However, these external distarbances can be completely cancelled by constructing a disturbance accommodating controller as described in \([3,1]\). This involves the determination of a suitable differential equation model for the disturbances and with the augmentation of the disturbance variables with the state variables of the system, designing a feedback controller that counteracts the disturbance forces by feeding back the estimated disturbance variables. Although this analysis is conducted for a singleaxis model of the LST (only for the pitch motion control) in [1], a straightforward extension that uses three separate disturbance acconmodating controllers can be obtained for the three-axis model presently considered. Due to the above reason, we will ignore the disturbance terms from our model and conduct all fur-
ther analysis on the system,
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+b_{i} u_{i}+h_{i}(x), i=1,2,3, \tag{2.21}
\end{equation*}
\]
obtained from (2.20) with the substitution \(\mathrm{d}_{\mathrm{i}} \equiv 0\).

\section*{3. STABILIZATION}

When a complex dymanic system is gìven as a number of locally controiled intercomected subsystems, it can be stabilized by a multilevel control scheme [6-8] based upon the decomposition-aggregation stability analysis [1-3]. In the scheme, the dimensionality problem is resolved by carrying out all operations on the subsystem level. Both local and global controllers can be involved. The local controllers are introduced to stabilize each decoupled subsystem by any of the classical techniques such as the pole-shifting by state feedback, root-locus, parameter plane method, etc. The global controllers minimize the effect of interactions among the subsystems. Finally, the aggregate system is constructed on the higher hierarchical level to conclude stability of the overall composite system.

It is important to note that the proposed stabilization produces largesystems which are connectively stable [1-3] . That is, stability is invariant under structural perturbations whereby subsystems are disconnected and connected again in various ways during the operation of the system. Furthermore, the stabilized systems have wide tolerance to nonlinearities in the interactions between the subsystems.

After we outline the multilevel control scheme for stabilization of largescale systens, we will consider a class of dynamic systems which can be always stabilized by the scheme using local controllers only. Since the LST model developed in the preceeding section falls in that class, we will be able to effectively design the feedback control which stabilizes the LST.

\subsection*{3.1. NuttizeveZ Gontrol}

Let us consider a linear dynamic system
\[
\begin{equation*}
\dot{x}=A x+B u \tag{3.1}
\end{equation*}
\]
where \(x(t) \in R^{n}\) is the state of the system, \(u(t) \in R^{s}\) is the input to the system, and \(A\) and \(B\) are constant \(n \times n\) and \(n \times s\) matrices. We assume that the system is brought into the input-decentralized form
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{S} A_{i j} x_{j}+b_{i} u_{i}, \quad i=1,2, \ldots, s \tag{3.2}
\end{equation*}
\]
where \(x_{i}(t) \in R^{n_{i}}\) is the state of the \(i\)-th subsystem, and \(u_{i}(t) \in R\) is the corresponding local control, so that
\[
\begin{equation*}
R^{n}=R^{n_{1}} \times R^{n_{2}} \times \ldots \times R^{n_{s}}, \tag{3.3}
\end{equation*}
\]
and each pair \(\left(A_{i}, b_{i}\right)\) is controllable.
In (3.2), the matrices \(A_{i}, A_{i j}\), and the vectors \(b_{i}\) have appropriate dinensions. As shown in reference [6], any linear dynamic system (3.1) can be represented by its input-decentralized form (3.2).

To stabilize the system (3.2), we apply the decentralized feedback control
\[
\begin{equation*}
u_{i}(t)=u_{i}^{\ell}(t)+u_{i}^{g}(t) \tag{3.4}
\end{equation*}
\]
where \(u_{i}(t)\) is chosen as a local control law
\[
\begin{equation*}
u_{i}^{\ell}=-k_{i}^{T} x_{i}, \tag{3.5}
\end{equation*}
\]
with a constant vector \(k_{i} \in R^{n_{i}}\), and \(u_{i}^{g}(t)\) is chosen as a global control 1aw
\[
\begin{equation*}
u_{i}^{g}=-\sum_{\substack{j=1 \\ j \neq i}}^{S} k_{i j}^{T} x_{j} \tag{3.6}
\end{equation*}
\]
where \(k_{i j} \in R^{n_{j}}\) are constant vectors.
By substituting the control (3.4) into (3.2), we get the closed-Ioop sys-
tem as
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-b_{i} k_{i}^{T} j x_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{S}\left(A_{i j}-b_{i} k_{i j}^{T}\right) x_{j}, i=1,2, \ldots, s\right. \tag{3.7}
\end{equation*}
\]

Since each pair \(\left(A_{i}, b_{i}\right)\) is controllable, a simple choice of \(k_{i}\) can be always made [13] to place the eigenvalues of \(A_{i}-B_{i} k_{i}^{T}\) at any desired locations \(-\sigma_{1}^{i} \pm j \omega_{1}^{i}, \ldots, \sigma_{p}^{i} \pm j \omega_{p}^{i},-\sigma_{p+1}^{i}, \ldots,-\sigma_{n_{i}}^{i}\left(\sigma_{q}^{i}>0 ; q=1,2\right.\), \(\ldots, n_{i}\), and \(1 \leq p \leq n_{i}\) ). Then, each uncoupled sybsystem
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-b_{i} k_{i}^{T}\right) x_{i}, i=1,2, \ldots, s \tag{3.8}
\end{equation*}
\]
is stabilized with a degree of exponential stability
\[
\begin{equation*}
\pi_{i}=\min _{q} \sigma_{q}^{i} \tag{3.9}
\end{equation*}
\]

To provide a Liapunov function \([5-8]\) with the exact estimate of \(\pi_{i}\) for each decoupled subsystem, we apply to (3.8) the linear nonsingular transformation
\[
\begin{equation*}
x_{i}=T_{i} \tilde{x}_{i} \tag{3.10}
\end{equation*}
\]
to get the systmm (3.8) as
\[
\begin{equation*}
\dot{\tilde{x}}_{i}=\Lambda_{i} \dot{x}_{i} \tag{3.11}
\end{equation*}
\]
where \(A_{i}=T_{i}^{-1}\left(A_{i}-b_{i} k_{i}^{T}\right) T_{i}\) has the quasidiagonal form
\[
\Lambda_{i}=\operatorname{diag}\left\{\left[\begin{array}{rr}
-\sigma_{1}^{i} & \omega_{1}^{i}  \tag{3.12}\\
\vdots \\
-\omega_{1}^{i} & -\sigma_{I}^{i}
\end{array}\right], \ldots,\left[\begin{array}{rr}
-\sigma_{p}^{i} & \omega_{p}^{i} \\
-\omega_{p}^{i} & -\sigma_{p}^{i}
\end{array}\right],-\sigma_{p+1}^{i}, \ldots,-\sigma_{n_{i}}^{i}\right\}
\]

For the system (3.11), we choose the Liapunov function \(v_{i}: R^{n_{i}}+R_{+}\),
\[
\begin{equation*}
v_{i}\left(\tilde{x}_{i}\right)=\left(\tilde{x}_{i} \tilde{H}_{i} \tilde{x}_{i}\right)^{\frac{1}{2}}, \tag{3.13}
\end{equation*}
\]
where
\[
\begin{equation*}
\Lambda_{i} \mathrm{~T}_{\tilde{H}_{i}}+\tilde{H}_{i} \Lambda_{i}=-\tilde{G}_{i} \tag{3.14}
\end{equation*}
\]
and
\[
\begin{equation*}
\tilde{G}_{i}=2 \theta_{i} \operatorname{diag}\left\{\sigma_{1}^{i}, \sigma_{1}^{i}, \ldots, \sigma_{p}^{i}, \sigma_{p}^{i}, \sigma_{p+1}^{i}, \ldots, \sigma_{n_{i}}^{i}\right\}, \tilde{H}_{i}=\theta_{i} I_{i} \tag{3.15}
\end{equation*}
\]

In (3.15), \(\theta_{i}>0\) is an arbitrary constant and \(I_{i}\) is the \(n_{i} \times n_{i}\) identity matrix.

The aggregate comparison system involving the vector Liapunov function \(v: R^{n}+R_{+}^{s}\),
\[
\begin{equation*}
v=\left(v_{1}, v_{2}, \ldots, v_{s}\right)^{T} \tag{3.16}
\end{equation*}
\]
is obtined for the transformed system (3.7),
\[
\dot{\dot{x}}_{i}=A_{i} \tilde{x}_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{s}\left(\tilde{A}_{i j}-\tilde{b}_{i} \tilde{k}_{i j}^{T}\right) \dot{x}_{j},
\]
\[
\begin{equation*}
\mathbf{i}=1,2, \ldots, s \tag{3.17}
\end{equation*}
\]
where \(\tilde{A}_{i j}=T_{i}^{-1} A_{i j} T_{j}, \quad \vec{b}_{i}=T_{i}^{-1} b_{i}, \quad \tilde{k}_{i j}^{T}=k_{i j}^{T} T_{j}\), and using the Liapunov functions \(v_{i}\left(\tilde{x}_{i}\right)\) defined in (3.13). Using the aggregation method presented in [1-5] , we construct the comparison system
\[
\begin{equation*}
\dot{v} \leq \tilde{W} v \tag{3.18}
\end{equation*}
\]
where the constant \(s \times s\) matrix \(\tilde{W}_{i}=\left(\tilde{w}_{i j}\right)\) has the elements defined as
\[
\begin{equation*}
\tilde{w}_{i j}=-\delta_{i j} \pi_{i}+\left(l-\delta_{i j}\right) \tilde{\xi}_{i j}, \tag{3.19}
\end{equation*}
\]
where \(\delta_{i j}\) is the Kronecker symbox, \(\pi_{i}\) is defined in (3.9), and
\[
\begin{equation*}
\tilde{\xi}_{i j}=\lambda_{M}^{\frac{1}{2}}\left[\left(\tilde{A}_{i j}-\tilde{b}_{i} k_{i j}^{T}\right)^{T}\left(\tilde{A}_{i j}-\tilde{b}_{i} k_{i j}^{T}\right]\right] \tag{3.20}
\end{equation*}
\]
where \(\lambda_{M}\) is the maximum eigenvalue of the indicated matrix.
As known [1-3] , global asymptotic stability of the system (3.17) and, therefore, original system (3.2), is implied by the Sevastyanov-Kotelyanski conditions [14], which for \(\tilde{W}=\left(\tilde{w}_{i j}\right)\) defined by (3.1.9) and (3.20) have the following form
\[
(-I)^{k}\left|\begin{array}{cccc}
-\pi_{1} & \tilde{\xi}_{12} & \ldots & \tilde{\xi}_{1 k}  \tag{3.21}\\
\tilde{\xi}_{21} & -\pi_{2} & \ldots & \tilde{\xi}_{2 k} \\
\cdots \cdots & \ldots & \ldots & \ldots \\
\tilde{\xi}_{\mathrm{k} 1} & \tilde{\xi}_{k 2} & \ldots & -\pi_{k}
\end{array}\right|>0, k=1,2, \ldots, s .
\]

To satisfy conditions (3.21), we choose the vectors \(\tilde{k}_{i j}\) in (3.20) so as to minimize the nonnegative numbers \(\tilde{\xi}_{i j}\) which reflect the strength of intercomnections among the subsystems in (3.17). Such choice is provided by
\[
\begin{equation*}
\left.\tilde{\mathrm{k}}_{i j}^{*}=\left[\tilde{\mathrm{B}}_{i}^{T} \tilde{\mathrm{~b}}_{i}\right)^{-1} \tilde{\mathrm{~b}}_{i}^{T} \tilde{\mathrm{~A}}_{i j}\right]^{T}, \tag{3.22}
\end{equation*}
\]
where \(\left(\tilde{\mathrm{b}}_{\mathrm{i}}^{T} \tilde{\mathrm{~b}}_{\mathfrak{i}}\right)^{-1} \tilde{\mathrm{~b}}_{i}^{T}\) is the Moore-Penrose geseralized inverse of \(\tilde{\mathrm{b}}_{\mathfrak{i}}\) [15]. The choice of \(\tilde{k}_{i j}^{*}\) in (3.22) produces the optimal aggregate matrix \(\tilde{W}^{*}\) in the sense that \(\tilde{W}^{*} \leq \tilde{W}\) (that is, \(\tilde{W}^{*}-\tilde{W} \leq 0\) ] is valid for all \(\tilde{k}_{i j}\). That is equivalent to saying [16] that \(\lambda_{M}\left(\tilde{W}^{*}\right) \leq \lambda_{M}(\tilde{W})\) for all \(\tilde{k}_{i j}\). Since conditions ( 3.21 )are necessary and sufficient for \(\lambda_{M}(\tilde{W})<0\), that is, for stability of \(\tilde{W}\), the choice \(\tilde{\mathrm{k}}_{\mathrm{ij}}=\tilde{\mathrm{k}}_{\mathrm{ij}}^{*}\) is justified.

To conclude stability of the overall system (3.17) with the optimal choice \(\tilde{k}_{i j}=\tilde{\mathrm{k}}_{\mathrm{ij}}^{*}\), which is
\[
\begin{align*}
\dot{x}_{i}=\Lambda_{i} \dot{x}_{i}+\left[I_{i}-E_{i}\left(\tilde{b}_{i}^{T} \tilde{i}_{i}\right)^{-1} \tilde{b}_{i}^{T}\right] \sum_{\substack{j=1 \\
j \neq i}}^{S} \tilde{A}_{i j} \tilde{x}_{j},  \tag{3.23}\\
j=1,2, \ldots, s
\end{align*}
\]
we apply the deteminantal inequalities (3.21) to the optinal aggregate matrix \(\tilde{\mathbb{W}}^{*}=\left(\tilde{W}_{i j}^{*}\right)\) defined by (3.19) and \(\left.\tilde{\xi}_{i j}=\tilde{\xi}_{i j}^{*}=\lambda_{M}^{\frac{1}{2}}\left\{\tilde{A}_{i j}^{T}\left[\tilde{T}_{i}-\tilde{b}_{i} \tilde{b}_{i}^{T} \tilde{b}_{i}\right)^{-1} \tilde{\mathrm{~b}}_{i}^{T}\right] \tilde{A}_{i j}\right]\).

We arrive at the following:

Theorem 3.1. The tinear control system (3.2) is stabitized by the linear controt laws
\[
\begin{equation*}
u_{i}=-k_{i}^{T} x_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{S} k_{i j}^{T} x_{j}, \quad i=1,2, \ldots, s \tag{3.24}
\end{equation*}
\]
where \(\mathrm{k}_{\mathrm{ij}}^{\mathrm{T}}=\tilde{\mathrm{k}}_{\mathrm{ij}}^{*} \mathrm{~T}_{\mathrm{j}} \mathrm{T}_{\mathrm{j}}^{-1}\), if the comesponding \(\mathrm{s} \times \mathrm{s}\) aggregate matrix
\[
\begin{equation*}
\tilde{W}^{*}=\left[-\delta_{i j} \pi_{i}+\left(1-\delta_{i j} \tilde{\xi}_{i j}^{*}\right]\right. \tag{3.25}
\end{equation*}
\]
satisfies conditions (3.21).

Successful application of the above theorem depends on appropriate choice of the eigenvalues for the decoupled subsystems (3.8). Once the subsystem eigenvalues are prescrived, the control law (3.24) and, thus, the gain vectors \(k_{i}, k_{i j}\) in (3.24), are computed uniquely using the proposed algorithm. Therefore, if for computed gains \(k_{i}, k_{i j}\), the conditions (3.21) are not met, a reassignment of the subsystems eigenvalues is required. The search for an appropriate set of subsystems eigenvaIues can be aided by the interactive computer program described in Section A.1. The efficiency of the computer program relies on the low order of the subsystems and the simplicity in testing the Sevastyanov-Kotelyanskii conditions (3.21). Furthermore, the computerized procedure provides a considerable freedom to the designer to apply his understanding of the system and the familiarity with the method to come up with a successful design.

\subsection*{3.2 An ILZustrative Example}

Let us consider a system ( 3,1 ) described by the equation
\[
\dot{x}=\left[\begin{array}{ccr:cr}
1 & 11.50 & 86.50 & 4 & 22.50  \tag{3,26}\\
0.45 & 0 & -4.09 & 8.91 & -0.82 \\
0.18 & 1 & 8.36 & 0.36 & 3.27 \\
\hdashline 0 & 1.25 & 14.75 & 5 & 2.75 \\
0.18 & 0 & -9.82 & 0.18 & -6.36
\end{array}\right] x+\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
0 & 0 \\
\hdashline 0 & 1 \\
0 & 1
\end{array}\right] u .
\]

The eigenvalues of the matrix \(A\) corresponding to (3.26) are
\[
\begin{equation*}
\lambda_{1,2}=0.76 \pm j 1.83, \lambda_{3}=11,54, \lambda_{4}=-3.89, \lambda_{5}=-1.15, \tag{3.27}
\end{equation*}
\]
and the system is unstable.
To stabilize the system (3.26), we start with its input-decentralized representation (3.2) given as
\[
\begin{align*}
& \dot{x}_{1}=\left[\begin{array}{ccc}
1 & 11.50 & 86.50 \\
0.45 & 0 & -4.09 \\
0.18 & 1 & 8.36
\end{array}\right] x_{1}+\left[\begin{array}{cc}
4 & 22.50 \\
8.91 & -0.82 \\
0.36 & 3.27
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u_{1} \\
& \dot{x}_{2}=\left[\begin{array}{cc}
5 & 2.75 \\
0.18 & -6.36
\end{array}\right] x_{2}+\left[\begin{array}{ccc}
0 & 1.25 & 14.75 \\
0.18 & 0 & -9.82
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{2} . \tag{3.28}
\end{align*}
\]
and transform each subsystem into its comparison form [13] to get
\[
\begin{align*}
& \dot{x}_{1}^{c}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8.86 & 8.50 & 9.36
\end{array}\right] x_{1}^{c}+\left[\begin{array}{rr}
3.20 & 1.98 \\
-14.72 & 0.49 \\
-7.92 & 36.01
\end{array}\right] x_{2}^{c}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u_{1} \\
& \dot{x}_{2}^{c}=\left[\begin{array}{cc}
0 & 1 \\
32.32 & -1.36
\end{array}\right] x_{2}^{c}+\left[\begin{array}{rrr}
1.69 & 1.26 & 0.08 \\
-7.52 & -5.23 & 0.49
\end{array}\right] x_{1}^{c}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{2} \tag{3,29}
\end{align*}
\]

The transformation into the comparison form is of no conceptual significance, and is First, it is convenient for subsystem stabilization by pole-assignment applying the state feedback and, secondly, the diagonal form (3.17) with no complex roots, can be obtained from the companion form (3.29) using the Vandermonce matrix \(T_{i}\) in (3.10) where \(x_{i}\) is replaced by \(x_{i}^{c}\).

Now, by using the local feedbrack law (3.5) and vectors
\[
\begin{align*}
& \mathrm{k}_{1}^{\mathrm{T}}=(1791.14,458.50,46.36) \\
& \mathrm{k}_{2}^{T}=(33.82,1.14), \tag{3.30}
\end{align*}
\]
we allocate the eigenvalues of the uncoupled subsystems (3.27) from
\[
\begin{array}{ll}
\lambda_{1}^{I}=0.63, & \lambda_{1}^{2}=5.04 \\
\lambda_{2}^{I}=-1.39, & \lambda_{2}^{2}=-6.41 \\
\lambda_{3}^{I}=10.12, & \tag{3.31}
\end{array}
\]
to
\[
\begin{array}{lll}
\lambda_{1}^{1}=-10 & , & \lambda_{1}^{2}=-1 \\
\lambda_{2}^{I}=-12 & , & \lambda_{2}^{2}=-1.5 \\
\lambda_{3}^{I}=-15 & \tag{3.32}
\end{array}
\]

After the local stabilization, the interconnected subsystems have the quasidiagonal form
\[
\begin{align*}
& \dot{\tilde{x}}_{1}=\left[\begin{array}{rrr}
-10 & 0 & 0 \\
0 & -12 & 0 \\
0 & 0 & -15
\end{array}\right] \tilde{x}_{1}+\left[\begin{array}{rr}
-23.52 & -43.7 \varepsilon \\
40.23 & 68.97 \\
-15.49 & -24.96
\end{array}\right] \tilde{x}_{2}+\left[\begin{array}{c}
0.1 \\
-0.17 \\
0.07
\end{array}\right] u_{i}^{g} \\
& \dot{x}_{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1.5
\end{array}\right] \tilde{x}_{2}+\left[\begin{array}{rrr}
179.95 & 247.53 & 367.40 \\
-182.58 & -249.03 & -365.95
\end{array}\right] \tilde{x}_{1}+\left[\begin{array}{c}
2 \\
-2
\end{array}\right] u_{2}^{g} \tag{3.33}
\end{align*}
\]
which is not identical to (3.17). For the moment, we did not make use of the global control \(u_{I}^{g}, u_{2}^{g}\) in (3.33). In order to demonstrate the effect of the global controllers, we set \(\tilde{k}_{12}=\tilde{k}_{21}=0\).

From (3.9) and (3.32), we have \(\pi_{1}=10, \pi_{2}=1\). Using (3.20) and (3.33) we compute \(\tilde{\xi}_{12}=98.51, \tilde{\xi}_{21}=676.68\). The aggregate matrix \(\tilde{W}\) in (3.18) is obtained as
\[
\tilde{W}=\left[\begin{array}{cc}
-10 & 98.51  \tag{3.34}\\
676.68 & -1
\end{array}\right]
\]
which does not satisfy the conditions (3.21). Therefore, we cannot conciude stability of the overall system.

Let us use now the global control specified by (3.22),
\[
\begin{align*}
& \tilde{\mathrm{k}}_{I 2}^{*} \mathrm{~T}=(-238.95,-415.34) \\
& \tilde{\mathrm{k}}_{2 I}^{*^{\prime} \mathrm{T}}=(90.63,124.14,183.33) \tag{3.35}
\end{align*}
\]
which yields the subsystems (3.33) as
\[
\begin{align*}
& \dot{\tilde{x}}_{1}=\left[\begin{array}{rrr}
-10 & 0 & 0 \\
0 & -12 & 0 \\
0 & 0 & -15
\end{array}\right] \tilde{x}_{1}+\left[\begin{array}{rr}
0.37 & -2.25 \\
0.40 & -0.25 \\
0.44 & 2.73
\end{array}\right] \tilde{x}_{2} \\
& \dot{\tilde{x}}_{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1.5
\end{array}\right], \tilde{x}_{2}+\left[\begin{array}{rrr}
-1.31 & -0.75 & 0.72 \\
-1.31 & -0.75 & 0.72
\end{array}\right] \tilde{x}_{1} \tag{3.36}
\end{align*}
\]
and the aggregate matrix
\[
\ddot{W}^{*}=\left[\begin{array}{cc}
-10 & 3.55  \tag{3.37}\\
2.37 & -1
\end{array}\right]
\]
which satisfies the conditions (3.21): Therefore, by theoren 1 the system (3.28). is stabilized by the control law (3.24) determined by the gains (3.30)
and (3.35). The eigenvalues of the overall closed-100p system
\[
\dot{\tilde{x}}=\left[\begin{array}{rrr:rr}
-10 & 0 & 0 & 0.37 & -2.25  \tag{3.38}\\
0 & -12 & 0 & 0.40 & -0.25 \\
0 & 0 & -15 & 0.44 & 2.73 \\
\hdashline-1.31 & -0.75 & 0.72 & -1 & 0 \\
-1.31 & -0.75 & 0.72 & 0 & -1.5
\end{array}\right] \tilde{x}
\]
corresponding to (3.36), are
\[
\begin{equation*}
\lambda_{I, 2}=-1.03 \pm j 0.16, \lambda_{3}=-10.27, \lambda_{4}=-11.99, \lambda_{5}=-15.17 \tag{3.39}
\end{equation*}
\]
which have negative real parts.
It is also interesting to note that an upper estimate of the degree \(\pi\) of exponential stability of the system (3.1) is provided by the aggregate matrix \(\tilde{W}^{*}\) since, in general \(\pi \leq \min _{i} \pi_{i}\). In other words, the degree of exponential stability of the overall system \(\pi\) stabilized by the proposed method, is smaller than the degree of exponential stability of each decoupled subsystem.

\subsection*{3.3 Local Stabilization}

In this section, we consider a class of linear input-decentralized largescale systems which can always be stabilized by only local feedback control applied around each subsystem. This class of systems is characterized by the comparison form of the subsystem matrices and the lower diagonal form of the interconnection matrices.

Let us consider again the system
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{S} A_{i j} x_{j}+b_{i} u_{i}, i=1,2, \ldots, s \tag{3.2}
\end{equation*}
\]
where the \(n_{i} \times n_{i}\) matrix \(A_{i}\) and the \(n_{i}\) vector \(b_{i}\) are
\[
A_{i}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0  \tag{3.40}\\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 \\
-a_{1}^{i} & -a_{2}^{i} & \cdots & -a_{n_{i}}^{i}
\end{array}\right], \quad b_{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
I
\end{array}\right]
\]
and the \(n_{i} \times n_{j}\) matrices \(A_{i j}=\left(a_{p q}^{i j}\right)\) are such that
\[
\begin{equation*}
a_{p q}^{i j}=0, p<q \tag{3.41}
\end{equation*}
\]
where \(p=1,2, \ldots, n_{i}\) and \(q=1,2, \ldots, n_{j}\).
In order to stabilize system (3.2) characterized by (3.40) and (3.41), we apply the local control.
\[
\begin{equation*}
u_{i}^{R}=-k_{i}^{T} x_{i}, \tag{3.5}
\end{equation*}
\]
and get (3.2) as
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-b_{i} k_{i}^{T}\right) x_{i}+\sum_{\substack{j=1 \\ j \neq j}}^{S} A_{i j} x_{j}^{\prime}, i=1,2, \ldots, s . \tag{3.42}
\end{equation*}
\]

Gain vectors \(k_{i}\) are chosen so that each matrix \(A_{i}-b_{i} k_{i}^{T}\) has a set \(L_{i}\) of distinct real eigenvalues \(\lambda_{p}^{i}\) defined by
\[
\begin{array}{r}
L_{i}=\left\{\lambda_{p}^{i}: \lambda_{p}^{i}=-\alpha \sigma_{p}^{i} ; \alpha \geq I, \sigma_{p}^{i}>0, p=1,2, \ldots, n_{i}\right\} \\
i=1,2, \ldots, s . \tag{3.43}
\end{array}
\]

The positive constant \(\alpha\) is to be determined, so that the overall system (3.2) is stabilized.

Following the development in Section 3.1, we transform (3.42) into
\[
\begin{equation*}
\dot{\tilde{x}}_{i}=\Lambda_{i} \tilde{x}_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{s} \tilde{A}_{i j} \tilde{x}_{j}, i=1,2, \ldots, s \tag{3.44}
\end{equation*}
\]
where the transfomation (3.10) is used to get
\[
\begin{equation*}
\Lambda_{i}=T_{i}^{-1}\left(A_{i}-b_{i} k_{i}^{T}\right) T_{i}, \quad \tilde{A}_{i j}=T_{i}^{-1} A_{i j} T_{j} \tag{3.45}
\end{equation*}
\]
with \(\Lambda_{i}\) in the quisidiagonal form
\[
\begin{equation*}
\Lambda_{i}=\operatorname{diag}\left\{-\alpha \sigma_{1}^{i},-\alpha \sigma_{2}^{i}, \ldots,-\alpha{\pi_{n_{i}}^{i}}_{i}^{i}\right. \tag{3.46}
\end{equation*}
\]

In this case, the transformation matrix \(T_{i}\) can be factorized as
\[
\begin{equation*}
T_{i}=R_{i} \hat{T}_{i}, \tag{3.47}
\end{equation*}
\]
where
\[
\begin{equation*}
R_{i}=\operatorname{diag}\left[1, \alpha, \ldots, \alpha^{n_{i}-I}\right\}, \tag{3.48}
\end{equation*}
\]
and \(\hat{T}_{i}\) is the Vandermonde matrix
\[
\hat{T}_{i}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1  \tag{3.49}\\
-\sigma_{1}^{i} & -\sigma_{2}^{i} & \cdots & -\sigma_{n_{i}}^{i} \\
\vdots & \vdots & & \vdots \\
\left(-\sigma_{1}^{i}\right)^{n_{i}-1} & \left(-\sigma_{2}^{i}\right)^{n_{i}-1} & \cdots & \left(-\sigma_{n_{i}}^{i}\right)^{n_{i}-1}
\end{array}\right]
\]

For the moment, we consider the free uncoupled subsystems
\[
\begin{equation*}
\dot{\tilde{x}}_{j}=A_{i} \tilde{x}_{i}, \quad i=1,2, \ldots, s \tag{3.50}
\end{equation*}
\]

Each subsystem (3.50) is stabilized with a degree of exponential stability
\[
\begin{equation*}
\pi_{i}=\alpha \hat{\pi}_{i} \tag{3.51}
\end{equation*}
\]
where
\[
\begin{equation*}
\hat{\pi}_{i}=\min _{p} \sigma_{p}^{i} \tag{3.52}
\end{equation*}
\]

Now, we choose again the Liapunov function \(v i R^{n_{i}}+R_{+}\),
\[
\begin{equation*}
v_{i}\left(\tilde{x}_{i}\right)=\left(\tilde{x}_{i}^{T} \tilde{H}_{i} \tilde{x}_{i}\right)^{t_{1}} \tag{3.13}
\end{equation*}
\]
where
\[
\begin{equation*}
\Lambda_{i}^{T} \tilde{H}_{i}+\tilde{H}_{i} \Lambda_{i}=-\tilde{G}_{i} \tag{3.14}
\end{equation*}
\]
and
\[
\begin{equation*}
\tilde{G}_{i}=2 \theta_{i} \operatorname{diag}\left\{\alpha \sigma_{1}^{i}, \alpha \sigma_{2}^{i}, \ldots, \alpha \sigma_{n_{i}}^{i}\right\}, \tilde{H}_{i}=\theta_{i} I_{i} . \tag{3.53}
\end{equation*}
\]

The aggregate system
\[
\begin{equation*}
\dot{\mathrm{v}} \leq \tilde{W} \tag{3,18}
\end{equation*}
\]
is formed as in Section 3.1 computing the elements \(\tilde{W}_{i j}\) of the aggregate matrix \(\tilde{W}\) with
\[
\begin{equation*}
\tilde{\xi}_{i j}=\lambda_{M}^{\frac{1}{2}}\left(\tilde{A}_{i j}^{T} \tilde{A}_{i j}\right) \tag{3.54}
\end{equation*}
\]
and
\[
\begin{equation*}
\tilde{A}_{i j}=\hat{T}_{i}^{-1} R_{i}^{-1} A_{i j} R_{j} \hat{T}_{j} \tag{3.55}
\end{equation*}
\]

Our ability to stabilize the system depends ultimately on satisfying the Sevastyanov-Kotelyanskii conditions (3.21) by the aggregate matrix \(\tilde{W}=\left(\tilde{w}_{j j}\right)\) defined by
\[
\begin{equation*}
\tilde{w}_{i j}=-\delta_{i j}{ }^{\pi} i=\left(I-\delta_{i j}\right) \tilde{\xi}_{i j} \tag{3.19}
\end{equation*}
\]

Since the matrix \(\tilde{W}\) has nonnegative off-diagonal elements, it is a well-known fact [ 16\(]\). that the conditions (3.21) are equivalent to the quasidominant diagonal property of \(\tilde{W}\),
\[
\begin{equation*}
\mathrm{d}_{\mathrm{j}}\left|\tilde{w}_{j j}\right|>\sum_{\substack{i=1 \\ i \neq j}}^{s} \mathrm{~d}_{\mathrm{i}}\left|\tilde{w}_{\mathrm{ij}}\right|, j=1,2, \ldots, s \tag{3.56}
\end{equation*}
\]
where \(d_{i}\) 's are positive numbers. ApparentIy, we can make the matrix \(\tilde{W}\) sat-
isfy conditions (3.20), if we can increase the diagonal elements \(\tilde{w}_{i i}\) sufficiently large whille keeping the off-diagonal elements \(\tilde{w}_{i j}\) bounded. This is exactly the case with the class of systems under consideration. We notice that the diagonal elements ( \(i=j\) ),
\[
\begin{equation*}
\tilde{w}_{i j}=-\alpha \hat{\pi}_{i} \tag{3.57}
\end{equation*}
\]
depend linearily on the adjustable parameter \(\alpha\). The off-diagonal elements (i \(\neq j\) ),
\[
\begin{equation*}
\tilde{w}_{i j}=\tilde{\xi}_{i j}(\alpha) \tag{3.58}
\end{equation*}
\]
are bounded functions of \(\alpha\). To see this, we note that the elements \(\alpha^{q-p} a_{p q}^{i j}\) of the matrices \(R_{i}^{-1} A_{i, j} R_{j}\) are either zero for \(p<q\) due to (3.41), or they are bounded for \(p \geq q\) due to nompositive powers of \(\alpha\). We have
\[
\begin{equation*}
\lim _{\alpha++\infty} R_{i}^{-1} A_{i j} R_{j}=D_{i j}, \tag{3.59}
\end{equation*}
\]
where the matrix \(D_{i j}=\left(d_{p q}^{i j}\right)\) is defined by: \(d_{p q}^{i j}=a_{p q}^{i j}\), when \(p=q\), and \(d_{p q}^{i j}=0\), when \(p \neq q\). From (3.55) and (3.59), we define \(\bar{D}_{i j}=\hat{T}_{i}^{-1} D_{i j} \hat{T}_{j}\) and conclude front
\[
\begin{equation*}
\lim _{\alpha \rightarrow+\infty} \tilde{\xi}_{i j}(\alpha)=\lambda_{M}^{\frac{1}{2}}\left(\tilde{D}_{i j}^{T} \tilde{D}_{i j}\right) \tag{3.60}
\end{equation*}
\]
that the off-diagonal elements \(\tilde{w}_{i j}\) are bounded in \(\alpha\).
Therefore, for the selected class of dynamic systems \(\mathrm{f}, \mathrm{e}\) can always choose a sufficiently large parameter \(\alpha\), and use local linear feedback control to stabilize the systems. From (3.43), we see that by increasing the value of \(\alpha\), we move the subsystem eigenvalues away from the origin, thus, increasing the degree of exponential stability of each subsystem. This, however, requires an increase of the local feedback gains in the course of stabilization.

\subsection*{3.4. An Illustrative Example}

Let us illustrate the local stabilization procedure using the following example:
\[
\dot{x}=\left[\begin{array}{rrr:rr}
0 & 1 & 0 & 2 & 0  \tag{3.61}\\
0 & 0 & I & 3 & 4 \\
-2 & -1 & -1 & 2 & 1 \\
\hdashline 4 & 0 & 0 & 0 & 1 \\
5 & 6 & 0 & -3 & -2
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
\hdashline 0 & 0 \\
0 & 1
\end{array}\right] u .
\]

The eigenvalues of the system matrix A corresponding to (3.61), are
\[
\begin{equation*}
\lambda_{1}=1.7244, \lambda_{2}=5.1042, \lambda_{3}=-1.2633, \lambda_{4,5}=-4.2826 \pm j 1.7755 \tag{3.62}
\end{equation*}
\]
and the system (3.61) is unstable.
The system (3.61) can be decomposed as
\[
\begin{align*}
& \dot{x}_{1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -1 & -1
\end{array}\right] x_{1}+\left[\begin{array}{ll}
2 & 0 \\
3 & 4 \\
2 & 1
\end{array}\right] x_{2}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u_{1}  \tag{3.63a}\\
& \dot{x}_{2}=\left[\begin{array}{rr}
0 & 1 \\
-3 & -2
\end{array}\right] x_{2}+\left[\begin{array}{lll}
4 & 0 & 0 \\
5 & 6 & 0
\end{array}\right] x_{1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{2} \tag{3.63b}
\end{align*}
\]

The eigenvalues of the subsystem (3.63a) are moved from
\[
\begin{equation*}
\lambda_{1}^{I}=-1.3532, \lambda_{2,3}^{1}=0.1766 \pm j 1.2028 \tag{3.64}
\end{equation*}
\]
to the new locations
\[
\begin{equation*}
\lambda_{1}^{1}=-\sigma_{1}^{1}=-1, \lambda_{2}^{1}=-\sigma_{2}^{1}=-2, \lambda_{3}^{1}=-\sigma_{3}^{1}=-3 \tag{3.65}
\end{equation*}
\]
applying the local control ( 3.5 ) and
\[
\begin{equation*}
\mathrm{K}_{1}^{\mathrm{T}}=(4,10,5) \tag{3.66}
\end{equation*}
\]

Similarly, the eigenvalues of the subsystem (3.63b) are changed from
\[
\begin{equation*}
\lambda_{1,2}^{2}=-1+j 1.4142 \tag{3.67}
\end{equation*}
\]
to
\[
\begin{equation*}
\lambda_{1}^{2}=-\sigma_{1}^{2}=-1, \lambda_{2}^{2}=-\sigma_{2}^{2}=-2 \tag{3.68}
\end{equation*}
\]
applying the local control (3.5) and
\[
\begin{equation*}
k_{2}^{T}=(-1,1) \tag{3.69}
\end{equation*}
\]

Referring to (3.46), we see that in (3.65) and (3.68), the parameter \(\alpha=1\). We construct the transformation matrices \(R_{1}, R_{2}, \hat{R}_{1}, \hat{\Gamma}_{2}\) for \(\alpha>1\) as
\[
\begin{align*}
& R_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha^{2}
\end{array}\right], \quad \hat{T}_{1}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9
\end{array}\right] \\
& R_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & \alpha
\end{array}\right], \quad \hat{T}_{2}=\left[\begin{array}{rr}
1 & 1 \\
-1 & -2
\end{array}\right] . \tag{3.70}
\end{align*}
\]

The numbers \(\pi_{1}, \pi_{2}\) are both set to one. Then, the aggregation matrix of (3.18) defined by (3.57) is given as
\[
\tilde{W}=\left[\begin{array}{ll}
-\alpha & \tilde{\xi}_{12}  \tag{3.71}\\
\tilde{\xi}_{21} & -\alpha
\end{array}\right]
\]
which for \(\alpha=1\) takes the form
\[
\tilde{W}=\left[\begin{array}{cc}
-1 & 17.0011  \tag{3.72}\\
12.2936 & -1
\end{array}\right]
\]
where
\[
\tilde{\xi}_{12}=\lambda_{M}^{\frac{1}{2}}\left(\hat{\mathrm{~T}}_{1}^{-1} A_{12} \hat{\mathrm{~T}}_{2}\right), \tilde{\xi}_{21}=\lambda_{M}^{\frac{1}{2}}\left(\hat{\mathrm{~T}}_{2}^{-1} A_{21} \hat{\mathrm{~T}}_{1}\right)
\]
and \(A_{12}, A_{21}\) are specified in (3.63).
It is obvious that the matrix \(\tilde{W}\) in (3.72) does not satisfy the inequalities (3.21).

From \((3,63)\) and ( 3.59 ), we find that
\[
D_{12}=\left[\begin{array}{ll}
2 & 0  \tag{3.73}\\
0 & 4 \\
0 & 0
\end{array}\right], \quad D_{21}=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & \therefore & 0
\end{array}\right]
\]
and for \(\alpha>15\), we have \(\tilde{\xi}_{12} \approx 32.55, \tilde{\xi}_{21} \approx 18.98\). Thus, for \(\alpha=25\), we have the aggregate matrix
\[
\tilde{W}=\left[\begin{array}{lr}
-25 & 32.55  \tag{3.75}\\
18.98 & -25
\end{array}\right],
\]
which satisfies the conditions (3.21), and the overall system is stable. The corresponding eigenvalues of the overall closed-1oop system are
\[
\begin{equation*}
\lambda_{1}=-36.0364, \lambda_{2,3}=-25.9599 \pm j 3.5219, \lambda_{4,5}=-68.5213 \pm j 6.0474 . \tag{3.76}
\end{equation*}
\]

For the chosen value of \(\alpha=25\), we have the eigenvalue sets \(L_{I}\) and \(L_{2}\) defined in (3.43) given as
\[
\begin{align*}
& L_{1}=\left\{-\alpha \sigma_{1}^{1},-\alpha \sigma_{2}^{1},-\alpha \sigma_{3}^{1}\right\}=\{-25,-50,-75\} \\
& L_{2}=\left\{-\alpha \sigma_{1}^{2},-\alpha \sigma_{2}^{2}\right\}=\{-25,-50\} . \tag{3,77}
\end{align*}
\]

The locations of the subsystem eigenvalues specified by \(L_{1}, L_{2}\) of (3.77), are achieved by the local state-variable feedback defined by (3.5) and
\[
\begin{align*}
& \mathrm{k}_{1}^{\mathrm{T}}=(93748,6874,149) \\
& \mathrm{k}_{2}^{\mathrm{T}}=(1247,73) \tag{3.78}
\end{align*}
\]

The gains in (3.78) are relatively high which is due to the use of local controllers only. The gains can be considerably reduced by applying global controllers in the maltilevel scinme outlined in Section 3.1 and illustrated in Section 3.2.

\section*{3. 5 Application to ISTT}

In this section, we design a control system for the nonlinear model of LST described in Section 2, by using only the local linear controllers as proposed in Section 3.3. This necessitates an application of the results obtained by Weissenberger [17] which are concerned with the finite regions of stability of large-scale systems rather than their global stability properties.

We notice that the LST model (2.20) belongs to a general class of systems described by the equations
\[
\begin{align*}
& \dot{x}_{i}=A_{i} x_{i}+a_{i} x_{\Omega} \sum_{\substack{j=1 \\
j \neq i, \ell}}^{s} A_{i j} x_{j}+b_{i} u_{i} \\
& \qquad i=1,2, \ldots s ; \ell= \begin{cases}1, & i=s \\
i+1, & i \neq s\end{cases} \tag{3.79}
\end{align*}
\]
where \(A_{i}\) are constant \(n_{i} \times n_{i}\) matrices, \(A_{i j}\) are \(n_{\ell} \times n_{j}\) constant matrices, \(a_{i}\) and \(b_{i}\) are \(n_{i}\) constant vectors.

To stabilize the system (3.79), we choose the local control
\[
\begin{equation*}
u_{i}=-k_{i}^{T} x_{i}, i=1,2, \ldots, s \tag{3.80}
\end{equation*}
\]
so that each uncoupled subsystem
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-b_{i} k_{i}^{T}\right) x_{i}, i=1,2, \ldots, s \tag{3.81}
\end{equation*}
\]
has a prescribed set of distinct eigenvalues
\[
\begin{align*}
& L_{i}=\left\{-\sigma_{1}^{i} \pm j \omega_{1}^{i}, \ldots, \sigma_{p}^{i} \pm j \omega_{p}^{i},-\sigma_{p+1}^{i}, \ldots,-\sigma_{n_{i}}^{i}\right. \\
&\left.\quad \sigma_{q}^{i}>0 ; p, q=1,2, \ldots, n_{i}\right\}, i=1,2, \ldots, s . \tag{3.82}
\end{align*}
\]

By using the transformation (3.10), the closed-1oop system corresponding
to (3.79) is obtained as
\[
\begin{align*}
\dot{x}_{i}=\Lambda_{i} \tilde{x}_{i}+\tilde{a}_{i} \tilde{x}_{l}^{T} \sum_{\substack{j=1 \\
j \neq i, \ell}}^{\sum_{i j}} \tilde{A}_{i j} \dot{\tilde{x}}_{j},  \tag{3.83}\\
i=1,2, \ldots, s, \ell=\left\{\begin{array}{l}
1, i=s \\
i+1, i \neq s,
\end{array}\right.
\end{align*}
\]
where \(A_{i}=T_{i}^{-1}\left(A_{i}-b_{i} k_{i}^{T}\right) T_{i}\) has the quasidiagonal form (3.12), \(\tilde{A}_{i j}=\) \(T_{l}^{T_{i}} A_{i j} T_{j}\), and \(\tilde{a}_{i}=T_{i}^{-1} a_{i}\).

We define the interaction function \(h: T \times R^{n}+R^{n_{i}}\) among the subsystems of (3.83) as
\[
\begin{equation*}
h_{i}(\tilde{x})=\tilde{a}_{i} \tilde{x}_{l}^{T} \sum_{\substack{j=1 \\ j \neq i \\ j \neq l}}^{S} x_{i j} \tilde{x}_{j} . \tag{3.84}
\end{equation*}
\]

The interactions \(h_{i}(\tilde{x})\) can be bounded as
\[
\begin{equation*}
\left\|h_{i}(\tilde{x})\right\| \leq v_{0 \ell} \sum_{\substack{j=1 \\ j \neq i, \ell}}^{s} \xi_{i j}\left\|\tilde{x}_{j}\right\|, \forall \tilde{x} \in 1 \tag{3.85}
\end{equation*}
\]
on the region
\[
\begin{equation*}
r=\left\{\tilde{x} \in R^{n}:\left\|\tilde{x}_{i}\right\|<v_{0 i}, \dot{i}=1,2, \ldots, s\right\} \tag{3.86}
\end{equation*}
\]
where \(v_{0 i}\) are positive yet unspecified constants, and \(\tilde{\bar{\xi}}_{i j}=\left(\tilde{a}_{i}^{T} a_{i}\right)^{\frac{1 / 2}{2}}\) \(\lambda_{M}^{\frac{1}{2}}\left(\tilde{\mathrm{~A}}_{i j}^{T} \tilde{\mathrm{~A}}_{i j}\right)\).

The aggregate \(\mathrm{s} \times \mathrm{s}\) matrix \(\tilde{W}=\left(\tilde{w}_{i j}\right)\) which corresponds to the system (3.83) and constraints (3.85), is obtained following reference [17],
\[
\begin{equation*}
\tilde{W}=D \bar{W} \tag{3,87}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{D}=\mathrm{diag}\left\{\mathrm{v}_{02}, \mathrm{v}_{03}, \ldots, \mathrm{v}_{0 \mathrm{~s}}, \mathrm{v}_{01}\right\} \tag{3.88}
\end{equation*}
\]
and the \(s \times s\) matrix \(\bar{W}=\left(\operatorname{Hij}_{j}\right)\) is defined by
\[
\begin{equation*}
\bar{w}_{i j}=-\delta_{i j} v_{0 \ell}^{-1} \pi_{i}+\left(1-\delta_{i j}\right) \tilde{\varepsilon}_{i j} \tag{3.89}
\end{equation*}
\]
with \(\pi_{i}\) defined in (3.9).
From (3.87), it follows that \(\tilde{W}\) satisfies inequalities (3.21) if and only if \(\bar{W}\) does. Inequalities (3.21) applied to \(\bar{W}\) determine the constants \(v_{01}, v_{02}, \ldots, v_{0 s}\) in (3.85). It is possible to calculate these constants recursively. To see this, we note that the \(k\)-th leading principal \(\mathrm{k} \times \mathrm{k}\) submatrix \(\bar{W}_{k}\) can be expressed as
\[
\bar{W}_{k}=\left[\begin{array}{c:c}
\bar{W}_{k-1} & f_{k}  \tag{3.90}\\
\hdashline g_{k}^{T} & \bar{W}_{k k}
\end{array}\right]=\left[\begin{array}{c:c}
I & 0 \\
\hdashline \mathcal{E}_{k}^{T} \bar{W}_{k-1} & I
\end{array}\right]\left[\begin{array}{c:c}
W_{k-1} & 0 \\
\hdashline 0 & W_{k k}-G_{k}^{T} \bar{W}_{k-1}^{-1} f_{k}
\end{array}\right]\left[\begin{array}{c:c}
I & \bar{W}_{k-1}^{-1} f_{k} \\
\hdashline 0 & 1
\end{array}\right]
\]

Therefore, the \(k\)-th leading principle minor of \(\bar{W}\) is
\[
\begin{equation*}
\operatorname{det} \bar{W}_{k}=\operatorname{det} \bar{W}_{k-1}\left(\bar{w}_{k k}-g_{k}^{T} \mathrm{~T}_{k-1}^{-1} f_{k}\right) \tag{3.91}
\end{equation*}
\]

For the inequalities (3.91) to be satisfied by \(\overline{\mathrm{W}}\), it is necessary and sufficient that
\[
\begin{equation*}
-\vec{w}_{k k}+\mathrm{E}_{k}^{T} \bar{W}_{k-1}^{-1} f_{k}>0, k=1,2, \ldots, s \tag{3.92}
\end{equation*}
\]

From (3.89), we have
\[
\begin{equation*}
\mathrm{f}_{\mathrm{k}}^{\mathrm{T}}=\left(\tilde{\xi}_{1 \mathrm{k}}, \tilde{\xi}_{2 k}, \ldots, \tilde{\xi}_{\mathrm{sk}}\right), \ddot{g}_{\mathrm{k}}^{\mathrm{T}}=\left(\tilde{\xi}_{\mathrm{k} 1}, \tilde{\xi}_{\mathrm{k} 2}, \ldots, \tilde{\xi}_{\mathrm{ks}}\right) \tag{3.93}
\end{equation*}
\]
and from (3.89) and (3.92), we get the constants \(v_{00}\) as
\[
v_{0,}<-\pi_{k}\left(g_{k}^{T} \bar{W}_{k-1}^{-1} f_{k}\right)^{-1} ; \ell=\left\{\begin{array}{l}
1, k=s  \tag{3.94}\\
k+1, k \neq s
\end{array}\right.
\]

Once the constants \(V_{0 \&}\) are calculated by (3.94), the region \(\tilde{\Omega}\) of (3.86) is determined. Now, it remains to imbed a Liapunov function \(V: R^{n}+\) \(R_{+}\)inside the region \(\Omega\) and determine a region of stability [17]
\[
\begin{equation*}
\tilde{\Omega}=\left\{\tilde{x} \in R^{n}: V(\tilde{x})<\gamma\right\} \tag{3.95}
\end{equation*}
\]

In (3.95), we choose
\[
\begin{equation*}
V(\tilde{x})=\sum_{i=1}^{5} d_{i}\left|v_{\hat{i}}\right| \tag{3.96}
\end{equation*}
\]
where \(d_{i}\) are positive numbers, and \(v_{i}=v_{i}\left(\tilde{x}_{i}\right)=\left\|\dot{x}_{i}\right\|\). Following [17], we calculate the positive constant \(\gamma\) in (3.95) using (3.94) and
\[
\begin{equation*}
\gamma=\min _{i} d_{i} v_{0 i}, \quad i=1,2, \ldots, s \tag{3.97}
\end{equation*}
\]
where the positive vector \(d^{T}=\left(d_{1}, d_{2}, \ldots, d_{S}\right)\) is computed by
\[
\begin{equation*}
d^{T}=-c^{T} \tilde{W}^{-1} \tag{3.98}
\end{equation*}
\]
where \(c\) is any positive \(s\) vector ( \(c>0\) ).
Since \(\tilde{x}_{i}=T_{i}^{-1} x_{i}\), and \(\left\|\tilde{x}_{i}\right\| \leq\left\|T_{i}^{-1}\right\|\left\|x_{i}\right\|\), from (3.96) and (3.97), we get finally the region of stability \(\Omega\) in the original state space, which is
\[
\begin{equation*}
\Omega=\left\{x \in R^{n}: \sum_{i=1}^{S} d_{i}\left\|T_{i}^{-1}\right\|\left\|x_{i}\right\|<\gamma\right\} \tag{3.99}
\end{equation*}
\]

Now, we consider the nonlinear model of the LST given in Section 2, which belongs to the class of systems ribed by (2.79) with
\[
\begin{gather*}
A_{i}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], A_{i j}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], a_{i}=\left[\begin{array}{c}
0 \\
-\alpha_{i}
\end{array}\right], b_{i}=\left[\begin{array}{l}
0 \\
\beta_{i}
\end{array}\right], \\
i=1,2,3 . \tag{3.100}
\end{gather*}
\]

Applying the control law
\[
\begin{equation*}
u_{i}=-k_{i}^{T} x_{i}, \quad i=1,2,3 \tag{3.101}
\end{equation*}
\]
where
\[
\begin{equation*}
k_{i}^{T}=\beta_{i}^{-1} \bar{k}_{i}^{T}, \quad i=1,2,3 \tag{3.102}
\end{equation*}
\]
and \(\bar{k}_{i}^{T}=\left(\bar{k}_{i 1}, \bar{k}_{i 2}\right)\), we obtain the closed-1oop uncoupled subsystems (3.81) with
\[
A_{i}-b_{i} k_{i}^{T}=\left[\begin{array}{cc}
0 & 1  \tag{3.103}\\
-\bar{k}_{i 1} & -\bar{k}_{i 2}
\end{array}\right], \quad i=1,2,3 .
\]

The gains \(\vec{k}_{i}\) are chosen so that each subsystem has a set of eigenvalues
\[
\begin{equation*}
L_{i}=\left\{-\sigma_{1}^{i},-o_{2}^{\frac{i}{2}}\right\}, \quad i=1,2,3 . \tag{3.104}
\end{equation*}
\]

To get the transformed system corresponding to (3.83), we use the transformation matrix
\[
T_{i}=\left[\begin{array}{cc}
1 & 1  \tag{3.105}\\
-\sigma_{1}^{i} & -\sigma_{2}^{i}
\end{array}\right], \quad i=1,2,3
\]
and get
\[
\Lambda_{i}=\left[\begin{array}{cc}
-\sigma_{1}^{i} & 0  \tag{3.106}\\
0 & -\sigma_{2}^{i}
\end{array}\right], \quad h_{i}\left(\tilde{x}_{i}\right)=\tilde{a}_{i} \tilde{x}_{\ell}^{T} \tilde{A}_{i j} \tilde{x}_{j} .
\]

To compute \(\tilde{\xi}_{i j}\), we choose \(\sigma_{1}^{i}=\sigma_{1}, \sigma_{2}^{i}=\sigma_{2}, i=1,2,3\), and calculate \(\left\|A_{i j}\right\|=\left(\sigma_{1}\right)^{2}+\left(\sigma_{2}\right)^{2},\left(\tilde{a}_{i}^{T} \tilde{a}_{i}\right)^{\frac{1}{2}}=\sqrt{2}\left|\alpha_{i}\right|\left(\left|\sigma_{1}-\sigma_{2}\right|\right)^{-1}\). We can minimize the numbers \(\tilde{\xi}_{i j}\) with respect to the distance \(\rho=\sigma_{2}-\sigma_{1}\) between the two subsystem eigenvalues. This yields
\[
\begin{equation*}
\tilde{\xi}_{i j}=\sqrt{2}\left|\alpha_{i}\right| \rho^{-1}\left[\left(\sigma_{1}\right)^{2}+\left(\sigma_{1}+\rho\right)^{2}\right], \tag{3.107}
\end{equation*}
\]
and we get the minimal values \(\bar{\xi}_{i j}^{\text {min }}\) for \(\tilde{\bar{\xi}}_{i j}\) as
\[
\begin{equation*}
\tilde{\xi}_{i j}^{m}=(4+2 \sqrt{2})\left|\alpha_{i}\right| \sigma_{1} \tag{3.108}
\end{equation*}
\]
which is obtained for \(\rho=\sqrt{2} \sigma_{1}\),
The corresponding matrix \(\bar{W}\) in (3.87), is
\[
\bar{W}=\left[\begin{array}{ccc}
-\frac{\sigma_{1}}{v_{02}} & 0 & \bar{\xi}_{13}  \tag{3.109}\\
\tilde{\xi}_{21} & -\frac{\sigma_{1}}{v_{03}} & 0 \\
0 & \tilde{\xi}_{32} & -\frac{\sigma_{1}}{v_{01}}
\end{array}\right]
\]

From (3.94) and (3.109), we get
\[
\begin{equation*}
v_{01} v_{02} v_{03}<\frac{\left(\sigma_{1}\right)^{3}}{\tilde{\xi}_{13} \tilde{\xi}_{2 I} \tilde{\xi}_{32}} \tag{3.110}
\end{equation*}
\]

Choosing \(v_{01}=v_{02}=v_{03}=v_{0}\), and using (3.108) and (3.110), we compute \(\mathrm{v}_{0}<0.584\). Selecting \(\mathrm{v}_{0}=0.574, \sigma_{1}=10\), and choosing \(\mathrm{c}=(1,1,1)^{\mathrm{T}}\), we further compute from (3.98) the vector
\[
\begin{equation*}
\mathrm{d}=(4.8,13.7614,4.2963)^{\mathrm{T}} . \tag{3.111}
\end{equation*}
\]

From (3.97), we calculate
\[
\begin{equation*}
\gamma=2.4663, \tag{3.112}
\end{equation*}
\]
and the region \(\tilde{n}\) in the transformed state space as
\[
\begin{equation*}
\tilde{n}=\left\{\tilde{x} \in R^{n}: 4.8| | \tilde{x}_{1}\|+13.7614\| \ddot{x}_{2}\left\|+4.2963| | \tilde{x}_{3}\right\|<2.4663\right\} . \tag{3.113}
\end{equation*}
\]

In the original space, the stability region \(\Omega\) is finally obtained as
\[
\begin{equation*}
\Omega=\left\{x \in R^{n}: 4.8\left\|| | x_{1}\right\|+13.7614| | x_{2}\left\|+4.2963| | x_{3}\right\|<1.3331\right\} \tag{3.114}
\end{equation*}
\]
where we used \(\left\|T_{i}^{-1}\right\|=1.8500, i=1,2,3\).
The feedback gains that yield the region \(\Omega\) are computed from (3.102)
and
\[
\begin{array}{r}
\overline{\mathrm{K}}_{\dot{I}}^{T}=\left(\sigma_{1} \sigma_{2}, \sigma_{1}+\sigma_{2}\right)^{T}=(141.42 \mathrm{~J} 3,34.1421)^{T}, \\
i=1,2,3 \tag{3.115}
\end{array}
\]
as
\[
\begin{array}{ll}
\mathrm{K}_{1}^{\mathrm{T}}=(1.6517, & 0.3988)^{\mathrm{T}} \\
\mathrm{~K}_{2}^{\mathrm{T}}=(10.3303, & 2.4939)^{\mathrm{T}} \\
\mathrm{~K}_{3}^{\mathrm{T}}=(10.7056, & 2.5846)^{\mathrm{T}} . \tag{3.116}
\end{array}
\]

This completes the design of the LST control system.
4. OPTIMAL CONTROL

In this section we will describe the application of a recently developed multilevel optimal control scheme [9] for the decentralized regulation of the LST. Such muitilevel control schemes are quite efficient in the analysis of large-scale systems that may be decomposed into a number of interconnected subsystems of smaller dimensions. Since our model for the LST, described in Section 2, is a nonlinear intorconnected system composed of three linear subsystems describing the motions of the spacecraft along the three axes, generation of the necessary control scheme basing the analysis on the subsystems is highly desirable in view of the complexities involved in the optimization of a nonlinear system of a large dimension. In the sequel, we will describe the general theory for the multilevel optimal control of intercomected systems, which will be followed by the specific application to the LST.

\subsection*{4.1. Problem Formulation}

Let us consider a continuous dynamic system described by the differential equation
\[
\begin{equation*}
\dot{x}=f(x, u) \tag{4.1}
\end{equation*}
\]
where \(x(t) \in R^{n}\) is the state and \(u(t) \in R^{m}\) is the control function of the system at time \(t \in T\). The function \(f: R^{n} \times R^{m}+R^{n}\) is continuous on a bounded region \(D \subset R^{\mathrm{n}}\) and is locally Lipschitzian with respect to x in \(D\) so that for every fixed control function \(u(t)\), a unique solution \(x\left(t ; t_{0}, x_{0}\right)\) exists for all initial conditions \(\left(t_{0}, x_{0}\right) \in R \quad D\) and all \(t \in T, T\) being an interval \(\left[t_{0}, \infty\right)\) of \(R\).

We assume that system (4.1) can be decomposed into \(s\) interconnected subsystems
\[
\begin{equation*}
\dot{x}_{i}=A_{j} x_{i}+B_{i} u_{i}+h_{i}(x), i=1,2, \ldots, s \tag{4.2}
\end{equation*}
\]
where, \(x_{i} \in R^{n_{i}}\) is the state of the \(i\)-th subsystem so that
\[
R^{n}=R^{n_{1}} \times R^{n_{2}} \times \ldots \times R^{n^{n}} ;
\]
\(u_{i} \in R^{m_{i}}\) is the control function of the \(i\)-th subsystem so that
\[
R^{m}=R^{m_{1}} \times R^{m_{2}} \times \ldots \times R^{m_{1}}
\]
\(A_{i} \in R^{n_{i} \times n_{i}}\) and \(B_{i} \in R^{n_{i} \times n_{i}}\) are constant matrices; and \(h_{i}: R^{n}+R^{n_{i}}\) is the function which represents the interconnection of the i-th subsysten inside the overall system.

The multilevel control scheme [9] used for the optimization of system (4.2) can be developed by considering the control function \(u_{i}(t)\) as consisting of two parts, the local control \(u_{i}^{\ell}(t)\) and the global control \(u_{i}^{g}(t)\),
\[
\begin{equation*}
u_{i}(t)=u_{i}^{\ell}(t)+u_{i}^{g}(t) \tag{4.3}
\end{equation*}
\]

The local control \(u_{i}^{\ell}(t)\) is chosen as a linear control law
\[
\begin{equation*}
u_{i}^{\ell}(t)=-K_{i}^{\ell} x_{i}(t) \tag{4.4}
\end{equation*}
\]
to optimize isolated subsystems, and the global control law \(u_{i}^{g}(t)\) is chosen as a suitable function of the state
\[
\begin{equation*}
u_{i}^{g}(t)=-K_{i}^{g}(x(t)) \tag{4.5}
\end{equation*}
\]
to minimize the pexformance deviation from the optimum due to the presence of interconnections among the subsystems.

With the application of the control (4.3), the equations (4.2) governing the system under consideration take the form,
\[
\dot{x}_{i}=A_{i} x_{i}+B_{i} u_{i}^{\ell}+h_{i}(x)+B_{i} u_{i}^{g}, i=1,2, \ldots, s .
\]

Since, as described earlier, the global control functions \(u_{i}^{g}(t)\) are assigned only the task of reducing the effects of interconnections \(h_{i}(x)\) the terns
\[
\begin{equation*}
h_{e_{i}}\left(x, u_{i}^{g}\right)=h_{i}(x)+B_{i} u_{i}^{g}, i=1,2, \ldots, s, \tag{4.7}
\end{equation*}
\]
may be regarded as the "effective interconnections" among the \(s\) isolated subsystems
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+B_{i} u_{i}^{\ell}, i=1,2, \ldots, s . \tag{4.8}
\end{equation*}
\]

We shall assume that all s-pairs ( \(A_{i}, B_{i}\) ) are completely controllable, and that with each isolated subsystem (4.8) a quadratic performance index
\[
\begin{equation*}
J_{i}\left(t_{0}, x_{i 0}, u_{i}^{\ell}\right)=\int_{t_{0}}^{\infty}\left\{| | x_{i}(t)\left\|_{Q_{i}}^{2}+\right\| u_{i}^{\ell}(t) \|_{R_{i}}^{2}\right\} d t \tag{4.9}
\end{equation*}
\]
is associated. \(\operatorname{In}_{m}(4.9) \quad Q_{i} \in R^{n_{i} \times n_{i}}\) is a symmetric nonnegative definite matrix and \(R_{i} \in R^{m_{i} \times m_{i}}\) is a symmetric positive definite matrix.

The local control \(u_{i}^{\ell}(t)\) in (4.4) can now be chosen to minimize the performance index \(J_{i}\left(t_{0}, x_{i 0}, u_{i}\right)\) in (4.9). From linear-quadratic regulator theory [18], the optimal control \(u_{i}^{\ell^{*}}(t)\) is given by
\[
\begin{equation*}
u_{i}^{\ell^{*}}(t)=-K_{i}^{\ell^{*}} x_{i}(t) \tag{4.10}
\end{equation*}
\]
where
\[
\begin{equation*}
K_{i}^{\ell *}=R_{i}^{-1} B_{i}^{T} P_{i} . \tag{4.11}
\end{equation*}
\]

In (4.11), \(P_{i} \in R^{n_{i} \times n_{i}}\) is symmetric and is the positive definite solution of the algebraic Riccati equation
\[
\begin{equation*}
P_{i} A_{i}+A_{i}^{T} P_{i}-P_{i} B_{i} R_{i}^{-1} B_{i}^{T} P_{i}+Q_{i}=0 \tag{4.12}
\end{equation*}
\]

The optimal cost \(J_{i}^{*}\left(t_{0}, x_{i 0}\right)=J_{i}\left(t_{0}, x_{i 0}, u_{i}^{\ell^{*}}\right)\) can in this case be calculated
as
\[
\begin{equation*}
J_{i}^{*}\left(t_{0}, x_{i 0}\right)=\left\|x_{i 0}\right\|_{P_{i}}^{2} \tag{4.13}
\end{equation*}
\]

Furthermore, under the assumption that \(Q_{i}\) can be factored as \(Q_{i}=C_{i} C_{i}^{T}\), where \(C_{i} \in R^{n_{i} \times n_{i}}\) such that the pair \(\left(A_{i}, C_{i}\right)\) is completely observable, each closed-Ioop subsystem
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-B_{i} R_{i}^{-1} B_{i}^{T} P_{i}\right) x_{i}, i=1,2, \ldots, s \tag{4.14}
\end{equation*}
\]
is globally asymptotically stable.
The controls \(u_{i}^{\ell^{*}}(t), i=1,2, \ldots, s\), will not, in general, be optimal for the composite system \((4.6)\) and will not result in the optimal cost
\[
\begin{equation*}
J^{*}\left(t_{0}, x_{0}\right)=\sum_{i=1}^{S} J_{i}^{*}\left(t_{0}, x_{0}\right) \tag{4.15}
\end{equation*}
\]
unless the effective interconnection fumctions \(h_{e_{i}}\left(x, u_{j}^{g}\right) \equiv 0\). When \(h_{e_{i}}(x\), \(\left.u_{i}{ }_{i}^{g}\right) \not \equiv 0\), the controls \(u_{i}^{2 *}(t)\) produce a value of the performence index for the composite system given by
\[
\begin{equation*}
\tilde{J}\left(t_{0}, x_{0}\right)=\sum_{i=1}^{S} \tilde{J}_{i}\left(t_{0}, x_{i 0}\right) \tag{4.16}
\end{equation*}
\]
where
\[
\begin{equation*}
\tilde{J}_{i}\left(t_{0}, x_{i 0}\right)=\tilde{J}_{i}\left(t_{0}, x_{i 0}, u_{i}^{\ell^{*}}\right) \tag{4.16}
\end{equation*}
\]

It is obvious that
\[
\begin{equation*}
\tilde{J}\left(t_{0}, x_{0}\right) \geq J^{*}\left(t_{0}, x_{0}\right) \forall\left(t_{0}, x_{0}\right) \in T \times R^{\tilde{n}} \tag{4.17}
\end{equation*}
\]
and the local control law \(u_{i}^{\ell^{*}}(t)\) in (4.10) can orly be a suboptimal policy for the composit: system (4.6), with an index of suboptimality \(\varepsilon>0\) defined by the inequality
\[
\begin{equation*}
\tilde{J}\left(t_{0}, x_{0}\right) \leq(1+\varepsilon) J^{*}\left(t_{0}, x_{0}\right) \forall\left(t_{0}, x_{0}\right) \in T \times R^{n} \tag{4.18}
\end{equation*}
\]

The suboptimality index \(\varepsilon\) for the system with the optinal local control,
\[
\begin{equation*}
\dot{x}_{i}=\left(A_{i}-B_{i} R_{i}^{-1} B_{i}^{T} P_{i}\right) x_{i}+h_{e_{i}}\left(x, u_{i}^{g}\right), i=1,2, \ldots, s \tag{4.19}
\end{equation*}
\]
depends on the size of the effective interactions \(h_{e_{i}}\left(x, u_{i}^{g}\right)\) and hence is a measure of the performance deterioration due to these.

We can now give a formal definition of this concept.

Definition. The system (4.19) with the optimal local control law (4.10) is said to be suboptimal with the index \(\varepsilon\) if there exists a number \(\varepsilon>0\) for which inequality (4.18) is satisfied.

As described earlier, the suboptimality index \(\varepsilon\) is a function of the interactions \(h_{e_{i}}\left(x, u_{i}^{g}\right)\) and the following problem is of interest;

Problem 1. Establish conditions on \(\mathrm{h}_{\mathrm{e}_{\mathrm{i}}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{i}}^{\mathrm{g}}\right)\) to guarantee a prescribed value of the suboptimality index \(\varepsilon\).

It is important to note that in Problem 1, the rate of the g1obal control function \(u_{i}^{g}(t)\) is ignored as it is taken together with the existing interconnections \(h_{i}(x)\) in the system to yield the effective interconnection function \(h_{e_{i}}\left(x, u_{i}^{g}\right)\). However, as we shall see later, the solution to Problem 1 indicates a method of choosing the global control \(u_{i}^{g}(t)\) so as to reduce the size of \(h_{e_{i}}\left(x, u_{i}^{g}\right)\) and, hence, minimize the suboptimality index \(\varepsilon\). In other words, we consider the index \(\varepsilon=\varepsilon\left[\left\|\mid h_{e}\left(x, u^{g}\right)\right\|\right]\) where \(h_{e}: R^{n} \times R^{m}\) \(\rightarrow R^{\mathrm{n}}\) is \(h_{e}=\left[h_{e_{1}}^{T}, h_{e_{2}}^{T}, \ldots, h_{e_{s}}^{T}\right]^{T}\) :ad \(u^{g} \in R^{m}\) is \(u^{g}=\left[\left(u_{1}^{g}\right)^{T},\left(u_{2}^{g}\right)^{T}\right.\), \(\left.\ldots,\left(u_{\mathrm{S}}^{\mathrm{g}}\right)^{T}\right]^{T}\) and solve the following:

Problem 2. Find a control low of the form (4.5) or equivaliently;
\[
\begin{equation*}
u^{g}(t)=-x^{g}(x(t)) \tag{4.20}
\end{equation*}
\]
for which
\[
\begin{equation*}
\varepsilon^{*}=\inf _{u^{g}(t)} \varepsilon\left\{\left[\left\|h_{e}\left(x, u^{g}\right)\right\|\right]\right\} \forall x \in D \tag{4.21}
\end{equation*}
\]
is attained.
We wi. 11 now provide the solutions to the above problems.

\subsection*{4.2. Multilevel Optimization}

A solution to Froblem 1 may be obtained by using the classical HamiltonJacobi theory. Since in our optimization procedure, we chose the local control laws (4.10) to optimize the decoupled subsystems, the optimal indices satisfy the corresponding Hamilton-Jacobi equations. When the subsystems are interconnested, the equations are not satisfied by the respective performance indices and the overall system is not optimal. However, a majorization procedure is possible to provide an estinate of the performance deviation from the optimum due to the interactions.

Now, we provide a solution to Problem I by the following:
Theorem 4.1. Let there exist nonnegative numbers \(\xi_{i j}\) such that the function \(h_{e_{i}}\left(x, u_{i}^{g}\right)\) in (4.19) satisfy the constraints
\[
\left\|h_{e_{i}}\left(x, u_{i}^{g}\right)\right\| \leq \sum_{j=1}^{s} \xi_{i j}\left\|x_{j}\right\|, \forall x \in R^{n}, \forall i=1,2, \ldots, s(4.22)
\]
and
\[
\begin{equation*}
\xi \leq \frac{\varepsilon}{1+\varepsilon} \frac{\lambda_{m}(W)}{2 \lambda_{M}(P)} \tag{4.23}
\end{equation*}
\]
where \(\xi=\sum_{i=1}^{S} \sum_{j=1}^{S} \xi_{i j}, P=\operatorname{diag}\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}, W=\operatorname{diag}\left\{W_{1}, W_{2}, \ldots, W_{s}\right\}\), \(P_{i}\) being defined by (4.12) and \(W_{i}=Q_{i}+P_{i} B_{i} R_{i}^{-1} B_{i}^{T} P_{i}\), and \(\lambda_{M}(P)\) and \(\lambda_{m}(W)\) are the maximum and minimum eigenvalues of P and W respectively. Then the composite system (4.19) is
(i) suboptimal with index e
and
(ii) globally asymptotically stable.

Proof. Since the decoupled subsystems (4.14) are optimal, the functions \(v_{i}\left(x_{i}\right)=\left\|x_{i}\right\|_{p_{i}}^{2}, i=1,2, \ldots, s\), satisfy individually the HamiltonJacobi equations
\[
\begin{align*}
& {\left[\operatorname{grad} v_{i}\left(x_{i}\right)\right]^{T}\left[\left(A_{i}-B_{i} K_{i}^{\ell *}\right) x_{i}\right]} \\
& +\left\|x_{i}\right\|_{Q_{i}}^{2}+\left\|K_{i}^{\ell *} x_{i}\right\|_{R_{i}}^{2}=0 \text {, } \\
& \forall x_{i} \in R^{n_{i}}, i=1,2, \ldots, s . \tag{4.24}
\end{align*}
\]

Now, the time-derivative \(\dot{v}_{i}\left(x_{i}\right)\) can be calculated along the trajectories \(\tilde{x}_{i}(t)\) of the composite system (4.19) as
\[
\begin{equation*}
\dot{v}_{i}\left(\stackrel{\rightharpoonup}{x}_{i}\right)=\left[\operatorname{grad} v_{i}\left(\tilde{x}_{i}\right)\right]^{T}\left\{\left(A_{i}-B_{i} R_{i}^{-1} B_{i}^{T} P_{i}\right) \tilde{x}_{i}+h_{e_{i}}\left(\tilde{x}, u_{i}^{g}\right)\right\} \tag{4.25}
\end{equation*}
\]
where \(\tilde{x}=\left[\tilde{x}_{1}^{T}, \tilde{x}_{2}^{T}, \ldots, \tilde{x}_{S}^{T}\right]^{T}\).
Substitution of (4.25) in (4.24) and rearrangement of terms gives
\[
\begin{align*}
\left|\left|\tilde{x}_{i}\right| \|_{W_{i}}^{2}=-(1+\varepsilon)\right. & \dot{v}_{i}\left(x_{i}\right)+(1+\varepsilon)\left[\operatorname{grad} v_{i}\left(\tilde{x}_{i}\right)\right]^{T} h_{e_{i}}\left(\tilde{x}, u_{i}^{g}\right) \\
& -\varepsilon| | \tilde{x}_{i} \|_{W_{i}}^{2} \quad \forall \tilde{x} \in R^{n}, i=1,2, \ldots, s \tag{4.26}
\end{align*}
\]
where the simplification \(\left\|\tilde{x}_{i}\right\|_{Q_{i}}^{2}+\left\|K_{i}^{*} x_{i}\right\|_{R_{i}}^{2}=\left\|\mid \tilde{x}_{i}\right\|_{W_{i}}^{2}\) with \(W_{i}=Q_{i}+\) \(P_{i} B_{i} R_{i}^{-2} B_{i}^{T} P_{i} \quad\) is made.

Denoting \(v(\tilde{x})=\sum_{i=1}^{S} v_{i}\left(\bar{x}_{i}\right)\) and sumning the s-equations in (4.26) we get,
\[
\begin{align*}
||\tilde{x}||_{W}^{2}=-(1+\varepsilon) \dot{v}(\tilde{x}) & +(1+\varepsilon)[\operatorname{grad} v(\tilde{x})]^{T} h_{e}\left(\tilde{x}, u^{g}\right) \\
& -\varepsilon| | x| |_{W}^{2}, \forall \tilde{x} \in R^{n} \tag{4.27}
\end{align*}
\]

Now, integrating (4.27) from \(t_{0}\) to \(\infty\) we obtain
\[
\begin{align*}
& \tilde{J}\left(t_{0}, x_{0}\right)=(1+\varepsilon) J^{*}\left(t_{0}, x_{0}\right) \\
& \quad+(1+\varepsilon) \int_{t_{0}}^{\infty}\left\{[\operatorname{grad} v(\tilde{x})]^{T} h_{e}\left(\tilde{x}, u^{g}\right)-\frac{\varepsilon}{1+\varepsilon}\|x\|_{W}^{2}\right\} d t, \tag{4.28}
\end{align*}
\]
where \(\tilde{J}\) and \(J^{*}\) are defined in (4.15) and (4.16).
It is now simple to observe from (4.18) and (4.28) that the system is suboptimal with index \(\varepsilon\) if
\[
\begin{array}{r}
\int_{t_{0}}^{\infty}\left[[\operatorname{grad} v(\tilde{x})]^{T} h_{e}\left(\tilde{x}, u^{g}\right)-\frac{\varepsilon}{1+\varepsilon}| | \tilde{x}| |_{w}^{2}\right\} d t \geq 0  \tag{4.29}\\
\forall \tilde{x} \in R^{n}
\end{array}
\]

For further simplification of (4.29) we note that
\[
\begin{equation*}
v(\tilde{x})=\sum_{i=1}^{S} v_{i}\left(\tilde{x}_{i}\right)=\sum_{i=1}^{S}\left\|\tilde{x}_{i}\right\|_{P_{i}}^{2}=\|\tilde{x}\|_{p}^{2} . \tag{4.30}
\end{equation*}
\]

Also, since \(\left\|h_{e_{i}}\left(\tilde{x}, u_{j}^{g}\right)\right\| \leq \sum_{j=I}^{S} \xi_{i j}\left\|\tilde{x}_{j}\right\|, \forall x \in R^{n}\) we have the inequality
\[
\begin{equation*}
\left\|h_{e}\left(\tilde{x}, u^{g}\right)\right\| \leq \xi| | x| |, \forall \tilde{x} \in R^{\tilde{n}} \tag{4.31}
\end{equation*}
\]
where \(\xi=\sum_{i=1}^{S} \sum_{j=1}^{S} E_{i j}\).
Using (4.30) and (4.31) it can be easily shown that a sufficient condition for the inequality (4.29) to hold is
\[
\begin{equation*}
2 \xi p \tilde{x}\|\tilde{x}\| \leq \frac{\varepsilon}{1+\varepsilon}\|\tilde{x}\|_{W}^{2}, \quad \forall x \in R^{n} \tag{4.32}
\end{equation*}
\]
which, however, is implied by the main inequality (4.23) of the Theorem.
To complete the proof of the Theorem, we demonstrate the global asymptotic stability of the system (4.19) by using the function \(v(\tilde{x})=\|\tilde{x}\|_{p}^{2}\) as a

Liapunov function. Note that \(v(\tilde{x})\) is positive definite since \(P\) is a diagonal matrix formed from the positive definite solutions of the \(s\) Riccati equations (4.12). Further, the time-derivative of \(v(\tilde{x})\) along the solutions of (4.19) gives
\[
\begin{equation*}
\dot{v}(\tilde{x})=-\|\tilde{x}\|_{W}^{2}+2 \tilde{x}^{T} P_{e}\left(\tilde{x}, u^{g}\right) \leq 0 \quad \forall \tilde{x} \in R^{n}, \tag{4.33}
\end{equation*}
\]
from (4.31) and (4.23). This completes the proof of the Theorem.
It is important to note that the above theorem provides an explicit algebraic constraint on the interactions that is easy to check. Inequality (4.23) involves calculation of eigenvalues of block-diagonal matrices \(P\) and \(W\), and since \(\lambda_{M}(P)=\max _{i}\left\{\lambda_{M}\left(P_{i}\right)\right\}\) and \(\lambda_{m}(W)=\min _{i}\left\{\lambda_{m}\left(W_{i}\right)\right\}\), the salculation can be carried out on the subsystem level.

In the context of the above Theorem, it is of interest to consider Problem 2 of determining the global control \(u^{g}(t)\) so as to minimize the suboptimality index \(\varepsilon\). From (4.23) and (4.31), it is evident that \(\varepsilon\) is a nondecreasing function of \(\left\|h_{e}\left(x, u^{g}\right)\right\|\) and hence, Problem 2 reduces to one of choosing \(u^{5}(t)\) to minimize \(\left\|h_{e}\left(x, u^{g}\right)\right\|\). This function mininization problem is particularly simple in the present case since, from (4.7)
\[
\begin{equation*}
h_{e}\left(x, u^{g}\right)=h(x)+B u^{g} \tag{4.34}
\end{equation*}
\]
which, on using the control Law (4.5) reduces to
\[
\begin{equation*}
h_{e}\left(x, u^{g}\right)=h(x)-B K^{g}(x) \tag{4.35}
\end{equation*}
\]

A perfect neutralization of the effects of intercomections occurs if a choice of \(\mathrm{K}^{\mathrm{g}}(\mathrm{x})\) results in
\[
\begin{equation*}
B K^{g}(x)=-h(x) \tag{4.36}
\end{equation*}
\]
and, in this case, \(\varepsilon=0\). In the special case, when \(B\) is square and non-
singular, the explicit expression for \(\mathrm{K}^{\mathrm{g}}(\mathrm{x})\) is available as
\[
\begin{equation*}
K^{g}(x)=-B^{-1} h(x) . \tag{4.37}
\end{equation*}
\]

In general, a perfect neutralization of the interaction effects mentioned above, is not possible and one may attempt to minimize \(\left\|\mathrm{h}(\mathrm{x})-\mathrm{BK}^{\mathrm{g}}(\mathrm{x})\right\|\) by the proper choice of \(K^{g}(x)\) in order to solve Problem 2. This is admittedly a complex minimization problem and a general solution is difficult to obtain. However, in the particular case of linear interconnections, the problem can be simplified and an elegant solution can be provided. This is, we assume
\[
\begin{equation*}
\hat{h}(t, x)=H x \tag{4.38}
\end{equation*}
\]
where \(H \in R^{\mathrm{n} \times \mathrm{n}}\). In this case, the global control can also be chosen as a linear law
\[
\begin{equation*}
\mathrm{K}^{\mathrm{g}}(\mathrm{x})=\mathrm{K}^{\mathrm{g}} \mathrm{X} \tag{4.39}
\end{equation*}
\]
where \(K^{g} \in R^{m \times n}\). With (52) and (53), Problem 2 simplifies to:
Problem 2r \({ }^{r}\). Choose the matrix \(K^{g}\) such that inf \(\left\|\left(H-B K^{g}\right) x\right\|\) is achieved for all \(x \in R^{n}\).

Remembering that \(\left\|\left(H-K^{g}\right) x\right\| \leq\left\|H-B K^{g}\right\|\|x\|\) holds for all \(x \in R^{n}\), Problem 2' actually reduces to finding \(\min _{\mathrm{K}^{\mathrm{g}}}| | \mathrm{H}-\mathrm{BK}^{\mathrm{g}}| |\). When rank \(\mathrm{B}=\mathrm{m}\), the solution to this latter problem is well-known and \(\mathrm{K}^{\mathrm{g}}\) is given by
\[
\begin{equation*}
K^{g}=\left(B^{T} B\right)^{-1} B^{T} H \tag{4,40}
\end{equation*}
\]
where \(\left(B^{T} B\right)^{-1} B^{T}\) is the Moore-Penrose generalized inverse of \(B\) [15]. It is interesting to note that in the particular case when
\[
\begin{equation*}
\operatorname{Rank}[B \mid H]=\operatorname{Rank} B \tag{4.41}
\end{equation*}
\]
the choice (4.40) leads to a perfect neutralization of interaction effects and \(\varepsilon=0\).

\subsection*{4.3. An Illustrative Example}

For the purpose of illustrating the multilevel control scheme presented. here, let us consider the following example.

The system is described by
\[
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} \tag{4.42}
\end{equation*}
\]
where
\[
A=\left[\begin{array}{cccc}
-5 & 6 & 0 & -0.0095 \\
4 & -4 & 0.003 & 0 \\
-0.00332 & 0 & -3 & 1 \\
0 & 0.00995 & 8 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
\]
and is required to be optimized with respect to the performance index
\[
\begin{equation*}
J=\int_{t_{0}}^{\infty}\left\{| | x| |^{2}+||u||^{2}\right\} d t \tag{4.43}
\end{equation*}
\]

In this particular case, the dimension of the system ( \(n=4\) ) is small and hence the problem is amenable for a direct analysis and the required control can be obtained from solving the associated Riccati equation (of fourth order). However, as our interest here is to provide an illustration of the decentralized optimal control scheme \({ }^{*}\), let us consider system (4.42) as being

\footnotetext{
*
Besides the advantage of permitting an analysis based on the subsystems of small orders, the decentralized control scheme presented results in important comneativity properties of the system. The suboptimality and stability of the system Iemain invariant under structural perturbations caused by the onoff participation of the parts of the system. This property; howevert does not result when direct optimization of the system is carried out [10].
}
composed of two subsystems
\[
\dot{x}_{1}=\left[\begin{array}{cc}
-5 & 6  \tag{4.44}\\
4 & -4
\end{array}\right] \quad x_{1}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1}
\]
and
\[
\dot{x}_{2}=\left[\begin{array}{rr}
-3 & 1  \tag{4.45}\\
8 & -2
\end{array}\right] \quad x_{2}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{2}
\]
with the interconnection matrix
\[
\mathrm{H}=\left[\begin{array}{cccc}
0 & 0 & 0 & -0.0095  \tag{4.46}\\
0 & 0 & 0.003 & 0 \\
-0.00332 & 0 & 0 & 0 \\
0 & 0.00995 & 0 & 0
\end{array}\right]
\]

By splitting the control functions \(u_{1}\) and \(u_{2}\) into a local component and a global component, the decoupled subsystems (4.44) and (4.45) can be optimized with respect to the performance indices
\[
J_{1}=\int_{t_{0}}^{\infty}\left\{\left\|x_{1}\right\|^{2}+\left\|u_{1}\right\|^{2}\right\} d t \text { and } J_{2}=\int_{t_{0}}^{\infty}\left\{\left\|x_{2}\right\|^{2}+\left\|u_{2}\right\|^{2}\right\} d t
\]

The solutions of the associated Riccati equations can be obtained as
\[
P_{1}=\left[\begin{array}{ll}
1.1910 & 1.5411 \\
1.5411 & 2.1397
\end{array}\right] \text { and } P_{2}=\left[\begin{array}{ll}
5.5591 & 2.3746 \\
2.3746 & 1.1224
\end{array}\right]
\]
and the local control laws are,
\[
\begin{array}{ll}
u_{1}=-[1.1910 & 1.5411] x_{1} \\
u_{2}=-[2.3746 & 1.1224] x_{2} \tag{4.48}
\end{array}
\]

In the absence of the global controls, the finctions (4.48) will only be suboptimal policies for the overall system (4.42) with the index of sub-
optimality e given by
\[
\begin{equation*}
||H|| \leq \frac{\varepsilon}{\varepsilon+1} \cdot \frac{\min \left\{\lambda_{m}\left(W_{1}\right), \lambda_{m}\left(W_{2}\right)\right\}}{2 \max \left\{\lambda_{M}\left(P_{1}\right), \lambda_{M}\left(P_{2}\right)\right\}} \tag{4.49}
\end{equation*}
\]
where
\[
W_{i}=Q_{i}+P_{i} B_{i} R_{i}^{-1} B_{i}^{T} P_{i}, \quad i=1,2 \text {, are }
\]
\[
W_{1}=\left[\begin{array}{ll}
2.4185 & 1.8354 \\
1.8354 & 3.3748
\end{array}\right] \quad \text { and } \quad W_{2}=\left[\begin{array}{ll}
6.6386 & 2.6651 \\
2.6651 & 2.2597
\end{array}\right] .
\]

Inequality (4.49) is satisfied with \(\varepsilon=2\) and hence the performance degradation from the optimum is \(200 \%\).

In order to improve the performance, we now use the global controls \(u_{1}^{g}\) and \(u_{2}^{\mathrm{g}}\) given by
\[
\begin{equation*}
u^{\mathrm{g}}=-\left(\mathrm{B}^{\mathrm{T}} \mathrm{~B}\right)^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{Hx} \tag{4.50}
\end{equation*}
\]
where \(\mathrm{u}^{\mathrm{g}}=\left[\begin{array}{c}\mathrm{u}_{1}^{\mathrm{g}} \\ \mathrm{u}_{2}^{\mathrm{g}}\end{array}\right]\). (4.50) can be simplified to yield
\[
\begin{align*}
& u_{1}^{\mathrm{g}}=-[0 \\
& \left.u_{2}^{\mathrm{g}}=-0.0095\right] x_{2}  \tag{4.51}\\
& \mathrm{u}_{2} 0 \\
& 0.00995] x_{1}
\end{align*}
\]

The effective interaction matrix \(\hat{H}\) with the application of the global control is
\[
\begin{align*}
\tilde{\mathrm{H}} & =\left[I-B\left(\mathrm{~B}^{\mathrm{T}} \mathrm{~B}\right)^{-1} B^{\mathrm{T}}\right] \mathrm{H} \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0.003 & 0 \\
-0.00332 & r & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \tag{4.52}
\end{align*}
\]
and the suboptimality inequality (4.49) can now be satisfied with a value \(\varepsilon=0.2\). Hence the performance degradation is reduced from the original \(200 \%\) to oniy 20\%, thus illustrating the effectiveness of the global controls.

\subsection*{4.4. Apptication to LST}

The results developed in the earlier parts of this section may be directly used for the multilevel optimization of the LSI. As described in Section 2, the model for the LST is a set of three interconnected subsystems, described by (2.20) as,
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+b_{i} u_{i}+h_{i}(x), \quad i=1,2,3 \tag{4.53}
\end{equation*}
\]
where \(x_{i} \in R^{2}, A_{i}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], b_{i}=\left[\begin{array}{l}0 \\ \beta_{i}\end{array}\right]\) and \(h_{1}(x)=\left[\begin{array}{c}0 \\ -\alpha_{2} x_{32} x_{12}\end{array}\right]\),
\(\mathrm{h}_{2}(x)=\left[\begin{array}{c}0 \\ -\alpha_{2} x_{32} x_{12}\end{array}\right], h_{3}(x)=\left[\begin{array}{c}0 \\ -\alpha_{3} x_{12} x_{22}\end{array}\right], x\) being the composite statevector \(x=\left[x_{1}^{T}, x_{2}^{T}, x_{3}^{T}\right]^{T}\) and \(x_{i}=\left[x_{i 1}, x_{i 2}\right]^{T}, i=1,2,3\).

Following our multilevel control policy, we split each of the control functions \(u_{i}\) into a local component \(u_{i}^{\ell}\) and a global component \(u_{i}^{g}\) and optimize the decoupled subsystems
\[
\begin{equation*}
\dot{x}_{i}=A_{i} x_{i}+b_{i} u_{i}^{2}, \quad i=1,2,3 \tag{4.54}
\end{equation*}
\]
with respect to the performance indices
\[
\begin{equation*}
J_{i}=\int_{t_{0}}^{\infty}\left\{| | x_{i} \mid\left\|^{2}+\right\| u_{i}^{\ell} \|^{2}\right\} d t, \quad i=1,2,3 \tag{4.55}
\end{equation*}
\]
obtained with the choice \(Q_{i}=I_{2 \times 2}\) and \(R_{i}=I \quad \forall i=1,2,3\). The solution of this linear-quadratic optimal control problem is simple and involves
the solution of the associated Riccati equations,
\[
\begin{equation*}
A_{i}^{T} P_{i}+P_{i} A_{i}-P_{i} b_{i} b_{i}^{T} P_{i}+Q_{i}=0, i=1,2,3 . \tag{4.56}
\end{equation*}
\]

With the specified structure of \(A_{i}\) and \(b_{i}\), the solution of (4.56) can be obtained as,
\[
P_{i}=\left[\begin{array}{cc}
\left(1+\frac{2}{\beta_{i}}\right)^{\frac{1}{2}} & \frac{1}{\beta_{i}}  \tag{4.57}\\
\frac{I}{\beta_{i}} & \frac{I}{\beta_{i}}\left(1+\frac{2}{\beta_{i}}\right)^{\frac{1}{2}}
\end{array}\right]
\]
and the local optimal controls are
\[
\left.u_{i}^{\ell}=-b_{i}^{T} P_{i} x_{i}=-\left[\begin{array}{ll}
1 & \left(1+\frac{2}{B_{i}}\right. \tag{4.58}
\end{array}\right)^{\frac{1}{2}}\right] x_{i}, i=1,2,3 .
\]

However, in the absence of a suitable choice of the global control functions \(u_{i}^{G}\), (4.58) will only be suboptimal for the composite system (4.53), with the index of suboptimality \(\varepsilon\) determined by the size of the effective interconnections,
\[
\begin{equation*}
h_{e_{i}}\left(x, u_{i}^{g}\right)=h_{i}(x)+b_{i} u_{i}^{g}, \quad i=1,2,3 . \tag{4.59}
\end{equation*}
\]
(4.59) can be simplified to yield
\[
\begin{align*}
& h_{e_{1}}\left(x, u_{1}^{g}\right)=\left[\begin{array}{c}
0 \\
-\alpha_{1} x_{22} x_{32}+\beta_{1} u_{1}^{g}
\end{array}\right] \\
& h_{e_{2}}\left(x, u_{2}^{g}\right)=\left[\begin{array}{c}
\theta \\
-\alpha_{2} x_{12} x_{32}+\beta_{2} u_{2}^{g}
\end{array}\right] \\
& h_{e_{3}}\left(x, u_{3}^{g}\right)=\left[\begin{array}{c}
0 \\
-\alpha_{3} x_{12} x_{22}+\beta_{3} u_{3}^{g}
\end{array}\right] \tag{4.60}
\end{align*}
\]

It is now simple to observe that the choice of
\[
\begin{align*}
& u_{1}^{g}(x)=\frac{\alpha_{1}}{\beta_{1}} \quad x_{22} x_{32} \\
& u_{2}^{g}(x)=\frac{\alpha_{2}}{\beta_{2}} x_{12} x_{32} \\
& u_{3}^{g}(x)=\frac{\alpha_{3}}{\beta_{3}} \quad x_{12} x_{22} \tag{4.61}
\end{align*}
\]
will make the functions \(h_{e_{j}}\left(x, u_{1}^{g}\right) \equiv 0\) and hence \(\varepsilon=0\), thus resulting in no degradation of the performance from the optimum.

It is of interest to evaluate the control functions for a representation set of values of the parameters of the LST. For the values of the inertia components \({ }^{*} I_{x}=14656 \mathrm{Kg}_{\mathrm{m}}^{2}, I_{y}=91772 \mathrm{Kg}_{\mathrm{m}}^{2}\) and \(I_{z}=95027 \mathrm{Kg}_{\mathrm{m}}^{2}\) and typical reaction wheel constants \(K_{1}=K_{2}=K_{3}=12.57 \times 10^{5} \mathrm{~N}-\mathrm{m} / \mathrm{rad}\), the values of \(\alpha_{i}, \beta_{i}, i=1,2,3\) can be calculated as
\[
\begin{array}{lll}
\alpha_{1} & =0.2221 & \\
\alpha_{2} & =-0.08754 \\
\alpha_{3} & =0.8112 & \text { and }
\end{array} \begin{array}{ll}
\beta_{1} & =85.62 \\
\beta_{2} & =13.69 \\
&
\end{array}
\]

Hence, the control components can be evaluated from (4.58) and (4.61) as,
\[
\begin{align*}
& u_{1}^{\ell}=-\left[\begin{array}{ll}
1 & 1.012
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right] \\
& u_{2}^{\ell}=-\left[\begin{array}{ll}
1 & 1.061
\end{array}\right]\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right] \\
& u_{3}^{\ell}=-\left[\begin{array}{ll}
1 & 1.07
\end{array}\right]\left[\begin{array}{l}
x_{31} \\
x_{32}
\end{array}\right] \tag{4.62}
\end{align*}
\]

\footnotetext{
*These values correspond to the on-orbit configuration of the IST with extended light shield and solar wings, with the corresponding mass of the body totalling 9380 Kg [II].
}
and
\[
\begin{align*}
& u_{1}^{g}=0.0026 \quad x_{22} x_{32} \\
& u_{2}^{g}=-0.064 \quad x_{12} x_{32} \\
& u_{3}^{\mathrm{g}}=0.0613 \quad \mathrm{x}_{12} \mathrm{x}_{22} \quad \text {. } \tag{4.63}
\end{align*}
\]

This completes the multilevel optimization of the LST control system.

\section*{5. CONCLUSIONS}

A multilevel scheme was proposed for contrci of Large Space Telescope modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions aniong the subsystens. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions.

The proposed multilevel stabilization and optimization methods are presented as general toons for design and then used in the design of the LST Control System. Furthermore, the methods are entirely computerized (Appendices \(A_{:} I\) and 2), so that they can accommodate higher order LST models with both conceptual and numerical advantages over the standard straightforward design techniques.

\section*{6. REFERENCES}
1. Siljak, D. D., "Stability of Large-Scale Systems", Proc. 5th IFAC Congr., Paris, 1972, pp. C-32:1-11.
2. ŚSiljak, D. D., "Stability of Large-Scale Systems Under Structural Perturbations", IEEE Trins., SMC-2 (1972), 657~663.
3. Siljak, D. D., "On Stability of Large-Scale Systems Under Structural Perturbations", IEEE Trans., SMC-3 (1973), 415-417.
4. Ši1jak, D. D., S. Weissenberger, and S. M. CHuk, "Decomposition-aggregation Stability Analysis \({ }^{\dagger}\), NASA Contract Report, No. 2196, 1973.
5. Šiljak, D. D., and S. M. Cuk, "Stability Region Maximization by Decomposi-tion-Aggregation Method", NASA Contract Report, No. 2428, 1974.
6. Šiljak, D. D., and M. B. Vukčevič, "On Hierarchic Stabilization of Linear Large-Scale Systems", Proc. 8th Asilomar Conf. Circuits, Systens, Computers, Pacific Grove, CaIif., 1974, pil. 503-507.
7. Šiljak, D. D., "Stabilization of Large-Scale Systems: A Spimning Flexible Spacecraft", Proc. 6th IFAC Congr., Boston, Mass., 1975, pp. 35.1:1-10.
8. Šiljak, D. D., and M. B. Vukčević, "Large-Scale Systems: Stability, Complexity, Reliability: , IEEE Proc., Special Issue on Recent Advances in System Science, Edited by W. A. Porter (to appear in December, 1975).
9. Siljak, D. D., and S. K. Sundareshan, "On Hierarchic Optimal Control of Large-Scale Systems", Proc. 8th Asilomar Conf. Circuits, Systems, Computers, Pacific Grove, Calif., 1974, pp. 49 S 502.
10. Šiljak, D. D., and S. K. Sundareshan, "Large-Scale Systems: Optimality vs. Reliability", Conference on Directions in Decentralized Control, Many-Person ptimization, and Large-Scale Systems, Cambridge, Mass., Sept. 1-3, 1975.
11. SchiehIen, W. O., "A Fine Pointing System for the Large-Space Telescope", NASA Technical Note, No. TN D-7500, 1973.
12. Davison, E. J., "The Decentralized Stabilization and Control of a Class of Unknown Non-Linear Time-Varying Systems", Automatica, 10 (1974), 309-316.
13. Chen, C. T., "Introduction to Linear System Theory", HoIt, Rinehart, and Winston, New York, 1970.
14. Gantmacher, F. R., "The Theory of Matrices", Vol. II, Chelsea, New York, 1960.

T5. Langenhop, C. E., 'On Generalized Inverses of Matrices', SIAM J. Appl. Math., 15(1967), 1239-1246.
16. Fiedler, M., and V. Pták, "On Matrices With Non Positive Off-Diagonal Elements and Fositive Principal Minors", Czech. Math. J., 12 (1962), 382-400.
17. Weissenberger, S., "Stability Regions of Large-Scale Systems", Automatica, 9 (1973) , 653-663.
18. Anderson, B.D.O., and J. B. Moore, "Liriear 'Optimal Control", Prentice-HaII, Englewood Cliffs, New Jersey, 1971.
19. Kleinman, D. L., "On An Iterative Technique for Riccati Equation Computations"; IEEE Trans., AC-13(1968), 114-115.

APPENDIX

COMPUTER APPLICATION
A.1. Stabilization Program
A.2. Optimization Program

\section*{A.1. Stabilization Program}

The entire stabilization method is computerized. In this section we present the computer program for the stabilization of a class of large-scale systems by local state feedback, according to Section 3.3. The program is written in FORTRAN IV, for FP2100 computer. It is, basically, an interactive user oriented program.

Designers can enter the program from VDU (Visual Display Unit) and thus freely alter the course of computation, according to the nature of the problem. Program accepts input data from a logical unit that has to be previously assigned. As a result of computation, it prints out stabilizing parameter a , corresponding aggregation matrix, stabilizing set of subsystem eigenvalues, and enables the designer to reenter the program with so computed new set. The program finally prints out the corresponding subsystem feedback gains. The name of the main program is PP1. Its function is to coordinate the sequence of actions during the course of tine stabilization and to enable the designer to access the program at various points during its operation. The program PPI calls subprograms, DECP, PPL, TRF, AGR and MINV. The processing of variables between the main program and subroutines is realized via COMON block.

Program PP1
Purpose:
Local stabilization of a class of large-scale linear systems.
Description of input parameters:
A - N by \(N\) system matrix.
\(\mathrm{B}-\mathrm{N}\) by M input matrix.
II - one dimensional integer axray. It stores dimensions of each subsystem. The other parameters are working variables.

User has to specify integers \(N\) and \(M\) and number of suobsystems IS, into which system matrix A, and input matrix B are decomposed. During the course of stabilization, usc" has to enter the program with subsystem eigenvalues, and specify an increment delta by wirich \(\alpha\) is increased during the process of iterations.

At the rery beginning of the program, the user has to assign input-output units. Also, during the operation of the program, user commenicates with the program by specifying commands, by which the sequence of calculations is controlled. These commands are in the "question-answer" form. For example, program prints out the question:
"DO YOU WANT TO CONTINUE, YES OR NO". The user then types either 'TYES" or "No" accordingly. Other commands are self explanatory, and are not going to be discussed here.

Subroutine DECP

\section*{Purpose:}

Decomposes system matrix A and input matrix B into subsystems. The product of the decomposition is stored in A2 and B2.

\section*{Usage:}

CALL DECP (IS, M, N)
Description of parameters:
IS - Number of subsystems.
M - Number of inputs.
N - Order of the overall system.
The following parameters are passed via COMON block as;
COMMON A, B, A2, B2, II
\(\mathrm{A}-\mathrm{N}\) by N system matrix.

B - N by M input matrix.
A2 - Three dimensional array which contains the product of the decomposition of the matrix \(A\).

B2 - Three dimensional array which contains the product of the decomposition of the matrix \(B\).

II - One dinensional integer array which contains the dimensions of each subsystem.

Subroutines required: None.

Subroutine PPL
Purpose:
Pole shifting using state feedbaik.
Usage:
CALL PPL ( N , IW)
Description of parcmeters:
N - Order of the system.
IW - Integer for the output logical unit.
The following parameters are passed via COMMON block as:
COMMON A1, B1, B2, II A, Q1, Q, III, B, R1, R2, D, SK
A - \(N\) by \(N\) system matrix
B - N-th dimensional input vector
R1 - One dimensional array which contains real parts of eigenvalues of matrix \(A\).

R2 - One dimensional array wich contains imaginary parts of eigenvalues of matrix \(A\).

D - N-th dimensional gain vector.
All other parameters are working variables, which are placed in COMON
block in order to make it consistent with the COMON block of the main program PP1.

Subroutines required: ALAM, DISP, KBAR.
As a result of the pole shifting, the subroutine passes back matrix A of the closed loop system, the gain vector \(D\), and the new eigenvalues. The subroutine itself is written as'a user-oriented interactive program, The user enters the desired eigenvalues from VIJ. The comands for controlling a sequenc: of computations, are self explanatory.

Subroutine TRF
Furpose:
Transforms subsystems by similarity transformation.

\section*{Usage:}

CALL TRF (1S)

\section*{Desaription of parameters:}

IS - Number of subsystems.
The following parameters are passed via COMON block as:
COMON A, B, A2, B2, II, A1, Q1, Q, III, B3
A2 - Three dimensional array. It contains the product of the decomposition of the system matrix' A .

B2 - Three dimensional array. It contains the product of the decomposition of the input matrix B.

II - One dimensional integer array that contains dimensions of each subsystem.

Q - Three dimensional array that contains transfomation matrices.

A11 other parameters are working variables.

Subroutines required; MINV

The product of transfomation is in \(A 2\) and B2. The array \(Q\) is unchanged.

Subroutine AGR
Furpose:
Forms an aggregate matrix.

\section*{Usage:}

CALL AGR (IS)
Description of parcmeters:
IS - Number of subsystems.

The following paraneters are passed via COMMON block as: COMNON A, B, A2, B2, II, A4, A3, \(\mathrm{Q}, \mathrm{III}, \mathrm{B} 3, \mathrm{R} 1, \mathrm{R} 2, \mathrm{~KB}, \mathrm{SK}\)

A2 - Three dimensional array which contains the product of the decomposition of the matrix \(A\).

B2 - Three dinensional array which contains the product of the decomposition of the matrix B .

II - Integer array that contains the dimensions of each subsystem.
R. - One dimensional array that contains real parts of subsystem eigenvalues.

A3 - Matrix that contains the aggregate model.

All other parameters are working variables.

Subroutine required: ALAM, BIG1, SMAL,1,

Subroutine KBAR
Purpose:
Computes gain vector for state feedback control.

\section*{Usage:}

CALL KBAR (A, \(N, Z, 1 Z, D, B)\)
Description of parameters:
A. N by N system matrix.

N - Dimension of the system.
Z - One dimensional array that contains the desired characteristic polynomial.

IZ - Its dimension.
D - One dimensional array that contains resultant gain vector.
B - Input vector.
Subroutine required: COEFI, SCALU, VECPR, MINV. Method:

Descrìbed in reference [13].

Subroutine ALAM
Purpose:
Calculates eigenvalues of general \(N\) by \(N\) matrix.

\section*{Usage:}

CALL ALAM (A, N, D) COF, R1, R2)
Description of parameters:
A - \(N\) by \(N\) system matrix.
N - Dimension of the system.
D - N+1 dimensional working vector.
COF - \(N+1\) dimensional working vector.
R1 - One dimensional array of real parts of eigenvalues of matrix A.

R2 - One dimensional array of imaginary parts of eigenvalues of matrix A.

Subroutines requined: COEFI, POLRT

Method:
Computes coefficients of characteristic polynomial, and calculates its zeros.

Subroutine COEF1 (A, N, D)
Purpose:
Calculates coefficients of the characteristic polynonial of matrix A.

Usage:
CALL COEFl ( \(\mathrm{A}, \mathrm{N}, \mathrm{D}\) )
Description of parameters:
A - \(N\) by \(N\) system matrix.
\(N\). Dimensions of the system.
D - One dimensional array of coefficients of characteristic polynomial.

Subroutines nequired: UNITT1, PRODI, TRAC1, SCM1, ADDI
Method:
Uses Souriau-Frame-Faddeev algorithm.

Subroutine DISP

\section*{Purpose:}

Form polynomial from its zeros.

\section*{Usage:}

CALL DISP (R1, R2, N, Z)
Descriptions of parcmeters:
R1 - One dimensional array of real parts of roots of a given polynomial.

R2 - One dimensional array of imaginary parts of roots of a given polynomial.

N - Order of a polynomial.
Z - One dimensional array that contains computed coefficients of the polynomial.

Subroutine required: PMPY

All other subroutines, listed in the Appendix are self explanatory and are not going to be explained here. Subroutines PMPY, POLRT and MINV are IBM-SSP subroutines.

\section*{REAL KB \\ INTEGER A10}

INTEGER DD
DIMENSION A (10,10) \(B(10,3)+A 2\{9,10,10)\).

 COMHDN A,B,AZ, B2,II,AK,O1.D,I11,B3,R1, \(A 2, K B, S K, A 1\)
DATA DDFZHYE/
WRITEII,1000)
1000 FORMAT \(110 X^{\prime \prime}\) "STABILIZATION OF A CLASS OF LARGE SCALE SYSTEMS") WHITE (1-145)
FOPMATIIX;"ASSIGN LOGICAL. UNITS"/IX.IZI2")
READ THE DATA
READ(I,111)IRDYIH
HRITE(IN+146)
148 FORMAT \(41 X\). 1 SPECIFY ORDER OF THE SYSTEK AND NUMEER OF INPUTS:

READ (IRD, 1111)N,M
11) FORMATISI2)

WRITEITH150)
150 FORMAT(IX:HENTER SYSTEH MATRIX") 00 B K=L, N MRITETITBISE
154 FORMATiIXt"
1~7t:35 [13] WRITETIW:ISTJ
152 FORHATIIX:"ENTER INPUT MATRIXU) \(009 \mathrm{~K}=1 \times \mathrm{N}\)
WRITE (Tw,151)
9 READIIRD, \(1001(S(K, J), J=1, M)\)
c 100 FORMATSSFID-0
C WRITE THE DATA

 FR1TE(5N.532)
532 FORHAT (IEX,"SY5TEM HATRIX \({ }^{H}\) ) \(0037 \mathrm{~K}=1 ; \mathrm{N}\)
 WR:TE (1世 5 537)


\section*{}

372 WRITE(IW,105) (B(K;J);J=1,M
105 FORMAT \((1 X, 5 F 14,6)\)
WRITE (IW+147)
147 FORMAT (IX, "SPECIFTY NUMBER OF SUBSYSTEME"/IX*"I2") READ(IRO. 1111 IS
WRITEIW*

*RITE (IW 149)
149 FORMAT (1X,"SPECIFY ORDER OF EACH SUBSYSTEM"/lX;"SIZ")
READ (IRD, III (II (K), K=1,IS)
DO B00 \(\mathrm{K}=1 \mathrm{IS}\)
800 RTTE (HW5545)KTII(K)
5545 FORMAT (1X,HORDER OF SUBSYSTEM", IZ, H=1,I2)
C START DECOMPOSITIOM
215 CONTINUE
C DECOMPOSE SYSTEM INTO SUSSYSTEMS
C CALI DECP (1S.M.N
C START STABILIZATIO
c \(0010 k=1,15\)
\(0010 K=1\)
\(\mathrm{L} 1=\mathrm{II}(K)\)
\(I P=(K-1)\)
002015
\(0020 J=1\) Ll
20 AK (LyJ)=A己 (IP:LTJ
D0 \(30 \mathrm{~L}=1 \mathrm{pL}\)
\(B 3(L)=62(K, L, K)\)
\(C\)
\(C\)
\(C\)
LOCATE POLES OF EACH SUBSYSTEM
CALL PPL(LI,IH)
D0 \(15 \mathrm{~L}=1+\mathrm{LI}\)
\(5 \mathrm{~T} 1(\mathrm{~L} \boldsymbol{\mathrm { F }} \mathrm{~K}) \times \mathrm{R} 1\) (L
O COVTINUE
RItE! TW.500
500 FOFMATIIXYMDO YOU WANT TO CONTINUEPYES DR NOH READ(1;501)ALO
501 FOZ4AT (AZ)
IF (A1O.NE, DD)GO 70.266
C START ITERATION FOR ALFA PARAMETER
WRITE(IWT600)
FORHAT(IX;"SPECIFY. INCNEHZ OELTFI/IX,HF10.0") READ (1-200JDELT
200 FQFMAT(F10.0)
ALF=1.
211 COVIINUE
c FORM VANDERHONDE MATRIX
\(90112 \mathrm{~K}=1.15\)
\(\mathrm{LI}=1 \mathrm{I}(\mathrm{K})\)
\(00112 \mathrm{Jxl,L1}\)
SK (J.K) \(x T 1(J, K)\)
\(S K(J i K)=A L F K(J)\)

DO \(12 \mathrm{Kx1.15}\)
LlxII(K)
00 88 Lx], L1
日8 \(0(K, L, J)=5 K(J, K)=E(L-1)\)
12 CONTINUE
\(C\)
\(C\)
FORM AGGREGATE MODEL
CALL DECP (IS:HyN)
CALL TRF(IS)
CALL AGR(IS)
WRITE (IH, 531\()\)
531 FO:MAT (1x, HAGGREGATION MATRIXH)
D0 \(281 \mathrm{~K}=1+15\)
281 WRITE (6, 105 ) ( \(01(K, J)+J=1, I S)\) \(A L F=A L F+D E L T\)
C check the sign of the k-th minor
1Zェ1
\(00282 k=1.15\).
\(1 \mathrm{~F}=\mathrm{K}\)
\(00283 \quad 1=1.1 F\)
DO 283 J=i,If
283 C(1Pj=01(J.I)
CALL MINY\{CPIF:D,LL, HM
CALL M
\(I Z=12\)
- \(\quad\)\begin{tabular}{c}
\(12 \times 12\) \\
\hline 120
\end{tabular}

WRITET6.270)D
270 FORMATt1XFF14.5)
\(C\)
\(C\)
\(C\)
282 COVTZNUE
00 \(11 \mathrm{~K}=1,15\)
LI=II(K)
TEtIW.7005K
700 FORMATIIX:"EIGENYALUES OF SUUSYSTEM"; IZ)
DO \(18 \mathrm{~J}=1 \cdot \mathrm{~L} 1\)

cavinut
GO TO 215
266 CONTINUE
ENJ
ENDS
ENDS


\section*{PAGE 0001 FTN4 COMPILER: HP24177 (5EPT. 1974)}
```

RAGE 0001
FTN4 COMPILER: HP24177 (SEPT: 1974)

```


PAGE 0001
SUBROUTINE DĖCP（ISiHiN）
PROGRAM TO DECOMPOSE SYSTEM INTO SUBSYSTEHS

COMMON A，日，A2， 82 II 1
\(1 L=1\)
\(1=0\)
\(L 1 \times 0\)
0010 Kmig
\(15=1\)
\(1 P=1\)
Lil＝11 \(1 K\)
\(\mathrm{L}=\mathrm{L} 1=\mathrm{L}\)
\(\mathrm{L} . \mathrm{C}=0\)

NNF\｛K－11＊IS＋」
12エ12＋122
\(L 2=L 2+L 2\)
\(1 R=0\)
1R
DO
12
DO I2 JJ＊IL•LI
IR \(=1 R+1\)
\(1 C=0\)
DO \(12 \mathrm{KKEIP+LZ}\)
－
1 2 A2（NN：IRTIC） 11 （d），KK）
11 IPEIP 1222
0013 JJEILPL IR \(=1 R+1\)
3 （G2：KKE1，

CONTINUE
RETUKN
END
NO ERRORS＊＊
COMHON \(=02245\)
\({ }^{0} 5\) \(\square\)
\(-\quad 0271\)
0272
0274
\(-\quad 2275\)
0276
0277
0277
0278
0279
PROGRAM \(=0.0187\)
. . - . -

```

PAGE 0001 FTN4 COHPILER: HP24177 [SEPT, 1974]
SUGROUTINE AGR(IS)
PROGRAM TO FORM AN AGGREGATE MATRIX
REAL KB

```


```

$1 \mathrm{COF}(6) \cdot \mathrm{D}(6)$. Cl t5,5

```

``` DO \(5 \mathrm{~K}=2\) is
- \(\quad 11 \times 11(K)\)
DO 5 JxinIS
L2EII (J)
```



```
IF (K.ED.J)GO TO 13
DO 4 LEIHL
```



```
DO 9 Lx 1 IL 2
DO 9 IxI, L2
SEO.
DO 10 IK=1, Ll
```



```
\(901(1+L)=5\)
CALL ALAB(OL,LZ*D+COF,RZFKB)
DO 11 1xLile
IFIRZ(I) LLEA.JGO TO 11
R2(I) =SはRT(R2 (I))
11 CONTINUT
CALL GIGI(RZ.LsLZ)
to TO 14
13 CONTINUE
DO 20 Iz1ヶL1
20 R2(I) \(=-5 k(1, K\)
CALL SMALI (R2,L.LI) \(R 2(L)=-R 2(L)\)
14 (K) (K, J) \(=\) R2 (L)
5 CONTINUE
RETURN
RND
NO ERRORS* PROGRAM \(=00383 \quad\) COMMON \(=0268 G\)
```

```
PAGE 0001 FTN4 COMPILERI HP24177 (5EPT. 1974)
```



```
 SU&HOUTIME TRFIISJ
 PHOGRAM TO TRANSFORM SUESYSTEM BY SIMILARITY TRANSFORMATION
```



```
 1,41(5,5),0(3,5,5),111(5),B3(5)
 1,C(25),LL(5),MM(5)
 COMMON A,B,AC,G2;II,Al,O1,Q,IIII,B3
 DO 25 K=1,15
 L1=1ItK)
 0026 Jx1, &1
 IF=(J-1)|Ll+L
 26 C{IP)=0(KPL&J)
 EALL MINY(C,LI,DILL,MM)
 00 27 J=1:L1
 00 27 L*1%L\
 IP=(J-1)*LI+L
 27 Ol(L,J)=CTIP)
 D0. 33 JJxi|IS
 IT=(K-1) +IS+JJ
 L2=[[\JJ)
 00 2B J=1,L1
 DO L6 L=1;L2
 00 29 1Z=1.LI
 29 5=5*OI(J.IZ)0.#C(IT,IZ,L)
 8 Al(U.L)=5
 DO 31 JxlrLl
 5*0.
 D0 32 14x1,L2
 32 SmS+A1(J,IZ)*a(JJ,IZrL)
 31 A2{IT,J+L}=S
 33 CONTINUE
 DO 19 J"1:3L1
 S=0.
 0034 2=1,L1
 34 S=S601tJ.L)*##(K.L.K)
 39 83(J)=5
 DO 20 J=1,L1
```



```
 25. CONTINUL
 00 72 KxI_15
 01=1!(K)
 00 73, 1=1+LI
 00 73 =1, LI
 IP=(N-1)mLI+L
 73 C(IP)=\square(K+L,J)
 CALL MINY(CHLI,D,LL,MM)
 DO 74 JEl&L2
 0074 L=1.L
 1P={J-1)=LL+L
 74 O(K.L.gJ)=C(IP)
 72 COMTINJL
 RETUAN
```

```
PAGE dOO2 TRF FIN4 COMPILERI HPZ41T7 [SEPT. 1974]
0422 END
NO ERRORS*: PROGRAM = 0056
COMMON = 02510
1-
#
```

$\qquad$

```
-
```




PAGE DOO1 FTN4 COMPILER: HP24177 [SEPT. 1974]


* NO ERRORSE PROGRAM $=00072 \quad$ COMMON $=00000$








```
* PAGE so01 FTN4 COMPILER: HP24177 (SEPT. 1974)
```




## A.2. Optimization Program

The only step that may introduce some computational complexities in the optimization scheme described in Section 4 is the solution of the matrix Riccati equation for the evaluation of the local controls. Despite the fact that this computation is performed at the subsystem level and hence involves matrices of small orders, simulation on a digital computer will imvariably be necessary. Although many different methods for the solution of the Riccati equation exist in the literature, the particular method that is adopted here is the iterative technique due to Kleinman [19]. In addition to detemining the symmetric positive-definite solution $P$ of the Riccati equation

$$
A^{T} P+P A-P B R^{-1} B^{T} P+Q=0,
$$

the program described here also computes the eigenvalues of the matrices $P$ and $W=Q+P_{B R}{ }^{-1} B^{T} P$ that is necessary in the evaluation of the suboptimality index $\varepsilon$.

The simulation analysis was conducted on the HP 2100 digital computing system ( 32 K memory) in FORTRAN language. In the following description, only the subroutines MIN, SINQ and POLRT are to be supplied externally (from IBM Scientific Subroutine Package), while the rest are contained internally. Since the computation involves only the subsystems that result from a sujitable decomposition of the overall system and hence are necessarily of small dimensions, the program is prepared to handle subsystens of dimension up to five.

DESCRIPTION OF THE EXTERNAL SUBROUTINES (From SSP)
Subroutine MINV
Риррове:
Invert a matrix.

## Usage:

CALL MINV (A, N, D, L, M)
Description of parameters:
A - Input matrix, destroyed in computation and replaced by resultant inverse. .
$N$ - Order of matrix A.
D - Resultant determinant.
L - Work vector of length N.
M - Work vector of length N .

## Remarks:

Matrix A must be a general (nonsingular) matrix. Subroutines and function subprograms required: None. Method:

The standard Gauss-Jordan method is used. The determinant is also calculated. A deteminant with absolute value less than $10^{* *}(-20)$ indicates singularity.

Subroutine SIMQ
Purpose:
Obtain solution of a set of simultaneous linear equations $\mathrm{AX}=\mathrm{b}$. Usage:

CALL SIMQ (A, B, N, KS)
Description of parameters:
A - Matrix of coefficients stored solumwise. These are destroyed in the computation. The size of matrix $A$ is $N$ by $N$.

B - Vector of original constants (Jength N). These are replaced by final solution values, vector $X$.

N - Number of equations and variables. $N$ must be greater than 1.

KS - Output digit: 0 for a normal solution; 1 for a singular set of equations.

Remarks:
Matrix A must be general. If matrix is singular, solution values are meaningless,

Subroutines and function subprograms required: None. Method:

Method of solution is by elimination using largest pivotal divisor.

SuF coutine POLRT
Purpose:
Conputes the real and complex roots of a real polynonial.

## Usage:

CALL POLRT (XCOF, COF, M, ROOTR, ROOTI, IER)
Description of parameters:

- XCOF - Vector of $M+1$ coefficients of the polynomial ordered from smallest to largest power.

COF - Working vector of length M+1.
M - Order of polynomial.
ROOTR - Resultant vector of length M containing real roots of the polynomial.

ROOTI - Resultant vector of length $M$ containing the corresponding imaginary roots of the polynomial.

IER - Error code where
IER $=0$ No error
IER $=1 \mathrm{M}$ less than one

$$
\begin{array}{rl}
\text { IER }=2 & \mathrm{M} \text { greater than } 36 \\
\text { IER }=3 & \text { Unable to determine root with } 500 \\
& \text { iterations on } 5 \text { starting values. } \\
\text { IER }=4 & \text { High order coefficient is zero. }
\end{array}
$$

## Remarks:

Limited to 36 -th order polynomial or less. Floating point overflow may occur for high order polynomials but will not affect the accuracy of the results.

Subroutines and function subprograms required: None Method:

Newton-Raphson iterative technique.



PAUE E003 RICAT FTN4 COMPILER: MP24177 (SEPT. 1974)



OUE $\quad$ Jinin
$0.51 \quad L=14(k+1)+J$

$\begin{array}{ll}0253 & \text { RETU } \\ 0254 & \text { ENU }\end{array}$

PAGE QUOI FTN4 COMPILER: HP24177 (SEPT. 1974)



GZbo DIHENSIUY A(5,S),Pl(25)
0くらl - … ...DO $\mathrm{C}=1 \mathrm{~N}$
OCSA U0 $\mathrm{O} J \times 1+N$

S201 … ATJNKI $\begin{array}{r}\text { RETUKN }\end{array}$
$\xrightarrow{-4}$
END

* MO ERHORS** PROGKAN $=00062 \quad$ COMHON $=00000$




