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FOREWORD

This final report describing the formulation of the Program

to Optimize Simulated Trejectories (POST) is provided ill accord-

ance with Part IV of NASA Contract NASI-13611. The report is

presented in three volume_ as _ollows:

Volume I - Program to Optimize Simulated Trajectories -

Fo£m_latien Manual;

Volum II - Program to Optimize Simulated Trajectories -

Utilization Manual;

Volume III - Program to Optimize Simulated Trajectories -

Programmer's Manual.

This work was conducted under the direction of Joseph Rehder of

the Space Systems Division, National Aeronautics and Space

Administration, Langley Research Center.
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FINAL REPORT
PROGRAM,TO OPTIMIZE SIMULATED TRAJECTORIES (POST.)

_OLUHE I - FORHULATION HANUAL

By G. L. Brauer, D. E. Cornick, A. R. Habeger,
F. M. Pete_en, and R. Stevenson

Hartln Marietta Corporatlcm

SUI_;_RY

This report documents the equations and the numerical tech-

niques used in the Program to Optimize Sin_lated Trajectories

(POST).

POST, a generalized point mass, discrete parameter targeting
and optimization program, provides the capability to target and

optimize point mass trajectories for a powered or unpowered

vehicle operating near a rotating oblate planet. POST has been
used successfully to solve a wide variety of atmospheric flight
mechanics an_ orbital transfer problems. The generality of the

program is evidenced by its )!-phase simulation capability, which
features generalized planet and vehicle n_dels. This flexible

simulatlon capability is augmented by an efficient discrete

parameter optimization capability that includes equality and

inequality constraints.

POST was originally written in FORTRA_ IV for the CDC 6000

series computers. H_wever, it is also operational on the IBM
370 and the UNIVAC 1108 computers.

Other volumes in the final report are:

Volume II - Utilization _nual - Documents tnformtton
pertinent to users of the program. It describes the
input required and output available for each of the
trajectory and targeting/optimization options.

Volume Ill - Programers Manual - Do:uments the program
structure and logic, subroutine descriptions, and other
pertinent programtng tnfumatton.

vt



I. INTI_OI)UCIION

POST is a general purpose FO_RAH program for simulating end

optlmlzinK point mass trajectories of aerospace type vehlcles.

The proKram can be used to solve a wide variety of performance
and mission analysis proble_ for at_spherlc and orbital vehlcles.
For example, typical applications o£ POST are outlined in Table
I-1.

Table I-1, - Typical Applications o£ POST

Type of Vehicle

Titea IIIC • D6E, Space

Shutt$e, Simsle Steam
to Orbit (VTO sad HTO)

T/Jm Required

to Solve Problems.
ate

2_20

One of the key features of POST in an euy to use N_d_LIST-

type input procedure. This feature aisnificantly reduces input
deck set-up tim (and costs) for studies that require the nor_!

larse amount o£ input data. I.n addition, the 8enaral applicability
of POST Is further enhanced by 8 8eneral-purpose discrete parameter
terser/n8 md optiatsatiou capability. This capability _an be

used to solve a broad spectrum of problems related to the per-
ferments characteristics of aerospace vehicles.

The basic siumlatiou flexibility is achieved by decomposin8
the traJeccor_ into a losical sequence of eluulation saSnenta.
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These trajectory segments, referred to as phases, enable the tra-

Jectory analyst to model both the physical and the nonphysical

aspects of the simulation accurately and efficiently. By segment-

ing the mission into phases, each phase can be modeled and simu-

lated in a manner most appropriate to that particular flight regime.

For example, the planet model, the vehicle _odel, and the simula-

tion options can be changed in any phase to be compatible with the

level of detail required in that phase.

Every computational routine in the program can be categorized

according to five basic functional elements. These elements are:

the planet model, the vehicle model, the trajectory simulation

model, the auxlllary calculations module, and the targeting and

optimization module. The planet model is composed of an oblate

spheroid model, a gravltatlonal model, an atmosphere model, and

a winds model. These models defi_e the environment in which the

vehicle operates. The vehicle model comprises mass properties,

propulsion, aerodynamics and aeroheating and a navigation and

guidance model. These models define the basic vehicle simulation

characteristics. The trajectory slmulatlon models are the event-

sequencing module that controls the program cycling, table inter-

polation routines, and several standard numerical integration

techniques. These models are used in numerically solving the

translational and rotational equations of motion. The auxiliary

calculations module provides for a wide variety of output calcu-

lations. For example, conic parameters, range calculations, and

tracking data are among the many output variables computed. The

targeting and optimization module provides a general discrete

parameter iteration capability. The user can select the ontimiza-

tion variable, the dependent variables, and the independent vari-

ables from a list of more than 400 program variables. An accel-

erated projected gradient algorithm is used as the basic optimiza-

tion technique. This algorithm is a combination of Rosen's pro-

Jectlon method for nonlinear programmlng and Davldon's variable

metric method for unconstralnted optimlzation. In the targeting

mode, the minimum norm algorithm is used to satisfy the trajectory

constraints. The cost and constraint gradients required by these

algorithms are computed as first differences calculated from

perturbed trajectories. To reduce the costs of calculating

numerical sensitivities, only that portion of the trajectory in-

fluenced by any particular independent variable is relntesrated

on the perturbed runs. This feature saves a sisnlficant amount

of computer tims when targeting and optimization is performed.

POST is operational on several computer systems as described

in the tabulation.

I-2
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Location Compute r

Martin Marietta Corporation
Denver, Colorado

Martin Harietta Corporation
Michoud, Louisiana

Langley Research Center
Hampton, Virginia

Johnson Spacecraft Center

Houston, Texas

Goddard Spaceflight Center

Greenbelt, Maryland

Marshall Spaceflight Center

Huntsville, Alabama

CDC 6400, 6500

UNIVAC III0

CDC 6600

UNIVAC 1108

IBM 370-192

UNIVAC 1108

Operating System

SCOPE 3.4.1

EXEC 8

SCOPE 3.2

EXEC 8

OS

E_C 2

Baslc program macrologlc is outlined In figure I-I, whlch

illustrates the linkage between the simulation and the iteration
modules.
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Yes
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II. LIST OF SYMBOLS AND ABBREVIATIONS

Math symbol

a

A,A

_AAS" (A4xs, AAyB' AAZS)

[As]

A
C

%

%

_Ait

AS

_SB" (ASIa* ASyB" ASZB)

Internal Fortran symbol

*s(I)

AR

JdlORIZ

AXIT, &¥IT. AZIT

A(I)

_XI, _Yl, ASZI

Definition

so.major axis, at (ft)

co_v..or, eut of radius vector

perpendicular to S_n vector,
m (ft)

aerodynamic acceleration
in the body frame, _s 2

(fps 2)

matrix transformation from
the A-frame to the B-fraae

centrifugal acceleration,
_ps 2 (fps2)

nozzle exit area of each
rocket engine, at2 (ft 2)

horizontal acceleration,

mps 2 (fpe 2)

accleration of target
vehicle in the (ECI) frame,

mps 2 (fpe 2)

coustaats

tot¢l aerod_micmolea¢

about the roll, pitch, yaw

axes. _-_ (ft-lb)

Davidon deflection matrix

c_onent

total sensed accelerat£on,

mpS 2 (fpa 2)

total sensed accaleratLon

in the body frale, ripe 2

(fps 2)

total sensed acceleration

Ln the inerttaA frame,
mpo 2 (fpo 2)

thrust acceleration in the

body frmm, l?s 2 (fps 2)

II-I
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Math symbol Internal 7ortran symbo!

Av AVEI_

azL AZL

AZVELI, AZVELR,
AT'I' AZR' AZA AZVELA

AZW

AZT

AZWT

TKAZHI

Ikef ini tion

vertical acceleration,
raps 2 (fps 2)

azimuth of the z L axis,
red (deg)

azimuth of the inertial,

relative, and atmospheric
relative velocity vectors,

red (deg)

wind azimuth, red (deg)

azimuth of the slant range

vector to the tracking

station, tad (deg)

Bi

s S(1)

S(R) ---

s@ ---

CA,%, CN

C%,%0'C%

CA, C_, CN

C_, CL

bobndary for i th con-

strai_t

Davidon deflection matrix

boundary of region R

local boundary hypex-

surface

axial, side force, an6

normal aerodynamic force
coeff_.cients

co_onent of cA, cy, c_
that is not multiplied

by • _nemonic multiplier

drag and lift coefficients

drab and llft coefficient

components that are not
multiplied by a mncmonlc

variable

II-1
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CM' Cn

Definition

pitch and yaw moment co-
efficients

speed of sound, mps (fps)

constraint functions

e , e I , e 2, e3)

DRAG

ECCAN

ECCEN

E_(I)

aerodynamic drag, N (lb)

eccentric anomaly

Euler parameter matrix

eccentricity

Euler parameters
r

e active constraint error

vec_o_

e weighted error vector

optimization function

nonlinear vector-valued

function

FAXB, FAYB, FAZ_ aerodynamic forces in Che
body frame, N (lb)

FTB " (FTx _, FTy B' FTZB )

[CA]

GHA, GI_S

G! " (Gxi, Gyi, Gzi )

FTXB, FTYB, FTZB

CA(Z)

GXZ, GY1, GZI

thrust forces in the body
frame, N (lb)

ms,trix transformation from

the G-frame to the A-frame

Greenwich hour angle and

Greenwich hour angle of Sun,
tad (des)

total gravitational
acceleration in the ECI--

frame, mps 2 (fps 2)

I1-3
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t
t

t

Hath symbol

H

ha, hp

HB

h
C

H
g

HRi

h T

h o

[Is]

[IG]

11-4

Internal Fortran symb?L

ALTI 

AN_M

ALTA, ALTP

HB

P2

HT

TRKHTI

P1NET

INC

is(z)

It(x)

Definition

difference in the gradient
vector VF between the cur-

rent and previous itera-
t_on

gravitational constant

oblate altitude, m (ft)

angular momentum, mps 2

(fps 2)

altitude of apogee and

perigee, km (n mi)

base altitude used in

atmospheric calculations,
m (ft)

constraint function

geopotential altitude, m
(ft)

heating ratios

altitude of tracker, m
(ft)

estt_ted net cost func-
tion

relative-frame orbital

inclination, rad (deg)

matrix transformation from

the ECI-frama to the body
frame

matrix transformation from

the ECI-frame to the geo.-
graphic frame



Math symbol

[ILl

I
sp

[J]

J2' J3' J4

_k-(kl, k2, k3. k4)

Ki

L

[LBI

M

M

M

m

Mf

rl
a

Internal Fortran symbol

IL(I)

IP(I)

I3PV

AC_B(J)

J2, J3, J4

LIFT

LB(1)

LI_F

MACH

MEAN

mm.

MASS

NAC

Definition

matrix transformation from

the ECl-frame to the
launch frame

matrix transformation from

the ECl-frame to the

planet frame

rocket specific impulse,

constraint Jacobian matrix

gravitational constants

Runge-Kutta constants

constants

aerodynamic lift, N (lb)

matrix transformation

from the launch frame to

the body frame

aerodynamic reference
length, m (ft)

l_ch number

mean anomaly, tad (dag)

pitch and yaw moment equa-
tlons

vehicle mass, kg (slug)

mnemonic table multiplier
for table f

number of active con-

straints

II-$
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l_th symbol

n
c

[P], [?1

p(h)

P1

P2

%

r
a

(_)

%

%

II-6

Internal ¥ortran symbol

NDEP_

Pl_J (I)

PRES

P1

P2

TLHEAT

DYNP

HF__TRT, HTURB

RTASC

AP_l_D

DP_G1

RE, RP

RN

Definition

number of constraints

projection operators used

in the projected gradient
_ethod

atmospheric pressure,

N/m 2 (psf)

weighted optimization
variable

weighted constraint error
function

total heats J/m 2 (Btu/ft 2)

dynamic pressure, N/m 2

(lb/ft 2 )

laminar and turbulent heat

rate, W/m2/s (Etu/ft2/s)

linear manifold and its

orthogonal complement

right ascension of out-
going asymptote, rad (deg)

apogee radius, m (.ft)

matrix transfor_.tion from

the body reference frame

to the body frwae

dot-product range, km
(n mi)

equatorial and polar
radius, m (f.)

nose radius, m (ft)



rI

r
P

R
8

c

T

Internal Fortran symbol

XI, YI, ZI

GCRAD

XIT, YIT, ZIT

PGERAD

RS

XVE, YVE, ZVE

s(z)

SRRF

ATD4

Definition

Reynolds number

inertial radius vector

from center of planet to

the vehicle, m (it)

geocentric radius, m (it)

radius vector to target
vehicle, m (it)

perigee radius, m (it)

radius to oblate surface,

m (ft)

slant range vector, m (ft)

slant range vector in geo-

graphic frame, m (ft)

radius vector to tracking

•tation, m (ft)

Radius vector of vehicle in

vernal equinox system, m (it)

direction of search

direction of search to

satisfy the constraint•

shadow function, m (it)

• pace lo•••e for trackins

stations, dB

aerodyn--4c reference
area, m 2 (ft 2)

direction of search for

optimisation

atmospheric temperature.
*K (*r)

tim@. •

Jet casino thrust, N (Ib)
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TH2p

TN1y

TN2y

Tn{y)

TR i

T
vsc

Tsp

TTp

U

Internal Fortran sy,,,u.ol

T_ffB

TTNZB

TMYB

TNZB

THRUST

TVAC

TII4SP

TIMTP

u(z)

De£1nit ion

total.thruetmomont for

nontrimain8 ensinee in the
pitch plane, body axis

system, N-m (ft-lb)

totai thrust moment £oz

trimnln S ensine8 /n the
pitch planesbody axis
system, N-n (ft-lb)

total thrust moment in the

ym_plane for nontr_n8

ensinee _ body axis 8)sten,
N-n (ft-lb)

total thrust sosmnt in the

yaw plane for the trlsmin S

ensines , body axis system,
N-m (fc-lb)

denotes n th order table

interpolation on the

variable y

total rockot thrust for

all engines, N (lb)

total resultant rocket

thrust for enKine i, N

(lb)

vacuum thrust for rocket

ensine8, N (lb)

tlne since perisee pas-

sage. s

time to next peri8es pas-

sase _ •

sravitattonJl potential
function

independent variable

114
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Math symbol

1

u I

_VI

AU

V
a

V-A1

_VI ." (VXI, Vy I' VZI)

VI

Internal Fortran symbol Definition

UB, VB, Wt; components of the atmos-

pheric relative velocity
vector expressed in the

body frame, mps (fps)

unit vector along the
radius vector

X_,_, ¥SUE, ZSUE unit vector in Sun direction
in the vernal equinox system

Y_I, YSI, ZSI _nit vector in Sun direction

in the ECI system

--- unit vector aloug the

velocity vector

change in the independent
variables

inertial velocity at
apogee, mps (fps)

UA, VA, WA atmospheric relative
velocity in the G-frame,

lnps (fps)

VAXI, VAYI, VAZI atmospheric relative
velocity vector in the

inertial frame, mps (fps)

VXI, VYI, VZI inertial velocity vector
and its magnitude, mpe

(fps)

VELI mtg_itude of _I' ups (fps)

U, V. W inertial velocity in the
C_frame. mps (fps)

VXIT, VYIT. VZIT velocity of target
vehicle in ECI system,

ape (fps)

VELR relative velocity, IPs

(fps)

relative velocity in the

C-frano. rips (fps)

VRXl, VRYI, _lZI relative velocity vector
In the inertial frame,

ups (fps)



Math symbol

%

V
P

V
so

W

WC

WG

WpR

Wets

Internal Fortran _ymbol Definition

VX_, WVK, VZVE velocity of vehicle in
vernal equinox system,
=ps (fps)

_I, VWYI, VWZI w_nd velocity vector in
tee inertial frm, mp8
(fps)

VW wind velocity, ups (fps)

UW, W, _N wind velocity vector in
the G-frame, ups (fps)

PGVEL per£see velocity, ups
(fps)

KYPVEL

b'D_T

_I_N

WKICHT

w_Ir'Df

outgoing asymptote
velocity, mps (£p8)

totkl time rate of change
of vehicle veisht, H/o
(Ibis)

total veight of propel-
lant consumed, N (lb)

gross vehicle veLght_ M
(Ib)

Jettison veisht, N (lb)

veight of propellant con-
m_mod per phase, H (lb)

initial propellant veleht,
N (ib)

_n0F

WGTSG

uaximumflovrate for the

I th eneine, H/s (Ibis)

veisht of p_opellant re-
maining, N (lb)

vehicle stake veleht, N
(lb)

vsightln8 mstrlces for u,
_, end
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l

_th s_m_ol

XB' YB' ZB

XBlt' YBR' aBR

Xcg' Ycg' Zcg

XG_ YG' zG

xI' YI' Zl

x i

Xl+_"YL' ZL

X

XR" YR' ZR

zxLf' Yref' Zref

aT

Internal Fortran symbol

XCG, YCG, ZCG

ZI, YI, ZI

GINTJ

XREF, YREF, ZRE¥

DGENV

ALPHA, BETA,
BNIOJNG

ALPt'eT

Definition

coordinate axes of the

body frame

coordinate axes of the

body reference frsne

coordinates of the center

of sravity in the body
reference system, m (ft)

components of a vector In

the geographic frame, m
(ft)

components of the radius
vector in the inertial

frame, m (ft)

general state variable

coordinat_ axes of the

launch frame

th
state vector at the n

event

component8 of the radius

vector in the planet
frame, m (ft)

coordinates of the aero_

dynamic reference point
in the body reference

system, m (ft)

general dependent variable

aerodynamic angle of at-
tick, lldealip, and bank,

rid (des)

total an81e of attack,
rid (de8)

II-11
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L

_j

AE

Ah

At

AV

S
AV

Av,

AV

6A

6 6
CC_a . clock

Internal Fortran s_abo !

CANK_, GA}MAR,
CA)M6A

D'I

DV

DVCIR

DVE_

GLR

DV}4_

ATL_

TVL_

aTaSC

SCOR, SCLOC_

Definition

inertial, relative, and

atmospheric relative
fliKht path anslu, red

(deg)

step-size psraueter on the
,th
,_ trial step

incregae_t in eccentric

anomaly, red (des)

increment in altitude, m

(ft)

increment in time or inte-

gration step size, 8

inermaent in velocity,

ups (fp8)

ideal velocity, mps (fps)

atmospheric velocity loss,

ups (fps)

velocity required to
circularise an orbit,

up8 (fps)

excess velocity, ups (fps)

8r_vlty loss, mpe (fps)

velocity smrsin, ups (fps)

atmospheric pressure
loss, rips (fp8)

thrust vector velocit7

loss, Ips (fps)

risht ascension, tad (des)

cone md clock mslu of

Sun vector in body

system, red (da_

I1-12



Math symbol

n

e
0

eI

OL' _L' AZL

e
mx

_T

V

Internal Fortran symbol

ETA

L#NC

I_NGI

L_NL, I_TL, A_L

TRU_X

TPd_NI

AZRE¥

STPM_X

Definition

enstne throttling param-
eter

planet relative lonsitude,

rad (des)

longitude referemce, rad

(des)

inertial lonsitude, rad

(des)

lonsitude, latitude, and
asiauth of L-frame, tad

(des)

maximm true anomaly for
hyperbolic orbit, rad

(des)

longitude of tracker i,

rad (des)

azimuth rQfereace, rad

(des)

aaxi_unadaissf_le step
size for the iteration

alsoritha

8ravitatlowJl conatant.
a3/s 2 (ft_/e 2)

index

IX-13
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o (h)

T

_C

_R" OR' _R

_S

_ m (WXI _e wS)

Internal Fortran symbol

AB_

Definition

arau_mc of vehicle (i.e.,

angular location of ve-
hicle, measured from

ascending node in orbital

plane), red (de K)

atmospherlc danmlty, kg/m 3
(sluS/ft 3)

craJ ecCory propmsaC£on

GCLAT seocentric latitude, ra_
(des)

GDLAT

P_I!, YAW1, PITI

8eodetic latLtude, rid

(des)

inertial roll, yaw, and
pitch measured as positive

rotations from the L-frame.

rid (_e 8)

YAWR, PITR, MLR relative yaw, ?itch, and

roll, measured In a posi-
tive sense from the 8eo-

graphLc frase, rid (de s)

LAN lonsitude of ascendin s
node, rid (dea)

(II_GA

ItASGM

insular rotation rate of

planet about the polar
axle, rad/s (dis/m)

risht as_t£o_ of

Greenwich meridims,
red (des)

it_IJD, PITBD,
YAWBD

P_LB_O, PITB_D,
YA_SDD

arsuRont of per/see, red
(des)

Lnertlal insular velocity
components about the body

axis, radio (des/s)

lnertlal Q:q_uler acceleration

cmnponents about the body
azla, rad/a 2 (dq/s 2)

I,

i,

,1

II-IA

I I _I i .

...... i - - 1



()

Internal Fortran symbol Definition

refers to atmosphere rela-

tire variables

refers to center of

gravity

refers to inertial
variables

th
refers to n event

refers to thrust applica-
tto_

refers to Earth-relative
variables

refers to aerodynamic ref-
erence point

refers to sea-level condi-
tions

refers to vacuum condi-
tions

refers to rind relative

variab!.e8

refers to state from which

downranse and crossran8o
are referenced; refers to

optimal conditions

denotes vector quantity

denotes transpose of a
vector

denotes total derivative

with respect to time

II-l$



III. COORDINATE SYSTEMS

POST uses numerous coordinate systems to provide the ueces--
sary reference systems for calculating required and optional data.
These coordinate systems and the key transformations are described
below.

Coordinate SysCe_nDeflnltions

Earth-centered inertial (ECI) axes (Xl, YI' Zl)'- This sys-
f

tem is an Earth-centered Cartesian system with z I coincident

with the North Pole, x I coincident with the Greenwich Meridian

at time zero and in the equatorial plane, and Yl completing a

rlght-hand system. The translational equations of motion are

solved in this system (fig. llI-l),

Earth-ce.tered rotatins (_CR>axes (_R"YR'zR)'- Thissys-
I

tem is similar to the ECI syste_ except that it rotates with the

Earth so that x_ is always coincident wlch the Greenwich Merid-

ian (fig. IIi-i)_

Earth position coordinates .(_g, O, h). These are the fa-

miliar latitude, longitude, and altitude designators. Latitude

is positive in the Northern Hemisphere. Longltuda is measured

positive East of Greenwich. Altitude is measured positive above

the surface of the planet (fig, III-1).

at the surface of the planet at the vehicle's current geocentric

latitude and longitude. The xc axis is in the local horizontal

plane and points North, the YG axis is in the local horizontal

plane and points East, and z G completes a right-hand system.

This system is used co calculate parameters associated with azi-
_Jth and elevation angles (fig. 111-2).

:nertla:la,.ch(L)axe,(_.YL'_L)"-ThisisanIner-
tlal Cartesia_ system that is used as an inertial reference

system from which the inertial attitude angles of the vehicle are
meuur-d. This coordinate system It auto._atically located at the

III-1
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d

q

XVK

YVE

¥J4_ure II1-1.- Coordinate Systems

z I

G-frame

x I

Fisure III-2,- Launch Yr_me
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geodetic latitude and inertial longitude of the vehicle at the

beginning of the simulation unless overridden by user input of

LATL and L_NL. The azimuth, _L' is zero unless overldden by

user input. The orientation of this system is such that _ is

along the positive radius vector if _L is input as the geocen-

tric latitude, or along the local vertical if %L is not input

or is input as the geodetic latitude. _ is in the local hori-

zontal plane and is direct=d along the azimuth specified by AZL ,

and YL completes a right-hand system. This system is intended

fo_ use in simulating ascent problems for launch vehicles that

use either inertial platform or strapdown-type angular commands.

The inertial angles, (%1' _I' el) are always measured with

respect to this system and are automatically computed regardless

of the steering option (IGUID) being used (fig. III-2).

Body (B) axes (xB, YB' ZB)'- The body axes form a right-
#

hand Cartesian system aligned with the axes of the vehicle and

centered at the vehicle's center of gravity. The xB axis is

directed forward along the longitudinal axis of the vehicle, YB

points right (out the right wing), and zB points downward, com-

pleting a right-hand system. All aerodynamic and thrust forces

are calculated in the body system. These forces are then trans-

formed to the inertial (1) system where they are combined with

the gravitational forces (fig, III-3)

F_Jure III-3.- Body Frgme,

III-3



Body reference (BR) axes (XBR, YBR' ZBR)"- The body refer-

ence system is a right-hand Cartesian system aligned with the

body axes as follows. The XbR axis is directed along the nega-

tive xB axis, the YBR axis is directed along the positive

YB axis, and the ZBR is dir_.cted along the negative z B axis.

This system is used to locate the vehicle's cantor of gravity,
aerodynamic reference point, and e_gine gimbal locations for the

static trim operation (fig. 111-3_,_

(ha, i, _, 8, _).- This is a nonrectangu-Orbital elements hp,

lar coordinate system used in des,_.ribing orbital motion. The or-

bital elements are apogee altitud_., perigee altitude, inclination,

longitude of the ascending node, true anoemly, and argument of

perigee. The apogee and perigee altitudes replace the standard
orbital elements of semfmaJor axis and eccentricity (fig. III-4).

Vernal Equinox (VE) ._es xVE' YVE' ZVE)'- This is the 1950

mean equator and equinox Earth centered iuertial system. The xVE

axis is in the equatorial plane and is directed forward of the

vernal equinox of 1950, the ZVE axis is directed along the north

pole, and YVE completes the right hand system (fig. 1II-1).

k

//
Satellite' s position

_sis 6irectlon

Ftsure III-4.- Orbital Parmsetare

111-4
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AttltudeAnglas

The program contains the following standard attitude zefe

ence systems:

1) Inertial Euler angles;

2) Relative Euler angles;

3) Aerodynamic angles;

4) Inertial aerodynamic angles;

These variables are defined and illustrated below:

I)

$I - Inertial roll angle. The roll
angle with respect to the L-
frame (first rotation),

_I - Inertial yaw angle. 1_e yaw
angle with respect to the L-
frame (second rotation),

InertialZuler.ngles((Is.m-5),
eI

YL_I_ J'YB _L

81 - Inertial pitch angle. The pitch
angle with respect to the L-

frame (third rotation);

YB ZL

2) Relative Euler angles (fig. III=6):

Figure III-5.- Inertial Euler Angles

_R - Relative yaw angle. This is xB

the azimuth angle of the oXBm
axis measured clockwise fr XG6_J _
the reference direction (first

rotation),

_R - Relative pitch angle. This is ¢_/_/Ty 1
the elevation angle of the xB /

YB
axis above the local horizontal

plane (second rotation), z
V

B

CR - Relative roll angle. This is
the roll angle about the xB Figure III-6.- RelaCtve Euler Angles

axis (tLird rotation).

[!

III-$
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3) Aerodynamic angles (f_ III-7):

o - Bank ankle. Positive o is a

_ositive rotation about the
atmosphere relative velocity
vector (first rotation),

left (negative) rotationwh
flying the vehicle upright

ond rotation),

a - Angle of attack. Positive a
is a howe-up (positive) rotation

when flying the vehicle upright

(third rotation); Figure III-7.- Aerodymmic Angles

4) Inertial aerodynamic angles (fig. Ill-8):

01 - Bank angle. Positive oI is a _r_'_

positive rotatlou about the

ar_mosphere inertial velocity x B

vector (first rotation),

BI Sideslip. Positive _I n

left (negative) rotation wh • °l

flying the vehicle upr_ht (sec-

ond rotation), V I

_I - Angle of attack. Positive aI

is a nose-up (positive) rotation

when flying the vehicle upright

(third rotation);

Figure 111-8.- Inertial Aerodynamic
Ansles

111-6



Transformations

Numerous matrix transformations are required to transform

data between the coordinate systems described in the previous

section. The most important of these trm_sformations is the lIB]
matrix. The inverse (transpose) of this matrix is used to trans-

form accelerations in the body frame to the planet-centered in-

ertial frame. The retraining transformations are generally used

to either compute lIB] or to transform auxiliary data into some

convenient output coordinate system.

The [IB] matrix is functionally dependent on the attitude

of the vehicle. This dependence is described by equations re-

lated to the attitude steering option selected by the user. The

following matrix equations, which depend on this steering option,
are used to compute the lIB] matrix.

[IB] = [LB][IL] (body rates or inertial Euler angles)

[IB] = [GB][IG] (relative Euler angles)

[IB] = [AB][GA][IG] (aerodynamic angles)

The basic relatlonshlps between the coordinate systems de-
fined by these equations are illustrated in figure 111-9. The in-

verse trsnsformation can generally be computed by merely trans-
posing the matrix elements because of the orthonormality of
these matrices.

IG

L|

Fl|ure III-9.- Matrix Traaefor_ations
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A summary of these matrices is given below. The symbols s

and c denote sln and cos, respectively.

[IL], inertial to launch.- The [IL] matrix depends on tL,

eL , and AlL, and is given by

J

C_LC8 L C_LS8 L s_L

[IL] = S_LC0LS_L - CAzLSO L CAzLC01, + SAzLS_LS0 L -SAzLC_ L (III-2)

-SAzLS0 L - CAzLS_LCe L SAzLC_ L - CAzLS_LS6 L CAzLC_ L
D

[LB], launch to body.- The [LB] matrix is computed indi-

rectly from the body rates by integrating the quaternlon equa-

tions, or directly from inertial Euler angles• Nhen the body

rate option is ased, the quaternion rate equatlo.

[LB] =

e0

el

e2

m

e3
• m

1
=2

"e 1 e 2 e 3"

eo e2 -e 3

• 0 -e I e 3

eo el -e 2

j"x I

!_Y i

is integrated to compute the [LB] matrix, which is then given

by

2(tie 2 + e0e3)

2(ele2 - eoe-_)

2(ele 3 + eoe 2)
me

2(_2e 3 - tO-l)

a

2(ele 3 - e0e2)

2(e0e I + e2e3)

III-8
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When the inertial Euler angle option is used, [LB]

directly as

c. ic'_I

[LB ] = -s. 1

C.lS'JI

C_iS_;*IC01 + s¢is_ I

c;[c_ 1

C;iS,lSU | - S;ic,_1

[IG], inertial to geographic.- The

is computed

s¢is_ic_ I - c@is_ I

s¢iC_l

s_is_is01 + c@icd I

[[G] matrix depends on

the geocentric latitude and the inertial longitude, and is giver

by

n

-S¢cC01

[IG] - -s_ I

-C¢cClO

-s¢csO I

c_
1

-C_cSe [

_GB], _eographlc to body.- The [GB]
relative Euler angles, and is given by

_RC_R

[GB] = SCRS_RC_ R - CCRS_ R

C_RSORC_ R + SCRS_ R

CURS@ R

S_RS0RS_ R + CCRC_ R

C@RS0RS@R - SCRC_ R

c¢ c

0

-S_ c ,

matrix depends on the

-sO R

SCRC0 k

C@RC_ R

[GA],_eographlc to atmospheric relative velocity system

_S .- The [GA] matrix depends on the atmospheric relatlve

flight azimuth and fllghtpath angles, and is given by

[GA] =

CYAC_ A CYASk A

-sE A c_A

SYAC_ A SYASX A

a

-sY A

0

cYA

(II[-5)

(I:[:[,.,5)

(ZZZ-7)

(ZZ[-S)
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[AB], .ARVS to body.- The [AB] matrix depends on the aerody-
namlc angles, and is given by

[AS; =

ac_ -casBc_ + saso
B c_c_ac_ -s_sBco - caso

-c_s_S_c_s_ - s_c_ 1

-S_SBSO + c_co_

(iii-9)

Other transformations, which are not related to the calcula-

tlon of the [IB] matrix, are presented below.

[IP], inertial to planet relatlve.- The [IP] matrix trans-
forms between the Earth-centered inertial frame and the Earth-

centered rotating frame. This matrix depends on the rotation

rate of the planet and the total elapsed time of flight, and is
given by

[IP] =

cf_ t s_ t 0
P P

-s[_ t c_ t 0
P P

_ 0 0 1_

(IIl-lO)

[RB], body reference co body.- .-he [RB] matrix transforms

data in the body reference system to the body frame. This matrix

has a constant value and is given by

[RB] = Ii°j1 0

0 -

(Ii -tt)

inertial to vernal equinox.- The [IV] matrix transforms
between the ECI frame and the vernal equinox frame, and is given

by

[IV] =

c e s e 0

-s 0 c ® 0

0 0 1

owhere t - trsforenc 0 ).

(1II-12)
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IV. PLANET HODEL

The planet model is composed of three types of data and equa-
tions. These are: (1) oblate planet geometry and constants, (2)

an acmospheremodel that computes atmospheric pressure, density,

temperature, and speed of sound, and (3) a 8ravitational model
that computes the gravitational accelerations. The _ser selects

the appropriate models and inputs the corresponding data. The
input data and the equationm used in these models are described
below.

-4

Oblate Spheroid

The 1960 Fisher Earth model is preloaded into the program.

This model is defined by the equatorial radius _, the polar

radius _, the rotation rate _p, the gravltacional constant

_, and the second, third, and fourth gravitational harmonics,

J2, J3, and J4, respectively. The stored v&lues for these
constants are:

- 2.0925741 x 10 7 ft,

Rp - 2.0855590 x 107 ft,

_p - 7.29211 x 10 -5 red/s,

- 1.4CtbS39 x 1016 ft3/s 2,

J2 " 1.0823 x 10 -a,

J3 - O,

J_'O.

The constants J3 and J_ are preloaded as zero, but can be ini-
tialized by input. For example, if the Smithsonian Earth model

is desired, then these constants would be input as

J2 " 1.082639 x 10 -3 ,

J3 " -2.565 x 10 -6 ,

J; - -1.608 x 10 -6,

- 1.407645794 x 1016 ft3/s 2 ,

IV-I
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_p " 7.29211515 x 10 -s tad/s,

- 2.092566273 x 10 7 ft,

Bi, - 2.08550242 x 10 7 f¢.

geomtry of thls apharold la i11ustrsted in figure lV-I.
The pertinent equations related to this model are

'c" sin-/ (zl/rl)

,-<..-, (k.. ,<.
R. - _ (1+ (_- 1).i.2 ,:)_

h " rI - Rs,

where @c is the geocentric latitude, Cg is the geodetic lati-

tude, 01 is the inertial longitude , 0 is the relative long_-

rude with re_pect to the planet, r I is the distance from the

center of the planet to the vehicle, R is the distance from
s

the center of the planet ¢o the planet surface, and h is the
distance from the planet surface ¢o the vehicle.

(IV-I)
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gorth pole

South pole

Figure IV-1.- Oblate Planet

Vahicle

Gravitational Model

The gravlta_ional model includes optlonally second, third,

and fourth harmonic terms. The potentlal function for this model

is

__[_J, /3: 1 _ s-

-_- It_ 35"_"_- 30_7+ •

IV-3
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Thl iravltaClonal acceleraClons calculated from this potentlal
function are:

_ ._a'J
GXl Bx I

= -_ r_- P (=, r)

= @U

--_P (i, r)

(IV-3)

GZI = -

÷ DR 4 (15 ]_--- 107.2 + 9Z _) z ,

where x = xi, y - YI' z = z I, r = rl. and

R-

Z = il/r I

J "_J2

5
X "_J3

35
D = - _- Jt_

P (s, r) = I + Jit l (I - 5Z 2) + II _- 13 - 7 Z2)s

(IV-4)
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Atmosphere Models

POST has the optional capability of three atmospheric models--

the general cable lookup, the 1962 U.S. standard atmosphere, and

the 1963 Patrick AFB atmosphere using polyn_Blels. The 0eneral

table lookup model gives the user the flexibility of inputing his

own atmosFherlc model if none of the preloaded models is adequate.

This is particularly useful in performing trajectory analysls for

planets other than Earth. The parameters required to define the

atmospheric effects are the atmospheric pressure p, atmospheric

density 0, speed of sound C , and atmospheric temperature
s

T. These parameters are functions of the oblate altitude h.

Table lookup atmosphere model.- The table lookup atmosphere

model can be defined entirely by using tables that show pressure,

temperature, speed of sound, and density as functions of altitude.

The speed of sound and density tables can be omitted if desired;

in this case, the speed of sound and density are computed as

C s = K_-_

0 =K2 DT'

where

y = ratio of specific heats

M0 = molecular weight

R* - universal gas constant.

1962 U.S. s__andard atmosphere modal.- The 1962 U.S. stand-
ard atmosphere model is given as a function of geopotentlal alti-

tude ( _i)' which is computed as

RA h
H =

g RA + h'

1V-5

(£V-5)

(_V-6)
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=

,4

where

1

h - oblate altitude.

The molecular scale temperature, TM, is defined by a series

of linear segments (LM) as a fun_tlon of geopo_ential altitude

(He)"

The corner points connecting the stralght-llne segments ax_

etc. From a table of base altitudes, base temperatures, and

dT_dH.. (LM) (the slope within the linear segments), the tempera-.

ture at any desired altitude can be calculated from the following

equation:

Valuestable IV-i.°fPB' T_, and _ versus HB are presented in

The atmospheric pressure Is determined as follows:

P " PB exp -_-- for sesments wiUh LMB _ O,

So"0 t" - HelP = PB exp - R* T_ for segments with _ = O,

where PB is the base pressure corresponding to the given base

altitude HE. These base pressures can be calculated once the

sea-level pressure, Po' and the temperature profile have been

Jpeclfied.

and

(xv-7)

(Iv-8)

°

J
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Having calculated the temperature and pressure, the density,

0 speed of sound, C , and atmospheric viscosity, _A' are' s

determined as follows:

M0 I P

TM3/2
, _g

_A _'M + S '

(IV-9)

where go is the acceleration of gravity at sea level, M 0 is

the molecular weight of air at sea level, R* is the gas con-

stant, ¥ is the ratio of specific heats, and _ and S are

Sutherland's constants•

M 0 - 28.9644

R* - 8 31432 . I0 _ J
• (°K) (kg-mol)

y- 1.40

(_v-_o)

B - 1.458 x l0 -_ sec m ('K) ½

S - II0.4°K =, 198.72°R

go " 9.80665 m/sec '_ = 32.174 ft/sec".

In the 1962 U.S. standard atmosphere, the r.olecular weight

varies with altitude above approximately 90 km; in POST the molec-

ular weight is assumed constant, resulting in a slight discrepancy

above 90 km. in the 1902 U.S. standard atmosphere, geometric altl-

tude is transformed to geopotential altitude, whl_h i_ used through-

out. Thus, above 90 km, a constant slope of molecular scale tem-

perature versus geopotential altitt_de is used instead of the cotz-

stant slope of temper_t,Jre versus geometric altitude.

IV-7
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Table IV-1. - 1962 U. S. Standard Atmosphere Profile

OR
HB, ft eB, psf TMB, _B °R/ft

0.0

36 089.239

65 616.797
104 985.87

154 199.48
170 603.68

200 131.23
259 186.35

291 151.57
323 002.74
354 753.59

396 406.39

G.21162166 + 4

0.47268050 + 3
0.11434543 + 3
0.18128943 + 2

0.23163263 + 1

0.12322603 4 1
0.38032532 + 0

0.21673064 -
0.34333824 - 2

0.62814785 - 3
0.15361733 - 3
0.52676024 - 4

518.67
389.97

389.97
411.57

487.17
487.17

454.77
325.17

325.17
379.17
469.17

649.17

-0.35661600 - 2

0.0

0.54863995 - 3

0.15361920 - 2

0.0

-0.10972801 - 2

-0.21945600- 2

0.0

0.16953850 - 2

0.2,8345707 - 2

0.56867005- 2

0.11443751 - 1
480 781.04

512 046.16
543 215.48

605 268.45
728 243.91

939 894.74
1 234 645.7

1 520 799.4
1 798 726.4

2 068 776.3

0.10566108 - 4

0.77263469 - 5

0.58405376 - 5

0.35246030 - 5

0.14559124 - 5

0.39418091 - 6

0.84380249 - 7

0.22945543 - 7

0.72259271 - 8

0.24958752 - 8

1 729.17
1 999.17

2 179.17
2 431.17

2 791.17
3 295.17

3 88_.17
4 357.17
4 663.17

4 861.17

0,86358208 - 2

0.57749093 - 2

0.40610461 - 2

0,29274135- 2

0.23812804 - 2

0.20152600 - 2

0.16354849 - 2

0.11010085 - 2

0.73319725 - 3

0.0

IV-8
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1963 Patrick AFB atmosphere usin_ pclynomlals.- In this
model, pressure and temperature are calculated as functions of

geometric altltude (h). These parameters are calculated in met-

ric unita and converted to English units if required.

Pressure:

i) Altitude region = 0 to 28 000 meters:

P " P1 exp (A + A 1 h + A2 h 2 + A 3 h 3 + A_ h 4 + A 5 h 5)

where P1 " i0.0 Newtons/cmZ;

2) Altitude region = 28 000 to 83 004 meters:

P = go × i0-_ exp (A + A 1 h + A2 h2 + A 3 h 3 + A 4 h 4 + A 5 h 5);

3) Altitude region = 83 004 to 90 000 meters:

-1.373301523 x 1012 h - hB

L
n

4) Altitude region = 90 000 to 700 O00 meters:

(P) = L (PB_ + 1.373301523 × 1012 )n Lm (63_8--_h-) _g344860 + hB)

IV-9
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Temperature :

gq

I) Altitude region = 0 to 1O 832.1 meters:

T = T* " k + A 1 h + A 2 h2 + A 3 h 3 + A_ h_ + A 5 h5;

2) Altitude region = I0 832.1 to 83 004 meters:*

T - A + A 1 h + A2 h 2 + A 3 h 3 + A_ h% + A 5 h5;

3) Altitude region - 83 004 tO 90 000 meters:

T - TB + _ (h - hB).

However, in this region Lk = 0, and thus

T = TB = 180.65°K;
I

4) Altitude region - 90 000 to 700 000 meters: I

J
Density :

i) Altitude region = 0 to 28 000 meters:

P = Ol exp (A + A I h + A2 h 2 + A 3 h 3 + A4 hz'+ A 5 h 5) ;

2) Altitude region = 28 000 to 700 000 meters:

P

o - (3_.83676) ¥.

(IV-12)

(IV-13)

*Virtual temperatur_ is the same as kinetic temperature
abovs the I0 832.l-meter altitude.

IV-lO
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Table IV-3. - 1963 Patrick AFB Molecular

Temperature Profile and Gradient Profile

hB, km* T_IB, °K Lm, eK/km

180.6590

i00

110

120

150

160

170

190

230

300

400

500

6OO

700

210 65

260 65

360 65

960 65

I IIO 65

1 210 65

i0.O

20.O

15.0

1010

1 350 65

1 550 65

I 830 65

2 160 65

2 420 65

2 590 65

2 700 65

7.0

5.0

4.0

3.3

2.6

1.7

1.1

*Altitude range: 90 000 to 700 000 meters.

IV-13
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J
pwk:

!

Pressure and density ratios:

Altitude region = 0 to 700 000 meters:

0

PR 0 °

'/PR=_ "-.
o

Veloclty of sound:

|.

Vs =, (20.046707) ('I)2

The atmosphere model-derived coefficients are presented in

table IV-!. The molecular temperature gradient is documented in

table LV-3 for geometric _ititudes from 90 to 700 km.

(IV-14)

(IV-15)

Winds

The atmospheric wind velocity components are input in tables

using either meteorological or vector notation. If th_se tables,
which are normally functions of oblate altitude, vre not input,

then tile atmosphere is assumed to rotate uniformly with the

planet.

The wind velocity components can be input directly In the

geographic frame by defining uW, v W, and _W' or by defining the

wind spee,l {Vw). the vertic._l component (Ww), the wind azimuth

,-(Azw) , and the wind azimuth bias (AzwBI . The reaultin8 wind velo-
% r

city components in th6 G-frame are:

V_WG -

vw (!_) _o_ (^zw oh) + Azw_)

vw (h) sin (^ZW (h) + AZW_)

ww (h)

(IV-16)

IV-14



It is clear from the above equation that in order to input vector

wind data AZW B must be input as zero, whereas for meteorologic

data the preloaded value of 180 ° _hould be used.

The wind velocity in the ECI frame is then given by

_WI = [Ig]-I _WG (iv-17)

Thus, ti_e atmospheric relative velocity vector in the ECI frame

is

vA: " v z - '2p _ :: - Vwz

and its magnitude is given by

vA--v- 'Fv:'

(ZV-ZS)

(:v-19)

IV-15



V. VEttI CLE ,MODEL

The various physical properties of the vehicle are modeled

by the user when he selects the pertinent options from the set of

vehlcle simulation modules. The equations used in these modules

are presented below.

Mass Properties Model

The gross weight of the vehicle at the beginning of each

phase is given by

W G = Wstg + Wpl d,

where !'Istg is gross weight without payload and '.'

load weight.

(v-l)

is the pay-
pld

For phases other than the first, the gross weight

can optionally be computed as

+ = WGW G - Wjett - WpR,

+

where W G is the gross weight on the positive side of the cur-

rent event, WG is the gross weight on the negative side of the

current event, Wjett is the jettison weight, and WpR is the

weight of propellant remaining. These options are obtained au-

tomatically, based on u3er input.

The propellant remaining is given by

(V-2)

WpR . WPi - Wpc , (V-3)

where WPi is the initial weight of propellant and Wpc is the

amount of propellant consumed. This latter term is given by

. f (V-4)Wpc W dt + WC0

where W is the total rate of change of the vehicle's weight.

|

i

¢

q

i
i

V-1



At the beginning of each phase, the constant WCo can be

either input or carried across the event as the total amount of

weight consumed in the previous phase.

The amount of propellant jettisoned can be computed as:

i) The amount of propellant remaining at the beginning of

tile current phase,

2) The amount of propellallt remaining at some pr6scribed

prior event.

'Ine constant jettison weight is either computed from an in-

put constant value or determined from an input mass-fraction table.

When a mas_-fraction table is used the jettison weight is given

by

Wjett = WPi [1- l] , (V-5)

wltere _ is ti_e mass fraction computed from the table.

Propulsion Calculations

POST can slmulate both rocket and Jet engines. _e program

can simulate up to 15 engines in either mode.

Rocket engines.- There are two input options for engine data

in tile rocket mode. In the first option, tables for vacuum thrust

and maxim_a weigilt flowrace are input for each engine. In the

second options tables for vacuum thrust are input, along with

tile vacuum specific impulse for each engine. The vacuum speci-

fic impulse is then used co calculate the mass flowrate.

The rocket ti_rust per engine is given by

= _ Tvaci p(h),TRi - AEi
(V-6)

V-2



where q is the throttle setting, T is the vacuum thrust
vac i

of the ith engine, _ is the nozzle exit area, and p(h) is the

atmospheric pressure. Summing over all engines yields the total

rocket thrust

N
eng

T R = _ TR i•
i=l

where Neng is the number of thrusting engines, and Neng_ 15.

The weight flowrate in the rocket mode is given by

(v-7)

W _

N
eng

i-I

N
eng

i=l

(v-3)

Jet engines.- In the jet engine mode the net jet thrust per

engine is given by

(Tj)T-. = :(_t, ,0,
,L

where

= p(h)/PsL

(V-9)

(v-xo)

V-3



Tj
and -- (M,

given by

a monovariant table. The total Jet thrust is then

N
eng

i=l

The weight flowrate In the jet engine mode is

N

(V-ll)

(V-12)

The thrust vector components for both rocket and Jet engines

are determined from the thrust magnitude TRi or Tj.I and the

thrust incidence angles ipl and iy i The thrust accelerations

in the body axes are then given by

N
eng

Ti

i=l

b

cos i cos i
Yt Pi

sin i
Yi

cos i sin i
Yi Pi

= !R
m

(V-13)

In the abcve equation T i denotes the thrust magnitude for the

i engine (either rocket or jet) and m denotes the instantaneous

mass of the vehicle. The engine gimbal ankles are determined

from tile static trim equations in the moment balance option or

by input if the moment balance option is not used• The engine

glmbal angles are illustrated in figure V-I.

V-4



I
i

i

YB

7

z B

Figure V-l.- Engine Gimbal Angles

Note that thrust misalignments can be simulated by inputtinB the

engine gimbal angles and using the standard three-degree-of-

freedom option.

Aerodynamic Calculations

The aerodynamic force coefficients can be expressed in terms

of the lif +, drag, and side-force coefficients CL, CD, and Cy

(fig. V-2), where CL and CD are directed nol_al to, and along the

velocity projection in, the xE-z B plane. No_e that Cy produces

a slde-force, F_B, acting in the direction of YB"

Lift and drag force coefficients are transformed to axial

and normal force coefficients as follows:

I(CA [cos
N Ls. n a

whera _ is the angle-of-attack.

V-j

(V-14)



CN

C CD _ d cL

Figure V-2.- Aerodynamic Angles

Tile aerodynamic coefficients can also be expressed in terms

of the axial force, normal force, and side force, CA , CN, and _,

respectively. Here CA and CN produce forces that act in the

-xB and -z B directions, and Cy produces a force acting along YB"

Each aerodynamic coefficient is computed by interpolating

the values in the table. In general, eight tables are allocated

to each coefficient. These _ables can be monovariant, bivarlant,

or trivariant, and seven tables per coefficient can have arbi-

trary hollerith mnemonic multipliers. This generality enables

all standard forms of aerodynamic data to be directly input into

cite program.

V-_



The aerodynamic force coefficients are given by:

CD = CDc + CD_ICD + CD, ,CDM + CD6y M C
=p _p D_y

CL = + C i.l + :.ICCLo LO CL o CLip L6p

CA CAo + CA MCA + CA MC MC
_p + CA6y A 6

A6p y

CN = CNO + CN M + MCCN CN6 N
p

P

Cy = Cyo + Cy MCy + Cy. H C
o Y6Y

Y

the aerodynamic moment coefficients are given by:

CH " Ci.Io+ CM HCM + CH M_p CM_
op

C - C + C HCM + C MC
n no n n6y n6y

In the above expressions, CDo , CD, CD6p_ CDsy' etc, denote

the tables, and MC , MCD, MC , MC , etc, denote the: mnemonic
O0 D6p D6y

table multipliers. Typical table arguments and multipliers would

be _, _, M, ILN, 6p, and 6y.

The Hach number and dynamic pressure are given by:

_4- VA ]

Cs

q'_o V,

where 0 is the atmospheric density, VA is the velocity of the

vehicle with respect to the atmosphere, and CS is the speed of

sound. These atmospheric parameters are determined from the at-

mospheric models as a function of the altitude h above the oblat_

spheroid; i.e.,

V-7

(v-13)

(V-16)

(v-17)



/

- p (h)

c s _- Cs(h)

p - p(h)

T - _(h).

The angle of attack in pitch (a) and the angle of sideslip
(B) required to determine the aero_.vnamic coefficients are cal-
culated as follows:

oL.,, tan -1 ! "sincos,'_]

. tan-1 sin
.C08

sin a - WB

eln B = vB

The total angle of attack is

-( co. ,v )l_x/ ^ .

The aerodynamic forces in the body frame are

-C A

_AB " q S Cy ,

-C N
a

where q is the dynamic pressure and S is the reference area.

V-8

(v-ze)

(V-19)

(v-zo>

(v-21)
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The resultin8 acceleratlons in the body system are thel, ob-
tained from

Aeroheatln E Calculations

POST provides for a wide variety of aeroheating calculations.

Some of these option¢ are specific in nature and apply only to
particular vehicles, whereas ochers are quite Eeneral. The sen-

eral heat rate option is based on trivariant cable intarpolat_on
and provides complete flexibility with resards to vehicle shape

and heat-transfer methodoiosy. The various heat race equations
are described below.

(v-z2)

v-.9
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Heat rate equations.-

1) Chapman's eqt_itions.

is given by

• 17 600

In this calculation the heat rate

_Vc/ (9-23)

vhere _ is the nose radius, 0 i8 the atmospheric density,

and VC is the reference circular orbital velocity.

2) General table lookup. This heat rate i8 given by

" Qt (xl, x2, xD, (V-24)

where x 1, x 2, and x3 can be any internally computed variables.
For example, the valueo that would normally be £elected are x 1 = a,

x2 = h, and x3 = YR.

3)

vhere qt

equation.

Hodified Chapman's equation. Here the heac rate is given
by

= Qt (xl, x2, x3) Qc' (V-25)

is an arbitary table and Qc Is the standard Chapuan's

_) Turbulent-flow heat rate. The turbulent-flow heat rate
is given by

s)

11 --_--"°"sI-_-_'_"1"1Q. % (.,, _., .,) 5oo(,,,.) I_o_) ' (v-2.>

Kaxtnam canterltne heatina. The equations for thin method

are 'give_belov in 8equance.

e) Altitude.velocity correctlon-

_,o.,,,,,(v4o.),]

h -h+Ah.
rag

(V-27)

V-lO
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r,

i

(

L

L

i

p.-

i ?

b)

-- if hre f _ 103 600 m:

btaximum centerline heat rate at reference conditions:

qref = 1021277.93332 + 134.55760 bredl05 - 807.75941 (hredl05)z

-- if hre f < 103 600 m;

qref = I0_ 115.39692 - 34 881.13588 hre_05 + 69 844.23141

(href/_05) 2

+ 37 506.13054 (href/!05)_ -- 71_34.98_5_(hred_O_)_

c) Angle of attack correction:

%.x,_/qmax,_.50..- [_n (=>]2,

where

x - 102 [O.OllJ6 +0.01343 a/lO 2 + 1.42672 (a/102) _ - 0.75623

(_/102) 5] + 0.30535 (_1102) 2 - 1.06269 (_1102) 3.

0t-28)

(v-29)

d) _laximum canterline heat rat,_:

• ,)-X )0, X|(_mSO e re "

In addition to the beat rate calculations, the program also

provides the capability to calculate other aeroheating indicators
that can be used for trajectory shaFing purposes.

Aerodynamic heating indicators.- The heating rate for zero

total angle of attack a T Is

Q'qV A.

(v-3o)

(V-3l)

9-11
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T

IsThe aerodynamic heating indicator for zero total angle of attack

0

The heating indicator for non-sero anw,le s of attack isgiven by

where

f (a', M) Q dr,

(v-a2)

(P-33)

and

.\M7f (or", N) - 1 +._H2 sin 2 a) K.

l'r,( )"'Jl'K= 1+_= - I +_. sin 2 _.

a" = a _ for 0 •
q_ = O- t

Q" m Cl

I for _ > O"
Q_ ., Q-

Q,. i )
} for 8 < O*

Q," =Q-

I

fo_ B > O"

(v-._)

¥-12



< ( 0) (vA)31Qlam = S 17 600 EaT 26 000
0

dr, (V-35)

where

m

KaT f (aT).

(V-36)

The heating Indicator for turbulent flow is calculated as

Qturb = 1500 K I0 000o
dt (V-37)

Ten-Panel Vehicle Heating F_odel.- Special aeroheating calcr

lations are available for a ten-panel vehicle model. The heat£1g
ratios are referenced to the heet rate calculation. The total

heat for each panel is given by

Qi Q'= HRi
(V-38)

where Q is the total heat and HRi is the heat ratio for panel

i. The weight for each panel is the product of the weight per
unit area and the area of the panel. The total weight is the sum

of the Individual weights for each panel:

10

Wp =" _ WuA i Ai

i=l

(V-39)

where WuA i is the weight per unit area and Ai ,s the area

of the Ith panel.

V-13



Steering Model

The steering options control the a_titude of the vehicle

during the _raJectory simulation. The general types of steering

options available are_

1) Body rates:

2) Aerodynamic angles;

3) Inertial guler angles;

4) Relative Euler angles.

The body rates are @enerally used to simulate strapdown-type

systems and are computed from user-specified rate polyuominals.

The aerodynamic angles are generally used for reentry problems,
and the inertial and relative Euler angles are us_lly used to
simulate vehicles that employ inertial or local horizontal ref-

erence systems. All of these angles can be computed from: (1)

polynomlnals; (2) tables; (3) piecewise linear functions; or (4)

closed-loop llnear feedback systems.

The functional relationship used to compute the steering com-

mands suEgest two _atural steering classifications:

1) Rate steerin$;

2) Angular steering,

These claaslflcations provide an efficient outline for pre-

senting the equations used to compute the steering comRands.

Eats steer£ng.- Rate steering uses the body rates, in con-

Junction with the quaternlon equations, to determine the attitude

of the vehicle. When usin 8 this option the user must specify:

i) The inltial attitude of the vehicle;

2) The polyno-_nal option used to compute the body rates.

The initial attitude is used internally to initialize the quater-

nion rate equation

I
c,,J Cv-4o)

v-14



where

[E] -

e =, (eo, el, e2, e3) ,

= (_x' _y' _z )'

-e 1 e 2 e3

eo e2 -e 3

e 0 -e 1 e 3

eo el -e 2

YB

z B

Figure g-3.- Body Kates

There are two options available for Initiallzln 8 the quaternlon

elements: (I) inertlal Euler angles_ and (2> aerodynamic angles.

When inertlal Euler angles are input the initial _uaternlon vector

_s given by

wh_re the asterisk denotes quaternlon multiplication and where

e (_i) - co. (0.5 ¢I) + sin (0.5 _i) i

V-15

(V-41)

(V-42)

(V-43)
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When aerodynamic angles are input, then the initial quater-

nlon vsc_-r is given by

whore

! (AZL) " cos (0.5 AZL ) - sin (0.5 AZL ) k

!(_o)

_-(,,)

_.(-_,)

_.(,o)

-cos (45) + sin (45) .1

- °o.(0.,,,.) +._ (0.,,_) J
- oo.(0.,_,) - ._o(0.,_,)

k
= cos (O.S 61) + sin (0.5 ei)

- cos (0.5 'c) - sin (0.5 'c)

- oo,(o._o),<,_,o._o)!(o)

_,(-8) - co,(O.SB)- (sin 0.5_) k

_,(a) .. co, (0.5©,_+ (sin 0.5_) j.

(V-44)

(V-45)

The user must also select the option for computing the body
rates. These options are ccubinations of the basic rate poly-

nominals shown at the top of next pass:

t V-16



i=O

i_O

k=O

2

& = _ alxl

i=O

2

= Z biyi

£=0

2

6 " i_O clzi, /p

(V-46)

where ai, b I, and c i are the polynomial coefficients, and

x, y, and z are the polynomlal arguments.

The available comblnatlons of these basic rate polynomials
are:

I) Input the coefficients and the arguments of _x' _y' _z;

2) Input the coefficients and the arsumeuzs of s, 8, o:

and calculate and _ vla

V-17



mmP"" "

I.
!

_y " 2 + d2° + _

Le3 + d3a - (r_a a) ;

3) Input the coefficients of the a, and _ poly-
noIlals and calculate _ via _Y' z

X

_-" al + dl_ + tan a( a3 ÷ d3_ - _z);

4) Input the coefficients of the _x' _' and _z poly-

nomials and calculate _ via
Y

_y a2 + & + d2 d I + d 3 tan _ ;

5) Input the coefflclents of the _x' _y, and B poly-
nomials _nd calculate _ via

d3

'"z = a3 - (cos _) _ +_I I_x - el -(sin _) _I;

6) Input the coefficients of the o, a, and
Z

nomial8 and calculate _ and _ via
x y

poly-

_x = al + dl_ + tan a (s 3 + d3_- _a I

I

_s a2 + d2_ + _ ;

7) Input the coefficients of the _x' a, and _ poly-

nomials and calculate _ and _ via
y s

(V-47)

(v-4d)

(v-49)

(v-so)

(V-51)



8)

wh_re

d2 i 1d3

_z" aa cos _ _ +_ _x

9)

Input the coefficients of the _, _y, and _ polynomials

and calculate _ and _ via
x z

_x" al +d1_+ (sin_) _

3_x = a3 + d3_ - (cos _) _;

Input the coefficients of the _R D 8R, _R polynomials and

and calculate ' and _ via
Wx_ _yJ z

B

x

_y =a+

t_
z

m m

;R- sl. eR_R

cos @R 0R + sin CR cos eR _R

co_ OR cos BR _R - sin _R OR

a - [GB]

m

V

E

-u

E

-__Vrtan _C

V-19

(V-52)

(v-5])

(V-54)

(v-ss)
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.

where

The variables used in these equations are:

al

a2 " [GB]

w

dl

d2 = [Ge]

d3

m

i [XG] XX|

" [IG] VAT.J
7x - +A ein )'A"

-_ + _ cosr A

-v tan _c + IA

r I
-- _-.

coe kA cos 7A

sin IA cos 7A

- sin 7A

_A" uA_A- vA 6A

_. -vA;._+w_vA

(V-56)

(V-57)

(v-ss)

(V-59)

(v-6o)

V-20



and

6A = 6 + d--f-

v i• dw

wA =W+d_h

+ +VA = _A AUA

dR
" s
,_ = -.w d_ ¢c

C

sin _c cos _c

Angular steerlng.-Angular steering uses four different

functional relationships to determine the attitude of the vehicle•

These C,_nctlonal steering equations are:

i) Cubic polynomials ;

2) Tables ;

3) Plecewlse linear equations;

4) Closed-loop linear feedback systems.

Each of these steering techniques is available for all of the

steering angles; i.e., aerodynamic angles, inertial Euler angles,

and relative Euler angles. There is also a separa:e channel

steering capability. Thls op_lon enables the user to specify

different functional relationships in each triplet of steering

angles. Thls means, for example, that the an_le of attack could

be computed from a polynomlal, the bank angle from a table, and

the sideslip angle by yet another method. However, this option

does not allow the user to mix the steering triplets (i.e., mlx

the aerodynamic angles with the Euler angles).

V-21
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In the following discussion, it is convenient to let @ de-

note an arbitrary steering angle. The steering equations de-

scribed in ter_s of this variable then apply to all of the steer-

ing angles.

Polynomial steering: Under this option the steering angles

are computed from a cubic polynomial

O(y) = _ ciy i,

i=O

where the user selects the coefficient c i and the independent

variable y. The highest-order coefficient that is input deter-

mines the degree of the polynomial. The argument can be selec-

ted as any internally computed variable; e.g., time, veluclty,

altitude, etc. The constant term of the polynomial, Co, can

be either input at the beginning of each phase or carried across

as the value of the angle at the end of the previous phase. The

polynomial coefficients are generally used as the independent

variables for targeting/optimlzation.

Table steering: Under this option the steering angles are

computed via table interpolation, which is denoted by

o(Z) = 0m Tn[_f(Z)].

The user initially inputs the table multiplier am, the order or

interpolation n, and the table data _, _(_) ). The table mul-

tiplier or the dependent table values can be used as independent

variables for targeting or optimization. The order of interpo-

lation can either be linear or cubic. The tables can be mono-

variant, blvarlant, or trlv&rlant functions of the table argu-

ments.

(V-62)
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Piecewise linear steering: Under this option the steering

angles are computed from a general piecewlse linear function of

the form

e(y) = c I + Y - Yl , (V-64)

where cl is equal to 0 at the beginning of the current phase,

c 2 is the desired value of 0 at a designated later event, y is

equal to the value of the designated event criterion at the begin-

ning of the current phase, Y2 is the desired value of the desig-

nated event criterion at the designated event, and y _s the cur-

rent value of the designated event criterion.

This option is silaular to the polynomial option except that

the values of e are specified directly rather than as 00, 9,

and _ Clearly, 0 is linear in time if y = t; otherwise

0 is only linear in y. I_hen the desired values of the steering

angles are used as independent variables, the problem of cascaded

steering effects is avoided and the targeting/optimizatlon algorithm

generally converges faster. This option also automatically com-

putes the steering angle rates required to change the attitude

to the desired value at the designated event, which reduces the

problems related to guessinR accurate initial pitch rates.

Linear feedback steering: Under this option the steering angles

are computed from the linear error-error rate feedback control

law

0 = C! + K D {F a - Fd)+ K R {F; - Fdl,

where c I is a nominal steering angle profile, K D is the dls-

placement error gain, K R is the rate gain, F a - F d Is the error

in the steering function F, and F; - D_ is the derivative

of the steering function error.

This option is, of course, the classic path control law, and

enables the user to steer to a wide variety Gf trajectory profiles,

such as velocity vs altitude profile, acceleration vs altitude

profile, etc. This option is particularly useful for reentry

trajectory shaping.

(v-6s)
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Generalized Acceleration Steering. - Under this option the

steering angles are computed by solving a set of user specified

equations. The dependent and independent variables in these

equations must be selected from the dictionary of variables al-

ready computed in POST. The only restriction is that these equa-

tions must be explicityly a function of some derivative computed

in the inner loop of the program. As a consequence, this option

cannot be used to solve equations that are functions of integrals

of the equations of motion. For example, this option cannot be

used to maintain constant altitude by zeroing h. This is because

the time derivative of altitude is aomputed from velocity, and

velocity is computed from the integral of acceleration. The lln-

ear feedback model should be used to solve problems involving in-

tegrals of the equations of motion.

In more precise terms, the steering variables are determined

from the iterative solution of the problem:

For each instant of time, determine the values

of the steering variables, _, that satisfy the

steering equations,

where _ is a n-component vector of dependent variables, _ is

the desired value of these variables and _ the error in dependent
variables.

Typical applications of this option are given as

l) Control normal acceleration to Ig and axial acceleration

to 3g by calculating the angle of attack and throttle

setting that solves the equations

2)

AxB (a, n) - 96.6 = 0

Az5 (_, n) - 32.2 - 0

Obtain level unaccelerated flight by solving the equa-
tions

Level unaccelsrated flight is implicitly acleved in example 2 be-

cause VA = 0 implies constant velocity, and _A " 0 implies con-

stant altitude (that is, if YA = 0 when this option is initiated).

V-24
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VI. TRAJECTORY SIMJIATION

The following sections present t_le equations used in the

trajectory simulation subroutines. These equations summarize the

principal computations performed by the program, and motivate many

of the program input procedures.

Events/Phases

Simulation data are input according to phase, where the

phases are defined by a user-speclfled sequence of events. The

simulation equations are then solved sequentially by phase.

Therefore, the user is required to input a sequence of trajectory

segments that define the problem being simulated from beginning

to end. These trajectory segments, or phases, are defined by

two events--a beginning event and an ending event. An event is

an interruption of the trajectory simulation that occurs when a

user-speclfied varJable reaches a user-specifled value. An event

must be created whenever the user wishes to change any input data

for the problem or to cause any change in the method of simulating

the problem. For example, the sequence of events for a typical

ascent problem could result in a simulation setup similar to that

shown in figure VI-I.

9
8

6

4 )

2

Event Descrlpt ion

I I Ltftoff

2 |nttiata pitch rate I at 20 sac
3 Initiate pitch rate 2 at 30 sec

4 Initiate pitch rata 3 at 60 sac

5 Initiatr ansle of attack control at 75 aec
/f_ 6 Jettison stage I when propellant consumed

7 Initiate pitch rate 6 20 sac after staRln 8
8 Initiate yaw rate 1 lO0 sac after event

9 Orbit lnJ_ction at inertial ve|ocity nf 25 568.0 fps

Figure VI-I.- Event Sequence Setup
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The event numbers for a given problem must be specified as

real numbers by the user in monotonic increasing order. These

event numbers are then used by the program to determine the order

in which the events are to occur. The program requires that each

problem have a minimum of two events--an initial event and a final

event. Since a phase is initiated by the corresponding event,

the event criterion for a given event specifies the conditions

at the beginning of the corresponding phase. A problem is termi-

nated by specifying the last event that is to occur. The problem

can also be terminated in a psuedo-abort mode by specifying the

maximum trajectory time, maximum altitude, or minimum altitude.

Although event numbers must be monotonic increasing, they

need not be consecutive. This allows the user to easily add or

delete events from an input deck.

Four types of events have been defined to provide flexibil-

ity in setting up a given problem:

i) Primary events - These describe the main sequential

events of the trajectory being simulated. These events

must occur, and must occur in ascending order according

to the event number. Most problems will usually be sim-

ulated by a series of primary events|

2) Secondary events - These are events that may or may not

occur during the specified trajectory segment. Secon-

dary events must occur in ascending order during the

interval bounded by the primary events. The occurrence

of a primary event will nullify the secondary events

associated with the previous primary event if they have

not already occurred;

3) Roving primary events - These events can occur any time

after the occurrence of all primary events with smaller

event numbers. They can be used to interrupt the tra-

jectory on the specified criterion regardless of the

state of the trajectory or vehicle.

4) Repeating roving events - These events are the same as

primary roving events except Lhe interrupt values are

input differently. There are two options for criteria

value specifications. Option i: Input the initial value,

t_e increment, and the number of times the event is to

be repeated. Option 2: Input an array of event cri-

teria values.

The program monitors as many as ten events at a time, depend-

ing on the types of events to determine which event is to occur

next. This gives the user a powerful tool for simulating complex

problems.

VI-2
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Multiple events are monitored in the following sequence:

I) The next primary event is monitored;

2) As many as nine primary roving events are then monitored,

provided there are no secondary events. A roving pri-

mary event is added to the llst of those being monitored

as soon as the primary event immediately preceding that

roving event has occurred;

3) Next, as many as nine secondary events are monitored,

provided there are no primary roving events. (Note that

caution must be exercised when using secondary events

because of their nature. Since as many as nine sec-

ondary events are monitored at a tlme, any one of those
nine will occur as soon as its criterion has been met.

Because they are secondary events, the event that occurs

will cancel all secondary events with smaller event

numbers. ) ;

4) Finally, a total of nine primary roving and secondary

event_ are monitored.

Since the program can only monitor nine events (in addition

to the next primary event), the sum of the primary roving events

and the secondary events must be less than or equ_l to nine or a

fatal error will -_sult.

The tlme-_o-go model (TG_M) determines when the events

occur during the trajectory simulation. Baslcally, TC_M checks

the values of the criteria being monitored at each integzatlon

seep. If none of the criteria values has bracketed the desired

cutoff value, then another integration step is taken. If a

criterion variable is bracketed with the input step size, then

TG_M computes a new stepsize equal to the predicted tlme-to-go.

The predicted tlme-to-go for each event is computed from the

equation

At* = - y(t) At/ (y(t + At) - y(t)) (Vi-l)

where y(t) is the difference between tbe actual and the aeslred

value of the event criterion. If more than one event is bracketed,

then the minimum predicted tlme-to-go is uscd as the integration

stepslze. This process is repeated until the criterion value is

I
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within the specified tolerance of the desired value. If the

desired condition cannot be achieved in 20 iterations, an error

message is printed and the program stops. Generally this situa-

tion is caused by an input error. The fundamental features of

the time-to-go logic are shown in figure VI-2.

-6

Y

tg o

1.4.__" _ i
, At --_
i: At

Figure VI-2.- lllustration of Time-to-Go Logic

Translational Equations

The translational equations of motion are solved in the

planet-centered inertial coordinate system. These equations are

!I = _I

where _TB is the thrust acceleration in the body frame,

is the aerodynamic acceleration in tlle body frame, and _I

the gravitational acceleration in the ECI frame.

AAB

is

VI-4



Initialization.- There are five options for initializing

the velocity vector and two options for initializing the position

vector. These options are described below.

Inertial position components (Xl, YI' Zl)'- The inertial

position components can be input directly since no transformation

is required.

or ¢ h or r).- In thisEarth-relative position _I or @, ¢c g'
F

option the equations vary and the sequence of calculation varies

according to the choice of input. However, the basic equations

used are:

81 = 8 + _ _It - t0_I if 8 is input,P

is input,_ = tan -I (k 2 tan _g) If _g

rI = h + Rs (_c) if h is input,

and

r I = r I

D i

cos _c cos 0 I

cos _c sin 01

sin _c

Inertial velocity components (VxI, Vyl, VZl).- These variables

can be input directly.

Inertial local horizontal (Vi, "_I' AZI)'- The inertial com-

ponents in the horizontal frame are first transformed to uhe

geographic frame as

cos ¥I cos AZI]
_IG = VII cos _I sin AZl

I
t-sin ¥I

(vi-4)

(vi-5)

(vi-6)

I

i
!
¢

i
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and then transformed to the ECI frame by

v_ - [IG]-_ V_G. (vi-7)

Earth-relatlve local horizontal (VR, YR' AZR)'- The Earth-

relative velocity components are first transformed to the geo-

graphic frame as

cos YR cos AZlI
_RG = VR L cOs YR sin AZ

I
t-sln YR

(vi-8)

and then transformed to the ECI frame by

-p
(Vl-9}

Atmospheric relative local horizontal (VA, YA' AZA)'- The

atmospheric relative velocity components are first transformed

to the geographic frame as

m

cos 7A cos AZA

_AG " VA cos 7A sin AZA

-sin YA

m N

VWXG

+ ' VNy G ,

I WZG
m

and then transformed to the ECI frame by

(vx-10)

vI . [Io]-1_o +_ x _I (vI-11)

Orbital parameters _hp, h a , i, _, _p, 8).- This option initializes

both position and velocity. The equations used to transform the
orbital parameter to the ECI position and velocity are:
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-h +Z zrp P

=h +_Zra a

= (ra + rp)/2

p =0+_

p = a (I - e 2)

r p/(1 + e cos 0)

cos _ -sin __

[:in_ cO._o
1ooi{0 cos i -sin i

i sin i cos i

c°'ilsin

0

Cw-lz)

and

r ,, r U
-- --T

v. o[÷--_]
_, n sin -1 (H/rV)

cos p -sin p

=Isln p cos O

Lo 0
!If'o

0

° °:Icos I " -sln

sin I cos

olico.
os _ 0 sin

1 0

('_x-13)
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Instantaneous velocity additions.- At the beginning of ea_
event an instantaneous velocity can be adde_ in the direction of
the th_st vector. The ma_itude of the velocity addition can be

input directly, or can be calculated from the rocket equation
from the a_unt of propellant cons_d

[w/o]AV = go Isp _n _ _C

If AV is input, then the amount of propellant required to

achieve this change in velocity is given by

The inertial velocity after the impulse is then given by

cos iy

v:+ slniy
L cos i

v

cos ip ]

siu i
P

This option is generally used to simulat_ short burns for
orbital maneuvers. The direction of the impulse is controlled

via the attitude of the vehicle and the engine gimbal angles.

Static Trim

The static trim option is used to calculate the engine gimbal
angles or _he flap deflection angles required to balance the

pitch and yaw moments cuased by the thrust and aerodynamic forces.

The static moment equation,

is generally nonlinear, and thus an iterative algorithm is used to

determine the required solutions. This algorithm is a successive

.(v:-:4)

(Vl-iS)

(V:-16)

(VI-lT)

(VZ-18)
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approximation technique based on _he analytical solutions that
result from small-angle approximations. The computation of the

pitch end yaw moments is presented below.

Moment equation in the pitch plane.- The aerodynamic moment
and thrust moments for the ith engine are shown in figure 16. The

locations of the center of gravity, the aerodynamic reference, and

the engine gimbal points are specified in the body references

system.

xR I

z

?N

IT JCA __,AZp
CM

Axp T z R
i ! !

X

Xcg Xgp ref

Z

r

Z
cg

Z
rel

Z

gP

Figure VI-3. - Moments in Pitch

The total aerody.amlc moment in pitch is

AF_ ffiqS (_ ZRp + % AXR - CA _ZR)"

The total thrust moment in vitch for the v_ntrimmlng engines is

. cos i (cos i Az - sin i Ax ),THIp _ IRi Yi Pl Pi Pi Pi

t_N T

(VI-19)

(Vl-20)
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and the moment for the trimming engines is

- cos i Az
T.2P cos tp _ ZRt Yi P

£eN T

- cos i Ax .
sin ip _ TRI Yi Pi

icNT

The static moment equation in the pitch plane is then given by

= AMp + TM1 P + TM2P,

where AMp depends on the flap deflection angles and TM2 P

depends on the engine glmbal angles.

Moment equation in the yaw plane.- The aerodynamic moment and

the thrust moment for the ith engine are shown in figure 17.

(VI-21)

(VI-22)

Xcs Xgp Xre f

x_= i taxz a

_AXp T

ayp I Y CA "_-_
AYlt

_,_ _ xs Cy )

I
YB

Ygp

Yref

Ycg

YR

Figure VI-4. - Moments in Yaw
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The total aerodynamic moment in yaw is

-qs(cn + -cA YR)

The total thrust moment in yaw for the nontrlmmlng engines is

TMIY = _. (cos i cos i + sln I _x ),
i_N., TRI Pi Yi Aypl Yl Pi

and the moment tot the trimming engines is

TH2 Y - cos ip _ cos

leNT TRI ipi AYpi

(VI-23)

(VI-24)

+ sin i Z Ax .Y TRi Pi

iENT

The static moment equation in the yaw plane is then given by

= A_ + T_!IY + TM2Y,

where AMy depends on the flap deflections and TM2 Y depends on

the engine glmbal angles.

Integration Methods

The number of integrals computcd during any particular phase

is determ4ned fxom the options requested by the user. As a

minimum, the translational equations of motion _re integrated to

give the position snd velocity of the center of mass of the

vehicle, the user may also select additional variables to be in-

tegrated. The only restriction Is that no more than 30 integrals

can be computed per phase.

(VI-25)

(VI-26)
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POST contains 3 general purpose integration methods and sev-

eral special purpose orbital propagation methods. These methods
are summarised below.

Runge-Kutta Rethods.- POST contains two Runge-Kutta integra-
tion methos: (1) the standard 4th order method, and (2) a 8th order

method. The calculations for these intesration methods are based

upon the formu£a

s

Yn+l = Yn + _ blkl'
i..l

where

s

k i = hf(x + cih, Yn + _i=l
ijkj)a , I=i,2, "',s.

These formula are represented by the array

cI

c2

C
s

all a12 ... als

a21 a22 o.- a2s

asl as2 ... ass

b I b 2 •.. b e

The coefficients for the t_o methods are given in Tables V|-I and

V[-2, respectively

Table IV-1

Runge-Kutta 4th order (Kutta)

0 I --112 112 --

112 , 0 112 ---

l I 0 0 1 --

I :].16 1/3 113 1/6



Runge-Kutca 8th order (Shanks (1966))

0. 000

0. i11

0. 167

0.250

0. I00

0. 167

0. 300

0.666

0. 333

0.833

0.833

I. 000

0.IIII ....

0.0042 0.1250 ....

0.0069 0.0000 0.1875 ....

0.0580 0.0000 0.0780 -0.0360 ....

0.0340 0.0000 0.0000 0.0041 0.1286 ....

-0.5838 0.0000 0.0000 2.1111 3.4722 -4.5000 ....

-0.1235 0.0000 0.0000 -0.1317 0.5144 0.0000 0.4074

3.6265 0.0000 0.0000 "-10.6667 19.2901 26.0000 0.7469

0.9043 0.0000 0.0000 -2.6296 4.2438 5.6667 -0.3642

0.8043 0.0000 0.0000 2.6296 -4.2438 6.1667 0.b358

-1.9411 0.OOG0 0.0000 6.9377 11.0095 -14.9268 0.0854

-0.0833 ....

0.5000 1.000 ....

0.0000 0.0000 0.I000

-0.1646 -0.4390 -0.2927 0.7317 ....

0.0488 0.0000 0.0000 0 0.0000 0.0000 0.2571 0.3238 0.0321 0.0321 0.0429 0.2143 0.0488

Krogh Variable-Step Variable-Order Integrator

The variable-step length variable-order predictor-corrector

developed by F, T. Krogh of the Jet Propulsion Laboratories pro-

cedure represents the state-of-the-art in numerical solution of

systems of ordinary differential equations. It includes all of

the following facilities:

i) A core integrator for advancing the solution from one

uniform step to the next consisting of variable order

Adams predictor-corrector equations rpcuiring the stor-

age of a difference table for only the hlghest ordered

derivatives;

2) A method to scare integration with first-order equations

and increase the order to as high a level as numerical

stability p_rmits;

3) Algorithms for changing the step size and updating ac-

cordingly the difference tables of the highest-order

derivatives including appropriate smoothing to prevent

numerical instability;

4) Algorithms for deciding when and by how much to change

the step siz_ based upon the accuracy requested by the

user;

5) Te_ts for numerical stability of the predictor-corrector

order and step size tentatively chosen in the context of

the current differential equation set;

V1-13
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6)

7)

8)

Test for accuracy requests that are so stringent that

round-off error prevents their satisfaction;

Algorithms for @he automatic selection of the core inte-

grator to fit the characteristics of the set of differ-

ential equations at hand.

An interpolation algorithm for obtaining dependent vari-

able values to the user-speclfled accuracy at values of

the independent variable dlffarent from normal integra-
tion steps.

The Krogh integrator was developed to meet the conflicting

goals of (i) reliability, (2) efficiency (in the sense of mini-

mizing the number of derivative evaluations to obtain a given

accuracy), (3) flexibility, (4) low integration overhead, and (5)

cmall storage requirements. The goals are listed in the order in

which they are emphasized in the procedures. The package Ims no

equal in reliability. All the user need provide the integrator

is his accuracy requirement and a tentative step size that is

less than the integration interval. The integrator then uses

all eight of its algorithms to provide a solution requiring as

few derivative evaluations as p_ssible while remaining within
accuracy tolerances.

This documentation restricts itself to algorit|uns (i), (2),

and (3). Algorithm (3) is thoroughly described in Reference 9.

Algorithms (4) through (7) are not amenable to rigorous mathe-

matical analysis, but rather have evolved from extensive numer-

ical experimentation by Krogh and his associates at JPL. They

are adequately described in the source code and references. Fur-

ther, to 3implify exposition, equations will be given for the

single dth order differential equation

y(d)- f lt, Y, yl, ..., yd-1)

The following notation is used:

= independent variable

h = integration step size

y(t) = corrected (final estimated) value of Y(t)
I

tn value of t at current integration step

= + khtn+ k t n

Yn' ¥n' Y_' .... Y(tn)' ¥(tn)' Yl(tn)' "'"

Pni predicted (initial estimated) value of Y(t n)

fn f in' Yn' 'n' *'" ' Yn !

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[3]



vif -ffi_ifnn n-I
V - Vi-I f

for i=0

for I-i,2, ...

vif
pn .11 iiii

n

for i=O

for i=I,2, "''

The predictor and corrector equations of the core integrator

are obtained by integrating Newton's Interpolatlngpolynomials

for the most recent q and q+l values, respectively, of the highest

order derivative, f. For the predictor, f is approximated as the

(q.-1)th degree pol_lomlal

[lO]

[11] i

q,1

fP =_ (s + i-l)Vifn-_s i n

i=0

f(x n + sh).

Successively integrating approximation [12] from s=o to s=l yields

the predictor equations.

J-i q-I

Pn+l(d-J) = _.W_-_hk yn(d-J+k) + hJ _ YiJ Vifn

k=0 i=O

where

'12]

=Is+i-I

(rl dr

for i=1,''',q,

for i=l,,',,q,

J=l,...,d

for J=l,2,...,d [13]

and 71J = aij(1) for i=l,''',q
J=l,...,d

th
For the corrector, f is approximated as the q degree poly-

nomlal

fc " fP + O (S) V_fn,_ f + sh).n+s n+s qO (Xn

[14]

[IS]

[16]

[17]
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Successively integrating approximation [17] from s-o to s-i gen-

erates the corrector equations

(d-j) (d-j) + hj V qf
Yn+l = Pn+l >qj p n+l for J=l, ...,d. [18]

Notice that in the equations [13] and [18] the coefficients Yij

are independent of the order, q. Hence, Adam's method has the

practical advantage that its order can be increased simply by

adding more terms to the predictor and corrector equations with-

out revising their coefficients. Systems of differential equa-

tions are handled by applying equations [13] and [18] to each

component of the system. Different components may have dlffer-

ent values of d and q.

The starting algorithm requires no special techniques such

as Runge-Kutta equations or Taylor-series expansions. Instead,

q is simply taken as i in the normal predictor and corrector equa-

tions. There is, nonetheless, i starting phase during which the

hlghest-order derivative evaluation following the calculation of

the corrected values of the integrals is skipped. During th/s

starting phase, the values of q and h increase quite rapidly.

When numerical stability problems appear during this initial phase,

the ordinary corrector equation, [18], is replacQd by

J

(d-j) (d-J) + h j a Vl
Yn+l " Pn+l 7iJ p fn+l

for J=l,2,...,d.

Here a is chosen on the close: interval from % to 1 to give opti-

mal stability characteristics.

Algorithms [3] for changing the step size are only equipped

to double or halve h. Hence, algorithm [4] for selecting the

step size is restricted in the same way. Both procedures are,

however_ very efficient so that adjustment to the optimal step

length occurs as quickly as reliability permits. The two algor-

ithms are duscribed in detail in Reference II.

Like the predictor and corrector equations, the interpolation

equations of algorithm [8] are also generated by successlvely in-
th

tegratlng a q degree interpolating polynomial for the highest

order deri:'_tive. Indeed

fo = _ (S + i-2)Vlfn+ l _ f(x n + sh)

n+I _ i

[19]

[20]

V1-16



(d-l)

Yn+s

q V_ fo _ y(d-l) sh)
(d-l) + E Pil n+s (Xn +

" Yn
Jt=O

where

Evaluating the differences V_ fo using definition [20] andi n+s_

substituting the results into definition [21] ylelds

Yn+s " Yn + Ptl fn+l

i-O _=0 i-_

Generallzing this procedure to derivatives of lower order produces

j-1 q-J

Y.+sCd-J)._ J yn(d-J+k)+hJ _ _J Vifn+1
k-O i=O

for J-l, *'*td

where

i i

and
q-J

_=0

P_I_(i-_+t)(j-l)(") "

[21]

!

[22]

[23]

[24]

[25]

[26]

I
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Laplace's method.- Laplace's method is an iterative technique
for propagating the position and velocity (in planet-centered
coordinates) of a nonthrustlng vehicle in vacuum during flight

over a spherical planet. The technlque is based on the analytical

solution of the two-body equations, and yields the inertial state

at time t + At as a function of the state at time t.
!

The equations used in Laplace's method are:

_I (t + At) _ f _I (t) + g _I (t)

XI (t) (t),

where the scalar coefficients f, g, f, and
Table Vl-3.

are given in

Table VI-3 - f and g Series

Coefficient Elliptical Hyperbolic

1 - 2 a sin2 A_EE
r 2

n

g x (,',E- sin,,E)At - n

- _ sin AE

rn rn+ I

1-2 a

rn+ 1

_ AE1 +2 a stnh 2 __
r 2

1 (AE -- slnh _E!_t -_

-_a sinh AE

rn rn+ 1

I , ,

2_
*Note that r. ffi Ir(t + J At) l, and n = _ •

3 -- p

i + 2 a slnh 2 AE
2

rn+l

As indicated in the above table, the f and g coefficients

are computed analytically from the change in eccentric anomaly

during the time period At. This is In contrast to the standard

Laplaclan method, where these coefficients are infinite series

in At. The change in eccentric anomaly is calculated by solving

a special version of Kepler's equation via the Newton-Raphson

algorithm

AEn+ 1 = gE - _ n - I, 2, . , I0.
n F !(AE) '

(vz-27)

(VI- 28)
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This algorithm converges rapidly from the initial estimate

AE0 = n At.

The form of Kepler's equation that is computationally ef-

ficient for this application is

sin AE + 2

r ° v
-n --n AE

for e < 1

r ° v
--TA "Tt

slnh AE - 2 sirh 2 AE + AE - n At,

for e > 1.

The derivative dF/dE used in the Newton-Raphson algorithm

is given by

cos bE +

cosh AE

r • v

--n --n

_-a

sin AE + i, for • < 1

r ° v

-n --n sinh AE - Z, for e > 1.
Ca

(vl-29)

i (V1-30)

J
i

-}

?

(w-31)
!
4:

Encke's method.- The Encke method used in this program is

modified from the usual Encke technique in that it rectifies the

reference conic at every integration step and does not use the

standard Q-series expansion in calculating the gravitational in-
crement.

The Encke method should be used for orbltal problems where

small perturbing accelerations, such as the oblateness of the

planet, atmospheric drag, or solar electric propulsion, must be

included in the simulation. Numerical results indicate that, for

problems involving small perturbations from Keplerian motion,

Encke's method is approximately four times faster than Cowell

methods, which integrate the total acceleration.

The Encke method determines the total motion by summing the

motion due to the two-body equations and the motion due to the

perturbations to the two-body equations. The posltlon and veloc-

ity in the inertial planet-centered system at time t + At is

given by

_!-19



where

equations; that is,

r_ (t + St) = f r_ (t) + _ V_ (t)

_I (t + At) = r_2 (t + At) + _ (t + At)

_I (t + _t)- _ (_ + _t) + _v (t + _t),

Cry,½) denotes the Keplerian motion computed by Laplace's

(vi-33)

and (8_, 8V_)

equations

8r = AV

m

_r(t) - Av_(t) - o,

denotes the numerical solution of the differential

{2 + A,)

J
(w-_)

where _2 (r_2 + A_) is the two-body acceleration at r2 + A !.

The Runge-Kutta or Adams-Bashforth method can then be used to solve

the above equations.

Integration step models.- The integration step, At, is gen-

erally specified in terms of an increment in time. However, this

option enables the user to specify the integration step in terms

of an input increment in true anomaly. This option is useful in

orbital problems where the geometry is easily expressed as a func-

tion of true anomaly.

The followlng equations are than used to calculate At as a

function of A0.

e 2 = 0 1 + AO

/E2 2 tan -I l-e a 02
= tan _--

r: = a(l - e cos E2)

SE = E 2 - E l

r2rl

Lt = a 3 (AE - sin AE) + ____
H

sin AO. i
(vI-3 5D

In these eqtmtions, subscripts 1 and 2 denote current and future

values, respectively.

Vl-ZO
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Launch Options

There are two specific options for simulating particular
launch conditions; (1) hold-down for vertical takeoff, and (2)

hold-down for horizontal takeoff. These specialized options are

required to simulate certain physical constraints that are not
modeled in the equations of motion.

Holddown for vertical takeoff.- This option is used to simulate

vertical (rocket type) takeoff. When using this option, the tel

a_ive position and velocity remains constant while the inertial
position changes by the Earth rotation. The inertial velocity

magnitude remains constant while its direction changes. This
model simulates physical constraints that hold the rocket on the

launch pad until the rocket is released. The equations used to

calculate the accelerations that produce this motion are

A I " _ x V I (VI-36)

8

4

Holddown for horizontal takeoff.- This option is used to simulate

horizontal (aircraft type) takeoff. When usin E this option the

vehicle accelerates in the local horizontal plane according to

the forces described by the user input. The vertical component

of acceleration is internally computed to produce the proper hor-

izontal motion. The equations used are:

and

Ac

m

m m

-AzG

(vi-37)

(VI- 38)

Vl-21
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Vll. AUXILIARY CALGUI.A.TIONS

In addltlov to computing the basic variables, POST also com-

putes numerous auxiliary variables that are related to: (1)
conic parameters, (2) range cal=ulacions, (3) tracking data, (4)

analytic impact calculatlons, (5) velocity losses, and (6) veloc-
ity margins. The equations used to calculate these varlables are

presented below.

P

e

AV

i

n

Conic Calculations

The following Keplerlan conic variables are computed.

VI2

energy, 2 r I

sem£maJor axis, -u/2_

angular momentum, IxI x vi I

semilatus rectum, h2/u

eccentricity, J[l - p/a I

velocity required to circularize orbit, _ • AV, where

-_h = h_lh

_RI " --rllrl

V " (_/rll 2 u--c --v

Inclination, cos -1 (halh)

longitude of ascending node, cos -I (_I " _}' where

VlI-I
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TSp

TTp

_p

0
P

h
P

h
a

V
P

V
a

UGO

0
max

6RA

arg.ent of vehicle,_ - cos-' (_ • _)

time since perigee, _ M

time to perigee, P - TSp

latitude of perigee, tan -1 (U3//U_ + U_), where

__- cos(_)_ + sio(_)(_ ___)

longitude of perigee, tan -I (u2/u ,)

altitude of perigee, r - Rs(_p)P

altitude of apogee, ra - Rs(_ p)

velocity at perigee, /_ iI + e
a _z - e!

1 - e

hyperbolic excess velocity, /-_

maximum true anomaly for hyperbolic orbit, cos-' (-I/e)

declination of outgoing asymptote, sin-' [u r (3)], where

RA

Ur® - cos(Crux - O) -_rI + sin (Oma x - e) _u,r

right ascension of outgoing asymptote, tan-' _/

\r® /

VII-2
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E

M

_0

r

P

r
a

P

trueaoo_lyoo.I(_(_I>)

eccentric anomaly, 2 tan-l(J 1
e

I + e

mean anomaly, E - e sin E

argument of perigee, p - e

perigee radius, a(l - e)

apogee radius, a(l + e)

period, 2_

)e
tan

Range Calculationv

The progam provides for various types of range calculations.

The equations for these calculations are given below.

Dot product downrange.- The relative range angle, measured

from the vehicle's initial position to its current position, Is

given by

0 cosl 8
where u

--r
so

is a unlt vector along the initial position vector

in Earth-centered rotating coordinates and u
--r

s

Is a unit vector

along the current position vector in Earth-centered rotating co-

ordinates. The range over an oblate spheroid is calculated from

the average radius to the surface, and is given by

r + rs1RD so

Crossrange and downranae via orbital plane reference.- Re-
ferring tc figure V11-I, identify the vehiclets position at time

t by O, and at a later time t by P. At time t , the ve-

hlcle has a tatltude of ¢ , a IonBitude of B , and a veloclty

(VII-l)

(VII-2)

Vli-3



J

0

Note: 0 - position at initial time,

p - position at subsequent time.

Figure VII-I.- l_wnrange and Crossrange Angles
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heading of X . At time t the vehicle is at latitude ¢ and

longitude 0_ The downrange angle (_) and the crossrange angle

(_) shown in the illustration are measured along, and normal to,

the great circle through O, and are inclined to the meridian by

A*. From analytical geometry, v and _ can be expressed as

sin v = -sin _ sin cos _¢c cos e" - cos k cos _0c sln 0

+ sin _ cos ¢ sln ¢c

, * *

sin _ = _I-cos X sin ¢ cos ¢ cos 9 _ + sin _ cos ¢c sin 8"

+ cos _ cos ¢ sin ¢c_/COS!

*

COS N " (COS ,_

where 0 and

cos ¢ cos e" + sin ¢ sin ¢c)/COS v,

k can be defined in either of two ways:

i) The great circle to which _ and _ are referenced is

fixed and rotating with the EaEth. Then

=,Earth's relative heading - sln -I

9",'q-8 ;

vR

2) ?he great circle to which _ and v are referenced Is

inertially fixed, having the Earth rotating below it.

?hen

* V

= inertial heading - sln -I
J u2 + v2

O" = e - e + _ (t - t ).
P

(VXX-3)

(V11-4)

(VII-5)
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i

Knowing _ and _, and crossrange CR and downrange DR
distances are

CR " Rave _ I

)DR = Rav e P,

where R is the average Earth radius between the illitial and
ave

final points.

(VtI-6)

J
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Auxiliary Position and Velocity Calculations

The solution from the translatlonal equations is then used

to calculate numerous output variables. The key variables directly

computed from (x I, YI" Zl) and (VXI , VyI , VZI ) au_mrlzed below.

r I = 8eocentrlc radius

-(_ .___)_

VI = magnitude of the inertial velocity

. (___.v_)_

_R = relative velocity

-z_-_ x___

V_A = atmospheric relative velocity

-_+v_

VR = mat_nitude of the relative velocity

VA = magnltu4e of the atmospheric relatlve velocity

_RI

YI

-(_._)_

= unit vector alone radius vector

- rl/r I

= unit vector along inertial velocity vector

= Inertial flight path angle

(vH-7)
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YR - relative f11ght path angle

= sin-1 I_RI" _R]

7A - atmospheric relative flight pzth angle

.._o_1[_ ._.]
JIG = inertial velocity in the G-frame

- [zG] _i

_RG " relatlve velocity in the G-frame

- [IG]

"_G " atmospheric relative velocity in the G-frame

- [10] _A

_I = inertial azimuth

. .ao-_[_o/'xo]
AZR - relative azimuth

" tan-1 [VRYG/VRXG]

AZA = atmospheric relative azimuth

" tan-I [VAYG/VAXG]

@c = geocentric latitude

OI - inertial longitude

_rlI-$

(wT-7)



0 R = relative longitude

-- oI - _p It - to)

_SB = sensed acceleration in the B-frame

AS = masnitude of the sensed acceleration

A_.I = sensed acceleration in the ECl-fra_

= t_,,._-'[_,, +'_,,1
.i

(vH-7)
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Auxllary Attitude Calculations

The attitude angles that are not used to generate the steer-

ing commands are computed for output in the auxiliary calculation

_ubroutine. These equations are summarized below:

I) Aerodynamic angles:

GB23 + sln 8 sin A ) .= ta.-_ ',G-_22co_ AZA-_F21.i_ AZA=osVA

2) Inertial Euler angles:

%1 = tan -I (LB23/LB22),

_I = -sln-I ( LB2!)' t
3) Relative Euler angles:

vII-lO

(vii-8)

(VII-9)

(VlI-lO)



Tb _ -elationship between the body rates and the attitude

angles are:

i) Aerodynamic angles:

toX

OJ

Y

to
g

m

al + dl_ + (slna)

a 2 + d?o + a

a3 + d3_ - (cos_)

2) Inertial Euler angles:

tO
X

to

Y

to
Z

_e

¢I cos _I cos 01 - _I sin e 1

Ol - ¢I sin _I

¢I cos _I sin 01 + _I cos 0.£

3)

• °

to
X

_J

Y

Relative Euler angles:

[GB]

V

r

r

-_X tan
r c

+

°

CR - _R sin O R

O R cos CR + _R sin CR cos OR

_R cos _R cos O R - 0R sin _R

vlI-lg

(VII-If)

(v'ri-12)
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Tracking Data

POST computes tracking information for as many as ten
tracking stations per phase. The tracking ztations are located
on a reference ellipsoid and are specified in terms of _heir lati-

tude, longltude, and altitude above the ellipsoid. These variables

are illustrated in figure VII-2.

Xs _SR

Vehicle

YB
B

Tracking
station ¥

s

Figure VII-2.- Rada_ Tracking Schematic

VII-12



The position componentsof the tracker in the Earth-relative
frame are given by

[°o, °°'
Lstn _T

where _ is the altit_e o_ the tracker, _T the latitude of

the tracker, and 0T the longitude of the tracker.

The slant range vector in the ECI frame is given by

_R = r__ - [IP1-1 rTR,

and the slant range is then computed as

The elevation angle can then be computed as

where

is
The slant range vector, transformed to the ge_sraphic frame,

_sRc " [IG] _SR'

and thus the trackerie azimuth is given by

AZT" tan-1 (YsRG/XSRG) -

The look angles are calculated from the slant range vector
transformed to the body frme; i.e.,

Es_ " [Is ] _R"

(vii-14)

(vii-15)

(vii-16)

(viI-17)

(vii-it)

(vii-20)

(VII-21)

Vii-13
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Using the colponents of _SRB'

_T" c°'-I (xg_/rSR)'

and the clock angle is given by

the cone angle is then given by

ac" tan-I (YsI_/ZsRB)

Space losses are calculated for the tracking stations as
fo.'.lows:

sL1- _.s6 ÷ 20Log_o(Rs_" FR_)

SL2- 36.56* 20_g_0 (RS_" _2)

SL3- 36.S6+ 20 Log_0(RSL."F_3),

FR 1

FR2

_R 3

- 420.0 (command frequency)

= 2287.5 (telemetry frequency)

= 5765.0 (tracking frequency)

RS1 M = slant range distance in statute miles.

where

Analytic Impact Calculations

The analyttc impact calculations predict the geodetic lati-
tude, longitude, and time of flight at impact for a vehicle with

a given position and velocity to Its intersection with _he sur-

face of the oblate planet. These calculations asst,mc Keplerian

motion and are no_ corrected for drag effectJ.

The basic pro,_lem in determining an impact pclnt from a

specified position and VelOcity (rio , VIO ) is in calculating
t

the impact eccentric anomaly. Fhls 8ngle is d_termined by

Iteratively solving the equatlon

VII-14

(VII-22)

(VII-23)

(VII-24)

i'•i



(VZl-25)

where hip is the desire./ impact altltude above the oblate

planet and the position vector is give,_ by

rI(z) = f(Z) rlo + g(E) Vzo

(VII-26)

r

i

r

!

I

r

g<E>-_-'_sl._.-E0)-esinE+. sinz0 .

Once the impact eccentric anomaly, Eip , is determined, then

the time, latitude, and longitude of impact are calculated as

tip = to +_(Eip - E0 -e sin Eip + • sin EO)

eip Vipl nptlp

VII-IS

(VII-27)
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Velocity Losses

There are two velocity loss options: (1) inertial velocity

losses, and (2) atmospheric relative velocity losses. The iner-
tial losses are used for orbital problems while the atmospheric

relative losses are used for atmospheric flight problems.

The total change in the magnltude of the velocity is 81van

by:

Vf - V i - AV - AV* - AVTy - AVAERO _ AVg - AVat m ffii-28)

where

AV* "I _ niTaci_ dt

A"_o " - _ !A ' _u

AVg =_g sin 7 dt

- ideal velocity

- thrust vector loss

- aerodynamic loss

" gravity loss

= atmospheric pressure loss

Inertial losses are computed when_- [IB]V_I/VI, and simu.-

larly atmospheric relative losses are computed .when_ _ [IB]V_A/V A.

Velocity Mazgtns

The program computes the amount of velocity margin avail-
able and the amount required, based on a percentage of the ideal

velocity.

The velocity margin Is calculated as

The excess velocity is then $iven by

AvE - ,._.- _v= _v_

(Vli-29)

(VIX-30)
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Sun-Shadow Calculations

_e program computes several sun-shadow variables. These
variab:Les are used to calculate the sun-vehicle orientation angles,

the s_-shadow conditions, and _hs position and velocity of the

vehicle in the _ernal equinox system. These auxilary variables

are based upon the Greenwich hour angle (G_t%), the Greenwich

hour angle of the Sun (GHAS), the declination of the Sun 6 S ,

and the time of reference past midnight (TRPM). The Greenwich

hour angle, the right ascension and declination of the Sun remaln

constant during the simulation.

The vehicle position and velocity vectors inthe vernal equi-

nox system are given by

and

The Sun unit vector in the

LFI+6s c_ s

u - Ic6 s 8_
--8 _ s

8

where

(rE) system is

_ - GHA+ GHAS.

The Sun unit vector in the ECI system is calculated as

The cone and clock angles of the Sun vector in the body system

are given as

m C08 *6cone I

+clock" tan'l (YIB/ZIB)
t

(VII-31)

(vii-32)

(vtl-33)

(VII-3&)

VII-17
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i " I

! where u B is a uui _- vector in the direction of the x3 axis, and

B _a !

x8 B

The program also computes a shadow function, which is used to d_-
termine when the vehicle is in or out of _he Earth's shadow. Th!_

function is based upon a cylindrical shadow model and is given by

where

* : "
I

S-

L
|,

A=_A'A

_A._ -(_,i_,_)_,_

_0.

O,

If S<O, then the vehicle is in the shadow of the Earth. If S_O,

then the vehicle is in the sunlight. The vehicle is entering the

shadow if S!0, and exiting if S>Oo

(VII-35)

(VII-36)

Multiple Vehicle

The program has the capability to simultaneously simulate

the motion of two independevt vehicles. One of the vehicles is

active in the sense that it can be controlled uslng'propulslon

and/or aerodynamic forces. The other vehicle is passive in the

sense that i¢ cannot be controlled and is asstmmd to be out of the

atmosphere and nonthrusting. As a result, the active vehicle is

referred to ae the pursuer, and the paeelve vehicle the target.
The relative geometry between these two vehicles is defined in

Figure VII-3.

A large nmaber of output variables are calculated for the

target vehicle. These variables are computed using equations
tha_ are identlc_ to =hose used for the active vehicle. A com-

plete list of these e_uations is given in Volume II - Utilization

Manual. Only the key equations are _n this section.

VIl-18
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,[ _ Tarset Vehicle

I _ _._-'I+I'r_ _f Targel: vehlcle

1
I _Yz

YI

FiFuro VII-3.- Relatlve GeoluzCry betweem
Active and Target Vehicles
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VIII. TARGETING AND OPTIMIZATION

POST uses an accelerated _roJected gradient algorithm (PGA)

as the basic targeting/optimizm:lon technique. PGA is a combina-

tion of R_sen's projection method for nonlinear progra_ing (refs.

3, 4, and 5) and Davidon's variable metric method for unconstrained

optimization (ref. 6). The program also contains backup single-

penalty function methods that use steepest descent, conjugate

gradients, and/or tl_ Davldon method. These standard gradient

method are well documented in references 6 and 7 and are only
briefl) described in the following discussion.

The projected gradient algorithm is an iterative technique
designed to solve a general class of nonlinear programming prob-

lems. PGA employs cost-function and constraint gradient informa-

tion to replace the multidimensional optimization problem by an

equivaleut sequence of one-dimensional searches. In this manner,
it solves a difficult multidimensional problem by solving a se-

quence of simpler problems. In general, at the initiation of the
iterationsequence, PGA is primarily a constraint-satisfication

algorithm. As the iteration process proceeds, the emphasis
changes from constraint satisfaction to cost-function reduction.

The logic used to effect this changeover process will be dis-
cussed below.

Since numerous analytical developments of this technique are
available (see ref_ 3, 4, and 5), this presentation will pri-

marily emphasize the geometrical aspects of the algorithm. This
geometric interpretation clearly motivates the equations and

logic contained in PGA, and a basic understanding of these con-
cepts is usually sufficient to enable the user to efficiently

use the algorithm.

Problem Formulat ion

The projected gradient method solves the following nonlinear

nrogram_ing problem:

Determine the values cf the independent variables,

mtze the cost fut,ction (optimization variable)

F(_),

u, that mini-

(VIII-l)
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subject to the constraints (dependent variables)

c__(__.)->____0, (VIII-2)

where u ¢ Ra; c is a vector-valued function, i.e., c:R m -_ Rn;

and F is a scalar-valued function, i.e., F:R m ÷ R1.

The alsorithm is actually more vez'-" tie than this simple

formulation might indicate. In order to .aximixa any particular

function, say W(_), all that is required is to define

F(u) = -W(u) and determine the minimum of F(_). The equality
constraint case is also contained within the above formulation

since constraint equations of the form

cj(u_)- o (VIII-3)

are special cases of Eq (VIII-2).

In the trajectory opt4mizatlon, the cost fu:_tction and the
constraints are noC explicitly a function of the independent
variables, but rather depend explicitly on the sl:ace variables

_I' _I' m, and Q. The explicity _quattons r,_lattn R the state

(dependent) variables to the independent variables are the in-

tegrals

6

r--I=--rio + f VI d t

_vI +/[[I_l-_ Gddt" v1° [-_B+A_] +_

m= mo +/m dt

Q = /Q dr.

(VIII-4)
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If xn denotes the above state var/_bles of the system beln S

simulated at the n th event, and x + and x - denote the value
--u --n

on the plus ar_ sinus s/des of that event, then

vhere -nu are the independent variables in phase n, and Tn

represent the solution of the state differential equations over

phase n. The values of the state variables on the positive side
of event n are then

(VIII-5)

X =X ÷ _X
"-11 -11 -11

(VIII-6)

where Ax represents the discontlnu_cy in state(e.g., velocity
--n th

impulse at the n event).

The cost function and the trajectory constraints are coupuCed

at the positive side of the specified events, and are ther6fors
given by

F(u) - f(_ )f (VIII-,)

and

- . ,
o

o
-Vj -yj

where vf denotes the event at which the optimisation variable

is specified and vj denotes the events st vhich the dependent

variables are specified. This generality enables the prosran to

solve problens in which intermediate constraints are defined, as
•._II as problems where the cost function is not specified at the
flnml event.

(VIII-8)
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The trajectory propagator, T n, can represent either numer-

ical integration or analytical Keplerian equations.

Fundamental Concepts and Nomenclature

To facilitate the discussion of the proJ_cted gradient algo-

rithm, the followin& nomenclature and basic ccncepts will be in-

troduced.

Area] k-dimensional Euclidean vector space is denoted by

Rk and x denotes a column matrix whose elements are

xi, where i - 1, 2, ..., k. the vector inequality x _ 0 im-

plies x i _ 0 for each i, and A _ denotes the transpose of the

real matrix A.

The cost &radient is an m-vector of partial derivatives de-

noted as V__F or _F/_, and is defined as

The gradient to the i th constraint is similarly represented.

The Jacobian matrix of the constraint vector function with

respect to the independent variabl_ S s a matrix whose i th row is

the &radient vector Vc i. This matrix is denoted as

_c

j(_) = _---_

and contains n rows and m columns. Clearly,

VIII-4

(VIII-9)

(Vlll-lO)
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The jth constraint is sald to be active at u If and onl_ if

a) cj(_) < O, (VIII-12)

An active constraint is sald to be unconstralnlns If and only if

b) cj(u) = Oand._ rj - I(SS')-I SK]j _< O. (VIII-13)

CondiTion a) _nplles that the jth constraint is either vlo-

lated at u, while b) indicates that the negative of the cost

function gradient "points" outside the feasible raBlon.

The se_itivity _tr_z is that matrix v hose rays are the

gradients to the active constraints, and is denoted by

_e

s(u_) - T6' (WiI-14)

where • Is the n -vector of active constraints. Equality con-

straints are always active and thus are loaded Into the upper

elements of the e. Thus, e is essentlally the error rester
for the active constraints. The error funotion is defined to be

E(u) - e_'_e. (rill-15)

The sensitivity matrix, S, Is obtained from the Jacoblan
matrix, J, simply by dsletln s those rows that correspond to
inactive constraints.

Corrsspondln S to each constraint function

bour_z_ hypereurfaoe, BI, defined by

Bi " lu:cl(u_),. OI.

ci(u) is s

(VIII-16)

Cl_rly, Bi is an m-1 d_ansional nonlinear manifold. It can,

hovsver, be approximated at _ch point 0 in Rm by sn m-1
d_nensional linear manifold

L.- o_)÷o,(E).0} (VIII-17)
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The feasible region for the I th inequality constraint Is the

half-space in the independent-variable space _.efined by the set

Ri. >_

while the complete feasible resion for all of the constraints is

(VIII-19)

The boundary of the complete f_asible region must be

n

B(R) = U (BiC_ R)

i:l

(VIII-20)

The intersection in the preceding equation is required to select

from the unbounded boundary, B i, of the feazible region of the

i th constraint that portion which is adjacent to the feasible

:egion, R, for all of the constraints.

At any particular 0 c R m it is useful to define the loll

bo_az_ hypersurface, B(__), to the complete feasible region as

the intersection of the active constraints at _. Let N(__)

denote the set of indices of the fi tight constraints at ft.
e

Then, symbolically,

S_) " A Si

Clearly B(_) is an m- k dinmnstonal nonlinear manifold in the
a

m-dimensional independent variable space.

(W11-21)

/m m-k dimensional linear manifold C(___) approximating
e

is the intersection of the active iinoarized constraints at

that is,

VIII-6



-{u:s_)_-_)+ -_(_O=0_}

.ow Zet _(Q_)
to the active constraints; that is,

(VIII-221

(VIII-23;

denote the linear space spanned by the gradients

a i'l

and let Q(_6) denote the orthogonal complement to Q(_) ; that

(VIII-24)

e= . Q(a) G) _(__). (VLII-25)

It can be shown that Q(_) is the unique linear space that can

be translated to obtain the linear manifold C(_).

Furthermore there exist unique orthogonal projection oper-

ators P(_) and _(6) that resolve any vector in the independent-

variable space into Its correspondin 8 components in Q(_) arid

• _ RmQ(_), respectively, that is, for any u c

= P(_)u + P(a_.)a, (Vln-26)

where

P(_)_ L Q(_u) and _(_)u c Q(_). (Vlii-27)

In particular,

= s'(ss') -1 s (Vlii-28)

and

P = I - P. (vi11-29)

VIII-7
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An additional concept is the idea of problem scaling. The

purpose of problem scaling is to increase the efficiency of the

targeting/optimization algorithms by transforming the original

problem into an equivalent problem that is numerically easier to

solve.

To numerically scale a problem, two general types of scaling

are required: (1) independent-variable scaling, and (2) dependent-

variable scaling. Independent-variable scaling is accomplished

by defining a positive diagonal scaling matrix, Wu, such that,

the weighted _ndependent var_c_les are given by

tl m u. (VIII-30)

Simu!arly, dependent-varlable weighting is accomplished by

defining an optimizaclon-varlable scale factor, W F, and a

positive, diagonal, dependent-varlable scaling matrix, W , such

that the weighted optimization variable is e

P1 = WFF(_) (VIII-31)

and the weighted dependent wariabZes are given by

yielding a :_ei,jh_c,i crrar r'z_n:_::wn

(VIII-32)

% 'L

P2 = e'e (_). (VIII-33)

The program concalns several options for computing the in-

dependent-variable weighting matrix. However, tile option most

often used is tlte percentage scaling matrix

ii Ul
(VI:[-34)
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The dependent-variable weighting matrix is always computed

as the reciprocal of the constraint tolerances, and is given by

1ii = "_i ' (vHI-35)

where c i is the tolerance for the i th constraint. The optimiza-

tion scale factor is merely ?nput so that P2 is approximately
equal to one.

For simplicity, the follo#ing discussion of the algorithm

assumes an appropriately scalec problem. However, the scaled

equations can be obtained by maL:ing the following simple sub-

stitutions:

%

u replaced by _u

F replaced by P1

%

c replaced by c

b replaced by P2

_F replaced by W F Wul VF.

The final key concept employed by PGA is the idea of a direc-

tion of search. Heuristically, the direction of search is nothing

more than a particular line in the independent-variable space

along _hich the constraint error is reduced, or along which the

cost-functlon is decreased. Ica more precise sense, the direc-

tion of search at _ is a half-ray emanating from d. Thus, for

any positive scalar, ¥, the equation

(VIII-36)

sets the limits of this half-ray and represents "movement" in the

direction _ from _. This is illustrated in figure VIII-1.

VIII-9
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I

/

u3

u2

Figure VIII-I.- Direction of Search in the

Independent-Varlable Space

If _ is a unit vector, tben y represents the actual dis-

tance "moved" in the direction _. _lis concept of direction-of-

search is particularly important since it enables the m-dlmen-
sional nonlinear programming problem to be replaced by a sequence

(hopefully finite) of one-dlmenslonal mln_nlzations. What remains
to be explained then is: (i) how to select the dlrection-of-

search; and (2) how to determine the step size in that direction.

All "direct" optimization methods employ this concept and, hence,

differ only in their answers to the two preceding questions. The

technique by wiai:h -us and Yn are selected by PGAwIII be de-

scribed in subsequent sections.

Direction of Search

The projected gradient method uses two basic search dlrec-

tions. For this discussion, they will be termed the constraint

and optimization directions, respectively. PGA proceeds by tak-

ing successive steps in one or the other of these two directions.

The computation of each of these search directions is described

below at a particular point d in the independent-varlable space
where 6 of the constraints are active.

S

Vlll-lO

I



Gonstralnt direction.- The constralm_ direction depends
critically on the number of active constraints. Three cases are

dist_nEutshed below:

1) Case 1.- If _ < m, then that _nique control correc-
a

tton A_ is sought, which solves the lineartzed con-

stralnt equation

sC__) a._ + sC__) = o_ (VIII-37)

and mlnlm/zes the length of 6u. The solutions to the

preceding vector equations define the m-_ dimensional
a

llnear manifold C(Q__),which approximates the local

boundary at _ as described in detail in the preceding

section. The desired minimum nozm correctlon, _, is

then the vector of minimum lenKth in the indepdendent-

variable space from _ to the linear manifold C(_).

Analytically, it is given as

A_ - -$'[SS']-I£(_). (vln-38)

This correction is Illustrated £n fiqure VIII-2.

The direction of search then is st_ly taken to be this

minimum-norm correction to the locally active linearized
constraints; that is,

c
•_ (__). _Q_. (VlI!-39)

_._, minimum norm C(Q), intersection of

c_rrect ton _ 1/_urised constral_

Fibre VIII-2.- Illustration of Minimuu-Noru Constraint,

Direction for _ - 2 < n - 3
e

VIII-11
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2) If _ = m, then the linearized local boundary C(_)
a

reduces to a sinsle point. Thus, there is a unique solu-
tion to the linearized constraint equations without the

additional requirement that the length of the independent-
variable correction be minimized. The ainim_un-nora cor-
rection formula then reduces to the fa_lar Newton-

l_aphson formula for solving m equations inm unknovns;

namely

_ = - S-_ _(_0). (VIII-40)

The Newton-Raphson correction is Illustrated geoaetrically
in _igure VIII-3.

_- Second linearized

_onstra/nt AQ, Newton-Raphson

_-- Third linearized _ _h correction

 :iiiii :....

linearized__ _ C(_, intersection o

constraintFirst _ lineari_d constraints

Flsure VIII-3.- Illustration of Newton-Raphson Cons_raint, Direction
for _ = a = 3

a

The direction of search is taken to be thls unique .or-

rection -;_tor satis£yin8 the linurised constraints;

that is,

- (VIII-41)

VIII-12



3) If fl > m, then C _ £S empty, since a s£amltaneous
a

soluClon of all of the llnearlzed conscralnC equaClons
does not exist, ll_ce, an entlre_y new method for choos-

ing the search direction must be devised. PGA deals
with this problem b7 seeking the unique independent-
variable correction _a that minimizes the sum of the

squares of the deviations fro= the linearized constraints.
Thus, the function

e(Au_) - Is(9.) ___+ __(Q_)jz. (VIII-42)

is mtn£Nized wlth respect co Au. Gauss demonstrated

thac the formula for this "least squares" correction is

Ao_--(s's) -z s'e_(o). (_iz_3)

Figure VIII-4 i11ustrates the least-squares corrzctlon pXz-

torlally. As in the preceding t_w cases, the search
direction is then taken to be this optim_l correction;

that iS,

S..C(_) m _. (V111--44)

Third 11neartzed _ r-- Second l£nearized

constraint __.. constraint

Fourth linearized ///___.__.._ _Q, least-squares
constraint / _'////_\_\\\\\_ L_..__ c.orrectton

cS:::;dra_niTearlzed / _F1rst llnear ized

constraint

Figure VIII-4.- Illustration of Least-Squares Constrait|t,
Direct for n - 4 > m - 3

a
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Oytimization direction.- When the number of active constraints

is less than the number of independent variables, it is then pos-

sible to reduce the nonminlmal cost-functlon. Obviously the

steepest descent direction, -_F(Q), would be the best local

search direction for reducing the cost function. Such a direc-

tion, however, would generally produce unacceptable constraint

violations. To avoid this difficulty PGA orthogonally projects

the unconstrained negative gradient, -V_F_), into a direction

parallel to the local llnearlzed constraint boundary C(_QQ). By

searching in the direction of this negatlve-projected gradient

the algorithm can guarantee that there is no further constraint

violation than that of _ for the case of linear constraints.

To calculate this direction, it is only necessary to apply to

the unconstrained negative gradient the projection operator P(_),
which maFs any vector in the independent-varlable space into its

component in Q(_)j the unique linear space that can be trans-

lated into coincidence with the linear manifold C(Q). Thus,

0

s (5) = -eCa) v_(_)

- -[z -s" (ss') -_ s(a)] ZF(a)

The direction of search for the accelerated projected gradient
method is

(VIII-45)

(VIII-46)

where

and

Hn " Hn_ I + An + Bn, where n - 2

FAx^,,'1/,,=".,

-'It "lt --n -.IL

•.- -

(V111-48)
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Figure VIII-5 illustrates the direction of the negatixe-projected

gradient for the case of a single active constraint.

Nellatlve pro_ected

xradlent at

Second |nac[ive

conatralnt

Figure V111-5 - u_rectlon of Negatlve-Projected Gradient for n - 1
• a

and m - 3 (Feasible region is that region inside

parcboloid, above lower plane, and below upper plane;

cost-function 18 vertical height)

If there are no equality constraints, and if all the ineqaality

constraints are inactive, then S is the zero matrix and the

direction of search becomes the standard deflected gradient
d_rectlon

- vv (0).-"n - - (VIII-49)

Similarly, if the single-penalty-function methodb are used,
then the directions of search that minimize

P2 = F+ Ne'e
(VII!-50)

are:

1) Steepest-descent method

0

_. (_0--Y..P2(_a);

VIii-15
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2) Conjugate gradient method (steepest-descent starter)
i

3) Davidon's method (steepest-descent starter)

o

s = -H VP 2 , where n > 2

and

Hn = Hn_ 1 + A n + B n,

where A and B have the same definitions as in the
n n

accelerated projected gradient mode.

Step-Size Calculation

At any particular point O In the independent-variable

space, the PGA algorithm proceeds by reducing the multidimen-

sional problem to a one-dimensional search along the constraint

direction to minimize the sum of the squares of the constraint

violations, or along tile optimization direction to minimize the

estimated net cost-function. In either case, once the initial

point u and tile direction ofsearcll g are specified, the prob-

lem reduces to the numerical minimization of a function of a single

variable--namely, the step size. PGA performs this numerical

minimization via polynominal interpolation, based on function

values along the search ray and the function's value and slope at

the starting point. Consider then, in detail, the calculation of

thi_ latter pair of quantities for the respective functions asso--

ciated with the con_traint and optimization directions.

Constraint direction.-The function to be minimized along

C

the cot_tl-aint diFectiou, s , is tile StlE_ of the squares of the

con.qtrailtt violations; namely

-, S C 'h<,)- )".
C

(VllW-51)

I
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h (0) = l_(_)le
c

(VIII-52)

Differentiation via the chain rule yields

hc'(O ) - 2_'(fl)S(d)s._ e. (VIII-53)

Recall that the search direction _c was obtained as an in-

dependent-varlable correction either satisfying all the llnearlzed

constraint equations if n < m, or minimizing their violation if
a --

m _ n . Thus, if the constraints are reasonably linear, a good
a

initial estimate for the _ minimizing h is one.
c

Optimization direction.- The function to be minimized along

_O
the optimization direction, s , is the estimated net cost-
function which is defined as

j
Y

change in cost-

function produced

by step of length
o

, along s

,, , J

V

llnearlzed approximation to

change in cost-functlon re-

quired to perform minimum-

norm correction back to the

feasible region

(VIII-54)

Clearly

h (0)- -V'F(Q_)S "(SS')-2(,_)e(u).
o

(VIII-S5)

By expanding h in a Taylor series in , about

O . _ nO
and by making use of the fact that p_O 0 since s

Q(_), it can be shown that

ho(O) . _v'r(a)8o. (Vlli-56)

These properties of h are illustrated in figure 25.
o
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Cost index

Estimated change /
in cost function /-

due to constraint /--

correctton_/jp--

Estimate net

cost function

I

_o (optimal step length) Change in cost

fUnction along

direction of

rch

Figure VIII-6.- Properties of Estimated Net Cost Function

Both the constraint and optimization directions are based on

a sensitivity matrix that depends critically on which constraints

are active. Hence, for searches in either direction, it is im-

portant to limit the step size so that the set of active constraints

does not grew. Such a limit can be obtained based on linear ap-

proximation and suffices to deal with inactive constraints becom-

ing active.

The reverse situation--of active constraints becoming in-

active--poses no difficulty. To see this, note that because of

our treatment of the active constraints as linear manifolds, a

first-order approximation of the distance to a particular active

constraint boundary would not change along the optimization iirec-

tion. Furthermore, along the constraint direction any change in

the status of an active constraint will be appropriately treated

by minimizing h with respect to the step length.
c

Vlll-18



Let K(_) denote the set of active constraint indices at

Q, and let

where s(_) is the search direction ac vector _. Then assign
to each k in K the number

t-Ck(_)/rk if r k < 0

_(k) /
_S if r k _ 0

where R is a very large real number. Then _(k) is a linear

approximation to the distance along the search ray from _ to

the boundary, Bk, of the kUh constraint. Hence a resonable

upper bound for the step length is

- =in [X(k)].
kcK

One-Dimensional M/nimization

Monovariant minimization in PGA is performed exclusively by

polynominal interpolation. First the actual function, f, to be
minimized is fitted with one or more quadratic or cubic poly-

nominals until a sufficiently accurate curve fit, p, is ob-

zalned; that is,

P(_') " E ai"i _f(Y) for all

i=O

y of interest.

m
Then the independent variable value, y , that minimizes f is

approximated by the value, y:, which minimizes p. Clearly,
m

y can be determined analytlcally if n < 3.
p

VIII-19
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The mlnJJalzatlon routine makes ingenious use of all the in-

fol_ation it accmaulate8 about f to obtain a good curve fit.

First, f is fitted with a quadratic polynomlual, Pl, based

on:

1) f(o)

2_ f'(O)

y value that ai_tmizes f.

The coefficients of thi8 quadratic polynominal are then calcu-
lated from the formulas:

as - f(o)

el = f'(O)

/.a 2 - - a Yo + al Yo"

The valua of the independent varLabla that minimizes this poly-
nominal is

(VIII-61)

m
YI " -al/282" (VIII-62)

m m
If Yl end y_ do not differ significantly, y is taken

to be ¥_ and the minimisation precodure is considered complete.

S_milarly, if Pi(Y_) is not 8ianificantly different from

_.{_). ,,.. _" ,. ,._.o,o_..q_, ,o _ ..d,,. ,oo...
termlnatnd. Otherviaa f is fitted with a cubic polynominal,

P2, based on

_ f(o)

2) f'(o)

,) , (,?).

VIII-20



If f is fir.ted using P2,

from the followin 8 formulas:

ao " f(o)

then cosfflclents are calculated

al = f'(O)

(m m)= max 0171

a = m4n Y0,Y1

a2 = [Xa 1 a ÷ a 0 (1.+ a) ÷ (_2 f(X) - f(aX))/(1 - =)]/(Z3o¢2)

a 3 = [(f(o=X) ,.- ot3f(X))/(l - oO,-Xo=(1 + oOal-(1 + o=- c_Z)ao]/(Xzot 2)

The value of the independent variable, X_,- that minimizes this

cubic polynomial is

m -a2 _a 1"V'2= + - 2a / 3a 3.

If 72 and ¥_ 0.o not differ slgniflcantly, y is taken

to be 72 and the n_niu_Lzation is stopped. Similarly, if P2

('tis not significantly different fro= f 72 , then 7 is taken

to be equal to ym2 and the procedure is terminated.

If none of these stopping conditions is met, a third quad-
ratic curve-fit £s attempted. The accumulated set of ea_le

,o,., o.:,...=.,, ,o.,co 3. [,T.,(,T)I.and
/_ I _/ L " -J = "

[72, f_Z) l' is arranged in the order of their ascendln'$ abscissa
values. Then the first point whoseordlnate value is lass than

that of the following point is selected.

To si_q_lify the notation in the following passe , relable this

point as [Y2, f(Y2)], the preceding point as [Yl, f(71)], and
the followlng point as [¥3, f(Y3)].

VIII-21
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Another quadratic polynomial, P3, is then fitted to

i

2) f(x2)

3) f(_ .).

The formulas for these quadratic coefficients are as follows:

blj = YtYj

Clj = 7 i + Yj

dtj - Vi - Yj

b23

a 0 = d12d13 f(_l) +--

c23
al = f(_l)

d12d13

1
" f(_i) +

a2 d12d13

b13 b12

d21d23 f(Y2) +--f(Y3)d31d32

c13 C12

d21d23 f(Y2) d31d32 f(Y3)

i f(Y2) + 1 f(Y3).
d21d23 d31d32

(VIII-65)

The value of the independent variable that mtn_mizes this quad-
ratic is

.s
'Y3 = -oi/2a2. (VIII-66)

m m

If Y3 and y2 do not differ significantly, 7m is taken
m

to be Y3 and the search is discontinued. On the other hand, if

P3 _) Is not slgnl,lcantly different from f(y_), then y"

is taken to be _) end the process is teralnated.

If neither of those stoppin i conditions is mat, than a cubic
polynomial Is fitted to

8
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The formulas for these coefficients are as fQllows:

D1 = (Y2 - Y1)(Y3 - X1)(Y4 - Y1)

D3 " (71 - 73)(72 - "Y3)(Y4 - 73)

D4 " (YI - Y_)(Y3 - Y,_)(Y3- Y,_)

Y2Y374 YIT3Y_ YiY2Yh YIY2Y3

a0 " DI f(Yl) + D2 f(Y2) + D3 f(Y3) +

Y273 + Y274 + Y3_4

D_
f(Yw)

(YIY_ + YI lq + Y473)

al = DI f(Y1) + D2 f(Y_.)

(YIY2 + YIYW + "Y2Y4) (YI'Y2 + YIY3 + Y2Y3)

+ D3 f(Y3) + i)4 f(Y_)

(Y2 + Y3 + YW) (Y1 + Y3 + Y4)

a2 " DI f(Yl) + D2 f(Y2)

(YI + Y2 + _Y4) (YI + Y2 + Yw)

+ f(Y3) 4-
D 3 DW

f(x_,)

1 1 1 1

a3 " - D"_ f(Y1) - _2 f(Y2) - _33 f(Y3) - _4 f(Y_)"

The value of the indpendent varlable minimizing chls fourth cubic

polynomlal is

YW " (-a2 - 3a3al)/3a3.

(VIII-67)

(VIII-68)

VIII-23
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4:

_j

m m
If ¥_ and ¥_ do not differ significantly, y is taken

to be 7_ and the minimization is stcpped. SLmilarly, if

P_(7_) Is not significantly different from f(7_), then 7m

m
is taken to be equal to 7_ and the procedure is terminated.

If none of these stopping conditions is met, the accumulated

set of sample points is searched for the point with the minimum

ordinate value. The abscissa value of chic poiu_ _s taken to be
m

7 , and the minimization is considered complete.

Algoritl_n _acrologic

After being initialized the projected gradient algorithm
proceeds as a sequence of iterations, each consisting of an op-

timization step followed by a constraint-correction step (see
fig. VIII-7). The very first step from the user's initial Independ-

ent-variable estimate is however, one of constraint correction.

Furthermore, the optimization step is also omitted on any Itera-

tion for which the constralnt-violatlon function, hc, was not

reduced by the constraint correction step of the preceding itera-

tion.

The optimization search direction that emanafes for

based on the sensitivity matrix, S{Un_;_! that Is,

s° = = -P[F , (VIII-69)
--n

as discussed previously. Hence, -_s° lles In the subspace Q(_n)"

o

The value of the independent-variable vector, u, after

the optimization is

o . u + yo s__°, (VIII-70)Un --n

where v ° is the optimum step size.

Vlii-24
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The direction of the constraint-correction search emanates
o

from u ; however, since generating a new sensitivity matrix
-11

is such an expensive calculation, the old Jacoblan matrix, J,

of the constraints with respect to the controls evaluated at

O
u is used in conjunction with the error at u . Thus,
-11 --n

s = -s'(ss')-I--n _e . (VIIl-71)

It can be shown by direct computation that

where

m S
--11

P_u _ is based on S . Thus, Sn

space Q(u) i_ the Independent-variable space.

Since Q(_n} and Q are orthogonal complements, it

follows vhat the optimization and constraint directions for any

iteration are exactly orthogonal; that is,

(o).os " O.

(VIII-72)

(VIII-73)

The result of the constraint correction step is then the Inde-
pendent-variable vector for the next iteration. Thus

O C

"u-- +Yc ' (VIII-/4)

Figure VIII-8 geometrically illustrates a cumplete PGA iteration.
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/--Plane determined by

_ gradient to the cost

[ _ / function and the gradient
Unconstrained gradient ] _ to the active constraint
of cost function, VF(u)--_

-- IX _._%_-- Rlni_m-norm constraint

Gradient to Cj,_._._._....._.-_IA step, ,_

vcjCa) o,
I1 X_'_----_ SOle active

i/,-----_ _ \1 _ Soleactivenonlinear

k_f_-'--"'_ / L ,roJect:dgradie_°nstralnt'CJ

optimization step, Yo so-11

Figure Vlll-8.- Complete PGA Iteration, Consisting of Optlmlzatlon

Step Followed by Constraint Step for na = 1 and

m TM 3 (Feaslble region is the unbounded region
below the indicated nonllnear constraint manlfold)

Finally, the algorithm has two stopping conditions. First,

the search is stopped if the change in the cost function and the

change in the length of the independent-variable vector between
two successive iterations fall below their respective input

tolerances; that is, if

I__l - _1 < _2.

Second, the procedure is discontinued if the number of the cur-
rent iteration equals the m_,.imum permissible number input by
the user.

Vlii-27
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APPENDIX A

DECOMPOSITION BY PARTITIONING INTO FULL-RANK SUBPROBLE_S

Consider a trajectory consisting of s mission segments each of

which may consist of one or more phases. Suppose that each seg-
k

ment has its own physical control vector, u , containing mk com-
k

ponents and its own constraint vector _ having nk components.

Let vk be the target value of the constraint vector for segment

k. Finally, suppose there are n constraints Ci, which are best

associated with the mission as a whole rather than any particular

segment. Let V i denote the t_rget values of these constraints.

The problem is then

minimize :

subject to:

k k
v i = Ci

k

S

k-1

for k-l,...,s

for i=l,...,n k

for i=l,...,n.

When numerous segments are present with varying degrees of in-

fluence on the overall objective, F, solution of problem [1] in

a single piece by means of any existing equality-constraint
minimization procedure becomes impractical if not /mpoeslble.

By solving coordinated sets of subproblems representing the in-

dividual soEments_ the decomposition procedure is able to solve

problem [i] routLnely. The decomposition technique thus 5oth
imitates and extends the intuitive approach of the experienced

traJecto-y designer.

[z]

| |

The notation _ denotes the ordered union of the indexed q-lantity

_'1

immedlately to its risht. A-Z
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The process of decomposing a problem by partitioning it Into full-

rank subproblems is based upon two fundamental ploys. The first

is the use in each segment of certain key control variables to

satisfy the constraints of that segment. Thus segment k is made

into a full-rank subproblem by designating n k of the physical con-

trol vector components as subproblem variables and using them

to satisfy the n k constraints of that segment. The remaining

control vector components of segment k are grouped together with

similar variables from the other segments. This collection of

controls_ together wlth the overall mission objective, F, and

constraints, C, are made into a master problem of minimization

subject to equallty constraints. This partitioning of the orig-

inal problem lends itself well to computation. The subproblems,
which must be re-solved for each new choice of master problem

controls, are solved by the highly efficient Newton-Raphson pro-

cedure. The master-problem, which serves to coordinate the sub-

problem solutions, uses the equally efficient but more time-con-

suming accelerated projected-gradient algorithm.

The second fundamental ploy is use of constraint target values

of the various subproblems as master-problem independent variables.

To obtain an optimum composite trajectory from a set of mission

segments, the mission analyst typically varies the segment aim

points parametrically and chooses the endpoint combination that

results in the lowest overall cost. Indeed, in trajectory

analysis the decision "where _o go" is usually more important

than "how to get there." By using subproblem constraint targets

as master-problem controls the decomposition procedure automates

the analyst's successful design approach.

The successful convergence of the decomposition procedure demands

a reasonable partitioning of the original controls and constraints

into the master-problem and subproblem categories. To be more

preclse, the subpro_lem controls and constraints must be so chosen

that each subproblem will have a solution for any sat of subproblem

constraint target values that might reasonably arise duclng the

master-problem iteration process. Thus, for a given subproblem,

the controls that have the most substantial effect on that subprob-

lem's constraint set should be chosen• Similarly if a particular

constraint cannot be assigned to any subproblem whose controls

can achieve its satisfaction, it should be designated a master-

problem constraint. Finally, the number of master-problem con-

_tr_tins should be held to a minimum. Indeed the master-problem

should be kept as simple as possible b6cause each of its iterations

requires the re-_olutlon of all the subproblems.
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The decomposition procedure maintains simulation flexibility in

obtaining master-problem control sensitivity information by using

numerical differencing. Solution of the master-problem by descent

requires constrained derivatives--quotients of dependent perturba-

tions £n the master-problem objectives and constraints by inde-

pendent perturbations in the master-problem controls assuming that

the subproblem controls adjust uniquely to keep the subproblem

targeted. These derivatives could be approximated by the numerical

differencing of master-problem trajectories consisting of iterative-

ly targeted subproblems. This approach, however, must be rejected

because it is both susceptible to numerical error and demanding

in computational effort. Instead formulas are used that relate

the constrained derivatives to the partial derivatives of the

master-problem objective and constraints with respect to all of

the Dhyslcal controls of the original problem. These partial

derivatives are approximated conveniently by numercial differ-

encing of the master-problem trajectories without subproblem

targeting. Thus, the need for deriving variational equations

for each simulated trajectory is eliminated for a reasonable

computational price. Any trajectory that can be simulated, can

be shaped with _o additional analytical effort.

To precisely define the procedure, considerable nomenclature

must be established. Most of the user supplied parameters have

already been defined. Two, however, remain. The first is Pk'

the number of subproblem constraint target values from segment

k which are to be used as master-problem independent variables.

The second is qk' the number of master-problem constraints arls-

ing from segment k.

Consider next the procedure's working variables. To simplify

notation, the subproblem and master-problem controls are given

k

distinct literal s_bols and resequenced. Indeed, let yj denote

k

the jth subpr>blem control arising from segment k and zj be the

J th master-problem control from that segment. Similarly, the

segment constraint target values are assigned new symbols to

dlstlngulsh those that are to be held fized from those that are

to be used as ma_ter-problem independent variables. Indeed, let

k
r i denote the ith constraint target value from segment k that

k

is to be used as a master-problem independent variable, and t i ,

the ith constraint target value to be held fixed for that segment.

Finally, the master-problem constraint vector is resequenced so

that its first ql components denoted by _1 arise from the first

subproblem, and the next q2 components denoted by C2 arise from

the second subproblem, and so forth. In terms of this new nota-

tion, the original problem [I] becomes

!
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subject to:

for _,.1,...,s

where:

k
i is a master-problem independent variable

k
is a master-problem independent variable

r_k U _ is the unique vector of subproblem independent

Lk=l
variables for subproblem k, satisfying that subproblem's constraint

set for the current set of master-problem independent variables.

To solve problem [2], a procedure must first be established for

solving the subproblems, that is, for determining the unique
k k k

Z given the ! and z-. As noted above, the Newton-Raphson

algorithm for solving full-rank systems of nonlinear equations

is the technique selected. To start the Iterative solution, the

user must input a good estimate, (Zk)o' for the physlcal-control

vector of subproblem k, which approximately yield the constraint

target values for that subproblem. The procedure, then, succes-
sively refines this estimate using the Newton-Raphson recursion
formula

where

ac k

k = for _=l,...,S

_Z for k'l,...,_

)[2]

[3]

[4]
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After the first set of subproblems are solved, the converged sub-

problem control values from one subproblem set are used as the

starting estimates for the next subproblem set. Further, the

Jacobian matrix; Akk, is updated from one iteration to the next

only if the old Jacobian does not reduce the constraint errors

in norm by a user specified fraction, p.

The equality constrained minimization that is the master-problem

is carried out by the projected gradient algorithm already familiar

to POST users. The only new technique involved is the computa-

tion of the constrained derivatives in terms of the partial

derivatives of the master-problem objective and constraints with

respect to all of the physical controls of the original problem.

First, the perturbation of the eubproblem independent variables

caused by perturbations in the master-problem independent vari-

ables must be determined. Bo_h master-problem physical con-

trois and subproblem constraint target values must be consid-

ered. Once th_se constrained derivatives of the subproblem

independent variables are determined, they can be used to

calculate the desired constrained oerivaclves of Che master-

problem objective and constraints with respect to all of the

master-problem independent variables.

The constrained derivatives of the subproblem controls are all

derived from the basic subproblem equation

_-I £

k=i k=l

for 9.=l,...,s

where

_c_

B_k = -- for _=l,...,s.

_zk for k=l,...,_

The constrained derivatives with respect to the nmster-problem

physical controls are given by the equation

t 1
--_zk = - A + o=k A P° dzk]_ for k=l,...,_.
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The constrained _eriv_tives with respect to the subproblem con-

straint target values are computed from the two formulas

k

_Z ()I- E Pk-----_ = A kk
_r _

for k=l,... ,s

Pk

where ERR is the matrix consisting of the first Pk

the identity matrix of order n k,

columns of

The constrained derivatives of the master-problem objective with

respect to both the master-problem physical controls and the sub-

problem constraint target values follow from the "chaln-rule" for

differentiation. They are computed as

and

where

and

IS]
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Finally, the constrained derivatives of the _aster-problem con--

straints with respect to the master-problem pl_ysical controls

and the subproblem constraint target values follow from a stra_Lght-

f*rward application of the "chain rul_." They are related to the

appropriate partial derivatives by the equations

6Cf D_k + _ G_O _ for 4--1,.... s
Czk = 6zk for k=l,...,_'

o=k -

and

[14]

-- =_ G_o _ for _=l,...,s
6r k 6rk for k=l,...,_'

ozk

where

D ek _ t for _=l,...,s
0$

_z k for k÷l,...,_

and

bC_ for t=l,...,s

G _'k -- -- for k=l,...,_"

[15]

[16]
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