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ABSTRACT

The basic equations of quantum scattering are translated into the
Wigner representation. This puts quantum mechanics in the form of a stoch-
astic process in phase space., Instead of complex valued wave functions and
trangition matrices, one now works with real valued probabllity distributions
and source functions--objects more responsive to physical intuition. Aside
from writing out certain nccessary basic expressions, the main purpose of
this paper is to develép and stress the interpretive picture associated with
this representation and to derive results used in applications published
elsewhere. The quasi-classical guise assumed by the formalism lends itself
particularly to approximations of complex multi-particle scattering problems.
We hope to be laying the foundation for a systematic application of statisti-
cal approximations to such problems. The form of the integral equation for
scattering as well as its multiple scattering expansion in this representa-

tion are derived. Since this formalism remains unchanged upon taking the

classical limit, these results also constitute a general treatment of classi-~

cal multi-particle collisiun théory. Quantum corrections to classical pro-
pogators are briefly discussed. The basic approximation used in the Monte-
Carlo method 1s derived in a fashion which allows for future refinement and
which includes bound state production. The close connection which must exist
between inclusive production of a bound state and of its constituents is
brought out in an especially graphic way by this formalism. In partiéular

one can see how comparisons betwesen such cross-sectilons yleld direct physical




insight into relevant production mechanisms. Finally, a2 a simple illuskra-
tion of some of the formalir. we treat scattering hy a bound two body system.
Simple expressions for single and double scattering contyibutivns to total
and dlfferential cross—-sections as well as for sll neesssary shadow gorncec—
tions thereto, are obtained. Thesc arc compared to previous rosults of

Glauber and Goldberger.
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I, INTRODUCTLON

This paper developes the cluments of what may be called the Wigner
representation of quantum geattering., It is well knoyn that quantum mech-
anics can he formulated entirely in terms of density opeiators and, linear
operators (often called superoperaters in this context) which act upon the

densitieS.[l’z’g]

The Wigher rvepreseutation of densities puts them in the
form of real functions of the coordinates and momenta of the system's part-
icles. In other words, density operator matrix claments are functions
defined in the classical phase space of the system. Schroelinger's equa-
tion, correspondingly transformed, is o linear equation for the density's
time dependence. It looks like the equation governing a Markoffian
Stochastic process in phase space. The integral form of Schroedinger's
equation, the Lippmann-Schwinger equation in the usual Hilbert space repre-
sentation of the theory is transformed into an integral form of the equation
of continuity. The equation of continulty relates densities, currents and
sources. Thus, upon translation into the Wigner representation, the funda-
mental equations of quantum scattering appear in terms of these physically
graphic and trausparent objents.

| The main purpose of this paper 1s to develop and stress this plc-
ture and, in parﬁicular, to indicate hwow its graphie, intuitively appealing
nature may be expinigéd i the formulation of approximations to complex

multi-particle scattering problems.



Ia

The formalism encompacsen Foth o Lase ot ood guantun geatterine,
In fact the Wigner representitlon ig espe fally conntincued to po over amooth-
ly to the classical limlt. In taking thi: limik nonc . the equations change
thelr form dor do any of tho symbols apre i, ' ther change in dnterpovta-
tlon or role. Schroedinger's equation goes owr Inin the Liouville equatiwn
and its integral forn oimilariy emerges 22 bthe coassical foteersl equatoon of
motion obtained here in its most peneral fﬁln.fgdi

Quantum mechanics rngsumes a cionszics? ool o bhis formalismgy In
this lies the source of ita3 iImtuitdve - wew. Hevortheless, zince we have
here merely another representation of ordroary guantum pecboplen, 2Ll of the
latter's wave and interference properties wust b hidden withln., What has
happened is that this translsiicn of quantuer meebanies uecessarily gives
birth to a non-classical stochastic prosess. Dengitles are not positive
definite and in addition exhibit long range n=eillatory behavlicr--just thag
needed to produce interference. 7%hus although the total strucrure of the
formalism developed here and the various roles played bv igs olements (densi-
ties, sources, ete.) are isnnovphle to classical theory, the particular
functions needed to represent these elemsuts will differ considerably in sowe
respects from ‘those of classiecal stochastic theory.

These qualitative romarks point to the cireumstances in which it
may or may not be useful to employ this representation. The property being

observed should not depend critically on hich arier interference effects OF
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concomitantly on the existence of certain long range order or correlations.
There also should be a signlficant advantage in being able to visualize the
process quasi-classicallv. By this we meaa that during the time in which
the reaction takes place, at least some¢ of its main parficipnnts can be uge-
fully pictured as having simultancously defined pesitions and momenta while
moving alonpg trajectories in classinal phase space.

Generally these properties oceur in conjunction and typify systims

which have been difficult to treat by other methods. Thus one may hope tgwfr
the approximations cngendered by this represcntatlon will be complimeﬁfgry to
those previously established. .

An example satisfying these conditions occurs in megium and high
energy collislons between various projectiles and nuclei. [Llastic scattering,
most of it diffractive, is treatable by the Glaubey approximation, the multiple
scattering expansion, the optical model nr, various combinations of these. This
ig a highly coherent process depending critically on high order nterference
cffects. Inelastic scattering, in which the target is left in mne or possibly
a few well defined final states, may also be treated by such methods. This
leaves about half of the possible reactions unaccounted for-~the non-elastic
collisions--in which many nuclear species may be produced in assorted multi-

. plicities and momenta. Since these final states are so complex, one generally
observes averages over them such as inclusive cross-sections and multiplici-
ties. This washes out most high order interference effects. Since this for-
malism is written directly in terms of the density matrix, such averaging

may be automatically done with utmost ease and elegance. In contrast, when

calculating in the usual Hilbert space with pure final states, one must en-

umerate them, square and approximately sum over unobserved final states (e.g,



using closure). Such procedures are finessed by this formaliem., Finnlly,
perbaps the most important attribute this formalism hrings to such ~ nroblem
is Lts quasi~classical guise. These collisions involve maay particles, high
orders of multiple scattering, possibly collectlve motilon, and large ¢rergy
and momentum transfer. It 1s ver; difficult to swe such phenomena in farms
of waves in multidimensicnal position or norcntun space. the mlnds eve 1y
irreaistably drawn to hydrodynaulce, thermodvnamic o1 transpert iaeory type
pictures in vwhich joint average distribution functiong din pusition and mom-
entum play a central role. In conitast to previous ad hoc application of
such concepts to such preoblems of scattering, they occur here as natural and
systematic approximation procedurec of ordinary quantum mechanies.

Another fleld which may be mentloned is clhemical reactions. Here
again complexity 1s most often the rule, statistdeal averaging the natural
ally, the important steric properties of the compounds is casily represeut-
able and, an added positive factor, short wavelengtlis often mak: the problem
seml~classical as well as quasi-classical. The Wigner representation is
gspecially sulted to the semi-classical ldmit.

[1i] which will not

There are other potential areas of applicatdon
be discussed since those already mentioned should serve to illust-ate practi~
cal reasons and requislte eriteria for use of the reprerenisaticn, Hoewever,
it should be finally noted that the Wigner representation has had a leng

(12} Whet is bBeing daveloped

history of use in, especially, transport theory.
here is a version suited to collision phenomena cn complex yet microscopic
systems.

A synopsis of the remainder of this article fellows.
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Section II: Elementary definitions, exsmples and theorems connected
to the Wigner reprcsentation are given. A Bro-Ket notation is introduced to
designate elements of the vector spece of density operators, The mapping of
operators from their usual representation into the new one is given,
Sehroedinger's equation is then transformed into the new representation.

Seotion IIT: The semi-classical limit is very briefly discussed.
The propegator for finite time trenslations on densities (not pure states) is
obtained as o perturbation series in terms of its clessical, not free, velue.
Thus, just as one thinks of waves propageting freely between successive scat-
terings by & potential in the usual repr.ientetion of perturbation theory,
here a particle moves on its classical trajectory between successive guantum
jumps. These ideas lead to practical formulae for computing gquantum correc-
tions to semi-~classical processes but this brench of the subject will not be
developed in this paper.

Section IV: The most basic concepts used in scattering are intro-
daced in the context of potential scattering. The time independent integral
equation for scatiering is derived. The effect of the potential on the in-
coming suationary flow of particles from the accelerator is expressed by a
source distribution function in phase space. This gives the net rate of pro-
duction of particles being produced by the potential with a certain position
and momentum according to the heuristic, quasi-classicel interpretation of
the symbols in this formalism. Source functions are in many ways analogous
to transition matrices but here occupy en even more central role in the theory.
The relation between the solution to the integral equation and the observed

scattering cross-section is established by noting that the spatial integral



of the loeal production rate of varticles of s certain momentum is the total
production rate which in turn is the incident flux times the differential
cross-~section.

Section V: The results of the previous secction ore extended to the
multiperticle problem where, it is expected, the most cffective use of the
formalism is to be found. TFormulae continue to be analegous to stondard re-
sules of scattering theory in multipartiele Hilbert space.

Section VI; The multiple scattering expansion is derived. The re-
sult is quite similar to that of Watson. Here the role of the fully off
shell transition matrix is taken by a 'Jump operator'.

Section VII: The general properties of the jump operator for two
perticles interacting via a phcnomenological potential are fully as mysteri-
ous as those of its counterpart, the transition matrix. lMuch cnergy has
been expended but little physical intuition can illuminste the off-shell prop-
erties of the latter complex Tunction. Two limiting forms of the jJjump oper-
ator are examined, the elassical and the dilute. The relation between a
particle moving on a clessical trajectory and the concept of sources previcusly
developed is explained. In the dilute limit, in which all particles are very
far from each other compared to all other lengbth parameters of the problem, we
obtein the basis of the Monte Carlo.method.[h] However, having obtained this
not as an ad hoc procedure but as a well defined quantum mechanical approxi-
mation, one sees immediately how its range of application may be properly ex-
tended to include bound final states[5] and in addition, how systematic
improvements in the spproximation may be made for less dilute systems.

Section VIII: The multiple scattering formalism is developed

further and then applied to find expressions for various simple but important

= s e s s B L RTINS BE T S S



production cross-sections. In addition, the close reletion betwaen inclusive
production of & bound state and of its unbound constituents is discussed. It
1s pointed out how comparison “etween these measurements can provide informa-
tion on production mechanisms.

Seetion IX: As a finel illustration of the formalism we look in
some detail at the simplest problem to which it might usefully be applied;
scattering of an elementary projectile by a two body bound state in the di-
lute limit. The lowest order term in the multiple scattering expansion
gives immediately both the differential cross-section formula first derived

[6]

by Goldberger for quasi-free scattering by a bound particle as well a8 a

corresponding expression for the total cross-section. The second order term *
gives an obvious shadow correction to Goldberger's formula (the effects of

which may be seen quite dramatically in reducing the backward peak in

[13) a shadow

proton-deuteron elastic scattering at intermediate energies),
correction to the total cross-section which is compared to that of Glauber[TJ

and, the expected double scattering contribution to the differentiasl eross—

section. All these results are straight-forward to obtain and transperent !
in physical meening. They are written in temms of observed cross-sections. Vi
They are extendeble in a straight forward fashion to more complex systems

[8]

and also to non~dilute systems.




1I. ELEMENTS OF TIE WIGNER REPRESENTATION

We begin with a resume of previous resulys concerning the Wigner
representation. Detalls of certain standavd derivations which may be found
in the earlier literaturce ore omltted, Inttisn?3iv, discussion will be confined
to the case of one spinless particle. The cxtension to more theu one spinless
particle is strailsht~forwnrd and will be used in later sections. Throughout
the paper we ignore spin and indistinguishability of particles.

Let P be any opstator ou single particle Hilbert space. Its
Wigner representative is defined to boll]

@w(g,£)=§dg o TR

i
Sy
o

0
e
M
.?Q
i

K per gl ot g-TL7 ()

We will give some simple examplea. Let }ﬁ nnd f_ denotc the ordinary position
and momentum operators and let (9(__'4 J‘f)denote some functions of thcse oper-
ators; thex

(G, x, g2 = Gx)

and

(&Y, x, £) = ) (z)
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When C9’depends on products of conjugate opcrators, then thedr ordering will
have duec offuet. Another instructive example is the density operator of a
normalized Gaussian wave packet state in Hilbert space. The Wigner repre-

sentative of this operator is

T a exp [+ (C ¥ =% Y /0 %)™ ]

o=

- expl-% U P = P /0P ] , (3)

where X and I are averages and A Xt Afk = Z.

For any operator (9,
<x100%> = (dp G2ny=? Sycx, £,
LS P> =§dx (2w Oy (x, £, ()
lof = (dx <x 1 oi1x>

i

[dx dp @am)-® Sucx, p). (5)

In particular, if &ia a density operator p y then the normalization con~

dition is
lpl = 1. ()
It can be seen that P,‘, appears ko be a sort of Joint probability

distribution function in phase space, the volume element of which is given

by

- ' -3
dx d£ (zt)"* = dx d£ h
(since Tr» =4 ). We find 1t convenlent to denote a point in phase space by

a single symbol

(5’ ""{1:—:'42&




+0

and correspondingly a volume clement as
dy = dx &g ard?
A
It 15 straight forward teo chov In general that for any twe operators Cg’und
9’
r
/ o e ! (7
[ &) =) dyg G ) T ) :
In particular, the expectation value of any ( F1n the state deseribed Ly /-’
is given by
LY R o
lp @b = {dg potg) i) (53
Thig Ls consistent with a probohillty density interpretation of /’w . What
is inconsistent with this interpretation howevar, at least in *he
ordinary sense, ic the fact that a’raough /’;.1 Is necostarily real, i is not

necessarily positive evecywhore, Thus

SAq’ d‘{’ /}m“(’)
garngt refar to the piahvathility of a realizu'le meanurement (measuring whether
the partdele is in A(f) for arbltrary reglons, /'3(1{7, of phase gpace. This
is consistent with the Aquantum acehandcal fact that o every replon of phace
space there does not necuussarily corrvespond a physically weallzable measure-
ment. In particular, Fal (? miht violate the uncertainty principle limit.
As we shall see, this foct ducs ot appear to affect thie heurlstic value in
thinking of /0.,, as a joant prabability distribution functlen In the quantum
scatteilog formalism to be <daveloped.
Bquation 1 maps lilbert space operators onto phasc spnrce functinus,

The inverse mapping may be performed with the help of the operator

Rex,£)-§dg e" X 1p tg5cpatql

which hag Wigner reprecentative
(R (1,.{{))‘) ( 'E,’ ;42/) = (L'ﬁ)? B(K-;{f) g(fﬁgi)
M ' b

(t0)

(2)
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or

(R L)), (¢) = §Cu, vp') (1)
Thus f{JLf)nmps into the Dirac fdelta density in phase space. Although 1t is
noc a true quantum mechanical density operator, since it does not describe o
physically realizable state of the system, it will be a convenient heuristic
device to speak of it as a density. i

We now note some useful properties of R(Q); ,
fdce Ry = 1, | Gz
| Ryt = 1, 3

Guup) = 1 & Rupyl (14 )
IR tg) RegD | = T, ) . (s ) é

The above erquations lmply

3 = Sd‘? | & Rugd | Rw) e ) :
In fact it is easy *to see that this integral has the same Wigner representa-
tive as 697 It therefore must equal (Sth long as distinct Hilbert space i
operators map into necessarily distinct phase space functions. The latter
statement is true because the Wigner representation is accomplished via a
Fourizr transformation on the matrix elements of CS%’

Ancther bit of notation is now inﬁrbduced which serves, a1 ng other

things, to enhance the analogy between the usual quantum scattering formal-
ism and the fepresentation of it to be developed here. ‘E)Ljis consideréd

[2]

and written in bra-ket notation as

as an element of a linear vector space

V0> .

L el
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<S>, |1 &> [ ©F 3, |

fdce O 10D Gs iy () ()

al

1}

We alsp write

| Ry> = | y>, (19 )

from which one gets

KWL &> = Guly) (zo)
<¢f|q>'> = Bly, @) (zv)
gdtf yd><¢i = 4 (22

Quantum operators appear in this formalism in two distinct ways:
as kets, of the type Just introduced, or as operators on kets. Generally,
density operators are mapped into kets. Now let (f*kuui/ﬂ be any Hilbert

space operators 90 generally being a density operater), we write

L Cp >, ‘

n

>N \/J\;

it

(-9;2.1()\/' ‘/0(9>- (z3)

Previous authors have shown,ta] in affect, that the matrix elements of these

operators are given by

<@l S LGS - S, q) (exp 27 ) <oty

. { © (s = (9, (@) (exp-BV<qpry’'>.
<@ e\ @ o @)
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wvhere /\ 1s the Polsson Bracket operaktor,

fAq = (2722£)(270x g)-(2Bxf)(o/0£3) (25)

. Alternatively we note

<@V O 'y =<9l O Reygy>

Similarly it 4s easy to see that

<@l Gatlg> = VR & R, (27)

Thus they are related by transposgition:®

<EL O] W'y = <@l O 1 g
= <pl Ot 9y (2 7)

We are now prepared to consider the form which dynamics takes in
the Wigner representation. Schroedinger's equation is
2/t P = ~i(Hp - p W) (2%)
as written in the usual Hilbext space. In terms of Wigner representatives

this becomes

ot \p> = il Wp-pH7
= -1 (g - Bg) l/o 7
= D\f’? (20 )

It is easy to see from the preceeding that the hermeticity of H implies

A B (31)

= | Cug) O Reg9l (z6)
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from which are abtained

D= D% g
In additlon we note
-
D=-D

The antisymmetry of the time evoli.ion operator is sufficlent to prove con-
gervation of probabilivy and time reversal lavarilance,

By choosing to think of <:Lf|f9;’ as a probability, this ropre-
sentation of Schroedinger's equation appears to describe the time evolution
of a 'stochastlc process', [fltti;’. Schroedinger's equation becomes its
differential equation. The procedure leading from this equatlon to the mas-—
ter equation and thence to regions of statlstical physics has been under
investigation for a long time. This paper is not an attempt to contribute
to such lines of rescarch. Rather, we wish to show that the analogy to
statistical physics implied by the probability density interpretation of
<q’ ]f’7may be carried through to all the basic equations of quantum scatter-
ing theory, In fact quantum scatterlng theory falls most naturally iuto the

mold of a stochastic proéuss degeribable dn classical phase space.

—
w
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ITI. QUANTUM CORRECTIONS TO CLASSICAL DYNAMICS

The dynamical equation can be re-expressed as
. A
B/t <yipy = Hg) (-2 5in = ) <qip?> >4)
where HU{»’) 1s just the classical Hamiltonian. The first term in the expan—

sion of the sine gives the classical Ilouville equation

/ot <qQIpy = ~HPY N <@1pY (35)
Let us call Dc_ the operator which generates classical time evolution;
<@iDelpry = -HRIW ALQLIpD (36 )
It 1s clear that the solution to the classieal problem ls given formally by
.t '
e =TIy = | Yoty,e) > (37)

where L?c_ 1s the function which gives the coordinates of the phase point of
the classical trajectory at time & such that (-ﬂr_ (¢,0) = (P

Let A(f) be the operator which corrects the classical propagator,

et -+ Ar(e) e Pt )

It satisfiles
'a/})f ALt’) = e_,.Dt(D—-_Dc) e_,'--‘Dc't

= A e (D-Dye F (39)

Its perturbative solution with initial condition N (oY= \, is

[ )
Aley=1 +§ dt° ePC(p-v) e”

o t’

t &’ ” ~-D. "
+ L At‘fb de’ e")‘t (D-DHYe

D+ e

- e (D-D.) e

4+ .- ‘ | LAO)

-

LR

i
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The first quantum correction to the matyrix element of the time evolution

operator is thus given by

<w'te®f - e Ly

t
= go dt' <« ({)‘h(cp:.—t‘) [ O-D .\ L{Jc(tp,t--t’)> -

using equation (37).

The interpretation of this equatlon 1ls that a particle may travel
from LF to (f'in a time T via an infinite vagiety of puths in phase space.
Each path is itself made up of some nuaber of classical path segments, the
first beginning at if" and the last ending at (Pl The particle moves class-
ically along the first segment, performs a quantum jump through phase space
to the second when it reaches the end of the first and, proceeds in like
manner until the end. Lach quantum jump, say that going from point q’. to
(f, » occurs with a probability <l O-Dc { ¢fs> . This probability
may be negative. In fact, due to the antisymmetry of both D ang Do, the
time-~reversed jump always océurs with a sipgn opposite that of the time-
direct jump.

It is interesting at this point to exhibit in more detall the
jump probability operator's matrix elements for potential scattering. 1If
H.._. PZ/ZM + V(__)S_} then it is easy to see that only V can contri-

bute to P - D‘._ . We have

<Yl Voly'y = | Ry v Rugn

[l
R
“«
(> W
z
L)
+
A 4
-
a2t
<

f
OA
_~
”n

1
R
v

S,
(Y
LY 4
g

-~

#

\
*

(+t)
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so that

<YL D-Dely’>
= Sx-z)ffdy e ERIL

-1 ( Vexst yy- V(z—é‘g))-tzn)z'( %sx Vx) “ag S(p-g’))‘f

This shows that a particle may experience a finite jump in momentum but not
in position, which is what 1s expected for a particle subject to a random
forece. One can show that the average of this random force is just the

classical force.

“3)

E [t armdit

b

—
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IV, CURRENTS, SOURCES AND CROSS-SECTIONS IN POTENTIAL SCATTERING

In this section we wish to develop the essential ideas of this
paper in the simplified context of potential scattering. ‘These results will
subsequently be extended to the general multiparcicle, multichannel case.
The plan here is first to derive the integral equation for scattering--the
Lippmann-Schwinger equation in the Wigner representation. Next to relate
the solution of this equation to the cross—-section. TFinally to interpret
the symbols appearing in these results in a way which brings out clearly the
analogy to statistical physics.

let

Do =-2 L (B2 - (B°/2m) e ]} 4 a)
be the time evolution operator in the absence of interaction. Dxplicitly,

using the expansion in terms of Poisson Bracket operators, it is

<YIDo = - - Yox <l “5)

EE

where
= £/
Let l(att)TP represent any density of freely moving particles,

>ht lpLer> = Do lpes 7 (4¢6)
and consider a density |/9‘”(t)7 satisfying

|/)“’"u)> = \/J(c)7

7)0 ('t—t:

b ’) .
+J Jt' e (D-Ps) I/J‘“Lrﬂ?
—

(47)

18
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then clearly

/2t |f9"”Lt:)> = D lf"“(t)‘y (4.?)
and

Mirm ( If‘”u—)b - |/J(e)>\ - Q. (‘i{q)

L% ~ o0
Thus |/_\ﬂ"u—,> is that solutior to the potential scattering problem with

boundary condition that it approach a specific free density [/—' L&) as
t> — oo
We next specialize to the casc of stationary flow. If /)('f:.l is
chiosen to be time independent then /l(*’( ¢) must also be statlonary and
the integral equation becomes .
9 —Det _ ) )
lfou-'? = lf>+[s_mdt.€ 1 (p-2.) \() >(50
The upper 1limit on the integral, being arbitary, is chosen for convenience

at = O . Now since

e®tlx p>-\x+ve, £> 1)
then
<1)—gle"1’°t = < X+Ut, £ (52)

Therefore the integral equation can be rewritten as

SE,RVPTD = <x, plp?
+I°dt <x+wt, £\ D—'Do\[-"+’>.(55)

As we shall see shortly, this equatilon has a very simple interpretation. We

note in passing that

o
g dt e P
— 0

i

~ O
S_ dt e~ (P="7)E

-

i

-~ (Do -%)"" (54)

. .
B T

e T
s

. \
N

e
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in the limit 7——!-0 » Thus we can also write
1 p*'7 = 1p7 - (Do-7) 7 (D-Da) 10> (£5)
To obtain an expression for the cross-gectlon we first consider the
standard incoming beam of one particle per uult volume. Thus we set
lp > =IE>915.:I;_-‘£|;§,¢L’E7 (5¢6)
The gtate represented by this density provides an entering flux = vz . One
denotes by lE‘”? the corresponding solution to the stationary scattering
problem. Then
TJetlx, )= o <x, PLE®> (57 )
is the current: density of particles of momoentum .ﬁ sat up by the interaction
and
(2m)-2 dg §, To-d8
S
where ,S’ is a surface totally enclosing the region of interaction, is the
total outgoing flux of particles within thu interval d,_f about P. Let
gig, {E)A‘ﬂ be the probability that an incident particle of momentum

gE be scattered by the potential into the corresponding interval. Thus

G—('E_, "Ke) 'lrE = -S:S’ :‘EE . {_jé’ (’.'Zﬁ')-i‘ (5‘:5’)
Applying Gauss's theorem we get
G g, §) Vo - (am)P] dx sp0x, R (57)

vhere the integral extends over all space and the source function Se is

defined by
Setx, £) = o/5x - Te (%, £)
= U 2Dx <x, g V>
= - <X, Ll D | E®S

= <X, L2V D-Dyl P> (60)

2 e -

dm— - .



21

The cquation of continuity when anpplied to a stationary ¢ ~tribution
shows that the divergence of the current, the source function as defl.al here,
does indced give the local rate of production of particles within the clement
dq’ = dz d:g (am) =3 | Our equation for the cross-section therefore
merely states that the total rate f production of partlicles In interval d,ﬂ s
is the Integral over all space of the loeal production rate. It is easy to
sgee that the usual differential cross-secction is given by
TR, £) = L £V B(ILL-1R1) do/dsz (61)
The equation for the sourie Tunition in terms of the density func-
tion can be rewritten as
Se () = [ dgp! <@l D-Do V' ><qp' 1 V> (62)
Now <@)D L'y 1s the total probability per unit time that a particle
at (P! will jump to @, vhile <tp ) Dol¢p'> s the contribution to that
probability due to simplr free particle streaming. Thus by the above equation,
since d o "(Cf" E“’y i3 the number of particles In steady state in dep :
Szt dtf is the rate at which particles are jumping dnto dtf due to the
potential. This is equal and opposite to the rate at which particles are
Jumping into d(f due to strecaming. The net rate at which particles are jump—-
ing into cltf is zero since we are In steady state il.e.
S dg' <pi D1 g’ ><ptem> = o, (63)
The Wigner representation of the Lippmann-Schwringer equation for
the time independent wave function of the scattering problem can be rewritten

as
< (t+) . -
x, pl > <X, pVE>

+:¥;dt Se (X v E, £) (64)
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This expcesses the number of particles to be found in dlf as being cqual to
those which would be there in the absence of the potential plus the net num-
ber (possibly negative) of arrlvals of thosc streaming in to this interval
after jumping in somewhere upstream becausz of having undergone an inter~
action,

In the usual Hilbert space representation of scatterlng, an cqua-
tion for the transition matrix may be derived from the equation for the wave
function by operating on the latter with the potential onerator. A similar

maneuver here yields a similar result;

SE(.‘—f) & <(f‘—D""Do\E\¢’

o
' ’
+ jd‘f Saodt <PLO-Paip'D> SE((Po(‘-P,t))"
(65)
° J T e -~ )‘£'

In sumaary, what we have shown is that the elementary relations of
scattering theory translate, under the Wigner representation, into elementary
relations of transport theory. The only thing wheh distinguishes quantum
from classical theory in all of this lies in the details of the jump pro-

bability function < Y ‘ | DP-Dal >




V. CURRENTS, SOURCES AND CROSS~SECTIONS

FOR MULTIPARTICAL SCATTERING

Qur firast step will be to generalize the 'density' aperator, K(‘f),
describing a completely localized elementary particle to obtain a correspond-
; ing operator for bound systems of clementary particles. Consider s a sim—
plest example a bound state, D , of particles 1 and 2. Lot |:£’o> be the

lillbert space ket corresponding to a momentum elgenstate of D . Then

| o> *Id;ﬁ. dPr SHLID> S (A, A2 42 ) (646 )
whare

P = (M - Mg S Mie M)

Thus <»,{ZID7 ts the momentum space wave function deseribing the internal

structure of this system and

<PIDY —.-[af <DILILIDS = | (67 )

We find it useful to define, as before,

o (o) = [dg e % X | poetgocgo-tal (%)

This is now a two body operator but it has much the same properties as before,

In particular

‘( d%. Rotywy) = G | (69)

23
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| Rotygd | = 1, ' (70)
I Ro ‘({’D)RD(‘(’I;)‘ = 3(Yp, ‘Fa') , (74}

whera ‘f)D-'-‘ Zo) -420 and @D is the projection operator for D. Using
as obvious extension of the expansion theorpm written in terms of the element-

ary particle density operator thf) waich was previvusly discussed, we have
RD (qo) = S d (-?l C‘(f;_

‘ lRD(q’o‘ Ru () Rz.“f’:.) l K. () lK-:.“PL)
(72)

Carrying through the algebra ylelds

RD (“fp) = jd‘-f o ‘-‘f) (Rnl-‘fl) RLL(,’I) (73 )

vhere '_KJ ) f. , X, :El- are the linear combinations of Y.0, ;P-, x, ;E

appropriate to the center of mass transformation and

-<12«-%:1|D><D|-£+'t1> (74)

is just the Wignex representative of the internal structure wave functlon

of V.

The set of internal phase coordinates of a bound system will be

given the generlic symbol '1’ . Thus in the simple case we have been discussing



T g e
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$ %o, o3 2,23 = {4o; 5o,

) dxo dPp M) P dx d g = dgp 4 Tp

ete. If the systea D were to be instead 4 a 3 body system, the set ED
would denote two internal phase points and 8o on. In all cases of N

elementary particles bound into a state V) we write

dg, 0 dgy = dyp d 1, (75 )

Rotgo) = § d 2, wp (1)
"Rsl‘-?u)"' ‘KN(LQN)

Consider next the integral equation of the stationary density
describing a beam of particles B scattered by a target A in the labor-
atory frame. DBoth B and B may in general be bound states. Assume the
whole system to be made up of [\ elementary particles. The incoming
channel will be denoted by the subscript AB. The incoming channel
Hamiltonian 1s Hg[;. In the absence of any interaction between /A and B
the incoming density operator satisfies the Schroedinger ‘equation

/> ¢ Pag le) = -7 ( Was fas ) = facte? Hag )

or

'D/D't "0';(5(&)> = -Dﬁ.g, sf,ﬁrb (&2

Proceeding as before we obtain

‘/"ﬁrfs”> = l[)ﬂu v

+ [ S.w dt e_""- Das ] (D-Pag) \f’n»efw7

¢ )

77 )

(7®)
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for the stationary scattering state.
To obtain an expression for the cross-section we again construct a

standard density describing the unperturbed system.

‘f)’“}\/’ = \ABD = ‘K:\‘o/c”jd.’i"’ RG(161£3)7 '
(79)

At this point the objection might well be raised that since thils operator
doeés not really represent a plysically realizable quantum mechanlcal state
of the system, an error may be made in its use as the unperturbed initial
state in a quantum scattering problem. A wore careful and lengthy deriva-
tion not reproduced here, shows this not to be the case. It 1s yet another
example of a phenomenon noted earlier; the formalism Is iIndifferent to the
quantum nature of the problem. This density describes a target particle A
localized at the origin with zero momentum while at the same time a steady
stream of bombarding particles B flows in with mcmentum _fa and flux

vg = ‘:u:'ﬂ | = \.Pg/ﬂﬁ".

Due to the interaction, this distribution is altered to become

| AR>S = | AB>

b [T e e PRt (DD L ARy (3o)

o

-t
Suppose one were interactéd in the inclusive cross-section, A!—- 3 —> C +
anything, where C is some, iﬁ general, bound state of the system. Asymptoti-
cally far from the origin, the components of C, if it is a bound state, will
have negligable probability of being close together unless in fact they are
in their bound state. Thus, at large distances < «@c | A B, where

L Wey = | Retwd >

is the prob  1lity density for finding € within d(-Pc . Note that this inner

product, + e it is in fact the Hilbert space trace of 'Kc(tft_) with the
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stationary density describing the collision, includes an integration over
unobserved final state particles and an integrstion over ?Q , the intemal
coordinates of C . The current of particles C far from the reglon of

interaction is

T a4 CH) = Te <l ABEIS (vz)

[ lad .
Proceeding exactly as in potentlal seattering ylelds, now for the inclusive

production rate

GE;M} (72:.\ 'U“B = 5(‘1‘- (arc)? S‘-}ﬂ-B ("P‘-) (33)

where

.Sc.;/lﬂ (@) = a/a:x‘c - ;‘:ns (@)

= AV e ‘D/a;_x‘:. <(-P('.‘| ABH‘)>

Note next that, 1if Hc-.is the Hilbert space Hamiltonian acting on the sub-
space of praticles in  such that
Hr.(-;ﬁc.? = (‘4?:1/1“-:) “4?57 (24 )
where \-QL) 1s the Hilbert space eigenket of momentum :[?c, then it is
stralghtforward to prove that
~i (He R (@) - Re(@e) B = e %bxe Retyd @)
This implies

Dc ‘L?c'7 E‘- : a/a‘;f_c | (P > (S’G‘

- Ue - _")/E)}_t. < "P‘-l

]

I

<('P{.‘ ‘Dc,.
c b _ < He +~— H o &
PEley - le Mt R e 7
= ' RL(E_L “'1,.{"- ‘:_-, :Eﬂ) 7

,_.-ll;_-rf}’t, :t:.? (5’7]
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Further note that

<Y\ Dz = o (<< )
where 'Dz 1s the gencrator for all particles not included in the cluster C.
This is true because the symbol < L[’J as used hare contains an lmplicit
integration over all the phase coo~dinates of these unobserved particles;
this fact, in conjunction with equation 12, yields the result.

Combining equations 87, 88 and 83 yields

Sc,in.g, (-("et-) nl <""r_| ""Dr_ \ (B B"*">

= L@ D-Dc-Dz | ABY >

or

Se.np (4) = <Y\ T L A “'> | (89)
where I: is the sum of all interactions between members of C and members
of C. --the set of all unobserved particles dn the final state.

It might be noted that this equation is very similar to its analog
in the ordinary representation of scattering theory except that it is simpler
having eliminated all reference to unobserved final state channels by means
of the closure idea.

Cross-sections for two or more particles in the final state may be
derived in a similar manner. For example, consilder the cross-section for
A+ G —» ¢ +O ¢+ anything. The pertinent two particle phase space
probability density is <(f.{fpl A B> . Consider surfaces ,5::_ and
IS’D y exterior to and enclosing the region of interaction. The probability
that C be found in a"g‘.. A-’Bc about Ke, A2 and, at the same time,
that |) be found anywhere in the vol.ume VD surrounded by 5:; with momentum

in le.'o about EO is
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d p. dpp dxe () ,(V dx, M) <. ofpl ABMS (50
D
The total number of such rairs of particles being produced per unit time is
GED;AB (fc Lo / ‘Rl’)‘lrﬂ‘ C‘*;Qx. ‘-J"-'-‘:D
= d.p. 4Po fs’f_ (2my-3 "‘,.,é'c- - Ve
© e gv‘, dxo QW)™ <@ pp | ABTS (17 )

Vp -

This can be converted by use of Gauss's theorem to

U_c.D,'AB C e Lo fs) Us -

= i Mo | dxe @mT o VoK

. S\Io dxe Am)™7 L @ o} ABY > (72)

The order in which the limits are to be taken when the integrand is written
in this form is important. In fact, were the order to be reversed, the
integral would vanish since for fixed XD , < L{’c_ Yol A ?’(“D must
rapidly vanish as ,l{“[ —» oo , and vice versa, due to the necessarily cor-
related nature of the particles' emission. We can take advantage of this

fact and add to the above integrand the perfect differential

Up - X <o (ol ABW

et

without changing the value of the integral. This allows us to write
- -3
G-_C.D;As CA2c, o ) Vs = fdl‘ @)™ dl:" @)
' ' “
(e g T -PhEe) <G @o \ BB,

(7 3)
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We have deleted the symbols

Gern K
\V, -> oo Vp—> o°

because in this form the order is clearly lwmaterial. Further, using

(Ve - %xc + Vo %xo ) <Y fol

= <o) (=D -Ds) (74)

J

wvhere € © i1s the set of particles neither in C nor D, one obtains, in

complete analogy to the one particle inclusive case,

G:_o,-ns (Re, 0 ) £o) Ve

= (dx@w) dxo ) Sco as (4o ¥R) (@)
where ,
Sco;ne L@ @p) = < We Yol X 1A 8> @7)

ICiD is the sum of all interaction between members of the set C D and the
unobserved set € D as well as interactions between members of € and members
of D.

Thus we have obtained the general integral equation for
and shown how to write down the expression for any desired cross-section.
The formulae are simple generalizatlons of those obtained in potential scat-

tering and analogous to those of ordinary scattering theory.



VI. MULTIPLE SCATTERING EQUATTIONS

The analog of the Lippman Schwinger equation for the multiparticle

problem, given in equation 80, may be rewritten as

LPB™> = | PB> + Gaw Tag |ABYD (2% )
where o
Gapg - g dt e —Paet
= o0
= - o
= = ( Dag -7 ;0 (79 )
and
IAB = P - DA‘"B (Ioo)

are the Green's function and interaction operators respectively. As in the
case of the Hilbert space representation of the problem, there is an alter-
native form for this equation:
lag™ > = 1AB> + G Tas |ADBD (tot)
where
G = - C 'I)";} ) !
The full Green's function Cﬁ may be expanded in the usual manner. We write

the interaction as a sum gver palrwise parts

Do + 1T . : (.‘Dl)

——

Y,

T = 2 Ta : | (103)
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where o runs over all pailrs of particles in the system P +I53 . Now define
a 'jump' operator by

I, = T4 +La Go T (o)
where

Qo = ~ (Do —5)~" (1o5)

Thus the two body jump operators take the place of the two body transition
operators in the usual development. There is one interesting difference
between the two representations however; neither the Green's function or
consequently the jump operators used hure have the energy of the #FA -+ 3
system as a parameter as is the case with the transition matrices in the
Watson expansion. Thus there is no possibility of an 'off-shell' or 'half
off-shell’' type jump operator ;nd, in fact, the same jump operator is valid
for any energy and any system in which the corresponding two particles apprar.
This fact does not effect the algebrale structure of the equations which is

the same here as in the usual analysis so that we get finally

Q = Qo + Qo J Go , (1ot)
T =T +T 6o (107)
a-td’,-_-_]:'d_ + ¥ Qs T & , (102)
Z T(.d.\ - (109 )
A s

F A = Tq + 5_ J e C'}o To\ (iteo)

B #A
QI, = Gota + ° Go ¥ Go ]:;(

= Qo Iy, + Go L T-T.7

= G, TO (ter)



33

The last result inserted into equation (101) yields
/ {ah }
tABYS = | AB D é Go T {ARD (i1 2)
where the prime on the summatlon indicates that o¢ is restricted to all palrs
not interacting in the A B channel., The perturbation expansion of equation

(110) ingerted into equwation (112) is the multiple scattering equation:

A\ PR > = | ABS

’ —_—

2
’ e Tz GoT.
+ g_ pé;m G ﬂC? Jg VABD

PR _ (v13)

L



VII. PROPERTIES OF THE JUMP OPERATOR

Before extending further the multiple &cattering theory begun in the
previous section, it will be useful to examine the properties of the elementary
operators appearing in the expansion given in equation 113.

Consider first po ‘tential scattering and the matrix element

<@'tolg> = <) Ga™' G 147

1]

oo
f dt v x' <l ePC/p> Ctid)

According to the probability interpretation of the symbols developed in this
paper, <¢f'f e 2t/ (> is the probability density of a particle to be at
Lf” at a time Z after it was localized at . The integrand in 114 is thus
the divergence of the current set up at £ at f !, Applying the equation of

continulty we get

[a e
<qliotgs= J, d2 [ scpler - %u prgle]

Fa =]
= _L dt Scplt) + <Pplgd

where Stl{,ft) describes the sources due to the interaction and /ﬂlq’;t- ),
the particle probability density at any time &. S:ané .S('q’,’t-) is a time
rate of production, its time integral equals the net production. We can now
describe the situation as follows: An external source pumps a net of 1
particle into the system at (f’ . The system over a perlod of time reacts and

redistributes this source distribution from < @/ ¢D to < ¢p1 v .

34
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Since O is in the naturc of a probability one must have
jc‘lf"(lf'lﬁ_'ltp?i':l (IIS‘)

This 1s in fact satisfied by the theory alrecady since, using equation 106,

o = t A _J c.')o (ll‘-)
and

fde'<ciz =0 | (177)
identically.

The relation between the operator U and the function S,¢ ‘P) already
introduced in the discussion of time independent potentlal seattering (equation
60) is,

Se ) = §des <911 gy v (1%)
where ?f,‘-’ =(‘£_7_A.-) 2-)>
E,g is the 1mpact parameter two-veckor perpendicular to the entering momentum
£€ , and EE‘"‘) — &2, along the beam line, where the accelerator is siltuated,
The equation says that the accelerator is a source distributed randomly over
the plane 21:-‘ = - 00 with an average density of one per unit area. The sys-
tem reacts to this 'external probe, by redistributing this density. Thus a
particle introduced at (ﬂ? will reappear at ¢f with probability density

<Lf jo | fz. The cross-section is

G (g, pe) = §dxux)? db. <qplo Qe CHf)

In principle G could be computed using

<qoig> = gy [T

. I Rl‘{)') e._-'l-\t thf\ &4-.th-‘ Cizo )

if the spectral decomposition of H is known. This seems to be a difficult

task. It will be seen that one can often avoid such an explicit computation.
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The classical limit is of practical intercst and can be discussed
in some generality. We have, as discussed in Section III,
D= O,

2,

I . - oo '_.'a/'x’ w! é‘
K@l Tl Yy7 - ,dt v 2x! <l @ | ¢f>

i Do A
— / i
= fde <@t -0, e™* [y \
(121
To see what this says imagine a numerical integration of the ¢lassical equa-
tior of motion., Time is segmented; the fixst dnterval ip O T < &y

the next is8 7, € £ < 7. , ete. During the 2 e intexval the trajectory

)
is approximated by a straight line -

Lo le) = Kite) v Vi (E-t;.)

Xy () = Kisl) (vrz)

vhile the momentum ;p; 1s constant. The momentum changes discontinuously,

as 4f by an impulsive force, at the instants Z,, £ +*- . Thus
ty
—~ ’ I 'Dot
SY'loel ¢y = Z _L de <p'f-Uoe T 1 >
L=| ;_,_ .
= L'l ¢?

+ Z_ [’—( ‘F'I zt.-ﬂ', fn’ > ""<"'f”.-"-("*': e b]

T

(t23)

having used,

- Da c: '-Db““t-t = R 'fié Q;Dotl

- [ ot .
S T I P

. (z" 4?' ) F (,}“ {)"f" L{’.'“'E S

caiiga el o -
FEERET T R N T
i
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Thus the reaction of the system in the classical limit to an imposed
unit source at Lf is a line distribution, along the classical trajectorv, of
gources and sinks. At each spatial point subsequent to X there is a unit
sink for the old momentum going into the point and & unit source for the new
momentum leaving the point,

Another limit of considerable practical and conceptual Interest which
can be discussed in some generality may be termed 'dilute'. This will be
applied to a multiple scattering problem when the distance between successive
collisions is large compared to other ciaracteristic lengths of the problem=-
wavelengths and ranges of potentials of particles. In particular this limit
implies no necessary ordering between wavelengthe and ranges whereas the
classical limit requires wavelengths to be smaller than all other characteristic
lengths.

Consider, for simplicity, scattering by a system of fixed scatferers
centered at points Eggu The multiple scattering sexries ds still given by
equation 113; the subscripts now range over fixed écatterers‘ indices. 1In
any one of the terms of the series in which the < <h jump operator 11”4
appears it operates on some particle dengity functien; call it Va:’- Iin
the dilute limit, 1/0 v 1B set up by sources centered far away from Mx_gl .
This leads to the conjecture that any such density must be slowly varying over
the scale of distance set by the size of the e scatterer, the range of
its potential. We could then, expand l/”:> about X« and, in the most favor-

able case, keep only the lowest order term; thus

T, ‘f7 = fd«.( RPN Y ><qplp>

2 dg Ta bp> <xa, plp? G124 |

L T
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Howaver, Quantum Machanics implies the exletence, in principle, of
substantial oscillations in (,97 agsoclakted with interferences. These would
viry on the seale of a wavelenpthv and contradiet the conleetsee,  Thio gueation
in reselved in the further quantunm neelionical reewirocont that sonrces Lo dis-
tributed over a vertain minimon co-don In phase opacce Medllations due to
dingribured sources wash ont dncreasingly with dstaneo=efn the dilnte it
thoy disappear,

When the conditinm of d¥lutencss 44 ot strong cnovph o allor 4l
worrivs agpoclated with the appromimat.on of equatdon 124, other factors may
asaplut.  Rapdomens 1o often fnvobed to accouplish phase averaging. ) rela-
tively density packed medium sueh 2o oa 1lquid or o anelews will posseas only
short range order. The approximation in equation 124 wieht he pood provided
only that %f7f> contains no contribution in which a ncar nodphbor of o uay
the last scatterer. Terms in the moltiple ceattering serdes vhieh deseribe
nu&eesaiva'ﬁeatterings hy near nﬁlghbnrs'might b treated separatelv, leading
to an expansion in powers of correlation functions of the vedium,

Another eseape hateh npuﬁu iF the vavelenprh of he partieles(s)
beiny seattered is shore cﬁmparud to a lonp range conponsnt of the potentials
dotnp the seattering. It 1s straight Forvard to show that the multiple seaie
tering serden can be re~written so that the classical propagator (ic: replaces
(%o +  Goncurrently the Jump operator Is replaced by one wilch resresents tie
stochastic quantum jump correctlon to the clasaical motion as diseusned in
Section IXI. This correction iy due mainly to the shortrange component of the
potential. Such cores mny-be Bpaéed wvidely enough apart for the diluteness

condition to apply.

ORIy
TNAT,
- OF poop, ngxg?ffrs

... .

it
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1 of
Ja& lf) is the source distribution created by the o — scat-

terer when \‘a") impinges. This must always be integrated over another

density, say <f'| to calculate an observable probability, (/’ N ’f’> .

But the arguments applied to Ju \[J'? , apply to <{J" J= , using time

reversal invariance. Thus one can write
<P Ta = (do <pt > <ot Ta
= jdcp <pUE £ ORIV
Combining equations 1Z4 and .25,
<Pl Ta l@>F S(xA-%X2) T(X ~%x)
-_(d;g' dx <q'ft Ja iy

In contrast with the general expression for ¥ given in equation
120, this approximation for the closely related jump operator is eésy to
evaluate and interpert. Note that
fdx1x,g>
1s the density for a unit concerning plane wave state. It can therefore b
written as
@) | (Vpo<p) >
where “7) is a Hilbert space ket. Next note that
Jau = G).;' G L«
which, in combination with our integral equation for scattering, equation

vields

Tufax 1 x p>

Gas )

(12¢)

e

aa27)

(128 )

101

= (25 3 Cj;' [ \ U-{’“’)’( “P(“')> -—'[ (lp><.f)l)7]

(29 )

[

LI
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RHence,
S dx'dx <x'p"I Y, \x, >
mam? fax <!t 6 [ Q<P
~lupr<p 2l

=ary §dx' v olx’ [ < g Rux!‘ g1 £
- <Pl R, £\ {2>])
(130)

uging equations 5, 7, 18, and 19. Inserting an expansion for R(;};‘; £')

such as given in equation 9 and writing
< pled gl pT>
=<prtql £
+ Cecpy+io -e(,g’rkg.‘))”' T (£’+%g_'/- £, 131 )

<L p-2
<V g-2q'7
+ (e(g)-io —ecp-14")

T et p),
(132)
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for the usual expression relating outgolng wave solutions to Green's functicn

and transition matrices, one gets,
j de' dx <x, 'V T Vv x, p>
=am?® {ax' dg' ¥ Yoy e’ ¥
fcpl gty (e rio-etgria)) T gt p)
vaptigl £ (ecy-io ~ecp-ig))T Tty p)
+ €Lp) +io —&q;%tg,’!)"(ecg) -7o0 —-e(,p'——t;a') y~!

A (-ﬁ,&".‘. g,l) .12) —r‘,‘*(f'—{ 7_’, £)¥ (132)

e —

The terms linear in / are the complex conjugates of each other. The first

!
of these integrates over Ai to become

(2#)3fc11’e "if.!'(yz’g'.z’) (€lp)+io-€(prg))”
e (g7 £) (134)

with @ ‘2 ( f-’- ¢ﬁ ) . The integral over c{l’ will give a d -function

distribution in ‘7’ so that we can write inside the integral
Integration over fx‘ now gives '

LS -p) Y T (£ £) (13¢)

The sum sf£ *the linear terms in Tis

[

U (i357)

2 (z1m)b Scp'-4) gm'z:(f/'f), (137)

i ey ey i 4
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The quadratic term may be easily evaluated by noting again that the % /
integration restrdiets the dntegrand to the neighborhood '? Yo « Thus ve get
& —— ’ z . - r
o | . ) V.
(am) ’ a G ;L I ?ﬁ:;'a LR

-(ecp)+io - € (,{3’4—:},;’)]"' (ez.g)nr'o-e(fi £20)7

=7 (aw) Tlecp)y-ecpy) | e’ prf* (13 %)
Hence we obtain in the dilute limit,

<(f’l:j_¢ ,(f’>

et
=

B(x'-%w ) (ATM)* S (x -% )
{ 5(‘4?’-—2) 2 ha Tatg2; £) + Stecp’)-ecpr)am lTawffi\}

(139)
Using the optical theorem and the relation between the transition matrix and
the differential cross-section

T LTy = WP T ) (\40)
VS L L) AW Stecp-ece)) \ TS @\ 04

where (E(,g’; Q) 1s related to the differential cross-section by equation

61, this result can be rewritten as
<L Cg” ’I :T‘,( / ¢‘>

S(x - Ku) TUX -Zx)

@) - g -py T T ()

+ G (43';4:_)} (1az)
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This equation says something which could have been written down
right away using elementary considerations. In particular, a density |\ F>
impinging upon the o T fixed scatterer gives rise to a source distribu~

tion function

<Y Talp>= (o )’ Sex'-%x)

'_fd:e Fawm)y =2 o<z, p1p> 4

pi_,s‘(ff‘ﬁ)g;‘rofﬁtt-r) ¥ G;(&’;ﬁ)}

(14 3)

The first bracket is the incoming flux per unit area of particles between
‘E and —f »d.P at Ka . This is multiplied by two factors in the second
bracket; the first gives the number produced per unit A;p "at £ g posi-
tive source term; the second gives the number lost to the incoming beam--a
negative sink term.

This result can be immediately generalized to include non-~fixed
scatterers, Let o now refer to a palr of particles, e.g. particles 1 and 2.

Then we have

S VT LY
2 @M S X ~Xa) BB -Pr) Sexd) Seza)

A T T B s ) G )

-f \?‘_‘l "1{:| GTL ({fn(_ / «42".)} (,44)
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where 25“' j;; refer to phase coordinates of the center of mass while 25;,
.55,,app1y in the center of mass. This result may be obtained from the for-
malism but can be written down directly on physilcal grounds.,

The advantage gained in lieving derived this approximation via this
formaliam fs thst it is now part of quantum meshanical scattering theory. The
possibllity of systematlc refinements to any approximation is thexreby created.
We have already dilscusged quantum corrections to the classlcal limit in Sec-
tion III. The possibility of combining the classical approximation (for mo~
tlon through the long range part of a potential) with the dilute approximation
(for transitions induced by short range potential cores) has been mentioned.
In addition, finite size corrections to the dilute approximation, arising
when the range of the potential is not negligably small compared to the dis-
tance between scatterers, have been calculated.[S] The relation between the

dilute approximation and Monte Carle calculations has been discussed else-

(51

where.

e



VIII. MULTIPLE SCATTERING EXPANSIONS OF

INCLUSLVE CROSS~SECTIONS

The previous section developed certain limiting cascs which are
useful for future applications and serve to 1llustrate and clarify the mean-
ing of the basic jump operators that appear in the multiple scattering expan-
slon. We now return to more general developments of the theory. Formulae
for the simplest inclusilve production processes are rewritten in a multiple
scattering form which facilitates their interpertations and computation in
many cases of interest,

It is useful to define a symbol, qg):f(Jﬂ) s for the sum of all
scatterings beginning with the o and ending with the [9 pair. Simple

expansion'in powers of the Jump operators will verify that it satisfies,

(A3 . T gq‘g + .57‘ Tp Ct- Sp.{) Go A Bl
= Ja Bap + —? PTEO- 5.y G, Vo

(4 .)’j

Furtheérmore, using eguation 106, 107 and some strictly algebraiec manipula-
tions, one can show that
T - TLSup r Tp G T
Particle B impinges on a composite target A. Consider first the

inclusive source distribution function for [3 observed in the £inal state.

Application of equation B9 shows,

45
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Se,as (Wo) = <ol Tg L A

=L P i Tg (L +GTas) \ABS (t47)

Since Igl = TAB , the sum of all iInteractions between 8 and constituents
of A, one immediately obtains
Sg,nsn (s ) = aZ’a, < Ya') BT aes ar)
where @ and @ ' run over all constituents of fA. If, for cxample, A were a
two body bound state composed of particles labelled 1 and 2, the multiple

gcattering expansion of equation 148 yields

So;ne (48) = <¢qsl Tay + Ty,
* Iﬁl (-'-!o -‘TE-I * —IB! G K-LS‘L

vt L ABY (af)

These expressions will be evaluated in the dilute limit in the next section.

Expressions for the inclusive production of a single particle other
than the incident one {knockout), follow in a similar manner. These source
functions are, of course, to be integrated over Space to give the total pro-
duction rate or, equivalently, the cross-sectilon.

Several examples of practical interest involve two or more particles
observed in the final state. They may be in bound or unbound condition. Our
intuition would like to relate, for example, a two particle inclusive produc—
tion rate to that of a bound state of the same two particles. The present

formalism brings this out in an especially graphic manner,



47

The inclusive source function for the bound state production of I>,

made up of constituents 1 and 2 originally in A is given by equation 89:

Sojae (Qg) =~ <@g iy lABY> (iso0)
that for 1 and 2 unbound is given by equation 97:
Sie; A (R @)= <@ QT (A BT Gsy) ,
")
Now
— ————
_‘_ - I r Z__ .L‘a'
© ‘e A,
* Tiag + Z—- T, e (152)
a#l,
while
I, = T4 ) =
. T A D + Iu, ('J'B .

Thus we see that the basilc source functions required to calculate bound and
unbound production differ only in the term

<K@ Y, Tt pe*>
This term represents final state interactdon between the observed constituents.
It is the sum of all contributilons to the multiple scattering series in which
the very last interaction is between the constitusats of the observed final
state. This final state iInteraction must be deleted in the computation of
bound state production~-included in the unbound.

Except for kinematics which especially emphasize the role of the

final state interaction (e.g. at low energies and low relative momenta
e,,-. -f-.,’ of the observed pair), this term is unimportant. It is useful to

define a source function which neglects this term;

ot

S,..

jAE (@Y= <@¢/9 Il To 1AB> (154)
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Than

-raewa

To,ne (RpI Vg, = jdgf,u, (3—1"')"3500 x'dp'@mn)?

’ wD"X’! 42!) gl'z.jﬂﬁ (‘fl,(fl.')

— , (155)
U—Il-jﬁﬂ ( ’i’-u’,':?-.') “U'B = g Clil (zar)-> d}_‘-' (2“‘ ) =3
= ' ]
- S.,_;A,,(q'. W,") (15¢ )

~t
where G‘;'z,’-n.g is the cross-section less final state interaction contri~

bution. In the above formulae we have used:
/ — Y / -3 ! ’ . r
("—fp‘*Sd)_‘, dp @) 1px’, )< P

dx dxd = dx'dx%y

"PD’ = '-E'l ‘ £L’ )
.;?"-' ( Mz -;E.’-*Ml 4.31-') /(l"l.%-M:.) . (t51 )
These equations say that the source function ?, giving the spat-
ial probability distribution of the origin of the particles produced. in the
interaction already contains all the information necessary to compute the
bound state production rate. One just convolutes "S’ with the Wigner density
*)p describing the bound state. Thus, for example, a Monte-Carlo calculation
approximating the multiple scattering series and hence providing an estimate
of "§ , can, without further effort, provide an approximation to the bound
state production rate.
1f one further approximation, often valld in practice, is made,

. ~t 4
these relations become even more striking. The dependence of § on ,g is
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‘
agsumed to be much less rapid than that of ZW/p which is peaked at f =a

In this case one has

!

D—.Pjﬂﬂ (:Po') Upg = S Xo zﬂ‘r)”Sd}' lq’oti‘i"’l
5

’ !
' na(!: £p j Z"'J '-{:-__-p)

kS

~

G ;A0 (12. 2 yvy = 'f d;{i sy’ d}_;’ (2w) ">
- ’ / f
d -S"I.}ﬂﬁ(;xm‘lfc'j El/ £p\

The integrands differ only in the substitutlon of the spatial probability

| Yo x| = Sc‘{:" (2%) "2 p (%, £1)

in cne for a factor of (g77)~” in the other. Thus the ratio
Go;np (o) / Giq, re ( & £°)
ig related to the volume Erom which the particles 1 and 2 emanate and hence

the mechanism of their production.

B e N it |- S

(158 )

(157)

(o)




IX. MULTIPLE SCATTERING BY A TWO BODY

BOUND STATE TN THE DILUTE LIMIT

The multlple scattering expression for inclusive scattering of 3
by a two body bound state A is now evaluated in the dilute limit. The
methods and results of this formalism may be connected with others in the
context of this well known example.

The contribution first order in Te,; to this process is given

by (see equaiton 149),
{ dxs @M 2 <9d 1 Te 14D
= § axd M dg) d dy dxs wWaly)
<P Y Pd I Ter V Yo Yo Pa™> . (161)
Since we are in the laboratory system .;p, +4, = © . As before

@=%, £

are the relative coordinates and momenta of 1 and 2.

The dilute expression for TB\ can be written in the present

notation, using equation 144, as
<@ g @'l Tel G tfr P2
= L@ NP < For | For> Bcxp) 5Cxer)
am PG| S - 5 (Per - £6.) Tor (R, R
* To (e B £ RIS (er)
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are the phase coordinates of the B\ center of mass;

Wg1 = Zery, Lo

refer to relative coordinates, specifically
Xp1 = ¥o -~ X

and

Por = (M Lo - MB“{?')/(M;-&‘I"'B‘ ;

0";"' (:f?u,-f‘)’ which really only depends on 4_78, , 1ls the total cross
gection for % on 1; G:-,, (.gélf.’; {),3, ,‘3, ) » which really on depends on
fﬂl and ,QB: , 1ls the differential cross-section for scattering into d,ﬂ;:.
Its relation to the usual center of mass differentilal cross-section 1s given
by equation 61, Combining these equations and integrating over spatial

functions yields
Sdg,’d.y_ dx (23 24p (X, 2> 3@y, ~Tau)
Ay~ | { - 3ULgy - Por) Tg, (Lo, £1)
* Gy (£, ) Ko, 43"3
= S (Pp-Bo) 42 VU 121" 106-T7 | T5\ (s, £2)

M 5 d 2 VUp i) (Ty-B0) To (6, R A6, 40) ’
(1¢3
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where now

£, =
*B’ '-QP:":P

The first term gives the contribution to the Lotal cross-scction due

to collisions of B with 1 only. If we add to this the corresponding contid~

bution from 2, the first order estimate of the total cross-scctlon is

fdrius " L1SE o, e, )
¥ u‘.s.u‘l Ths Pa, ﬁ)} (164 )

The second term in equation 163 i1s the well known single scattering term

originally obtailned by Goldberger,[ﬁl

_(d;e l“’n.(ﬁ)

¥ 12|, Gl @ o, 20)
(165)

to which one should add the corresponding term for scattering of B on 2.
The contributions sccond order inm the jump operators provide shadow
corrections to the first order results as well as double scattering. The

contribution from the 3-31 Go Tg ¢ term in equation 149 is
’
f J'_"{e. (amwr)~3 dt{’,'c!lf’,,’ dp dxoe Wa(g)

<L4’.'L?..'LPG'I Tﬁ,], Go Yo ILP. 2% L{’3> . (1)
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Expanding over intermediate states and using

Qo l‘?'; -7 = go de| Po ()6, Yot @, , £) ) -+ 5

where (167 )

L?p(‘f,t’ =K+l‘-{-l£

we get

Q' " Y5l Too Go Tay V4, s P>

= S::itfc‘«ea" A" s < s 1 Toal Puliefye) - >
CYT L P Tol g ey >

- So d “S dRs’ <P P | Ty | o (e, 00, Potplt, 60>

C Sl 8), g | T L e ey
(16 2)

Inserting this result into equation 166 and integrating over the spatial

functions, we get
S::jt Sd-,p" dp. dp dps dx @w) 2z, £)
C X -V U ) { VU~ 92 ) S(pe + P~ £5 -4%)
- L-%0l ps, o) Spal - o) + Tou 8, 2. 257, 2]
A Ta - | B( L'+ - P -H)
L- 6 (s, £) 3L - Bo) + Tor (£, £ R, 4 )]g

(1¢7)
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The spatial & function requires that at some time £ after collision of 3
with 1, the position of B, ;X;; +* ’j{i}"t , coincide with the position of 2,
7t
:!(._1_ .+l_5:1 t . The only new notation used in equation 169 is -4_79-,_ for
the relative momentum of fgu and ;{7.,_’, /Pﬁfl. for that of fg,’ and -,Pz,',
"gi;l‘ for that of 4?5“ and fl I:md, ;{?gn for that of ’Pﬂ and 4?. .
The term quadratic in o’ represents a shadow correction to the
total cross-section; the terms linear in 0'1‘represent shadow corrections
to single scattering; the term quadratic in the differential cross-sections
represent double scattering., We consider each in turn.
The shadow correction to the total cross-section given by this

expression is

[=
. -3 ; ‘..
fap § de i7m o2 ] 0, (-0 428, )

+ vy -
* COgy (s, -£) "“y;,s

Z| o7 (s, £) (170)

which must be added to a similar term coming from collisions in the reverse
order to pget the total shadow correction to second order. This expression
simplifies somewhat in the high energy limit where it can be compared to the

corrvesponding correction due te Glauber. Using
| Vo £V | ¥ Vg

Vp dt = d2

f .-,J;f (am)~2 WAl , £) '"'I"?'n (x) ]:-
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for the bound state spatial density, we get,
oo ~ z T -+
) —.(o de | w,.w,o,ml Uey ¢Po,2) Jer (28, 2) (171)
Taking into aceount that the contribution to the shadow correction
coming from the reverse order of collislon, one finds that the total shadow
correction in the dilute limit dis tv lce that obtained by Glauber[7] in his

simple approximation te black sphere scattering. The reason for the differ-

ence in these results may be traced to the fact that they each hold true in
different, non-overlapping, regimes. Ouxr result is accurate in the dilute
limit in which the Glauber approximation is invalid. It should be re-
emphasized at this point that the basdc formalism—-the Wigner representation
of scattering--is not limited to the dilute limit but is susceptible to
other approximations which may lead to simple formulas wvalid in other
regimes.

The shadow correction to sinpgle scabtering is composed of two parts.
The particle casting the shadow may li: either between the accelerator or
between the detector and the single'scatterer. I either case one gets a
reduction in the single scattering-~a 'unitarity correction' since it is
merely a manifestation of probability conservation. The shadow correction
to single scattering by 1, to be added to the uncorrected term given in
equation 164 is obtained by straightforward application of the equations

just discussed yielding again in the dilute limit,
oo
— S; dt .f d;{f CZTT‘)"J
o
. .{[U,+1}”,1J(—(’U"4V)t )GT , )
.....8 —— A -u-a - '£ BZ‘{E;-‘f
Vg -~V ! /
- / T / oy (Fo, £ 5, £
Ve .
. ’ ’ ’ /
Yo+ | |

T.
e Upr (Lo, L) . (171)
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where -1EJlis again given as in equation 164, A similar term reduces single
scattering on the other particle., The physical origin of these terms is
transparent.

We might note that the effect of such corrections is quite striking
in reducing the backward peak obse—ved in proton-deutron elastic scattering
( ~ 507 correction).[l3] It may be that a simple formula such as derived here
(perhaps somewhat refined to take into account the not completely dilute na-
ture of nuclear matter) will be quite accurate in calculating such shadow
corrections for many nuclear targets, including the deuteron. This would be
especially helpful at those intermediate energies at which th: Glauber approx-
imation begins to break down. We also note that, as before, this formula
gimplifies considerable when Wg is much greater than 77, the Fermi velocity.

Finally, the double scattering term obtained from equation 169 is
3 " -
- ~y ”
fd,emr) d ge de Vo™ W (— (V) E, P

¥ / Y
| v T T (Po P PR
N Vs -V Gy (P £ ; Pe, £) C173)

where now momentum conservation gives
;0 1"

R Re v - o
.‘AP‘_, = ‘fﬂu '_£ - £(b’

To this must be added the corresponding term from the reversed order of col-

lision to get the total double scattering.
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We have here a 5-dimensional integral since there are two energy
conserving Jd- functions implied in the elastic cross—sections. When 'U},
1s large compared to T, we can again effect a considerable simplification
by Integrating analytically over d,_f + One is then left with a 2-dimensional
Integral. In either case this int~gral is espeecially suited to Moute-Carlo

integration techniques.
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Figure 1:

Flgure 2:

FIGURE CAPTIONS

This illustrates the first order correction to the eclassical pro-
pogator given in Equation 41l. A particle is known to be at H"
initially and one asks for the probability of it being at (f ’at
a time £ later. In addition to the classical value of this pro-
bability there is a contribution corresponding to the particle
traveling a time t-t' along dits initial classical trajectory
and then performing a quantum jump to a new classlcal trajectory
which brings it to ':Ln the required time £. The trajectories
are pictured in position sfzacc emphasizing the fact that, for a
local potential, there is a jump in momentum only as with a classi-
cal stochastic impulse. The probability that the particle makes
the jump is given by Equation 41.

This 1illustrates the classical limit of scattering In terms of
source functions as given in Equation 123 and discussion subsequ-
ent to it. A circled portilon of the spatial trajectory ‘-Pc. is
enlarged. The continuous force is approximated by a sequence of
inpulses. A particle starts at Xi with momentum 4, . Thus at
Z&l ther=s is a unit source of such particles. At Xa it .receives
an impulse, changing its momentum from Q: to ;!3,_. Thus at ’7_5_5.
there is a unit sink for .4?_! and source for "f"‘_- , and so on. In
this picture, classical motlon is a consequence of the potential's
creation of a line of sources and sinks in response to the extein-

ally imposed source at K‘;*l .
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Figure 3:

61

This illustrates two phenomena generated by the second order term
of the multiple scattering expansion for scattering of projectile
3 by a two particle bound state A (See Equation 149)., When %
hits constituent 1 it happens, in this instance, to have momentum
£ and be displaced from constituent Z by X . The solid line shows
the trajectory of B . Between collisions (>, having gotten inter-
mediate momentum .,Qg:' s displaces itsell along :’_{'B”{: while
constituent Z , since A was initally at rest in the laboratory
frame, has momentum -£ and l.as moved - %, The collision be~
tween > and Z at a time £ after the first collision has twa
consequences: First it reduces the number of (single scattering)
events into ;?c," , 1.e, particle 1 shadow events shining from
particle V. This phenomenon is described by the first bracketed
term in Equation 172. Second, it increases the number of (double

’
scattering) events into ,Ec, . This is described by Equation 173.
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