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SYMBOLS
longitudinal, lateral, and vertical aircraft accelerations

state weighting matrix in cost function for quadratic synthesis
of feedback gains

vector of biases affecting measurement of y
vector of biases affecting measurement of u

control weighting matrix in cost function for quadratic synthe-
sis of feedback gains

biases in the longitudinal output measurements

biases in the lateral output measurements

matrix of feedback gains

correlation of wind disturbance {
center-of-gravity

correlation distance of wind disturbance
control measurement matrix relating u to y
model of D containing parameter estimates p

covariance of parameter estimate errors due to the output
noise n,

measurement errors
elements of the T matrix
mean measurement errors

random constant measurement errors

scale factor errors in the longitudinal output measurements
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" SYMBOLS (CONTINUED)

roll moments due to lateral velocity, sindeslip, roll rate, yaw
rate, aileron (or roll cyclic) deflection, and rudder (or yaw
cyclic) deflection perturbations

Mach number

covariance matrix of control (fourth chapter)

pitching moment due to pitch angle, vertical speed, longitudin-
al speed, elevator (or differential collective) deflection, and
collective pitch deflection perturbations

yaw moments due to lateral velocity, sideslip, roll rate, &aw
rate, aileron (or roll cyclic) deflection, and rudder (or yaw
cyclic) deflection perturbations

number of points collected in the measurement sequence .
quantity representing error due to signal quantization
control measurement noise vector

contaminating output measﬁrement noiée vector

vector of parameters to be estimated

estimated value of the vector p

roll, pitch and yéw attitude rates

unknown biases to be estimated

unknown stability and control derivatives to be estimated
unknown‘ state in.iAtiaJl”conditions to be estimated

covariance matri;(:"t.)f state when influenced by wind gusts
quanﬁzaﬁoﬁ level (second chapter)

power spectral density ;)f wind disturbance (fourth chapter)

weighting matrix in parameter identification performance
index (cost function)
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SYMBOLS (CONTINUED)

covariance matrix of control measurement noise n
Laplace transform independent variable

covariance matrix of output measurement noise n,
time

matrix representing scale factor errors and cross-coupling
errors in the measurement of y

diagonal matrix representing scale factor errors in the
measurement of u :

effective correlation time of wind disturbance
Laplace transfer function matrix

control input vector

forward, lateral, and vertical velocity perturbations

indicated value of control input vector due to scaling and bias
errors

nominal longitudinal velocity
value of u; due to measurement system lags

measurement value of up corrupted by noise

standard deviation of noise in the longitudinal output
measurements

nominal vertical velocity

angle-of-attack vane distance from the aircraft center of
gravity '

longitudinal force due to vertical and longitudinal speed per-
turbations, pitch rate, and differential collective and collective
pitch perturbations

aircraft state vector and its initial value
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SYMBOLS (CONTINUED)

components of the accelerometer position from the aircraft c.g.

side force on aircraft due to lateral velocity, sideslip, roll
rate, yaw rate, aileron (or roll cyclic) deflection, and rudder
(or yaw cyclic) deflection perturbations

measurement vector of aircraft state and its derivatives

indicated value of Y due to scaling, cross—coﬁpling, and
bias errors

value of y; due to measurement system lags

true value of y

vertical force due to pitch rate, vertical speed, longitudinal
speed, and elevator (or differential collective) and collective
deflection perturbations :

sampled signal

nominal angle-of-attack
angle-of-attack error

roots of characteristic equation
sideslip angle

misalignments of the longitudinal, lateral, and vertical acceler-

" ometers about the aircraft axes

misalignments of the roll, pitch, and yaw gyros about the
aircraft axes

misalignments of the roll, pitch, and yaw angular accelero-
meters about the aircraft axes '

process noise distribution matrix in state dynamics equation

error in p obtained from an individual set of measurement
data

mean value of Ap over several sets of measurement data

time step of the numerical integration method

ix



SYMBOLS (CONCLUDED)

At sample time step

8,8 ,8,86 elevator (or differential collective), collective, aileron (or roll
cyclic), and rudder (or yaw cyclic) deflections

§; Kroneker delta function (=0 ifi # j, and =1ifi = j)

6p the difference between p and p

Eaflx' ea,Qz errors in the accelerometer location
cgx’ ecgz error in c.g. location

€y error in a-vane location

4 wind disturbance

90 nominal pitch angle

] nominal yaw angle

P correlation of consecutive sampled terms

o standard deviation

o standard deviation of n(k)

L time delay in sampling control input

P nominal roll angle



' NOTATION-S
time derivative of variable
sample of variable at iﬂ'1 instant
estimated value of a parameter

expected value of a variable

matrix transpose

matrix inverse

gradient of a constant with respect to the vector p. For a
constant, this is taken to be a row vector. For a vector, this
is taken to be a matrix with the number of columns equal to the
order of p and the number of rows equal to the order of the
vector. ’

summation of points from 1 through n

perturbation of a quantity about the nominal value or trim
position

‘measured value of aircraft states and their derivatives

when applied to an aircraft parameter, it denotes modification
due to the cross-product of inertia; when applied to a matrix,
it denotes the matrix has been augmented. ‘



CONVERSION TABLE

(Conversion from English Units to the International System of Units (SI))

TO CONVERT FROM

foot
foot_1

inch

inch

knot

degree (angle)
;legreeﬁ1 (angle)
inch foot

foot inch

foot degree_ 1
slug foot2
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degree se cond 1 g
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degree hour 1 g
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- TO
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meter

meter_

meter second
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kilogram meter
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radian second meter
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radian se <:ond3 meter 2

¥
denotes an exact number
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2 x 107°%
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INTRODUCTION

The process of determining stability and control derivatives of an aircraft
from flight test data is called aircraft parameter identification. There are several
reasons why this process has developed into a very important field of endeavor.
These include:

1.

‘Many instances where the prototype aircraft do not have the same
characteristics as predicted by their wind tunnel models. The cost
to the United States government due to out-of-control aircraft losses
has been substantial [1]. Major cost and safety considerations
motivate determining ways of obtaining better knowledge of the
aircraft parameters.

Requirements for better understanding and calibration of wind
tunnel testing and its relationship to actual flight vehicle perform-
ance.

The potential of allowing the fuller understanding of aerodynamic
phenomena and the relationship to vehicle stability.

Requirements for ground-based simulators which are more accurate
representations of the aircraft in all flight regimes.

Requirements for superior stability augmentation and adaptive flight
control systems.

There are three essential elements in the development of more adequate
methods for identifying aircraft parameters from flight data:

1.

Improved algorithms and computer programs to identify the deriva-
tives, their confidence levels (variances), and related parameters
such as sensor errors and wind gusts.

The determination of proper sequences of flight control inputs
(surface deflections) which will excite all the aircraft response
modes from which parameters are to be extracted, and methods of
displaying this information to the test pilot so that he is aware of
when a suitable maneuver has been executed.

Adequate instrumentation (the right kind of sensors with necessary
accuracy) and recording equipment with which to collect the flight
data. :

This study is concerned with this last point, namely, the establishment of what
constitutes necessary instrumentation accuracy to enable the collection of flight
data which is of adequate quality for identifying the aircraft parameters to the
accuracy desired.



Flight instrumentation is usually not specified for the direct intention of
identifying stability and control derivatives. Rather, its intended purpose is for
checking aircraft handling qualities and general measures of performance. If
instrumentation specification is made, it is typically based on what is known to
be available. Part of the reason for this status is that estimating stability
derivatives from flight test data has only been a secondary activity of companies
building aircraft. If a problem arises in the handling qualities, the manufacturer
may attempt to determine the derivatives responsible for the undesirable charac-
teristic as an aid to the best design fix; however, generally, no full identification
program is undertaken. Flight simulators are built using wind tunnel estimates
of stability derivatives, and only corrections for gross discrepancies are made.

The effects of instrumentation errors on the accuracy of stability and con-
trol derivatives determined from flight test data have been analyzed before to
some extent. The most detailed study conducted to date on instrumentation
requirements was the work of Hill, et al. [2] for the XC-142A V/STOL airplane.
This study developed design and accuracy requirements for four levels of
measurement equipment. -Particular errors studied include random noise, high
frequency sinusoids (elastic modes and faulty demodulation), scale factor error,
bias, time delay (high order filter or instrumentation stiction), time lag (filter
or servo), and aha51ng The state-of-the-art in available equipment is discussed
in detail in Ref. 2 prior to specifying the instrumentation system design. Focus
was placed on the need for further sensor development for low airspeed, direct
thrust, angle-of-attack and angle-of-sideslip, and pressure altitude. However,
an important conclusion of this study was that it is as important to understand
the nature of an instrument as it is to attempt to develop the more nearly perfect
instrument. If an instrument's errors are well known, they can be taken into
account. '

In another study, Burns [3] noted that a 3° phase lag in the gyros pro-
duted a 5% error in g He recommended that instrument alignment be kept

within 0. 1°, and that mounting locations be selected so that less than 0.1° error
resulted from structural flexibility. He concluded that many more test flights
have been made than needed because of poor data, and better instrumentation is

a more effective use of money. Thus, it has been recognized for some time that
there are strong economic reasons to understand the effects of instrumentation
errors and to provide the means by which an organization that is conducting flight
tests can be assured that their instrumentation is adequate.

Gerlach [4] and others at the Technological University of Delft, the
Netherlands, have developed instrumentation systems with digital data acqusition,
precision temperature controlled electronics for uniform instrument dynamics,
and inertial instruments in-a temperature controlled housing. However, data of
individual instrument contributions to identification errors were not collected,
nor were the 1nd1v1dual error effects on particular stability derivatives deter-

mined.

References 5-7, which are the predecessors of this study, report the
development of two specific methods for analyzing the effect of instrumentation
errors on the accuracy of the identified stability and control derivatives. These
methods are referred to as ensemble analysis and Monte Carlo analysis. The com-
puter programs which mechanize these methods are extended in the current study.
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‘The ensemble analysis method was first applied to study the effect of static output
measurement errors for typical flight tests of the F-4 and DC-8 aircraft [5,6].

This was extended to also include the effects of control measurement errors and lags
in Ref, 7 using the Monte Carlo analysis method.

The results of this present study were as follows:

1. The computer programs developed for previous work [5] were
expanded to include more extensive capabilities (such as modeling
the identification of helicopter dynamics with a stability augmenta~
tion system operating). Details of these programs appear later.

2. A survey was made of instrumentation and data processing tech-
niques used at various flight test centers. From this survey, the
‘error sources affecting identification accuracy were identified and
quantified. The error models developed in the previous work were
validated and extended as necessary.

3. - The error analysis programs and instrumentation error models were
used to study error effects on identification of stability and control
derivatives of a simulated CH-46 helicopter. The statistical accuracy
of these coefficients was determined for various points on a typical
landing approach trajectory. Recommendations are offered concern-
ing further analysis required.

This report, which contains the details and results of the study, is organ-
1zed as follows:

1. The second chapter entitled, "ERRORS IN MEASUREMENT AND DATA
PROCESSING SYSTEMS USED FOR PARAMETER IDENTIFICATION,"
presents the instrumentation survey, the resultant instrument error
models, and the range of error magnitudes for typical fhght test
1nstrumentat10n

2‘. The third chapter entitled, "ERROR ANALYSIS TECHNIQUES," pre-
sents the analytical techniques used in the error analysis programs.

3. The fourth chapter entitled, "STUDY OF THE EFFECTS OF INSTRU-

- MENTATION ERRORS ON THE ACCURACY OF PARAMETER ESTI-
MATES," presents the effects of instrumentation errors on the statis-
tical uncértainty of identified parameters. These results are obtained
using the instrument error models presented in the second chapter
and the error analysis techniques discussed in the third chapter.

4. . The last chapter summarizes the information gained from the study
regarding instrumentation accuracy requirements and further analy-
- sis and experimentation efforts needed to ensure adequate flight test
results . :
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ERRORS IN MEASUREMENT AND DATA PROCESSING SYSTEMS
USED FOR PARAMETER IDENTIFICATION

This chapter describes and quantifies the errors which affect the nature
of the data used for parameter identification. Error sources include those of
the airborne sensors, the airborne data conditioning and recording, possible
telemetry, and ground-based data processing. First, a general instrumentation
error model is presented which is used to incorporate the primary error sources
which affect the accuracy of the flight test data. Each of the main sensors and data
processing steps is then discussed with respect to this model. A general discus-
sion is given of some of the procedures followed at various flight test centers to
limit these error sources and magnitudes. Finally, ranges of values of the para-
meters which are contained in the various instrument error models are given,
based on a survey of flight test center personnel, instrument manufacturers, and
flight test reports.

The material used to compile this chapter is by no means exhaustive.
Every flight test is different as are the aircraft being tested and the objectives
of the engineers conducting the tests. The practices used to ensure accuracy of
flight data vary substantially between each flight test center. To obtain descrip-
tions of all the procedures followed in the tests and to quantify the errors would
require several months of investigation. Instead, this chapter presents more of
an overview of known error sources and summarizes limited data which reflects
overall instrumentation accuracies and sources of error. The resulting error
models are subsequently used to determine the effects of instrument errors on
identified parameter accuracy. Thus, the data and models of this chapter pro-
vide the means to determine: (1) which instrument error sources are more
important, and (2) what is the sensitivity of parameter accuracy to specific error

magnitudes. '

To obtain this material, visits were made to NASA Ames., Flight, and
Langley Research Centers. In addition, conversations were held with personnel
associated with the Naval Air Development Center, the Naval Air Test Center,
Boeing, Douglas, and Lockheed aircraft companies, and several instrument
manufacturers. Additional material was obtained by review of some of the exist-
ing literature on flight testing and instrumentation.

General Measurement System Error Model

As is seen in the following sections, the data actually used for parameter
identification are modified by several types of errors. These errors change each
measured variable's magnitude from its true time-history. Nonlinear, stochastic,
and time-varying effects are all present. This section reduces these effects to
parameters contained in simple linear error equations suitable for analysis. In the
subsequent analysis, the errors are simulated by these equations, and the error

effects are evaluated.

The data used for parameter identification consist of recorded measurements
of the aircraft states and their derivatives and the control inputs used to perturb
the aircraft from steady flight conditions. The instrumentation system measures,
processes, and records the data variables essentially simultaneously. This instru-
mentation system is mathematically represented by a set of equations describing the
different data channels. The data in each channel are the measurements of one of
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the time-varying control inputs, states of the aircraft, or state derivatives. The
parallel data channels each have the same basic sources of error, which are now

discussed.

Figure 1is a block diagram which illustrates major sources of error which
affect the data. The purpose of this illustration is to introduce the types of errors
which are considered here. The exact form of the submodels contained within each
block of the figure may change somewhat from channel to channel, as is explained
shortly. Figure 1 shows the typical sequence of error effects which modify a
variable v, starting from its assumed true value Yy and ending with the recorded

value V1o used for parameter identification.

The assumed true value of the variable (Yli) is first subjected to the dynamic

response of the sensor which is indicated in Figure 1 by the second-order term.
Such a model approximately characterizes the response of a rate gyro, for example.
For some instruments, such as the airspeed measurements and rate integrating
gyros, this term is more appropriately modeled as a first-order term.

The measurement is next subjected to a scale factor error indicated by €11

This term is assumed to be constant; however, it encompasses the effects of non-
linear scaling and time-varying scaling such as scale factor errors caused by tem-
perature and power supply variations. The effect of boom bending and upwash
effects on the wind vanes are other examples included by this term.

Another error term is the cross-coupling between the measurements. This
is indicated by the term €12 which multiplies the variable Yo before it is added to

Bias and
White Noise White Noise
b1 + n n,
w f1 ++
Y ol 1+ ¢ —_—
11 =¥ 524_2;“ +wZ 11 S+f1

Data Prefiltering

Effect Time
-sT; | Delay
Effects

Sensor Dynamics  Scale Factor
' Error

e

Y2 ™™ 12 |

Cross-Coupling

Error
Ylo - )r _ /TZ
_rr' Sampling
Quantization Effect

FIGURE 1.- BLOCK DIAGRAM OF BASIC MEASUREMENT ERROR MODEL
6 : :



Y1 Such terms exist when the measurements of one variable are affected by changes

in magnitude of other variables. Sources of cross-coupling error are instrument
misalignment, center of gravity (c.g.) and instrument location uncertainty, linear
acceleration dependent terms of the gyro and angular accelerometer readings, and
angular rate dependent terms of the wind vane measurements.

Other error terms which affect data accuyracy are instrument bias b, and
naise n- The noise is due to vibration, electrical sources, unsteady aerodynam-

ics and various other sources which are discussed subsequently. The noise can be
moadeled as white noise passed through a shaping filter, and as sinusoidal terms.
However, this noise can he encompassed into the bias term; also, prefilters are
commonly used to remove the noise and sinusoidal terms adequately so that n, can

be neglected.

Next, the measurement is subjected to another dynamic term shown in Fig. 1
as a first-order lag. This represents the prefilter. A second lag would be required
to model the response of recording equipment. The phase error from these filter
effects has usually higher than first-order characteristics. But the model constant
f. can be adjusted so that phase lag is approximately correct for frequencies in the
region of the prefilter break frequency. This first-order model limits the computa-
tional load of the subsequent analysis because only one integration is then required
per channel. The errors that result from the filtering effects are due to the inequal-
ity of the time constants in parallel data channels. In another sense, the error can
be considered to be due to incorrect compensation for known phase lags.

The filter terms in each data channel usually produce lower cutoff frequencies
than the basic sensor response dynamics, so the effect of the instrument dynamics
can usually be ignored. This isn't true for pressure-dependent measurements, as
is discussed later. However, it is assumed in this study that pressure-dependent
lags are adequately compensated for in the software before data processing.

Thus, in the subséquent analysis, the effects of lags due to sensor responses are-
ignored, and concentration is placed on studying the effects of differences in the
time constants of the total dynamics in each channel.

After passing through the prefiltering, other white noise due to various
electrical sources affects the data. This is modeled by the addition of the term n,.

Up to this point, the data which exist in each channel are considered to be in
continuous analog form. However, for data transmission and parameter identifica-
tion purposes, the data are usually sampled and digitized: The data are sampled
at regular intervals and converted to a digital number at each sample point. The
data from several channels are typically sequentially sampled so that the data points
taken from each channel are not taken simultaneously. This effect can be modeled

as a variable time delay in each channel represented by e U , where 3 is the

delay time. The error here is due to the difference in the delay times T If sampl-
ing is done rapidly enough (e.g., ten times highest system frequency which is to

be measured), this error is insignificant. For high performance aircraft, or where
accurate vibrational data is desired the error can be significant, and the delay effect

must be removed during data processing.



The data is sampled once every 5 seconds and passed through a quantizer.

For the flight instrumentation systems reviewed, the standard deviation (0) of
the signal noise is much larger than the quantization level Q. Thus,. as is seen
shortly, it can be assumed that the distribution of the noise error on the final
digitized output Yo is the same as that for the noise n,.

To summarize, for the example of the variable ¥y just discussed, the follow-

ing random error sources are assumed to be predominant:

€y9° scale factor error

€5t cross coupling error

b 1 bias

flz inverse of data channel's dynamic time constant (break fre-
quency, or bandwidth)

n,: white noise

All these random terms can be assumed to have Gaussian distribution. The cross-
coupling errors and time constants have nonzero mean values; the rest are zero
mean. Installation errors, such as ground loops, are ignored because they are .
assumed to be removed during calibration.

There are several sources of phase lag due to dynamic effects (sensor response,
high order prefilters, tape recorders) in each channel. However, these effects are
assumed to be all lumped into one first-order lag represented by the inverse time
constant fl' This represents the overall dynamics of the specific channel.

"The noise n.1 is assumed to be removed by filtering. Also, it is assumed that

the time delay e *™ due to sequential sampling is removed in data processing, and
quantization effects (Q) are negligible. The scale factor errors and biases are set
large enough to encompass the effect of nonlinear type errors (e.g., threshold,
hysteresis) and time-varying errors (e.g., power supply fluctuation). These
assumptions and models are justified in the next section.

In this study, the aircraft state variables and their derivatives (such as 'y1

in Fig. 1) that are measured are represented by the vector y. The effect of the
dynamic lags in each of the parallel data channels is represented by the matrix F’m.

It consists of a diagonal matrix with the inverse timé constants (such as fl) along
the diagonal.. If Y is the true value of the vector y being measured, and if 129 is

the lagged value, then these terms are related by the differential equation



The scale factor errors and cr-oss-couplin'g terms (such as €91 and 812) are

included in another matrix T. In T, the diagonal terms represent scale factor
errors, and off-diagonal terms represent cross-coupling errors. Also, the bias
terms and the noise (such as b1 and n ) are represented by vectors B and n,

respectively., Then, the final mdlcated output vector y; is described by the vector
equation

YI:TyL+B+n ‘ ‘(“2)

In the representation of the errors modeled by Eqs. (1) and (2), the dynamic
eryror sources (Fm) are seen to precede the static error sources (T, B, n) in the

order that they affect the data accuracy. This placement was done because it lower-~
ed the computation requirements of the ensemble analysis as explained in the next
chapter. For small errors which are assumed in using the ensemble analysis, 1t
can be easily shown that the order is of no consequence on the results.

: Now assume that the true control input is represented by the vector u.
Also define

up, = lagged control measurement due to dynamic effects of the
measurement channel,
_ FC = diagonal matrix whose elements are the inverse control

measurement time constants,

T = diagonal matrix whose elements are control measurement scale
factor errors,

B = control measuréement bias vector, and

n = control measurement noise vector

Then, the measured control vector is related to the actual value by

u =-Fu

L c L +‘Fcu ; QL(O) .: v (3)

w = TCuL + BC tn (4)

Here, u; is the indicated control input vectox"’.

Equations (1)-(4) are the linear instrumentation error models used in this
study. Details of the elements in these matrix error equations are presented
in the next chapter. The range of values of the error sources (parameters in
Eqgs. (1)-(4)) are presented at the end of this chapter.

These simple models of the error sources are used in the subsequent analy-
sis of error effects on parameter accuracy. They contain most of the elements
required to determine the effect of different kinds of errors. The Monte Carlo
analysis computer programs developed for this study (presented in the next chap-
ter) are flexible such that if increased complexity of the models is de51red the pro-
grams can readily be changed.
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Each of the various instruments, data processing elements, and the error
sources which affect the recorded digital data are now discussed. The intent of
this discussion is to justify the simple instrumentation error models represented
by Egs. (1)-(4) and to present the range of magnitudes of specific error sources.
At the end of the chapter, these error magnitudes are summarized in tabular form.
The exact form of the T matrix (Eq. (2)) for specific instruments studied is pre-
sented in the next chapter.

Sensor Errors
The largest contributions to the data errors are from the sensors used on
the aircraft. These include the gyros, accelerometers, air data measurements,

wind angle measurement, and control input measurement.

Gyroscope errors.- The basic transfer function of the gyroscope [8] is:

%) H = (%)
.’wi(s) 152 + Bs + K ‘

where Oo(s) is the angular deflection of the output axis due to the angular rate
wi(s) of the input axis. In Eq. (5), H is the gyro's angular momentum and I,

B, and K are the inertia, damping coefficient, and spring constant which pro-
duce torque about the gyro input axis. If K is dominant comparedto I and B, .
the instrument is a rate gyro and suitable to measure the roll, pitch and yaw
rates (p, q, r) of the aircraft. For atypical rate gyro, the undamped natural
frequency is 25 Hz and the damping ratiois 0.5. If K is negligible, the instru-
ment is a rate integrating gyro which can be used to measure the aircraft roll,
pitch, and yaw angles (¢, 6, {). A typical transfer gain (H/B) would be

0.05 with a time constant I/B of 0.001 sec.

Commonly known and modeled errors of a single degree-of-freedom gyrd
include: '

1. Misalignment of the instrument with respect to the reference coordinate
system of the aircraft (cross-coupling term between gyro measure-
" ments in three axes).

2. Mass unbalance (cross-coupling term between gyro and linear
acceleration) . '
, 3 Aﬁi-soelasticity (nonlinear term; included in scale factor and bias).-
4.  Unequal spin and input axes float inertias (bias).
5. Kinematic rectiﬁcation (noise term) .

In addition, there are random output errors and errors in the output pickoff
characterized as contributions due to resolution, null (bias), scale factor, and
linearity inaccuracies. The scale factor can be directly proportional to the cur-
rent frequency and voltage so it is susceptible to variations in the power supply.
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Temperature change can affect the null point. Threshold and hysteresis effects
are also present.

A good portion of the gyro error can be removed by careful calibration
and subtracting the effects of known nonlinear terms. However, gyro models
are not unique. Reference 9 presents ten different ways of modeling six different
kinds of gyros to account for the presence of bias and nonlinear scale factor
errors. It also demonstrates with recorded laboratory data the amount of variation
that exists in gyro performance during day-to-day operation. Thus, the error
magnitudes used in analysis must be set 1arge enough to account for these uncer-

tainties.

Table 1 presents the results of a survey of some typical rate gyros which
are commercially available and which could be used for flight testing. The error
sources are specified in either absolute sense (+ value given by manufacturer)
or by standard deviation (10) based on laboratory testing. For absolute values,
the actual error distributions are unknown; the + absolute numbers given in
Table 1 are assumed to be equal to twice the normal standard deviation (26). A
great deal more manufacturers' data exists on specific gyro models. However,
Table 1is representative. In Table 1, the nonlinearity of the scale factor is assum-
ed to be included in the linear scale factor error. The resolution error is included
in the white noise, and the mass unbalance is modeled as cross-coupling between
the rate and the linear acceleration along the gyro input axis.

From Eq. (5), it can be seen that the response of the gyros is modeled as
a second-order system. Damping ratios for rate gyros typically range from 0.5
to 1; however, this number changes [10] with temperature and the viscosity
of the gyro fluid, and it can be adjusted for individual requirements. The natural
frequencies range from 20-100 Hz. For the gyro having a damping ratio of 0.7
and a natural frequency of 20 Hz, the output of the gyro for a 2 Hz input will have
a phase lag of about 7°. This is reduced to 4°, if the natural frequency is 50 Hz.

_ The response of the rate integrating gyro is found by setting K to zero
in Eq. (1). Thus, this system responds as an integrator with a first-order lag.

A typical time constant (B/I) is 0.001 sec.

Table 2 presents the characteristics of representative rate integrating
gyros. The predominant error is drift from the null position. Over the time
span of a typical flight test data set, this would appear as an error which would
grow with time. For drift of 15°/hr, this would be about a 0.13° change of the -
null point over a 30 sec time span. This is included in the bias term in the error

model of Figure 1.

For the Systron Donner Model 5610 miniature attitude reference units, the
quoted a.hgnment of each sensing element in its case is + 0.5°. The total sensor
case alignment is highly dependent upon the procedures used when constructing
the reference unit and mounting the package in the aircraft. Again, this misalign-
ment is included as cross-coupling between rates about the input axes of each gyro.

Accelerometer errors.-~ For flight test purposes, linear accelerometers
are used to measure the inertial acceleration along the longitudinal (A_ax) ,

11
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TABLE 2.- ACCURACY CHARACTERISTICS OF TYPICAL COMMERCIAL
RATE INTEGRATING GYROS

DRIFT DEPENDENCE
TYPE LINEQRITY DETERMINISTIC ¢ g’ RANDOM
deg/hr deg/hr/g deg/hr/g2 deg/hr
. Timex IG 140 3 15 15 5 3
. Timex IG 140H 3 5 5 5 1
Lear Siegler 19037 | .1 10 10 5 .2
Kearfott Alpha .01-.25 .1-.5 3-.7 .01-.02 .02
Kearfott King .02 .003 2 .01

lateral (Aay), and vertical (Aaz) body axes. Angular accelerometers can be

-used to measure the time rate of change of roll, pitch, and yaw rates ({), é, r.').
Two parallel linear accelerometers placed at opposite extremities of the aircraft

can also be used to measure angular accelerations.

There are several types of linear accelerometers available including non-

integrating, single-integrating and double-integrating types. For flight testing,

the nonintegrating accelerometer is more appropriate.

error model [11] for an accelerometer expresses the output Aa as

Aa:D+H+ko+k +k2a§+k3ai+k12aé+kl3a3+k
where |

a; = acceleration along the input axis

ay,a; = cross—axis acceleration components
.T= difference between operating and calibration

temperature ’

D= threshold in sensitivity to 2

H= hysteresis. in output for variation in ay

kO = bias (different each time i‘n'stfrument is used)
k1 = linear scale factor

A typical steady-state

1T

(6)
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ky,k, = nonlinear terms

2’73
klZ’k13 = cross-axis sensitivity terms |
k41 = temperature coefficient

The effects of k2 and k3 are included in the scale factor. error of Fig-
ure 1. The terms kl2 and k13 are cross coupling terms. The terms D, H,
ko and k41T are included in the bias and noise terms. Dynamic rectification
effects also exist which are included in the white noise term. The natural fre-

quency is typically greater than 50 Hz.

Table 3 presents values of the error magnitudes for typical linear acclero-
meters. Again, a great deal more manufacturers' data exists. Note in Table 3
that cross-coupling error is due to both misalignment of the instrument case and
sensitivity of the instrument output to the perpendicular component of acceleration.

Another source of accelerometer error is due to the instruments not being

mounted at the vehicle's center-of-gravity. This location error is typically cali-
brated out by the equation

Xd -wX(wXd (7)

Ele

B=R_-
m

TABLE 3.- ACCURACY CHARACTERISTICS OF TYPICAL COMMERCIAL
LINEAR ACCELEROMETERS

INPUT RANGE | NONLINEARITY | ZERO OFFSET ) RESOLUTION
TYPE g % % g COMMENT
FULL SCALE. | FULL SCALE
.Timex AP-000 t 2.5 2 .05-.14 .0005 | a.
Systron Donner | +.5-%3.5 .05 .05 .001% Noise = .05%
4310
Lear Siegler o .2 .001g b.
Sperry . + 1] .25 .0015g c.
Lear Kistler +3 £.05 +.02 A .004
303T '

a. Scale factor proportional to voltage and frequency
Noise = 33 g, Cross-coupling = 10> g/s
Cross-coupling = .002 g/g, Cross aligmment = +.25°
Note that cross-coupling error is due to both misalignment of the instru-

ment case and sensitivity of the instrument output to the perpendicular
14 component of acceleration.



where
ol = [ p g r] - angular rate of aircraft

aT

= [x y 2] - distance from c.g. to accelerometers

im = measured acceleration

"

D = acceleration of the c.g. which is the desired quantity to be deter-
mined

If, instead of the term d, the term (a__+ cTe) is used, where &e is the error

in the knowledge of d, then errors in D are

- ] 5 2
Dex =ry_ - qz + (@ " +r )xe - Pay, - pPrz,

- _ . 2 2
DeY T PZe T TX, tpoty )Ye T Pax, T.qrz

(8)

e
i.) = éx - I.)y + ( 2 + 2)2 - rk - r
ez e e P q /2, T Prx, " Qry,

These equations are decoupled and separated into lateral and longitudinal com-
ponents for this study. Then, they reduce to

D

_ 2
ex 9%t A x,

w . . 2
Dey—pze—rxe+ye(p +r‘) (9)

- )
Dez Taxg * ze(q )
If the accelerometer location error components (xe,ye, ze) are assumed to be one

foot each for-a typical aircraft response, then the linear terms in Eq. (9) are typi-
cally greater (for most aircraft maneuvers) in magnitude than the nonlinear terms
by a factor of 30.or more. Thus, the nonlinear terms can be assumed to be negli-.
gible. The remaining terms are cross-coupling terms which relate the error in
linear c.g. acceleration as a function of aircraft angular acceleration.

The angular accelerometer element operates on the force-balance principal
with the seismic mass consisting of a nonmetallic liquid. In operation, this liquid
mass tends to stay at rest when angularly disturbed. When coupled to an electro-
mechanical device, it provides a measure of the force between the fluid at rest,
and the changing attitude of the outside world. The method of detecting this rela-
tive motion consists of a paddle intersecting the toroid of fluid. The paddle is
mechanically coupled to a torque motor, which is immersed in the fluid to eliminate
mechanical seals. Standard servo force-balance techniques permit servo capture
of the fluid mass to derive an angular acceleration signal. '

Angﬁlar accelerometers are not as common as linear accelerometers, and
their usage is more limited in flight test work. Because they are based on fluid
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rotors, they are limited to low Mach number and medium to low altitude applica-
tions. One type, the Systron-Donner Model 4590 [10] has the characteristics
presented in Table 4. Here, the temperature sensitivity, nonlinearity, hystere-
sis, and nonrepeatibility terms can be included as bias and scale factor errors.
The resolution error can be included with the noise. '

TABLE 4.- TYPICAL ANGULAR ACCELEROMETER CHARACTERISTICS
(FS: FULL SCALE)

Range: + 1 rad/se_c2 Resolution: .001% FS

Bias: 0.05% FS Noise: .07% FS RMS

Temp. Sensitivity: .03%/°F Lin. Accel. Sensitivity: .2% FS/g
Non-linearity: 0.1% FS Alignment: + 1°

Hysteresis: 0.05% FS Cross Axis Sensitivity:
Non-repeatability: 0.02% FS 0.01 rad/secz/rad/sec2

As mentioned previously, some flight test centers use two parallel linear -
accelerometers mounted at the extremities of the aircraft to measure angular accel-
eration. In this case, the angular acceleration errors are a result of those basic
to the linear accelerometers, the mounting uncertainty between the pair, and errors
caused by flexure of the aircraft body. One test engineer reported that this pro-
cedure is not nearly as accurate as using the angular accelerometer. It was found
that most test centers did not attempt to measure angular acceleration at all.

Air data errors.- An air data system typically consists of aerodynamic
and thermodynamic sensors and a computer. The sensors measure the character-
istics of the air surrounding the aircraft and convert them into electrical signals.
in specialized transducers. The computer calculates flight parameters such as
true airspeed, free-stream static pressure, free-stream outside-air temperature
and Mach number. The inputs required are static pressure (ps) , stagnation

pressure (pt) , air tempefature (TS) , and angle-of-attack (for supersonic

aircraft.

Static pressure is measured through ports in the side of the fuselage or on
a pitot-static tube. Because the air is moving past the aircraft, the pressure at
various places on the aircraft's skin is different from the free-stream pressure
by an amount called the static defect. The static defect depends on location,
speed, altitude, and angle-of-attack. The measured reading also lags the actual
value due to the time constant of the tubing leading to the transducer. A typical
time constant is 0.25 sec. [11]

Stagnation pressure is measured with a tube that is open at the front and
closed at the rear (pitot tube). In flight testing, the pitot tube is sometimes
positioned or is servo driven to point into the relative wind.
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To get an accurate air temperature measurement, a probe similar to a pitot
tube is used. Impacting air is compressed to zero speed, causing total tempera-
ture to exist at the thermometer.

Mach number (M) is calculated ,I at subsonic speeds, from stagnation
pressure and static pressure by using

2/7 0.5
Py
M= {5 (—) -1 ,

P, (10)

The accuracy of the Mach number calculation thus depends on the accuracy of
(pt/ps). In turn, the true airspeed (TAS or V) comes from combining Mach

number and free-stream static air temperature, by the equation

V=MVyRT_ = 38.967/ T_M (11)

Here, Vis in knots, and Ts is in degrees Kelvin.

The transducers [11] which convert pressures and temperatures to voltages
are the limiting factors in true airspeed accuracy. All air data systems measure
static pressure and temperature. The third measurement may be either stagna-
tion pressure (pt) or dynamic pressure (pt—ps) . The transducers used are:

1. Displacement pressure - uses the expansion of an elastic diaphragm
to produce a direct analog output.

2. Force-balance pressure - balances the diaphragm force against a
calibrated standard. :

3. Solid-state pressure - pressure difference deforms a crystal or
semiconductor whose capacitance, output voltage, or change in
resistance varies with pressure.

4, Temperature - variable resistance wire whose resistance increases
approximately linearly with temperature.

On the STOLAND system [13], the air data system produced airspeed
accuracies of + 0.375 kts due to hysteresis, + 0.25 kts due to resolution, and
+0.05 kts due to repeatability errors at 60 kts airspeed. Wolowicz [14] reported
large static pressure errors for angle-of-sideslip greater than 3°. Also, there
is a Mach number calibration which is a function of Mach number and the ratio of
the boom length to the fuselage diameter. For subsonic flow, this error varies
from 3% to 5%, and it acts as a bias. However, this can be mostly calibrated.
Also, there is up to + 2% scatter in calibration data. As can be seen in Eq. (11),
this .Mach number scatter directly affects the accuracy of the calibrated airspeed.

From the above material, the scale factor error of typical low speed air-
speed measurements is seen to be about 2%. Bias and noise have standard devia-
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tions of about 0.5 kt (0.85 ft/sec). This accuracy deteriorates near the ground
as is discussed later.

Angle-of-attack and sideslip measurement errors.- There are two methods
commonly used to measure angle-of-attack and angle-of-sideslip. These are with
vanes [14] and with differential pressure heads [15]. Both sensors are normally
mounted on nose booms, although wing booms and fuselage mounting are some-
times used. '

The wind vane typically has a natural frequency of 10 Hz with a damping
ratio of 0.7. Vanes are subject to the following set of static errors.
1. Boom bending - components of this are proportional to normal
acceleration (Aaz) , pitch acceleration (Aci) , and aerodynamic

load (Aa). The first two are cross coupling errors and the latter
acts like a scale factor error.

2. Upwash - components-are due to the geometry of the vane location
with respect to the wing, fuselage, and boom. These terms are pro-
portional to Aa and thus act as scale factor errors.

3. Pitching velocity - proportional to Aq so this acts as a cross
coupling error to angle-of-attack. The error is
_ vaq .
A = v _ . (12)

e

where X, is the distance from the c.g. to the boom and V is the

airspeed. Reference 8 gives this term as

xngnz va&
Aa = + . - (13)

e VZ vV

which is equivalent.
4, Vane asymmetry - acts like a bias term.
5. Vane misalignment - acts like a bias term.

Most of these terms can be effectively calibrated out of the data. The
largest correction is usually the total upwash correction which may be as large
as 20% of the total reading for an aircraft traveling at high subsonic speeds.

The smallest the upwash correction can practically be is about 4% [16] . Upwash
effects are often removed by use of calibration curves, which are functions of
vane position geometry; examples appear in Ref. 17.

The sideslip angle will have errors due to rolling and yawing velocities
(Ap, Ar). Other error sources of the vanes are: (1) the phase lag between when
a'gust hits a vane and when it affects the aircraft [18], (2) phase lag of the
recorder [14], (3) wing and fin twist and deflection [15], and ineffectiveness at
low speed [2].

18



Differential pressure devices used to measure angle-of-attack and sideslip
have additional error sources [15]. The angle-of-attack reading is affected by
rolling velocity if the pressure head is mounted off the longitudinal axis of the air-
craft. In addition, erroneous readings are caused by deviations from constant alti-
tude and unaccelerated flight. These terms can be calibrated by putting the aircraft
in ateady climb and constant longitudinal acceleration conditions. Also, Gilyard [19]
has found large discrepancies between the analytically determined dynamic lag of
@ and B sensors and lags experienced in flight test. This difference has been great-
est for high Mach numbers. ' :

Reference 2 states that for the XC-142A flight test program, there was a
+ 0.7 scatter in the differential pressure data and a + 1.25° scatter for vane data .
at cruise airspeed. At lower airspeeds, the data had worse scatter, and below
50 kts, the data were considered unreliable. The scatter is modeled as a com-
bination of scale factor error, bias error, and noise.

There are two types of cross-coupling errors that can arise due to the
above mentioned known error sources--to ignore the error sources or to account
for them incorrectly. For example, from Eq. (12), if both vane location and c.g.
location are precisely known and accounted for, there is no error. However, if
the actual value of X, is different from that used in the correction, or if no correc-

tion is made, an error in the measurement results. The error in X, is thus divided
into two parts, the error in knowledge of the vane location (va) and the error in
knowledge of the c.g. location (sch) . The separation of the contributions is made

because vane location uncertainty only affects the Aa correction, while c.g. loca-
tion uncertainties affect accelerometer corrections as well.

Control input measurement error.- The common way used to measure con-
trol inputs is by use of control position transducers (CPT). These consist of
potentiometers with their setting spring loaded and attached to cables. The other
end of the cables are attached to the control surface, linkage, or input device
(stick, pedal) whose movement is to be measured. The linear or angular move-
ment of the mechanical device translates into linear movement of the cable. This,
in turn, translates into angular setting on the potentiometer. -

The accuracy of the CPT reading is dependent on several factors.. Actual
control surface deflection may not be easy to measure; this is based on the con-
struction of the aircraft and having a suitable place to mount the potentiometer.

If the movement of a mechanical linkage leading to the surface is measured, error
will be introduced by the reactions at the joints. Thus, the further the measure-
ment is made from the actual control surface, the greater the error will be due

to stiction, hysteresis, and threshold effects. A chief problem of these effects

is the time lag between when a linkage movement is measured and when the con-
trol surface actually moves. This produces an effect where the control input
measurement leads the actual control surface deflection. In terms of the block dia-
gram of Figure 1, this lead effect would be represented by each of the other sensor
output measurements having a greater phase lag than those of the control measure-
ments. For analysis of high-frequency dynamics, this can produce significant
error.
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On the helicopter, the control input is measured in terms of the deflections
of the swash plate. Because the control input is the integral of aerodynamic forces
on the rotor blades during each cycle, the swash plate movement occurs before the
net control effect is realized. To deduce what the control input precisely is (in
terms of aerodynamic control forces and moments applied to the helicopter), the
CPT reading must be processed with blade position information and the dynamic
equations which represent the relationship of swash plate deflection and rotor move-
ment. This must be carefully done, or the control input measurement will tend to
be out of phase with the actual resultant dynamic output measurements.

If a stability augmentation system is operating in the aircraft, the actual
control input will be the sum of automatic and manual inputs. Thus, the CPT
must be mounted to measure total control input rather than just those inputs due
to manual control (stick position).

The CPT is statically calibrated before flight by mounting a jig to the con-
trol surface and measuring its movement, as related to the CPT reading. The
results are usually very repeatable. Calibration is normally repeated after flight.
However, the control-surface can deflect somewhat differently in flight than on
the ground due to aerodynamic loads. There will be linkage vibration and sur-
face flutter that also will be measured. The CPT cable will have some flexing.
One CPT build by Space Age Control has a range of + 1.5 in. and an accuracy of
+ 2% (scale factor). '

Effects of Sampling, Digitizing, Recording, and Processing Flight Data

There are several ways in which the sensor data just described are process-
ed before being used for identification of stability and control derivatives. Each
method has its unique set of additional error sources and inherent accuracy of the
data. In flight test investigations of small aircraft where the instrumentation volume
is a problem or a situation where the number of parameters recorded may constitute
a serious time lag in the recovery of the data, sophisticated data acquisition systems
are used. Data acquisition systems are capable of handling the data to reasonable
accuracy (0.1% to 1%) [14]. The pulse code modulation (PCM) procedure converts
the analog signal from the sensor to digital format and records the digitized data on
tape on a time-sharing basis. The errors in the digital data are modeled by the
noise term n, in Figure 1.

Figure 2(a) shows a schematic drawing of a typical airborne PCM system.
The analog signals from the sensors go to a PCM encoder to convert the signal to
an identification coded, digitized format. The coded, digitized signals are then
recorded in parallel on an onboard tape recorder on a time-sharing basis. To
recover the data, the taped signals are processed through PCM decommutation,
which unscrambles the individual sensor signals, to a format computer to provide
real time data outputs in the form of strip charts or oscillograph readouts for an
immediate look at the data. The real time data are also transmitted to a general-
purpose computer which tabulates, plots, or performs analyses of the data.

Figure 2(b) shows a schematic drawing of the PCM system using telemetry.
The main differences between the telemetered and airborne PCM systems involves
the transmission of the coded, digitized signals in series to the decommutator
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(instead of parallel to the recorder); this requires time synchronization of the
signals before the signals are taped. Errors in the time synchronization are
modeled as different time delays 3 in each data channel as depicted in Figure 1.

In processing the data, the format computer identifies the individual data channels
for real time data output.

In response to the increasing complexity and faster turnaround required,
several real time test support systems have been built [20-22]. Each of these
systems could be described as telemetry ground stations used in conjunction
with a small computer preprocessor feeding a larger digital computer. A typical
system is the Naval Air Test Center (NATC) Real Time Telemetry Processing
System (RTPS), which was developed to allow data analysis to take place between
maneuvers during a single flight [23].

The RTPS provides data flow as indicated by Figure 3. All of the indicated
functions are integrated into a single facility except for position measurement
(range) radar and remote telemetry antennas; these are connected to the RTPS
by microwave link.

Test data enters the system by way of telemetry antennas or onboard in-
strumentation tape and proceeds in serial digital and/or analog form to the
Telémetry Decoding Subsystem. In the case of telemetry (in-flight) data collec-
tion, all of the received data is recorded on wideband analog tape for backup in
case of system malfunction and for further potential analysis. Having been de-
modulated from frequency or pulse-code modulation (FM or PCM), the data are
transferred with time and quality information to the Data Channel Subsystem. In
the Data Channel, all measurements are reduced to digital form, linearized,
scaled to engineering units, limit checked, time-tagged, merged on a block basis,
and recorded. A selected portion of the total Data Channel output is routed to the.
Real Time Computation Subsystem. Following correlation with range data (if

‘required) and selection for display formatting, the processed results are dis-
played in the Project Engineer Station for evaluation.

At most flight test centers, the data collected is batch processed rather than
in real time. At all centers, problems arise due to sampling, digitizing, commutating,
and filtering the data. Problems of spikes or dropped points in the data due to
sampling and commutation are common. Thus, procedures are required to insert
valid data points by interpolation. : '

- A special problem of sampling continuous data is that of aliasing. The data
spectrum is considered to be virtually bandlimited if the frequency content above
a certain frequency w is small and presumably unimportant for conveying the

information. For aircraft data, there will always be some higher frequency con-
tent due to vibrations, flutter, and power supply frequency. When such data
are sampled, there will be unavoidable overlapping of spectral components. In
reconstruction, frequencies originally outside the nominal band will appear at
the filter output in the form of much lower frequencies. Thus, for example, the
frequency w, > w, is measured as- w_ - Wy < w4, where W, is the sampling

frequehcy. This phenomena of downward frequency transition occurs whenever
a frequency component is undersampled.
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The effect of aliasing is diminished by filtering the data as much as possi-
ble before sampling and sampling at much greater than the nominal Nyquist rate.
Reference 2 presented detailed design specifications for prefilters which could
be in a typical V/STOL flight test program. In order to preclude the injection
of sensor response to spurious frequencies into the multiplexer/encoder, with a
possible consequence of aliased data, a group of presample low-pass filters were
included as part of the analog signal-processing chain. :

The introduction of prefilters into the data processing sequence introduces
another possible error source--unequal phase lags for each variable measured.
The phase lag is represented by the constant f, in Figure 1. These lags are
in addition to those caused by the normal response of the sensors and tape re-
corders. Attempts are usually made to adjust the filter parameters so the re-
sponse is equal for all variables. Phase compensation is also done using software
when calibrating the data before use in the parameter identification procedure.
The phase lag due to data filtering must be combined with the inherent lags of
the sensors and recording equipment to obtain the overall effect. Preflight cali-
bration is usually required to determine what the overall lag is.

Another error source already mentioned is introduced because of the
sequential sampling of the data variables. That is, each variable is sampled in
turn for multiplexing, and then interpolation must be used later to determine the
variables' magnitudes at the same time points. This is especially critical for
studies of vehicles at high Mach numbers where buffeting, flutter, and other non-
rigid behavior are being analyzed. It also becomes important when any of the
sensor readings have information content concerning the vibrational environment
that they are in.

Two other error sources which are convenient to consider together are
the effects of white noise and data quantization on the error in the data finally
used for parameter identification. The white noise comes from many sources in
the data measurement and handling process. To some extent, it is limited by data
filtering, but filtering also can remove useful information. The noise is typically
‘modeled as having a Gaussian distribution with zero mean and standard deviation
of o.

The quantization error comes from digitizing the data for telemetry and
numerical evaluation on the digital computer. This type of error affects the out-
put of the multiplexer/encodeér [2]. Quantization noise is uniformly distributed

with bounds of + 0.5Q, where Q is b_m; here, b is the radix of the encoding
number system and m is the number of code elements used to express a measure-

ment digitally. The RMS value of such quantization noise is b M/2v3. Ina
multichannel system having a large number of components, such errors can be
treated as random. Other multiplexer/encoder errors having Gaussian distribu-
tion include effects of source impedance, back current, offsets, gain stabxhty,
sample and hold, drifts, and linearity.

The probability distribution of the error e in a signal, first contaminated

by noise y of distribution Py (y) and then quantized, is [24],
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et+0.5

p(e) =/ py(y) dy (14)
e-0.5
After normalization i_n units of ¢, this becoines
e +0.5Q/c
p(e/o) 2 ple’) = 3 | p Ay ) dy’ (15)
Q/c y
e ~-0.5Q/c

For py(y) being Géussian, Eq. (11) can be integrated to produce the family of

curves shown in normalized form in Figure 4. Itis clear from these curves that

ple”)
44

1

Error e” = (e/a)

FIGURE 4.- DISTRIBUTION OF SIGNAL ERROR e’ = (e/0) DUE TO
COMBINED QUANTIZATION AND CONTAMINATION BY WHITE NOISE
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the distribution becomes uniform as Q/0 increases, and for Q/o0 =0, the dis-
tribution is Gaussian. These curves are useful in determining the nature of the
error characteristics due to the combined presence of noise and quantization.
They also can be used to determine the level of confidence in which the error of
a signal is bounded between certain values. Finally, they can be used to deter-
mine the minimum number of quantization steps required to produce a given sig-

nal quality.

The quantization level is set by the bit length of each recorded data point.
This length is usually equal to or greater than eight bits. For a noise level of 1%
full scale, this produces the Q/0 ratio to be on the order of 0.5 or less. Thus,
can be seen from Fig. 4, the distribution remalns nearly Gaussian, and the quanu—
zation effects can be 1gnored :

General Observations of Instrumentation Procedures

Some general observations are now made concerning the instrumentation
procedures followed at various flight test facilities. The intent here is to point out
further the variations in test conditions, calibration procedures, and instrumenta-
tion accuracy found at different centers. The significance is that there is no uni-
formity to flight test instrumentation used. It is thus important that the engineer
interested in identification of stability and control derivatives become familiar with
the specific procedures of the test facility used so that the identified parameter
accuracy may be ascertained. Procedures used include the following:

1. Instrumentation systems are generally designed so that frequency
response is flat from zero up to 6-60 Hz. Prefiltering tends to elimin-
ate frequency content of analog signals above these values. However,
aliasing problems do exist. Lags are compensated for during data
processing. However, an attempt is made to match the phase lag in
all prefilters.

2. Great care is normally taken to mount the inertial instruments with
their input axes perpendicular on pallets. However, the pallets
are aligned in the aircraft with instruments ranging from a steel

‘rule to a laser beam. '

3. Attempts are made to design problems such as ground loops, power
supply fluctuation, and time delay out of the system. Instrumenta-
tion voltage is typically monitored, and the associated scale factor
error can be compensated for during data processing. Other data
error sources include temperature variation, pressure variation,
and RFI effects on telemetry. The chief installation problem is the"
presence of ground loops; however, they are usually easy to detect.

4, Test engineers may or may not specify instrumentation accuracy.
When the instrumentation is specified, it consists of variables to be
measured and their range, resolution, and frequency response.
However, the actual system accuracy is usually based on what in-
strumentation is available, with appropriate compromises being made.
If the data accuracies aren't specified, the test engineer chooses the
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10.

11.

weighting matrix of his identification algorithm to correspond to the
noisiness of the measured data.

All instruments are lab tested prior to their use to verify that they
meet specification. Deviation plots are made for use in calibration
after flight. Calibration of the PCM system is done prior to and after
each flight for all movable sensors (surface deflections, pressure,
temperature) . Readings are taken and used for calibration and
correction of data. The static errors (sensor calibration curves,
digitization error, sampling delay, recorder error) are generally
known at each stage of the data processing. However, it is difficult
to remove the net effect of all these errors.

The PCM systems sample at rates from 0.4 to 200 sps. Words are 9
or more bits long. Up to 120 sec lengths of data are used for identi-
fication purposes.

Various techniques are used to compute the aircraft inertias and
center of gravity position. The c.g. can move up to 30 inches dur-
ing flight. The values of c.g. position used for identification vary
from a single estimated point to continuously varylng values which
account for fuel burnoff.

Angular accelerometers are seldom used because of expense and
failure at high Mach number. When they have been used, the results,
have been good. Sometimes parallel linear accelerometers are used
to obtain angular acceleration. Otherwise, angular acceleration
measures come from differentiating the measured angular rates.

The largest instrument lag is in the response of static and total
pressure measurements. This is sometimes calibrated by measuring
aircraft position with radar. In the B-70 program [25], lags of up

to one minute were noted; in the response of the angle-of-attack sen-.
sors. Modification of pressure measurements are made for errors
due to geometry, Mach number, flow angularity, and Reynolds
number effects using flight, wind tunnel, and theoretical calibration
values.

Flow angularity (a,P) corrections are made for geometry, boom
bending, upwash, dynamic lags, vane floating, aerodynamic loads,
and effects of pitch velocity and acceleration. A typical boom oscil-
lation of + 0.6 in. converts to + 1.7 in angle-~of-attack reading.

Pilots typically cycle the control inputs through maximum deflection
at the beginning and end of each flight test. The data is used for
CPT calibration. For helicopter flight test, the CPTs have been used
to measure stick and swash plate movement. :

This list of comments regarding flight test instrumentation could be extended.
Many more details could be obtained from each of the flight test.centers for each
aircraft tested. In summary, many sources of error exist, many individuals are
involved in the calibration and testing process (each having a different point of
view), and few specific conclusions can be made concerning lnstrumentatlon prac-
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tices followed at each flight test facility. The recommendation to the engineer using
" the data is to be aware of the error sources, their characteristics, and their magni-
tudes. Then models such as the one shown in Figure 1 can be used to determine
the effect on the accuracy of the derived parameters. How this is done'is the sub-
ject of the next chapter. But first it is necessary to summarize the range of para-
meter magnitudes which make up these error models.

Range of Error Magnitudes

In order to study the quantitative effects of instrument errors, numerical
values of the parameters in the error models must be known. Ranges of values of
typical instrumentation errors are presented in Table 5. These numbers represent
statistical variations; they are based on summarizing absolute values given in
Tables 1-3, other results of this chapter, and conversations with several individuals.
Manufacturers' absolute accuracy ranges were assumed to be + 20 values which pro-
vides a conservative estimate of the instrument quality available. The random
numbers are assumed to have Gaussian distribution, unless otherwise stated.

The values for the range of errors given in Table 5 represent the author's
best judgments of the state of typical flight test instrumentation accuracy based
on available information. There exist considerable manufacturers' data on avail-
able accuracies of rate gyros, rate integrating gyros, and linear accelerometers.
Thus, the numerical values for the first three rows of Table 5 have the most
supporting verification. Generally, test center laboratory calibration of gyros and
accelerometers confirm manufacturers' claims; thus, manufacturers' speciﬁcations
have a high probability of being correct.

The accuracy of wind angularlty and airspeed measurements is less well
known because of the uncertainty of environmental effects (mostly aerodynamic).
A great deal of time is spent at test centers determining empirical models of the
output of these instruments, and the accuracy is highly dependent on the aircraft,
mounting position, and flight regime. The range of values presented in rows 5
and 6 in Table 5 was deduced based on review of calibration documentation and
conversations held with several test engineers.

The instruments whose accuracies are least known are the angular acceler-
ometer and the control position transducer (CPT)'. Angular accelerometers are
seldom used and only limited manufacturers data exists on them. The results in
row 4 of Table 5 are based on conservative generalization of the values presented
in Table 4. The CPT's accuracy is highly dependent on where it is mounted on the
control linkage, so it is very aircraft-dependent. There was a general reluctance
on the test engineer's part to quote any specific accuracy values for the CPT out-
put. Thus, the numbers presented in row 7 of Table 5 are based largely on what
seems reasonable based on the CPT discussion presented earlier.

The numbers presented in Table 5 are the range of the instruments' outputs,
noise, bias, scale factor, and typical cross coupling terms. From these values,
a set of numbers can be selected to model a typical instrument set. Table 5 was used
to select typical error magnitudes for the error analysis which was conducted in
this study. The results are presented-in the fourth chapter along with a discus-
sion of the relative importance of each of the error sources.

28



b

ut _ BoetoeO9e
a8ejur 10 2-5°0 ST°0-S0°0 |UrST°0-S0°0 ur.or + mH - (D)
UOTIIBTIS( 9JBJINS JO dINSEN 4 o£°0-1°0 0£°0-1°0 o0f + o sandu] yox13uU0)
295 01-52°0
13ue1SUO) aut] danmieradws] . n
pue 3anssaxd wouy painduo) ASZ0°0 $°0-S°0 S$°0-S°0 0001 J95/33 uB3SAS EBIEPITY
(8/,) speol retiI8U] )
ba :(295/,/,) _ g‘n - (auep)
£ITATITSUSS 23Ey 1eInduy $'0-S0°0 | ¥°0-10°0 | #°0-10°0 0z + ° £311eTnduy puty
10°0
1 () AITATITISULS STXY SSOI) "
0°1-2°0 :(8/%) A31AT3TSUSG 3 3°bd - 1330u0
01 :(,) Jusuu3TTRSTH 2'0-1°0 1°0-50°0 1°0-S0°0 09 Nuom\o -131920y zeInduy
S00°0-T00°0
:(8/3) A3TATIISUSS STIXY SSOI)
0°T1-S2°0 N.%.K.
:(33) Aurezaadun 8-> €00°'0 u - I332u0
0°1-T°0 :(,) IUBUUBTTESTW 0°1-520°0 ~100°0 L°0-T00°0 €50 3 -197832y IBduTT]
. . . . . . y h'6‘d - sodin
0°I-T°0 (o) IuauUBTITESTH S'1-T10°0 2°0-10°0 2°0-10°0 09¢-0¢ ° SurieiSojuy o1ey
0°I-1°0 :(,) uMMBITESTH Lbed
1°0-10°0 .

:(3-39s/,) @duerequ ssey 0°Z-10°0 }£°0-100°0 | £°0-100°0 09-0¢ 295/, - sox49 ey
(o1) sxoxag 1aylQ ﬁoﬂv.wouumm (o1) setg | (o1) @StoN| uor3Zatryag s1TUq ad1ASG/3U Isuj

sxoary 3utrydno) ssoip 31EB2S wopuey wopuey wopuey areds 1Ind : Jusiin

SFANLINDVIN ¥O¥YT 40 IDONVY HIFHL ANV SININNYISNI LSIL LHODITd -'S ATAVL

29



In addition to Table 5 , the following three important sources of error are
present:

Data channel dynamics bandwidth: 6-60 sec_1 (+ 5% lo)

Sample rate: 0.4-200 sps

Analog/digital handling noise: 0.2-1.0% Full Scale

Again, the values used in the study and the associated results are presented in
the fourth chapter.
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ERROR ANALYSIS TECHNIQUES

Two techniques are presented in this section to determine quantitatively
the parameter variations which would result from using an output error identifi-
cation algorithm in the presence of unmodeled instrument errors. These tech-
niques were previously presented in Reference 5 and are extended here. The
aentire set of equations are presented for completeness. It is assumed that the iden-
tification algorithm is convergent and that it tends to minimize a quadratic function
of the difference between actual and estimated aircraft trajectory measurements.
The modified Newton-Raphson identification algorithm is specifically used.

Modified Ne'wton-Raphson Parameter Identification Process

The modified Newton-Raphson algorithm [24] is essentially one of several
output error identification methods which are used. This basic identification pro-
cess is illustrated in Figure 5. The algorithm's objective is to choose parameters
p of a mathematical model of the aircraft so that the difference between the output
measurements of the model and the actual aircraft are minimized. With no
measurement errors, external disturbances, or model structure inaccuracies, the
output errors are minimized when the model parameters equal those of the air-
craft. Output error identification methods have the following characteristics:

1. they require good initial estimates of the aircraft states and the
parameters;
2. they give unbiased estimates in the presence of zero mean white

measurement noise;

3. they can be used for identifying the parameters of aircraft with
both linear and nonlinear equations of motion; and

4. they do not work well in the presence of random disturbances to the
dynamics (process noise) . ‘

In this study, the aircraft equations of motion (used for simulation and esti-
mation purposes), as perturbed from the nominal flight path, are assumed to be -
linear with constant coefficients. These equations are of the form

x = F(p)x +G(p)u ;  x(0) = X (16)

where
x A aircraft state vector

u A control input vector

F(p) A system dynamics matrix containing some of the unknown
parameters p
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G(p) A& control distribution matrix containing the other unknown
parameters

For simulating linear feedhack control, the matrix F in Eq. (16) is replaced by
- F-GC, where C is a matrix of constant gains. This variation will be discussed
further, later. The identification process identifies the parameters of F and G.
If some of the parameters are well known, they can be treated as constants in F
and G and removed from the vector p.
The output y of this system consists of measurements of the elements of

x and x. It ig modeled as a sampled process by the equation

y; = H(p)xi + D(p) u, + n, 17)

where H and D are other constant-coefficient matrices also containing elements
of p. Again, with feedback control, H in Eq. (17) is replaced by H-DC. The
vector n, is contaminating noise. The subscript i indicates that the output is

sampled at time i and processed by a digital computer.

The estimated equations of aircraft motion are of the same order and form
as Eqs. (16) and (17), and they are represented by

X=F@) % +G@@) 4 ; *x(0) =% (18)
Here, F(;;) and G(ﬁ) are formed by using the eétimated parameters fS The

state x comes from integrating Eq. (18) and using the measurements of u
denoted by U. The estimated output equation is

9i=H(f>) % +D()d, (19)

If p equals p, i=u, and 520 =x_, the only difference between y,
and y is due to the measurement noise n, . In the Newton-Raphson identifica-
tion scheme , it is assumed that n, is a sequence of zero mean white noise vectors

with the covariance matrix

E{n, n.T}= R8.. _ ' (20)

Furthermore, it is assumed that the elements of n are 1ndependent so that R
is a diagonal matrix.

The Newton-Raphson 1dent1f1cat10n technique chooses parameters p which

minimize the performance index or cost function

N .
T=Z -9 R G -5 @D
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where N is the number of points collected in the measurement sequence. This
is done by iteratively applying the equation

o [2%4]7 est
Prs1 = Px 'apz dp

(22)

In some identification algorithms, the matrix R in Eq. (21) is fixed, based
on the assumed value of the covariance matrix of the white noise. In other algo-
rithms, R is iteratively computed from the recorded innovations sequence
(yi - y). When the updated parameters estimates ﬁk+1 are computed in Eq. (22),

they are used again in Eqs. (18) and (19), to produce a new output estimate

§k+1’ The new R matrix is then computed, based on Eq. (20). This is done
by first computing a mean value from (yi - §i) , as follows:
1 N
M =R E 9 ~ @

This is then used to compute the diagonal covariance estimate, as

N
A v 2 ‘
T oy -y Ay - (24)

In this study, it is assumed that the appropriate value of the covariance
matrix R is known and correctly used in the cost function J. Thus, R is not
updated, and Eqgs. (23) and (24) are not used.

The first partial of J with respect to p is, from Eq. (21),

N oV .
aJ AT -1 Yl
===-2 3% (y.-y) R~ —* (25)
op i=1 Vi 7Y dp
The second partial is
2 N [ay.T 35, 2%
3°] _ Y3 1 9% LT -1 979 _
“S=2 % [5=R 5 -, -§) R — (26)
op i=1 P p op '
This is often approximated by
AT ~ '
a—ZJ =2 1; [(-ayi) R ‘——ayiJ | X))
apz =1 L\P op '
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Equations (25) and (27) are substituted into Eq. (22) to yield

N (ag,i)T AR (391 S .
R A ALY A N At AR AR |

Equation (28) is the "modified" Newton-Raphson optimization technique. During
actual flight test data processing, Eq. (28) is applied repeatedly to update p
until Eq. (25) approaches a zero value.

The variance of the estimated parameter vector due to noise is assumed to

be

2.7-1
T _fo"J .
E{Sp 5p }Noise - [g?} _ (29)

where

5p 4 p-p
Equation (29) is obtained by assuming that the errors due to n, are small so that

J is a quadratic surface in the vicinity of p and p. Then, one can write

' 2:7-1 T
Sp = - 3__2 (g_J ) < (30)
dp P .
where Y; ~ §i is n,, and A is generated using the correct par'ameter_ P

Thus, from Egs. (29) and (30),

2:7-1 T 2.7-1 B
E(8p 8p') = B j >~ (a“J) 5 |2 (31)
l op”. -
2 |

Because — has no noise dependénce , this becomes
op
2.1-1- T 2:7-1
op P P dp ‘
The inner term is expanded to yield

T N ay.)T N _ay.]
oJ\" (93 \( - i) el s RN S S ] (33)
E;(-a;) (ap): E [ifl (ap R (yi yi)il []El (yJ Y]) _ R op ]
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Suppose that because the measurement noiée is assumed to be white,

E{ly, - §) (v - §00) = S8,

i i J I 1

The double summation reduces to a' single summation, and the expectation is
replaced by S yielding .

T N [/0y.\T F) '
aJ\ [aJ\]| _ Y -1 ..-1 9
E{(éﬁ) (55)} = [(6_{?) . W] (30

Now, if S equals R (thatis, the weighting matrix R used in the cost function.J
P ,
is correct), then Eq. (34) is exactly equal to ?—-iz from Eq. (27). By substituting
: op~ -
this result in Eq. (32), the desired relation (Eq. (29))is established.

Linearized Aircraft Equations of Motion and Output Measurements

The number of states required to model an aircraft vary depending upon the
application [25-27]. Airplane and helicopter equations of motion are often de-
coupled into the longitudinal and lateral parts for ease of analysis. Furthermore,
in flight testing, longitudinal and lateral inputs are usually separated so that only
the longitudinal or lateral modes of the aircraft dynamics are excited. The equa-
tions. are further simplified by assuming small perturbations from a steady flight
condition; this allows the equations to be placed in linear form. Helicopter equa-
tions often include the rotor dynamics, and the exact form changes from design
to design [28] . The need for rotor dynamics is often related to the development
of a high performance control system [29]. However, for initial system analysis,
the helicopter equations.can be assumed to have the same form as that of the air-

_plane [25].

One of the objectives of this study was to conduct a preliminary analysis
of the effects of instrumentation errors on the accuracy of stability and control
derivatives of the helicopter. These results were then to be related to control
system efficiency resulting from the parameter uncertainty. For this preliminary
study, a low order model of the helicopter which neglects rotor dynamics was

considered sufficient.

Four linear equations can be used to represent either -the longitudinal or
lateral aircraft dynamics; these are placed in matrix form, as in Eq. (16). The con-
trol input u for the longitudinal dynamics of the airplaneis the elevator deflection
ASe. For the helicopter, the longitudinal controls are the collective AGC and the

differential collective A8e. The lateral controls for the airplane are the rudder
deflection ASr and the aileron deflection ASa. For the helicopter, the lateral
controls are the roll cyclic ASa and the yaw cyclic ASr.
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In matrix form, the longitudinal equations are

T I -

.Y:] 0 1 0 0 A0 0 0
, _
4q = 0 ] Mq Mw Mu 4q + M8e MSc ASe (35)
Aw -g sin Bo Zq +U, oz, Z, Aw Z §e 2. ASC ‘
L
L__Au | |ecese, X -Wo X, xuj _Au—J | Xse  Xse J
Here, A
x' A [A0 Aq Aw Aul (36)

and consists of perturbations in pitch, pitch rate, the normal component of rela-
tive velocity, and the longitudinal component of relative velocity. Also,

Uo = VT cos ao

w

V.. cos @
o T o

Often, the terms Zq and Xq are negligible in Eq. (35). For the airplane, the
terms MSc' ZSC, and XSC are also dropped.

In Eq. (35), the unknown parameters to be identified consist of

T .
P 4 [Mq Mw Mu Mse Msc Zq 2w %y Z5e Z5c Xq X xu X8e ch] (37

The lateral equations are in the form
Lx=F'x +G’u 4 | (38)

where L is a matrix which accounts for the cross-product of inertia term Ixz.
The state )

x A [AB Ap Ar Agl (39)
consists of perturbations in the émgle—of-sideslip, roll rate, yaw rate, and roll

angle. Alternately, at low speeds, the angle-of-sideslip AP is replaced by the
lateral velocity component Av. The matrix L has the form

1 0 0 01
LA 0 1 Ixz/Ixx 0 (40)
0 Ix2/1zz2 1 0
) 1
o 0 o1
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By letting F = L-1

standard form

1 1

x=L 'F'x+L "G’u=Fx+Gu
In full form, the lateral equations are

— =
.

Av F-Y Y +W Y -U g cos O
v P o r o o
Ap L* L * L * 0
= v P r
Ar N* N* N* 0
v P r
_AQ’_ | 0 1 tan Oo 0 |

—

Y

ba

L*

ba

N*

ba
0

F° and G = L-lG', Eq. ZéB) can be modified to the more

(41)

Ad
a (42)
Ad

The starred (*) quantities are modified from their normal values due to L—1 in

Eq. (41). In Eq. (42), the unknown parameters are

T

* %k %k
p ——A-[Yv Yp Yr YSa Y8r Lv Lp L'rL'

Xk
8a

L

* ok ko
N N_N_N
6r v "p r

*

Sr] (43)

*N
Sa

The instruments which are assumed to be available for longitudinal output

measurements are:

pitch attitude gyro (0)
pitch rate gyro (q)
angle-of-attack vane (o)

longitudinal accelerometer (ax)

normal accelerometer (az)

V) N AT~ U S o R S

-. pitch angular accelerometer (21)

pitot tube or airspeed indicator (u)

The lateral output instruments are assumed to be

1 angle-of-sideslip vane ()

2 roll rate gyro (p)

3 yaw rate gyro (r)

4, roll attitude gyro (@)

? lateral accelerometer (ay)

6 roll angular accelerometer (p)
7

yaw angular accelerometer ()

The relation between the instrument measurements and the equations of
motion are obvious except for the accelerations, which-are [14]:
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Aa =
z

g~ 0af—

0 {—

(Au + WO Aq) + cos 90 A6

(Aw - u, Aq) + sin Go A9

(Av + Uo Ar - Wo Ap) - cos 90 Ap

(44)

Making the substitutions and fitting the longitudinal measurements into the form

of Eq. (19) yields (for linear accelerations measured in g's)

[ 26 |

Aq

Aa

—

o

o

[ o

0
0
X
q’8
z
q’®

M
q

0
0
cos “o/V:
0
Xw/g
Zw/g

M
w

The lateral measurements are

[ ap
Ap

Ar

YV
0

—

0

0 —

-sin ao/vt
1

Xu/g

Zu/g

M
u

zZ
*
o

[ o 0
0 0
0 0
+] o 0
XSe/g xSc/g
ZSe/g ZSc/g
| Mse  Msc
o 0
0 0
0 0
0 0
Yﬁa/g YSr/g
LB:_ Ler
| Nga Ner |

(45)
A
Ab
AB_ (46)

Equations (45) and (46) assume perfect measurements of the aircraft state x
and the control input u.
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Equations for Assessing the Effect of Measurement Errors
on the Identification Process

Often, no other measurement errors except for the white noise indicated
earlier are assumed to be present in the flight data used for identifying aircraft
derivatives. Sometimes biases are assumed to affect the measurements and these
terms are identified along with the equation parameters and state initial condi- .
tions. However, there are many other types of errors which do affect the-estima-
tion accuracy as discussed in the second chapter. '

Instrument error model equations.- As discussed in the previous chapter,
the measurements are affected by the dynamic characteristics of the instruments,
filters, and recording equipment. The slowest instrument/smoothing filter com-
bination found in the instrumentation survey had a cutoff frequency of 1 Hz; this
is about a factor of two higher than that of the aircraft dynamics. The important
aspects of the dynamic errors are the phase lag and amplitude attenuation of the
instruments at frequencies below their natural frequencies. These characteristics
can be approximately simulated by a first order lag, regardless of the order of
the instrumentation dynamics. As stated in the previous chapter, the matrix
equation representing this effect is :

v = Foyp *Fovr 50 yp(0) = y(0) | (47)
where
y, = "lagged" measurement
Y = assumed true dynamic value of the quantity being measured

Fm = diagonal matrix of elements,représenﬁng the inverse of the
time constants of each data channel

Each of the diagénal elements of Fm has a mean value which is known, or deter-

ministic. It also has a random component. The differences in the mean values of
these elements are, therefore, deterministic errors, and they can be studied with
the ensemble analysis technique discussed later. The effect of the random com-
ponents of the lags must be studied with the Monte Carlo method.

Next, the effects of the static scale factor errors, biases , and cross-coupling
on the measurements are included. For constant value of these outputs, the actual
readings would be of the form

yp =Ty, +B - (48)
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where

11

T = ey 1+ ess : : (49

The diagonal terms in the T matrix represent scaling errors while off diagonal
terms represent cross-coupling errors. The vector B represents the bias
errors. The order in which the lags and the static errors of T and B affect
the measurements can be interchanged. In the ensemble analysis that follows,
there is a computational advantage to placing the lags first. For small effects
assumed in the ensemble analysis, the results are identical.

The addition of the random noise for each instrument yields the final
measurement equation

Vi TV Ty ‘ (50)

where y; is the output measurement vector with all errors sampled at time i,

and n, is the random outplit noise vector with

_ ) T
E{ni} =0 ; E{ni nJ. } A Rsij

The other source of measurement error is in the recording of the control
input u by control position transducers.or servo measurements. The measure-
ment of u is subject to dynamic effects whlch are again approximated as first
order lags by the equation

w = -FCuL + Fcl% ; uL(O) = u(0) (51)
Here,
u= assuméd true value of the control input
uy = "lagged" control _
Fc = diagonal matrix of one over the time constants of the control

measurements

These control measurements are also subject to scale factor errors and biases .
As discussed in the second chapter, these errors can be represented by the
equation

o =T, + B - 52)
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The actual recorded control input is sampled and is also subject to noise.
It is represented by the equation

Y =up tng (53)

where

ﬁi = control measurement vector with errors sampled at time i

n . = random control noise vector; E{n .} = 0; E{n .n .} AR &..
ci A ci cicj’ = cij.

Equations (47)-(53) are Eqs. (1)-(4) of the second chapter.

The overall identification process flow diagram changes from that depicted
in Figure 5 to that depicted in Figure 6. In the ensemble analysis which follows,
the control measurement noise n is ignored. This noise acts as a random

disturbance to the system dynamics (process noise) and cannot be analyzed with
ensemble methods. Itis assumed that its effect can be included in the bias term
Bc. :
Particular errors studied.- Before proceeding to the analysis, a descrip-
tion is first presented of some of the error sources which are studied by the pre-
ceding equations. The diagonal elements of T, Tc’ Fm’ and Fé are the scale

factor errors and inverse time constants. B and Bc are bias vectors.

Some of the specific errors which are included in the off-diagonal terms of
the T matrix include: . -

1 a and B boom corrections

2 accelerometer and center-of—gravity (c.g.) location corrections
3. misalignments (accelerometers and gyros)
4

gyro and angular accelerometer effects due to linear acceleration

A simplified @ boom correction equation is from Eq. (12)

X
o =a- B g G

where V is aircraft total velocity and Xe is the angle-of-attack vane distance
from the aircraft center-of-gravity (c.g.). The errorin X,e is divided into
two parts--the error in vane location (evx) and the error in c.g. location
(ech) . If all seven longitudinal instruments are being used as in Eq. (45), in-

troducing the error Eq. (54) into the T matrix Eq. (48) yields:
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8VX SC X
€327 " v ' (55)

A similar error term affects the B wvane.

Next consider the linear accelerometer errors of Eq. (9). If the value of

xcg and z are in error because of the uncertainty in the c.g. position or the
c.g. offset of the accelerometers is neglected then the T matrix error terms
for the longitudinal equations are

€57~ —(SaJZz * chz)_/g

€ gx)/g

(56)

:(g

€67 alx

In Eq. (56), the terms

€ s = errors in the accelerometer location when a correction
alx’alz ) -
is made
= distance from c.g. to the accelerometer when a correc-
tion is not made :
> , = errors in the knowledge of the c.g. location
cgx’'cgz '

Similarly, the lateral accelerometer has the two errors

+e )/ g

®56 " (gan cgz (57

€57 =7 (eaﬂx tE ch)/g

Other elements in the T matrix are due to mounting misalignments of
the gyros and accelerometers. In the longitudinal equations, the terms

(58)

appear, where ¥y and . are the small linear accelerometer misalignment
PP ax Yaz . g

angles. In the lateral equations, the T matrix contains the terms

€237 " yp
e, =Y

32 0r (59)
€7~ " Yp

6 Tr

where Yp’ Y, 'YI;, and Yy are misalignment angles of the rate gyros and
angular accelerometers.
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For the longitudinal measurements, the terms €55 and €26 in T are
used to represent the rate gyro mass unbalance. Also, the terms €5 and €6

are used to model angular accelerometer sensitivity to linear acceleration.

For the lateral equations, the terms €5 and €3 model mass unbalance
in the roll and yaw-rate gyros. The terms s and €5 model the angular
accelerometer errors due to linear acceleration.

From Eqs. (48), (50), (52) and (53)-(59), explicit static error model
equations can be written for each of the instruments investigated in this study.

These are presented in Tables 6 and 7. These tables define the notation used for
each of the error sources. '

TABLE 6.- EQUATIONS OF STATIC ERRORS FOR LONGITUDINAL INSTRUMENTS

D
"

Pitch Attitude Gyro a + 86)A6 + be +n

i 8
Pitch Rate Gyro . q; = 1+ eq)Aq + bq + nq * €50 AaX +626AaX
a. = (1 + ) (Mw cos a_ - Musina )/V
Angle-of-Attack Vane L o 0 o™t T
tby +my - (et ech)q/VT
Pitot-Static Tube u. = (L +eg)Mu+b +n
i u u u
a.=(1+¢e Jha. +b__+n__ -v_ _ ha_ /K
Longitudinal X1 axs X ax ax ax z
Accelerometer ' .
t(egpp * Eegy)09/ (Kg)
azi ° 1+ €az)Aaz * baz TR PY Aax/K

Vertical Accelerometer

+ e )/ (Kg)

- (Cax cgx

Pitch Angular
Accelerometer

q; = 1+ ed)Aq + b + na + €75Aax + 576Aaz

q

Elevator or Differential
Collective CPT

8o = (1 + £50)08, + b

e Se

Collective CPT

§. =1+ eﬁc)Aéc + bﬁ

cm C
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TABLE 7.- EQUATIONS OF STATIC ERRORS FOR LATERAL INSTRUMENTS

Angle-of-Sideslip Vane Bi = (1+-€B)AB + bB *ng - (evx+ excg)Ar/VT
Roll Rate Gyro Pi = (1+—ep)Ap + bp + n.p - Yp Ar/K+-eZS Aay
Yaw Rate Gyro T; = (1~+€f)Ar +b_+n_ + Yy Ap/K+eqe Aay

-
1

Roll Attitude Gyro = (1 + €¢)A¢ + b¢ + n¢

a. = (1+€ay)Aay + bay + nay

Lateral Accelerometer . .
¥ (Eazxi-excg)Ar/(Kg)"(83224'€zcg)Ap/(Kg)

Roll Angular Accelerometer

o]
1]

1+€2)Ap + bs +ne -~ y* Ar/K+e . ha
(L+epdlp + by * my - g Ar/K+ gg tay

Yaw Angular Accelerometer |r (1-+££)Ar + b; g o+ Y;_Ap/K+—s75 Aay

Aileron or Roll Cyclic CPT | § 1+ séa)Ada *+ bg,

1+ EGr)AGr * bdr

Rudder or Yaw Cyclic CPT s

Ensemble Analysis of Measurement Error Effects

As explained in the p'revious section, the modified Newton-Raphson identi-
fication scheme minimizes the cost function J of Eq. (21) by repeated application

of Eq. (28). Convergence on the minimum is achieved when aa—; £ 0. In this study

using the ensemble analysis, it is assumed that the true value of p is known. It
is further assumed that the instrumentation errors cause the minimum point on the
cost function surface J to shift a small amount from the true p. If the small
error assumption is correct, only one application of Eq. (21) (with p setto p)
can determine the shift due to the measurement error on the estimate of p. This
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is the key assumption of the linear ensemble analysis which is used in this study.
The resulting perturbation to the parameter vector is:

2-1-1 T
R 0°J oJ
8p=p-p=-|— = (60)

[apz] op |
where .

p = perturbed parameter estimate due to measurement errors
p =

true value of the parameter

From Eq. (28), this can be written as

5 I; oy, -l o5, || 5 o9, v - 5 -
= + = R . =Y.
P =. o1 ap ap 1 op Y A (61)

The 1A represent the sampled output measure ments taken from the aircraft (Eqs.
(16), (17), (47)-(50)) and the }7_1 represent the estimated output values (Egs.

: _ oy.
(18), (19)) obtained using the measured control input. The sensitivity term a)i

in Eq. (61) is computed by the identification algorithm about the latest estimates
of p. Again, for the ensemble analysis, this is taken as the correct value of p.

oy.
To compute E)'p_l in Eq. (61) requires integration of
x = (F-GC)x + Gu ; x(0) = X . ' (62)

where C is the feedback gain matrix whose elements are assumed known for the
purposes of the study. This also assumes perfect measurement of the control
input u. Also, the sensitivities of the states to parameter changes are found by
integrating

d [9x ' ox oF oG - oG 0x

= (=)= (F-GO) + - C) x + u; ==20

dt (6 ) ( (a ) (a 0 ) 0 ] (63)
Pp Pp Pp Pp Pp Pp

Here, p_ is the parameter vector containing the elements presented in Egs. (37)

or (43). If state initial conditions are also estimated, the identification process
integrates

d [9x ox dx :
< (&X = (F-GC) (._ ) ;i oa= (0) = 64
dt (apIC) P 9P (6

Then, from Eq. (19), the output sensitivity matrix for the parameters pp is
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0y _ (H-DC) d% (aH _ 3D c) 4 + 3D u
F) F) F) F) d _ (65)
Py Py Py Py Pp

For the initial conditions, this becomes

~

1<

dx - '
= (H-DC) == 66

oY,

Pic
If output measurement biases are also estimated, the sensitivities

g |
o ! 67

must be included. The total sensitivity used in Eq. (61) is then

y; |9 % (68)
aPp apIC apb

Q
il
[

Output measurement errors affect the value of y; in Eq. (61). By
neglecting the measurement noise temporarily, the output A is the sampled

value of y;- The sensitivity of the error p in Eq. (61) to an error source e
is
¢ op j=1 °P
ayi
This requires computation of the sensitivity matrix 5 -

The sensitivity of y; toa bias element of B is approximately

oy.
% _ 9B (70)
de de
For an element in T, this is
' oy.
—1 = 2T ((4-DC)x + Du) (71)
Oe de

For an unestimated initial condition treated as an error source, the sensitivity
of v, is

ayi E)xi _ :
3 = (H-DC) 3¢ (72)



where g—: comes from integrating

ox

d (a" =0 =1 @

. ax .

I 5;) = (F-GGC) 5c

For an unknown time constant in the matrix Fm’ the sensitivity must be deter-
mined by integrating ’

ay.\ oF ay, oy
X (5—1‘) = 5e2 [y r @Dox e pu] -F 5k @ =0 (9

oy.
The results of Eqs. (70)-(74) are combined into a general vector ﬁ for each

error e which affects the output méasurements .

‘ The sensitivity of parameter estimates due to control input measurement
errors is of the form

) T ) |
9 (op) = - Rl R SR S T (75)
© ap?| =1 °P Oe

This requires knowing the Sen51t1v1ty of the estimated output y to control
measurement errors e.

For control measurement biases, the sensitiv{ty of the control input is
ou, oB .
1-_¢ (76)

For scale factor errors, this is

_io_<c | 77

The effect on the states is found by integrating

oa 34,
d {9k X (78)
5 (ae) (F- GC)-—+Ga . |
from Eq. (18). The resulting effect on the estimated output §ri is
a5, ' CEE Y : 79)
5 = (- DO 5 *Pae ) |

Evaluation of the sensitivity to control measurement lags requires integrating

A A - au 4*\
d [{ox) _.0x L, ox _
a-t(a—g)‘Fx*G—ae P e (0 =0 (80)
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91_(_a_uli et R duy
dt \de / = "¢ Qe de UL ul de (0) =0 - (8D

The resulting output sensitivity is again found from Eq. (79).

For random (stochastic) measurement errors, eR s the total covariance of
the individual parameters being identified is

) T
E{8psp ), , = E{épbp } .+ 3¢p) g 9¢op) (82)

noise ae Efe R R} aer

where E{eR R} is the covariance matrix of the random measurement errors not

including the measurement noise. The sensitivities Lﬂz come from Egs. (69)
‘R

and (75). The covariance due to noise comes from Eq. (29). For mean (determin-

istic) errors, e the expected error in the parameter is

E{8p} = ——E—E{ M ‘ (83)

The above error analysis is referred to here as the ensemble error analy-
sis. It is valid for small errors which affect the measurements linearly. For large
error magmtudes a Monte Carlo error analysis must be made which is discussed
next.

Monte Carlo Analysis of Measurement Error Effects

Sometimes it is useful to determine the effects of instrument errors by
actually simulating the identification process and the measurement data contamin-
ated by errors. If the errors are large, nonlinear errors are to be studied, or
process noise exists, the one step assumptions and linearization which are used
in the ensemble analysis method are not valid. Therefore, the simulated data
analysis method complements the ensemble analysis. In this method, which uses
Monte Carlo techniques, several different data sequences are simulated and used
sequentially in the identification process.

The Monte Carlo analysis method is related to the ensemble analysis in that
the basic equation utilized is Eq. (61). However, rather than computing the sensi-

.9y 2y, . . Ay .. 0J
tivities z—= or z—, the analysis computes the residual (yi - yi) in 3ap
The random error terms contained in B, T, B T , F m’ Fc' and X are gen-

erated at the beginning of each simulation using the errors’ standard deviations
and a random number generator. These errors are held constant during each
single Monte Carlo run, but are changed from run to run. The random noises
n, and n_ are regenerated at each sample point during each run. Each of the

deterministic error terms in T, Fm, and Fc are set equal to the constant mean

values and are not changed during any of the runs.
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For stauc output measurement errors occurring in T, B, and n, only, the
residual (y - y ) in Eq. (61) is computed by

y, =¥, = T(Hx, + Duj) +B +n, - (Hx, + Du,) (84)

For random initial conditions, Eq. (16) must be integrated each time, and Eq.
(84) gets changed to -

y; - ¥ = T(Hx; +Du) +B +n, - (Hk +Du,) (85)

For static control measurement errors, Egs. (52) and (53) get combined so that
at each sample point

a.=Tu+B +n . (86)
1 C C C1l .

where n i is randomly generated each time point. Because of this change,

Eqs. (62) - (64) require integration each pass through, and Eqs. (65) - (68)
require reevaluation each pass through. With these changes, Eq. (86) becomes

v, =¥ = T(Hxi + Dui) +B + n, - (Hxi + Dui) (87

The error Apj in the parameter vector obtained from each run is saved.

For m Monte Carlo runs, the mean error in p is

3

Ap AE{apl =L = ap. (88)
= m . j :
=1 :
The sample covariance about this mean is
T 1 m - T
E{6pbp~} = o L (4p, - Ap) (Ap. - Ap) (89)
RS S )

Implementation of the Analysis Techniques

The ensemble analysis and Monte Carlo analysis techniques just described
were coded into four digital computer programs for airplanes and helicopters.
The longitudinal and lateral equations are both contained in the programs. These
programs enable the assessment of uncertainty (due to instrumentation errors) in
the accuracy of the aircraft parameters identified from flight test data. The User's
Guide to the programs is presented in a separate document [30]. This document
is a revision of Ref. 31 to include helicopter equations, feedback control, and
other convenient program options. :
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The uses which can be made of these programs include the following:

(D

(2)

(3)

(4)

(5)

)

(M

The determination of the effect of instrumentation errors on the statis-
tical accuracy of the stability and control derivatives and other para-
meters identified from flight test data can be made. This includes .
the mean error and standard deviation of each of the parameters
identified. The contribution of each error source on each parameter
is determined.

The effects of such variables as aircraft type and flight condition,
control input sequence, and data sampling rate on the accuracy of
the identified parameters can be determined.

Trade off studies can be made between instrument quality and identi-
fication accuracy.

Different combinations of instruments can be studied for use in collect-
ing the flight data.

Trade off studies between fewer instruments with greater quality
and more instruments with larger errors can be made.

The necessary instrument accuracy required in a flight test program
to allow identifying aircraft parameters to a desired level of certainty
can be specified. :

Different combinations of parameters can be assumed to be identified
depending on whether certain parameters are well known or judged
to be insignificant. Changing the specific parameters being identified
changes the effect of instrumentation errors on these parameters.



STUDY OF THE EFFECTS OF INSTRUMENTATION ERRORS ON
THE ACCURACY OF PARAMETER ESTIMATES

One of the main reasons numerical values of the stability and control
derivatives (parameters) are desired is that they are used to design the control
system gains for the aircraft. Itis important to know how the performance of
the control system depends on the accuracy of the parameter values. This know-
ledge dictates to what accuracy the parameters must be identified. In turn, the
parameter accuracy requirement determines: (1) the necessary characteristics
of the flight data to be processed, and (2) the accuracy requirements of the instru-
mentation system used to collect the data. The techniques presented in the pre-
vious chapter allow these assessments to be made.

A study of the effects of instrumentation errors on the accuracy of parameter
estimates was conducted for a CH-46 helicopter at the three representative flight
conditions discussed in the first section below. This study was performed using
computer programs which apply the error analysis techniques presented in the
previous chapter. This study is representative of the uses to which these error
analysis techniques can be put. Moreover, this study serves as a guideline for
more exhaustive and detailed studies which will benefit actual VTOL flight test
programs.

In this chapter, flight control laws are first developed for steady flight con-
ditions taken at cruise, transition, and hover points along a typical approach
trajectory. A set of typical instrument accuracies are selected to study the error
effects at the different flight conditions. Aircraft controls are chosen as inputs
for simulated flight tests at these flight conditions. Then, the instrumentation
parameters and control inputs are used to investigate the accuracy of stability and
control derivatives which would be obtained from flight tests conducted at these
different flight conditions. .

Approach Flight Control Law Development

In this section, the open-loop dynamics of the helicopter following a curved
decelerating approach trajectory are first presented. Methods of choosing feedback
control gains for the helicopter are then discussed. Finally, control laws which
minimize a quadratic cost function are developed.

Figures 7-9 present a typical curved terminal approach trajectory which
might be followed in a future commercial application of VIOL aircraft. The air-
speed is decreasing and the trajectory profile is curved in the vertical plane. The
trajectory also curves in the horizontal plane, as will become feasible with the
microwave landing system (MLS) or other volumetric coverage landing guidance
systems of the future. Because of the deceleration, the stability and control
derivatives are time-varying along this path. Numerical values of the CH-46 have
been tabulated for various steady flight conditions in Reference 27. These tables
can be used to determine by interpolation the time-varying parameter values
along any flight path.

N
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For this study, three points have been selected on the approach trajectory
for further investigation. These points represent cruise, transition from hori-
zontal to vertical flight, and hover. These points are indicated by A, B, and C
in Figures 7-9. From Reference 27, the stability and control derivatives at these
three points have been determined, and they are presented in Table 8. As can
be seen, the parameters vary somewhat along the flight path. It is assumed that
these values and the linear models of Eqs. (35) and (42) represent correctly the
dynamics of the uncontrolled vehicle which is the subject of the following investi-

gation, '
To illustrate how the stability and control derivatives can vary with flight
con§ition , consider the plot of M, vs. airspeed depicted in Figure 10. At air-
speeds near cruise, M exhibits low sensitivity to changes in airspeed. Flight
conditions in this region can be reasonably represented by a constant Mu over
a fairly wide range of V. By contrast, at low airspeeds Mu increases rapidly

to a maximum as V decreases and then diminishes as the hover condition is
approached. Other stability and control derivatives exhibit a similar sensitivity
to changes in airspeed near the hover condition.

.010

.00S }
m
[}
0
o
& )
~ O | 1 1 L J
2 9
o 50 100 150 200 S0
w3 Airspeed (ft/sec)

-.005 |

-.010L

FIGURE 10.- Mu VS. AIRSPEED FOR 500 FT/MiN DESCENT RATE

55



081L°6 | 09509 00°0TT| 99s/23 A
0T0Z°89 | 0€S6°¥T 8SZI'Y Jap %
1S91°6 | 6540°L CIAR Sap %%

5707° 966" yesT" ur, 295 /1 N Z6v0° - | 0950 9090° | 995 ut/1 %
010" - | 26107 - | T020° - | uT,098/1 IN gsvs’ | sTes ggsy’ | ;995 Ut/ %
6050°.- | wu50° - | Tps0c - | 99s/1 N 6,00 - | otszt- | Tort- | dessr O
0N £L50° 920" 295 /1 N £000° - | 6810 1€10° 295 33/1 "
6000 9000° - | 100 - | 33 29S/1 N 1800 Zv00° - | S900° - | 99s 33/1 Bt
06cz" - | 687" - | so6z - | wr,29s/1 A 980p°L | TSTE'L- | sbLL'8- | up,09s/33 97
9L LoLYy 6TLY" ur,295/T 1 1220° 8615 uss” | ur ses/az 2,
9L10° 2920° - | 0820 295 /1 2 L6v9° - | 1€99°T- | ss18°1- | 99s/13 °;
9g65* - | 60zL - | z$99° - | 99s/1 g ozvs' - | 8895 - | sze8t - | des/t "
1600° -| 600" - | os10° - |29 23/1 T 9810 0821 - | 9710° - |  998/T "z
0SST" 201T" 6S0T° | ur d9s/a3 x| ssor'T | 6sss (e | uroes/ag 0
8266 1196 9506 | UT,205/33 9 969T" g0zt 0gpT" | ur,oes/33 %
§801" -| o081 - | 00T1" - | 99s/33 < sssL° §L20°T 8818 295 /13 o
s’ - | 69zt~ | wevzir- | 995/33 : 1050° 9.L0" 7880 295/1 "X
REST” o0 - | g9zt - | oesst "x 1870° - | . s210° - | gs0 - | oes/t "
WINOH | NOLLISNVAL|  dSImD SLINN YALTWAVd | ¥FA0H | Noriisnwil|  asinwd SLIND YALINVIN

| HLVd HOVOYddV FHL ONOTV SINIOd
JIYHL LV YELJODTTHH 99 -HO HHL ¥OJ STALLVANMAA TOMINOD ANV ALITIEVIS -'§ AI1QVL

56



It is useful to examine the characteristic equations representing the un-
controlled vehicle dynamics. These are formed by determining the eigenvalues
of Eqs. (35) and (42) with parameter values taken from Table 8. The resulting
characteristic equations are of the form
(90)

(s - a1+jB1)(s -ay - jBl)(s - az)(s - a3) =0

The quantities @, ijBl, a,, and a; are the roots of the characteristic equations.

They are presented in Table 9 for each of the three points on the approach trajec-
tory. :

As can be seen, the dynamic response of the helicopter is unstable in both
the lateral and longitudinal modes. For the longitudinal mode at cruise and
transition conditions, one real pole is positive; at hover, the real part of the
complex pair is positive. In the lateral mode, positive real and complex poles
exist at cruise, and positive complex poles exist at transition and hover.

The degree of instability implied by Table 9 is rather severe. This points
out the need for an automatic control system which augments the dynamics to pro-
vide stability. This stability augmentation is necessary for good ride quality in
addition to easing the pilot workload in responding to flight path disturbances
and changes in the nominal flight path. Such a system is commonly called a
stability augmentation system (SAS).

TABLE 9.- UNCONTROLLED (OPEN-LOOP) POLES OF THE CH-46 EQUATIONS
OF MOTION AT THREE POINTS ALONG THE APPROACH FLIGHT PATH

LONGITUDINAL _ LATERAL
POLE | CRUISE . |TRANSITION | HOVER POLE | CcRUISE | TRANSTTION]  HOVER
o -0.21105 | -0.16415 | +0.10729 | o +0.15069 | +0.07440 | +0.20414
8 0.34042 0.34943 [ 0.51375 | 8, 0.60138 | 0.52290 | 0.54232
a, | +0.46527 [ +0.51315 | -0.35391 | «a, -1.10046 | -0.92482 | -0.85321
o -2.39026 | -2.01605 | -0.92928 | a; | +0.06319 | -0.05697 [ -0.04590

The question arises as to how to choose the control law (gains) to account
for the time-varying parameters and unstable response along the approach trajec-
tory. To achieve a controlled (closed-loop) response with constant dynamics
would require that the gains be continuously time-varying also. At the other
extreme, it is possible that one set of fixed gains in the SAS is adequate to pro-
vide adequate response at any point in the expected flight regime. That is, the
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fixed set of gains would allow some response variation, but this variation may be
acceptable. Between these extremes, the possibility of using time-scheduled
gains exists; this concept assumes that that uncontrolled response of the aircraft
is piecewise constant.

It is beyond the scope. of this study to determine what type of control gain
schedule is required for the example approach trajectory. Instead, the trajectory
is broken into several segments, and different piecewise constant gains are used
along each segment. Specifically, three sets of control gains are determined for
the cruise, transition, and hover conditions spoken of previously. Relative to
this study, it is unnecessary to know how many other sets of gains would be
required, or how the helicopter responds with these control gains when at some
other point on the nominal approach. Instead, the main objective is to find out
how the helicopter does respond with these control gains if the actual values of
the parameters vary about the assumed values.

In mechanizing the SAS, it is assumed that perfect state measurements are
available. The roll and pitch angles (¢,0) and roll, pitch, and yaw rates (p, q,
r) are assumed to come from gyros which are part of the flight control system.

In addition, the airspeed variations (u, v, w) from the nominal values are
assumed to come as commands from the flight guidance system.

Two methods of choosing the gains for the SAS were considered. In both
cases, the control law is of the form

u=-Cx _ 91

where C is a gain matrix and x is the measured state.. With the dynamics equa-
tion of the form ‘

x =Fx +Gu (92)
the resultant closed-loop dynamics equation is

x = (F-GC)x ; x(t ) = x_ (93)

The first method is to choose the values of the gains in C such that the
roots of the characteristic equation computed from (F-GC) are those selected as
being desirable. This is known as pole placement, and a standard procedure
exists for choosing the numerical values of the gains [32]. It requires transform-
ing Egs. (92) to controllable canonical form and using the controllability matrix
along with the desired closed-loop roots. The advantage of this method is that
the response desired is obtained exactly, and this response can be held constant
for each segment of the approach path. The disadvantage is that the gains re-
quired to achieve this response may be so large that they cause the control sys-
tem to saturate in attempting to mechanize the control.

The second method is to use the quadratic synthesis approach [33] for
designing an optimal regulator. It has the advantage that the control feedback is
naturally limited in magnitude so that it is more implementable. For this reason,
it was the method chosen here. As long as the matrix pair (F,G) is controllable,
a state compensated system can be generated with this method. A brief descrip-
tion of the details of the quadratic synthesis design procedure follows.
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The control problem for this application is viewed as one of determining
the optimal steady-state regulator. A cost function is defined as

t

f
J .= lm 1 xT(t) Ax(t) +uT(t) B u(t) dt
Q £ 2 Q (94)

t
o

where A is a positive semi-definite matrix and BQ is a positive definite matrix.

A and B, reflect the judgment of the importance of achieving precise state regu-

Q

lation at the cost of expended control energy. 'The transient response of the com-
pensated system can be controlled by the proper choice of the ratio of elements
in matrices A and BQ'

The problem then is to determine the control input u(t) so that the cost
function J is minimized subject to the dynamic constraint described by Eq. (92).
From Reference 33, the required solution is of the form of Eq. (91), where

o -1.T
C=B, G K (95)

The matrix K is the solution of the algebraic matrix equation

T -1

-KF - F'K +KGB, GIK = A (96)

An efficient computer program [28] which utilizes eigenvalue decomposition tech-

niques to solve Eq. (96) has been used in the examples below for computing the
feedback gain matrix C of Eq. (95).

The compensated or closed-loop system which results from the above

" choice of control is described by Eq. (93). The object of the ensuing investiga-
tion is to determine the sensitivity of the response described by Eq. (93) when the
values of the parameters in F and G vary, with C fixed at its design value.

To solve Eq. (96) for K first requires specification of the weighting
matrices A and BQ‘ For the nominal condition, pitch angle and rate limits at

10° and 25°/sec are assumed for the longitudinal mode as suggested in Reference
27. The state cost weighting matrix in Eq. (94) for the CH-46 longitudinal dy-
namics is chosen to be inversely proportional to the square of these values. The

nominal matrix A is thus given by
A = diag(32,827, 5.252, 0, 0}
for the longitudinal mode. Here, the units of the state variables A0, Aq, Aw and

Ay are radians, radians/sec, feet/sec, and feet/sec, respectively. The BQ

matrix is chosen as the identity matrix. For the lateral mode, the roll and yaw
rates are also limited to 25°/sec. The roll angle is limited to 30°. Thus, the
nominal A matrix for the lateral equations is given as

A = diag{0, 5.2523, 5.2523, 3.6474})
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and the BQ matrix is a.gain taken as identity. The resulting control gains

designed for the indicated flight conditions are given in Table 10.

With the gains listed in Tables 10 used with the parameters of Table 8, a

new set of roots of the closed-loop characteristic equation result. These closed-

loop roots are presented in Table 11.

TABLE 10.- FEEDBACK CONTROL GAINS FOR THREE POINTS ALONG
THE APPROACH TRAJECTORY

LONGITUNINAL LATERAL
GAIN CRUISE TRANSITION HOVER CRUISE TRANSITION} HOVER
C11 6.0281 5.9291 5.9819 | -0.0204 -0.0097 0.0160
C12 4.0830 4.5688 4.5444 2.0513 2.0678 2.9758
C13 0.0228 0.0437 -0.0026 1.2671 0.6416 1.0246
C14 -0.0229 -0.0260 0.0036 1.4345 1.6259 2.9211
C21 0.4267 -0.0543 -0.8117 | -0.0458 '-0.0218 -0.0145
sz -0.1274 -0.4438 -0.5750 —0.2569 -0.7725 -1.2023
C23 -0.0007 -0.0097 0.0004 8.9461 4.4925 1.9184
C24 0.0010 0.0066 0.0012 | -1.3509 1.2117 -1.3688

TABLE 11.- CONTROLLED (CLOSED-LOOP) POLES OF THE CH-46 EQUATIONS OF

MOTION AT THREE POINTS ALONG THE APPROACH FLIGHT PATH

LONGITUDINAL LATERAL
POLE CRUISE TRANSITION HOVER POLE CRU1ISE TRANSITION HOVER
& -0.89449 -0.86081 -1.10086 o -0.78452 -0.59405 -0.53601
81 0.38152 0.12486 0.84334 Bl 0.66590 0.32533 0.12429
oy -0.08796 -0.11248 -0.33860 a, -1.22553 -1.1516? -1.15758
ag -2.36586 -1.86835 -1.14062 oz -0.71767 -0.56238 -0.39842

60




It is interesting to note the variation in the resulting closed-loop dynamics
resulting from the control laws as implied by the pole values of Table 11. This
is one of the shortcomings of quadratic synthesis. In a practical sense, there is
probabily a need for adjusting the elements of the weighting matrices A and BQ

so that the response is more constant along the approach. This can be done by
trial-and-error, which points out the art to control system design. For the pur-
pose of this study, however, the closed-loop gains of Table 11 are adequate for
preliminary investigation of the effects of parameter uncertainty on control per-
formance and the effect of instrument errors on parameter uncertainty.

Instrument Error Sets

For the purposes of this study, sets of instrument error values were select-
ed from Table 5; the standard deviations of the errors are shown in Table 12.
The "base" error sets are meant to represent values typical of a reasonably accur-
ate instrument package which one may expect to find in a carefully conducted
flight test program. The "large" error sets represent a case of considerably less
overall accuracy. For the large set and the longitudinal mode, the angle-of-attack
vane and the airspeed indicator were deleted. For large errors in the lateral
mode, the angle-of-sideslip vane was deleted. Instrument lags were also studied,
but because their values vary somewhat, they are not listed in Table 12; they are
presented later.

S_election of Aircraft Maneuvers

The importance of selecting suitable aircraft maneuvers (input design) in
parameter identification cannot be overly stressed. If a flight test maneuver barely
excites a mode governed by certain parameters and the data is corrupted by noise
and other instrument errors, then those parameters will not be accurately identi-
fied.

The choice of control inputs which are optimal from a parameter identifica-
tion viewpoint is a complex subject which is not addressed here. However, an
interesting question with respect to input design was raised in the course of this
study. The helicopter's parameters were such that the uncontrolled equations of
motion were unstable, and stability was achieved by introducing linear state-
variable feedback (see the previous section). What, then, is the best maneuver
which excites the controlled system but allows accurate identification of the original
aircraft parameters? It was regarded sufficient for purposes here to find subopti-
mal maneuvers which produced good information in the recorded data. That is,
control sequences were chosen which excited the natural frequencies of the closed-
loop helicopter system and produced outputs within the range of the instrumenta-
tion. The input was modified somewhat in an attempt to keep correlation between
identified parameters, as revealed by the.off-diagonal terms of the information
matrix, small. Also, the control inputs were constrained to be of a form easily
applied manually by experienced flight personnel.
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TABLE 12(a) .- LONGITUDINAL INSTRUMENT ERRORS - STANDARD DEVIATIONS

Aligiament Initial ~
iindom Noise | Random Rias | Scale Factor (deg) Condition
sirnent Units lase | Large | Base ) Large ) Base | Large | Base | Large | Base | large
Pitch Attitude Gyro () deg 0.02 | o.2 0.02 ] 0.2 0.25 J 1.8 f --- 0024 ---
l‘it;‘h Rate Gyvro () desn/sec a3 ool 003 | ol 0,25 .00 --- .- .03 s
Angle-of-Artack Vane () deg n.l -- 0.1 --- 0% ) --- .- --- PRI B
Pitot Tube (u) ft/sec 1.0 --- 1.0 --- 2.5% | --- --- --- 0.2 ---
Forward Accelerometer (:l\} p's 0.01 ] 001 oo | 001 015 J1.0% ) 0.1 0.5 --- .-
Vertical Accclcrometer (al) ¢'s .01 0.m 0.01 .01} 0.1% § 1.0% | 0.1 0.5 --- ---
. : . 2
Pitch Accelerometer (4) deg/sec”™ | 0.1 0.2 0,1 0,2 0.2 | 2.05 ¢ --- --- .- ---
Differential Collective Pitch (60) in .- --- 0.05 | 0.1 0.5% | 2.0% | --- --- --- .--
Gang Collective Fitch (SC) in --- --- 0.05 | 0.1 0.5% | 2.0% | --- --- - .-
Other Errors: ‘l',\’pc.' T o tnits Bise farge
c.¢. Uncertainty it 0.25 1.0
c. ., C
cex’ Tcgz
Mass Unhalance deg/sec g 0.1 0.1
€250 ©26
. o 2
q Sensitivity to a, a, deg/sec” - g | 0.006 | 0.006
€750 €76 B

TABLE 12(b).- LATERAL INSTRUMENT ERRORS - STANDARD DEVIATIONS

Alignment
Randém Noise { Random Bias Scale Factor (deg)
Instrument Units Base | Large | Base | Large | Base | Large | Basc | Large

Angle-of-Sideslip Vane (B) deg . 0.1 --- 0.1 .- 0.1% | ---
Roll Rate Gvro (p) deg/sec 0.03 } 0.1 0.031 0.1 0.2% | 1.0% 0.1 0.5
.Yaw Rate Gyro (r) deg/sec | 0.03 | 0.1 0.03 | 0.1 0.2% | 1.0% 0.1 0.5
Roll Attitude Gyro (¢) deg 0.02 | 0.2 0.02 ] 0.2 0.2% ] 1.5%
Lateral Accelerometer (ay) g's 0.01 | 0.01 0.01 ]| 0.01 0.1% | 1.0%
Roll Accelerometer (ﬁ) deg/sec2 0.1 0.2 0.1 0.2 0.2% | 2.0% 0.1 0.5
Yaw Accelerometer (¥) deg/sec?] 0.1 Jo.2 | o1 [0z |o0.25] 208 |01 |o0.5

c.g. uncertainty (e ): Base: 0.25 ft., Large: 1.0 ft. .

cgx’ ecgz
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Inputs were first developed for the longitudinal equations at the cruise
flight condition. Time histories of the nominal control input and the aircraft
response are shown in Figure 11. The nominal measurement data sequence con-
tained 300 time points taken every 0.05 sec over a 15 sec interval. The differen-
tial pitch control (SC) consists of: (1) a sine wave whose frequency is that of the

closed-loop complex poles (see Table 11), and (2) a superimposed sine wave
with a 5 in. amplitude and timed to occur during the first two seconds. The col-
lective pitch control (Sc) is similar except that the short sine wave has a 2.5 in.

amplitude and begins at 7.5 sec. The slower sine waves are intended to excite
the two real modes. The control time histories for the longitudinal equations

at the transition and near-hover flight conditions are not shown, but differ
from Figure 11 by the frequency of the slower sine waves, which were set equal
to the frequencies of the corresponding complex poles. Also, at the near-hover
condition, the amplitudes of both "doublet" sine waves were adjusted to 2.0 in.
and the amplitudes of both slow sine waves to 0.5 in. so that the aircraft did not
exceed the linear range of the equations.

A similar philosophy was attempted for control time histories in the lateral
cases. However, the resulting trajectories were found to contain insufficient
information. That is, the standard deviations of the identified parameters, with
this 15 sec span of data, were considered larger than they had to be. This was
corrected by increasing the record length to 30 sec and adding two "pulses" to
the yaw cyclic control. The number of recorded time points was retained at 300
by decreasing the sampling rate to once every 0.1 sec. The time histories of this
lateral control and the resulting aircraft responses are shown in Figure 12 for the
near-hover flight condition. Again, the control time histories for the lateral cases
at cruise and transition differ by the frequency of the slower sine waves. These
were set equal to the frequencies of the corresponding complex poles.

The Effects of Instrument Errors on Longitudinal Parameters

The study of the effects of longitudinal instrument errors was conducted
primarily at the cruise flight condition. Certain cases were repeated at the transi-
tion and near-hover flight conditions for comparison. This section discusses the
effects of both the baseline and large error sets, adding or omitting instruments,
and changes in the control sequence and data length on the standard deviations
of the parameter estimates. Also, the effects of variations in input and output
measurement lags on the estimates are investigated. Results obtained from both
ensemble analysis and Monte Carlo analysis are discussed. Table 13 is'a summary
of the ensemble analysis computer runs which provided the results presented in
this section.

Basic set.- Four computer runs of the VTOL Ensemble Error Analysis Pro-
gram were made to assess the effects of the longitudinal baseline instrument errors
of Table 12. Case 1 contained only the output measurement errors: white noise,
biases (which were not estimated by the identification algorithm), scale factor
errors, accelerometer misalignments, c.g. location errors, pitch-rate gyro mass
unbalance (e2 5 and e, 6) , and pitch angular accelerometer sensitivity to linear

» s

acceleration (e7 5 and e, 6) . Case 2 added the control measurement biases and
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TABLE 13.- SUMMARY OF ENSEMBLE ANALYSIS COMPUTER RUNS
FOR THE LONGITUDINAL MODE

Description of Instruments, Error Sources
and Flight Regim
Case i £ g - Bias § 1.C. | Compared with
No. Regime Ogqau a_a q Comments Estimated? Cases ___
1 Cruise Vv y /Y No control or No
i.c. errors
2 Cruise =4 /Y No i.c. errors No 1
3 Cruise e v / v | Nominal instru- No 1,2
ments § errors
4 Cruise VvV /Y Nominal instru- . Yes - 3
ments § errors
5 Transition /v A Nominal instru- . No 2
ments, no i.c.
6 liover v/ y 7/ / Nominal instru- " No ‘ 2
. . ments, no i.c.
7 Cruise . vv/v+v¥ Vv / v [Nominal errors - " No '3
8 * Cruise J/V/V / / / |Nominal errors ) Yes . 4,7
9 Cruise /Y A Nominal errors No 7
10 Cruise - S A Y Nominal errors Yes 8
11 Cruise s vy v Nominal errors Yes 4
12 Cruise v v v/ V *Doublet" sine Yes 1
wave input
13 . Cruise A J 30 scc. extra Yes : 1
: data (45 s. total)
14 Cruise YV Y 30 scc. extra Yes 10,13
: data ’
15 Cruise A v v/ Identical time No 2
: - | lags of .1667
sec. No i.c.
errors.
16  Cruise v v v /Y Output measurement No 2
’ lags of .1667 sec.
No i.c. errors.
17 Cruise v/ Y v ¥ | Output mecasurement No 2,16
lags of .0333 sec.
No i.c. errors
18 Cruise v/ y /Y Large instrument Yes 4
errors .

Nominal output instruments are 6-gyro, q-gyro, a_ and a_ accelerometers,
and q accelerometer. 2

Nominal errors are the baseline values of all the longltudmal instrument
errors of Table 12(a).



scale factor errors; Case 3 added initial condition errors (i.e., it contained all
the basic errors); Case 4 contained all these errors but estimated the biases and
initial condition errors, which effectively eliminated them. The instrument pack-
age in each case consisted of a pitch-attitude gyro, a pitch-rate gyro, longitudin-
al and normal accelerometers, and a pitch angular accelerometer.

The standard deviations of the parameter estimates due to noise only and
due to all other instrument errors as computed by these four cases are listed in
Table 14. The standard deviations of the parameters due to noise alone are the
same in Cases 1, 2, and 3. Thus, they are only listed once. The instrument
error sets studied do not contain deterministic errors (see the third chapter) so
the expected value of the parameter errors are zero in each case.

TABLE 14.- ENSEMBLE ANALYSIS ERROR STANDARD DEVIATIONS OF
PARAMETER ESTIMATES, CASES 1 TO 4

Standard Deviations
Due to Noise Standard Deviations Due To A1l Errors
Parameter Value* Casos 1

263 > | Case 4 Case 1 Case 2 Case 3 Case 4
Mq -1.47606 0.00086 0.00088 0.00354 0.01705 0.01706 0.01003
Zq -0.03169 0.00328 0.00332 0.00730 0.00772 0.00786 0.00499
Xq 0.01429 0.00283 0.00288 0.00740 0.05038 0.05045 0.00719
M, 0.74996 0.00092 0.00104 0.00476 0.04729 0.04742 0.00813
Zw -0.83231 | 0.00415 0.00449 0.01158 0.01400 0.01736 0.00927
X .0.08842 0.00281 0.00287 0.00522 0.03966 0.03969 0.00791
h&l -0.37084 0.00155 0.00177 0.00511 0.09034 0.09064 0.00606
Zu -0.01264 0.00624 0.00669 0.01057 0.03813 0.04327 _0.00706
Xu -0.03872 0.00109 0.00246 0.00564 0.06688 0.06700 0.00519
Mﬂe 26.25713 0.00660 0.00714 0.03407 0.29271 0.29341 0.10425
Zde 0.55709 0.02589 0.02733 | 0.12484 0.13208 0.14419 0.12167
xde 0.14798 0.02224 0.02243 0.11724 0.20926 0.20938 0.11987
M5c 3.87480 0.00682 0.00715 0.03810 0.18731 0.18741 0.04205
ZGC -8.77426 0.02932 0.02948 0.04401 0.13670 0.13830 0.06423
: X5c 0.77170 0.02420 0.02525 0.05502 0.58318 0.58674 0.06562

*Units are consistent with Tables 8 and 12.
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Each parameter's standard deviation due to all instrument errors was
divided by the absolute value of the correspondlng parameter and expressed in

per cent.

The results are shown graphlcally in Figure 13. From this figure, the

following comments can be made:

(D

(2)

(3)

(4)

(5

(6)

With only white noise in the measurements , four parameter estimates
have error standard deviations exceeding 10% of the parameter value.
These are Zu at 49%, X8e at 15%, Xq at 20%, Zc1 at 10%. The

first three are all associated with the longitudinal velocity perturba-
tion, Au. This suggests that the information content of the data
sequence with respect to these parameters and Au could be improv-
ed. Also, relative to the magnitude of perturbations in the other
state variables shown in Figure 11, Au's direct measurement accur-
acy is relatively poor. The eigenvectors associated with the closed-
loop poles of Table 11 show that Au motion is principally governed

by the real pole at -0.088 sec 1. Thus, the 15 sec length of the data
sequence provides only 1.3 time constants of this mode. Increasing
data length can possibly decrease these error standard deviations;
this point is examined by Case 13 discussed later.

The addition of error sources other than white noise has a substan-
tial effect on the parameter error standard deviations. In Case 1,
which has all the output measurement static errors but no control
errors, the standard deviations for six parameters (MW, M8e’ M8c’

ZSe’ Xu' and XSe) increased by a multiple of five or more over

“errors due to noise only.

In Case 2, which adds the static control measurement errors, all
parameter standard deviations except those of Zq and Z increased

by at least a factor of five over the deviations due to whlte noise only.
The control measurement Verrors—-biases and scale factor errors--are
the dominant errors for twelve parameters. The exceptions are Zq ,

ZW , and ZSe .

of the standard deviations of Case 2 over Case 1.

This is reflected in Figure 13 by the large increases

The initial condition errors which are added in Case 3 produce little
or no change.

Estimating the output measurement biases and initial conditions (Case
4) resulted in lower error standard deviations for every parameter.
Reviewing the sensitivity data of estimated stability and control
derivatives to control biases (BGpP/BB.C) showed that these error

terms decreased when the output measurement biases were estimated.
This appears to be because the effects of control bias are picked up
as output measurement biases. Thus, the accuracy of the aircraft
parameters is improved even .though the true error source (input
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bias) is incorrectly identified as an output bias. This simply under-
scores the relative importance of control biases just mentioned. Fur-
thermore, it demonstrates for this instance, at least, the desirability
of including output bias and initial condition estimation in the iden-
tification algorithm. Improvement was most pronounced for seven
parameters (M ,Z , X , X ,X , X, ,and X, ). Each of these

u’ “u’ g’ Tw’ Tu’ Tée 6¢c

parameter estimates is associated with the longitudinal velocity
perturbation. Finally, the indication is that it is probably desirable
to estimate control measurement biases also. "

An important result of the Ensemble Error Analysis procedure is the matrix
of parameters sensitivities to the instrument errors, 08p/de. Tables 15 and 16 pre-
sent these sensitivities, respectively, for Case 3 (which contained all baseline errors
and did not estimate output biases and initial conditions) and Case 4 (which did
estimate them). A principal use of these sensitivities is to determine the effect a
change in an error magnitude eJ. has on a parameter estimate error Api. This

may be accomplished by means of the relationship

aﬁp. 2 .
o 2] _ =i 2] S 2 2
E18P; fnew = F1%Pifold *(aej ) (‘“’j ®io1d (104)

new

For example, the effect on the standard deviation of MW due to changes in the
bias in differential collective pitch stick position, b8e' was computed using Eq.

(104) and the appropriate sensitivity value from Table 15. The result is shown
in Figure 14(a). Because b8e is the dominant error for this parameter, the

‘'standard deviation of Mw is highly dependent on b8e' Similarly, Figure 14(b)
shows how the accuracy of the MW estimate varieés with the pitch gyro scale
factor, egy- Obviously, the dependence here is considerably less, even though
eg produces the largest static error effect of the output measurement instruments.
(The dominant error source e for a particular parameter pj is the one which

produces the largest absolute product when its standard deviation is multiplied

op.
by the sensitivity to that error; i.e., 501 % is the largest such product.)
i .

Assume that it is nécessary to identify Mw with an accuracy of one stand-

ard deviation equal to 20% of its expected value. Then Figure 14(a) shows that
bSe must be less than 0.16 in. Figure 14(b) shows that even a 2% value for eg

will not affect the Mw estimate appreciably. This demonstrates how one can
determine the accuracy requirements of instruments to meet specified parameter

estimation accuracies.

A second use of the sensitivities (08p/de) is to determine the major
sources of error in each parameter estimate. This is done in conjunction with
values of instrument errors from Table 5. For example, with the baseline error
values of Table 12, the dominant error sources are those presented in Table 17.
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TABLE 15.- SENSITIVITIES OF ENSEMBLE ANALYSIS PARAMETER ERROR
STANDARD DEVIATIONS TO INSTRUMENT ERROR SOURCES FROM

CASE 3
Biases on Output Measurements
by b bay by, by
Error Value: 0.200-01 0.300-01 0.100-01 0.100-01 0.100+00
hh' -0.299-01 -0.105-01 -0.829-01 | -0.509-01 -0.508-03
Z, 0.593-02 | -0.194-01 -0.391+00 0.428+00 | -0.159-02
X, 0.116+00 0.682-02 0.842-01 -0.783-01 0.115-04
M 0.113+00 . | 0.118-01 0.133+00 0.866-01 0.642-03
Z, -0.582-02 0.297-01 0.502+00 -0.854+00 0.207-02
X, -0.687-01 0.202-01 -0.133+00 0.115+00 0.153-02
M, -0.190+00 0.426-01 -0.373:01 | -0.839-01 0.175-02
Z, 0.310-01 .| 0.406-01 0.794+00 | 0.594-01 10.321-02
X, ©-0.186+00 | -0.470-01 -0.332+00 0.442-01 -0.181-02
Mg, 1 0.691+00 " 0.597-01 0.648+00 0.402+00 | 0.279-02 | °
Zg, 20.933-01 | 0.112+00 | 0.199+01 -0.360+o1 0.820-02
Xgo . |-0.286+00 ' 0.105+00 -0.482+00 0.477+00 | 0.731-02
Mg, -0.34i+oq -0.929-01 | -0.400+00 0.142+00 -0.535-02
Zse 0.306+00 | 0.549-01 -0.541+00 0.228+01 | -0.162-02.
Xs.c 0.138+01 |- 0.210400 0.265+01 -0.139+00 . | ~0.118-01

NOTE: Units are consistent with Tables 8 and 12,

The notation 0.200-01 means 0.2 x 10~1.

With regard to the data in Table 17, the following observations are made:

(D

In Case 1 (which contained only output measurement errors), an
output bias appears as the largest source of error for seven para-
meters and as the second largest source of error for nine parameters.
Thus, the output biases were the most important error sources, and
they are followed in importance by the c.g. location errors, the rate-
gyro mass unbalance in the x-direction (e2 6) , and the measure-
ment scale-factor errors, in that order. ’



TABLE 15.- (CONTINUED)
Scale Factor Lrrors on Output Measurements
ey e €a, €a, R €
‘Error Value: 0.200-02 0.200-02 0.100-02 0.100-02 0.200-02
Mq 0.228+00 0.121+01 0.100-02 -0.329-01 0.289+00
Zq -0.485+00 -0.769-01 -0.687-03 0.660-01 0.169+00
Xq -0.177+400 -0.774-01 0.112-01 -0.329-01 0.607-01
Mw 0.123+01 0.150+00 0.125-02 0.134-01 0.439+00
Zw 0.102+01 0.479+00 -0.838-02 -0.642+00 0.149+00
Xw 0.314+00 0.459+00 0.667-01 0.113+00 0.430+00
Mu -0.527+00 -0.350+00 0.184-01 -0.366-01 -0.602+00
Zu -0.174+00 0.317+00 0.303-02 0.367+00 0.458+00
Xu 0.459+00 -0.465-01 -0.115-01 -0.532-01 -0.103+00
M5e 0.733+01 0.625+01 0.285-01 -0.398-01 0.108+02
Zée 0.317+01 -0.858-01 -0.234-01 0.188+01 -0.116+01
X5e 0.129+01 0.211+01 0.389-01 0.427+00 0.180+01
M5c . 0.388+00 0.204+01 -0.514-01 0.398+00 | 0.308+01
-ZGC 0.216+01 0.286+01 -0.150+00 -0.863+01 0.379+01
ch 0.177+01 0.455+01 0.585+00 0.117+01 ~0.857+01
NOTE: Units are consistent with Tables 8 and 12.
(2) In Case 3 (which differs from Case 1 by the addition of control biases,

control scale factor errors, and state initial condition errors), the
overwhelming source of error is the control bias b8e' It is the

" dominant error source for 12 parameters. By comparing the total

deviations due to b8
. . e

error standard deviations ‘of these 12 parameters to the standard
alone, it can be seen that the error introduced

by b8e often exceeds the error due to all other sources put together.

Moreover, other control errors appear as the second largest source
of error for eight parameters. Besides the control errors, other
important error sources are the c.g. location errors and the initial
condition error for the vertical velocity component Aw. Other initial
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TABLE 15.- (CONTINUED)

Angular Accelerometer
- Sensitivity to Linear Accelerometer
Gyro Mass Unbalance Acceleration Misalignment
€25 2.6 ©7,5 l €7.6 Yay ] Ya;
Error Value: 0.100+00 0.100+00 0.600-02 0.600-02 0.100+00 0.100+00
Mq 0.149-02 -0.159-01 0.121-03 0.216-02 0.536-05 0.895-Q5
Zq 0.559-03 0.175-03 -0.260-03 0.212-02 0.100-02 0.364-03
Xq 0.249-03 -0.510-02 0.113-03 -0.911-03 0.102-02 -0.520-05
Mw 0.253-02 -0.267-01 -0.393-04 -0.820-04 0.498-03 -0.943-05
Zw -0.153-02 0.118-01 0.231-03 -0.137-02 -0.272-02 "0.956-03
Xw -0.102-03 0.408-02 -0.151-03 0.220-02 0.108-01 -0.126-03
Mu -0.192-02 0.188-01 -0.364-03 0.266-02 0.198-02 0.183-03
Zu 0.931-03 -0.178-01 .0.243-03 .| -0.645-03 -0.254-02 -0.180-02
Xu 0.293-03 -0.155-02 0.181-03 -0.218-02 -0.478-03 0.250-03
Mée 0.443-02 0.532;01 -0.514-02 0.503-01 0.487-02 0.225-03
25e -0.923-02 0.705-01 0.126-02 -0.126-01 +-0,891-02 -0.143-02
XGe -0.826-03 0.235-01 -0.900-03 0.120-01 -0.255-01 -0.436-03
MGC 0.343-01 -0.356+00 0.425-02 -0.452-01 -0.581-02 -0.712-03
25c -0.125-02 | 0.335-01 0.307-03 0.133-02 -0.240-01 0.149-01
Xsc Q.894-02 .| -0.114+00 0.237-02 -0.795-02 0.111+00 -0.180-02
NOTE: Units are consistent with Tables 8 and 12.
condition errors do not appeaf. Other output measuremént errors
appear only four times'in the table for this case. Thus, the import-
ance of control errors far exceeds other sources of error when out-
put biases and initial conditions are not estimated.
(3) In Case 4, the output biases and initial conditions are estimated,
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which effectively removes them as sources of error in the parameter
estimates. Itwas explained previously that this also removes the
control biases from importance as sources of error. However, the
control scale-factor errors were not diminished. In fact, they re-
main as the first and/or second most important sources of error for
every parameter except Xu' Other important error sources are the



TABLE 15.- (CONTINUED)

State Initial Condition Error C.G. location Error

Ab Aq Aw I excg ezcg
Error Value: 0.200-01 0.300-01 0.100+01 0.200+00 0.250+00 0.250+00
bh 0.297-02 0.183-02 -0.477-03 -0.202-02 0.267-02 -0.393-02
Zq 0.624-02 0.240-02 0.145-02 0.190-03 0.109-01 -0.160-03
Xq -0.174-02 0.217-b2 0.215-02 0.763-02 0.149-02 -0.251-01
hkq 0.722-02 0.557-02 0.316-02 0.725-02 -0.175-05 -0.659-06
Zw -0.630-02 -0.636-02 -0.103-01 -0.496-03 -0.131-01 0.500-05
Xw 0.168-01 0.712-02 0.962-03 -0.630-02 -0.450-05 0.131-01
Mu 0.268-02 -0.641-02 -0.681-02 -0.150-01 0.259-05 -0.438-05
Zu -0.228-01 0.949-02 0.204-01 0.599-02 0.646-02 0.307-05
Xu 0.403-02 -0.205-02 -0.363-02 -0.775-02 ‘ 0.937-07 -0.647-02
Mde 0.755-01 0.442-01 0.182-01 0.427-01 -0.968-05 -0.245-05
25e -0.592-01 -0.364-01 -0.578-01 -0.531-02 -0.458+00 0;194-04
Xde 0.688-01 0.264-01 0.359-02 -0.295-01 -0.196-04 0.458+00
lkc 0.785-01 0.296-01 0.112-02 00.286-01 -0.950-05 - 0.897-05
ch 0.494-01 0.564-01 0.205-01 0.194-01 -0.675-01 0.185-04
x5c 0.227+00 0.168+00 0.611-01 0.985-01 -0.170-04 0.675-01

NOTE: Units are consistent with Tables 8 and 12.

c.g. location errors and the scale-factor error on the pitch angular
accelerometer.

(4) The gyro mass unbalance in the z-direction, the angular accelero-
meter sensitivities to linear acceleration, and the linear accelero-
meter misalignments were relatively minor error:sources for all
parameters in each case.

Comparison of instrument error effects at cruise, transition, and near
hover.- Considered next were the effects of the baseline instrument errors at the
transition and near-hover flight conditions. Two computer runs (Cases 5 and 6)
similar to Case 3, which was for cruise, were made at the transition and near-
hover points (see Figures 7, 8 and 9 and Table 8). The control input sequences
.?f thesg cases were similar but not identical, as discussed in this chapter under

Selection of Aircraft Maneuvers." Output biases and initial condition errors
were not estimated.
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TABLE 15.- (CONCLUDED)

-Control Bias Control Scale Factor
bse | bs ®se ®sc
Error Value: 0.500-01 0.500-01 0.500-02 0.500-02

Mq 0.275+00 0.277-01 -0.187+01 | -0.143-01
Zq 0.152-01 | -0.148-01 0.455+00 . 0.539-01
Xq -0.991+00 | -0.106+00 0.230+00 0.130-02
M, -0.921+00 | -0.111+00 -0.160+00 0.282-02
ZQ -0.510-03 0.108+00 | -0.114+01 -0.624-01
X, 0.774+00 0.462-01 -0.128+01 | -0.226-01
Bkl 0.178+01 0.225+00 0.140+01 | -0.128-01
Zu -0.674+00 | -0.272+00 -0.963+00 0.198-01
X, 0.133+01 0.141+00 -0.290+00 0.247-02
Mée -0.539+01 | -0.646+00 -0.209+02 0.872-01
25e 0.369+00 0.640+00 -0.444+01 { -0.426+00
X5e' 0.342+01 0.261+00 -0.522+01 | -0.858-01
MGC 0.364+01 0.296+00 -0.100+01 | -0.367+01
25C -0.230+01 | -0.413+00 -0.771+01 0.797+01
Xéc -0.114+02 | -0.163+01 -0.139+02 '-0.902+00

NOTE: Units are consistent with Tables 8 and 12.

True parameter values, the error standard deviations of the parameter
estimates due to white noise alone and those due to all errors are listed in Table
18. Similar information is shown graphically in Figure 15, where the error
standard deviations are expressed as percentages of the associated parameter
values. The following observations are made from Figure 15:

(1) The addition of error sources other than white noise has a substan-
tial effect on parameter error standard deviations in transition and
near-hover, as was previously noted at the cruise condition. Again,
the principal sources of these errors are the control biases and con-
trol scale factors.



TABLE 16.- SENSITIVITIES OF ENSEMBLE ANALYSIS PARAMETER ERROR
STANDARD DEVIATIONS TO INSTRUMENT ERROR SOURCES FROM

CASE 4
Scale Féctor Errors
€q e €ay ea, e
Error Value: 0.200-02 0.200-02 0.100-02 0.100-02 0.200-02
Mq 0.304+00 0.118+01 0.380-03 -0.297-01 0.259+00
Zq -0.373+00 -0.162+00 0.322-02 0.374-01 0.114+00
Xq -0.430+00 -0.140-01 0;138r0] -0.348-01 0.206+00
Mw 0.965+00 0.187+00 0.352-02 ~-0.195-02 0.560+00
Zw 0.784+00 0.823+00 ~0.194-01 ~0.517+00 0.299+00
Xw 0.332+00 0.405+00 0.691-01 0.801-01 0.489+00
Mu -0.390+00 -0.236+00 0.167-01 -0.194-01 -0.531+00
Zu -0.863-01 ©-0.237+00 0.749-02 0.206+00 0.212+60
Xu 0.127+01 -0.308+00 -0.257-01 0.648-03 -0.896+00
Mée 0.557+01 0.654+01 0.419-01 -0.121+00 0.116+02
Zde 0.238+01 0.150+01 -0.781-01 0.253+01 -0.446+00
X5e 0.110+01 0.203+01 0.561-01 0.262+00 '0.242+Ol
Ms. 0.766+00 0.170+01 | -0.501-01 0.312+00 0.309+01
26c 0.166+01 0.226+01 -0.130+00 -0.886+01 0.418+01
XGC -0.131+01 0.401+01 0.576+00 0.983+00 0.888+01"
- (2) At all three flight conditions, the pararheters Mq' MSe’ Mg Z.W

and ZSC may be accurately determined. That is, their error stand-
ard deviations are always less than 10% of their true value. Mw also

may be accurately determined in cruise and transition. The decep-
tively large percentage value in its error standard deviation in Case
6 occurs because the true parameter value becomes nearly zero in the
near-hover condition (see Table 18). A similar situation exists for
zSe , whose true value becomes much smaller near hover. Other-

wise, at cruise and transition, the error standard deviation of 2
. ° . Se
is less than 25%.
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as the basis for the remainder of the study of the longitudinal mode.

TABLE 16.- (CONTINUED)
Angular Acceleromecter |
Sensitivity to Linear Accelerometer
Gyro Mass Unbalance Acceleration Misalignment
2,5 [ €2,6 €7,5 7,6 Yay Yay

Error Value: 0.100+00 0.100+00 0.600-02 0.600-02 0.100+00 0.100+00
Mq 0.125-02 -0.150-02 0.227-03 0.950-03 0.501-03 0.167-04
Zq 0.366-03 0.219-02 -0.116-03 0.624-03 0.112-02 0.314-03
Xq 0.9?9—03 -0.655-02 -0.170-03 0.259-02 0.113-02 0.474-05
M, 0.291-02 -0.269-01 -0.262-03 0.261-02 0.820-03 -0.201-04
Z, -0.720-03 0.576-02 -0.170-03 0.283-02 -0.368-02 0.102-02
X, -0.444-03 0.716-03 0.137-03 -0.785-03 0.108-01 -0.119-03
M, -0.173-02 0.809-02 -0.484-04 -0.594-03 0.116-02 0.205-03
z, -0.155-02 -0.285-02 0.458-03 -0.366-02 -0.257-03 -0.175-02
X, -0.381-02 0.224-01 0.721-03 -0.108-01 -0.961-04 0.198-03
Mse 0.677-02 0.501-01 -0.639-0é 0.648-01 0.673-02 0.177-03
5o -0.507-02 0.418-01 -0.637-03 0.725-02 -0.144-01 -0.121-02
Xse -0.896-04 -0.602-02 0.224-03 0.178-02 -0.258-01 -0.371-03
Mse 0.331-01 -0.360+00 0.563-02 -0.594-01 -0.568-02 -0.661-03
Zse -0.285-02 0.430-01 0.535-03 0.362-03 -0.217-01 0.146-01
X5 -0.209-03 -0.441-01 0.745-03 0.707-02 0.119+00 -0.183-02
(3) The observation was made at the cruise condition that. parameters

M
u

al velocity perturbation, have relatively large error standard devia-
tions. Similar situations occur in transition and near-hover. As
before, this suggests that the information content of the data sequence
with respect to these parameters and Au could be improved.

,2 ,X ,X ,X ,X, ,and X, , associated with the longitudin-
u’ g’ "w’ u’ e 6¢c

The specific results of these observations differ, but the general trends
appear to be the same at all three flight conditions. The cruise condition is chosen

Much more

in-depth study is required of different phases of flight to allow making general
conclusions regarding instrumentation error effects as a function of flight condi-

tions.
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TABLE 16.- (CONCLUDED)

Location Error Control Bias Control Scale Factor‘
Cxcg I Czcg bse ] bsc ®se ] Céc
Error Value: 0.250+00 0.250+00 0.500-01 0.500-01 0.500-02 0.500-02
hh 0.267-02 -0.393-02 0.677-05 -0.310-06 -0.190+01 -0.134-01
Zq 0.109-01 -0.161-03 0.128-04 0.177-0S 0.474+00 0.602-01
Xq 0.150-02 -0.251-01 -0.110-04 0.121-05 0.319+00 -0.246-02
Mw -0.223-05 -0.825-06 -0.467-06 0.135-05 -0.145+01 0.233-02
Zw -0.130-01 0.680-05 -0.276-04 -0.485-05 -0.140+01 -0.889-01
Xw -0.613-05 0.131-01 -0.276-04 -0.269-05 -0.127+01 -0.136-01
Mu 0.349-05 -0.453-05 -0.677-04 -0.504-05 0.111+01 -0.122-01
Zu 0.645-02 0.790-06 0.323-04 0.202-0S -0.267+00 0.530-01
Xu 0.107-05 -0.647-02 0.121-03 _ 0.124-06 -0.346+00 0.387-02
Mée -0.121-04 -0.329-05 -0.638-05 0.697-05 -0.200+02 O.834-0i
25e -0.458+00 0.288-04 -0.116-03 -0.223-04 -0.595+01 -0.563+00
Xée -0.271-04 0.458+00 -0.213-03 -0.138-04 -0.530+01 -0.451-01
MGC -0.145-04 0.723-05 0.364-04 0.715-0S -0.104+01 -0.364+01
ZGc -0.675-01 0.157-04 0.780-04 0.129-04 -0.682+01 0.800+01
Xéc -0.267-04 0.675-01 0.425-03 0.165-04 -0.106+02 -0.883+00

Effects of adding or omitting instruments.- Obtaining accurate air data
in helicopter flight testing is complicated by the rotor downwash and the difficul-
ties inherent at low airspeeds or high angles-of-attack. For these reasons, little
confidence is placed in the air directional or pitot tube data when velocity is less
than about 60 knots, and this is the justification for omitting these instruments at
the transition and near-hover flight conditions. However, in cruise one may
expect that including air data in the identification algorithm would enhance the
accuracy of the parameter estimates. But this is not necessarily the case.

Adding (or omitting) instruments will restructure the matrix of parameter
sensitivities to instrument errors and may result in increased sensitivities of
some parameters to unmodeled instrument errors. This effect was observed for
cruise flight conditions when an angle-of-attack vane and pitot tube were added to
the longitudinal instrument set. Two computer runs were performed: Case 7 did
not estimate output biases and initial conditions, and Case 8 did. Their results
are compared to Cases 3 and 4 in Figure 16, and the following observations are
made: '
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(1) Parameter estimates whose standard deviations are less than 30% of
the true parameter value were neither improved nor degraded
appreciably. This is not surprising since these parameters are fairly
well identified from information supplied by the original five instru-
ments. That is, when a parameter's standard deviation is small,
good information is present from the instrument combination which

produces data to identify that parameter.

2 From Case 3 to Case 7, the estimates of Zu-’ Xu’ and X8c were im-

proved by adding the two instruments, but the standard deviations
are still quite large compared to their corresponding parameter
values. Also, the estimates of Zq' Xq’ Xw’ and X8e were degrad-

ed by factors of 2.8, 1.3, 1.2, and 1.3, respectively. This was
caused by an increased sensitivity to the control biases and the in-
troduction of the additional bias in measuring Au.

3 From Case 4 to Case 8, both of which estimated initial conditions and
measurement biases except bu,* the estimate of Zu improved sub-

stantially, the estimate of Xu degraded substantially due to increas-

ed sensitivity to bSe; all other estimates were left relatively un-
changed.

Hence, the addition of an angle-of-attack vane and a pitot tube has a mixed
effect on the parameter estimates. The engineer must determine with regard to
the test goals which parameters must be known to good accuracy. Then he must
decide which instruments to use to produce the desired results. Another possi-
bility would be to restructure the cost function weighting matrix and thereby
reduce the sensitivities of the parameter errors to control biases.

The effect of deleting the pitch angular accelerometer but retaining the
angle-of-attack vane and pitot tube measurements was investigated by performing
two more computer runs at the cruise flight condition. Case 9 did not estimate
measurement biases and initial conditions, and Case 10 did. Neither case showed
any appreciable change in the accuracy of any parameter estimate. For these
cases, this implies that the pitch angular accelerometer does not add much informa-
tion to what the identification algorithm extracts from the other instruments. This
%s fortunate because angular accelerometers are not commonly used in flight test-
ing.

*For the longitudinal mode, the system equations are so structured that the longi-
tudinal speed perturbation's initial value appears to have almost the same effect
on the output equations as does a bias in the pitot tube or air speed indicator.
In other words, both of these parameters are not simultaneously observable from
a data sequence over a short time span. Thus, the pitot tube bias is not identi-
fied, and it enters as an error source. Most of this error is identified as a for-
ward speed initial condition.
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The next run in this series was Case 11, which had only four instruments--
the pitch-attitude and pitch-rate gyros and the longitudinal and normal acceler-
ometers. The results were compared with Case 4. Again, it was found that
omitting the angular accelerometer made no appreciable change in the accuracy
of the parameter estimates. Again, it appears that the angular accelerometer adds
little information to that available from the four instruments just mentioned.

Effects of control sequence and data length.- The important role which
the control input sequence has in parameter identification has been discussed
previously. It is a simple matter to demonstrate that if a mode is not excited, then
estimates of associated parameters will be inaccurate. As an example, Case 12
was generated as being similar to Case 11 except that the slow sine waves in the
5e and 8C control sequences were omitted (see Figure 11). This left only the

"doublet" sine wave in 8e beginning at t= 0 and another in SC beginning at

t = 7.5 sec. Recall that the slow sine waves had the same frequency as the com-
plex conjugate poles of the closed-loop system. Thus, removing the slow sine
waves means that the slow mode is not excited as strongly.

The error standard deviations of the parameter estimates expressed as
percentages of the associated parameter values are shown in Figure 17 for both
Cases 11 and 12. A comparison shows that estimates of Zu and Xu become much

less accurate (56% to 330% and 12% to 57%, respectively), and no estimates improve:
appreciably due to this change in the control input sequence.

After that predictable result was obtained, an attempt was made to devise a
control sequence which would improve the accuracy of the parameter estimates.
It was noted previously that the input sequence and data length of the maneuver
shown in Figure 11 may be responsible for the relatively large error standard
deviations of the parameters associated with the longitudinal velocity perturba-
tions, ‘Au. The mode principally governing Au has a time constant of 11.4 sec.
Therefore, it was decided that a new input sequence should be devised which
would be identical to the baseline maneuver shown in Figure 11 for the first 15 sec
and which would thereafter excite the Au mode and contain at least two time con-
stants of its motion. The intent was to retain all the information of the baseline
maneuver and to add information on the Au mode. This was done, and the re-
sulting input and outputs of this run are shown in Figure 18. After the control
inputs cease at t = 20 sec, Au is 22 ft/sec, and it slowly decays to 2 ft/sec at
t = 45 sec.

Case 13 used this maneuver and took measurements with four instruments--
the pitch-attitude and pitch-rate gyros and the linear accelerometers. The results
are compared in Figure 17 with Case 11, which used the same instruments but
utilized only the 15 sec baseline maneuver. As can be seen, the error standard
deviation of Zu was substantially increased from 56% to 128% of the true para-

.meter value. X, improved from 12% to 5%; Xw and Xac degraded from 9% to

14% and from 8% to 14%, respectively. The other parameter estimates were essen-
tially unaffected.
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At first, this degradation of the Zu estimate accuracy seemed surprising .
The new maneuver should have provided more information on Zu because the

Au mode was more strongly excited, and the excitation of the baseline maneuver
was retained. However, the implication is that the four inertial instruments are
not extracting this inherent information. This is seen in Figure 18 where 0, q,
3, and a_ are all nearly zero after t = 25 sec (i.e., during the slow decay in

Au). In fact, what information is extracted by these instruments after t = 15 sec
(the end of the baseline maneuver) causes a 16-fold increase in sensitivity of the
error in the Zu estimate with respect to the scale factor error on 6e (determined

by examining the error sensitivity matrix). What was apparently needed was a
direct measurement of Au to better extract the information inherent in the man-
euver. Then, the identification scheme could rely on this new measurement for
its information on ~Zu and rely much less on the original four instruments.

However, the previous results showed that while adding a pitot tube and
angle-of-attack vane substantially improved the estimate of Zu’ other parameter

estimates could be degraded. This was true here, as well. Case 14 repeated
Case _13 with the addition of these two instruments. Its results are also shown in
Figure 17. The error standard deviation of Z,, dropped to 21% of the parameter

value, which is a very good improvement over previous cases. However, the
estimates of X_, Xu’ X6e‘ and X6c were all degraded. Again, this was due to

the substantially increased sensitivity of the estimates to control errors. The

sensitivity of XSe to bSe increased from -0.931 x 10_4 in Case 13 to -2.95 in
Case 14.

. It is of further interest to compare Cases 14 and 10. Both have six instru-
ments and the same control input up to 15 sec. However, Case 14 has the addi-
tional 30 sec of data. The results are also shown in Figure 17. It is noted from
this figure that the error contribution due to noise is always decreased in the
longer run. This follows the theory that if more information is added, the effect
of noise diminishes. But continuing to use data from a run in which there is poor
excitation of all states but Au actually can increase the effect of the other instru-
"ment errors, as can be seen in Figure 17. Although the total deviation of Xu

decreased from 60% to 14%, the XW, X6e’ and x8c deviations increased from 10%
to 45%, 72% to 130%, and 11% to 22%, respectively, by adding 30 sec more data.
Based on the above examples, it can be seen that different combinations of

instruments, control inputs, and lengths of data give varying results Specifi-
cally, the following were dbserved:

(1) Adding instruments does not always improve parameter accuracy.

(2) Adding more data does not always improve parameter accuracy.
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Thus, the engineer who is conducting identification flight tests should very care-
fully consider what data and instrument combinations are used. It is important to
know the error magnitudes of the instrumentation.

Deterministic errors due to input and output measurement lags.- The
Ensemble Error Analysis Program treats input and output measurement lags deter-
ministically. When lags are assumed to be deterministic sources. of error, they have
no effect on the random distribution of the parameter estimate errors. However, the

“lags do produce mean errors in the estimates. Lags do have some random varia-
tion, and the resulting effects can be studied with the Simulated Data Analysis
Program. Nonetheless, certain basic effects on the mean estimate errors were
established by use of the ensemble technique, and they are now discussed.

When making computer runs which involved lags in either input or output
measurements, the integration step-size was chosen to be less than or equal. to
three-tenths of the shortest time constant. In other words, three time constants
contained at least ten integration steps. This was to ensure accurate simulation
of the system. However, the sampling rate was not changed.

The effect of all output and input measurement lags having identical time
constants was studied in Case 15. This case is similar to Case 2 (see Table 13)
except output and input measurement lags were added and the time constants set
to 0.1667 sec. The resulting mean errors of the parameter estimates were very
nearly zero. All were less than 0.1% of the corresponding parameter values.
This result is independent of the time constant value, as can be shown mathemati-
cally. What this result means physically is that input and output measurements
which are lagged equally produce a system which is equivalent to the system with-
out any lags. The parameter estimates made from this equivalent system are not
biased from the true parameter values. Thus, the instrumentation design goal
should be to set the dynamic characteristics of all data measurement channels to
be equivalent.

Next, the effects of lags in the output measurements when no lags exist in
the input measurements were studied. This situation results when control measure-
ments are measured in terms of stick deflection; the stick deflection leads the
actual control input. ~

Table 19 presents the deterministic (mean) parameter errors resulting from
lags of 0.1667 sec (Case 16) and 0.0333 sec (Case 17). These mean errors are
divided by the true parameter values to obtain the percentage error. As can be
seen, going from 0.1667 sec to 0.0333 sec decreases the mean error in 11 of the
15 parameters. This indicates that the smaller the lag differences, the smaller the
mean error. However, this isn't uniformly true, and Case 17 points out that even
small differences in the lags can have a substantial effect on the parameter errors.
The mean errors of Zq’ Zu’ and Z8e are quite large.

Further study is required of the lag effect. The random portion of the lags
are addressed using Monte Carlo analysis later in this chapter.

Comparison of results obtained using the large and nominal error sets.
The large set of instrument errors in Table 12 was used in Case 18, which other-
wise duplicated Case 4. That is, these cases contained random output and input
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TABLE 19.- COMPARISON OF ENSEMBLE ANALYSIS PARAMETER MEAN
ERRORS DUE TO NO CONTROL LAGS

Case 16: Output Lag Case 17: Output Lag
Time Constant=.1667 Time Constant=.0333
Parameter Value Meén Error % Mean Erfor %

Mq -1.47606 -0.24306 16.5 -0.35003 | 23.7
Zq -0.03169 -0.021557 68.0 | 0.10087 | 318.3
Xq ' 0.01429 -0.017833 | 124.8 0.00295 20.6
Mw 0.74996 0.32681 43.6 0.19802 26.4
2, -0.83231 0.0061787} -~ 0.7 -0.18913 | 22.7 -
Xw 0.08842 0.095193 | 107.7 -0.02875 32.5
M, -0.37084 -0.18373 49.5 | 0.01658 4.5
Zu 0.01264 0.15755 1246.4 -0.07480 | 591.8
Xu -0.03872 -0.020695 53.4 -0.01853 47.9
Mée 26.25713 12.194 - 46.4 3.5276 13.4
Z5e 0.55709 0.26505 36.8 -0.74124 | 133.1
X5e 0.14798 0.46624 315.1 -0.09466 64.0
M6c 3.87480 1.7652 45.6 0.71735 18.5
ch -8.77426 | ‘-2.1854 2?.9 -0.35730 4.1
X5C 0.77170 - 0.99354 128.7 -0.39643 51.4

measurement errors, used all instruments but the angle-of-attack vane and pitot
tube, and estimated output biases and initial conditions. The results of these
cases appear in Table 20.

The standard deviations due to white noise alone increased only slightly

from Case 4 to Case 18. The total error standard deviations increased for every
parameter. Although this is certainly not surprising, neither is it a foregone
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conclusion since the weighting matrix, R 1, in Case 18 is different from the one
in Case 4; the standard deviations of the white noise have different values. These
parameter deviation increases ranged from a 46% increase in the standard deviation
for Zu to a 425% increase for Mu. (However, the error standard deviation of Mu

with the large errors is still only 8% of the parameter value.)

For ten parameters, the source of the largest error was unchanged. For
Z ,X , and Xu’ the c.g. location errors became the dominant error source.

For M8c’

source, and for X8c’ the misalignment of the longitudinal accelerometer

the angular accelerometer scale factor error became the largest error

dominated. The result of these changes is that c. g. location errors replaced the
differential collective scale factor error (eSe) as the largest error source for the
majority of parameters.

Monte Carlo results from the simulated data analysis program.- The
effects of large instrumentation errors and random components of the measurement
lags are best studied by using the Monte Carlo technique. A "large'" instrument
error means that the error mangitude is large enough such that the one-step con-
vergence criterion used to derive the ensemble analysis technique does not hold
very well. Thus, the effect of the large error determined by using the two tech-
niques would produce totally different answers. To ascertain what constitutes
"large" errors involves comparing the results of the two techniques as applied to
the same flight test condition. It is advantageous to use the ensemble analysis tech-
nique if the errors are "small" and random components of lag are considered

negligible.

Before discussing the results of using the Monte Carlo technique on the pre-
viously considered flight test condition examples so that some comparisons can be
made, it is of interest to examine the number of samples required to make a suitably
accurate Monte Carlo run. A tradeoff exists between computer run time and
statistical accuracy of the results.

The Monte Carlo technique can be a very expensive procedure in terms
of hours of computer time. It was found in this study that 40 to 50 Monte Carlo
samples using a trajectory with 300 time points took about one hour. Each sample
was iterated using the identification algorithm until all parameters converged
to within 1% of their magnitude. Analyzing the same trajectory with the ensemble
program took about one minute of computer time. Obviously, considerable savings
can be realized by using the ensemble method.

Another consideration is that increasing the number of Monte Carlo samples
gives diminishing returns. Consider the following example. Suppose n Monte

Carlo Samples are taken, and from these samples an estimate of the variance,

. 2
sz, is made for the error, &p,. of a parameter estimate. Let 0~ be the true

variance of the parameter estimate error, which is unknown. By methods of ele-
) . 2 . .
mentary statistics [34], one can determine an interval about s~ which contains

o% with a specified level of confidence. The 90% and 95% confidence intervals of
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the normalized variance, (Jz/s2 , is presented in Figure 19 as a function of the
number of Monte Carlo samples upon which 52 is based. This figure shows that
the 95% confidence interval for the variance of the error, 02, based on 50 samples
is 0.69 5% to 1.51s%. Similarly, the interval based on 200 samples is 0.83 s°

~ to 1.22.s2 , which has about half the width of the interval at 50 samples (0. 39 52

compared to 0.82 sz) .

It is also possible to compute an interval about the sample mean which con-
tains the true (population) mean with a specified level of confidence. Let p be
the true mean of the parameter estimate errors and Ap be the mean based on n
Monte Carlo samples. Figure 20 shows, as a function of n, the 90%and 95% con-
fidence intervals about the normalized sample mean, Ap/s, in which falls the
normalized true mean, p/s. Itis again the case that in order to halve the width
of the confidence interval, it is necéssary to. multlply the number of Monte Carlo
samples by approximately four. : .

Seven computer runs of the Simulated Data Analysis Program were per-
formed to study the longitudinal parameter errors. The differences among these
seven cases are summarized in Table 21. In each case, the instrument set con-
sisted of the pitch rate and attitude gyros, pitch angular accelerometer, and
normal and longitudinal accelerometers; the angle-of-attack vane and pitot tube
were omitted. Measurement biases and initial conditions were not estimated.
The control input sequence was the same 15 sec sequence used in the Ensemble
Analysis Program (see Figure 11). At transition .conditions, this sequence was
modified as described previously. :

TABLE 21.- SUMMARY OF SIMULATED DATA COMPUTER RUNS |
' FOR LONGITUDINAL EQUATIONS

Lag Inverse Time Constants

Flight 3 Standard

Case Regime Error Set Mean, f Deviation, of
M Cruise Baseline 0.0 sec ! 0.0 sec 1
M Cruise Baseline 6.0 sec’ L 0.3 sec 1
M Cruise Baseline 30.0 sec”l 0.3 sec’!
M Cruise Baseline 30.0 secf1 1.5 sec’1
SM Cruise Baseline 12.0 sec_1 0.6 sec !
6M Cruise Large 12.0 sec’l 0.6 sec |
™ Transition Baseline 12.0 sec'1 0.6 sec-1
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: Case 1M is similar to Case 2 described previously, and can be used to com-
pare the results of the Ensemble and Simulated Data Analysis Programs. Case 1M
contained 44 Monte Carlo samples. The standard deviations of the parameter
errors from Cases 2 and 1M are compared in Table 22.

The following comments are offered:

(1)

It is interesting to note how many error standard deviations, Op»

from the Ensemble Program fall within the 95% intervals about the
Monte Carlo error standard deviations, VTR Strictly speaking, this

has limited significance because these standard deviations may differ
by 30%, but each may be 15% from the true standard deviation if it
should be midway between them. On the other hand, if most of the
Ensemble standard deviations fell outside the interval, their accur-
acy would be questionable. Fortunately, this is not the case. The

TABLE 22.- COMPARISON OF PARAMETER ESTIMATE ERRORS FROM

ENSEMBLE AND MONTE CARLO ANALYSES

Ensemble (_71_' g | Monte-Carlo Mc g °e ’E%c ,

Parameter | Value .p s.d. ~o D s.d. ~oc P %Me Tl °
Mq -1.47606 .01705 1.2 .01404 1.0 1.21 0.2
Zq -0.03169 .00772 24.4 .01075 33.9 06.72 - 9.5
Xq 0.01429 .05038 325.5 .04704 329.2 1.07 23.3
Mw 0.74996 .04729 6.3 .03951 5.3 1.20 1.0
Zw -0.83231 .01400 1.7 .01623 1.9 0.86 - 0.2
Xw 0.08842 .03966 44.9 .04730 53.5 0.85 - 8.6
Mu -0.37084 .09034 24.4 .09259 '25.0 0.98 - 0.6
Zu -0.01264 .03813 301.7 .03417 270.3 1.12 31.4
Xu -0.03872 .06688 172.7 .07790 201.2 0.86 -28.5
M5e 26.25713 .29271 1.1 .24412 0.9 1.20 0.2
Zée 0.55709 .13208 23.7 .15710 28.2 0.84 - 4.5
x5e 0.14798 .20926 141.4 .24420 165.0 0.86 -23.6
MGC 3.87480 .18731 4.8 .11914 3.1 1.57 1.7
ch -8.77426 .13670 1.6 .10963 1.2 1.25 0.4
X5c 0.77170 .58318 75.6 .38080 49.3 1.53 26.3
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95% confidence interval about OE/OMC is 0.82 to 1.25, and 12 of the

15 parameters fall in this interval.

(2)  Another point of interest is seen in the ratio of the difference of on

and © to the true parameter value. This ratio is less than 10%

MC

for ten parameters. The remaining five parameters are Xq’ Zu’ Xu’

Xae , and XSc’ and they all have large standard deviations relative

to their value in the first place. To get better values of the devia-
tions of these parameters would require many more Monte Carlo runs.
And significantly, the ensemble analysis results predict the general
magnitude of these quite well.

As a means of determining what effect the variation in identified parameters
has on vehicle performance, two measures of this performance must be consider-
ed; these are basic stability and handling quality. They are reflected by the
closed-loop poles of the aircraft. The Monte Carlo analysis program is ideal to
examine the scatter of these poles due to parameter uncertainty. Thus, for each
of the Monte Carlo runs, the values of the parameters identified in each pass were
printed out. These values were then used to compute the open-loop and closed-
loop poles. : ' : '

For Case 1M, the open-loop and closed-loop.poles were computed from the
converged parameter estimates for each of the 44 Monte Carlo samples. They are
shown in the root plots of Figure 21. As can be seen, the real parts of each of the

open-loop poles vary in intervals of about 0.2 sec -1 in length, and the frequency

~ of the complex pair varies about 0.1 sec

The closed-loop poles are more scattered than the open-loop poles. Thus, °
the feedback control tends to scatter the response characteristics. Fortunately
for this set of instrument errors, the closed-loop poles all remain in the stable -
half of the complex plane; but the closed-loop dynamics do vary over a wide range.
The real poles fall within intervals from -0.06 to -0.31 and from -1.98 to -2.51.
The complex poles vary along an arc centered at the origin. The extremes of the
arc are at about -0.85 +j 0.46. In three cases, the poles split along the real axis,
which means the oscillatory mode disappears altogether. The variation along the
arc implies that the natural frequency of these poles varies very little while the
damped frequency varies substantially. From Figure 21 it can be seen that even
the baseline values of instrument errors may cause marked variations in the flying
qualities of the controlled helicopter. This result may be sensitive to the feedback
control law which is used.

Table 23 presents the mean and standard deviations of the parameter errors
for Cases IM through 4M. These four cases were all at the cruise flight condi-
tion and contained the baseline set of instrumentation errors. They differ by
their values for the mean, f, and standard deviation, of’ of the inverse time con-
stants of the input and output measurement lags.

A comparison of Cases 1M and 2M indicates what may be expected when a rela-

tively substantial random lag (f = 6 sec_l, o= 0.3 sec 1) is present in the input and
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output measurement systems (Case 2M) as opposed to no lags at all (Case IM).
The mean parameter error for two parameters in Case ZM are very large. The

mean error in X _ is 424%, and in Zu 937% of their respective parameter values.

Significant mean errors also exist in X8e (108% of true parameter value), XSc

TABLE 23.- ERRORS IN PARAMETER ESTIMATES FOR SIMULATED
DATA ANALYSIS - CASES IM THROUGH 4M

ASE 1y (neaa, | CSE 2 (nffl, CASE M (n=i’>?, CASE aM (nfln,

Parameter T=0, °f=0) Of : g.iegec: } f: 30 sec - f ==33 zec 3]
f og = 0.3 sec ) O¢ .5 sec )

Name Value Ap s Ap s Ap s Ap s
Mq -1.4761 -0.0032 | 0.0140 0.2323 | 0.0809 0.1929 | 0.0234 0.1946 | 0.0331
Zq -0.0317 | -0.0024 | 0.0108 [ -0.0042 | 0.0530 0.0125 | 0.0103 0.0111 | 0.0128
Xq 0.0143 0.0054 | 0.0470 0.0606 | 0.0769 0.0079 | 0.0429 0.0079 | 0.0424
Mw 0.7500 0.0112 | 0.0395 | -0.0232 | 0.0322 0.0125 | 0.0620 0.0122 § 0.0603
Zw -0.8323 0.0020 | 0.0162 0.0412 | 0.0621 0.0393 | 0.0143 0.0404 } 0.0196
Xw 0.0884 | -0.C082 | 0.0473 0.0471 | 0.0983 0.0697 | 0.0371 0.0704 | 0.0366
h&l -0.3708 | -0.0415 { 0.0926 | -0.2288 { 0.3736 | -0.2302 0.1269 -0.2296 | 0.1262
Zu -0.0126 0.0138 | 0.0342 0.1180 } 0.1562 0.0428 | 0.0543 0.0430 | 0.0538
Xu -0.0387 0.0140 |} 0.0779 | -0.0301 | 0.0583 0.0075 | 0.0867 0.0067 0.9859
’ Nke 26.2571 0.0630 | 0.2441 ‘ -0.7850 { 0.9078 | -0.4510 | 0.3662 | -0.4577 .| 0.3708
de 0.5571 | -0.0069 | 0.1571 | -0.0523 | 0.2761 0.0129 | 0.1469 0.0213 | 0.1564
Xée 0.1480 | -0.0531 0.2442A 0.1599 | 0.5621 0.2471 | 0.1940 0.2501 | 0.1930
Mﬁc 3.8748 0.0269 | 0.1191 | -0.0045 | 0.1718 0.2731 | 0.1381 0.2677 | 0.1559
ZGC -8.7743 | -0.0113 | 0.1096 | -0.0425 | 0.2693 0.1979 | 0.1843 0.1953 { 0.1790
X5c 0.7717 0.1557 | 0.3808 0.7192 | 0.3669 '2.0038 | 0.4944 2.0108 | 0.5016

NOTE: "n" is the number of Monte Carlo samples run for each case.

(93%), Xu (78%), Mu (62%), and Xw (53%). For all other parameters, the
mean error is less than 16% of the corresponding true parameter values.

Thirteen of the parameter standard deviations from Case 2M are larger than
those from Case IM. The greatest increases were for -Zq (which in Case 2M is
larger than the value in Case 1M by a factor of 5.0), Zu (4.6), Mu (4.0), Xse

. (2.3), and X (2.1). The deviations for Xu and Xs'e show a moderate de-

crease. For both of these parameters, the 95% confidence has some overlap with
the 95% confidence interval about the Case 2M value. It is even possible, there~
fore, that the actual values of these deviations increased slightly.

101



'SISATVNV OTdVD dLNOW IHL J0

WI ESVD ¥Od SAT0d dOOT-NIJO JO YALLVOS DNIMOHS I07Td 100Y¥ - ()12 T¥NDII

09°0 0v*d 0Z°0 00°Gq

0v°0-

08°0-.

v 09°0-

0Z°0-

A%ﬁmm%f%

. %

STXY Tesy

0Z°'0- 0y°'0- 09°0- 08°0- 00°I- 0Z°I- Ov'I- 09°T- 08°T- 00°Z- 02:2- 0v'z- 09°Z-
" — N " " " L 4 i A Ao POSEICE I — N

— K

s1xy AteutSeu|

09°0

G8°0

0Z°0 00°0

0v°0

3.

o®

bncmmw&.

7102



.09°0

SISATVNV OT9VD TINOW FHIL 40

WT dSVD ¥04d STT0d d00T-AISOTO J0 ¥ALLVOS DNIMOHS 1071d 100Y -(Q) 1z TUNDI

° 09&?&

STXY TEoY

5
[ -]
o
o,
o
o
S)
S
o
)
.~C.
o
0p°0  0Z°0 00§
[=)
)
o

— O
<1

BN

a3,

8 o

3
(=]

&

3,

v o
o
(=]
o
oo
o

ol o 0007 09°0-  0870- ofir-  0z'1- ov:1- 09°1- 08'Y-  00°2- oz-z- 0p-z- 092
ATIEDAO0ON- 36—t ———L S 40— st -+ — A A > SO

°

%@%0, °

103



fo

The significant increases in both the mean and standard deviation for many
pararneter errors make it clear that the relatively substantial random components
of lags in Case ZM are primary sources of error. The next step was to shorten the
lag time constant to a relatively smaller value and compare the result to the case
with no lags.

This was done in Case 3M for which f = 30 sec—:l and Op = 0.3 sec
(Recall that f and Of describe the inverse of the lag time constants. Also, note
that the value of Of’

As in Case 2M, the mean errors for many parameters in Case 2M are relatively
large compared to the corresponding parameter value. The mean error in Zu is

340% of its value, X. 260%, X. 167%, X_ 79% M _ 62% X 55% Z 39%
8¢ be w u q q ’

and all remaining mean errors are less than 20%. The largest méan errors in Cases
Z2M and 3M occur for the same parameters. These parameters are associated with
the forward speed (Au) mode, and the ensemble analysis showed that they possess-
ed the larger deviations, as discussed previously. These same error effects
carried over into Monte Carlo analysis results when random lags are present.

the variation in the lags, was the same in Cases 2M and 3M.)

The effect on the sample deviations of the parameter errors of the lags in
Case 3M compared to no lags in Case 1M is not so dramatic. In fact, decreases
occur in the sample deviations for Z , X , Z , Z. , and X; . For each of
‘ q q w be de

these parameter deviations, the 95% confidence intervals overlap, which
means that the true deviations may actually increase or that any decrease is
moderate. The largest apparent increases in error deviations occur for M _,
M , 2, and M_ ,

w u be
The general conclusion, however, is that the lags in Case 3M have relatively little
effect on the error deviations but do have relativély large effects on the error

means.

which are 50% to 70% greater than their values in Case 1M.

There is a primary error source that causes these large mean errors. In
the actual data collection, the continuous control input is sampled, and the result-
ing simulated state (%) is computed from piecewise constant data. For these
examples, the control input was held constant over the 0.05 sec sample length.
This tends to cause the estimated state measurement y to lag behind the sampled

actual measurement Y- To compensate for this error, the sample rate of the con-

trol input can be increased, and interpolation schemes can be used to determine
control magnitude between sample points.

This mean error was not specifically predicted by the Ensemble Analysis
Program because it is based on continuous measurement of the control input.
However, the mean can be approximated by putting.in lags in the control measure-
ment but not the output measurements.

One may intuitively expect the error deviations in Case 2M to be worse than

those in Case 3M because the mean of the lag time constants is greater. For
twelve parameters this is the case; their error deviations increase by factors of
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1.2 for Mﬁc’

tions decrease for M , X , and X, .
‘ w u oc

up to4.3for Z_, and 5.1for Z . The sample standard devia-
w q :

Case 4M is similar to Case 3M except that the standard deviation of the lag
inverse time constants is increased fivefold to of =1.5 sec-l. On the whole,

there is very little difference between these cases in either the means or standard
deviations of the parameter errors. Thus, the amount of scatter of actual time
constants about the mean within reasonable limits does not have a significant effect
for fast filters.

Cases 5M and 6M (see Table 24) both have lags such that f=12 sec-1
and 0f= 0.6 sec-l. They differ in that Case 5M has the baseline error set, and
Case 6M has the large error set from Table 12. Recall that the large errors in-
clude the larger noise covariance, R. As discussed previously, this means that
the weighting matrix of the cost function is altered, and larger instrument errors
do not necessarily imply larger parameter errors.

The mean error increased for MW (by a factor of 2.7), ZW (1.7, Xu
(1.7), and Mq (1.°07) . The mean errors for Xq, ZSe’ and ZSc changed sign,
but the 95% confidence intervals for Xq and ZSe contained zero in Case 6M.

The mean errors for 2 , M, , X, , and M decreased, but the 95% confi-
: q e’ “Ge &¢c
dence intervals from the two cases have some overlap. The mean errors for Xw’

Mu' Zu, and X8c decrease, and there is no overlap in confidence intervals.

Table 24 also compares the effect of random lags at cruise and transition
(Cases 5M and 7M). In general, the parameter standard deviations seem to be
larger at transition, although this is not uniformly true.

Plots of the open- and closed-loop poles for Cases IM through M appear in
Figures 21 through 27. Significant variations in both the open- and closed-loop
dynamics are evident in these figures. In particular, note that extreme closed-
loop poles cross into the right-half plane for Case 2M (Figure 22(b)) and Case 6M
(Figure 26(b)). Thus, the effect of random lags can affect the basic stability of
the aircraft in addition to handling qualities.

Instrument accuracy needed to meet specified parameter accuracy.- As
an example of how one would determine the accuracy required to meet a specified
parameter accuracy, consider the following. Suppose it is decided that all longi-
tudinal parameter estimates should have error standard deviations of not more
than 30% of the corresponding parameters' absolute values. Suppose, also, itis -
decided that a situation similar to Case 14 holds the greatest promise of achieving
that end. Specifically, the 45 sec data sequence is to be used; and six measure-
ments, including the angle-of-attack vane and pitot tube, are to be used.
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TABLE 24.- ERRORS IN LONGITUDINAL PARAMETER ESTIMATES FOR
MONTE CARLO ANALYSIS (Normal and Large Errors at Cruise and
Normal Errors at Transition)

CASE 5M (n=37, CASE OM (n=50, CASE M (n=26,

Cruise r=12 Sec—{i §f==lg.2e§;i:1’ Transition f=1 sec'{i

Parameters of = 0.6 sec °, Cruise, Parameters | og = 0.6 sec °,

Cruise) Large Errors) Transition)

Name | Value 5 s 5 s Value 5p s
Mq -1.4761 0.2127 } 0.0569 0.2141] 0.0686 -1.2510 0.1975 | 0.0468
Zq :0.0317 0.0215 | 0.0184 0.0175 ] 0.0203 -0.0290 0.0622 | 0.0445
Xq 0.0143 | 0.0316 | 0.0457 | -0.0046 6.0255 0.0179 0.0491 | 0.0508
M, 0.7500 0.0072 | 0.0670 0.0191 0;0608 1.0829 -0.0405 | 0.0730
Z, -0.8323 0.0291 | 0.0289 0.0491 | 0.0237 -0.5688 -0.1348 | 0.1069
X, 0.0884 0.0445 | 0.0388 0.0126 | 0.0148 0.0776 -0.0162 | 0.1351
M, -0.3708 | -0.2444 | 0.1322 | -0.0577 | 0.1444 -0.2406 | -0.2689 ] 0.1390
Z, -0.0126 0.0517 0.0618' 0.0041 | 0.0584 -0.1286 0.0651 | 0.1410
X, -0.0387 0.0040 | 0.0797 0.0067 [ 0.0314 -0.0123 0.0004 | 0.0719
Mse | 26.2571 | -0.5262 | 0.5784 | -0.1777 0.7749 22.4485 -0.4570 | 0.4513
Z‘Se 0.5571 |} -0.0392 | 0.1716 0.0041 | 0.4520 0.5198 -0.3749 | 0.2022
X3e 0.1480 0.1349 | 0.1981 0.0943 | 0.4030 0.1206 -0.0216 | 0.2451
Mdc 3.8748 0.2545 | 0.1443 0.2053 | 0.1672 2.0626 ' 0.2479 | 0.1172
28 -8.7743 |. 0.1124 { 0.1311 | -0.1230'{ 0.2137 -7.3132 -0.0926 | 0.0893
Xéc 0.7717 1.8170 | 0.4565 0.2396 0t1885 0.8889 0.8459 | 0.2231

From Figure 17, it can be seen that for Case 14, all parameters except Xq,
XW , and X{Se have error standard deviations less than the prescribed 30% limit.

Using the sensitivities of the parameter estimates to instrument errors, 0p/de,
it was found that the dominant errors for these three parameters are the control
biases and the z, location errors. Also, through use of these sensitivities, it

was calculated that the error in Xq could be reduced to 30% and the error in XW



reduced to 29%, if the standard deviation of the differential collective control bias
is reduced to 0.025 inch and the ZC location error is reduced to 1.0 inch. Even

then, the error in X8 would improve only from 134% to 73%, still above the 30%

e :
limit. These calculations were done according to the procedure discussed pre-

viously in this chapter.

To proceed further with this example, by reducing the error in X8e below
30% would require an even less realistic constraint on bSe , the differential col-

lective control bias. The engineer must decide whether: (1) to accept a 73% error
in Xg_, which he is likely to do since Xg is one of the least important para-

meters, or (2) to construct the identification algorithm such that it is possible to
estimate the control measurement biases and, thereby, eliminate their influence
on the parameter errors. Because control biases are usually the dominant errors
for most parameters, this latter course of action is very promising, but it did not
fall within the scope of this study.

The Effects of Ins trumént Errors on Lateral Parameters

Ensemble analysis results.- To study instrument error effects on lateral
parameter accuracy, a series of seven cases was made using the ensemble analy-
sis program. These cases are listed in Table 25. Six instruments were assumed
present in Cases 19 and 20--the roll and yaw rate gyros, the roll angle gyro, the

TABLE 25.- SUMMARY OF ENSEMBLE ANALYSIS COMPUTER RUNS
: IN LATERAL MODE

Déscription of Iﬁstruments and-

Case Flig!'\t.Regime Biases Compared with
No. pr ¢ alp T Regime Errors ' Estimated? Cases
19 TR Near-hover Nominal No
20 Yy A _ Near-hover Nominal Yes 19
21 /Y Near -hover Nominal No 19
22 / VY Near-hover Nominal Yes 20,21
23 /A Cruise Nominal No 21,22
24 e Transition Nominal No 21
25 A Near-hover Large Yes 22
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lateral accelerometer, and the roll and yaw angular accelerometers. The input
sequence and resulting trajectory were as illustrated in Figure 12. There were
300 sample points of data taken every 0.1 sec over a 30 sec time span. The nom-
inal instrument error magnitudes of Table 12(b) were used. Case 19 did not esti-
mate output biases, and Case 20 did. (All except b(p which cannot be distin-

guished from the roll angle initial condition error.) The near-hover flight
regime was selected for these runs. Initial condition errors were not present.
Also, the angle-of-sideslip vane was not used based on the assumption that it
would not normally function well in a near-hover flight condition. The results of
Cases 19 and 20 are shown in Figure 28. Here again, the standard deviations of
each parameter due to noise only and due to all error effects are shown, as nor-
malized by actual parameter magnitudes. The values are depicted in percentage
error.

As can be seen in Figure 28, estimating biases (Case 20) did not uniformly
improve the estimates of the parameters. Although Yr’ N:‘;, N;, N;'_‘, and Nga

improved from 640% to 85%, 21% to 6%, 64% to 9%, 28% to 9%, and 13% to 6%, respec-
tively, L* degraded from 145% to 260%. In general, estimating biases was a good

procedure for this flight regime, but again the choice should be made depending
on what accuracy is desired for specific parameters.

It was noted that in Case 19, the roll cyclic measurement bias bSa was the

most dominant error for seven parameters, and second most dominant error for
seven other parameters. Also, the yaw cyclic measurement bias b6r was the

most prominent error for five parameters and the second most dominant error for
five parameters. Thus, without estimating biases, the control biases are still
the dominant error sources, as was true for the longitudinal mode.

When output measurement biases were estimated in Case 20, b5a becomes

the dominant error for eleven parameters, and second in importance for one other
parameter. The error b8r is the second most dominant error for nine parameters.

Thus, unlike the longitudinal mode, estimating output measurement biases does
not displace the control biases from their position as the dominant error source.
This is because the parameter sensitivities to control biases are not reduced sub-
stantially in the lateral mode when output biases are estimated.

Next, two more runs, Cases 21 and 22, were made which delete the angular
accelerometers from the instrument set. The results are also presented in Figure
32. These cases can then be compared with Cases 19 and 20. The results are
mixed. Not estimating biases with six instruments (Case 19) gives the least errors
for Y8 , Yo , L* L* and L% . Estimating biases with six instruments (Case
a or v 'p ba
20) gives the least errors for Lg , Ng , and Ng . When biases are not estimated

r a r
when four instruments are used (Case 21), the least errors for Yv and Y_ are pro-

duced. Finally, estimating biases with four instruments (Case 22) produces the best
estimates of L*, N"‘;, N;, and N;f. For the cases examined, the improvements pro-
r

duced by the angular accelerometers are not significant. This is in line with the
results of the longitudinal study. However, the final decision on whether these
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instruments should be used must be based on specific accuracy requirements
placed on individual parameters.

The next set of runs, Cases 23 and 24, essentially duplicated Run 21 at
cruise and transition conditions. Biases were not estimated. The inputs were
slightly modified so that the slower frequency sine waves of the control input had

" the same frequency as the complex poles of the system at each flight condition.
The results of these runs are presented in Table 26. In this table, the magnitude
of the parameters at each flight condition are first listed. Then, the standard
deviations due to noise only and due to all errors are given. These deviations
are normalized by the parameter magnitude so that the numbers are percentage

errors.

From Table 26, it can be seen that the trends in the error magnitudes are
the same at all three flight conditions. The accuracies of Yr, L;", and N; are

poor at all conditions. Eight of the parameters have their largest errors at cruise,

and the other seven have their largest errors during transition. The results
obtained from the ensemble analysis appear to be quite accurate except for perhaps
Y .

r

As a final example, the large errors of Table 12 were run in the near-hover
conditions for Case 25. Biases were estimated, and the results are compared with
Case 22 in Table 27. Again, standard deviations of the parameters are normalized
by the parameter values, and the error deviations are presented in percentages.

From Table 27, it can be seen that the variation due to noise goes up using
the larger errors for each parameter. The total variation of each parameter due to

all instrument errors increases by ovér a factor of two for ten of the fifteen para-
meters, and, in fact, the deviations of Yr’ YSa’ and L;_“ become quite large.

' {ati * * * * i ' ‘
Four parameters' deviations (L8a’ Lg . N¥, and NSa) remain about'the same.
‘But the surprising result is that the deviation on Y _ decreases from 330% to 177%.
Although this is still poor, it points out a key factor in the effect of various instru-

ment errors. This factor is the weighting matrix R_1 that it used in the identifi-
cation algorithm. For the lateral equations studied here, the change in the weight-
ing matrix due to the large noise errors actually decreased the variation in Yp. A

fruitful area of future development might be to devise an optimum weighting matrix

R_1 that takes into account all instrument errors and produces. the smallest varia-
tions in all parameters.

A further result observed in Table 27 is that the large error magnitudes are
unacceptable in obtaining reasonable parameter deviations. In fact, if all para-
meters are to be estimated to within 50% (10) of their nominal value, even the
baseline error set must be improved.

Simulated data analysis results.- The Simulated Data Analysis of the later-
al parameter errors proceeded along lines similar to the longitudinal study. Six
computer runs were performed, and the characteristics of these runs are summar-
ized in Table 28. In each case, the instrument set consisted of the roll attitude
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TABLE 27.- COMPARISON OF ENSEMBLE ANALYSIS LATERAL PARAMETER

DEVIATIONS AT NEAR-HOVER FOR LARGE AND BASELINE

INSTRUMENT ERROR MAGNITUDES

Baseline Errors {Case 22) Large Errors (Case 25)

Standard Standard’ . Standard Standard

Deviation Deviation Deviation Deviation

due to due to due to due to
Noise All Errors Noise All Errors

Parameter Value % % % %
YV 0.15375 0.4 . 3.1 0.5 8.9
Yp ~-0.01635 6.0 330.3 _ 13.1 176.9
Y -0.00190 28.7 81.3 87.6 356.6
Y‘Sa 0.99282 3.2 25.4 3.3 49.1
Y5r -0.15500 13.6 68.4 13.7 223.1
L -0.52386 | 0.1 0.9 . 0.3 2.1
LF*’ ~0.59364 0.3 2.0 0.4 6.1
L;‘. 0.01763 15.9 112.5 20.3 242.4
1.5; 27.28769 0.0 2.9 . 0.1 2.4
Lgt -15.98667 0.0 1.7 0.2 2.3
N 0.05191 0.3 4.3 1.3 5.9
Ng 0.03442 1.5 6.8 4.5 24.0
N(g; -0.05093 ' 1.2 9.1 2.2 29.9
NG; -0.99385 © 0.8 . 12.3 2.7 14.0
N5; 11.60240 0.0 0.7 0.2 :2.4

gyro, roll and yaw rate gyros, and lateral accelerometer. The angle-of-sideslip
vane and angular accelerometers were omitted. Measurement biases and initial
conditions were not estimated. The control input sequence was the same 30 sec
sequence used in the Ensemble Analysis Program (see Figure 12). At transition
and cruise conditions, this sequence was modified as described previously.

Case 9M used the baseline error set at the near-hover flight condition and
had no lags; thus, it may be compared to Case 21. The results of Case 9M are
presented in Table 29. The estimated mean errors based on the 50 Monte Carlo
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TABLE 28.- SUMMARY OF SIMULATED DATA COMPUTER RUNS FOR
LATERAL EQUATIONS

Lag Inverse Time Constants
Case giégﬁg Error Set Mean,‘? 'Stgndqrd
Deviation, Of
SM Near Hover Baseline 0.0 sec-1 0.0 sec_1
10M Near Hover Baseline 6.0 secf1 0.3 sec *
1M Transition Baseline 6.0 sec-1 0.3 sec'1
12M Cruise Baseline 6.0 sec 1 0.3 sec !
13M Near Hover Baseline 12.0 sec”? 0.6 sec !
14M Near Hover | 'Large 12.0 sec”! | 0.6 sec™!

samples of Case 9M are small relative to the true parameter value for every para-
meter except Yr' In Case 21, these values are practically zero. The 95% confi-

dence intervals about the mean errors in Case 9M contain zero except for N;‘j and

Nga , where zero is very close to one boundary of the interval.

" The error standard deviations also agree well between Case 21 and Case 9M.
The values from the ensemble analysis fall within the 95% confidence intervals
about the values from the Monte Carlo analysis for 14 parameters. The single
exception is L:‘,, whose ensemble error deviation is 0.820 of the Monte Carlo value;

the lower bound of the confidence interval is 0.826. Thus, for these cases the
ensemble analysis results compare very closely to the Monte Carlo results for static

errors.

Case 10M was similar to Case 9M except for the addition of input and output
measurement lags, for which the mean, f, and standard deviation, O of the

time constants were 6.0 sec—:l and 0.3 sec-l, respectively. This relatively slow
filtering speed had major effects on both the means and standard deviations of the
parameter errors. Large mean errors occurred for Y (108% of the true para-

meter value, LX* (165%), N; (188%), and Y (1663%). Significant mean errors
were seen for L; 27%), N: (76%), and Nga (63.5%). All other mean errors
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were less than 17% of the corresponding parameter value. These mean errors are
again due to holding the samples control input constant while integrating to com-
pute the estimated state x.

The error standard deviations increased significantly for L:‘, (the Case
10M value is two times the Case 9M value), L; (2.2 times), L;‘f (1.4 times),

Lga (2.0 times), Nga (1.6 times), Lgr (2.1 times), and Ngr (1.8 times).

The estimate for the Yr error deviation decreased somewhat, but the 95% confi-

dence intervals based on these two cases have a large overlap.

Case 11M at the transition flight condition and Case 12M at the cruise-condi-
tion are comparable to Case 10M (see Table 29). Parameters which have signifi-
cant mean errors near-hover (Case 10M) also have significant mean errors at one -

or both of the other flight conditions. Specifically, Yp, N;, Yr’ and Néa

had large mean errors in all three cases, and L;'j, N:, and Y8r had large mean

errors-in two of the cases. Y8a has a large mean error at transition but not at

the others. Parameters with large error deviations at the near-hover condition
invariably had large deviations in the other two cases. In addition, N: and Yg

possess relatively large error deviations at transition and cruise.

The results of Cases 13M and 14M are presented in Table 30. These cases
differ only in that the former used the baseline error set and the latter used the
large set of instrumentation errors. The mean error of eleven parameters in-
creased from Case 13M to 14M; all these increases were by a factor less than two.
Mean errors for Yv’ Yp, and Yr decreased by 36%, 33%, and 7%, respectively.

The mean error of Y8r changed sign, but the 95% confidence intervals about this

mean error include zero in both cases.

The error standard deviations of fourteen parametefs increased; only Y
showed a decreased error deviation. The greatest increases occurred for YV
(the Case 14M value is 3.4 times the Case 13M value), Y8r (3.3), Y8a (2.8),
and N: (2.7). Hence, the error deviations for the lateral parameters show a

greater tendency to increase than do the longitudinal parameter deviations when
large instrumentation errors are present. Thus, the lateral equation stability and
control derivative accuracy appears to be more sensitive to increases in instru-
mentation errors than does the accuracy in the longitudinal mode.

Plots of the open- and closed-loop poles for the Monte Carlo samples of
Cases 9M through 14M appear in Figures 29 through 34. As was true for the lon-
gitudinal dynamics, significant variations in the lateral dynamics (stability and
handling quality) may occur, particularly for the closed-loop system. :
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TABLE 30.- ERRORS IN PARAMETER ESTIMATES FROM MONTE CARLO

DATA ANALYSIS, CASES 13M AND 14M

CASE 13M (n = 50, | CASE 14M (n = 50,
Near Hover f=12 SCC-I, g, = f=12 SeC_l, ag =
Parameters 0.6 sec™l, Hover, | 0.6 sec™1, Hover,
Small Error Set) Large Error Set)

Name | Value Ap s Ap s
Y, 0.1538 0.0047 | 0.0035 0.0030 | 0.0118
Lc -0.5239 0.0607 | 0.0178 0.0681 | 0.0276
Nc 0.0519 | -0.0088 | 0.0110 | -0.0107 | 0.0285
Yp -0.0164 | -0.0162 ] 0.0334 | -0.0108 | 0.0258
L; -0.5936 0.1625 | 0.0219 0.2119 | 0.0529
N; 0.0344 | -0.0642 | 0.0215 } -0.0784 | 0.0429
Y. -0.0019 0.0315 | 0.0142 0.0274 | 0.0336
L; 0.0176 | -0.0276 | 0.0273 | ~0.0495 | 0.0628
N} | -0.0509 | 0.0371 | 0.0110 | 0.0557 { 0.0300
Y5, 0.9928 | -0.0790 | 0.1800 | -0.0908 | 0.5105
Lsg 27.2877 | -3.3793 | 0.7676 | -3.5295 | 0.9079
NGQ -0.9938 0.6297 1 0.2126 0.7188 | 0.5222
Yo, 0.1550 | -0.0137 | 0.0992 0.0074 | 0.3288
L5; -15.9867 1.9663 | 0.4002 2.1233 | 0.4889
NG; 11.6024 | -0.7906 | 0.2042 | -0.7986 | 0.3651




SUMMARY , CONCLUSIONS, AND RECOMMENDATIONS

Methodology

This study addressed the problem of determining the extent to which instru-
mentation errors cause degradation in the knowledge of stability and control deriva-
tives identified from flight test data. The resultant degradation of the flight control
system performance based on these derivatives was also addressed. The procedure
followed in this study was as follows:

(1) The instrumentation systems used for typical flight tests were sur-
veyed, and the main sources of data errors were noted. From the
errors, a set of linear error models (equations for each measurement
channel) previously developed [5] were verified. The ranges of
magnitudes of the error coefficients were compiled in tabular form.

(2) Two analytical techniques--ensemble analysis and Monte Carlo analy-
sis-~previously developed [5] were modified to include helicopter
equations of motion. These equations were coded into computer pro-
grams for determining the effects of instrumentation errors on the
identified helicopter parameter accuracy. The first method determines
the statistical variation in the parameters by computing their sensitiv-
ity to each type of error. The second method simulates the identifica-
tion process with randomly generated error sources. The statistical
variation is then computed from the results of several runs. The
analysis techniques are based on the assumption that an output error
identification technique such as the modified Newton-Raphson algo-
rithm is used.

(3) The perturbation equations of motion of the CH-46 helicopter were
studied at three points along a curved, decelerating landing approach.
Flight conditions (stability and control derivatives) at cruise, transi-
tion, and near-hover for both longitudinal and lateral equations of
motion were selected for analysis. Feedback control laws for a stabil-
ity -augmentation system were developed for each of these sets of
equations because all sets were inherently unstable. The results
based on three degree-of-freedom decoupled lateral and longitudinal
equations may not be applicable to the curved, decelerating portions
of the reference trajectory.

(4) The instrument error models and helicopter equations of motion were
used in the analysis programs to determine what effects instrument
errors have on stability and control derivative accuracy. The effects
of different error magnitudes, control input sequence, sample rate,
length of data, types of instruments used, and number of parameters
identified on the stability and control derivative accuracy were in-
vestigated. These accuracy results were used in turn to determine
the resultant variation in the open~ and closed-loop poles of the
helicopter system.
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Instrumentation Errors

From the survey of instrumentation practices, the following comments can

be _made:

(D

(2)

(3)

€))

(5)

The "best available" instrumentation is generally used in flight test-
ing rather than a procedure of specifying-and procuring instruments
with known laboratory established error magnitudes.

Little is known about the statistical distribution and variations of
most instrument errors. Manufacturers typically specify performance
within some absolute bounds.

Of the error information available for instruments, the gyros and lin-
ear accelerometers are best understood and most easily tested. Air
data systems and wind vanes are calibrated in flight, and their accur-
acy is dependent upon empirical adjustments. Angular accelero-
meters are not often used, so little general information is available

on their accuracy. The accuracy of control position transducer
readings is highly dependent upon where the instrument is mounted
relative to the control surface. Thus, the control input measurement
error is highly aircraft dependent.

There are many time-varying, environment dependent, and nonlinear
error sources in the instrumentation which are very difficult to model.
However, all of these errors can be encompassed by linear models
containing random white noise, scale factor, bias, cross-coupling
terms, and first-order lags.

The chief errors in data processing. recording, digitizing, and sampl-

ing come from differences in the filter time constants and various
sources of noise.

Error Analysis Program Capability

The two statistical analysis techniques which have been coded into digital
computer programs as part of this study allow rapid assessment of the instru-
mentation error effects. The uses which can be made of these programs include
the following:

(D

(2)
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The determination of the effect of instrumentation errors on the statis-
tical accuracy of the stability and control derivatives and other para-
meters identified from flight test data can be made. This includes

the mean error and standard deviation of each of the parameters iden-
tified. The contribution of each error source on each parameter is
determined.

The effects of such variables as aircraft type and flight condition,
control input sequence, and data sampling rate on the accuracy of
the identified parameters can be determined.



(3) Trade off studies can be made between instrument quality and identi-
fication accuracy.

(4) Different combinations of instruments can be studied for use in collect-
ing the flight data.

(5) Trade off studies between fewer instruments with greater quality and
more instruments with larger errors can be made.

(6) The necessary instrument accuracy required in a flight test program
to allow identifying aircraft parameters to a desired level of certainty
can be specified.

The two error analysis techniques compliment each other. The ensemble analysis
is well suited to determine the effects of small static instrument errors (all errors
studied but the random magnitude of the dynamic lags) on the identified parameter
uncertainty. The Monte Carlo analysis allows the study of effects of random un-
certainty in dynamic lags plus more accurate determination of the effects of large
static errors.

Limitations of the analysis techniques are as follows:

(D The recorded data may be optimally filtered as part of the identifica-
tion process. This is not considered.

(2) The equations of motion of the helicopter may be more complex than
the four-state models coded into the programs. The addition of rotor
dynamics equations and coupled lateral-longitudinal modes may be
more suitable for analysis of control requirements.

Instrumentation Error Effects for the CH-46 Heli copter

The error analysis programs were used to study instrumentation error
effects on the accuracy of identified stability and control derivatives of the CH-46
helicopter. It was assumed that the CH-46 was flying at steady conditions at
cruise, transition, and near-hover points along a typical approach profile. Typi-
cal data spans and sample rates were used. Simulated control inputs were de-
signed to cause perturbations from these nominal conditions, and it was assumed
that various combinations of instrumentation were used to obtain state variable
and control input measurements. Two sets of instrument error magnitudes--a
nominal set and a large error set--were studied. The ensemble analysis program
was used extensively to study the effect of the static instrumentation errors for
both longitudinal and lateral-equations of motion. The Monte Carlo analysis pro-
gram was then used to compare results with the ensemble program and to deter-
mine the effect of random dynamic lag magnitudes. This study of the CH-46 heli-
copter produced many results and a large quantity of data. The details are pre-
sented in the previous chapter, and the key points are summarized here.

Based on a series of ensemble analysis progrém runs which use the longi-
tudinal equations, the following points can be made:
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(D

(2)

(3)

(4

(5)

(6)

(7

(8)

When static measurement errors were added to those caused by white
noise, all parameter standard deviations except for Zq and Zw

increased by at least a factor of five over the deviations due to white
noise only. The parameters Zu' Xq’ Xu’ and XSe had standard

deviations greater than 100% of the parameter magnitudes.

The dominant error sources for twelve of fifteen parameters were the
control measurement errors. However, estimating output measure-
ment biases substantially reduced the effect of the control measurement
biases. This was because the control biases propagated through the
equations of motion and had the same effect on the output as would
output measurement biases. Directly estimating control measurement
biases could potentially reduce the control measurement error effect
further.

The instrumentation had the same relative effect at the cruise,
transition, and near-hover flight conditions studied.

Adding angle-of-attack and airspeed measurements decreased the
uncertainty of three parameters (Zu, Xu' and X8c) at cruise, but

the errors were still large. However, the estimate variations of four
other parameters were increased due to increased control error sen-
sitivity and added error sources. The conclusion is that these instru—
ments' usage must be based on specific parameter accuracies desired.
Also, these instruments do not operate at low speeds and low altitudes
for helicopters.

The angular accelerometer did not contribute additional useful infor-
mation for the conditions examined in this study. It could be omitted
from the instrument set for the error magnitudes used in this study.

If all dynamic lags are identical and measurements are essentially
continuous, there are no resultant error effects due to the lags'

presence.

Adding extra input data to process or extra instruments does not
necessarily improve parameter estimates. For one case examined
where the data span was increased from 15 sec to 45 sec, the standard
deviation of ZL1 increased from 56% to 128% of true value because of

instrumentation errors.

Changing error magnitudes and the associated weighting matrix
used in the identification algorithm changes the relative importance
of various error sources.



€))

(10)

An example case was studied where the objective was to identify the
stability and control derivatives such that the standard deviation of
each parameter's uncertainty was less than 30%. By revising the nom-
inal set of instrument errors presented in Table 12 so that the stand-
ard deviations of the control biases and the 2, g location errors are

reduced, 14 out of 15 parameter error standard deviations became
less than 30% of the respective parameter values. This example
demonstrated the utility of the programs developed in this study for
specifying instrumentation accuracy to achieve identified parameter .
accuracy of a certain level.

For small instrumentation errors and without random variations in
lags, the ensemble analysis provides accurate estimates of the effects
of instrumentation error on parameter uncertainty for considerably
less expense (1.5%) than the Monte Carlo analysis. The Monte Carlo
analysis can provide more accurate estimates of the effect of instru- -
mentation errors, but added improvement is at the expense of taking
a large number of computed samples.

The Monte Carlo analysis program was used to make the following comments
with respect to the longitudinal mode:

(D

(2)

(3)

The closed-loop poles of the helicopter equations of motion may vary
significantly from the design point because of errors in the identified
parameters due to unmodeled instrument errors. Typical complex

poles had frequency varying from 0 to 0.46 sec—l. This affects handl-
ing qualities.

The random lags (mean bof 6 sec 1; standard deviation of 0.3 sec_ 1)

increased the uncertainty in five parameters z , 2, M, X,
q u u Se

XW) by over a factor of two. Increasing the mean inverse time con-

stant of each lag to 30 sec-l, greatly reduced these errors.

A large source of mean error uncovered by the Monte Carlo runs is
due to sampling the control input and holding it constant between
sample points while determining the state estimates x for the identi-
fication algorithm.

Based on a series of ensemble error analysis program runs which used the
lateral equations, the following points can be made:

(D

(2)

(3)

The effects of static errors were the same for the lateral mode as for
the longitudinal mode. These errors caused a substantial increase
in the identified parameter uncertainty.

Estimating output measurement biases did not uniformly improve the
estimates of the lateral parameters. Whether biases should be esti-
mated depends on what accuracy is desired for specific parameters.

Control biases again were the dominant error sources for most para-
meters, whether or not output biases were estimated. .
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(4) In general, adding roll and yaw angular accelerometers did not
significantly improve the parameter estimates.

(5)  The results obtained from studying the near-hover flight condition
generally held true for cruise and transition flight conditions.

The Monte Carlo analysis program was used to study the effect of random
lags on the estimation of parameters of the lateral equations of motion. Comments
which can be made from this study are: :

(1) The ensemble analysis and Monte Carlo analysis results were very
close for cases where no random lags were considered.

(2)  As with the longitudinal mode, significant mean parameter errors
were again caused by a combination of measurement lags and the fact
that the sampled control was held constant while computing the esti-
mated state x for the identification algorithm.

(3) Lags having mean inverse time constants of 6.0 sec-l and having

standard deviations of 0.3 sec-1 caused substantial increase in the
deviations of L:‘; (2.0 times), L; 2.2), L;‘j (1.49), L§a 2.0), Nga (1.6),

Lgr (2.1), and Ngr (1.8) as compared to the accuracy obtained when

no random components of the lags were present.

(4) There was a greater deviation in the identified lateral parameters
: due to large and baseline instrumentation errors than for the longi-
tudinal parameters.

Recommendations

In the simulation of a typical flight test of the CH-46 helicopter, it was shown
that typical unmodeled instrumentation errors caused wide scatter of the closed-
loop poles of the aircraft. This scatter places a large uncertainty on the predicted
handling qualities or gust response of the aircraft, and can even make the basic
stability of the aircraft questionable in some flight regimes. Thus, this study has
pointed out the important need for evaluating the effect of instrumentation errors
on the accuracy of identified stability and control derivatives. It is strongly
recommended that the program developed in this effort be used to specify instru-
mentation accuracy requirements before flight test begins.

This effort has not been exhaustive in terms of examining how the instru-
mentation errors can be compensated for by improved or modified software. Itis
recommended that the following additional studies be made:

(1) The effects of rotor dynamics and coupling between lateral and longi-
tudinal equations on the control requirements of the helicopter should
be ascertained. If these effects are important, the dynamic models
used in the programs developed in this study should be expanded to

include them.
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(2) The programs should be modiﬁed to include the following options:

(a)  Ability to identify control measurement biases.

(b) Computation of the R weighting matrix used in the identifica-
tion algorithm based on the statistics of the innovations
sequence (y - y) for each iteration of the Monte Carlo pro-
gram.

(¢) Extra polation of the sampled control sequence in computing
the estimated state X so that it more nearly matches the real
state x determined from the real continuous control.

These options should then be exercised to determine the possible
" improvements to parameter uncertainty that these software changes
can provide.

(3) The sensitivity of the parameter uncertainty to the specific feedback
control law should be investigated whenever feedback is required to
provide adequate stability to the aircraft. This was the case for the
CH-46 helicopter models studied in this effort.

For a future flight test, a study should be made to determine how accurately
the open-loop poles of the aircraft must be known to guarantee-aircraft performance
within certain acceptable limits. By performance is meant stability, ride quality,
and gust response. The resulting allowable open-loop pole uncertainty should then
be used to specify the allowable uncertainty that is acceptable for each of the
stability and control derivatives. This uncertainty can then be used in turn to
specify the required instrumentation accuracy and control input sequence to be
used during flight tests to identify the stability and control derivatives.
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