General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A MULTILEVEL CONTROL SYSTEM FOR THE LARGE SPACE TELESCOPE

FINAL REPORT CONTRACT NO. NAS 8-27799 JANUARY 20, 1974 - JULY 1, 1975

(NASA-CE-143941) A MULTILEVEL CONTROL SYSTEM FOR THE LARGE SPACE TELESCOPE Final Report, 20 Jan. 1974 - 1 Jul. 1975 (Santa Clara Univ.) 101 p EC \$5.25 CSCL 14B

N75-31448

B	Unclas
G3/37	35758

D. D. Šiljak Principal Investigator

S. K. Sundareshan Investigator

M. B. Vukčević Investigator

The University of Santa Clara • California

This report is prepared for George C. Marshall Space Flight Center, NASA, Marshall Space Flight Center, Huntsville, Alabama 35812 Publication Date: July 31, 1975

TABLE OF CONTENTS

1.		1
2.	DEVELOPMENT OF A MODEL FOR THE LST	3
3.	STABILIZATION	11
	3.1 Multilevel Control	11
	3.2 An Illustrative Example	17
	3.3 Local Stabilization	20
	3.4 An Illustrative Example	25
	3.5 Application to LST	29
4.	OPTIMAL CONTROL	36
	4.1 Problem Formulation	36
	4.2 Multilevel Optimization	41
	4.3 An Illustrative Example	46
	4.4 Application to LST	49
5.	CONCLUSIONS	53
6.	REFERENCES	54
	APPENDIX: COMPUTER APPLICATION	56
•	A.1 Stabilization Program A	1
	A.2 Optimization Program	32

1. INTRODUCTION

The principal objective of this report is to outline a multilevel control scheme for the Large Space Telescope (LST). The concept and methodology of the scheme is based upon the decomposition-aggregation stability analysis of large-scale systems [1-3], which was used to study structural properties of the control system for a spinning flexible spacecraft [4, 5].

The two-level analysis of the decomposition-aggregation method is ideally suitable for designing a multilevel feedback control [6-10] for dynamic systems composed of interconnected subsystems. Local controllers on the subsystem level are used to stabilize (or optimize) the decoupled subsystems. On the second hierarchial level the global controllers are used to minimize the interactions among the subsystems, and make the control system meet the required performance characteristics for the overall system. This multilevel strategy can solve complex control problems "piece-by-piece" and make the computer use attractive in cases when the direct approach is either not feasible (excessive computer storage), or it is uneconomical (excessive computer time).

The detailed plan of the report is as follows:

In Section 2, we will develop a nonlinear model for the LST which is based upon the linear model described in [11]. The nonlinear representation will serve as a realistic model for evaluating the potentials of the multilevel schemes for control of the LST.

In Section 3, we will outline the general multilevel stabilization algorithm [6-8]. Both local and global controllers are involved. The local controllers are used to stabilize each decoupled subsystem by any of the classical techniques such as pole-shifting, root-locus, parameter plane, etc. The role of the global controllers is to minimize the effect of interactions among the subsystems. Finally, the aggregate system is constructed on the higher hierarchial level to conclude stability of the overall composite system. We

1

will consider a class of dynamic systems [12] which can always be stabilized by the proposed scheme using local controllers only. Since the LST model developed in Section 2 is in that class, we will be able to effectively design the feedback control which stabilizes the LST.

In Section 4, we will present a multilevel optimization scheme for control of large-scale systems [9, 10]. The local controllers are used to optimize the decoupled subsystems with respect to quadratic cost. The global controllers are applied to reduce the subsystem interactions, or entirely decouple the subsystems as is the case of the LST. While this control scheme results in a suboptimal performance when the effective interactions are present, it produces an optimal control when the total decoupling takes place. Thus, the design procedure can effectively be used for constructing an optimal control system for the LST.

Both the stabilization and the optimization multilevel schemes are entirely computerized. The description of the programs is provided in the Appendix.

This report is written under the supervision and with the participation of the Principal Investigator, D. D. Šiljak. Investigator S. K. Sundareshan developed the model of LST in Section 2, and Sections 4 and A.2 on multilevel optimization. Investigator M. B. Vukčević developed the multilevel stabilization scheme presented in Sections 3 and A.1.

2. DEVELOPMENT OF A MODEL FOR THE LST

The Large Space Telescope (LST) is modeled as a rigid body with three orthogonally mounted reaction wheel actuators and is considered to be subject to gravitational and magnetic disturbance torques. Unlike in the earlier analyses [11], nonlinear coupling phenomena are not ignored and a complete threeaxes model for the spacecraft is obtained as a nonlinear interconnected system. The interconnections represent the coupling between the motions along the individual axes. Hence this model will be a more accurate description of the LST, which however, is necessary due to the precision pointing requirements demanded of the control system.

The spacecraft's equation of motion can be written down from the Euler equations [11], as

$$I \cdot \dot{\omega} + \omega \times I \circ \omega + \sum_{i=1}^{5} \{\omega \times \omega_{i} \operatorname{tr} I_{i} + 2\omega_{i} \times I_{i} \cdot \omega + I_{i} \circ \dot{\omega}_{i} + \omega_{i} \times I_{i} \circ \omega_{i}\} = M$$

$$(2.1)$$

and

$$I_{i} \cdot \dot{w}_{i} + \omega \times I_{i} \circ w + \omega \times \omega_{i} \operatorname{tr} I_{i} + 2\omega_{i} \times I_{i} \cdot w$$
$$+ I_{i} \cdot \dot{w}_{i} + \omega_{i} \times I_{i} \cdot \omega_{i} = M_{i}, i = 1, 2, 3 \qquad (2.2)$$

where

I is the inertia tensor of the LST given by

$$I = \begin{bmatrix} I_{x} & 0 & 0 \\ 0 & I_{y} & 0 \\ 0 & 0 & I_{z} \end{bmatrix},$$

 I_x , I_y , I_z denoting the components along the three axes constituting an inertial reference frame I_{rf} ;

 I_1 , i = 1, 2, 3, are the inertia tensors of the three reaction wheels that are mounted orthogonally and parallel to the

axes constituting the standard body-fixed reference frame B_{rf} and hence can be expressed as

$$I_{1} = \begin{bmatrix} I_{1x} & 0 & 0 \\ 0 & I_{1y} & 0 \\ 0 & 0 & I_{1y} \end{bmatrix}; I_{2} = \begin{bmatrix} I_{2z} & 0 & 0 \\ 0 & I_{2y} & 0 \\ 0 & 0 & I_{2z} \end{bmatrix};$$
$$I_{3} = \begin{bmatrix} I_{3x} & 0 & 0 \\ 0 & I_{3x} & 0 \\ 0 & 0 & I_{3z} \end{bmatrix}$$

$$\omega$$
 is the angular velocity vector of the LST relative to the frame $I_{\rm rf}$;

- ω_{i} , i = 1, 2, 3, are the angular velocity vectors of the reaction wheels relative to the frame $I_{\rm rf}$;
- M is the total external torque acting on the LST; and
- M_i , i = 1, 2, 3, are the internal torques on the reaction
 wheels.

The angular velocity ω can be expressed in terms of the rates of angular deviations along the three axes of $\,I_{\rm rf}\,$ as

$$\omega = \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(2.3)

where ϕ is the roll angle, θ is the pitch angle and ψ is the yaw angle. Similarly the angular velocities ω_i of the reaction wheels can be expressed in terms of the components as

$$\omega_{1} = \begin{bmatrix} v_{1} \\ 0 \\ 0 \end{bmatrix}; \omega_{2} = \begin{bmatrix} 0 \\ v_{2} \\ 0 \end{bmatrix}; \omega_{3} = \begin{bmatrix} 0 \\ 0 \\ v_{3} \end{bmatrix}.$$
(2.4)

Equations (2.1) and (2.2) can now be simplified into the following four sets of scalar equations:

(i) Equations governing the motion of the LST body:

$$I_{x}\ddot{\phi} + \dot{\theta}\dot{\psi}(I_{z} - I_{y}) + I_{3z}v_{3}\dot{\theta} - I_{2y}v_{2}\dot{\psi} + I_{1x}\dot{v}_{1} = M_{x}$$

$$I_{y}\ddot{\theta} + \dot{\phi}\dot{\psi}(I_{x} - I_{z}) + I_{1x}v_{1}\dot{\psi} - I_{3z}v_{3}\dot{\phi} + I_{2y}\dot{v}_{2} = M_{y}$$

$$I_{z}\ddot{\psi} + \dot{\phi}\dot{\theta}(I_{y} - I_{x}) + I_{2y}v_{2}\dot{\phi} - I_{1x}v_{1}\dot{\theta} + I_{3z}\dot{v}_{3} = M_{3}$$
(2.5)

(ii) Equations for the Reaction Wheel mounted parallel to x-axis:

$$\begin{bmatrix} I_{1x}\ddot{\phi} + I_{1x}\dot{v}_{1} &= M_{1x} \\ I_{1y}\ddot{\theta} + (I_{1x} - I_{1y})\dot{\theta}\dot{\psi} + I_{1x}\dot{v}_{1}\dot{\psi} &= M_{1y} \\ I_{1y}\ddot{\psi} + (I_{1y} - I_{1x})\dot{\theta}\dot{\theta} - I_{1x}\dot{v}_{1}\dot{\theta} &= M_{1z} \end{bmatrix}$$

$$(2.6)$$

(iii) Equations for the Reaction Wheel mounted parallel to y-axis

$$\begin{array}{c} I_{2z}\ddot{\psi} + (I_{2y} - I_{2z})\dot{\psi}\dot{\psi} + I_{2y}v_{2}\dot{\phi} = M_{2x} \\ I_{2y}\ddot{\theta} + I_{2y}\dot{v}_{2} = M_{2y} \\ I_{2z}\ddot{\psi} + (I_{2z} - I_{2y})\dot{\theta}\dot{\psi} - I_{2y}v_{2}\dot{\psi} = M_{2z} \end{array}$$

$$(2.7)$$

(iv) Equations for the Reaction Wheel mounted parallel to z-axis:

$$I_{3x}\ddot{\phi} + (I_{3x} - I_{3z})\dot{\phi}\dot{\theta} + I_{3z}v_{3}\dot{\theta} = M_{3x} I_{3x}\ddot{\theta} + (I_{3z} - I_{3x})\dot{\phi}\dot{\psi} + I_{3z}v_{3}\dot{\phi} = M_{3y} I_{3z}\ddot{\psi} + I_{3z}\dot{v}_{3} = M_{3z}$$

$$(2.8)$$

5

ĥ

For further simplification, we will assume that the reaction wheels are small so that $I_{1x} \ll I_x$, $I_{2y} \ll I_y$, $I_{3z} \ll I_z$ and they have one degree of freedom only. With these, equations (2.5)-(2.8) can be simplified into,

$$I_{x}\ddot{\phi} + \dot{\theta}\dot{\psi}(I_{z} - I_{y}) + I_{1x}\dot{v}_{1} = M_{x}$$

$$I_{y}\ddot{\theta} + \dot{\phi}\dot{\psi}(I_{x} - I_{z}) + I_{2y}\dot{v}_{2} = M_{y}$$

$$I_{z}\ddot{\psi} + \dot{\phi}\dot{\theta}(I_{y} - I_{x}) + I_{3z}\dot{v}_{3} = M_{z}$$
(2.9)

and

$$I_{1x}\ddot{\phi} + I_{1x}\dot{v}_{1} = M_{1x}$$
 (2.10)

$$I_{2y}\ddot{\theta} + I_{2y}\dot{\nu}_2 = M_{2y}$$
 (2.11)

$$I_{3z}\ddot{\psi} + I_{3z}\dot{v}_{3} = M_{3z}$$
 (2.12)

Substitution of (2.10)-(2.12) into (2.9) will result in the following three equations describing the motions along the individual axes and their interconnections:

$$I_{x}\ddot{\phi} + (I_{z} - I_{y})\dot{\theta}\dot{\psi} = (M_{x} - M_{1x})$$

$$I_{y}\ddot{\theta} + (I_{x} - I_{z})\dot{\phi}\dot{\psi} = (M_{y} - M_{2y})$$

$$I_{z}\ddot{\psi} + (I_{y} - I_{x})\dot{\theta}\dot{\phi} = (M_{z} - M_{3z})$$
(2.13)

It is now necessary to evaluate the various torques. Since the internal torques on the reaction wheels are small, it may be assumed that these are proportional to the control signals actuating the wheels. Hence,

$$M_{1x} = -K_1 u_1 \\ M_{2y} = -K_2 u_2 \\ M_{3z} = -K_3 u_3$$

(2.14)

Where K_1 , K_2 and K_3 are the drive motor constants (the negative signs in (2.14) merely indicate the directions of these torques).

The external torques acting on the body of the LST are mainly environmental disturbance forces and are composed of gravity-gradient, magnetic, aerodynamic and solar pressure torques. The latter two will be negligibly small compared to the others and will usually be accounted for in control system designs by considering them as equivalent zero-mean stationary white noise processes. The gravity-gradient and magnetic torques can be represented as purely deterministic signals involving a constant term and a sinusoidal function of time with twice orbital rate. Hence, following the analysis in [11] the external torques can be obtained as,

$$M_{x} = \{\gamma_{11} + \gamma_{12} \cos(\omega t + x) + s_{1}\} I_{x} \\M_{y} = \{\gamma_{21} + \gamma_{22} \cos(t + x) + s_{2}\} I_{y} \\M_{z} = \{\gamma_{31} + \gamma_{32} \cos(t + x) + s_{3}\} I_{z} \end{cases}$$
(2.15)

Where Y_{ij} , i = 1, 2, 3, are constants that can be determined []1] from the inertia components I_x , I_y , I_z , the magnitude of the LST dipole moment and the earth's magnetic field intensity; and s_i , i = 1, 2, 3, are white-noise processes characterizing the aerodynamic and solar pressure torques.

Substitution of (2.14) and (2.15) in (2.13) and further simplification results in the following system of equations:

$$\ddot{\phi} + \alpha_{1}\dot{\theta}\dot{\psi} = \beta_{1}u_{1} + M_{x}$$

$$\ddot{\theta} + \alpha_{2}\dot{\phi} = \beta_{2}u_{2} + M_{y}$$

$$\ddot{\psi} + \alpha_{3}\dot{\phi}\dot{\theta} = \beta_{3}u_{3} + M_{z}$$

$$(2.16)$$

where $\alpha_1 = \frac{(I_z - I_y)}{I_x}$, $\alpha_2 = \frac{(I_x - I_z)}{I_y}$, $\alpha_3 = \frac{(I_y - I_x)}{I_z}$, $\beta_1 = \frac{K_1}{I_x}$, $\beta_2 = \frac{K_2}{I_y}$,

 $\beta_3 = \frac{K_3}{I_z}$ and M_x, M_y, M_z are the external disturbance torques given by (2.15).

It is now simple to obtain a state-space representation of the LST by choosing the state-vector

$$\mathbf{x} = \begin{bmatrix} \phi, \dot{\phi}, \theta, \dot{\theta}, \psi, \dot{\psi} \end{bmatrix}^{\mathrm{T}}, \qquad (2.17)$$

which results in the time-invariant model,

$$\dot{x} = Ax + Bu + h(x) + FM$$
 (2.18)

where

The diagonal structure of the matrices A, B and F permits us to partition the state-vector as,

$$x = [x_1, x_2, x_3]^T$$
 (2.19)

where

$$\mathbf{x}_{1} = \begin{bmatrix} \mathbf{x}_{11} \\ \mathbf{x}_{12} \end{bmatrix} = \begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix}, \quad \mathbf{x}_{2} = \begin{bmatrix} \mathbf{x}_{21} \\ \mathbf{x}_{22} \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}, \quad \mathbf{x}_{3} = \begin{bmatrix} \mathbf{x}_{31} \\ \mathbf{x}_{32} \end{bmatrix} = \begin{bmatrix} \psi \\ \dot{\psi} \end{bmatrix}.$$

With this, (2.18) can be described as a set of interconnected subsystems,

$$x_{i} = A_{i}x_{i} + b_{i}u_{i} + h_{i}(x) + f_{i}d_{i}, i = 1, 2, 3,$$
 (2.20)

where

$$A_{i} = \begin{bmatrix} 0 & 1 \\ \\ 0 & 0 \end{bmatrix}, \quad b_{i} = \begin{bmatrix} 0 \\ \\ \beta_{i} \end{bmatrix}, \quad f_{i} = \begin{bmatrix} 0 \\ \\ 1 \end{bmatrix}, \quad i = 1, 2, 3,$$

and

$$h_{1}(x) = \begin{bmatrix} 0 \\ \\ -\alpha_{1}x_{22}x_{32} \end{bmatrix}, \quad h_{2}(x) = \begin{bmatrix} 0 \\ \\ -\alpha_{2}x_{32}x_{12} \end{bmatrix}, \quad h_{3}(x) = \begin{bmatrix} 0 \\ \\ -\alpha_{3}x_{12}x_{22} \end{bmatrix}$$

with $d_1 = M_x$, $d_2 = M_y$ and $d_3 = M_z$ being the external disturbances.

It may be observed that when $h_i(x) \equiv 0$, i = 1, 2, 3, (2.20) represents three decoupled subsystems which describe the motions of the spacecraft along the three axes. However, $h_i(x)$ are not zero and constitute the interconnections among the subsystems, thus making an analysis based on the smaller-dimensional decoupled subsystems alone inaccurate.

The system represented by (2.20), is driven by the disturbance forces d_1 in addition to the control signals u_1 . However, these external disturbances can be completely cancelled by constructing a disturbance accommodating controller as described in [3, 1]. This involves the determination of a suitable differential equation model for the disturbances and with the augmentation of the disturbance variables with the state variables of the system, designing a feedback controller that counteracts the disturbance forces by feeding back the estimated disturbance variables. Although this analysis is conducted for a singleaxis model of the LST (only for the pitch motion control) in [1], a straightforward extension that uses three separate disturbance accommodating controllers can be obtained for the three-axis model presently considered. Due to the above reason, we will ignore the disturbance terms from our model and conduct all further analysis on the system,

$$\dot{x}_{i} = A_{i}x_{i} + b_{i}u_{i} + h_{i}(x)$$
, $i = 1, 2, 3$, (2.21)

obtained from (2.20) with the substitution $d_i \equiv 0$.

3. STABILIZATION

When a complex dynamic system is given as a number of locally controlled interconnected subsystems, it can be stabilized by a multilevel control scheme [6 - 8] based upon the decomposition-aggregation stability analysis [1 - 3]. In the scheme, the dimensionality problem is resolved by carrying out all operations on the subsystem level. Both local and global controllers can be involved. The local controllers are introduced to stabilize each decoupled subsystem by any of the classical techniques such as the pole-shifting by state feedback, root-locus, parameter plane method, etc. The global controllers minimize the effect of interactions among the subsystems. Finally, the aggregate system is constructed on the higher hierarchical level to conclude stability of the overall composite system.

It is important to note that the proposed stabilization produces largesystems which are connectively stable [1 - 3]. That is, stability is invariant under structural perturbations whereby subsystems are disconnected and connected again in various ways during the operation of the system. Furthermore, the stabilized systems have wide tolerance to nonlinearities in the interactions between the subsystems.

After we outline the multilevel control scheme for stabilization of largescale systems, we will consider a class of dynamic systems which can be always stabilized by the scheme using local controllers only. Since the LST model developed in the preceeding section falls in that class, we will be able to effectively design the feedback control which stabilizes the LST.

3.1. Multilevel Control

Let us consider a linear dynamic system

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$,

(3.1)

where $x(t) \in R^n$ is the state of the system, $u(t) \in R^S$ is the input to the system, and A and B are constant $n \times n$ and $n \times s$ matrices. We assume that the system is brought into the input-decentralized form

$$\dot{x}_{i} = A_{i}x_{i} + \sum_{\substack{j=1 \\ j\neq i}}^{s} A_{ij}x_{j} + b_{i}u_{i}, i = 1, 2, ..., s$$
 (3.2)

where $x_i(t) \in R^{n_i}$ is the state of the i-th subsystem, and $u_i(t) \in R$ is the corresponding local control, so that

$$R^{n} = R^{n_{1}} \times R^{n_{2}} \times \ldots \times R^{n_{s}}, \qquad (3.3)$$

and each pair (A_i, b_i) is controllable.

In (3.2), the matrices A_i , A_{ij} , and the vectors b_i have appropriate dimensions. As shown in reference [6], any linear dynamic system (3.1) can be represented by its input-decentralized form (3.2).

To stabilize the system (3.2), we apply the decentralized feedback control

$$u_{i}(t) = u_{i}^{\ell}(t) + u_{i}^{g}(t)$$
 (3.4)

where u;(t) is chosen as a local control law

$$u_{i}^{\ell} = -k_{i}^{T}x_{i} , \qquad (3.5)$$

with a constant vector $k_i \in R^{n_i}$, and $u_i^g(t)$ is chosen as a global control law

$$u_{i}^{g} = -\sum_{\substack{j=1\\ j\neq i}}^{S} k_{ij}^{T} x_{j}, \qquad (3.6)$$

where $k_{ij} \in R^{n_j}$ are constant vectors.

By substituting the control (3.4) into (3.2), we get the closed-loop sys-

tem as

$$\dot{x}_{i} = (A_{i} - b_{i}k_{i}^{T})x_{i} + \sum_{\substack{j=1 \ j \neq i}}^{s} (A_{ij} - b_{i}k_{ij}^{T})x_{j}, i = 1, 2, ..., s.$$
 (3.7)

Since each pair (A_i, b_i) is controllable, a simple choice of k_i can be always made [13] to place the eigenvalues of $A_i - B_i k_i^T$ at any desired locations $-\sigma_1^i \pm j\omega_1^i, \ldots, \sigma_p^i \pm j\omega_p^i, -\sigma_{p+1}^i, \ldots, -\sigma_{n_i}^i$ ($\sigma_q^i > 0$; $q = 1, 2, \ldots, n_i$, and $1 \le p \le n_i$). Then, each uncoupled sybsystem

$$\dot{x}_{i} = (A_{i} - b_{i} k_{i}^{T}) x_{i}$$
, $i = 1, 2, ..., s$ (3.8)

is stabilized with a degree of exponential stability

$$\pi_{i} = \min_{q} \sigma_{q}^{i} \qquad (3.9)$$

To provide a Liapunov function [5-8] with the exact estimate of π_{1} for each decoupled subsystem, we apply to (3.8) the linear nonsingular transformation

$$\mathbf{x}_{i} = \mathbf{T}_{i} \tilde{\mathbf{x}}_{i} , \qquad (3.10)$$

to get the system (3.8) as

$$\dot{\tilde{x}}_{i} = \Lambda_{i}\tilde{x}_{i}, \qquad (3.11)$$

where $\Lambda_{i} = T_{i}^{-1} (A_{i} - b_{i} k_{i}^{T}) T_{i}$ has the quasidiagonal form

$$\Lambda_{i} = \operatorname{diag} \left\{ \begin{bmatrix} -\sigma_{1}^{i} & \omega_{1}^{i} \\ \vdots & \vdots \\ -\omega_{1}^{i} & -\sigma_{1}^{i} \end{bmatrix}, \dots, \begin{bmatrix} -\sigma_{p}^{i} & \omega_{p}^{i} \\ \vdots & \vdots \\ -\omega_{p}^{i} & -\sigma_{p}^{i} \end{bmatrix}, -\sigma_{p+1}^{i}, \dots, -\sigma_{n_{1}}^{i} \right\}$$

$$(3.12)$$

14

For the system (3.11), we choose the Liapunov function $v_i: R^n i \rightarrow R_+$,

$$v_{i}(\tilde{x}_{i}) = (\tilde{x}_{i}^{T}\tilde{H}_{i}\tilde{x}_{i})^{\frac{1}{2}},$$
 (3.13)

where

$$\Lambda_{i}^{T}\tilde{H}_{i} + \tilde{H}_{i}\Lambda_{i} = -\tilde{G}_{i}, \qquad (3.14)$$

and

$$\tilde{G}_{i} = 2\theta_{i} \operatorname{diag} \{\sigma_{1}^{i}, \sigma_{1}^{i}, \dots, \sigma_{p}^{i}, \sigma_{p}^{i}, \sigma_{p+1}^{i}, \dots, \sigma_{n_{i}}^{i}\}, \tilde{H}_{i} = \theta_{i} I_{i}.$$
(3.15)

In (3.15), $\theta_i > 0$ is an arbitrary constant and I_i is the $n_i \times n_i$ identity matrix.

The aggregate comparison system involving the vector Liapunov function v: \textbf{R}^n + \textbf{R}^s_+ ,

$$v = (v_1, v_2, \dots, v_s)^T$$
, (3.16)

is obtained for the transformed system (3.7),

$$\dot{\tilde{x}}_{i} = \Lambda_{i}\tilde{\tilde{x}}_{i} + \sum_{\substack{j=1\\j\neq i}}^{s} (\tilde{A}_{ij} - \tilde{b}_{i}\tilde{k}_{ij}^{T})\tilde{\tilde{x}}_{j},$$

$$i = 1, 2, ..., s$$
(3.17)

where $\tilde{A}_{ij} = T_i^{-1}A_{ij}T_j$, $\tilde{b}_i = T_i^{-1}b_i$, $\tilde{k}_{ij}^T = k_{ij}^TT_j$, and using the Liapunov functions $v_i(\tilde{x}_i)$ defined in (3.13). Using the aggregation method presented in [1 - 5], we construct the comparison system

$$\dot{v} \leq \tilde{W}v$$
, (3.18)

where the constant s × s matrix $\tilde{W} = (\tilde{w}_{ij})$ has the elements defined as

$$\tilde{w}_{ij} = -\delta_{ij}\pi_{i} + (1 - \delta_{ij})\tilde{\xi}_{ij}, \qquad (3.19)$$

where δ_{ii} is the Kronecker symbol, π_i is defined in (3.9), and

$$\tilde{\boldsymbol{\xi}}_{ij} = \boldsymbol{\lambda}_{M}^{l_{i}} \left[(\tilde{\boldsymbol{A}}_{ij} - \tilde{\boldsymbol{b}}_{i} \tilde{\boldsymbol{k}}_{ij}^{T})^{T} (\tilde{\boldsymbol{A}}_{ij} - \tilde{\boldsymbol{b}}_{i} \tilde{\boldsymbol{k}}_{ij}^{T}) \right]$$
(3.20)

where λ_{M} is the maximum eigenvalue of the indicated matrix.

As known [1 - 3], global asymptotic stability of the system (3.17) and, therefore, original system (3.2), is implied by the Sevastyanov-Kotelyanski conditions [14], which for $\tilde{W} = (\tilde{w}_{ij})$ defined by (3.19) and (3.20) have the following form

$$(-1)^{k} \begin{vmatrix} -\pi_{1} & \tilde{\xi}_{12} & \cdots & \tilde{\xi}_{1k} \\ \tilde{\xi}_{21} & -\pi_{2} & \cdots & \tilde{\xi}_{2k} \\ \vdots & \vdots & \vdots \\ \tilde{\xi}_{k1} & \tilde{\xi}_{k2} & \cdots & -\pi_{k} \end{vmatrix} > 0, \quad k = 1, 2, \dots, s.$$
(3.21)

To satisfy conditions (3.21), we choose the vectors \tilde{k}_{ij} in (3.20) so as to minimize the nonnegative numbers $\tilde{\xi}_{ij}$ which reflect the strength of interconnections among the subsystems in (3.17). Such choice is provided by

$$\tilde{k}_{ij}^{*} = [(\tilde{b}_{i}^{T}\tilde{b}_{i})^{-1} \tilde{b}_{i}^{T}\tilde{A}_{ij}]^{T}, \qquad (3.22)$$

where $(\tilde{b}_{i}^{T}\tilde{b}_{j})^{-1}\tilde{b}_{i}^{T}$ is the Moore-Penrose generalized inverse of \tilde{b}_{i} [15]. The choice of \tilde{k}_{ij}^{*} in (3.22) produces the optimal aggregate matrix \tilde{W}^{*} in the sense that $\tilde{W}^{*} \leq \tilde{W}$ (that is, $\tilde{W}^{*} - \tilde{W} \leq 0$) is valid for all \tilde{k}_{ij} . That is equivalent to saying [16] that $\lambda_{M}(\tilde{W}^{*}) \leq \lambda_{M}(\tilde{W})$ for all \tilde{k}_{ij} . Since conditions (3.21) are necessary and sufficient for $\lambda_{M}(\tilde{W}) < 0$, that is, for stability of \tilde{W} , the choice $\tilde{k}_{ij} = \tilde{k}_{ij}^{*}$ is justified.

To conclude stability of the overall system (3.17) with the optimal choice $\tilde{k}_{ij} = \tilde{k}_{ij}^*$, which is

$$\dot{\tilde{x}}_{i} = \Lambda_{i}\tilde{x}_{i} + [I_{i} - \tilde{b}_{i}(\tilde{b}_{i}^{T}\tilde{b}_{i})^{-1} \tilde{b}_{i}^{T}] \int_{\substack{j=1\\ j\neq i}}^{s} \tilde{A}_{ij}\tilde{x}_{j},$$

$$j = 1, 2, ..., s \quad (3.23)$$

we apply the determinantal inequalities (3.21) to the optimal aggregate matrix $\tilde{W}^* = (\tilde{w}_{ij}^*)$ defined by (3.19) and $\tilde{\xi}_{ij} = \tilde{\xi}_{ij}^* = \lambda_M^{l_2} \{\tilde{A}_{ij}^T [I_i - \tilde{b}_i (\tilde{b}_i^T \tilde{b}_i)^{-1} \tilde{b}_i^T] \tilde{A}_{ij}\}$.

We arrive at the following:

<u>Theorem 3.1</u>. The linear control system (3.2) is stabilized by the linear control laws

$$u_{i} = -k_{i}^{T}x_{i} - \sum_{\substack{j=1\\j\neq i}}^{S} k_{ij}^{T}x_{j}, \quad i = 1, 2, ..., s$$
 (3.24)

where
$$k_{ij}^{T} = \tilde{k}_{ij}^{*T} T_{j}^{-1}$$
, if the corresponding $s \times s$ aggregate matrix
 $\tilde{W}^{*} = [-\delta_{ij} T_{i}^{*} + (1-\delta_{ij}) \tilde{\xi}_{ij}^{*}]$ (3.25)

satisfies conditions (3.21).

Successful application of the above theorem depends on appropriate choice of the eigenvalues for the decoupled subsystems (3.8). Once the subsystem eigenvalues are prescribed, the control law (3.24) and, thus, the gain vectors k_i , k_{ij} in (3.24), are computed uniquely using the proposed algorithm. Therefore, if for computed gains k_i , k_{ij} , the conditions (3.21) are not met, a reassignment of the subsystems eigenvalues is required. The search for an appropriate set of subsystems eigenvalues can be aided by the interactive computer program described in Section A.1. The efficiency of the computer program relies on the low order of the subsystems and the simplicity in testing the Sevastyanov-Kotelyanskii conditions (3.21). Furthermore, the computerized procedure provides a considerable freedom to the designer to apply his understanding of the system and the familiarity with the method to come up with a successful design.

3.2 An Illustrative Example

Let us consider a system (3.1) described by the equation

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 11.50 & 86.50 & 4 & 22.50 \\ 0.45 & 0 & -4.09 & 8.91 & -0.82 \\ 0.18 & 1 & 8.36 & 0.36 & 3.27 \\ 0 & 1.25 & 14.75 & 5 & 2.75 \\ 0.18 & 0 & -9.82 & 0.18 & -6.36 \end{bmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ ----- \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{u} . \quad (3.26)$$

The eigenvalues of the matrix A corresponding to (3.26) are

$$\lambda_{1,2} = 0.76 \pm j \ 1.83, \ \lambda_3 = 11,54, \ \lambda_4 = -3.89, \ \lambda_5 = -1.15$$
, (3.27)

and the system is unstable.

To stabilize the system (3.26), we start with its input-decentralized representation (3.2) given as

$$\dot{\mathbf{x}}_{1} = \begin{bmatrix} 1 & 11.50 & 86.50 \\ 0.45 & 0 & -4.09 \\ 0.18 & 1 & 8.36 \end{bmatrix} \mathbf{x}_{1} + \begin{bmatrix} 4 & 22.50 \\ 8.91 & -0.82 \\ 0.36 & 3.27 \end{bmatrix} \mathbf{x}_{2} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \mathbf{u}_{1}$$
$$\dot{\mathbf{x}}_{2} = \begin{bmatrix} 5 & 2.75 \\ 0.18 & -6.36 \end{bmatrix} \mathbf{x}_{2} + \begin{bmatrix} 0 & 1.25 & 14.75 \\ 0.18 & 0 & -9.82 \end{bmatrix} \mathbf{x}_{1} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}_{2} . \quad (3.28)$$

and transform each subsystem into its comparison form [13] to get

$$\dot{\mathbf{x}}_{1}^{C} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8.86 & 8.50 & 9.36 \end{bmatrix} \mathbf{x}_{1}^{C} + \begin{bmatrix} 3.20 & 1.98 \\ -14.72 & 0.49 \\ -7.92 & 36.01 \end{bmatrix} \mathbf{x}_{2}^{C} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}_{1}$$
$$\dot{\mathbf{x}}_{2}^{C} = \begin{bmatrix} 0 & 1 \\ 32.32 & -1.36 \end{bmatrix} \mathbf{x}_{2}^{C} + \begin{bmatrix} 1.69 & 1.26 & 0.08 \\ -7.52 & -5.23 & 0.49 \end{bmatrix} \mathbf{x}_{1}^{C} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}_{2} \quad (3.29)$$

The transformation into the comparison form is of no conceptual significance, and is performed on the subsystem level for two practical reasons. First, it is convenient for subsystem stabilization by pole-assignment applying the state feedback and, secondly, the diagonal form (3.17) with no complex roots, can be obtained from the companion form (3.29) using the Vandermonde matrix T_i in (3.10) where x_i is replaced by x_i^c .

Now, by using the local feedback law (3.5) and vectors

$$k_1^T = (1791.14, 458.50, 46.36)$$

 $k_2^T = (33.82, 1.14)$, (3.30)

we allocate the eigenvalues of the uncoupled subsystems (3.27) from

$$\lambda_{1}^{1} = 0.63 , \qquad \lambda_{1}^{2} = 5.04$$

$$\lambda_{2}^{1} = -1.39 , \qquad \lambda_{2}^{2} = -6.41$$

$$\lambda_{3}^{1} = 10.12 , \qquad (3.31)$$

to

$$\lambda_{1}^{1} = -10 , \qquad \lambda_{1}^{2} = -1 \lambda_{2}^{1} = -12 , \qquad \lambda_{2}^{2} = -1.5 \lambda_{3}^{1} = -15 . \qquad (3.32)$$

After the local stabilization, the interconnected subsystems have the quasidiagonal form

$$\dot{\tilde{x}}_{1} = \begin{bmatrix} -10 & 0 & 0 \\ 0 & -12 & 0 \\ 0 & 0 & -15 \end{bmatrix} \tilde{x}_{1} + \begin{bmatrix} -23.52 & -43.72 \\ 40.23 & 68.97 \\ -15.49 & -24.96 \end{bmatrix} \tilde{x}_{2} + \begin{bmatrix} 0.1 \\ -0.17 \\ 0.07 \end{bmatrix} u_{1}^{g}$$
$$\dot{\tilde{x}}_{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1.5 \end{bmatrix} \tilde{x}_{2} + \begin{bmatrix} 179.95 & 247.53 & 367.40 \\ -182.58 & -249.03 & -365.95 \end{bmatrix} \tilde{x}_{1} + \begin{bmatrix} 2 \\ -2 \end{bmatrix} u_{2}^{g}, (3.33)$$

which is not identical to (3.17). For the moment, we did not make use of the global control u_1^g , u_2^g in (3.33). In order to demonstrate the effect of the global controllers, we set $\tilde{k}_{12} = \tilde{k}_{21} = 0$.

From (3.9) and (3.32), we have $\pi_1 = 10$, $\pi_2 = 1$. Using (3.20) and (3.33) we compute $\tilde{\xi}_{12} = 98.51$, $\tilde{\xi}_{21} = 676.68$. The aggregate matrix \tilde{W} in (3.18) is obtained as

$$\tilde{W} = \begin{bmatrix} -10 & 98.51 \\ 676.68 & -1 \end{bmatrix},$$
(3.34)

which does not satisfy the conditions (3.21). Therefore, we cannot conclude stability of the overall system.

Let us use now the global control specified by (3.22),

$$\tilde{k}_{12}^{*T} = (-238.95, -415.34)$$

 $\tilde{k}_{21}^{*T} = (90.63, 124.14, 183.33)$ (3.35)

which yields the subsystems (3.33) as

$$\dot{\tilde{x}}_{1} = \begin{bmatrix} -10 & 0 & 0 \\ 0 & -12 & 0 \\ 0 & 0 & -15 \end{bmatrix} \tilde{x}_{1} + \begin{bmatrix} 0.37 & -2.25 \\ 0.40 & -0.25 \\ 0.44 & 2.73 \end{bmatrix} \tilde{x}_{2}$$
$$\dot{\tilde{x}}_{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1.5 \end{bmatrix}, \tilde{x}_{2} + \begin{bmatrix} -1.31 & -0.75 & 0.72 \\ -1.31 & -0.75 & 0.72 \end{bmatrix} \tilde{x}_{1}, \quad (3.36)$$

and the aggregate matrix

$$\tilde{W}^{*} = \begin{bmatrix} -10 & 3.55 \\ 2.37 & -1 \end{bmatrix}, \qquad (3.37)$$

which satisfies the conditions (3.21). Therefore, by theorem 1 the system (3.28) is stabilized by the control law (3.24) determined by the gains (3.30)

and (3.35). The eigenvalues of the overall closed-loop system

corresponding to (3.36), are

 $\lambda_{1,2} = -1.03 \pm j0.16, \lambda_3 = -10.27, \lambda_4 = -11.99, \lambda_5 = -15.17,$ (3.39)

which have negative real parts.

It is also interesting to note that an upper estimate of the degree π of exponential stability of the system (3.1) is provided by the aggregate matrix \tilde{W}^* since, in general $\pi \leq \min_i \pi_i$. In other words, the degree of exponential stability of the overall system π stabilized by the proposed method, is smaller than the degree of exponential stability of each decoupled subsystem.

3.3 Local Stabilization

In this section, we consider a class of linear input-decentralized largescale systems which can always be stabilized by only local feedback control applied around each subsystem. This class of systems is characterized by the comparison form of the subsystem matrices and the lower diagonal form of the interconnection matrices.

Let us consider again the system

$$\dot{x}_{i} = A_{i}x_{i} + \sum_{\substack{j=1\\j\neq i}}^{S} A_{ij}x_{j} + b_{i}u_{i}, i = 1, 2, ..., s$$
 (3.2)

where the $n_i \times n_i$ matrix A_i and the n_i vector b_i are

$$A_{i} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_{1}^{i} & -a_{2}^{i} & \cdots & -a_{n_{1}}^{i} \end{bmatrix}, \quad b_{i} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$(3.40)$$

and the $n_i \times n_j$ matrices $A_{ij} = (a_{pq}^{ij})$ are such that

$$a_{pq}^{jj} = 0$$
, $p < q$ (3.41)

where $p = 1, 2, ..., n_{j}$ and $q = 1, 2, ..., n_{j}$.

In order to stabilize system (3.2) characterized by (3.40) and (3.41), we apply the local control

$$u_{i}^{\ell} = -k_{i}^{T}x_{i}, \qquad (3.5)$$

and get (3.2) as

$$\dot{x}_{i} = (A_{i} - b_{i}k_{i}^{T})x_{i} + \sum_{\substack{j=1 \ j \neq i}}^{S} A_{ij}x_{j}, \quad i = 1, 2, ..., s.$$
 (3.42)

Gain vectors k_i are chosen so that each matrix $A_i - b_i k_i^T$ has a set L_i of distinct real eigenvalues λ_p^i defined by

$$L_{i} = \{\lambda_{p}^{i}: \lambda_{p}^{i} = -\alpha \sigma_{p}^{i}; \alpha \ge 1, \sigma_{p}^{i} > 0, p = 1, 2, ..., n_{i}\}$$

$$i = 1, 2, ..., s. (3.43)$$

The positive constant α is to be determined, so that the overall system (3.2) is stabilized.

Following the development in Section 3.1, we transform (3.42) into

$$\tilde{x}_{i} = \Lambda_{i} \tilde{x}_{i} + \sum_{\substack{j=1\\ j\neq i}}^{S} \tilde{A}_{ij} \tilde{x}_{j}, i = 1, 2, ..., s$$
 (3.44)

where the transformation (3.10) is used to get

$$\Lambda_{i} = T_{i}^{1} (A_{i} - b_{i} k_{i}^{T}) T_{i} , \quad \tilde{A}_{ij} = T_{i}^{1} A_{ij} T_{j} . \quad (3.45)$$

with Λ_i in the quasidiagonal form

$$\Lambda_{i} = \text{diag} \{-\alpha \sigma_{1}^{i}, -\alpha \sigma_{2}^{i}, \dots, -\alpha \sigma_{n_{i}}^{n}\}$$
(3.46)

In this case, the transformation matrix T_i can be factorized as

$$T_{i} = R_{i}\hat{T}_{i}$$
, (3.47)

where

$$R_{i} = diag \{1, \alpha, ..., \alpha^{i}\},$$
 (3.48)

and \hat{T}_i is the Vandermonde matrix

$$\hat{\mathbf{T}}_{i} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ -\sigma_{1}^{i} & -\sigma_{2}^{i} & \dots & -\sigma_{n_{i}}^{i} \\ \vdots & \vdots & & \vdots \\ (-\sigma_{1}^{i})^{n_{i}-1} & (-\sigma_{2}^{i})^{n_{i}-1} & \dots & (-\sigma_{n_{i}}^{i})^{n_{i}-1} \end{bmatrix}$$
(3.49)

For the moment, we consider the free uncoupled subsystems

$$\dot{\tilde{x}}_{i} = \Lambda_{i}\tilde{\tilde{x}}_{i}$$
, $i = 1, 2, ..., s$. (3.50)

Each subsystem (3.50) is stabilized with a degree of exponential stability

$$\pi_{i} = \alpha \hat{\pi}_{i} \tag{3.51}$$

where

$$\hat{\pi}_{i} = \min_{p} \sigma_{p}^{i} . \tag{3.52}$$

Now, we choose again the Liapunov function v: $R^{n_{i}} + R_{i_{j}}$,

$$v_{i}(\tilde{x}_{i}) = (\tilde{x}_{i}^{T}\tilde{H}_{i}\tilde{x}_{i})^{l_{2}}$$
 (3.13)

where

$$\Lambda_{\hat{i}}^{T}\tilde{H}_{\hat{i}} + \tilde{H}_{\hat{i}}\Lambda_{\hat{i}} = -\tilde{G}_{\hat{i}}$$
(3.14)

and

$$\tilde{G}_{i} = 2\theta_{i} \operatorname{diag} \{\alpha \sigma_{1}^{i}, \alpha \sigma_{2}^{i}, \dots, \alpha \sigma_{n_{1}}^{i}\}, \quad \tilde{H}_{i} = \theta_{i} I_{i} \quad (3.53)$$

The aggregate system

$$\dot{v} \leq \tilde{W}v$$
 (3.18)

is formed as in Section 3.1 computing the elements \tilde{w}_{ij} of the aggregate matrix \tilde{W} with

$$\tilde{\xi}_{ij} = \lambda_{M}^{l_{2}} (\tilde{A}_{ij}^{T} \tilde{A}_{ij})$$
(3.54)

and

$$\tilde{A}_{ij} = \hat{T}_{i}^{-1} R_{i}^{-1} A_{ij} R_{j} \hat{T}_{j} .$$
(3.55)

Our ability to stabilize the system depends ultimately on satisfying the Sevastyanov-Kotelyanskii conditions (3.21) by the aggregate matrix $\tilde{W} = (\tilde{w}_{ij})$ defined by

$$\tilde{w}_{ij} = -\delta_{ij} \tilde{u}_{i} + (1 - \delta_{ij}) \tilde{\xi}_{ij} .$$
(3.19)

Since the matrix \tilde{W} has nonnegative off-diagonal elements, it is a well-known fact [16] that the conditions (3.21) are equivalent to the quasidominant diagonal property of \tilde{W} ,

$$d_{j}|\tilde{w}_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{s} d_{i}|\tilde{w}_{ij}|, j = 1, 2, ..., s$$
(3.56)

where d_i 's are positive numbers. Apparently, we can make the matrix \tilde{W} sat-

isfy conditions (3.20), if we can increase the diagonal elements \tilde{w}_{ii} sufficiently large while keeping the off-diagonal elements \tilde{w}_{ij} bounded. This is exactly the case with the class of systems under consideration. We notice that the diagonal elements (i = j),

$$\tilde{w}_{ii} = -\alpha \hat{\pi}_{i}, \qquad (3.57)$$

depend linearily on the adjustable parameter α . The off-diagonal elements $(i \neq j)$,

$$\tilde{w}_{ij} = \tilde{\xi}_{ij}(\alpha) , \qquad (3.58)$$

are bounded functions of α . To see this, we note that the elements $\alpha^{q-p} a_{pq}^{ij}$ of the matrices $R_i^{-1}A_{ij}R_j$ are either zero for p < q due to (3.41), or they are bounded for $p \ge q$ due to nonpositive powers of α . We have

$$\lim_{x \to +\infty} R_i^{-1} A_i R_j = D_{ij}, \qquad (3.59)$$

where the matrix $D_{ij} = (d_{pq}^{ij})$ is defined by: $d_{pq}^{ij} = a_{pq}^{ij}$, when p = q, and $d_{pq}^{ij} = 0$, when $p \neq q$. From (3.55) and (3.59), we define $\bar{D}_{ij} = \hat{T}_{i}^{-1}D_{ij}\hat{T}_{j}$ and conclude from

$$\lim_{\alpha \to +\infty} \tilde{\xi}_{ij}(\alpha) = \lambda_{M}^{j}(\tilde{D}_{ij}^{T}\tilde{D}_{ij}), \qquad (3.60)$$

that the off-diagonal elements \tilde{w}_{ij} are bounded in α .

Therefore, for the selected class of dynamic systems we can always choose a sufficiently large parameter α , and use local linear feedback control to stabilize the systems. From (3.43), we see that by increasing the value of α , we move the subsystem eigenvalues away from the origin, thus, increasing the degree of exponential stability of each subsystem. This, however, requires an increase of the local feedback gains in the course of stabilization.

3.4. An Illustrative Example

Let us illustrate the local stabilization procedure using the following example:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 4 \\ -2 & -1 & -1 & 2 & 1 \\ 4 & 0 & 0 & 0 & 1 \\ 5 & 6 & 0 & -3 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u} .$$
(3.61)

4 ...

The eigenvalues of the system matrix A corresponding to (3.61), are

$$\lambda_1 = 1.7244, \lambda_2 = 5.1042, \lambda_3 = -1.2633, \lambda_{4,5} = -4.2826 \pm j1.7755$$
(3.62)

and the system (3.61) is unstable.

The system (3.61) can be decomposed as

$$\dot{x}_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -1 & -1 \end{bmatrix} x_{1} + \begin{bmatrix} 2 & 0 \\ 3 & 4 \\ 2 & 1 \end{bmatrix} x_{2} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_{1}$$
(3.63a)

$$\dot{\mathbf{x}}_{2} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix} \mathbf{x}_{2} + \begin{bmatrix} 4 & 0 & 0 \\ 5 & 6 & 0 \end{bmatrix} \mathbf{x}_{1} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}_{2}$$
(3.63b)

The eigenvalues of the subsystem (3.63a) are moved from

$$\lambda_1^1 = -1.3532, \ \lambda_{2,3}^1 = 0.1766 \pm j1.2028$$
 (3.64)

to the new locations

$$\lambda_1^1 = -\sigma_1^1 = -1, \ \lambda_2^1 = -\sigma_2^1 = -2, \ \lambda_3^1 = -\sigma_3^1 = -3$$
 (3.65)

applying the local control (3.5) and

$$k_1^{\rm T} = (4, 10, 5)$$
 (3.66)

Similarly, the eigenvalues of the subsystem (3.63b) are changed from

$$\lambda_{1,2}^2 = -1 + j1.4142 , \qquad (3.67)$$

to

$$\lambda_1^2 = -\sigma_1^2 = -1, \ \lambda_2^2 = -\sigma_2^2 = -2 \tag{3.68}$$

applying the local control (3.5) and

$$k_2^{\rm T} = (-1, 1)$$
 (3.69)

Referring to (3.46), we see that in (3.65) and (3.68), the parameter $\alpha = 1$. We construct the transformation matrices R_1 , R_2 , \hat{T}_1 , \hat{T}_2 for $\alpha > 1$ as

$$R_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^{2} \end{bmatrix}, \quad \hat{T}_{1} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{bmatrix}$$
$$R_{2} = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}, \quad \hat{T}_{2} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}. \quad (3.70)$$

The numbers π_1 , π_2 are both set to one. Then, the aggregation matrix of (3.18) defined by (3.57) is given as

$$\tilde{W} = \begin{bmatrix} -\alpha & \tilde{\xi}_{12} \\ \tilde{\xi}_{21} & -\alpha \end{bmatrix}, \qquad (3.71)$$

which for $\alpha = 1$ takes the form

$$\tilde{W} = \begin{bmatrix} -1 & 17.0011 \\ 12.2936 & -1 \end{bmatrix}$$
(3.72)

where

$$\tilde{\xi}_{12} = \lambda_M^{\frac{1}{2}} (\hat{T}_1^{-1} A_{12} \hat{T}_2) , \tilde{\xi}_{21} = \lambda_M^{\frac{1}{2}} (\hat{T}_2^{-1} A_{21} \hat{T}_1)$$

27

and A_{12} , A_{21} are specified in (3.63).

It is obvious that the matrix \tilde{W} in (3.72) does not satisfy the inequalities (3.21).

From (3,63) and (3.59), we find that

$$D_{12} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \\ 0 & 0 \end{bmatrix}, \quad D_{21} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}$$
(3.73)

and for $\alpha > 15$, we have $\xi_{12} \approx 32.55$, $\xi_{21} \approx 18.98$. Thus, for $\alpha = 25$, we have the aggregate matrix

$$\tilde{W} = \begin{bmatrix} -25 & 32.55 \\ 18.98 & -25 \end{bmatrix}, \qquad (3.75)$$

which satisfies the conditions (3.21), and the overall system is stable. The corresponding eigenvalues of the overall closed-loop system are

$$\lambda_1 = -36.0364, \lambda_{2,3} = -25.9599 \pm j3.5219, \lambda_{4,5} = -68.5213 \pm j6.0474.$$
(3.76)

For the chosen value of $\alpha = 25$, we have the eigenvalue sets L_1 and L_2 defined in (3.43) given as

$$L_{1} = \{-\alpha\sigma_{1}^{1}, -\alpha\sigma_{2}^{1}, -\alpha\sigma_{3}^{1}\} = \{-25, -50, -75\}$$

$$L_{2} = \{-\alpha\sigma_{1}^{2}, -\alpha\sigma_{2}^{2}\} = \{-25, -50\}.$$
(3.77)

The locations of the subsystem eigenvalues specified by L_1 , L_2 of (3.77), are achieved by the local state-variable feedback defined by (3.5) and

$$k_1^T = (93748, 6874, 149)$$

 $k_2^T = (1247, 73)$ (3.78)

The gains in (3.78) are relatively high which is due to the use of local controllers only. The gains can be considerably reduced by applying global controllers in the multilevel scheme outlined in Section 3.1 and illustrated in Section 3.2.

3.5 Application to LST

In this section, we design a control system for the nonlinear model of LST described in Section 2, by using only the local linear controllers as proposed in Section 3.3. This necessitates an application of the results obtained by Weissenberger [17] which are concerned with the finite regions of stability of large-scale systems rather than their global stability properties.

We notice that the LST model (2.20) belongs to a general class of systems described by the equations

$$\dot{x}_{i} = A_{i}x_{i} + a_{i}x_{\ell}^{T} \sum_{\substack{j=1\\ j\neq i,\ell}}^{S} A_{ij}x_{j} + b_{i}u_{i}$$
$$i = 1, 2, ... s; \ell = \begin{cases} 1, & i = s \\ i+1, & i \neq s \end{cases}$$
(3.79)

where A_i are constant $n_i \times n_i$ matrices, A_{ij} are $n_{\ell} \times n_j$ constant matrices, a_i and b_i are n_i constant vectors.

To stabilize the system (3.79), we choose the local control

$$u_i = -k_i^T x_i, i = 1, 2, ..., s$$
 (3.80)

so that each uncoupled subsystem

$$\dot{x}_{i} = (A_{i} - b_{i}k_{i}^{T})x_{i}$$
, $i = 1, 2, ..., s$ (3.81)

has a prescribed set of distinct eigenvalues

$$L_{i} = \{-\sigma_{1}^{i} \pm j\omega_{1}^{i}, \dots, \sigma_{p}^{i} \pm j\omega_{p}^{i}, -\sigma_{p+1}^{i}, \dots, -\sigma_{n_{i}}^{i}; \\ \sigma_{q}^{i} > 0; p, q = 1, 2, \dots, n_{i}\}, i = 1, 2, \dots, s. (3.82)$$

By using the transformation (3.10), the closed-loop system corresponding

to (3.79) is obtained as

$$\dot{\tilde{x}}_{i} = \Lambda_{i}\tilde{x}_{i} + \tilde{a}_{i}\tilde{x}_{\ell}^{T} \sum_{\substack{j=1\\ j\neq i,\ell \\ i = 1, 2, ..., s, \ell = }}^{s} \tilde{A}_{ij}\tilde{x}_{j},$$

$$i = 1, 2, ..., s, \ell = \begin{cases} 1, i = s \\ i + 1, i \neq s, \end{cases}$$
(3.83)

where $\Lambda_i = T_i^{-1}(A_i - b_i k_i^T) T_i$ has the quasidiagonal form (3.12), $\tilde{A}_{ij} = T_k^T A_{ij} T_j$, and $\tilde{a}_i = T_i^{-1} a_i$.

We define the interaction function h: $T \times R^n \to R^n$ among the subsystems of (3.83) as

$$h_{i}(\tilde{x}) = \tilde{a}_{i}\tilde{x}_{\ell}^{T} \sum_{\substack{j=1\\ j\neq i, \ell}}^{S} A_{ij}\tilde{x}_{j}.$$
(3.84)

The interactions $h_i(\tilde{x})$ can be bounded as

$$||\mathbf{h}_{j}(\tilde{\mathbf{x}})|| \leq \mathbf{v}_{0\ell} \sum_{\substack{j=1\\j\neq i,\ell}}^{s} \boldsymbol{\xi}_{ij}||\tilde{\mathbf{x}}_{j}||, \quad \forall \tilde{\mathbf{x}} \in \mathbf{r}$$
(3.85)

on the region

$$\Gamma = \{ \tilde{x} \in \mathbb{R}^{n} : ||\tilde{x}_{i}|| < v_{0i}, i = 1, 2, ..., s \}, \qquad (3.86)$$

where v_{0i} are positive yet unspecified constants, and $\tilde{\xi}_{ij} = (\tilde{a}_i^T \tilde{a}_i)^{\frac{1}{2}}$ $\lambda_M^{\frac{1}{2}}(\tilde{A}_{ij}^T \tilde{A}_{ij})$.

The aggregate $s \times s$ matrix $\tilde{W} = (\tilde{w}_{ij})$ which corresponds to the system (3.83) and constraints (3.85), is obtained following reference [17],

$$\tilde{W} = D\bar{W} \tag{3.87}$$

where

$$D = \text{diag} \{v_{02}, v_{03}, \dots, v_{0s}, v_{0L}\}$$
(3.88)

and the $s \times s$ matrix $\tilde{W} = (\tilde{w}_{ij})$ is defined by

$$\tilde{w}_{ij} = -\delta_{ij} v_{0l}^{-1} \pi_{i} + (1 - \delta_{ij}) \tilde{\epsilon}_{ij}$$
(3.89)

with π_i defined in (3.9).

From (3.87), it follows that \tilde{W} satisfies inequalities (3.21) if and only if \tilde{W} does. Inequalities (3.21) applied to \tilde{W} determine the constants $v_{01}, v_{02}, \ldots, v_{0s}$ in (3.85). It is possible to calculate these constants recursively. To see this, we note that the k-th leading principal $k \times k$ submatrix \tilde{W}_k can be expressed as

$$\vec{W}_{k} = \begin{bmatrix} \vec{W}_{k-1} & f_{k} \\ -f_{k} & \bar{f}_{k} \\ -f_{k-1} & f_{k} \\ -f_{k} & \bar{f}_{k} \\ -f_{k-1} & f_{k} \\ 0 & \bar{f}_{k} & \bar{f}_{k} & \bar{f}_{k-1} \\ -f_{k} & f_{k} \\ -f_{k} & f_$$

Therefore, the k-th leading principle minor of \bar{W} is

det
$$\bar{W}_{k} = \det \bar{W}_{k-1} (\bar{w}_{kk} - g_{k}^{T} \bar{W}_{k-1} f_{k})$$
 (3.91)

For the inequalities (3.91) to be satisfied by \bar{W} , it is necessary and sufficient that

$$-\bar{w}_{kk} + g_k^T \bar{w}_{k-1} f_k > 0$$
, $k = 1, 2, ..., s$. (3.92)

From (3.89), we have

$$f_{k}^{T} = (\tilde{\xi}_{1k}, \tilde{\xi}_{2k}, \dots, \tilde{\xi}_{sk}), g_{k}^{T} = (\tilde{\xi}_{k1}, \tilde{\xi}_{k2}, \dots, \tilde{\xi}_{ks})$$
 (3.93)

and from (3.89) and (3.92), we get the constants v_{0k} as

$$v_{0k} < -\pi_k (g_k^T \bar{w}_{k-1}^{-1} f_k)^{-1}, \ k = \begin{cases} 1, k = s \\ k+1, k \neq s \end{cases}$$
 (3.94)

Once the constants $v_{0,k}$ are calculated by (3.94), the region $\tilde{\Omega}$ of (3.86) is determined. Now, it remains to imbed a Liapunov function V: $\mathbb{R}^n \rightarrow \mathbb{R}_+$ inside the region Ω and determine a region of stability [17]

$$\tilde{\Omega} = \{ \tilde{\mathbf{x}} \in \mathbb{R}^{n} \colon \mathbb{V}(\tilde{\mathbf{x}}) < \gamma \}$$
(3.95)

In (3.95), we choose

$$V(\tilde{x}) = \sum_{i=1}^{s} d_{i} |v_{i}|,$$
 (3.96)

where d_i are positive numbers, and $v_i = v_i(\tilde{x}_i) = ||\tilde{x}_i||$. Following [17], we calculate the positive constant γ in (3.95) using (3.94) and

$$\gamma = \min_{i} d_{i} v_{0i}, \quad i = 1, 2, ..., s$$
 (3.97)

where the positive vector $d^{T} = (d_{1}, d_{2}, \dots, d_{s})$ is computed by

$$d^{\mathrm{T}} = -c^{\mathrm{T}} \widetilde{W}^{-1} , \qquad (3.98)$$

where c is any positive s vector (c > 0).

Since $\tilde{x}_i = T_i^{-1}x_i$, and $||\tilde{x}_i|| \le ||T_i^{-1}|| ||x_i||$, from (3.96) and (3.97), we get finally the region of stability Ω in the original state space, which is

$$\Omega = \{ x \in \mathbb{R}^{n} : \sum_{i=1}^{S} d_{i} ||T_{i}^{-1}|| ||x_{i}|| < \gamma \} .$$
(3.99)

Now, we consider the nonlinear model of the LST given in Section 2, which belongs to the class of systems described by (2.79) with

$$A_{i} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, A_{ij} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, a_{i} = \begin{bmatrix} 0 \\ \neg \alpha_{i} \end{bmatrix}, b_{i} = \begin{bmatrix} 0 \\ \beta_{i} \end{bmatrix},$$
$$i = 1, 2, 3. \qquad (3.100)$$

Applying the control law

$$w_i = -k_i^T x_i$$
, $i = 1, 2, 3$ (3.101)

where

$$k_{i}^{T} = \beta_{i}^{-1} \bar{k}_{i}^{T}$$
, $i = 1, 2, 3$ (3.102)

and $\bar{k}_i^T = (\bar{k}_{i1}, \bar{k}_{i2})$, we obtain the closed-loop uncoupled subsystems (3.81) with

$$A_{i} - b_{i} k_{i}^{T} = \begin{bmatrix} 0 & 1 \\ -\bar{k}_{i1} & -\bar{k}_{i2} \end{bmatrix}, \quad i = 1, 2, 3. \quad (3.103)$$

The gains \tilde{k}_{i} are chosen so that each subsystem has a set of eigenvalues

$$L_{i} = \{-\sigma_{1}^{i}, -\sigma_{2}^{i}\}, i = 1, 2, 3.$$
 (3.104)

To get the transformed system corresponding to (3.83), we use the transformation matrix

$$T_{i} = \begin{bmatrix} 1 & 1 \\ -\sigma_{1}^{i} & -\sigma_{2}^{i} \end{bmatrix}, \quad i = 1, 2, 3$$
(3.105)

and get

$$A_{i} = \begin{bmatrix} -\sigma_{1}^{i} & 0 \\ 0 & -\sigma_{2}^{i} \end{bmatrix}, \quad h_{i}(\tilde{x}_{i}) = \tilde{a}_{i}\tilde{x}_{\ell}^{T}\tilde{A}_{ij}\tilde{x}_{j}$$

i, j = 1, 2, 3, i \neq j; $\ell = \begin{cases} i+1, i\neq 3 \\ 1, i=3 \end{cases}$ (3.106)

To compute $\tilde{\xi}_{ij}$, we choose $\sigma_1^i = \sigma_1$, $\sigma_2^i = \sigma_2$, i = 1, 2, 3, and calculate $||A_{ij}|| = (\sigma_1)^2 + (\sigma_2)^2$, $(\tilde{a}_1^T \tilde{a}_1)^{l_2} = \sqrt{2} ||\alpha_1| (|\sigma_1 - \sigma_2|)^{-1}$. We can minimize the numbers $\tilde{\xi}_{ij}$ with respect to the distance $\rho = \sigma_2 - \sigma_1$ between the two subsystem eigenvalues. This yields

$$\tilde{\xi}_{ij} = \sqrt{2} |\alpha_i| \rho^{-1} [(\sigma_1)^2 + (\sigma_1 + \rho)^2], \qquad (3.107)$$
and we get the minimal values $\tilde{\xi}_{ij}^{m}$ for $\tilde{\xi}_{ij}$ as

$$\xi_{ij}^{m} = (4 + 2\sqrt{2}) |\alpha_{i}|\sigma_{1},$$
 (3.108)

which is obtained for $\rho = \sqrt{2} \sigma_1$.

The corresponding matrix \overline{W} in (3.87), is

$$\bar{W} = \begin{bmatrix} \frac{\sigma_1}{v_{02}} & 0 & \tilde{\xi}_{13} \\ \tilde{\xi}_{21} & -\frac{\sigma_1}{v_{03}} & 0 \\ 0 & \tilde{\xi}_{32} & -\frac{\sigma_1}{v_{01}} \end{bmatrix}$$
(3.109)

From (3.94) and (3.109), we get

$$v_{01} v_{02} v_{03} < \frac{(\sigma_1)^3}{\tilde{\xi}_{13} \tilde{\xi}_{21} \tilde{\xi}_{32}}$$
 (3.110)

Choosing $v_{01} = v_{02} = v_{03} = v_0$, and using (3.108) and (3.110), we compute $v_0 < 0.584$. Selecting $v_0 = 0.574$, $\sigma_1 = 10$, and choosing $c = (1, 1, 1)^T$, we further compute from (3.98) the vector

$$d = (4.8, 13.7614, 4.2963)^T$$
 (3.111)

From (3.97), we calculate

$$\gamma = 2.4663$$
, (3.112)

and the region $\tilde{\Omega}$ in the transformed state space as

 $\vec{n} = \{\vec{x} \in \mathbb{R}^{n}: 4.8 | |\vec{x}_{1}| + 13.7614 | |\vec{x}_{2}| + 4.2963 | |\vec{x}_{3}| | < 2.4663 \}.$ (3.113)

In the original space, the stability region Ω is finally obtained as

$$\Omega = \{ x \in \mathbb{R}^{n} : 4.8 | |x_{1}| | + 13.7614 | |x_{2}| | + 4.2963 | |x_{3}| | < 1.3331 \}$$
(3.114)

where we used $||T_{i}^{-1}|| = 1.8500$, i = 1, 2, 3.

The feedback gains that yield the region Ω are computed from (3.102) and

$$\bar{k}_{i}^{T} = (\sigma_{1}\sigma_{2}, \sigma_{1} + \sigma_{2})^{T} = (141.4213, 34.1421)^{T},$$

 $i = 1, 2, 3$ (3.115)

as

$$k_1^T = (1.6517, 0.3988)^T$$

 $k_2^T = (10.3303, 2.4939)^T$
 $k_3^T = (10.7056, 2.5846)^T$. (3.116)

This completes the design of the LST control system.

4. OPTIMAL CONTROL

and the state of t

In this section we will describe the application of a recently developed multilevel optimal control scheme [9] for the decentralized regulation of the LST. Such multilevel control schemes are quite efficient in the analysis of large-scale systems that may be decomposed into a number of interconnected subsystems of smaller dimensions. Since our model for the LST, described in Section 2, is a nonlinear interconnected system composed of three linear subsystems describing the motions of the spacecraft along the three axes, generation of the necessary control scheme basing the analysis on the subsystems is highly desirable in view of the complexities involved in the optimization of a nonlinear system of a large dimension. In the sequel, we will describe the general theory for the multilevel optimal control of interconnected systems, which will be followed by the specific application to the LST.

4.1. Problem Formulation

Let us consider a continuous dynamic system described by the differential equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \tag{4.1}$$

where $x(t) \in R^n$ is the state and $u(t) \in R^m$ is the control function of the system at time $t \in T$. The function $f: R^n \times R^m \to R^n$ is continuous on a bounded region $\mathcal{D} \subseteq R^n$ and is locally Lipschitzian with respect to x in \mathcal{D} so that for every fixed control function u(t), a unique solution $x(t; t_0, x_0)$ exists for all initial conditions $(t_0, x_0) \in R$ \mathcal{D} and all $t \in T$, T being an interval $[t_0, \infty)$ of R.

We assume that system (4.1) can be decomposed into s interconnected subsystems

$$\dot{x}_{i} = A_{i}x_{i} + B_{i}u_{i} + h_{i}(x)$$
, $i = 1, 2, ..., s$. (4.2)

36

where, $x_i \in R^{n_i}$ is the state of the i-th subsystem so that

$$R^{n} = R^{n} \times R^{n} \times \dots \times R^{n} ;$$

 $u_i \in R^{m_i}$ is the control function of the i-th subsystem so that

$$R^{m} = R^{m_{1}} \times R^{m_{2}} \times \ldots \times R^{m_{s}};$$

 $\begin{array}{ccc} & & & & & & & & & \\ A_{\underline{i}} \in \mathcal{R}^{\underline{i}} & & & & \\ A_{\underline{i}} \in \mathcal{R}^{\underline{i}} & & & & \\ \end{array} \quad \text{and} \quad B_{\underline{i}} \in \mathcal{R}^{\underline{n}} \stackrel{\times & n_{\underline{i}}}{\longrightarrow} \quad \text{are constant matrices; and} \quad h_{\underline{i}} \colon \mathcal{R}^{\underline{n}} \rightarrow \mathcal{R}^{\underline{n}} \stackrel{n_{\underline{i}}}{\longrightarrow} \\ \text{is the function which represents the interconnection of the i-th subsystem inside the overall system.} \end{array}$

The multilevel control scheme [9] used for the optimization of system (4.2) can be developed by considering the control function $u_i(t)$ as consisting of two parts, the local control $u_i^{\ell}(t)$ and the global control $u_i^{g}(t)$,

$$u_{i}(t) = u_{i}^{\ell}(t) + u_{i}^{g}(t)$$
 (4.3)

The local control $u_i^{\ell}(t)$ is chosen as a linear control law

$$u_{i}^{\ell}(t) = -K_{i}^{\ell}x_{i}(t)$$
 (4.4)

to optimize isolated subsystems, and the global control law $u_i^g(t)$ is chosen as a suitable function of the state

$$u_{i}^{g}(t) = -K_{i}^{g}(x(t))$$
 (4.5)

to minimize the performance deviation from the optimum due to the presence of interconnections among the subsystems.

With the application of the control (4.3), the equations (4.2) governing the system under consideration take the form,

$$\dot{x}_{i} = A_{i}x_{i} + B_{i}u_{i}^{\ell} + h_{i}(x) + B_{i}u_{i}^{g}, i = 1, 2, ..., s.$$
(4.6)

Since, as described earlier, the global control functions $u_{i}^{g}(t)$ are assigned only the task of reducing the effects of interconnections $h_{i}(x)$ the terms

$$h_{e_i}(x, u_i^g) = h_i(x) + B_i u_i^g$$
, $i = 1, 2, ..., s$, (4.7)

may be regarded as the "effective interconnections" among the s isolated subsystems

$$\dot{x}_{i} = A_{i}x_{i} + B_{i}u_{i}^{k}$$
, $i = 1, 2, ..., s$. (4.8)

We shall assume that all s-pairs (A_i, B_i) are completely controllable, and that with each isolated subsystem (4.8) a quadratic performance index

$$J_{i}(t_{0}, x_{i0}, u_{i}^{2}) = \int_{t_{0}}^{\infty} \{||x_{i}(t)||_{Q_{i}}^{2} + ||u_{i}^{2}(t)||_{R_{i}}^{2}\} dt \qquad (4.9)$$

is associated. In (4.9) $Q_i \in \mathbb{R}^{n_i \times n_i}$ is a symmetric nonnegative definite matrix and $R_i \in \mathbb{R}^{i}$ is a symmetric positive definite matrix.

The local control $u_i^{\&}(t)$ in (4.4) can now be chosen to minimize the performance index $J_i(t_0, x_{i0}, u_i)$ in (4.9). From linear-quadratic regulator theory [18], the optimal control $u_i^{\&*}(t)$ is given by

$$u_{i}^{\ell^{*}}(t) = -K_{i}^{\ell^{*}} x_{i}(t)$$
(4.10)

where

$$K_{i}^{2*} = R_{i}^{-1}B_{i}^{T}P_{i} \qquad (4.11)$$

In (4.11), $P_i \in R^n \stackrel{n_i \times n_i}{i}$ is symmetric and is the positive definite solution of the algebraic Riccati equation

$$P_{i}A_{i} + A_{i}^{T}P_{i} - P_{i}B_{i}R_{i}^{-1}B_{i}^{T}P_{i} + Q_{i} = 0 .$$
 (4.12)

The optimal cost $J_i^*(t_0, x_{i0}) = J_i(t_0, x_{i0}, u_i^{2^*})$ can in this case be calculated

39

1

as

$$J_{i}^{*}(t_{0}, x_{i0}) = ||x_{i0}||_{P_{i}}^{2}$$
 (4.13)

Furthermore, under the assumption that Q_i can be factored as $Q_i = C_i C_i^T$, where $C_i \in \mathbb{R}^{n_i \times n_i}$ such that the pair (A_i, C_i) is completely observable, each closed-loop subsystem

$$\dot{x}_{i} = (A_{i} - B_{i}R_{i}^{-1}B_{i}^{T}P_{i}) x_{i}, i = 1, 2, ..., s,$$
 (4.14)

is globally asymptotically stable.

The controls $u_i^{l^*}(t)$, i = 1, 2, ..., s, will not, in general, be optimal for the composite system (4.6) and will not result in the optimal cost

$$J^{*}(t_{0}, x_{0}) = \sum_{i=1}^{S} J^{*}_{i}(t_{0}, x_{0})$$
(4.15)

unless the effective interconnection functions $h_{e_i}(x, u_i^g) \equiv 0$. When $h_{e_i}(x, u_i^g) \neq 0$, the controls $u_i^{\ell^*}(t)$ produce a value of the performance index for the composite system given by

$$\tilde{J}(t_0, x_0) = \sum_{i=1}^{s} \tilde{J}_i(t_0, x_{i0})$$
 (4.16)

where

$$\tilde{J}_{i}(t_{0}, x_{i0}) = \tilde{J}_{i}(t_{0}, x_{i0}, u_{i}^{\ell^{*}})$$
 (4.16)

It is obvious that

$$\tilde{J}(t_0, x_0) \ge J^*(t_0, x_0) \ \forall (t_0, x_0) \in T \times R^n$$
 (4.17)

and the local control law $u_i^{\ell^*}(t)$ in (4.10) can only be a suboptimal policy for the composite system (4.6), with an index of suboptimality $\epsilon > 0$ defined by the inequality

$$\tilde{J}(t_0, x_0) \leq (1+\epsilon) J^*(t_0, x_0) \forall (t_0, x_0) \in T \times R^n$$
 (4.18)

The suboptimality index ε for the system with the optimal local control,

$$\dot{x}_{i} = (A_{i} - B_{i}R_{i}^{-1}B_{i}^{T}P_{i}) x_{i} + h_{e_{i}}(x, u_{i}^{g}), i = 1, 2, ..., s$$
 (4.19)

depends on the size of the effective interactions $h_{e_{i}}(x, u_{i}^{g})$ and hence is a measure of the performance deterioration due to these.

We can now give a formal definition of this concept.

<u>Definition</u>. The system (4.19) with the optimal local control law (4.10) is said to be suboptimal with the index ε if there exists a number $\varepsilon > 0$ for which inequality (4.18) is satisfied.

As described earlier, the suboptimality index ε is a function of the interactions $h_{e_i}(x, u_i^g)$ and the following problem is of interest:

<u>Problem 1</u>. Establish conditions on $h_{e_i}(x, u_i^g)$ to guarantee a prescribed value of the suboptimality index ε .

It is important to note that in Problem 1, the rate of the global control function $u_1^g(t)$ is ignored as it is taken together with the existing interconnections $h_1(x)$ in the system to yield the effective interconnection function $h_{e_1}(x, u_1^g)$. However, as we shall see later, the solution to Problem 1 indicates a method of choosing the global control $u_1^g(t)$ so as to reduce the size of $h_{e_1}(x, u_1^g)$ and, hence, minimize the suboptimality index ε . In other words, we consider the index $\varepsilon = \varepsilon[||h_e(x, u^g)||]$ where $h_e: R^n \times R^m + R^n$ is $h_e = [h_{e_1}^T, h_{e_2}^T, \dots, h_{e_s}^T]^T$ and $u^g \in R^m$ is $u^g = [(u_1^g)^T, (u_2^g)^T, \dots, (u_e^g)^T]^T$ and solve the following:

Problem 2. Find a control law of the form (4.5) or equivalently,
$$u^{g}(t) = -K^{g}(x(t)) \qquad (4.20)$$

for which

$$\varepsilon^* = \inf \varepsilon \{ [||h_e(x, u^g)||] \} \forall x \in \mathcal{D}$$

$$u^g(t)$$
(4.21)

is attained.

We will now provide the solutions to the above problems.

4.2. Multilevel Optimization

A solution to Problem 1 may be obtained by using the classical Hamilton-Jacobi theory. Since in our optimization procedure, we chose the local control laws (4.10) to optimize the decoupled subsystems, the optimal indices satisfy the corresponding Hamilton-Jacobi equations. When the subsystems are interconnected, the equations are not satisfied by the respective performance indices and the overall system is not optimal. However, a majorization procedure is possible to provide an estimate of the performance deviation from the optimum due to the interactions.

Now, we provide a solution to Problem 1 by the following:

<u>Theorem</u> 4.1. Let there exist nonnegative numbers ξ_{ij} such that the function $h_{e_i}(x, u_i^g)$ in (4.19) satisfy the constraints $||h_{e_i}(x, u_i^g)|| \leq \sum_{j=1}^{S} \xi_{ij} ||x_j||$, $\forall x \in \mathbb{R}^n$, $\forall i = 1, 2, ..., s$ (4.22) and $f_{ij}(w)$

 $\xi \leq \frac{\varepsilon}{1+\varepsilon} \frac{\lambda_{\rm m}(W)}{2\lambda_{\rm M}(P)}$ (4.23)

where $\xi = \sum_{i=1}^{S} \sum_{j=1}^{S} \xi_{ij}$, $P = \text{diag}\{P_1, P_2, \dots, P_s\}$, $W = \text{diag}\{W_1, W_2, \dots, W_s\}$, P_i being defined by (4.12) and $W_i = Q_i + P_i B_i R_i^{-1} B_i^T P_i$, and $\lambda_M(P)$ and $\lambda_m(W)$ are the maximum and minimum eigenvalues of P and W respectively. Then the composite system (4.19) is

(i) suboptimal with index ϵ

41

ł.

and

(ii) globally asymptotically stable.

<u>Proof.</u> Since the decoupled subsystems (4.14) are optimal, the functions $v_i(x_i) = ||x_i||_{P_i}^2$, i = 1, 2, ..., s, satisfy individually the Hamilton-Jacobi equations

$$[\text{grad } v_{i}(x_{i})]^{T}[(A_{i} - B_{i}K_{i}^{\ell^{*}})x_{i}] + ||x_{i}||_{Q_{i}}^{2} + ||K_{i}^{\ell^{*}}x_{i}||_{R_{i}}^{2} = 0 ,$$
$$\forall x_{i} \in \mathbb{R}^{n_{i}} , i = 1, 2, ..., s . \qquad (4.24)$$

Now, the time-derivative $\dot{v}_i(x_i)$ can be calculated along the trajectories $\tilde{x}_i(t)$ of the composite system (4.19) as

$$\dot{v}_{i}(\tilde{x}_{i}) = [grad v_{i}(\tilde{x}_{i})]^{T} \{ (A_{i} - B_{i}R_{i}^{-1}B_{i}^{T}P_{i}) \tilde{x}_{i} + h_{e_{i}}(\tilde{x}, u_{i}^{g}) \}$$
(4.25)

where $\mathbf{\tilde{x}} = [\mathbf{\tilde{x}}_1^T, \mathbf{\tilde{x}}_2^T, \dots, \mathbf{\tilde{x}}_s^T]^T$.

Substitution of (4.25) in (4.24) and rearrangement of terms gives

$$||\tilde{x}_{i}||_{W_{i}}^{2} = -(1+\varepsilon) \dot{v}_{i}(x_{i}) + (1+\varepsilon) [\text{grad } v_{i}(\tilde{x}_{i})]^{T} h_{e_{i}}(\tilde{x}, u_{i}^{g}) -\varepsilon ||\tilde{x}_{i}||_{W_{i}}^{2} \quad \forall \tilde{x} \in \mathbb{R}^{n}, i = 1, 2, ..., s, (4.26)$$

where the simplification $||\tilde{x}_i||_{Q_i}^2 + ||K_i^*x_i||_{R_i}^2 = ||\tilde{x}_i||_{W_i}^2$ with $W_i = Q_i + P_i B_i R_i^{-1} B_i^T P_i$ is made.

Denoting $v(\tilde{x}) = \sum_{i=1}^{S} v_i(\tilde{x}_i)$ and summing the s-equations in (4.26) we get, $||\tilde{x}||_W^2 = -(1+\varepsilon)\dot{v}(\tilde{x}) + (1+\varepsilon)[\text{grad }v(\tilde{x})]^T h_e(\tilde{x}, u^g)$ $-\varepsilon ||x||_W^2, \forall \tilde{x} \in \mathbb{R}^n$. (4.27) Now, integrating (4.27) from t_0 to ∞ we obtain

$$\tilde{J}(t_0, x_0) = (1+\varepsilon) J^*(t_0, x_0) + (1+\varepsilon) \int_{t_0}^{\infty} \{ [\text{grad } v(\tilde{x})]^T h_e(\tilde{x}, u^g) - \frac{\varepsilon}{1+\varepsilon} ||x||_W^2 \} dt , \qquad (4.28)$$

where \tilde{J} and J^* are defined in (4.15) and (4.16).

It is now simple to observe from (4.18) and (4.28) that the system is suboptimal with index ε if

$$\int_{t_0}^{\infty} \{ [\operatorname{grad} v(\tilde{x})]^T h_e(\tilde{x}, u^g) - \frac{\varepsilon}{1+\varepsilon} | |\tilde{x}| |_W^2 \} dt \geq 0, \\ \forall \tilde{x} \in \mathbb{R}^n.$$
(4.29)

For further simplification of (4.29) we note that

$$\mathbf{v}(\tilde{\mathbf{x}}) = \sum_{i=1}^{S} \mathbf{v}_{i}(\tilde{\mathbf{x}}_{i}) = \sum_{i=1}^{S} ||\tilde{\mathbf{x}}_{i}||_{p_{i}}^{2} = ||\tilde{\mathbf{x}}||_{p}^{2} .$$
(4.30)

Also, since $||h_{e_i}(\tilde{x}, u_i^g)|| \leq \sum_{j=1}^{s} \varepsilon_{ij} ||\tilde{x}_j||, \forall x \in \mathbb{R}^n$ we have the inequality

$$||h_{e}(\tilde{x}, u^{g})|| \leq \xi ||x||, \forall \tilde{x} \in \mathbb{R}^{n}$$

$$(4.31)$$
where $\xi = \sum_{i=1}^{S} \sum_{j=1}^{S} \xi_{ij}$

Using (4.30) and (4.31) it can be easily shown that a sufficient condition for the inequality (4.29) to hold is

$$2\xi P\tilde{\mathbf{x}} ||\tilde{\mathbf{x}}|| \leq \frac{\varepsilon}{1+\varepsilon} ||\tilde{\mathbf{x}}||_{W}^{2}, \ \forall \mathbf{x} \in \mathbb{R}^{n}$$

$$(4.32)$$

which, however, is implied by the main inequality (4.23) of the Theorem.

To complete the proof of the Theorem, we demonstrate the global asymptotic stability of the system (4.19) by using the function $v(\tilde{x}) = ||\tilde{x}||_p^2$ as a

Liapunov function. Note that $v(\tilde{x})$ is positive definite since P is a diagonal matrix formed from the positive definite solutions of the s Riccati equations (4.12). Further, the time-derivative of $v(\tilde{x})$ along the solutions of (4.19) gives

$$\dot{\mathbf{v}}(\tilde{\mathbf{x}}) = - ||\tilde{\mathbf{x}}||_{W}^{2} + 2\tilde{\mathbf{x}}^{T} \operatorname{Ph}_{e}(\tilde{\mathbf{x}}, \mathbf{u}^{g}) \leq 0 \quad \forall \tilde{\mathbf{x}} \in \mathbb{R}^{n} , \qquad (4.33)$$

from (4.31) and (4.23). This completes the proof of the Theorem.

It is important to note that the above theorem provides an explicit algebraic constraint on the interactions that is easy to check. Inequality (4.23) involves calculation of eigenvalues of block-diagonal matrices P and W, and since $\lambda_M(P) = \max_{i} \{\lambda_M(P_i)\}$ and $\lambda_m(W) = \min_{i} \{\lambda_m(W_i)\}$, the calculation can be carried out on the subsystem level.

In the context of the above Theorem, it is of interest to consider Problem 2 of determining the global control $u^{g}(t)$ so as to minimize the suboptimality index ε . From (4.23) and (4.31), it is evident that ε is a nondecreasing function of $||h_{e}(x, u^{g})||$ and hence, Problem 2 reduces to one of choosing $u^{g}(t)$ to minimize $||h_{e}(x, u^{g})||$. This function minimization problem is particularly simple in the present case since, from (4.7)

$$h_{p}(x, u^{g}) = h(x) + Bu^{g}$$
 (4.34)

which, on using the control law (4.5) reduces to

$$h_{a}(x, u^{g}) = h(x) - BK^{g}(x)$$
 (4.35)

A perfect neutralization of the effects of interconnections occurs if a choice of $K^{g}(x)$ results in

$$BK^{g}(x) = -h(x)$$
 (4.36)

and, in this case, $\varepsilon = 0$. In the special case, when B is square and non-

singular, the explicit expression for $K^{g}(x)$ is available as

$$K^{g}(x) = -B^{-1}h(x)$$
 (4.37)

In general, a perfect neutralization of the interaction effects mentioned above, is not possible and one may attempt to minimize $||h(x) - BK^g(x)||$ by the proper choice of $K^g(x)$ in order to solve Problem 2. This is admittedly a complex minimization problem and a general solution is difficult to obtain. However, in the particular case of linear interconnections, the problem can be simplified and an elegant solution can be provided. This is, we assume

$$\hat{h}(t, x) = Hx$$
 (4.38)

where $H \in \mathbb{R}^{n \times n}$. In this case, the global control can also be chosen as a linear law

$$K^{g}(\mathbf{x}) = K^{g}\mathbf{x} \tag{4.39}$$

where $K^g \in R^{m \times n}$. With (52) and (53), Problem 2 simplifies to:

<u>Problem 2'</u>. Choose the matrix K^g such that $\inf_{K^g} ||(H-BK^g)x||$ is achieved for all $x \in R^n$.

Remembering that $||(H-BK^g)x|| \leq ||H-BK^g|| ||x||$ holds for all $x \in \mathbb{R}^n$, Problem 2' actually reduces to finding min $||H-BK^g||$. When rank B = m, the solution to this latter problem is well-known and K^g is given by

$$K^{g} = (B^{T}B)^{-1} B^{T}H$$
 (4.40)

where $(B^{T}B)^{-1} B^{T}$ is the Moore-Penrose generalized inverse of B [15]. It is interesting to note that in the particular case when

$$Rank [B|H] = Rank B$$
(4.41)

the choice (4.40) leads to a perfect neutralization of interaction effects and $\varepsilon = 0$.

4.3. An Illustrative Example

For the purpose of illustrating the multilevel control scheme presented here, let us consider the following example.

The system is described by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 (4.42)

where

	-5	б	0	-0.0095]		[1	0	Í
A =	4	-4 0.003		0	and	B =	0	0	
	-0.00332	0	-3	-3 1			0	0	ĺ
	0	0.00995	8	-2			Lo	1_	

and is required to be optimized with respect to the performance index

$$J = \int_{t_0}^{\infty} \{ ||\mathbf{x}||^2 + ||\mathbf{u}||^2 \} dt .$$
 (4.43)

In this particular case, the dimension of the system (n = 4) is small and hence the problem is amenable for a direct analysis and the required control can be obtained from solving the associated Riccati equation (of fourth order). However, as our interest here is to provide an illustration of the decentralized optimal control scheme^{*}, let us consider system (4.42) as being

Besides the advantage of permitting an analysis based on the subsystems of small orders, the decentralized control scheme presented results in important connectivity properties of the system. The suboptimality and stability of the system remain invariant under structural perturbations caused by the onoff participation of the parts of the system. This property, however, does not result when direct optimization of the system is carried out [10].

composed of two subsystems

$$\dot{\mathbf{x}}_{1} = \begin{bmatrix} -5 & 6 \\ 4 & -4 \end{bmatrix} \qquad \mathbf{x}_{1} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}_{1}$$
(4.44)

and

$$\dot{\mathbf{x}}_{2} = \begin{bmatrix} -3 & 1 \\ 8 & -2 \end{bmatrix} \qquad \mathbf{x}_{2} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}_{2}$$
(4.45)

with the interconnection matrix

$$H = \begin{bmatrix} 0 & 0 & 0 & -0.0095 \\ 0 & 0 & 0.003 & 0 \\ -0.00332 & 0 & 0 & 0 \\ 0 & 0.00995 & 0 & 0 \end{bmatrix}$$
 (4.46)

By splitting the control functions u_1 and u_2 into a local component and a global component, the decoupled subsystems (4.44) and (4.45) can be optimized with respect to the performance indices

$$J_{1} = \int_{t_{0}}^{\infty} \{ ||x_{1}||^{2} + ||u_{1}||^{2} \} dt \text{ and } J_{2} = \int_{t_{0}}^{\infty} \{ ||x_{2}||^{2} + ||u_{2}||^{2} \} dt.$$
(4.47)

The solutions of the associated Riccati equations can be obtained as

$$P_{1} = \begin{bmatrix} 1.1910 & 1.5411 \\ 1.5411 & 2.1397 \end{bmatrix} \text{ and } P_{2} = \begin{bmatrix} 5.5591 & 2.3746 \\ 2.3746 & 1.1224 \end{bmatrix}$$

and the local control laws are,

$$u_1 = -[1.1910 \quad 1.5411] x_1$$

 $u_2 = -[2.3746 \quad 1.1224] x_2$ (4.48)

In the absence of the global controls, the functions (4.48) will only be suboptimal policies for the overall system (4.42) with the index of suboptimality ε given by

$$||\mathbf{H}|| \leq \frac{\varepsilon}{\varepsilon+1} \cdot \frac{\min\{\lambda_{\mathbf{M}}(W_1), \lambda_{\mathbf{M}}(W_2)\}}{2\max\{\lambda_{\mathbf{M}}(P_1), \lambda_{\mathbf{M}}(P_2)\}}$$
(4.49)

where $W_i = Q_i + P_i B_i R_i^{-1} B_i^T P_i$, i = 1, 2, are

$$W_{1} = \begin{bmatrix} 2.4185 & 1.8354 \\ 1.8354 & 3.3748 \end{bmatrix} \text{ and } W_{2} = \begin{bmatrix} 6.6386 & 2.6651 \\ 2.6651 & 2.2597 \end{bmatrix}$$

Inequality (4.49) is satisfied with $\epsilon = 2$ and hence the performance degradation from the optimum is 200%.

In order to improve the performance, we now use the global controls u_1^g and u_2^g given by

$$u^{g} = - (B^{T}B)^{-1} B^{T}Hx$$
(4.50)
where $u^{g} = \begin{bmatrix} u_{1}^{g} \\ u_{2}^{g} \end{bmatrix}$. (4.50) can be simplified to yield

$$u_1^g = - [0 -0.0095] x_2$$

 $u_2^g = - [0 0.00995] x_1$. (4.51)

The effective interaction matrix $\tilde{\mathbf{H}}$ with the application of the global control is

17

$$H = \begin{bmatrix} I - B(B^{T}B)^{-T} & B^{T} \end{bmatrix} H$$
$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0.003 & 0 \\ -0.00332 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(4.52)

48

and the suboptimality inequality (4.49) can now be satisfied with a value $\varepsilon = 0.2$. Hence the performance degradation is reduced from the original 200% to only 20%, thus illustrating the effectiveness of the global controls.

4.4. Application to LST

The results developed in the earlier parts of this section may be directly used for the multilevel optimization of the LST. As described in Section 2, the model for the LST is a set of three interconnected subsystems, described by (2.20) as,

$$\dot{x}_{i} = A_{i}x_{i} + b_{i}u_{i} + h_{i}(x)$$
, $i = 1, 2, 3$, (4.53)

where
$$x_i \in \mathbb{R}^2$$
, $A_i = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $b_i = \begin{bmatrix} 0 \\ \beta_i \end{bmatrix}$ and $h_1(x) = \begin{bmatrix} 0 \\ -\alpha_2 x_{32} x_{12} \end{bmatrix}$,

$$h_{2}(x) = \begin{bmatrix} 0 \\ -\alpha_{2}x_{32}x_{12} \end{bmatrix}, \quad h_{3}(x) = \begin{bmatrix} 0 \\ -\alpha_{3}x_{12}x_{22} \end{bmatrix}, \quad x \text{ being the composite state-}$$

vector $x = [x_{1}^{T}, x_{2}^{T}, x_{3}^{T}]^{T}$ and $x_{i} = [x_{i1}, x_{i2}]^{T}, \quad i = 1, 2, 3$.

Following our multilevel control policy, we split each of the control functions u_i into a local component u_i^{ℓ} and a global component u_i^{g} and optimize the decoupled subsystems

$$\dot{x}_{i} = A_{i}x_{i} + b_{i}u_{i}^{2}$$
, $i = 1, 2, 3$, (4.54)

with respect to the performance indices

$$J_{i} = \int_{t_{0}}^{\infty} \{ ||x_{i}||^{2} + ||u_{i}^{2}||^{2} \} dt, i = 1, 2, 3, \qquad (4.55)$$

obtained with the choice $Q_i = I_{2\times 2}$ and $R_i = 1$ $\forall i = 1, 2, 3$. The solution of this linear-quadratic optimal control problem is simple and involves

the solution of the associated Riccati equations,

1

.....

.

$$A_{i}^{T}P_{i} + P_{i}A_{i} - P_{i}b_{i}b_{i}^{T}P_{i} + Q_{i} = 0, i = 1, 2, 3.$$
 (4.56)

With the specified structure of $A_{\underline{i}}$ and $b_{\underline{i}}$, the solution of (4.56) can be obtained as,

_1

$$P_{i} = \begin{bmatrix} (1 + \frac{2}{\beta_{i}})^{l_{2}} & \frac{1}{\beta_{i}} \\ \frac{1}{\beta_{i}} & \frac{1}{\beta_{i}} (1 + \frac{2}{\beta_{i}})^{l_{2}} \end{bmatrix}$$
(4.57)

and the local optimal controls are

$$u_{i}^{\ell} = -b_{i}^{T}P_{i}x_{i} = - \left[1 \left(1 + \frac{2}{\beta_{i}}\right)^{\frac{1}{2}}\right]x_{i}, \quad i = 1, 2, 3.$$
 (4.58)

However, in the absence of a suitable choice of the global control functions u_i^g , (4.58) will only be suboptimal for the composite system (4.53), with the index of suboptimality ε determined by the size of the effective interconnections,

$$h_{e_i}(x, u_i^g) = h_i(x) + b_i u_i^g$$
, $i = 1, 2, 3$. (4.59)

(4.59) can be simplified to yield

$${}^{h}e_{1}(x, u_{1}^{g}) = \begin{bmatrix} 0 \\ -\alpha_{1}x_{22}x_{32} + \beta_{1}u_{1}^{g} \end{bmatrix}$$

$${}^{h}e_{2}(x, u_{2}^{g}) = \begin{bmatrix} 0 \\ -\alpha_{2}x_{12}x_{32} + \beta_{2}u_{2}^{g} \end{bmatrix}$$

$${}^{h}e_{3}(x, u_{3}^{g}) = \begin{bmatrix} 0 \\ -\alpha_{3}x_{12}x_{22} + \beta_{3}u_{3}^{g} \end{bmatrix}$$

$$(4.60)$$

50

al an management de la deserve de la des

It is now simple to observe that the choice of

1

1

$$u_{1}^{g}(x) = \frac{\alpha_{1}}{\beta_{1}} \quad x_{22}x_{32}$$

$$u_{2}^{g}(x) = \frac{\alpha_{2}}{\beta_{2}} \quad x_{12}x_{32}$$

$$u_{3}^{g}(x) = \frac{\alpha_{3}}{\beta_{3}} \quad x_{12}x_{22}$$
(4.61)

ł

will make the functions $h_{e_1}(x, u_1^g) \equiv 0$ and hence $\varepsilon = 0$, thus resulting in no degradation of the performance from the optimum.

It is of interest to evaluate the control functions for a representation set of values of the parameters of the LST. For the values of the inertia components $I_x = 14656 \text{ Kg}_m^2$, $I_y = 91772 \text{ Kg}_m^2$ and $I_z = 95027 \text{ Kg}_m^2$ and typical reaction wheel constants $K_1 = K_2 = K_3 = 12.57 \times 10^5 \text{ N-m/rad.}$, the values of α_i , β_i , i = 1, 2, 3 can be calculated as

$$\alpha_1 = 0.2221$$
 $\beta_1 = 85.62$
 $\alpha_2 = -0.08754$
and
 $\beta_2 = 13.69$
 $\alpha_3 = 0.8112$
 $\beta_3 = 13.21$

Hence, the control components can be evaluated from (4.58) and (4.61) as,

$$u_{1}^{\ell} = -[1 \quad 1.012] \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}$$
$$u_{2}^{\ell} = -[1 \quad 1.061] \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix}$$
$$u_{3}^{\ell} = -[1 \quad 1.07] \begin{bmatrix} x_{31} \\ x_{32} \end{bmatrix}$$
(4.62)

51

These values correspond to the on-orbit configuration of the LST with extended light shield and solar wings, with the corresponding mass of the body totalling 9380 Kg [11].

and

$$u_{1}^{g} = 0.0026 \quad x_{22}x_{32}$$
$$u_{2}^{g} = -0.064 \quad x_{12}x_{32}$$
$$u_{3}^{g} = 0.0613 \quad x_{12}x_{22} \quad . \tag{4.63}$$

This completes the multilevel optimization of the LST control system.

52

*

5. CONCLUSIONS

A multilevel scheme was proposed for control of Large Space Telescope modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions.

The proposed multilevel stabilization and optimization methods are presented as general too.s for design and then used in the design of the LST Control System. Furthermore, the methods are entirely computerized (Appendices A.1 and 2), so that they can accommodate higher order LST models with both conceptual and numerical advantages over the standard straightforward design techniques.

53

ļ

6. REFERENCES

- Siljak, D. D., "Stability of Large-Scale Systems", Proc. 5th IFAC Congr., Paris, 1972, pp. C-32:1-11.
- Šiljak, D. D., "Stability of Large-Scale Systems Under Structural Perturbations", <u>IEEE Trans.</u>, SMC-2(1972), 657-663.
- 3. Šiljak, D. D., "On Stability of Large-Scale Systems Under Structural Perturbations", IEEE Trans., SMC-3(1973), 415-417.
- 4. Šiljak, D. D., S. Weissenberger, and S. M. Čuk, "Decomposition-aggregation Stability Analysis", NASA Contract Report, No. 2196, 1973.
- 5. Šiljak, D. D., and S. M. Ćuk, "Stability Region Maximization by Decomposition-Aggregation Method", NASA Contract Report, No. 2428, 1974.
- Šiljak, D. D., and M. B. Vukčević, "On Hierarchic Stabilization of Linear Large-Scale Systems", Proc. 8th Asilomar Conf. Circuits, Systems, Computers, Pacific Grove, Calif., 1974, pp. 503-507.
- 7. Šiljak, D. D., "Stabilization of Large-Scale Systems: A Spinning Flexible Spacecraft", Proc. 6th IFAC Congr., Boston, Mass., 1975, pp. 35.1:1-10.
- 8. Šiljak, D. D., and M. B. Vukčević, "Large-Scale Systems: Stability, Complexity, Reliability:, IEEE Proc., Special Issue on Recent Advances in System Science, Edited by W. A. Porter (to appear in December, 1975).
- Šiljak, D. D., and S. K. Sundareshan, "On Hierarchic Optimal Control of Large-Scale Systems", Proc. 8th Asilomar Conf. Circuits, Systems, Computers, Pacific Grove, Calif., 1974, pp. 495 502.
- 10. Šiljak, D. D., and S. K. Sundareshan, "Large-Scale Systems: Optimality vs. Reliability", Conference on Directions in Decentralized Control, Many-Person Ptimization, and Large-Scale Systems, Cambridge, Mass., Sept. 1-3, 1975.
- 11. Schiehlen, W. O., "A Fine Pointing System for the Large-Space Telescope", NASA Technical Note, No. TN D-7500, 1973.
- 12. Davison, E. J., "The Decentralized Stabilization and Control of a Class of Unknown Non-Linear Time-Varying Systems", Automatica, 10(1974), 309-316.
- 13. Chen, C. T., "Introduction to Linear System Theory", Holt, Rinehart, and Winston, New York, 1970.
- 14. Gantmacher, F. R., "The Theory of Matrices", Vol. II, Chelsea, New York, 1960.
- 15. Langenhop, C. E., "On Generalized Inverses of Matrices", <u>SIAM J. Appl.</u> <u>Math.</u>, 15(1967), 1239-1246.
- 16. Fiedler, M., and V. Pták, "On Matrices With Non-Positive Off-Diagonal Elements and Positive Principal Minors", <u>Czech. Math. J.</u>, 12(1962), 382-400.

ŧ

المتحود موجد الرواد

- 17. Weissenberger, S., "Stability Regions of Large-Scale Systems", Automatica, 9(1973), 653-663.
- 18. Anderson, B.D.O., and J. B. Moore, "Linear Optimal Control", Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
- 19. Kleinman, D. L., "On An Iterative Technique for Riccati Equation Computations", <u>IEEE Trans.</u>, AC-13(1968), 114-115.

APPENDIX

COMPUTER APPLICATION

- A.1. Stabilization Program
- A.2. Optimization Program

A.1. Stabilization Program

The entire stabilization method is computerized. In this section we present the computer program for the stabilization of a class of large-scale systems by local state feedback, according to Section 3.3. The program is written in FORTRAN IV, for HP2100 computer. It is, basically, an interactive user oriented program.

Designers can enter the program from VDU (Visual Display Unit) and thus freely alter the course of computation, according to the nature of the problem. Program accepts input data from a logical unit that has to be previously assigned. As a result of computation, it prints out stabilizing parameter α , corresponding aggregation matrix, stabilizing set of subsystem eigenvalues, and enables the designer to reenter the program with so computed new set. The program finally prints out the corresponding subsystem feedback gains. The name of the main program is PP1. Its function is to coordinate the sequence of actions during the course of the stabilization and to enable the designer to access the program at various points during its operation. The program PP1 calls subprograms, DECP, PPL, TRF, AGR and MINV. The processing of variables between the main program and subroutines is realized via COMMON block.

Program PP1

Purpose:

Local stabilization of a class of large-scale linear systems.

Description of input parameters:

- A N by N system matrix.
- B N by M input matrix.
- II one dimensional integer array. It stores dimensions of each subsystem. The other parameters are working variables.

A.1

ł

User has to specify integers N and M and number of subsystems IS, into which system matrix A, and input matrix B are decomposed. During the course of stabilization, user has to enter the program with subsystem eigenvalues, and specify an increment delta by which α is increased during the process of iterations.

At the very beginning of the program, the user has to assign input-output units. Also, during the operation of the program, user communicates with the program by specifying commands, by which the sequence of calculations is controlled. These commands are in the "question-answer" form. For example, program prints out the question:

"DO YOU WANT TO CONTINUE, YES OR NO". The user then types either "YES" or "NO" accordingly. Other commands are self explanatory, and are not going to be discussed here.

Subroutine DECP

Purpose:

Decomposes system matrix A and input matrix B into subsystems. The product of the decomposition is stored in A2 and B2.

Usage:

CALL DECP (IS, M, N)

Description of parameters:

- IS Number of subsystems.
- M Number of inputs.
- N Order of the overall system.

The following parameters are passed via COMMON block as;

COMMON A, B, A2, B2, II

A - N by N system matrix.

- B N by M input matrix.
- A2 Three dimensional array which contains the product of the decomposition of the matrix A.
- B2 Three dimensional array which contains the product of the decomposition of the matrix B.
- II One dimensional integer array which contains the dimensions of each subsystem.

Subroutines required: None.

Subroutine PPL

Purpose:

Pole shifting using state feedback.

Usage:

CALL PPL (N, IW)

Description of parameters:

N - Order of the system.

IW - Integer for the output logical unit.

The following parameters are passed via COMMON block as:

COMMON A1, B1, B2, II A, Q1, Q, I11, B, R1, R2, D, SK

A - N by N system matrix

B - N-the dimensional input vector

- R1 One dimensional array which contains real parts of eigenvalues of matrix A .
- R2 One dimensional array which contains imaginary parts of eigenvalues of matrix A.

D - N-th dimensional gain vector.

All other parameters are working variables, which are placed in COMMON

block in order to make it consistent with the COMMON block of the main program PP1.

Subroutines required: ALAM, DISP, KBAR.

As a result of the pole shifting, the subroutine passes back matrix A of the closed loop system, the gain vector D, and the new eigenvalues. The subroutine itself is written as a user-oriented interactive program. The user enters the desired eigenvalues from VDU. The correads for controlling a sequence of computations, are self explanatory.

Subroutine TRF

Purpose:

Transforms subsystems by similarity transformation.

Usage:

CALL TRF (1S)

Description of parameters:

IS - Number of subsystems.

The following parameters are passed via COMMON block as: COMMON A, B, A2, B2, II, A1, Q1, Q, I11, B3

- A2 Three dimensional array. It contains the product of the decomposition of the system matrix A .
- B2 Three dimensional array. It contains the product of the decomposition of the input matrix B.
- II One dimensional integer array that contains dimensions of each subsystem.
- Q Three dimensional array that contains transformation matrices.

All other parameters are working variables.

Subroutines required: MINV

The product of transformation is in A2 and B2. The array Q is unchanged.

ł

Subroutine AGR

Purpose:

Forms an aggregate matrix.

Usage:

CALL AGR (IS)

Description of parameters:

IS - Number of subsystems.

The following parameters are passed via COMMON block as:

COMMON A, B, A2, B2, II, A4, A3, Q, I11, B3, R1, R2, KB, SK

- A2 Three dimensional array which contains the product of the decomposition of the matrix A .
- B2 Three dimensional array which contains the product of the decomposition of the matrix B.
- II Integer array that contains the dimensions of each subsystem.
- Ri. One dimensional array that contains real parts of subsystem eigenvalues.
- A3 Matrix that contains the aggregate model.

All other parameters are working variables.

Subroutine required: ALAM, BIG1, SMAL1.

Subroutine KBAR

Purpose:

Computes gain vector for state feedback control.

Usage:

CALL KBAR (A, N, Z, 1Z, D, B)

Description of parameters:

- A N by N system matrix.
- N Dimension of the system.
- Z One dimensional array that contains the desired characteristic polynomial.
- IZ Its dimension.
- D One dimensional array that contains resultant gain vector.
- B Input vector.

Subroutine required: COEF1, SCALU, VECPR, MINV.

Method:

Described in reference [13].

Subroutine ALAM

Purpose:

Calculates eigenvalues of general N by N matrix.

Usage:

CALL ALAM (A, N, D, COF, RI, R2)

Description of parameters:

- A N by N system matrix.
- N Dimension of the system.
- D N+1 dimensional working vector.
- COF N+1 dimensional working vector.
- R1 One dimensional array of real parts of eigenvalues of matrix A.
- R2 One dimensional array of imaginary parts of eigenvalues of matrix A .

Subroutines required: COEF1, POLRT

Computes coefficients of characteristic polynomial, and calculates its zeros.

Subroutine COEF1 (A, N, D)

Purpose:

Calculates coefficients of the characteristic polynomial of

matrix A.

Usage:

CALL COEF1 (A, N, D)

Description of parameters:

- A N by N system matrix.
- N Dimensions of the system.
- D One dimensional array of coefficients of characteristic polynomial.

Subroutines required: UNIT1, PROD1, TRAC1, SCM1, ADD1

Method:

Uses Souriau-Frame-Faddeev algorithm.

Subroutine DISP

Purpose:

Form polynomial from its zeros.

Usage:

CALL DISP (R1, R2, N, Z)

Descriptions of parameters:

- R1 One dimensional array of real parts of roots of a given polynomial.
- R2 One dimensional array of imaginary parts of roots of a given polynomial.

1

and the second second

N - Order of a polynomial.

1

Z - One dimensional array that contains computed coefficients of the polynomial.

Subroutine required: PMPY

All other subroutines, listed in the Appendix are self explanatory and are not going to be explained here. Subroutines PMPY, POLRT and MINV are IEM-SSP subroutines. 1

IPRIFFTN4.99 FTN4+L PROGRAM PP1 С INTERACTIVE PROGRAM TO STABILIZE A CLASS OF LARGE SCALE SYSTEMS C С С C £ AUTHOR 1 MIROSLAV B. VUKCEVIC. DATE /7/20/1975/ C Ċ REAL KB INTEGER A10 INTEGER DD DIMENSION A(10,10), B(10,3), A2(9,10,10), 1 82(3,10,3), 11(5), AK(5,5), 01(5,5), 0(3,5,5), 111(5,5), 83(5), 81(6), 1 R2(6) +KB(6) +SK(6+10) +A1(3+10) +T1(6+6) +Y2(6+6) +MM(25) +LL(25) +C(25) COMHON A. B. A2. B2. II. AK. 01. 0. 111. B3. R1. R2. KB. SK. A1 DATA DD/2HYE/ wRITE(1:1000) 1000 FORMAT(10X, "STABILIZATION OF A CLASS OF LARGE SCALE SYSTEMS") WRITE(1+145) 145 FORMAT(1X+"ASSIGN LOGICAL UNITS"/1X+"212") C LEOOR QUALITY READ THE DATA С ана) С C READ(1+111) IRD+IW #RITE(1#,146) 146 FORMAT(1X+"SPECIFY ORDER OF THE SYSTEM AND NUMBER OF INPUTS" 11X+"212"1 READ(IRD, 111)N.M 111 FORMATISI2) wRITE(IW,150) 150 FORMAT(IX+"ENTER SYSTEM MATRIX") 00 8 K=1.N WRITE(IN.151) 151 FORMAT(1X+"+ *#**#* ,11,11, 9H9H9 1 9119199 *** 8 READ(IRD,100) (A(K,J),J=1+N) WRITE(18,152) 152 FORMAT(1x+"ENTER INPUT MATRIX") 00 9 K≍1.N wRITE(1w,151) 9 READ(1RD.100)(5(K.J).J=1.M) 100 FORMAT(SF10.0) C WRITE THE DATA C С WRITE (Ix+530)N+H 530 FORMAT(1X+"ORDER OF SYSTEM = "+IZ+"NUMBER OF INPUTS = "+IP) #RITE(1#+532) 532 FORMAT(15X+"SYSTEM HATRIX") CO 371 K=1+N 371 WRITE (IW+105) (A(K+J)+J=1+N) WRITE(IW-537) 537 FORMAT(15X, "INPUT MATRIX")

PAGE 0001

с C

C

С

С C

c

C C

С

C С

C

С C

DO 372 K#1.N 372 WRITE(IW+105)(B(K+J)+J=1+H) 105 FORMAT(1X+5F14+6) WRITE(IW+147) 147 FORMAT(1X+"SPECIFY NUMBER OF SUBSYSTEMS"/1X+"12") READ(IRD,111)IS WRITE (IW, 544) IS 544 FORMAT(1X+"NUMBER OF SUBSYSTEMS = "+I2) WRITE(IN+149) 149 FORMAT(1X,"SPECIFY ORDER OF EACH SUBSYSTEM"/1X,"SI2") READ(IRD,111)(II(K),K=1,IS) DO 800 K=1+IS 800 WRITE(1W,5545)K+II(K) 5545 FORMAT(1X, HORDER OF SUBSYSTEMH+12, "="+12) START DECOMPOSITION 215 CONTINUE DECOMPOSE SYSTEM INTO SUBSYSTEMS CALL DECP(IS+M+N) START STABILIZATION DO 10 K=1+IS L1=II(K) IP=(K+1)*15+K. 00 20 L×1+L1 00 20 J=1+L1 20 AK(LyJ)=A2(IP+L+J) 00 30 L=1+L1 30 83(L)=62(K,L,K) LOCATE POLES OF EACH SUBSYSTEM CALL PPL(L1+IW) DO 15 L=1+L1 15 T1(L+K)=R1(L) 10 CONTINUE #RITE(1W.500) 500 FORMATIIX,"DO YOU WANT TO CONTINUE, YES OR NO") READ(1,501)A10 501 FORMAT(A2) IF (A10.NE.DD) GO TO 266 START ITERATION FOR ALFA PARAMETER WRITE(IW+600) 600 FORMAT(1X+"SPECIFY INCREME DELT"/1X+"F10.0") READ(1.200)DELT 200 FORMAT(F10.0) ALF=1. **Z11 CONTINUE** FORM VANDERMONDE MATRIX 00 112 K=1+IS L1=II(K)

MANAL PAGE IS

Ъ

PAGE 0002

PAGE 0003

2

A.11

and the second sec

00 112 J=1+L1 SK(J+K)=T1(J+K) 112 SK(JK)=ALF+SK(JK) D0 12 K=1+I5 Ll=II(K) DO 88 L=1+L1 DO 88 J=1:L1 BB Q(K+L+J)=SK(J+K)++(L+1) 12 CONTINUE С С FORM AGGREGATE MODEL C CALL DECP (IS, H,N) CALL TRE(IS) CALL AGR(IS) WRITE(1W,531) 531 FORMAT(1X+MAGGREGATION MATRIX¹¹) DO 281 K=1+IS 281 wRITE(6:105) (01(K:J);J=1:IS) ALF=ALF+DELT Ċ CHECK THE SIGN OF THE K-TH MINOR С C 1Z±1 DO 282 K×1+15 IF=K 00 283 I=1.IF 00 283 J=1.IF IP=(I-1)=K+J 283 C(IP)=01(J,I) CALL MINV(C+IF+D+LL+MM) 12=-12 • D=1Z*D WRITE(6+270)D 270 FORMAT(1X+F14.5) IF(0)211.211.282 С C PRINT CORRESPONDING EIGENVALUES С 282 CONTINUE DO 11 K=1+IS LI=II(K) WRITE(IW+700)K 700 FORMAT(1X,"EIGENVALUES OF SUBSYSTEM", I2) D0 18 J×1+11 18 wRITE(6+701)J+SK(J+K) 701 FORMAT(1X+"LAMBDA("+12+") = "+F15+6) 11 CONTINUE GO TO 215 266 CONTINUE END ENDS

0152 C PROGRAM TO CALCULATÉ THE LARGEST ELEMENT OF AN ARRAY 0166 C 0166 C 0166 C 0166 C 0166 C 0167 J=K<1 0167 J=K<1 0170 B J=J>1 0171 If (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0172 LEK 0170 B J=J>1 0171 If (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0171 B J=J>1 0171 IF (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0170 B J=J>1 0170 B J=J>1 0171 IF (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0171 IF (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0171 IF (J_LE_N)GO TO 10 0172 LEK 0170 B J=J>1 0170 B J=J
0166 C 0165 DIMENSION R1(6) 0165 K=1 0167 J, K+1 0168 10 IF (R1(K),6CE-R1(J2)500 TO 8 0159 K=3 0170 8 J=1 0171 IF (JJLE-MJ50 TO 10 0172 RETURN 0172 RETURN 0174 END ** ND ERRORS** PROGRAM = 00055 COMMON = 00000
0105 UNITED UNIT
 010 0170 B JrJ-1 0170 JrJ-1 0171 Lr4LE-NIGO TO 10 0172 KETUORN 0174 END •• ND ERRORS•• PROGRAM ± 00055 COMMON = 00000 •• ND ERRORS•• PROGRAM ± 00055 COMMON = 00000
0170 B J-J-1 0171 IFUJLENIGO TO 10 0172 LATURN 0173 RETURN 0174 END ** ND ERRORS** PROGRAM = 00055 COMMON = 00000
0112 0173 HETURN 0174 END ** ND ERRORS** PROGRAM ≠ 00055 СОММОN ≠ 00000
U174 END ** ND ERRORS** PROGRAM = 00055 COMHON = 00000
** ND ERRORS** PROGRAM = 00055 COMMON = D0000
·

1 _

-

PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974)

	0175		SUBROUTINE TRANI (Q1,AG,LI,LS)
•	0176	С	
	0177	ĉ	PROGRAM TO TRANSPOZE A MATRIX
	0178	С	· ·
•	0179		DIMENSION OI (5.5 +AG(5.5)
-	0180		DO B K#1+LI
	0181		D0 8 J=1,LS
' . 	0195		8 AG(J+K)=0](K+J)
	0183	• ••-	RETURN
•	0184		END

** NO ERRORS** PROGRAM = 00056 COMMON = 00000

					-				
•									
• • • •		•					
•									•
· · - ·	 •		• .			• • •	·· · •	• •= • • •	
۰.									
•									

•	 	 	<u> </u>	 • • •

•	1		•	Pol	
*					
•	•	<u>-</u>	· - •	UAL	· · · · · · · ·
				四四	

*****		 					K	3	5		• •
•	 	 ·	- <u></u> · · · ·	-			••	• •			

• ,					
	 · · · · · · · · · ·	 	 	<u></u>	
				-	
•					

•

•

•

A.13

С
PAGE 0001 FIN4 COMPILER: HP24177 (SEPT. 1974) **V185** SUBROUTINE SMALL (R1+L+N) 0186 C 0187 C PROSRAM TO CALCULATE THE SMALLEST ELEMENT OF AN ARRAY 0188 Ċ 0189 DIMENSION R1(6) 0190 K=1 0191 J=K+1 0192 10 IF (R1 (K) .LE.R1 (J)) GO TO 8 0193 9 K=Ĵ 0194 8 J=J+1 0195 IFIJ.LE.NIGO TO 10 0196 L×Ŕ 0197 RETURN 0198 END ** NO ERRORS** PROGRAM = 00055 COMMON # 00000 ____ الواران يبدر السابيتين ليسرينها تمتينسيسمان الالرتمام الماردي يم ۰.

A.14

and a second second

0199	SUBROUTINE KBA	AR (A+N+Z+IZ+D+B)			
0200 C 0201 C	PROGRAM TO CALCU	JLATE GAIN VECTOR			
0202 C					
0203	DIMENSION A(5+	•5] •Z(1) •D(6) •B(5) +Q(5+5) •R(5) +P1(25) •L((5) • MM (5)		
0205	CALL COEFI (A+N	(sD)			
0206	DO 8 K=1.N	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · ·	 .
0207 0208	8 Z(K)=D(K)=Z(K)				
0209	9 Q(I+N)=8(1)				
0210	L=N=I	n adapt in an e sa	· · · ·		· · · ·
9211 n212	DO 99 K#14L Lien-Kai				
0213	L2=N-K		••• •••		
0214	F=D(L1)				
0215	DU 7 I=1.0N		· · · · · · · · · ·	•	
0217	CALL SCALU(B.N	(#F)		õ a	
0218	D0 77 I=1.N		• • • •	御取	
0219	77 R(IS=Q(I_L))	-N-C)		ਅ ਨੀ	
0221	DO 10 I×1.N		,	Q 母	
0222	10 Q(I+L2)=C(I)+H	3(1)		XX XX	
0223	99 CUNTINUE				
0225	DO 200 J=1.N			ан	
0226	I=(K=1)*4+J			AA	
0227	200 PI(I)=2(J ₉ K) DO 105 K±1-N	· · · · · · · · · · ·		「四路」	
0229	105 H(K)=U(K+N)				
9230	CALL HINV(PI+N	(+SD+LL+MH)		-7 63	
9232	1 1 1 2 0 1 5 9 4 9 5 4 WRITE (6, 7 0 2)			•	
0233	102 FORMAT (1X+13HS	SINGULAR CASE)	•		
0234	5 CONTINUE				
4235 0236	00 201 K≖1+N 80 201 J=1-N				
0237	I=(K+1)*N+J		· · · · · · · · · · · · · · · · · · ·	• • • •	_
0238	201 Q(J+K)=P1(I)	·	-		
0240	DO 91 K#1+N 5#8-	· · · · · · · · · · · · · ·		· • • •	
0241	00 92 J=1+N				
0242	92 5=5+2(J)+0(J+K	9		<u>.</u>	
U243 0244	91 D(K)#S RETURN		· · ·		
0245	END	· · · · ·	·		
		· · • • •		•	

PAGE 0001

.....

FIN4 COMPILER: HP24177 (SEPT. 1974)

. . ..

SUBROUTINE DECP(IS+M+N) 0246 0247 C 0248 C PROGRAM TO DECOMPOSE SYSTEM INTO SUBSYSTEMS 0249 C 0250 DIMENSION A(10+10)+8(10+3)+A2(9+10+10)+82(3+10+3)+11(5) 0251 COMMON A.B.AZ.82.11 0252 IL=1 0253 L1×0 0254 00 10 K=1,IS 0255 IP=1 0256 L11=II(K) 0257 L1=L1+L11 0258 L2=0 0259 D0 11 J=1,IS 0260 NN={K=1}+IS+J 0261 L22=I1(J) 9262 L2=L2+L22 0263 18=0 0264 12 JJ*IL+L1 0265 IR=IR+1 9500 IC×0 0267 DO 12 KK=IP+L2 0269 IC=IC+1 0.269 12 A2(NN+IR+IC)=A(JJ+KK) ORIGINAL PAGE IS 11 IP=IP+L22 0.270 IK=0 0271 ___. 00 13 JJ=IL+L1 0272 0273 IR=IR+1 0274 00 13 KK=1.M 0275 13 B2(K, IR, K)=B(JJ, KK) 0276 IL=1L+L31 0277 10 CONTINUE RETURN 9278 0279 END الالفاسيات المتهم مساوين مستحاما الحاد المتعا 02245 COMMON = 02245NO ERRORS** PROGRAM = 00187

0

PAGE 0001

FTN4 COMPILER: HP24177 (SEPT. 1974)

			· ····································					
					-			
ゥ	0280	_	SUBROUTINE PPL(N+IW)					
	0281	C	· · · · · · · · · · · · · · · · · · ·					
	0282	ç	POLE SHIFTING PROGRAM	· · ·				
• -	0263	Ç.			,			
	0284	•	INTEGER DD					
	02#5		INTEGER YES					
•	0286		REAL KI					
•	0267		DIMENSION A1(10,10),81	(10,3),A2(9,10,10),82	3,10,3),11(5	5),A(5,5),		
	0288		191 (5+5) +9 (3+5+5) +111 (5	;=5) =B (5) =R1 (6) =R2 (6) =C	(6) +SK(6+10)) + COF (6)		
•	0289		1+Z(B)					
· ·	0290		COMMON A1.81.A2.82.11.	A;Q1,Q,I11,B,R1,R2,D,5	ĸ			
	0291		DATA YES/2HYE/					
	0292		WRITE(IW+153)					
-	0293	153	FORMAT (15X. "POLES OF T	HE SYSTEMU)				
.	0294		CALL ALAMIA N.D.COF.RI	-821				
•	0295		00 19 K#1+N					
•.	0296	19	WPITE/1#.1001K.91(K).8	2(K)				
· · -	0247	100	FORMATINY, OHI ANRDA (.1	(1.44) =.F14 6.44 A 1.	F14.61	•		
-	0248		WUTTEITW.2001					
•	0200	200	FUOMATIZY BIG VOU VANT	TO ALTED THE DOLES ?.	VES OF NOTIC			
· · · · ·	0300		-DEAD(1.13A)-00 (00 RAM)	TO ACTER THE FOLCO AT	ILD ON NOT	fan e staar aan s		
	0101	220	ENGNAT (AD)					
	0303	220	TEINER NE DOLED TO 344					
	0302		UDITEITU EAAL	•			· · · · · · · ·	
	0347	Con	- HRIICLIMIOVUI - HRIICLIMIOVUI	EN ETCOMALOFENS				
•	0304	300	PURHAILLAS"ENIER DESIR	CED ELOENTALUES"				
	0305	E10	CHARTING HACETON THOS	F 100770738-07903			•	
.	0300		- FAULT 1111100	1 DUTIONING. TEAL				
U .	0 304							
	0300	TŤŤ	FURNAL112/					
	0.303		UUT70116-En11			•		
U.	0310	EAL	WEIJELLESDVIJ	44 11				
•••••	USIA .	201	FUKBAI (1819)	·····	41			
	2312	207	HEAD (IND + 200) KI (UI) +K2	(31)				
4	6772	200	FURMAI (4614+0)				•	
	53 1 4		GALL DISP(RITRCINTE)					•
	0312		CALL KBARIAINIZIIZIUI	52				
	0110		DO R 1=1-14					
-	0317	· _	DO 8 JELAN		· - - ·			
	0319	5	A(1)J)#A(1+J)+B(1)*D(13				
	0313		NKT1E(1#1A1A)					
	0320	. 474	FURMATIZOX+BHVECTUR KA	Contraction and the second states of				
	0321		WHITETTM+1091(D(K)+K=)	Lanti				
• •• `	0322	109	FURMAL (1X15F14+6)					
	0323	340	CONTINUE					
	-0144		RETURN					
- N	0.125		END		•			
		Taria	oran Doocoiw - 6663				,	
-	NO	CHRO	22-* 1.KAAKWE * AA43.	COMMON = 02005			,	
	· .							
-								
	-	• •	and the second	•••••••••••••••••••••••••••••••••••••••	· ·			

A.17

ഹ

¢)

-		PAGE 0001 FTN4 COMPILER: HP24177 (SEPT, 1974)
		and the second
-	0326 0327	SUBROUTINE AGR(IS)
	0328	C PROGRAM TO FORM AN AGGREGATE MATRIX
-	0329	
	0331	REAL AD DIMENSION A (10,10) +B(10,3) +A2(9,10,10) +B2(3,10,3) +II(5) +A4(5,5)
-	0332	1,A3(5,5),Q(3,5,5),111(5,5),B3(5),R1(6),R2(6),KB(6),SK(6,10),
	0333	1COF (6) +D (6) +Q1 (5+5)
-	0335	DO 5 K#1+IS
	0336	L1=II (K)
	0337	D0 5 J=1;IS
	0339	17=(K-1)*1S+J
į,	0340	IF (K.EQ.J) GO TO 13
-	0341	D0 8 L=1+L1
	0.342	
- 1	0.144	D0 9 L=1,L2
. .	0345	00 9 I=1,12
	· 9.145 11767	5=0. p0 10 18=1.11
į,	0348	10 5*5+A4(1+1R)+AZ(1T+1R+L)
	Q149	9 01(1+L)=5
	· 0350 0361	CALL ALAM(Q1+LC+D+COF+KC+RD) DG 11 IX1+12
	0352	IF (R2(1).LE.D.)60 TO 11
• ••	0353	R2(I) = SQRT(R2(I))
i .	0354	TALE RIGIDZAL 12)
· ــــــــــــــــــــــــــــــــــــ	0356	GO TO 14
;	0357	13 CONTINUE
ł '	·/ 0358	D0 20 I=1+L1 20 D2(I)=-Sy(1-Y)
•	0360	CALL SMAL1(R2+L+L1)
ł	0361	R2(L) =+R2(L)
	2362	14 A3(K+J)=R2(L)
i	0364	RETURN
į –	0365	END
1		· · · · · · · · · · · · ·
ŧ., "., -	. ++ N	ERRORS** PROGRAM = 00383 COMMON = 02686
		· · · · · · · · · · · · · · · · · · ·
: .	4	
· -	•	
i -	· · ·	د میشند. از این این این این این این این میشود میشود میشوند. میشوند میشوند میشوند این این این این این این این ای این این این این این این این این این این
		the second se
	م ويد عمد الرو	na se faar andersker fan in te

1

ORIGINAL PAGE IS OF POOR QUALITY

		PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974)	<
	9366	SUBROUTINE TRE(IS)	
	3367		- ,
	0368	C PROGRAM TO TRANSFORM SUBSYSTEM BY SIMILARITY TRANSFORMATION	
	0370	0IMENSION A (10,10) +B(10,3) +A2 (9,10,10) +B2 (3,10,3) +II (5) +A1 (5,5)	-
-	0371	1+01(5+5)+Q(3+5+5)+111(5)+83(5)	
	0372	1+G(25)+L(5)+M(5) COMMON - A-B-A2-40-11-A1-01-0-11-B2	•
	0374		
	0.175		e
	0376		
	0378		~
	0379	26 C([P]=D(K+L+J)	
	0380	CALL MINY(C9LISUBLLSMM) DO 27 JELSI	
	0.382	DD 27 L=1+L1	-
-	0383	1P=(J-1)*L1*L	
	0384	27 Q1 (L=J)#C(IP)	•
	0386		
	0387		•
- .	0388		
	0387	SED.	
	0391	00 29 17×1-L1	-
	0392	29 S=S+Q1(J+IZ) ^Q AZ(IT+IZ+L) 24 Alt/L-17F	
	0394		•
	0395		
	0396		•
	0.198	32 S*S+A1(4)[2]*Q(JJ)+IZ+L)	
	0399	31 A2(IT+J+L)=S 8	•
	0400	33 CONTINUE	
	0401		
	0403		•
	0404	34 S=S+Q1 (J+L1+82(K+L+K)	
	0405		•
.	0407	20 B2(K,J,K)×B3(J)	
	0408	25 CONTINUE	•
	0409	DO 72 K=1+15	
	0411	00 73 J=1+L1	•
	0412	D0 73 L=1+L1	-
	Q413	IP=[J=1]*L]*L 73 c(19)=0(c) + 1)	-
	0415	CALL HINV(ColloDelleMH)	
	0416	D0 74 J=1+L1	
	0417	00 74 t=14L1 TB=7 = 1 41	+
÷	0419 0419	74 Q(K+L+J)=C(IP)	
	0420	72 CONTINUL	٠
	0421	RETURN	

(a) a set of the se

.

•

and an and a second second

PAGE DOOZ TRF FIN4 COMPILERI HP24177 (SEPT. 1974) - - -042Z END . ** NO ERRORS** PROGRAM = 00561 COMMON = 02510 ÷ . --------- - - ***** -----**-** · · **-** · · · _____ -----1 . a. a. ____ - -----. . A. 20

. ..

PAGE 0001 FTN4 COMPILER: HP24177 (SEPT \ 1974)	×
	`
0423 C PROURAM TO CALCOLATE EIGENVALUES OF GENERAL N HY N MATRIX 0426 C	
0427 DIMENSION A(5,5),D(6),COF(6),R1(6),R2(6) 0428 CALL COEF1(A,N,D)	_
0423 HI=N+1 0430 CALL POLRT(D+COF+N+R1+RZ+IFR)	×
0431 IF (IER.LQ.0)GO TO 10 0432 WRITE (6.100) IER	
0433 100 FORMAT(1X,13HERROR CODE = 012)	•
0435 RETURN	š
1430 EVD	
** NO ERRORS** PROGRAM = 00064 COMMON = 00000	. 6
SP-	
	•
S E	•
	•
A A	•
マロン	•
	•
	•
	•
	-
	· · · · · · · · · · · · · · · · · · ·
	*
	•
	۹.
	•
	•
	e

ç

~	PAGE 9001 FTN4 COMPILER: HP24177 (SEPT.)	1974)	· •
- :	0437 SUBROUTINE UNITI (8-N)		
	0438 C 0439 C SUBROUTINE TO FORM UNIT MATRIX		
-			
	0442 D0 9 K±1.N		
· · ·	0443 DO 9 J#1+N 0444 9 R(K+J)=0+	·	
<u> </u>	0445 DO 8 K≖leN 0446 8 R(KeK)≖le		
•			
-			
	** NO ERRORS** PROGRAM = 00072 COMMON = 00000		
- 	in a an an an a chuir an		
-			
	· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · · · · ·
-			
•	(a) A second se second second sec	• • • • •	· · •
·			
֥	na antina anti	and a second	
-			
. · -			-
·			
-		DI C	
	an a	SE	· ·
-		R	
	n na an	84	
•		AG	
-			
	مى مىيە مەيھەممەر دەرىيە - مەمەر دەرىيە مەمەر دەرىيە مەيھەر مەرىيە مەمەر مەر	<u>19</u> 61	
~		•	
 •••	ne manun varante an menter Managamente per la ser la ser anna a manuna a s		
•			A
-			* 22
		···· ··· · · · · · · ·	

	EN4P 4444							
·				an ann an Anna	· · · · · · · · ·			
0449 4450 C	SUBROUTINE COE	EFI (AyNyD)						•
0451 C	SUBROUTINE TO C	CALCULATE COEFFIT	IENTS OF CHARACTERIS	TIC POLYNOHIAL				I
0452 C 0453 C	OF MATRIX A							
0454 0455	DIMENSION ALS CALL UNITL(Bab	15) +B(5+5) +C(5+5) 1)	+D(6)					٤.
0456	DO 9 K=1.N		· · · ·	-				_
0458 0458	CALL TRACI(B)	1+11+11+11 1+5)						6
0459	L=N-K+1 D(L)=={1_/K}*5	5	· · · · · · · · · ·	a a second co				
0461	CALL UNITI (C+)	4)						•
0463	CALL SCH1 (C+D)	IsN)						•
0465	L=N+1							•
0465 0467	D(L)=1. RETURN	•						
0468	END	···· • ••· ••• •••	·····					
								•
** NO	ERRORS## PROGRAM		NUCH - DECES					.
		M = 00211CO	MON - UUUUU	·				
		H # 00211CO	NHON = 00000					
	-	H = 00211CO						•
	-	H = 00211CO		·····				•
		H = 00211CO		······································				•
		H = 00211CO		······································				•
• • • • • • • •	- · · · · · · · · · · · · · · · · · · ·	H = 00211CO	nnon = 00000	······································				•
	- · · · · · · · · · · · · · · · · · · ·	H = 00211CO		······································	•			•
		H = 00211CO		······································	•			• • •
		H = 00211CO		······································			•	• • • •
· · · · · · · · · · · · · · · · · · ·		H = 00211CO			•		•	• • • •
		H = 00211CO	nnon = 00000	· · · · · · · · · · · · · · · · · · ·	•		•	
······································		H = 00211CO		· · · · · · · · · · · · · · · · · · ·		· · · ·	•	
		H = 00211CO		· · · · · · · · · · · · · · · · · · ·			•	
		H = 00211CO		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · ·	•	
		H = 00211CO				· · · ·	•	
		H = 00211 CO		· · · · · · · · · · · · · · · · · · ·		· · · ·	•	
		H = 00211 CO				· · · · ·	•	
		H = 00211 CO					•	
							•	
							• • • • •	
							•	

PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974) ------0469 0470 C 0471 C 0472 C 0473 0474 0475 0476 0477 SUBROUTINE SCALU(B,N+F) SUBROUTINE TO HULTIPLY MATRIX BY A SCALAR DIMENSION 8(5) DO 8 K=1+N 8 8(K)=F*8(K) RETURN END ** NO ERRORS** PROGRAM = 00041 COMMON = 00000

. . . .

	PAGE 9001 FT	N4 COMPILER: MP24177 (SEPT, 197	4)		
	0478 SUBROUTINE VECPR (A		··· ··· · ··· · ··· · · · · · · · · ·		
	9419 C 0480 C PROGRAM TO HULTIPLY	MATRIX BY A VECTOR			
. •	0481 C 0482 DIMENSION A(5,5),8 0493 D0 9 K=1,N 0494 S=0.0	1(5)+C(5)			-
	0485 D0 8 J=1,N 0486 B 5=5+A(K,J)*B(J) 0487 9 C(K)=S	· · · · · · · · · · · · · · · · · · ·	· · · <u>-</u> · · ·	· ·	• •
	0488 RETURN 0489 END	. –	~	· ·	· · · · · · · ·
	** NO ERRORS** PROGRAM = 0	0075 COMMON # 00000			
. 		<u>.</u>	<u>Ş</u> Ş		
· - ·		· · · · · · · ·	Police		
	•	· .	Solution of the second se		•
		• •• · · · · · · · · · · · · · · · · ·	AT I		
	•		A B		· · · · ·
		· · · · · · · · · · · · · · · · · · ·	· · -··		_
					•
	• • • • •	···· •································	· · · · · · · · · · · · · · · · · · ·		•
	· •·· • • • •	· ••• · · · · · · · · ·	· · · · · · ·		•
		· · ·	•		-
					-

14. A 19. A 19.

·····

nak seri mengen i tem (1990) a seliji 4. De borbergen en bistore te sakon i seliji se seliji se seliji se seliji se se

the second second second

	PAGE 0001	FTN4 COMPILER	R: HP24177 (SEI	PT. 1974)			•			
0490	SUBROUTINE	DISP (R1+R2+N+Z)							• •	
0491 0492	C FORH POLYNON	IAL FROM ITS ZEROS		-						
0493	C DIMENSION R	1(1)+R2(1)+Z(1)+X((8) •Y (8)							
0495 0496	K#1 Y(1)#1.	~	···	· -	• • • •					
0497 0498	Y(2)=0. IY=2	· • • •					•			
0499 0500	20 1F(R2(K) .EQ X(1)=R1(K)=	.0.)G9 T0 10 #2+#2(K)##2								
0501 0502	X(2)==2.*R1 X(3)=1.	(K)	·- · · · ·			-				
0503 0504	1X=3 X=K+1	· •			··· _·· ·· ·					
0505 0506	GO TO 11									
0507	X(2)=1+ Tx=2									
0509	11 CALL PHPY(Z	•1Z•X•IX•Y•XY}			_					
0511	8 Y(L)=Z(L)									
0513	X=K+1 TE4K-1 E-N3G	0 TO 20				· <u> </u>			•	
0515	RETURN	•								
	LIIV									
** NO	D EBRORS** PROG	RAM = 00230 0	OMMON = 00000	- • •• •	• ••••••	Diano di Antonio di An				
** NO	D ERRORS** PROG	RAM = 00230 C	COMMON = 00000	<u>-</u>	·	DELIGINI		•	.	
** NO	D ERRORS** PROG	RAM = 00230 C	COMMON = 00000	<u>-</u>	·	ORIGINAL OF FOOR	•	•.		
** NO	D ERRORS** PROG	RAH = 00230 C	COMMON = 00000	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	ORIGINAL PA	•	•.		
•• NO	D ERRORS** PROG	RAM = 00230 C	COMMON = 00000	<u>-</u>	· ···· · ····	ORIGINAL PACE OT POOR QUALT	•		· · · ·	
•• NO	D ERRORS** PROG	RAH = 00230 C	COMMON = 00000	<u>-</u>	·	ORIGINAL PACE IS OF POOR QUALITY		•		
••• NO	D ERRORS** PROG	RAM = 00230 C	COMMON = 00000	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	ORIGINAL PACE IS OF POOR QUALITY	•		····	
•• NO	D ERRORS** PROG	RAH = 00230 C	COMMON = 00000	^	· · · · · · · · · · · · · · · · · · ·	ORIGINAL PAGE IS OF POOR QUALITY		•		
••• NO	D ERRORS** PROG	RAM = 00230 (COMMON = 00000		· · · · · · · · · · · · · · · · · · ·	ORIGINAL PACE IS OF POOR QUALITY			····	
** NO	D ERRORS** PROG	RAH = 00230 (COMMON = 00000		· · · · · · · · · · · · · · · · · · ·	ORIGINAL PAGE IS OF POOR QUALITY			· · · ·	
••• NO	D ERRORS** PROG	RAM = 00230 C	COMMON = 00000			ORIGINAL PACE IS OF FOOR OUALITY	• • •		····	
** NO	D ERRORS** PROG	RAH = 00230 (COMMON = 00000		· · · · · · · · · · · · · · · · · · ·	ORIGINAL PACE IS OF POOR QUALITY			· · · ·	
••• NO	D ERRORS** PROG	RAM = 00230 c	COMMON = 00000		· · · · · · · · · · · · · · · · · · ·	ORIGINAL PACE IS OF FOOR QUALITY			····	
••• NO	D ERRORS** PROG	RAH = 00230 (COMMON = 00000	- · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ORIGINAL PACE IS OF POOR QUALITY			· · · ·	

PAGE 0001

FTN4 COMPILER: HP24177. (SEPT. 1974)

			the second se	
0517 SUBROUTIN	E PRODI (A+B+N+I+M)			r
0518 C 0518 C SUBPOUTINE	TO NUE TIPE Y THO MATRICES			
0520 C				
0521 DIMENSION 0522 S#0+	A (5+5) +8 (5+5) +C (5+5)	and the second		
0523 00 9 K=1+1	N 7			· · ·
9525 S×0+	n	• ···•• • • • • • •		•
0526 00 10 J=1-	9I 30667.1-63			•
0528 9 C(K+L)=S		· ·	•	
0529 D0 6 K#1+1 0530 D0 8 L#1+1	N N	and the state of the		•
0531 8 B(K+L)=C(I	K+L)			•
0533 END	· · · · · · · · · · · · · · · · · · ·			
·	•			
++ NO ERRORS++ PR	OGRAM = 00183COMMON = 00000			
• • /				•
at an		· ····································		
		-		•
·	· · · · · · · · · · · · · · · · · · ·			
•		** Ř		
3		2 B		
		a a		•
		2 E		
• • • • • • • • • • • • • • • • • • •			- . .	••••••••••••••
••••••••••••••••••••••••••••••••••••••	م موجد محمد محمد المراجع			•
		- 6		
2 1 1 - Angeler Angeler and		<u> </u>		
аранан алан алан алан алан алан алан ала				•
La caracteria de la caracteria de comos conservas				
5.				•
	· · · · · · · · · · · · · · · · · · ·		-	
:			•	•
 Marco and an entropy of the transmission of transmission of the transmission of t	······································			
				•
· · · · · · · · · · · · · · · · · · ·		and and an an an and a second s		-
-				
• • • • •				•
				•

							_
			•				đ
	PAGE 0001	FTN4 COMPILER: HP24177 (S	EPT. 1974)		•		
		·····	· · ·	• ·· •	•••••		
953	4 SUBROUTINE	(DD1 (A+B+N)					•
053	C SUBROUTINE T	ADD TWO MATRICES	- · · · · -				-
053 051	7 G A DIMENSION A	(5+5)+8(5+5)					-
053	9 DO 8 K=1.N			<u></u>			
Q54 054	0 D0 # J=1+N 1 B R(K+J)=B(K+	J) +A (K+J)			•		
054	2 RETURN						
054	3 END						
		24M = 00066 COMMON = 0000	1				•
	NO CRROND** PROD		, ,, ,,	-			
					•	- ·	
							,
						•••	
							,
·	•						
							*
							•
					· · · · · · ·	an par anna a	, sama ang tan ta ta 🖷
•			•				•
				cura a sec a		• •	
3					•		•
	·	· · · · · · · · · · · · · · · · · · ·				••• •• •• •• •	
) I I I I I I I I I I I I I I I I I I I			•
				·			· · · · ·
	•	-		QA ·			
				<u> </u>		•• • •	- • ·
				3rd			
•				×			· · · · · · · · · · · ·
				L E			
		······································		10	· · · · · ·		· · · -
				2.7.2			· · · · ·
			·				and an a show
							4
	ب که د مساه مودید.						
		· · · · · · · · · · · · · · · · · · ·		a paperana in ta ta kiti k			
							*
	•						
	,						

PAGE 9001

FTN4 COMPILER: HP24177 (SEPT. 1974)

1 		· · · · · · · · · · · · · · · · · · ·	· <u> </u>	<u></u>	• • • • • • • • • • • • • • • • •		- - • • • •		
• * ·	0544 0545 C	SUBROUTINE TRACI(A,N,S)	·	x				-	ļ
	0546 C 0547 C	SUBROUTINE TO CALCULATE TR	ACE OF A HATRIX			,			•
	0548 0549	DIMENSION A(5,5) S=0.		· · · · · · ·					•
ъţ	0550 0551	00 8 K#1+N 8 S#5+A(K+K)							
	0552	RETURN	· ···· ····			•			1
• *								· -	
-7	++ NO ER	RORS** PROGRAM = 00044	COMMON = 00000						
·									
· ·			. .						
÷.:									
E		ار دارند. این افرادی این بیشنی می به بیش ایند. ا			· ·		·	• •	:
й — — Н,		•							
·									- •
њ.: "									
	······································		· · · · · · · · · · · · · · · · · · ·		•	·			
	•	و المنظر و الا المراجع المنظر معتقر والتي الو			-				
, 2									
{		an inan an inan Maniford an ini ini ini ini		···· •···· • • ••··· •		•	••• •••• ••	-	
			· ··•	•					
-									
	· · · ·	· · · ·	· · · ·		•			•	
		. <u></u>							
-	•			•					
₩	-								•
-	-								
,						· ·			
			• • •	•					
			14 I.						` 5
•									. !
			-						
		4		-					

PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974) 0554 0555 0556 0557 0558 SUBROUTINE SCH1(A+D+N) C C C SUBROUTINE TO HULTIPLY HATRIX BY A SCALAR DIMENSION A(5+5) D0 9 K=1+N D0 9 J=1+N 9 A(K+J)=D+A(K+J) RETURN 0559 0560 056L 0562 0563 END NO ERRORS ** PROGRAM = 00057 COMMON × 00000 ** DENCINALI PAGE IS POOR OUALTRY

A-30

PAGE 0002 SCH1 FIN4 COMPILER: HP24"/7 (SEPT. 1974)

ENDS 9564

- - -

.

ORIGINAL PAGE IS

í

A 31

A.2. Optimization Program

The only step that may introduce some computational complexities in the optimization scheme described in Section 4 is the solution of the matrix Riccati equation for the evaluation of the local controls. Despite the fact that this computation is performed at the subsystem level and hence involves matrices of small orders, simulation on a digital computer will invariably be necessary. Although many different methods for the solution of the Riccati equation exist in the literature, the particular method that is adopted here is the iterative technique due to Kleinman [19]. In addition to determining the symmetric positive-definite solution P of the Riccati equation

1.1

7. T. I. I. I. I.

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0 ,$$

the program described here also computes the eigenvalues of the matrices P and W = Q + PBR⁻¹B^TP that is necessary in the evaluation of the suboptimality index ε .

The simulation analysis was conducted on the HP 2100 digital computing system (32K memory) in FORTRAN language. In the following description, only the subroutines MINV, SIMQ and POLRT are to be supplied externally (from IBM Scientific Subroutine Package), while the rest are contained internally. Since the computation involves only the subsystems that result from a suitable decomposition of the overall system and hence are necessarily of small dimensions, the program is prepared to handle subsystems of dimension up to five.

DESCRIPTION OF THE EXTERNAL SUBROUTINES (From SSP)

Subroutine MINV

Purpose:

Invert a matrix.

Usage:

CALL MINV (A, N, D, L, M)

Description of parameters:

A - Input matrix, destroyed in computation and replaced by resultant inverse.

N - Order of matrix A .

D - Resultant determinant.

L - Work vector of length $\,$ N .

M - Work vector of length N .

Remarks:

Matrix A must be a general (nonsingular) matrix.

Subroutines and function subprograms required: None.

Method:

The standard Gauss-Jordan method is used. The determinant is also calculated. A determinant with absolute value less than $10^{**}(-20)$ indicates singularity.

Subroutine SIMQ

Purpose:

Obtain solution of a set of simultaneous linear equations AX = b . Usage:

CALL SIMQ (A, B, N, KS)

Description of parameters:

- A Matrix of coefficients stored solumnwise. These are destroyed in the computation. The size of matrix A is N by N.
- B Vector of original constants (length N). These are replaced by final solution values, vector X.

- N Number of equations and variables. N must be greater than 1.
- KS Output digit: 0 for a normal solution; 1 for a singular set of equations.

Remarks:

Matrix A must be general. If matrix is singular, solution values are meaningless.

Subroutines and function subprograms required: None.

Method:

Method of solution is by elimination using largest pivotal divisor.

Subroutine POLRT

Purpose:

Computes the real and complex roots of a real polynomial.

Usage:

CALL POLRT (XCOF, COF, M, ROOTR, ROOTI, IER)

Description of parameters:

- . XCOF Vector of M+1 coefficients of the polynomial ordered from smallest to largest power.
 - COF Working vector of length M+1.
 - M Order of polynomial.
- ROOTR Resultant vector of length M containing real roots of the polynomial.
- ROOTI Resultant vector of length M containing the corresponding imaginary roots of the polynomial.
 - IER Error code where

IER = 0 No error

IER = 1 M less than one

IER = 2 M greater than 36
IER = 3 Unable to determine root with 500
iterations on 5 starting values.
IER = 4 High order coefficient is zero.

Remarks:

Limited to 36-th order polynomial or less. Floating point overflow may occur for high order polynomials but will not affect the accuracy of the results.

Subroutines and function subprograms required: None

Method:

Newton-Raphson iterative technique.

.

PAGE 0001

FTN4 COMPILER: HP24177 (SEPT. 1974)

			•		
		0001	FTNL-1		
؛ ب		0002	PROGRAM RICAT		e
		0003	C SULUTION OF ALGEBRAIC RICCATI EQUATION BY SLETNMAN ITERATION		-
		0004	DIMENSION A(5.5) +8(5.5) +8(5.5) +8(5.5) +50(5.5) +5(5.5) +	an a second and a second se	
۰ مې		0005	185(5+5)+AM(5+5)+T5(5+5)+AUX(5+5)+D(5+5)+P(5+5)+W(5+5)+		
		0006	2R1N(5+5)+SF(5+5)+LV(5)+MV(5)+VR(25)+TB(5+5)+TA(5+5)+		
i	-	0007	3AUA# (5+5) + AUXE (5+5) +		• • •
- - :		0009	44JAG (5+5)+AUXH (5+5)+VB (6)+COF (6)+R1 (6)+R2 (6)		•
		0004	C READ THE STATE DIMENSION N	n and a second	•
•		0010	READ (5+1)N		
-		0011	1 FUMMAT(15)		C C
1		COLE	C ARAD THE CUNTROL DIMENSION M		-•
		0013	READ (5,1)M		•
<u>ں</u>		0014	C READ THE SYSTEM MATRIX A	1. A	
		0015	HEAD (5+2) ((A(1+J)+J=1+N)+1=1+N)	n ann an an ann an an an an an an an an	-
•		0016	2 FURMAT(0F10.5)	変化	
-		0017	C VEAU THE STATE-CUNTROL MATRIX B		•
•		0019	READ (5+2) ((8(1+J)+J=1+M)+I=1+N)		· ••• •
		0014	C READ THE COST MAINICES O AND R	QH	۰.
- - -		0020	RFUD (2+5) ((C(2+7)+7=1+N) + L=1+N)	<u>9</u> 7	- f
		1500	HEAU (5+2) ((R (1+J) + J=1+H) + I=1+H)	i an an anna an an an 🖓 😂 - ann a' an an an anna an an an an	
·		0022	wk11E(6+20)	تم ^ر	:
- :		0023	20 FORMAT (3X+"SOLUTION OF RICCATI EQUATION-KLEINMAN ITRATIVE METHOD"	N N N N N N N N N N N N N N N N N N N	
1.		0024		······································	
		7027		E fa	
		0220	21 FURMAL (DATISTIC MATRIX ATT//)	<u>i</u> 6	
		0021			
		0020	22 write (bt2) (A(1)) $3=1$ (A)	N OS	
-		0027			. '
·	•	0030		مراجع میں میں میں اور	
		0031			
- - -		0006	951 (51972) 35 Eduartes - Betteenaktori Nataty du 275		
-		0030	CUT PORTAL TALLA	a na mana a sana a sa mananananan na mangananan na sa manganan na manganan na manganan na manganan na manganan	
· · ·		500-	26 WITE (4.23) (R(1.K).K+1.M)		
		2022			
		80.17		a a transmission and a second	•••
. می		0038	27 FURMATINA. PROST NATRICES 0 AND RU-221		ં
		0039	ENTIF (5:2A)		-
	•	0040	28 FORMATLING. TO MATRIXT. ///		
		0041	N. 1=1 F5 GD		
		0042	29 KHIF (5+23) (0(1+J)+J=1+N)		
		0043	F=115 (5:30)		· • •
- 		0044	30 FU-mat(//.1X."R MATRIX".//)		
		0045	Mr. 1=1 12 00		
		9046	31 WHITE (6+23) (H(1+J)+J=1+M)	•	•
-		0047	HK115 (5124)		÷
		UU45	C READ THE STARTING APPROXIMANT SO		
		0044	#EAD(5+c) ((50(1+J) + J=1+N) + I=1+M)		
-		0050	10 J I=1+H		
		0051			
		0052	3 S(1+2)=S(1+4)		
		0053	GALI, MAVE (R: M: VK)		
		0954	CALL MENVEVHENELDELVENV)	· · · · · · · · ·	
		0022	LALL VERA (VH+H+H)		
هي.		0055	C FIRST LINDATION COMMENCES HERE		

Ŧ

A 36

•		PAG	E 0002 RICAT	ETN4 CO	MPILER: HP2	24177 (5)	EPT. 1974)								2
					-										. –
-	0057	32	¥RITE (5+33)				•								-
: '	0958	33	FURMAT (10X+"S	TART OF TH	E FIRST ITE	ERATION",	1813								
<u>_</u>	_ 0059 .	•••	BRITE (5134)		ODVININT_P					•			• • •		•
-	0060	34	PURMAI (DAY"SI	ARTING APP	KUNTUNI-2	MAIKIY	<i>11</i> 3								-
	0025	35	- PO 33 14140	(1) .	N1										
	0063	20	wHITE (0+24)	1110170-11											-
· • •	0064		DU 200 NVAR=1	•50											
·	0065		CALL MAMUL (B	+S+B5+N+M+	N)	···· · · ·									,
-	0066		00 4 I=1.N												-
	0067		00 4 J#1+N	••											ł
and the second	.0000	÷ 4	- 82(1+J)==05(1	TUTEN MAT		OBTATNED									1.
🕶 ₁₀	4407 0070	L	Chil KASIMIA	ARSAMANAN	13 114 AU 13 C	SDININCO (1
-	0071		WRITE (6+36)	1001101101	•							• • • •			
	5100	36	FURMAT (5X + "HU	DIFIED SYS	TEN MATRIX-		(S ¹¹ +//)	•							
-	0073		DO 37 1=1+N												_
·	6014	. 37	HRITE (5+23) (A	M(1+J)+J=1	4N) .										
_	00/5		#RITE(6+24)												1
- <u>-</u>	007a	141	CALL EIVALIAM	2N+VD+CUF+	K1+R2)										:
-	0077	:	#H11E16+142)								· · · · · · · · · · · · · · · · · · ·				
•	0078	142	FORMAT (5X - "EI	GENVALUES	OF CLOSED L	LOOP MATR	(1X"+//)								
.4	0019	14.7	UU 143 4≂17N 143 4≂17N	n 1997 n							17 A 19 A				
a	_ 0000	145	2 HALIE (0163/41 24176 (5124)	(U) INC (U)	· · • •						NA				
-	110110	c	THE LYAPUNOV	MATHIX LOU	ATION IS NO	OW FORMED	J								
	0663	-	CALL MATKN	S.IS.MINI							E		-		•
	008-		CALL MAMULITS	+R+AUXU+N+	H+M)						82				-
-	0085		CALL MANUL (AU	X6+5+4UXH+	N+H+N]						ЖÞ				
	0050		CALL MASUM (4)	AUAH+D+N+N	11										
•	0067	C	THE LYAPUNUV	MATRIX EQU	ATION 15 NO	ON PANAL	R(AH)*P*+D				C Ind				-
	0088	-	LALL LYAPU	(UTAMIPIN)							98				
	0004	1	" #MITE (090) Endstt (5%,90)	MATUIX-SOL	UTTON OF L		OUATTONN.	· · · · · · · · · · · · · · · · · · ·		• • • • • •	26				
•	aitel	Ģ		COLOUNTY. 305	UTION OF L	TAPUNOF L	,	•			드립				-
.+	6892	4	entTF (6+10) (F	·([+J]+J=1+	NI .										
	0093	lā	FURMAT (140+10	(2X+E13+5)	d	•					N 10				_
*	0094		WRITE(6+24)												
	. 0095	C	COMPUTE THE /	PPROXIMANT	FOR THE N	EXT ITERA	ATION								
 .	0040		CALL MATRNES	TUNNIHI											÷.
	0097		CALL MAMULI	1N+18+AUX+	MTHIN]										3
	0049		CALL MARGEN	-UA17937974					·····						۰.
-	0033 0100		CALL PARANCE	- PeAUXAeN	•N•N1										
•	0101		CALL MAMUL (P)	A+AUX5+N+*	(IN)										_
	0102		CALL MAMULIN	SFTAUXCTNT	M+N)										۰.
-	6010		CALL HAMUL (P	AUXC+AUX+1	INEN]										<u>.</u>
	010+	C	COMPUTE THE	I MATRIX +	W=0+P+B+R1	N#T3#P									1
	0105		CALL HASUM (D	AUX+¥+N+N)	i										÷~
	0106		ANTIE (PATE)	Ma1017			30D11.2/1								
	0107	191	101 132 1+1-N	041514 -	Rante	-9-414-10	7-6-64441	• •			· ·····				•
-	0100	1 7 2	11111111111111111111111111111111111111	d t t a sta d a la la	. N1										
	0107	4-3 E	RALIE (6+24)		,										
•	4111		112 1=1+H	4										•	•
-	0112		00 112 J=1+#												

.

.

. .

. ي.

_

PAUE 0003 RICAT FTN4 COMPILER: HP24177 (SEPT. 1974)

-		41.4 4 -1		
		0113	115	(L+1) XUA-= (L+
.		0)14		CALL HASUH (AUX+AUXA+AUXF+N+N)
	A	0115		CALL HASUM (AUXF + AUXB + AUXD + N + N)
		0116		CALL HASUM (AUX) (0.4UXF .N.N)
æ		0117	С	CHECKING THE SOLUTION
		0114	•	
	-	0110		
		0115	111	FUSAA (JUX + "CHECKIND THE SULUTION" +//)
-		0120	- 113	WRI(E(0+)14)
-	****	0151	- 114	FORMAT (5X, WALUE OF RICCATI MATRIX",//)
		0122		00 115 1=1,m
÷1		0153	115	WRITE (6,23) (AUXE (1, J) + J=1, N)
-		012+		WRITE(6+24)
		0172	C	MATHIX SF IS THE STARTING APPROXIMANT FOR NEXT ITERATION
- 		0125	С	THE STEADY VALUE OF SE IS THE FEEDRACK GAIN HATRIX FOR THE OPTIMAL
5e		0127	ē	
· · •		0128		
		0120		
		0167		
	· •	0130	. 9	5(1+J)=5(1+J)
		0191	C	AUDITIONAL CUMPUTATIONSCALCULATION OF EIGENVALUES OF
		0132	C	HATHICES W AND PTHIS PART MAY BE OMITTED WHEN THE SOLUTION
		0133	C	OF A RICCATI EQUATION ONLY IS DESIRED
-		01.14		CALL ELVAL (P+N+VU+CUF+R1+R2)
-		0135		WHITE (5, 133)
		0136	123	EINMATTISTUBTIGENVALUES OF BIN - 221
-		0137		
· •			1.10	LINE OF ANY
-		0130	134	
•		0123		N = 3 = (0 + 2 + 3
		0140		(324 EIVAL(W+N+VD+COF+RI+R2)
		0141		wrife(6+135)
-		V142	135	FORMAT (5X+"LIGENVALUES OF W",//)
ie i		0143		no 136 I=1,w
-		0144	136	WRITE (6.23) H1 (1) - H2 (1)
		6145	100	
		11144		
		0140		
- T .		0147	36	FORMAL(IDX***REX) TIERATION COMMENCES HERE**///)
· · ·		0148		wki 16 (5v105)
		0144	108	FORMAT(5x,"HOUIFIED APPROXIMANT-NEW S MATRIX",//)
- 		4150		00 34 1=1*H
	-	0151	- 39	vKITE(6+23)(5(1+J)+J=1+N)
-		0152		WK11E (6v24)
-		0153	200	CONTINUE
		0154	- 49	stop
		0155		
-		4420		
-				3
-	· · · ·		n cuan	
			V CRRU	
				•
. 🛩				the second se
•				· · · · · · · · · · · · · · · · · · ·
-				
-				
-	. .		• •	
0				
	-		-	and the second

PAGE 0001 FTN4 COMPIL	ERI HP24177 (SEPT. 1974)		ź
0150 SUBROUTINE RANUL (F.G.H.N.), 0157 DIMENSION F (5.5), G (5.5), H (5 0154 D) 51 JEL.NN	12,N3) 555)		
0159 00 51 J=1+N3 0159 00 51 J=1+N3 0160 SUM=0+0 0161 D0 52 K=1+N2			
0162 52 SUM=SUM+F(1+K)*G(K+J) 0163 H(1+J)=SUM 0164 SI CUNTINUE			•
0165 RETJAN 0166 ENJ			·····
** NO ERRURS** PROGRAM = 00091	COHMON = 00000		'-
			-
			<u>'</u>
PAGE 0001 FTN4 COMPIL	LER: HP24177 (SEPT. 1974)	1997 - Barnes - Andres - Andres - Marine - Angres - Angre	
0167 SUBROUTINE MASUM(F+G+H+N1+) 0168 DIMENSION F(5+5)+G(5+5)+H(0169 DV 61 I=1+N1	N2) 5+5)		· • · • •
01/0 00 61 J=1•N2 0171 H(I+J)=F(┇+J)+G(I+J) _ 01/2 61 CO+TINUL		38	
0173 RETURN 0174 ERD	•	Dat H	
** NU LANORS** PROGRAM = 00067	COMMON # 00000	NAT RAII	
		QUA	-
Y PAGE UDD1 FTN4 COMPIL	ER: HP24177 (SEPT. 1974)		-
01/5 SUBROUTINE MATRN (F.G.NI+N2) 01/6 DIMENSION F (5+5)+G(5+5)		· · · · · · · · · · · · · · · · · · ·	.
0178 00 71 1-1601 0178 00 71 1-1602 0179 G(J+1)=f(1+J) 0180 71 Cutoff(1+J)	· · · · · · · · · · · · · · · · · · ·		-
0181 RETURN 6182 ENU	en e	······································	
	- 		
** NO ERRORS** PROGRAM # 00055		teres and the second	

PAGE U001

FIN4 COMPILER: HP24177 (SEPT. 1974)

0183 SUBROUTINE LYAPU(G+A+H+N) 0184 DIHENSION G(5+5) +A (5+5) +H (5+5) +P (15) +L (5+5) +U (15+15) +P1 (225) H= (N+1) *N/2 .0165 0166 CALL TRIN(G+P+N+H) 0187 CALL MATL (N+M+L) CALL LP (L+A+N+M+U) 0188 0169 DU 10 1=1+M 0190 10 P(1)=-P(I) CALL MAVEC(U+H+P1) 0191 0192 CALL SIMU(P1+P+M+KS) 0193 IF(#S-1)11+12+11 0194 ____ 12 WRITE(6,100) 100 FURMAT(11+13HSINGULAR CASE) 11 CALL ATRI(P+H+M+N) 6195 0196 0198 ENU ** NO ERRORS** PROGRAM = 01076 COMMON = 00000 FIN4 COMPILER: HP24177 (SEPT, 1974) PAGE 0001 DELGENAL 0199 SUBROUTINE TRIN(A+P+N+M) DIMENSION A(5.5) P(15) 0200 ن بن 0201 <u>}</u>!=0 0202 DU-8 K#1+N 6203 L=K ο 0204 DO S INLIN 0205 H=H+1 QUALL 6206 8 P(H)=A(L+I) .* 2207 RETURN END 6020 .2 v ** NO ERRORS** PROGRAM * 00064 COMMON # 00000 记品 v r 5

. 17 - 7 PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974)

		0269 SUBROUTINE ATRI (P+A+M+N)	în î
-		0210 DIMENSION A(5+5)+P(15)	
		0211	÷
			•
-		0213 t=K	<u> </u>
	••••		
	•		-
			£
		9220 9 A(1+J)=A(J+I)	-
			÷
		0222 END	<i>.</i>
			:
-		** NO ERKORS** PROGRAM = 00104 COMMON = 00000	4° 1
			•
			•
		PAGE 0001 FINA COMPILERT HP241/7 (SEPI. 1974)	2.
÷*			•
-			
		VZZ3 SUBROUTINE MATL(N+R+L)	
~		0224 DIMENSION L (5+5)+L1(15)	÷ .
۰.			
Ŧ		0226 B L1(K)=K	
- ÷		0227 Mixu	5.5.8
			:
-			
		Defar a Loro - Disa -	
• •			
· .	· · -		•.
			:
~~		0233 00 9 J=1+N	
-			- "
		0235 00.9 I#LS1N 20 📑	
-			•
•	•	Least RELIGRO	•
· ·	· · ·		•
- • ·			
	·		-
			-
			-
••		FAGE CODI FINA CONFILERI NEZATI((SEFIA 19/4)	'4
			,
· •	•••		
•		V239 SUBROUTINE MAVEC(A+N+PI)	
		02+0 01884510N A(15+15)+P1(225)	
		0241 DU 6 K=1+N	÷ .
		0c42 00 8 J=1 sn	
••		Q243 L=N*(K−1)+J	-
		Ŭ244 B P1(L)=A(J+K)	- ÷
		DZ-5 RF TOKN	•
~			
	• •	the second s	. ;
* 4			· •
**		T RECERTE TROUCE CONNON = 00000	N# 1
·			:

-PAGE 0001 FIN4 COMPILER: HP24177 (SEPT. 1974) 0247 SUBROUTINE MAVE (A+N+PI) 0240 DIMENSION A (5,5) , P1 (25) 0249 D0 8 K=1.N _____ 0250 00 8 J=1.N 0251 L=N# (K-1)+J 0252 _B 21(L)=A(J+K)..... 0253 RETURN 0254 END ** NO ERRORS** PROGRAH = 00061 COMMON = 00000PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974) 0255 SUBROUTINE VEMA (P1+N+A) 0650 DIMENSION A (5,5) -P1 (25) 0257 _____ 0656 10 8 J×1.N 0259 L=N* (K-1)+J 0260 B A{J#K}=P1(L) a and an a single production of the second states and the second states of the second states are set of the second states and the second states are set of the ____ 0261 RETURN 0262 END ** NO ERRORS** PROGRAM = 00062COMMON = 00000 FTN4 COMPILER: HP24177 (SEPT. 1974) PAGE 0001 . SUBROUTINE LP (L+A+N+M+U) D263 0264 DIMENSION L (5.5) +A(5.5) +U(15.15) Du 11 I=1.M U255 DO 11 J=1.M 0265 11 U(1,J)=0. 0267 0260 DU 12 I=1+N 60 12 J=1+N 0269 0270 00 12 <=1.N OF POOR 0271 II=LII=KI _____ 0212 IJ=L(J+K) 12 U(II,IJ)=A(J,I)+U(II,IJ) 0213 0274 00 13 J=1+M 02/5 0276 1L=L(1,1) QUALITY 13 U(1L+J)=2.*U(IL+J) 0277 RETURN 0276 0279 END P NO ERROLSON PROGRAM = 00181 COMMON = 00000÷ю

			•	
	•			1
	PAGE 0001	FTN4 COMPILER: HP24177 (SEPT. 1974)		
	·····			
	V280 SUBROUTIN	E EIVAL (A+N+0+COF+H1+R2)		·
	0281 DIMENSION	A(5+5),D(6),CUF(6),R1(6),R2(6)		
.	U282 CALL COLF	1 (A,N,D)		· · · · · ·
	0284 CALL POLR	T(0,COF,N,R1,R2,1ER)	·	•
•••••	0285 IF LIER.EQ	.0)GO TO 10	والمسلم مسترجعها والمربع فالتنظيم التقارب المتحاد متراطف ومسترد والمربورة الاقام	·; ·
	0287 100 FORMAT(1x	•13HERRUR COOF = •12)		÷.
	V268 10 CONTINUE			·•
	0269 RETURN 10290 Eng			,
				· · ·
				•
	40 ERRORS FR	00RAM - 00084 COMMON - 00080		-
	PAGE 0001	FTN4 COMPILER: HP24177 (SEPT. 1974)		
	0291 SUBROUTIN	E UNITI (R.N)		<u>.</u>
	0242 DIHENSION	(R15+5)		
	0293 DU 9 K=11	N		
	0295 9 RtK+J)=0.		•	
		N		; ,
	0298 RETURN			
 -	. 0299 END	en gebeur son≣ et s samte an en heidelekterneten gebeur se gesternet. Se stortbals son anteren geb		
				-
	RENU_ERRORS**RE	OGRAM = 00072		
	•	• · · ,	· · · · · · · · · · · · · · · · · · ·	:
			5	5
				-
	PAGE 0001	FTN4 COMPILER: HP24177 (SEPT. 1974)	<u>A</u> S	2
•	PAGE 0001	FTN4 COMPILER: HP24177 (SEPT. 1974)	DE P	
	PAGE 0001	FTN4 COMPILER: HP24177 (SEPT. 1974)	DEL POC	
•	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT	FTN4 COMPILER: HP24177 (SEPT. 1974) IC COEF1 (A+N+D) I A (5+5)+B (5+5)+C (5+5)+D (6) 1 (B+N)	DE POOR	
• 	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 X=1	FTN4 COMPILER: HP24177 (SEPT. 1974) E COEF1(A,N,D) A (5,5),+B (5,5),C(5;5),D(6) 1(B,N) N	DE POOR	
•	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 X=1.0 0304 CALL PROF 0305 Call Trans	FTN4 COMPILER: HP24177 (SEPT. 1974) E COEF1 (A+N+D) I A (5+5)+H (5+5)+C (5+5)+D (6) 1 (B+N) N 1 (A+B+N+N+N) 1 (A+B+N+N+N) 1 (A+B+N+N+N)	RIGINAL PA	
•	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 X=1. 0304 CALL PROD 0305 CALL THAD 0305 CALL THAD 0305 L=N-X+1	FTN4 COMPILER: HP24177 (SEPT. 1974) E COEF1 (A+N+D) I A(5+5)+H(5+5)+C(5+5)+D(6) 1(B+N) N I (B+N+N+N) 1(B+N+N+N) 1(B+N+S)	RIGINAL PAG	
•	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 K=1 0304 CALL PROD 0305 CALL TRAC 0305 CALL TRAC 0305 L=N-s+1 0307 D(L)==(1, -s)	FTN4 COMPILER: HP24177 (SEPT. 1974) #E COEF1 (A+N+D) I A(5+5)+H(5+S)+C(5+5)+D(6) 1(B+N) N I (A+B+N+N+N) 11 (A+B+N+N+N) 11 (B+N+S) /K1+S I (B+N)	RIGINAL PAGE DE POOR QUALL	
• • •	PAGE 0001 0300 SUBHOUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 x=1 0304 CALL PROD 0305 CALL PROD 0305 CALL TRAC 0305 CALL TRAC 0306 L=N=s+1 0307 D(L)==(1) 1 Y	FTN4 COMPILER: HP24177 (SEPT. 1974) #E COEF1 (A+N+D) I A(5+5)+H(5+S)+C(5+5)+D(6) 1(B+N) N I (A+B+N+N+N) 1(A+B+N+N+N) 1(B+N+S) /KJ+S 1(C+N)	RIGINAL PAGE IS	
•	PAGE 0001 0300 SUBHOUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 X=1. 0304 CALL PROD 0305 CALL PROD 0305 CALL THAC 0305 CALL THAC 0305 CALL UNIT 0306 L=N-S+1 0307 D(L)=-(1.) 19 U1=U(L) 04 CALL SCHI	FTN4 COMPILER: HP24177 (SEPT. 1974) #E COEF1 (A+N+D) A (5+5)+H(5+S)+C(5+5)+D(6) 1 (B+N) N 1 (A+B+N+N+N) 11 (A+B+N+N+N) 11 (B+N+S) /KJ+S 1 (C+D1+N) (C+D1+N)	RIGINAL PAGE IS DE POOR QUALITY	
• ••••	PAGE 0001 0300 SUBHOUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 x=1. 0304 CALL UNIT 0305 CALL UNIT 0306 CALL PROD 0305 CALL THAC 0306 L=N-K+1 0307 D(L)=-(1. (3) CALL UNIT 19 D1=D(L) 30 CALL SCMI 0312 9 0312 1	FTN4 COMPILER: HP24177 (SEPT. 1974) #E COEF1 (A+N+D) A (5+5)+H(5+S)+C(5+5)+D(6) 1 (B+N) N 1 (A+B+N+N+N) 11 (A+B+N+N+N) 11 (B+N+S) /KJ+S 1 (C+D1+N) (C+D1+N)	RIGINAL PAGE IS DE POOR QUALITY	
• ••••	PAGE 0001 0300 SUBROUTIN 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 x=1. 0304 CALL UNIT 0305 CALL UNIT 0306 CALL PROF 0305 CALL TRAC 0306 L=N-K-1 0307 D(L)=+(1.) 0307 D(L)=+(1.) 19 D1=D(L) 22-0 CALL SCMI 0312 L=N+1 0312 L=N+1	FTN4 COMPILER: HP24177 (SEPT. 1974) #E COEF1 (A+N+D) # A(5+5)+H(5+S)+C(5+5)+D(6) 1(B+N) N 1(A+B+N+N+N) 1(A+B+N+N+N) 1(B+N+S) /KJ+S 1(C+D1+N) (C+D1+N) (C+D1+N)	RIGINAL PAGE IS	
• •••••	PAGE 0001 0300 SUBRUUTI? 0301 DIMENSION 0302 CALL UNIT 0303 D0 9 x=1. 0304 CALL UNIT 0305 CALL UNIT 0306 D0 9 x=1. 0305 CALL PROF 0306 L=N-K+1 0307 D(L)=-(1. 1 CALL UNIT 9 D1=D(L)	FTN4 COMPILER: HP24177 (SEPT. 1974)	RIGINAL PAGE IS DE POOR QUALITY	
• ••••	PAGE 0001 0300 SUBRUUTIP 0301 UIMENSION 0302 CALL UNIT 0303 D0 9 x=1. 0304 CALL UNIT 0305 CALL UNIT 0306 CALL PROF 0305 CALL PROF 0306 L=N-K+I 0307 D(L)=-(1.) 1 CALL UNIT 19 D(L)=-(1.) 19 D(L)=-(1.) 30 CALL SCH 0311 9 CALL SCH 0312 L=N+1 0313 D(L)=1. 0314 REIURK 0315 END	FTN4 COMPILER: HP24177 (SEPT. 1974)	RIGINAL PAGE IS DE POOR QUALITY	
•	PAGE 0001 0300 SUBRUUTIN 0301 DIMENSION 0302 CALL UNID 0304 CALL PROF 0305 CALL PROF 041 DO Y 0411 Y 0411 Y 0411 Y 0411 Y 0411 Y 0412 L=N+1 0313 D(L)=1. 044 REIURK 0415 END	FTN4 COMPILER: HP24177 (SEPT. 1974)	RIGINAL PAGE IS DE POOR QUALITY	

ويتربيهم والرابي والمقتصرون بالإبادة المتعقبية فالمتداد

and the second second

and the second s

الم التي الم التي الذي الم التي الم التي الم الم الم الم الم التي التي التي التي . - معنيا المعمول التي يالي الله المعام الم 1996 الأ 2000 مع الم 2000 من الم 2000 من المعام الم 2000 من الم 2000

. . . .

water and the second second

en mede

والمتحديد والمحمد

0310		
1120	SUBHOUTINE SUMI (A.D.N) DIMENSION A 5.5	
0318 0418		-··· · •
0320		
0.121.	RLTURN	
0322	END	
≈# N	ERRORS** PROGRAM = 00057 COMMON = 00000	÷
	PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974)	
6323	SUBROUTINE TRACI(A,N+S)	- · · •
0.324	DIMENSION A(5+5)	
0325		-
0327	8 S=S+A(4,5K)	
6323 .	RETURN	
0364	Fundamental second s	
40 N	ERRORS** PROGRAM = 00044 COMMON = 00000	
	PAGE 0001 FTN4 COMPILER: HP24177 (SEPT. 1974)	
0.1.10	SUBROUTINE A001 (A+B+N)	**
0331	DIMENSION 4(5+5)+8(5+5)	
2660		
0333	DU 6 J≠1,N N 8 K 1 1 = K (x. 1) + A (K. 1)	
0335		<u>م</u> . ـ
9559	FNU	
** N	ERRORS PROGRAM = 00066 COMMON = 00000	
	PAGE UND1 FTN4 COMPILER: HP24177 (SEPT. 1974)	
5137	SUBROUTINE PROUL (A-B-N-I-M)	
	01MENSION A(5+5)+B(5+5)+C(5+5)	
0336		
0334	The divertial	
0338 0339 0340 0341	DU 9 K=1.N DU 9 L=1.K	
0333 0333 0340 0341 0342	DU 9 K=1,N DU 9 L=1,M S=0.	
0333 0333 0340 0340 0341 0342 0342	DU 9 K=1,N DU 9 L=1,M S=0. UU 10 J=1,I	
0337 0338 0340 0341 0342 0342 0343	DU 9 K=1,N DU 9 L=1,M S=0. UU 10 J=1+I 10 S=S+A(K,J)+B(J,L) 9 C(S+1=S)	
0333 0333 0340 0340 0341 0342 0342 0344 0344 0344 0344 0344	DU 9 K=1,N DU 9 L=1,M S=0. UU 10 J=1+I 10 S=S+A(K,J)*B(J,L) 9 C(K+L)=S DU 8 K=1,N 0 I	· • •
0333 0333 0340 0341 0342 0342 0342 0344 0344 0344 0345 0345	DU 9 K=1,N DU 9 L=1,M S=0. UU 10 J=1+I 10 S=5+A(K,J)*6[J,L) 9 C(K+L)=S DU 8 K=1,N DU 8 L=1,M	· • •
0333 0333 0340 0341 0342 0342 0343 0344 0344 0345 0346 0347	DU 9 K=1.N DU 9 L=1,M S=0. UU 10 J=1.I 10 S=5*A(K,J)*6(J,L) 9 C(K+L)=5 DO 8 K=1.N 8 8(K,L)=C(K,L) F	
0333 0334 0334 0344 0344 0344 0344 0344	DU 9 K=1:N DU 9 L=1:M S=0. UU 10 J=1:I 10 S=5*A(K;J)*6(J,L) 9 C(K+L)=S DO 8 K=1:N 20 8 L=1:N 8 8(K;L)=C(K;L) RETURN FND 0 H	
0333 0334 0344 0344 0342 0342 0344 0344	DU 9 K=1:N DU 9 L=1:M S=0. UU 10 J=1:I 10 S=5*A(K:J)*6(J,L) 9 C(K:L)=S DO 8 K=1:N DU 8 L=1:N 8 8(K:L)=C(K:L) RETURN END	· · · · · · ·
0323 0334 0340 0341 0342 0342 0342 0344 0344 0344 0344 0344	$\begin{array}{c} DU \ 9 \ K=1, N \\ DU \ 9 \ L=1, M \\ S=0. \\ UU \ 10 \ J=1+I \\ 10 \ S=S+A(K,J)+B(J,L) \\ 9 \ C(K+L)=S \\ DU \ 8 \ K=1, N \\ DU \ 8 \ L=1, M \\ 8 \ 8(K,L)=C(K,L) \\ RL \ URN \\ END \end{array}$	
0339 0339 0340 0342 0342 0342 0344 0344 0344 0344	$\begin{array}{c} DU \ 9 \ \text{K=1,N} \\ DU \ 9 \ \text{L=1,M} \\ \text{S=0.} \\ U \ 10 \ \text{J=1,I} \\ 10 \ \text{S=S+A(K,J)+B(J,L)} \\ 9 \ \text{C}(K,L) = S \\ D0 \ 8 \ \text{K=1,N} \\ D0 \ 8 \ \text{L=1,M} \\ 8 \ 8 \ \text{A}(n,L) = C(K,L) \\ \text{RETURN} \\ \text{END} \\ \end{array}$	
0333 0339 0340 0341 0342 0343 0344 0345 0344 0347 0344 0347 0344	DU 9 K=1,N DU 9 L=1,M S=0. UU 10 J=1+I 10 S=S+A(K,J)*B(J,L) 9 C(K+L)=S DU 8 K=1,N DU 8 L=1,M 8 B(x,L)=C(K,L) RETURN END EHRURS** PRUGRAM = 00183 COMMON = 00000 PAGE UU02 PR001 FTN4 COMPILER: HP24177 (SEPT. 1974)	· · · · · · · · · · · · · · · · · · ·
0333 0334 0340 0341 0342 0343 0344 0345 0344 0347 0344 0347 0344 0347	DU 9 K=1.N DU 4 L=1.M S=0. UU 10 J=1.I 10 S=S*A(K,J)*B(J,L) 9 C(K.L)=S DO 8 K=1.N DC 8 L=1.M 8 B(A.L)=C(K.L) RETURN END ENRORS** PRUGRAM = 00183 COMMON * 00000 PAGE UU02 PRO01 FTN4 COMPILER: HP24177 (SEPT. 1974)	