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The intenyity and energy spectrum of primary cosmic electrons from

10 to — 250 GeV has been studied using balloon-borne detectors. Both of the

detectors were large area ionization caloriumte m with frequent sampling

of showering particles and were capable of energy resolutiun of — 7%. On

one of the flights, a time-of - flight system and detectors to sample the

lateral properties of showers were used to examine and improve background

rejection. The results of the balloon flights from Alamogordo, N. M. in

1970 and Cape Girardeau, Missouri in 1972 indicated that the primary cosmic

ray electron differential energy spectrum exhibits no change of slope in

the energy range measured and is well represented by a power law,

dJ = (430±110)E-3.10±0.08electrons/m2-ster-sec-GeV
dB

These results indicate that the cosmic electron spectrum is steeper than the

cosmic ray proton spectrum. It is shown that thene data are consistent

with the leakage lifetime model for the propagation of cosmic electrons

in the Galaxy, although other more complex models cannot be excluded on

the basis of these data.
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Although the composition and energy spectrum of cosmic ray

electrons has been intensively studied for more than a decade, an

experimental consensus on neither the shape of the spectrum nor the

absolute intensity has been achieved 	 (see e.g. Webber, 1973). Widely

disparate results have been reported using nuclear emulsions (Marar, et al.,

1971; Nishimura et al., 1969; and Anand et al., 1973), and non-visual

techniques (Earl et al., 1972, Muller and Meyer, 1973). Since a wide

variety of results can be found within the same classes of detector, the

discrepancies cannot be attributed to any inherent properties of the

measuring devices. Any attempt to imply a time variation in the high

energy cosmic electron spectra can be dismissed since those experimenters

repeating their work have, L. general, confirmed their own results and thus

are observing a consistent electron spectrum above,.. 10 GeV, even though

the inter-experiment results differ.

The basic difficulties at high energies are reliable energy estimation

and elimination of nuclear particles that may masquerade as electrons.

Nuclear emulsions may give unambiguous particle identification, but suffer

from poor energy resolution. On the other hand, ionization spectrometers,

while usually having better energy resolution, eliminate the nuclear back-

ground statistically. Detectors using so called "guard counters" have tended

to report rather low electron intensities (Webber and Rockstroh, 1973

Marar et al., 1971, Muller and Meyer, 1971). Although these low results

may be due to excellent background refection, they also may be caused

by some refection of real electron events since the spatial properties

of high energy electron events are generally extrapolated from low energy
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accelerator data. We have flown a modified version of the electron

detectors reported previously (Silverberg at al., 1973). The modifi-

cations have included the addition of scintillators to examine the

lateral development of showers and a time-of-flight measuring system

to further exclude any contamination from out of geometry triggers

and other background.

Although five flights were initiated, only three of these, the first,

third and fifth resulted in a significant accumulation of useful data,

the bulk of the high quality data coming from the third and fifth flights.

This paper discusses the last flight in detail and summarizes the

results from the entire series of flights.

r' DESCRIPTION OF THE DETECTOR

The detector used on the fifth flight can be logically divided into

two portions:	 the charge section and the electromagnetic cascade section.

The charge section consisted of two plastic scintillators, each 50 x 50 x

0.64 cm and two Cerenkov counters.	 The uppermost Cerenkov counter (Cl)

was a sheet of Pilot 425 measuring 50 x 50 x 1.27 cm while the lower

Cerenkov counter was a 50 x 50 x 1.27 cm sheet of quartz placed inside

i a white light collecting box.	 The scintillator, Sl, was viewed by a

i single 3" photomul.tiplier tube via an adiabatic light pipe connected to
1.
+ one edge.	 The scintillator, S2, was viewed in a similar manner by two

3" photomultipliers.	 Cl was viewed via 4 adiabatic light guides by four

I5" RCA 4525 photomultipliers while the C2 light box was viewed by 4 RCA

i 4522 photomultiplier tubes.	 The RCA 4522 tubes have windows of Corning 9741

ultraviolet transmitting glass and are well	 suited to viewing Cerenkov

light.
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The use of a SaSO4 white paint on the inside of the C2 diffusion box

rmade the box diffusely	 reflective to about 2200 A°.	 The charge section

.

t	 i also included an eight deck wire grid spark chamber with digital readout

(Enrmann et al., 1963	 The spark chamber was used for trajectory deter-

mination and background removal.	 Trajectory information is necessary

in such a large area detector to make corrections for path length in the
a

various detector elements and to remove out of geometry events which may

trigger the experiment.

^I
electromagneCic cascade section comprised the region where electron-

j

The

1	 initiated showers developed rapidly and were observed in sufficient detail

to estimate the energy of the incident electron and discriminate against

,,II nuclear induced background events. 	 This section consisted of eighteen
^,	 kJ

l: segments each of which was composed of a 50 x 50 x 0.64 cm plastic scin-

tillator and a 50 x 50 x 0.32 cm sheet of tungsten. 	 Each of these segments

' was viewed by two 3" photomultiplier tubes through air (non-adiabatic) light

guides.	 The outputs of the photomultipliers from each tungsten segment

were summed and pulse-height analyzed with the exception of the last two

pairs of tungsten segments where the outputs of the four photomultipliers

from each pair of segments were summed and pulse-height anlayzed. 	
I

{	 Figure 1 shows the experiment configuration and the location of the

three "spray detectors" which sample the lateral shower development.	 Each

spray detector was a scintillator optically coupled to two 3" photomultiplier

h
tubes.	 The sum of the outputs of the	 pair of tubes on each of the spray

detectors were also pulse-height analyzed. 	 The scintillator labelled SP1

was designed to sample backscatter from a shower. 	 It was located at the

same height as the first tungsten segment (T1) but off to the side and

't
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hence was outside the trigger geometry. Scintillator SP2 was located

on one side of the tungsten stack and it sampled leakage out of the

tungsten stack. It is similar in function to guard scintillators that

have been used by other experiments (Webber and Ror_kstroh, 1973; Marar

at al., 1971). The third spray Scintillator, SP3, uas located at the same

height as TOF2, the lower time-of -flight Scintillator. SP3 was also

intended to sample the lateral shower properties. It should be noted that

none of the spray scintillators were included in the triggering require-

ments; thus no event was electronically rejected due to the pulse height

in any spray Scintillator.

A time of flight system was also present on the experiment. Although

it was desirable to have the first detector element (Cl) and the last

detector element T18) as the time-of-flight elements, this was not possible

because the existing photomultipliers on these detector elements were not

suitable for timing purposes and to install additional photomultipliers

would have required extensive modifications. Two additional timing scintill-

ators (TOF1 and TOF2) were added and were equipped with RCA 8575 photomultiplier

tubes having a 2 ns. rise time. One tube was mounted at the center of each

plastic scintillator. The output of each photomultiplier was fed to a time

to amplitude converter (TAC) which was pulse height analyzed to produce a

number related to the transit time of a particle from TOF1 to TOF2, a

distance of 108 cm. Cable lengths were adjusted so sea level muons passing

through the scintillators produced an output near channel 100 of the 256

channel pulse -height analyzer. This position for the downward moving

particle insured that an upward moving particle would also produce a pulse

height which was on scale.

The experiment triggering criteria were designed so an electron of

.
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r 7 GeV, would initiate an event readout. 	 Above,.. 9 GeV, the triggering
r

!t efficiency was nearly 100%. 	 A detailed description of the triggering can

t be found in previous publications (Silverberg et al., 1973, Ryan et al.,

1972, Crannell et al., 1973)

Flight five was launched from Cape Girardeau, Missouri on October 1,
t'

1972.	 It was nearly stationary for more than 9 hours, then drifted less

than 200 miles from the launch site before landing. 	 This flight lasted

for nearly 23 hours at a float altitude of 3.5 g/cni l .	 Flight five

produced more data than the previous successful flights due to the higher

data rate (24 kilobits/sec), the smaller dead time, and the long duration.

A summary of the details of the flights is given in Table 1.

S+	 .1 ANALYSIS OF FLIGHT DATAr
(-

Analysis of the flight data was begun by finding the particle

trajectories for each event.	 This was done by fitting the data from the

f digital spark chamber to straight lines in the XZ and YZ planes (the

Z direction is the vertical through the experiment).	 If one and only one

"ggod" track was found in both the XZ and YZ projections, the event was

called a simple event.	 These events have an rms deviation from a straight

line of less than 0.15" or 1.5 wire spacings. 	 In general, the deviation

is much smaller than this value (see Figure 2). 	 All other events are

1
classified as complex and require different processing from the simple

events.	 In practice, the designation "complex event" meant that no single

well-defined track was obtained. 	 On all balloon flights the complex events

accounted for about 60% of the evente triggering the electron or a mode.

However; about 90% of the complex events were clearly not electron initiated,

as they had pulse-height profiles clearly incompatible with the accelerator

l
I,
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Table	 1

Balloon Flights

FLIGHT 3 FLIGHT 5

-

Launch Site

- - - - - - - - - - - -

Alamagordo, N.M.

- - -	 - - - - - -	 - - -

Cape Girardeau, Mo.

- -	 - - - - - - - - - -

Vertical Cut-off 5 GV 2.7 GV
Rigidity

Launch Date Nov. 14, 1970 Oct.	 1,	 1972

tu - ----------- - - - - -	 --	 -
Time at Float 14 .5 hrs. 23 hrs.
Altitude

- -	 - - - - - - -	 -	 - - - - - - - - - - - - - - - - - - - - - - - - - - -

Residual Atmosphere
7.4 g/cm 2 3.5 g/cm 2

at Float Altitude

Fractional
O .42 0.55

Live Time

- - - - - - - -	 - - - - - - - - - -	 - - - - - - - - - - - - - - - - - -

Geometry Factor
for Electrons 990±20 69G±10

in cm2-ster

i

i
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calibration results (Crannell at al., 1973; Whiteside at al., 1973). We

postpone further discussion of the complex events until the analysis of

the simple events are treated.

Although the triggering criteria limited the number of particles

which the experiment analyzed, they represent only thresholds and hence

alpha particles and other highly charged particles could initiate the

e-mode triggering of the experiment. For this reason, a large number

of the a-mode triggers had pulse-heights in the charge section which

were too large for electron-initiated events. This background was

eliminated by examining each a-m(,4v event and checking its S 1 and Cl (top

Cerenkov counter)pulse-heights. If each pulse-height was less than 3

times the response to a sea-level muon and both were not greater than

2.5 times the muon response, the particle was accepted as singly-charged.

These criteria were strict enough to insure that relativistic alpha

particles were not accepted, yet singly-charged particles were not

rejected. Once it was determinf.1 that a particle was singly-charged,

its trajectory (as found by the spark chamber) was examined to be certain

that the trajectory would pass inside of the inner 80% of the area of

the last tungsten segment. This check assured that a well determined

geometry was used and minimized edge efi•:cts.

The events which survived the above tests were fitted to the nominal

value shower curve, f(E o,to ,ti ) which gives the expected pulse height at

depth ti(in radiation lengths) when an electron of energy Eo starts to

cascade at depth, to (Crannell et al., 1973). The fit is done by com-

puting the quantity

1

C

i'

i
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;dR i

a 1

f, _.

r

(^)	 X2 . E	 f(E0't0'ti) -E,^ 2

in 0	 k a (Eo, to, ti) JJ1
idere f  is the observed normalized pulse height,a (E 0 ,to ,ti) is the

standard deviation expected in f(E0 , t0' ti ) and N is the nunber of

detectors used to sample the shower development.

Note that the function X2 in Egaation W is defined in the same

fashion as the familiar chi-square test frequently used in mathematics.

In defining X2 in this way it was hoped that it would, Ln fact, have

a chi-square distribution. Unfortunately, it does not because the

distributions of fluctuations at each tungsten segment are not all

Gaussian and it is not clear that all measurements at the tungsten

segments are strictly independent (due to conservation of energy high

fluctuations early in the shower tend to be followed by low fluctuations

late in the shower and vice versa). The latter effect is probably not

serious and most of the deviation from a chi-square distribution by the

function X2 is due to the asymmetry of the shower fluctuations. Despite

the lack of correlation with a chi-square distribution, the function X2

is an effective measure of the goodness of fit of an event to an electro-

magnetic cascade shower and can be used to determine the energy and

apparent starting point of showering events as well as to discriminate

against proton -initiated showers.

The analysis proceeded by selecting only apparent starting points,

to , within one standard deviation of the maximum in the starting point

distribution observed in calibration runs at the Stanford Linear Accele-

rator (SLAG). In this way the proton contamination was sharply reduced

i

C
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and the fraction of electrons that was rejected in this way was restored

by a correction later in the analysis, For events with acceptable starting

points, the value of 
X2 

was examined, if it was less than the 
x2 

for 95%

of the electrons of energy Eo , the event was accepted as an electron.

The starting point and 95% criteria were somewhat arbitrary; they were a

compromise between keeping background down (trying to get all the electrons

greatly increased the proton background in the electron -like events) and

maintaining adequate statistics so the highest energy electron recorded

was limited only by the exposure factor.

r

Although their are lumped into a single category, the complex events

actually fall iv;,o several distinct classes. These are shown in Table 2.

Type 1 and 3 events were the result of various types of background: 	 .

particles passing through light pipes or photomultiplier tube faces, pro-

ducing Cerenkov light, and then entering the experiment (this was possible

due to the very low thresholds in Sl and S2); showers starting above the

experiment where multiple particles are involved. This background was

nearly 20% of all the events. Examination of these events revealed. no

Type l or 3 events which were even remotely electron-like. The Type 2

events were those where too few spark chamber coordinates were found for

reliable trajectory determination. This fraction (about 5%) was con-

sLsten^' with the probability of less than five decks firing when the

eifit;iency of individual decks was considered.

Type 4 and 5 events were a much more common occurrence and probably

resulted from side-entering particles which interacted in the material
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TABLE 2

COMPLEX EVENT CLASSIFICATION

r

1. No spark chamber data present (the chamber did not spark when

pulsed). (less than 27)
	

r

2. An insufficient number of decks fired for a reliable trajectory

to be determined. (57)

3. The trajectory found indicated the particle should not have

triggered the experiment because the particle did not pass through the

coincidence scintillators. (17%)

4. More than one acceptable trajectory was found. (207)

5. No trajectory could be found which satisfied the least squares

cutoff. (177)

i
i

NOTE: Numbers in parentheses are the fraction of the events observed

{
in each category.
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around or in the experiment. The Type 4 and 5 events were the most

troublesome because the existence of multiple particles in the spark

chamber did not exclude the possibility that the initiating particle

was an electron, a result consistent with our accelerator data.

Since this possibility existed, it was important that these events be

studied carefully.

The most probable entry angle for particles triggering the electron

mode is 18-20°. The majority of the particles triggering the experiment

during a balloon flight are within about 10° of this mean angle. Thus,

one is never seriously in error by simply assuming the mean angle of

incidence for particles whose trajectory is not known. The Type 2, 4

and 5 events were thus analyzed by assuming that each particle was

incident on the experiment at the mean angle. The result of the

analysis was that 10% of the complex events were in all other respects

acceptable as electrons. The spectral index of these events was con-

sistent with that of the simple events and the flux was 58% of the flux

of the simple events.

To verify this procedure, the simple events were re-analyzed in the

same fashion as the complex events by ignoring the spark chamber data

and using the mean angle of incidence. As expected, this had little

effect on the spectral index, but it was found that the flux was 19%

higher than when the simple events were analyzed using the trajectory

data. This increase could be expected since the spark chamber data was

used to eliminate those simple events whose trajectories were near the

edges of the bottom of the experiment. Thus, ignoring the spark chamber

M

i
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data effectively increased the geometry factor and hence increased the

`	 apparent flux because 	 a	 smaller geometry factor was used in the cal-

r culation.

The analysis of the complex events and re-analysis of the simple

events described above showed that in addition to the electrons found

in the simple evf-Ats there are 47 ±12% more electrons in the complex

events.	 Thus, to derive a correct absolute flux, a complex correction

of 1.47 ±0.12 had to be applied to the flux computad by using only the

simple events.	 This is equivalent to simply adding the fluxes from the

simple and complex events since it was found that the spectral indices

from the two types of events were the same.

)'	 'y The existence of the time of flight system gave additional infor,,

mation on tl:•. complex events. 	 It was found that the time of flight

distribution for all the complex events had a very large number of

events (about 40%) where times-of-flight were inconsistent with downward

moving particles.	 It was, however, found that the fraction of the

electron-like complex events with acceptable Limes of flight was con-

sistent with the fraction of the electron-like simple events (some of the

simple events did not have acceptable times of flight because the

geometry factor for the time of flight system was smaller than the
L

1 triggering geometry factor). 	 Thus, the good correlation between simple and

complex electron-like events was consistent with the acceptance of

electron-like complex events as electrons.

Although the flights were at different geomagnetic cutoffs, it was

found that the a-mode trigger rate was consistent from one-flight to

'^	 I

1
1
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another. This is because the instrument's own cutoff was higher than

the local geomagnetic cutoff for electrons and contaminating hadrons

`	 which may masquerade as electrons are of much higher energy than the
a

electrons they simulate. On this basis, the measured hadron contamina-

tion correction (Silverberg et al., 1973) of 29 ±5% was applied to the

data from all flights.

TIME OF FLIGHT INFORMATION

Analysis of the time of flight data from flight five was carried

out as a check on theprevious flights where no time of flight data

were available. There was an unresolved worry that some events initiated
i

by side entering particles might look like electrons. If was felt that

the spark chamber data enabled the effective elimination of this type

of background; however, no independent check was handy. The results

of the time of flight data on flight five indicated that the assumption

of good rejection of the side-entering contaminant on all flights was

correct.

The TOF was calibrated on sea-level muons. The spark chamber data
e

was used to correct the raw data for light transit time from the particle's

track in the scintillator to the photomultipli.er tube. This resulted in

1	 f`	 a time resolution of — 0.9 ns FWHM. While this procedure worked well for
5

sea-level muons, it was found that it was not applicable to showering

events (i.e. most flight events). Especially for electrons, the tail of

the shower is dominated by minimum attenuation gamma rays and their

distribution is nearly isotropic deep in the shower. The particle or

particles causing the stop signal in the TOF system could strike the

C

i

l
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the bottom TOF scintillator almost anywhere. Thus, for showering particles

it was not possible to correct for the distance from the bottom TOF photo-

multiplier tube to the particle causing the stop signal. This effect meant

that time resolution was poorer for flight events than for the calibration

muons.

The resolution, while poorer than for muons, was adequate to detect

side-entering particles. Since most of the matter in the experiment was

more than 48 cm from the top TOF scintillator, events having negative or

nearly zero times of flight indicated side-entering particles. For singly

charged a-mode triggers before any selection, there was evidence of this

type of event. However, when a good fit to an electromagnetic shower was

demanded, the contamination of these particles dropped to — 12%, a

fraction comparable to what would be expected due to the poor time resolu-

tion. Thus, the analysis of the TOF system confirmed our results on

previous flights and indicated no significant contamination in the data

from side-entering or bottom-entering particles.

i

SPRAY DETECTOR ANALYSIS

The spray detectors were also incorporated in this flight as a

check on the procedures used in previous flights. As the flight five instru-

ment was not recalibrated on accelerator electrons and protons after the

spray detectors were installed, information presented here is based only

on flight data and sea-level muon calibrations.

The spray detector information was analyzed by comparing the fraction

of large pulse heights in each spray detector for all singly charged a-mode
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triggers and for the electron-like events. Only events in which the

1	 trajectory of the incident particle would not pass through the respective

spray scintillator were used. In each case, it was found that the

fraction of the events where the pulse height in the spray detector

exceeded two times minimum ionization was greater for the background.r
e-mode events than for the electron-like events. The results are pre-,
sented in Table 3.

TABLE 3
M•

Fraction of Events Producing More Than Twice the Ionization
of a Sea-Level Muon in the Spray Scintillators

r `	 fi	 SP1	 SP2	 SP3
{

electron-like events 	 2.6±.3%	 8.9±.5%	 12.8±.6%

w-
	 singly charged a-mode events	 10.5±.3% 17.1±.3%	 27.0±.4%t

C

t '^

Scintillntor SP2 was positioned up against one face of the

tungsten stack and is similar in function to guard scintillators used

by other experimenters. While the assumption that background events

have large pulse heights in this type guard scintillator appears to be

borne out by these results, some caution is clearly warranted. When

re-analyzing the electron-like events and demanding low SP2 pulse

heights it was found that the spectrum was - 20% lower at - 10 GeV and

0.2 of a power steeper. Due to the large physical size of this experi-

ment it may be that shower particles at low energies (- 10 GeV) do not

reach the spray scintillator as often as shower particles from the

i
.I
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higher energy events where the showers are wider and the number of

shower particles is greater. This condition may not hold for some of

the much smaller detectors that have flown and they may be rejecting

a large fraction of the real electrons. Clearly, the 20% reduction

may have to be multiplied by — 4 to simulate the effect of a guard

counter sufficient to completely surround the cascade section. In this

case, the reduction in the electron spectrum observed could be as much

as 80%.

It has been suggested that backscattering from electromagnetic

showers may become significant at high energies (Zatsepin, 1971;

Orth, 1973), Such an effect might cause real electrons to be rejected

as alpha particles at high energies. As a check on backscatter, the

mean pulse height in S1 and 01 was examined by plotting these as a

function of energy for the electron-like events. This plot is shown

in Pig. 3. If backward-moving gamma-rays increased very rapidly with

increasing energy, then a sharp rise would be apparent in this ploL due

to Compton electrons produced by the gamma rays. Although some rise is

indicated, the observed effect is not large enough to cause any serious

problem in the selection of singly-charged particles up to the energies

reported here. Any attempt to extend the energy range of this instru-

ment would have to deal with this effect more carefully.

The low fraction of events with large pulse heights in SP1 indi-

cated that large angle backscatter occurred infrequently. However, the

large physical size of the experiment and the possible non-uniformity of

the backscatter relatia to the shower axis make application of these data

to other experiments difficult.

.J
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r`
The data from SP3 indicated that a spray detector at such a large

depth is not useful.	 Again the fraction should be multiplied by about 4

to 5	 to approximate a fraction for a symmetric detector surrounding the

experiment at the same level. 	 This gives — 65% for the fraction of

^• events having greater than twice minimum in this type detector com-

pared to - 100% for the background events. 	 Other cutoffs.(three and

four times minimum) for discrimination were tried, but in no case did•

the data from SP3 seem to be a strong discriminator between electron-

like and background events.

The results of this analysis of the spray detectors gave some in-

sight into their use by other experimenters and showed no inconsisten-

cies with the methods used here on the previous flights to select

r electrons.	 As the differences between electrons and background events

were not great, the use of a guard detector on a large ionization

i
spectrometer would not appear to offer a significant improvement in

background rejection over the procedures used previously.	 These data

indicate that their use in smaller detectors should be carefully evalu-

ated and any significant improvement in 	 identification	 of individual

electrons beyond X50 GeV may have to await the	 development	 of

detectors using advanced techniques (see e.g. Cherry et al., 1973).

RESULTS & DISCUSSION

The final results from the balloon flights are presented in Fig. 4

and Table 4.	 Flight five is somewhat lower in intensity at low energies

than the previous flight; the spectral index is also different, being
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3.00 ±0.09 compared to 3.16 ±0.10 for the previous flights. The best

fit to all the data is provided by the power law spectrum

(2)	
d3	

(430 ± 110) E-3'10 ± 0.08
dE

In Figure 5 , the best fit to the data of this experiment and

the results of other workers have been plotted. There is clearly a

wide dispersion in experimental results. However, as pointed out

earlier, these results are derived from a variety of experimental and

analytic techniques in Which systematic errors may play an important

role. The results of this experiment are in general agreement with

many workers near 10 GeV but drop off more quickly than the results of

Anand et al. (1973), and Scheepmaker and Tanaka ( 1971), to name but a

few.

While the spectral index reported here is close to that of Webber

and Rockstroh ( 1973), their intensity is considerably lower than

these data indicate. However, the Webber and Rockstroh experiment made use

of a guard counter and had a much smaller instrument than was used in

this experiment.

Note that near 10 GeV the balloon data is spread over a factor of

5; however, two satellite experiments (Marsden at al., 1971;

Bl,±eker at al., 1970) which are not shown in Figure 5 are in good

agreement with these data near 10 GeV.

The dispersion at low energies ( - 10 GeV), where calibration can

be carried out and no extrapolations are necessary, are, perhapsi,

more disturbing than the overall differences among the cosmic electron

44
	 measurements. Discrepancies may be due to poor proton rejection,

f I 
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Measured Differential Cosmic Ray Electron Spectrum
at the Top of the Atmosphere

FLIGHT 3	 FLIGHT 5

Energy	 Injen8lty	 Energy	 Intensity
GeV	 Electrons /(m	 ster sec GeV)	 GeV	 Electrons /(m2 ster sec GeV)

11.7	 (2.5±0.45)x10-1 	 11.6	 (2.2±0.40)x10-1

15.6	 (1.1±0.20)x10-1	 15.5	 (8.0±1.4 )x10-2

21.0	 (4.9±0.88)x10-2 	 20.8	 (3.1±0.56)x10-2

28.3	 (1.8±0.32)x10-3	 28.3	 (1.1±0.20)x10-3

37.9	 (6.5±1.2 )x10 -3	38.5	 (4.8±0.91)x10-3

51.1	 (2.3±0.51)x10-3 	 51.4	 (2.2±0.44)x10-3

68.7	 (1.1±0.26)x10-3	 69.8	 (8.3±1.7) x10-4

92.1	 (3.8±1.1) x10 -4	92.8	 (4.2±1.0) x10-4

122.0	 (7.0±3.7) 40 -5	123.0	 (1.8±0.50)x10-4

171.0	 (5.2±2.8) x10 -5	179.0	 (7.2±2.4) x10-5

233.0	 (9.0±6.7) x10-6

f
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f,.

application of criteria which eliminate electrons in an attempt to

reduce the proton background, problems due to poor energy estimation,

and the application of other corrections.

In comparing the data of one experiment to another several points

should be kept in mind:

(1) Errors in energy of as little as 10% can result in absolute

flux errors of - 30% due to the dteep slope of the electron spectrum.

(2) The use of guard counters may severely reduce the absolute

flux and may affect the spectral index.

(3) Additional and more uncertain corrections are required to

derive an absolute flux than to derive the relative flux.

For these reasons, the fact that much of the experimental date do not

agree within a few times the estimated errors may not be as significant

as it appears and the differences in slope reported indicate more

serious discrepancies in measured results.

In comparing these data with other results it should be remembered

that while many experiments compensate for proton contamination, we

know of no other experiment where the residual proton contamination

was actually measured (Silverberg at al., 1973). This was possible

only because of the great depth of the ina.rument used in flight three.

The good statistics obtained in this experiment have also been

exploited in an attempt to verify the results or at least find that

they are self-consistent. Ilia spectrum of singly charged a-mode

events whose starting points were within 0.2 radiation lengths of

the peak in the electron starting point distribution as measured in

a
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calibration runs (see Figure G) was found. By choosing events from

the region where electrons are most dense, the electron to proton

ratio is maximized. The spectral index observed was 3.3 ± 0.2 for

this subset of events. The steep spectrum in this region is thus consistent

with the results using all the data. The loss in this analysis is,

of course, statistics and therefore the spectrum cannot go to as high

an energy as when using all the data.

In an analogous fashion, the spectrum was computed for only

those singly charged o-mode events which fit extremely well to electro-

magnetic showers. The acceptance criteria were tightened to the point

where only 50% of the accelerator electrons would have been accepted.

Again this severely discriminated against protons at the expense of

statistics and the result was again a steep spectrum with index 3.2 ± 0.2.

Both of these tests indicate that a steep spectrum is called for

and are suggestive that if the spectrum reported here is in error it

may be too flat rather than too steep.

A further check on the results was performed by examining the

spectrum of the a-mode triggers that were not electron-like. These

events should have been predominantly protons. While the fitting of

electromagnetic showers to proton events results, in general, in poor

agreement in the detail of the showers, the proton calibration

done at the Brookhaven AGS indicated that the best fit energy was

porportional to the true proton energy (see Whiteside at al., 1973).

Thus, simply using the best fit energy for these proton events should

give a spectral index like the proton index even though the magnitude

4
f,

e
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of the flux is in error. When the computation wss carried out, the

spectral index was 2.7 * 0.1 1 in agreement with the high energy proton

spectral index (Ryan at al., 1972).

The electron flux reported here is considerably higher than could

be expected from a secondary origin of the cosmic electron assuming

;,...

	

	 that the cosmic ray nuclei pass through -5 g/cm2 (Shapiro and Silberberg,

1970). Thus, no large fraction of the cosmic electrons can be of

secondary origin. This conclusion is consistent with the electron

charge composition measurements (DeShong et al., 1964; Hartman, 1967;

Buffington et al., 1974) and the conclusions of many other experimenters.

Based on the leakage lifetime approximation, the spectral index

of the electron flux is expected to steepen by a full power due to

synchrotron and inverse Compton losses. This approximation has been

called into question by Jokipii and Meyer (1968) because it replaces

the diffusion term in the transport equation by a characteristic loss

term. Under the assumption of isotropic diffusion with a disk-shaped

source region, Jokipii and Meyer find a spectrum with two "breaks",

each of one-half a power, at energies separated by a fr.ctor of - 50,

depending on the dimensions of the source region. On the other hand,

Berkey and Shen (1969) have carried out a similar treatment using

convection diffusion and find that the results are similar to the

leakage lifetime model with only one break occurring. This model does

not include the effects of perpendicular diffusion or the role of the

random magnetic field lines in allowing escape from the disk. Berkey

and Shen and Webster (1970) concluded that the source distribution may

.
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be more important in determining the equilibrium spectrum than the

propagntion or boundary conditions. Webster, in fact, claims that by

postulating a proper distribution of sources, an arbitrary break can

be achieved.

Since the electron spectral index obtained here is approximately

one-half power steeper than the proton spectral index, the Jokipii

and Meyer model seems attractive; however, Jones (1970) has shown

that even in the leakage lifetime model the change in spectral index

of one power takes place over more than a decade in energy. Webster

has commented that even this broad range in energies where the spectral

index is changing may be enlarged further by geometric effects of the

source region if the observer is not near the center of the source distri-

bution. Thus, unless the turnover occurred below 10 GeV, some evidence

of a changing slope might be expected in these data.

In interpreting the results of this experiment, we consider

what the expected electron spectrum is in the measured energy range

using the simplest model. Ramaty (1974) has ,hewn that for a power

law source spectrum, Q(E) = AE -ro , the equilibrium density of electrons

is given by
x

1	 ro-2	 - 7
(g)	 N(E) = AE -ro bE (1-bEx)	 a	 Pe(x) dx

0

where the energy loss rate is

(4)	
- dr	 bE2

and

I
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(5)	 b	 =	 (4 x 10"6111

Z 
+ 4 x 10-19 Tbb4)	 (faV-sec)-1

Hy is the mean magnetic field perpendicular to the electron's motion
q ^

in gauss and Tbb in the temperature of the universal blackbody rad-

iation in ° K, Po (x) is a function dependent on the propagation of the

electrons and boundary conditions. 	 For the simplest case, Po (x) = 1,

and the exponential lifetime distribution results. 	 This is equivalent

to the leakage lifetime approximation with lifetime T . I

In Figure 7, the resulting electron spectrum is shown in the

energy range 1 - 1000 GeV.	 The spectrum was computed using 111 = 4x10-6
J

gauss, T = 3x106 years, and Tbb = 2.B°K.	 These are reasonable current

estimates of the magnetic field in the galactic disk and the temperature

of the blackbody radiation. 	 The escape lifetime was chosen to agree with

the estimates from the fragmentation of the nuclear component of cosmic rays

(Shapiro and Silberberg, 1970) and isotopic studies 	 (Webber at a1., 1973).

While the spectrum does indeed turn down in this energy region,

the change in slope is so gradual as to be nearly imperceptible if

one were to examine only a single decade in energy. 	 Since these

experimental data span from 10 to - 200 GeV, ten equally-spaced
i

points in that energy interval were taken on the theoretical curve

and these were fitted to a power law spectrum. 	 Both the theoretical
1

' electron spectrum and the best fit to a power law are shown in Figure 8.

The best fit power law has a spectral index of 3.11, in sur-

prisingly excellent agreement with these experimental results. 	 The

y curve is changing slope so slowly that the power law fit is adequate

when experimental uncertainties are attached to each point.	 Thus, it

r ^.
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is impossible to positively detect the curvature in the data from such

a restricted energy range and the only indication of the changing

I	 slope is the seemingly peculiar spectral index.
 t"!

While a simple numerical agreement certainly does not prove a

theory, we conclude that these data do not rule out the predictions

of the leakage lifetime model. It is also clear that more exotic

models involving complicated diffusion and elaborate boundary conditions

'	 are not necessary until better experimental data are available to

allow these possibilities to be distinguished from the simple leakage

j	 lifetime model. To resolve such questions, large area detectors
t

capable of positive identification of individual electrons (and,

hopefully, negatron and positron separation) are needed. These detectors

should be flown for long periods of time, preferably on satellites

where no atmospheric corrections need be applied. Satellites might

also be able to measure anisotropy in the cosmic electrons (Earl and

Lenchek, 1969; Shen and Mao, 1971), In this way it should be possible

to extend our knowledge of the cosmic electron spectrum above 104 GeV

and resolve some of the questions concerning details of the sources

of electrons and their propagation through space.

The experiment described here has shown that excellent energy

resolution and good proton rejection can be achieved by frequent

sampling of electromagnetic cascades. On one flight it was shown that

a very deep detector is valuable in detecting protons which may simulate

electrons; however, the proton separation was statistical with the

exception of a small fraction of the data on one flight.

a
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These experiments have provided data over more than a decade in energy

with the dominant errors being systematic ones and not statistical.

The results of the flights have shown that the cosmic electron energy

spectrum above 10 GeV is steeper than previously thought having a

spectral index of — 3 . 1, significantly different from the proton

spectral index at high energies.
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Figure

1.

2.

3.

4.

1
5.

FIGURE CAPTIONS

A

7.

8

Experiment configuration for Flight Five.

Distribution of spark chamber least squares fit errors.

Mean response in muon equivalents of the charge determination
detectors versus estimated energy of the incident electron.
Error bars represent one standard deviation for a single event,
while points are average values.

Differential cosmic ray electron spectrum measured in this
experiment and best fit power law.

Recent measurements of the differential spectrum of primary
cosmic ray electrons and comparison with this experiment.

Distribution of the apparent starting points for events
initiated by SLAC electrons.

Theoretical differential spectrum of cosmic ray electrons in the
leakage lifetime model (arbitrary normalization).

Theoretical differential spectrum of the cosmic ray electrons
in the leakage lifetime model compared to best fit power law
to points chosen from the theoretical curve.
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