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FOREWORD

This final report describing the formulation of the Program
to Optimize Simulated Trejectories (POST) is provided ia accord-
ance with Part IV of NASA Contract NAS1-13611. The report is
presented in three volumes. as follows:

Volume I - Prograa to Optimize Simulated Trajectories -
Formulation Manualj;

Volum II =~ Program to Uptimize Simulated Trajectories -
Utilization Manualj;

Volume III - Program to Optimize Simulated Trajectories -
Programmer's Manual.

This work was conducted under the direction of Joseph Rehder of
the Space Systems Division, National Aeronautics and Space
Administration, Langley Research Center.
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FINAL REPORT
PROGRAM TO OPTIMIZE SIMULATED TRAJECTORIES (POST)

VOLUME 1 - FORMULATION MANUAL

By G. L. Brauer, D. E. Cornick, A. R. Habeger,
F. M. Petersen, and R. Stevenson
Martin Marietta Corporation

SUMNARY

This report documents the equations and the numerical tech-

?1que§ used in the Program to Optimize Sinulated Trajectories
POST).

POST, a generalized point mass, discrete parameter targeting
and optimization program, provides the capability to target and
optimize point mass trajectories for a powered or unpowered
vehicle operating near a rotating oblate planet. POST has been
used successfully to solve a wide variety of atmospheric flight
mechanics and orbital transfer problems. The generality of the
program is evidenced by its M-phase simulation capability, which
features generalized planet and vehicle models. This flexible
simulation capability is augmented by an efficient discrete
parameter optimization capability that includes equality and
inequality constraints.

POST was originally written in FORTRAN IV for the CDC 6000
series computers. Huwever, it is also operational on the IBM
370 and the UNIVAC 1108 computers.

Other volumes in the final report are:

Volume I! - Utilization Manual - Documents information
pertinent to users of the program. It describes the
input required and output available for each of the
trajectory and targeting/optimization options.

Volume III - Programers Manual - Documents the program

structure and logic, subroutine descriptions, and other
pertinent programing infurmation.

vi
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POST is a general purpose FORTRAN program for simulating and
optimizing point mass trajectories of aerospace type vehicles.

The program can be used to solve a wide variety of performance

and mission analysis problems for atmospheric and orbital vehicles.

One of the key features of POST is an easy to use NAMELIST~-

type input procedure.

This feature significantly reduces input

- For example, typical applications of POST are outlined in Table
I-1.
i Table I-1. ~ Typical Applications of POST
. 1 -
-t . CPU Time Required
Type of Optimization f}"‘c“l Constraints to Solve Problems,
Hission Type of Vehicle Varisbles Zquality Inequality uin
Ascent to Titen I1IC & D4E, Space| Payload, Weight at Redins Dynasic Pressure| 2 + 20
Near-Earth | Shuttle, Single Stage Burnout Fuel, Burntime, | Plight Path /ngle| Acceleratioans
Orbit to Orbit (VIO send HTO) | ldeal Velocity, Velocity
Inicial Weight
-
’ Ascent to Titen 11IC, Shuttle/ Payload Apoges Dynamic Pressure{ 3 + 50
Synchronous | Tug Terigee Angle of Attack
Equatorisl Iaciination Fitch Rates
Orbit
Ascent Space Shuttle Abort Interval Landing Site Acceleration 2+5
Abort Longitude and Dynamic Pressure
Latitude
1caM Tites 1I, Payload Letictude Flight Path 2 - 2Q
Ballistic Misutemen I & II, Misc Distance Longitude Angle st Bntry
Missile Sefeguard Crossrange Accelerction
lLownrange during Entry
Reentry Space Shuttle, X-24C, Heat Rate iatitude Heat Rate 3-+15
Single Stage to Orbit Total Heat | Longitude Acceleration
Crossrange | Crossrange
[ Downyan ze
Orbital Transtage, Payload i tadive Attitude Angles | 0.5 + 10
Meneuvers Space Tug, 1US, Puel Ye! ity Pariges Altitude
Solav Llectrical tisght Path Angle
Propuletion At ument of
Parigee Perind
iLpogee, Perigee
Afrecafe X-243 samd C, Space Mach Number Dowvnrange Dynamic Pressure | 0.1 + 5
Perforuance | Shuttle Subscale, Cruise Tims Crossrange
Subsonic Paylosd Dynemic Pressure | Dymsmic Pressure
Jet Cruise, Nypersomic Velocity end at Max Alticude
Bombers and Mech Altitude
Interceptors

large amount of input data.

deck set-up time (and costs) for studies that require the normsl

In addition, the general applicability
of POST is further enhanced by a general-purpose discrete paramster
targeting and optiwmization capability.
used to solve a broad spectrum of problems related to the per-
formance characteristics of aerospace vehicles.

This capability .an be

The basic simulation flexibility is achieved by decomposing

the trajectory into a logical sequence of simulation segments.

I-1




These trajectory segments, referred to as phases, enable the tra--
jectory analyst to model both the physical and the nonphysical
aspects of the simulation accurately and efficiently. By segment-
ing the mission into phases, each phase can be modeled and simu-
jated in a manner most appropriate to that particular flight regime.
For example, the planet model, the vehicle model, and the simula-
tion options can be changed in any phase to be compatible with the
level of detail required in that phase.

Every computational routine in the program can be categorized
according to five basic functional elements. These elements are:
the planet model, the vehicle model, the trajectory simulation
model, the auxiliary calculatioms module, and the targeting and
optimization module. The planet model is composed of an oblate
spheroid model, a gravitational modei, an atmosphere model, and
a winds model., These models define the environment in which the
vehicle operates. The vehicle model comprises mass properties,
propulsion, aerodynamics and aeroheating and a navigation and
guidance model. These models define the basic vehicle gimulation
characteristics. The trajectory simulation models are the event-
sequencing module that controls the program cycling, table inter-
polation routines, and several standard numerical integration
techniques. These models are used in numerically solving the
translational and rotational equations of motion. The auxiliary
calculations module provides for a wide variety of output calcu-
lations. For example, conic parameters, range calculations, and
tracking data are among the many output variables computed. The
targeting and optimization module provides a general discrete
parameter iteration capability. The user can select the ootimiza-
tion variable, the dependent variables, and the independent vari-
ables from a list of more than 400 program variables. An accel-
erated projected gradient algorithm is used as the basic optimiza-
tion technique. This algorithm is a combination of Rosen's pro-
jection method for nonlinear programming and Davidon's variable
metric method for unconstrainted optimization. In the targeting
mode, the minimum norm algorithm is used to satisfy the trajectory
constraints. The cost and constraint gradieats required by these
algorithms are computed as first differences calculated from
perturbed trajectories. To reduce the costs of calculating
numerical sensitivities, only that portion of the trajectory in-
fluenced by any particular independent variable is reintegrated
on the perturbed runs. This feature saves a significent amount
of computer time when targeting and optimization is performed.

POST is operational on several computer systems as described
in the tabulatiom.

S
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e

Location Computer Operating System

Martin Mariette Corporation | CDC 6400, 6500 | SCOPE 3.4.1
Denver, Colorado

Martin Marietta Corporation | UNIVAC 1110 EXEC 8
Michoud, Louisiana

Langley Research Center CDC 6600 SCOPE 3.2
Hampton, Virginia

Johnson Spacecraft Center UNIVAC 1108 EXEC 8
Houston, Texas

Goddard Spaceflight Center IBM 370-192 os
Greenbelt, Maryland

Marshall Spaceflight Center | UNIVAC 1108 EXEC 2

Huntsville, Alabama

Basic program macrologic is outlined in figure I-1, which
illustrates the linkage between the simulation and the iteration
modules.

1-3




' §
Read card
input data - f :

B ( Search/ \ Yes . i
tion?
—] optimization ’ ‘ ‘

| No g — — —— Integrate
| Read Input data | nominal
| for the current {_‘——-'—’ trajectory
l hase N
. | ) D B |
| l Yes Convergence |
nitialize equations | ; ?
! tests met?
! of motion for curreat | |
| phase | | Lo |
| 1! I
I l-J--——- [ Inteprate perturbed l
| Integrate equations [ trajectories for l
of motion for current r-r-—« Sensitivity matrix
l {ntegration interval b |
| . ! ; |
! ! ompute directio |
| il
w | Perform 1 of search | ]
i auxiliary 1 !
calculations i
{ [
! ! | Run trial step |
{ b trajectories i
1 Compute intepration | .
| interval for next step || |
| . |
| | i pdate
1 o b independent |
ble |
l H
] ‘ l !
1 (R Print iteration |
! ' summary | .
1 |
: s — |
! |
: : | Target ing Optimization Logic | '
h ) : | "
[}
| Trajectory Simulation Logic | .
e — - _._._.._._t._.___ -

Figure I-1.- Program Macrologic
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11.
Math symbol
a
AA
A

Ayp ™ (Aaxe® Aave’ Aazs)

[AB]

Agy = (Asxa® Asyp® Asz)
Ag; = (Asxr Asvre Asz1)

An * (Ao s’ Ara)

LIST OF SYMBOLS AND ABBREVIATIONS

Internal Fortran symbol

Definicion

SEMJAX

AR

AHORIZ

AXIT, AYIT, AZIT

AMXB, AMYB, AMZB

A(I)

ASM

AXB, AYB, AZB

ASX1, ASYI, ASiI

semimajor axis, m (ft)

comrorient of radius vector
perpendicular to Sun vector,
w (ft)

aerodynamic acceleration

in the body frame, mps?

(fps?) i
matrix transiormation from

the A-frame to the B-frame 3
centrifugal acceleration,
wps? (fps?) 1 '

nozzle exit area of each
rocket engine, m? (ft2)

i

horizuntal acceleration,
wps? (fps?)

e

accleration of target
vehicle in the (ECI) frame,

mps? (fps?)

-
il b

constants

totcl asrodynamic moment
about the roll, pitch, yaw
axes, N-a (ft-1b)

Davidon deflsction matrix
component

total sensed acceleration,
wps2 (fpa?)

total ssnsed acceleration
in the body frame, mps?
(fps?)

total sensed acceleration
in the inertial frame,
wps? (fps?)

thrust acceleration in the
body frame, mps? (fps?)

11-1
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Math s ol

A
Arpr Azrr Aza

Az

YA

Cor G
G &

I1-2

Internal Fortran symbol

Definition

AVERT

AZL

AZVELI, AZVELR,

AZVELA

AZWT

TKAZMI

CL

vertical acceleration,
mps? (fps?)

azimuth of the 2 axis,
rad (deg)

azimuth of the inertial,
relative, and atmospheric
relative velocity vectors,
rad (deg)

wind azimuth, rad (deg)

azimuth of the slant range
vector to the tracking
station, rad (deg)

boundary for 1th con~
straint

Davidon deflection matrix
boundary of region R

local boundary hypet -
surface

axial, side force, and
normal aerodynamic force
coefficients

component of CA’ Cy, CN

that is not multiplied
by a mnemonic multiplier

drag and lift coefficients

drag and 1ift coefficient
components that are not
multiplied by a mnemonic
varisble

TR SUN SORMIDPEE

et AL




(E)
2
€= (%0 %1 %2 e3)

jme

{r

LI F

(Faxa® Fave® Fazs)

F

Erg = (Frxa® Frvpe T

'rzn)
[GA]

GHA, GHAS

S = (Sxr» Sy1* Cz1)

Internal Fortran symbol

o st 7 PR, S —.. A

Definition

Cd4, W

Cs

E(I)
DRAG

ECCAN

ECCEN

E@(I)

E(1)

WE(L)

gPTVAR

FAXB, FAYB, FAZB

FTXB, FIYB, FTZB

GA(I)

GHA, GHAS

GXI, GY1, GZI

pitch and yaw moment co-~
efficients

speed of sound, mps (fps)

constraint functions
aerodynamic drag, N (1b)
eccentric anomaly

Euler parameter matrix
eccentricity

Euler parameters

active constraint error
vector.

weighted error vector

optimization function

nonlinear vector-valued
function

aerodynauic forces in the
body frame, N (1b)

thrust forces in the body
frame, N (1b)

matrix transformation from
the G-frame to the A-frame

Greenwich hour angle and
Greenwich hour angle of Sun,
rad (deg)

total gravitational
acceleration in the ECI--
frame, mps? (fps?)
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Math symbol

I » @

2 h
t‘a’ P

Hy

(1B)

(1G]

11-4

Internal Fortran symbol

Definition

= ("r> Pyr» Py

DG(I)

ALTIT@
ANGMIM

ALTA, ALTP

HB

P2

HT

TRKHTI

PINET

INC

IB(I)

IG(1)

N

difference in the gradient
vector VF between the cur-
rent and previous itera-
tion

gravitational constant
oblate altitude, m (ft)

angular momentum, mpsz
(fps?)

altitude of apogee and
perigee, km (n mi)

base altitude used in
atmospheric calculations,
m (ft)

constraint function

geopotential altitude, m
(ft)

heating ratios

altitude of tracker, m

(ft)

estimated rnet cost func-
tion

relative~frame orbital
inclination, rad (deg)

matrix transformation from
the ECI-frams to the body
frame

matrix transformation from
the ECI-frame to the gen-
graphic frame




Math symbol Internal Fortran symbeol Definition

' [1L] IL(I) matrix transformation from
the ECI-frame to the
] launch frame
N -

[1P] IP(I) matrix transformation from
the ECI-frame to the
planet frame

s Isp ISPV rocket specific impulse,
4
[J] AC¢B(J) constraint Jacobian matrix
- 32’ J3, J& J2, J3, J4 gravitational constants
k= (kl, kys kg, ka) ~—- Runge-Kutta constants

l(i —-—— constants

L LIFT aerodynamic 1lift, N (1b)

{LB] LB(1) matrix transformation
from the launch frame to
the body frame

L LREF aerodynamic reference
length, m (ft)

M MACH Mach number

M MEAN mean anomaly, rad (dag)

M — pitch and vaw moment equa-
tions

. m MASS vehicle mass, kg (slug)

Mf - mnemonic table multiplier
for table f

n, NAC number of active con-
straints

11-5
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Math symbol

a
c

(p], [P

p(h)

Qlam’ Qturb

Q(a), q(w

11-6

Internal Fortran symbol

Definition

NDEPV

PRAJ (1)

PRES

Pl

P2

TLHEAT

DYNP

HEATRT, HTURB

RTASC

APGRAD

RB(I)

DPRNG1

P

number of constraints

projection operators used
in the projected gradient
method

atmospheric pressure,
N/m? (psf)

weighted optimization
variable

weighted constraint error
funciion

total heat, J/m? (Btu/ft?)

dynamic pressure, N/m?
(1b/ft2?)

laminar and turbulent heat
rate, W/m?/s (Btu/ft?/s)

lirear manifold and its
orthogonal complement

right ascension of out-
going asymptote, rad (deg)

apogee radius, m (ft)

matrix transformetion from
the body reference frame
to the body frane

dot-product range, km
(n mi)

equatorial and polar
radiua, m (f.)

nose radius, m (ft)
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Math symbol

‘Lﬂ
-]

H‘Lﬂ
4 g

"

ref

Internal Fortran symbol

Definition

REYN@
XI, YI, 21

GCRAD
XIT, YIT, ZIT

PGERAL

RS

XVE, YVE, ZVE

S(I)

SHADF

SL@S1J

SREF

ATEM

TIME

Reynolds number

inertial radius vector
from center of planet to
the vehicle, m (ft)

geocentric radius, m (ft)

radius vector to target
vehicle, m (ft)

perigee radius, m (ft)

radius to oblate surface,
n (ft)

slant range vector, m (ft)

slant range vector in geo-
graphic frame, m (ft)

radius vector to tracking
station, m (ft)

Radius vector of vehicle in
vernal equinox system, m (ft)

direction of search

direction of search to
satisfy the constraints

shadow funetion, m (ft)

space losses for tracking
stations, dB

aerodynamic reference
area, m? (ft?)

direction of search for
optimization

atmospheric temperature,
Ox (.r)

time, s

jet engine thrust, N (1b)

11-7




Internal Fortran sywuol
TT™MYB

TTMZB

TMYB

TMZB

- o

THRUST

TVAC

TIMSP

TIMIP

u(1)

Definition

total thrust moment for
nontrimming engines in the
pitch plane, body axis
system, N-m (ft-1b)

total thrust moment for
trimming engines in the

pitch planeybody axis

system, N-m (ft-1b) .

total thrust moment in the ,
yaw plane for nontrimming 1
engines, body axis system,
N-m (ft-1b)

total thrust moment in the
yaw plane for the trimming
engines, body axis system,
N-m (ft-1b)

denotes at? order table |
interpolation on the |
variable y i

total rocket thrust for
all engines, N (1b)

total resultant rocket
thrust for engine i, N
(1)

vacuum thrust for rocket
engines, N (1b)

time since perigee pas-
sage, 8

time to next perigee pas-
sage, 8

gravitational potential
function

independent variable
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: \ Math symbol Internal Fortran symbol Definition
; V,. = s Voo W UB, VB, WE components of the atmos-
3 , —AB (uB B B) pheric relative velocity
-~ | vector expressed in the
%;, / body frame, mps (fps)
=4 :
B Y-y —— unit vector aloag the
% radius vector
}_i \ . v XSTE, YSUE, ZSUE unit vector in Sun direction
= . s in the vernal equinox system
: . LI XSI, YSI, ZS1 unit vector in Sun direction
—s in the ECI system
Yor —— unit vector along the
velocity vector :
Au DU(I) change in the independent :
variables .
3
v APVEL inertial velocity at ;
4 apogee, mps (fps) .
-Y—A.G UA, VA, WA atmospheric relative I
velocity in the G-frame, -
mps (fps)
!kI VAXI, VAYI, VAZI atmospheric relative

velocity vector in the
inertial frame, mps (fps)

~ (Voos Vors V VX1, W1, V21 inertial velocity vector
L ( X1* ZI) and its magnitude, mps
- (fps)

VI VELI magnitude of !I’ mps (fps)

.3
—
=

ti
|

!IG U, v, w inertial velocity in the
G-frame, mps (fps)

!It VXIT, VYIT, VZIT velocity of target
vehicle in ECI eystem,
wps (fps)

VELR relative velocity, mps
(fps)

¢<

VIR LE 7 SN R

G UR, VR, WR relative velocity in the
G~frame, mps (fps)

*<

é<

= (V » V. » V VRXI, VRYI, \RZI relative velocity vector
( RX1® "1 RZI) in the inertial frame,
wps (fps)

I1-y
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Internal Fortran symbol

VXVE, VXVE, VZVE

WXI, WYI, WZI

W, W, WW

PGVEL

KYPVEL

WDPT

WELC#N

WEIGHT

WJETTM

WPRP

WGTSG

WU, WOPT, WE

Definition

velocity of vehicle in
vernal equinox system,
mps (fps)

wind velocity vector in
tine inertial frame, mps
(fps)

wind velocity, mps (fps)

wind velocity vector in
the G-frame, mps (fps)

perigee velocity, mps
(fps)

outgoing asymptote
velocity, mps (fps)

total time rate of change
of vehicle weight, N/s
(1b/s)

total weight of propel-
lant consumed, N (1b)

gross vehicle veight, N
(1b)

jettison weight, N (1b)

veight of propellant con-
sumed per phase, N (1b)

initial propellant weight,
N (1b)

maximum flowrate for the
1th engine, N/s (1b/s)

weight of propellant re-
maining, N (1b)

vehicle stage weight, N
(1b)

weighting matrices for u,
f, and e

Riaiinadiait ik A

Ry

S —
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Math symbol

Xg» Y3 %
*pr’ YpRr’ *BR

Xeg? Yeg® Zog

xGS' yG’ zc

' Yrr %1

i AR Al *
X
x,

xnn YR: zR

xxo.f’ Yref’ *ref

a, B, ©

Internal Fortran symbol

Definition

XcG, YCG, 2CG

XI, YI, ZI

GINTJ

XREF, YREF, ZREF

DGENV

ALPHA, BETA,
BNKANG

ALP1OT

coordinate axes of the
body frame

coordinate axes of the
body reference frame

coordinates of the center
of gravity in the body
reference system, m (ft)

components of a vector in
the geographic frame, m

(ft)

components of the radius
vector in the inertial
frame, m (ft)

general state variable

coordinate axes of the
launch frame

th
state vector at the n
event

components of the radius
vector in the planet
frame, m (ft)

coordinates of the aero-~
dynamic reference point
in the body reference
system, m (ft)

general dependent variable
asrodynamic angle of at-
tack, sideslip, and bank,
rad (deg)

total angle of attack,
rad (deg)

11-11
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Math symbol

YI’ YR. YA

AE
Ah
At
AV

®
AV

Av

aAv
c

AVB

AVG

AVH

AVP

AVTV

7

6cona. 6clock

I1-12

Internal Fortran symbol

GAMMAL, GAMMAR,
GAMMAA

GAMMA (I)

DT

DV

VIDEAL

DLR

DVCIR

GLR
DVMAR

ATLR

RTASC

SCONE, SCLOCK

Definition

inertial, relative, and
atwmospheric relative
flight path angles, rad
(deg)

step-size pavameter on the

jth trial step

increment in eccentric
anomaly, rad (deg)

increment in altitude, =

(£¢)

increment in time or inte-
gration step size, s

increment in velocity,
nps (fps)

ideal velocity, mps (fps)

atmospheric velocity loss,
ups (fps)

velocity required to
circularize an orbit,

ups (fps)

excess velocity, mps (fps)

gravity loss, mps (fps)
velocity margin, mps (fps)

atmospheric pressure
loss, mps (fps)

thrust vector velocity
loss, mps (fps)

right ascension, rad (deg)

cone and clock angles of
Sun vector in body
system, rad (deg)




Math symbol

Internal Fortran symbol

Definition

ETA

L@NG

LYNGI

L@NL, LATL, AZL

TRUNMX

engine throttling param-
eter

planet relative longitude,
rad (deg)

longitude reference, rad
(deg)

inertial longitude, rad
(deg)

longitude, latitude, and
azimuth of L-frame, rad
(deg)

maximum true anomaly for
hyperbolic orbit, rad
(deg)

longitude of tracker i,
rad (deg)

azimuth reference, rad
(deg)

naximum admissil.le step
size for the iteration
algorithm

gravitationul constant,
n3/s2 (fti/s?)

index

11-13




Math symbol Internal Fortran symbol Definition

) ARGV argument of vehicle (i.e.,
angular location of ve-
hicle, measured from j
ascending node in orbital f
plane), rad (deg)

U] '[ .

i

IR L

atmospheric density, kg/m3

p(h)
(slug/ft3) -

4
!
[

T -— trajectory propagation

o~ .‘—«j-.—— [ . .

GCLAT geocentric latitude. rac
(deg)

:
Y“fe
n’

¢ GDLAT geodetic latitude, rad
(deg)

010 Vs Op R$1Z, YAWI, PITI inertial roll, yaw, and E

pitch measured as positive .
rotations from the L-frame,
rad (deg)

AN
."
)

Vp» el, ¢ YAWR, PITR, RJLR relative yaw, pitch, and
roll, measured in a posi-

tive sense from the geo-

graphic frame, rad (deg)

Q LAN longitude of ascending
node, rad (deg)

. 2 @MEGA angular rotation rate of
- planet about the polar
axis, rad/s (deg/s)

RASGM right ascention of
Greenwich meridian,
rad (deg)

——— argument of perigee, rad
(deg)

RYLBC, PITBD, inertial angular velocity
YAWBD comporents about the body
axis, rad/s (deg/s)

ROLEDD, PITBDD,  inertial augular acceleration
YAWBDD components about the body
axis, rad/s? (deg/s?)

- S
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Internal Fortran symbol

Definition

refers to atmosphere rela-
tive variables

refers to center of
gravity

refers to inertial
variables

refers to nth event

refers to thrust applica-
tion

refers to Earth-relative
variables

refers to aerodynamic ref-
erence point

refers to sea-level condi-
tions

refers to vacuum condi-
tions

refers to wind relative
variab’.es

refers to state from which
downrange and crossrange
are referenced; refers to
optimal conditions

denotes vector quantity

denotes transpose of a
vector

denotes total derivative
with respect to time

I1-15
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III. COORDINATE SYSTEMS

POST uses numerous coordinate systems to provide the neces--
sary reierepce systems for calculating required and optional data.
Ehise coordinate systems and the key transformations are described

elow.

Coordinate System Definitions

Earth-centered inertial (ECI) axes (xI, Yi» zI).- This sys-~

tem is an Earth-centered Cartesian system with z; coincident
with the North Pole, xI coincident with the Greenwich Meridian
at time zero and in the equatorial plane, and Yq completing a
right-hand system. The translational equations of motion are
solved in this system (fig. III-1).

Earth-centered rotating (ECR) axes (xR, Yre zR).— This sys-

tem is similar to the ECI system except that it rotates with the
Earth so that x_ 1is always coincident with the Greenwich Merid-
ian (fig. 1I1-~1).

Earth position coordinates (¢ , 9, h). These are the fa-

miliar latitude, longitude, and altitude designators. Latitude
is positive in the Northern Hemisphere. Longitude is measured
positive East of Greenwich. Altitude is measured positive above
the surrace of the planet (fig. III-1).

Geographic (G) axes (xc, Yg» zqu - This system is located

at the surface of the planet at the vehicle's current geocentric

latitude and longitude. The xq axis is in the local horizontal

plane and points North, the yG axis is in the local horizontal

plane and points East, and z, completes a right-hand system.
This system is used to calculate parameters associated with azi-

math and elevation angles (fig. III-2).

Inertial launch (L) axes (XL' Yoo zL). - This is an iner-

tial Cartesian system that is used as an inertial reference
system from which the inertial attitude angles of the vehicle are
measured. This coordinate system ig automatically located at the

II1-1




Figure 111-2,~ Lsunch Frame
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geodetic latitude and inertial longitude of the vehicle at the
beginning of the simulation unless overridden by user input of
LATL and LONL. The azimuth, AZL’ is zero unless overidden by

user input. The orientation of this system is such that X is
along the positive radius vector if ¢L 1s input as the geocen-
tric latitude, or along the local vertical if ¢L is not input
or is input as the geodetic latitude. z, is in the local hori-
zontal plane and is directed along the azimuth specified by AZL’
and Yy completes a right-hand system. This system is intended

foi use in simulating ascent problems for launch vehicles that
use either inertial platform or strapdown-type angular commands.
The inertial angles, (¢I’ wI’ 61) are always measured with

respect to this system and are automatically computed regardess
of the steering option (IGUID) being used (fig. III-2),

Body (B) axes (xB, Yg» zB).— The body axes form a right-

hand Cartesian system aligned with the axes of the vehicle and
centered at the vehicle's center of gravity. ‘rhe Xy axis is
directed forward along the longitudinal axis of the vehicle, Yg
points right (out the right wing), and 25 points downward, com-
pleting a right-hand system. All aerodynamic and thrust forces
are calculated in the body system. These forces are then trans-
formed to the inertial (I) system where they are combined with
the gravitational forces {fig. I1I-3)

Figure I11-3,- Body Frame.

II1-3




Body reference (BR) axes (XBR’ yBR’ zBR)'_ The body refer-

ence system is a right-hand Cartesian system aligned with the
body axes as follows. The XyR axis is directed along the nega-
tive Xg axis, the YgR axis is directed along tha positive

BR is directed along the negative Zg axis.
This system is used to locate the vehicle's center of gravity,
aerodynamic reference point, and e¢ngine gimbal locations for the
static trim operation (fig. III-3;.

Yp axis, and the =z

Orbital elements (ha‘ hp

lar coordinate system used in describing orbital motion. The or-
bital elements are apogee altitudes, perigee altitude, inclinationm,
longitude of the ascending node, true anomaly, and argument of
perigee. The apogee and perigee altitudes replace the standard
orbital elements of semimajor axis and eccentricity (fig. 111-4).

, 1, w, 6, Q).- This is a nonrectangu-

Vernal Equinox (VE) Axes (xVE’ Yve® zVE)'- This is the 1950

mean equator and equinox Earth centered inertial system. The XyE

axis is in the equatorial plane and is directed forward of the
vernal equinox of 195G, the g axis is directed along the north

pole, and YVE completes the right hand system (fig. I1I-1).

k

/

Satellite's position

-

Periapsis airection

P'e \

Figure I1I-4.~ Orbital Parameters
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Attitude Angles

The program contains the following standard attitude refe

ence systems:
1) Inertial Euler angles;
2) Relative Euler angles;

3) Aerodynamic angles;

4) 1Inert:ial aerodynamic angles;

These variables are defined and illustrated below:

1) Inertial Euler angles (fig. II1I-5):

¢I - Inertial roll angle. The roll
angle with respect to the L-

frame (first rotation),

WI - Inertial yaw angle. The yaw
angle with respect to the L-

frame (second rotation),

BI - Inertial pitch angle. The pitch

angle with respect to the L-

frame (third rotation);

Figure III-5.- Inertial Euler Angles

2) Relative Euler angles (fig. III-6):

wR - Relative yaw angle. ig is

the azimuth angle of the Xy

axis measured clockwise from
the reference direction (first

rotation),

eR - Relative pitch angle. This is
the elevation angle of the xg

axis above the local horizontal

plane (second rotation),

¢R ~ Relative roll angle. This is

the roll angle about the
axis (third rotation).

3

/o,

Figure III-6.~ Relative Fuler Angles

111=5




| 3) Aerodynamic angles (fig. III-7):

. 0 =~ Bank angle. Positive o 1is a

N, positive rotation about the
atmosphere relative velocity
vector (first rotation),

/ 8 - Sideslip. Positive B 1is a nose-
a. ! left (negative) rotation when
' flying the vehicle upright (sec-
ond rotatiom), Vg

a - Angle of attack, Positive a
i 18 a nose-up (positive) rotation
= when flying the vehicle upright
(third rotation); Figure 1II-7.- Aerodynemic Angles

4) Inertial aerodynamic angles (fig. III-8):

I o, - Bank angle. Positive o, is a

; positive rotation about the
atmosphere inertial velocity
vector (first rotation),

B, - Sideslip. Positive BI is a nose- // x

lefit (negative) rotation when Ya z
| flying the vehicle upright (sec- B
| ond rotation),

a. - Angle of attack. Positive a

1 1 Figure III-8.~ Inertial Aerodynamic
is a nose-up (positive) rotarion Angles
when flying the vehicle upright
(third rotation);
111-6
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Transformations

Numerous matrix transformations are required to transform
data between the coordinate systems described in the previous
section. The most important of these transformations is the [IB]
matrix. The inverse (transpose) of this matrix is used to trans-
form accelerations in the body frame to the planet-centered in-
ertial frame. The remaining transformations are generally used
to either compute [IB] or to transform auxiliary data into some
convenient output coordinate system.

The [IB] matrix is functionally dependent on the attitude
of the vehicle. This dependence is described by equations re-
lated to the attitude steering option selected by the user. The
following matrix equations, which depend on this steering option,
are used to compute the [IB] matrix.

[IB] = [LB][IL] (body rates or inertial Euler angles)

[IB] = [GB][IG] (relative Euler angles)

[IB) = [AB][GA][IG] (aerodynamic angles)

The basic relationships between the coordinate systems de-
fined by these equations are illustrated in figure II1-9, The in-
verse transformation can generally be computed by merely trans-

posing the matrix elements because of the orthonormality of
these matrices.

Figure 1I1-9.~ Matrix Transformations




A summary of these matrices is given below. The symbols s
and ¢ denote sin and cos, respectively.

[1L], inertial to launch.- The [IL] matrix depends on $L’

OL, and AZL’ and is given by
0
c¢Lc L c¢Ls6L s¢L T
[IL] = s¢Lc6LsAZL - cAZLseL cAZLceL + sAZLs¢L36L -sAZLc¢L (111-2)
LTSAZLSBL B A A SAy Oy - CAg 898ty Az,
[LB], launch to body.- The [LB] matrix is computed indi-
rectly from the body rates by integrating the quaternion equa-
tions, or directly from inertial Euler angles. When the body
rate option is used, the quaternion rate equation
™. o -
eow -e3 ej es .
. “x
e1| ;1 |e0 e ~-e3
. Ladiired W
ez 2 | eg - 23 (I11-3)
w
. z
e3 €p e) -e)
. - - - b o
is integrated to compute the ([LB] matrix, which is then given
by
r— e
e2 + e - o2 - o] 2(eje; + ege3) 2(eje3 - egey)
(LB] = |2(eje; - egez) eg - e% + e% - e% 2(ege; + eje3) (111-4)
2(eje; + egey) 2(cre3 - €p°)) e2 - el - el + €
- -

111-8
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When the inertial Euler angle option is used, [LB] 1is computed
directly as

o —
- . (T & W £} + & Q a 1 - o)
C'LC I c,Is,Icc1 SVIS I SVISVICBI c¢IscI
[LB] = s, €iCey $$1Cv | (I11-5)
i c,lswl c;Is.,-lsuI - s;lcul s@IszseI + c¢IcoI i 4

(1G], inertial to geographic.- The [IG] matrix depends on |
the geocentric iatitude and the inertial longitude, and is giver 3

oo co 0 ]

-5¢cc ¢ —s¢cs I c¢c W
{1G] = -st’l c@I 0 (I11-6) »

L-.-t:(tccle —cdscseI -8¢€d .

[GB], geographic to body.- The [GB] matrix depends on the
relative Euler angles, and is given by

T STy D

cekcwR custR -sBR
[GB] = s¢R96RcwR - copsvp s®R86stR + cépcvp 9¢RceR (111-7)
c@RseRcwR + s¢Rs¢R c¢R86stR - s¢RcwR C¢Rcng
b
. [GA], geographic to atmospheric relative velocity system
(ARVS) .- The [GA] matrix depends on the atmospheric relative
flight azimuth and flightpath angles, and is given by
. cv,eh, ey, 8y, -SYAW
[GA]) = ~skA cAA 0 (111-8)
v, |
II1-9
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[AB), ARVS to body.- The [AB] matrix depends on the aerody-
namic angles, and is given by

cacB -casBcT + saso -casBsI - saco
[AB] = | sB cBco cBsc (I11-9) -
sacRB -sasBco - caso ~-5a8B850 + caco i

Other transformations, which are not related to the calcula-
tion of the [IB] matrix, are presented below.

(IP], inertial to planet relative.- The [IP] matrix trans-
forms between the Earth-centered inertial frame and the Earth-
centered rotating frame. This matrix depends on the rotation
rate of the planet and the total elapsed time of flight, and is

given by
cQ t sQ t 0 :
P P
[IP] = |-sQ t cQ t 0 (111-10) 3
4 P :
) 0 1]. f

[RB], body reference to body.- The [RB) matrix transforms
data in the body reference system to the body frame. This matrix
has a constant value and is given by

-1 0 0
(RB] =] O 1 0 (111-11)
0 0 -1

[IV], inertial to vernal equinox.- The [IV] matrix transforms
between the ECI frame and the vernal equinox frame, and is given . f

by |
c 8 s © 0 g

(v] = | -s o c 0 0 (111-12)
0 0 1],

where @ = GHA + (t - treference )

I11-10

e . e e ey -




IV. PLANET MODEL

The planet model is composed of three types of data and equa-
tions. These are: (1) oblate planet geometry and constants, (2)
an atmosphere model that computes atmospheric pressure, density,
temperature, and speed of sound, and (3) a gravitational model
that computes the gravitational accelerations. The user selects
the appropriate models and inputs the corresponding data. The

input data and the ejuations used in these models are described
below.

Oblate Sphercid

The 1960 Fisher Earth model is preloaded into the program.
This model is defined by the equatorial radius RE’ the polar

radius RP’ the rotation rate QP, the gravitacional constant

u, and the second, third, and fourth gravitational harmonics,

Jo, J3, and J,, respectively. The stored values for these
constants are:

Ry = 2.0925741 x 107 ft,
2.0855590 x 107 ft,
7.29211 x 10-° rad/s,

1.43/6539 x 1016 f£t3/g2,
1.0823 x 10-3,
=0,
= 0.
The constants J; and J, are preloaded as zero, but can be ini-
tialized by input. For example, if the Smithsonian Earth model
is desired, then these constants would be input as
J, = 1.082639 x 1073,
Jy = -2.565 x 1076,
J, = ~1.608 x 1076,
u = 1.407645794 x 10'6 fti/e?,




LIRS ey

R, = 7.29211515 x 10~° rad/s,

! R = 2.092566273 x 107 ft,
! R, = 2.08550242 x 107 ft.

The geometry of this spheroid is illustrated in figure 1IV-1.
The pertinent equations related to this model are

- -1 A
-1 ¢, = sin (zI rI)

" Og = tan"! (k tan ¢c)' k = (RE/RP)2

. R, = R (1 + (& - 1)s1n2 ¢c)'35

-

(Iv-1)

h-rl‘Ra, ‘

where ¢c is the geocentric latitude, ¢g is the geodetic lati-
tude, 6I is the inertial longitude, © is the relative longi-
- tude with respect to the planet, T is the distance from the
center of the planet to the vehicle, Rs is the distance from

the center of the planet to the planet surface, and h 1is the
distance from the planet surface to the vehicle.

Iv-2
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® Vehicle

it "UH‘!’[‘] ‘ﬂ‘} i ‘:wl’ 'u i !|'

South pole

Figure IV-1.- Oblate Planet

Gravitational Model

The gravitational model includes optionally second, third,
and fourth harmonic terms. The potential function for this model

is
1 J o, 22 1 J3 o3 z3 3z
v ‘“[r‘z "x(rs ,3)'2"15,7‘,5

L 2
b ooy 2 _ a2 L 3 -
3 %(35 5 - %0 r7+r5)]' (1v-2)

W
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The gravitational accelerations calculated from this potential
function are:

Gy L
1 3:1
‘.
= -y 55 P (z, r)
r
GYI"gU
_. Y1
= -y 13 P (z, r)
r
G, =-—
Z1 321

3
---E-a—[(l"'JRz (3"522)) z+ﬂ_§l_.(6z2_7z2 ZZ-}-
r

where x = Xpp ¥y = Yp» 2= 2 r=r and

R = Rgyry

Z= zl/r

I’ 1’

&

J'%Jz

3
P (z, r)-[1+.n.2 (1-sz2)+u§-(3-7z2)z

+ DRY (92“ - 622 +

V-4

5 ‘2)

+ DRY (%—5- - 1022 + 92“) z] ,

~
. 4
(Iv-3)
/
\
f (IV=4)
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Atmosphere Models

POST has the optional capability of three atmospheric models--
the general table lookup, the 1962 U.S. standard atmosphere, and
the 1963 Patrick AFB atmosphere using polynomials. The general
table lookup model gives the user the flexibility of inputing his
own atmostheric nodel if none of the preloaded models is adequate.
This is particularly useful in performing trajectory anaiysis for
planets other than Earth. The parameters required to define the
atmospheric effects are the atmospheric pressure p, atmospheric
density ¢, speed of sound Cs’ and atmospheric temperature

T. These parameters are functions of the oblate altitude h.

Table lookup atmosphere model.- The table lookup atmosphere
model can be defined entirely by using tables that show pressure,
temperatvie, speed of sound, and density as functions of altitude.
The speed of sound and density tables can be omitted if desired;
in this case, the speed of sound and density are computed as

(1V-5)
D=K2%’

vhere

R*

Ky = -2
2 R*

=<
L]

ratio of specific heats

< 4
]

molecular weight

R* = universal gas constant.

1962 U.S. standard atmosphere model.- The 1962 U.S. stand-
ard atmosphere model is given as a functioca of geopotential alti-
tude (H‘), vwhich 18 computed as

H = —— (1v-6)
[} RA +h

Iv-5
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where
1
x, = average Earth redius = 3 (RE + RP)

h = oblate altitude.

— The molecular scale temperature, TM’
of linear segments (LH) as a fun-tion of geopotential altitude

f ? (Ks)'

B The corner points comnecting the straight-line segments arc
: referred to as base altitudes /HB), base temperatures (T .
\ My )

is defined by a series

etc. From a table of base altitudes, base temperatures, and
dTM/dH (LM) (the slope within the linear segments) , the tempera-

ture at any desired altitude can be calculated from the following
equation:

TM = TMB + LMB (Hg - HB). (Iv-7)

Values of PB’ T, , éend LMB versus HB are presented in

The atmospheric pressure is determined as follows:

1
P=P ifﬁ] exp (go Ho) LM for segments with $ 0, and
* ’
B| T, | R A "y

J (1v-8)

8, Mo (H - HB)
P=P_ exp|- for segments with LMB = 0,

B R¥* T

"5

where PB is the base pressure corresponding to the given base

altitude “g‘ These base pressures can be ~alculated once the
sea-level pressure, Po, and the temperature profile have been
specified.

1v-6
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Having calculated the temperature and pressure, tke density,

p, speed of sound, CS, and atmospheric viscosity, Wy, are
determined as follows:
o ()
= ——“:’-——-
R? TM
YP*Li 5
c, = (~ﬁﬂ-) T, (1V-9)
V]
T3/Z
R T
9! Ty N
A IM S

where go ig the acceleration of gravity at sea level, MO is

the molecular weight of air at sea level, R* 1is the gas con-
stant, Yy 1is the ratio of specific heats, and B8 and S are
Sutherland's constaats.

Mo = 28.9644 \
J

N 3
8.31432 + 10’ oy ool

R¥%*

Yy = 1.40 \
( (1v-10)
- x -6 —__IEL____
B = 1.458 10 secn (0 %
S = 110.4°K = 198.72°R

9.30665 m/sec” = 32.174 ft/sec' . )

&

In the 1962 U.S. standard atmosphere, the nolecular weight
varies with altitude above approximately 90 km; in POST the molec-
ular weight is assumed constant, resulting in a slight discrepancy
above 90 km. 1n the 1962 U.S. standavd atmosphere, geometric alti-
tude is transformed to geopotential altitude, whicii s used through-
out. Thus, above 90 km, a constant slope of molecular scaie frem-
perature versus geopotential altitude is used instead of the con-
stant slope of temperiture versus geometric altitude.

V-7
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Table IV-1. - 1962 U. S. Standard Atmosphere Profile

HB’ ft PB’ pSf TMB, OrR LMBS oR/ft
0.v 0.21162166 + 4 518.67 -0.35661600 - 2 !
i 36 089,239 0.47268050 + 3 389.97 0.0
! 65 616.797 0.11434543 + 3 389.97 0.54863995 - 3
i 104 986.87 0.18128948 + 2 411,57 0.15361920 - 2
; 154 199.48 0.23163263 + 1 487.17 0.0
170 603.68 0.12322602 + 1 487.17 -0.10972801 - 2 .
; 200 131.23 0.38032532 + 0 454,77 -0.21945600 - 2
i 259 186.35 0.21673064 - 3 325.17 0.0
291 151.57 0.34333824 - 2 325.17 0.16953850 - 2
323 002.74 0.62814785 - 3 379.17 0.28345707 - 2
354 753.59% 0.15361733 - 3 459.17 0.56867005 - 2 |
396 406.39 0.52676024 - 4 649.17 0.11443751 - 1
480 781,04 0.10566108 - 4 1 729.17 0.86358208 - 2
512 046.16 0.77263469 - 5 1 999.17 0.57749093 - 2
543 215,48 0.58405376 - 5 2 .179.17 0.40610461 - 2
605 268.45 0.35246030 - 5 2 431.17 0.29274135 - 2
728 243,91 0.14559124 - 5 2 791.17 0.23812804 - 2
939 894.74 0.39418091 - 6 3 295.17 €.20152600 - 2
1 234 645.7 0.84380249 - 7 3 889.17 0.16354849 ~ 2
1 520 799.4 0.22945543 - 7 4 357.17 0.11010085 - 2
1 798 726.4 0.72259271 - 8 4 663.17 0.73319725 - 3
2 068 776.5 0.24958752 - 8 4 861,17 0.0 AJ
1v-8




1963 Patrick AFB atmosphere using pclynomials.- In this
model, pressure and temperature are calculated as functions of
geometric altitude (h). These parameters are calculated in met-
ric units and converted to English units if required.

Pressure:

1) Altitude region = 0 to 28 000 meters:

where P; = 10.0 Newtons/cm‘;
2) Altitude region = 28 000 to 83 004 meters:

P=g, 107" exp (A+ A} h + A, h" + A3 h3 + A, h* + Ag hO);

3) Altitude region = 83 004 to 90 000 meters:

-1.373301523 x 10!¢ &k - hy
P = Py oexe (TB (6344860 + h) (6344860 + h_) )’

4) Altitude region = 90 000 to 700 000 meters:

Ln (P) = Ln (P

- 1.373301523 x 10!2
B/ * L (6344860 + h) (6344860 + hy)

T

P=P exp (A+ A h+ A, h2 + A; h3 + A, h* + A5 hd) 1

>(IV—11)

7 L (TMB ¥ LmM?h - hB))' )
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Temperature:
1) Altitude region = O to 10 832.1 meters: T
T-T*-A+A1h+A2h2+A3h3+A“h“+A5h5;
2) Altitude region = 10 832.1 to 83 004 meters:*
T=A+A h+a,h? + A3 h3 + Ay h® + A5 b3
3) Altitude region = 83 004 to 90 000 meters:
T =Ty + L, (h—hB). ‘ (1v-12)
However, in this region Lk = 0, and thus

T = TB = 180.65°K; ‘L

4) Altitude region = 90 000 to 700 000 meters:

T=T =T +Lm(h-hB).

MMy J
Density:
1) Altitude region = 0 to 28 000 meters: )

p=p) exp (A+ A h+ 4, h? + 4, h3 + A, h"* + A5 h°);

2) Altitude region = 28 000 to 700 000 meters: (1v-13)

o = (34.83676) %.

- — - - - - - S A = e - = - > . - - S - - - - - s o =

*Virtual temperatur« is the same as kinetic temperature
above the 10 832,1-meter altitude.
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Table IV=3., - 1963 Patrick AFB Molecular
Temperature Profile and Gradient Profile

CK/km

| *Altitude range: 90 000 to 700 000 meters.

700.65

——— e ey

hB’ Km* T“IB, 9K Lm’
90 180.65
3.0
100 210.65
5.0
110 260,65
10.0
120 360.65
20.0
150 960.65
15.0
160 1 110.65 _
10.0
170 1 210.65
7.0
190 1 350.65
5.0
230 1 550.65
4.9
300 1 830.65
3.3
400 2 160.65
2.6
500 2 420.65
1.7
600 2 590.65
1.1
700 2

- e

Iv-13
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3
‘,

Pressure and density ratios:

Altitude region = 0 to 700 000 meters:

Okgo-‘
°o ' (1V-14)
P
PRSP—"
o
Velocity of sound:
1
Vg = (20.046707) (T) 2. (1V-15)

The atmosphere model-derived coefficients are presented in
table IV-2. The molecular temperature gradient is documented in
table IV-3 for geometric altitudes from 90 to 700 km.

Winds

The atmospheric wind velocity components are input in tables
using either meteorological or vector notation. If these tables,
which are normally functions of oblate altitude, 2re not input,
then the atmosphere is assumed to rotate uniformly with the
planet.

The wind velocity components can be input directly in the
geographic frame by dofining Uy Vi and wye ©OF by defining the
wind speel (Vw). the vertical component (ww), the wind azimuth
(Azw), and the wind azimuth biase (Azwn). The resulting wind velo-

city components in the G-frame are:
o 12
Vw (h) cos (AZW (h) + AZWB) W

- Vw (h) sin (AZW (h) + A (1v-16)

ZwB)

wa (h)

1v-14




It is clear from the above equation that in order to input vector

wind data AZWB must be input as zero, whereas for meteorologic

data the preloaded value of 180° should be used.
The wind velocity in the ECI frame is then given by

= ;171 -
Vo = (16170 v (1v-17)

Thus, the atmospheric relative velocity vector in the ECI frame
is

Var =Yy — i, 15 - Yy (1Iv-18)

and its magnitude is given by

Va =\’ Var " Y (1v-19)

IV-15
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V. VEHICLE MODEL

The various physical properties of the vehicle are modeled
by the user when he selects the pertinent options from the set of
vehicle simulation modules. The equations used in these modules

. are presented below.

TPt A A U R MG Y ri

M -".ou
. a

Mass Properties Model

RIS

The gross weight of the vehicle at the beginning of each

phase is given by ,é
:
= <+ ~
“ K4 ‘.' 2 - ﬁ: .
where Jstg is gross weight without payload and 'pld is the pay :
load weight. For phases other than the first, the gross weight 3
can optionally be computed as 3
+ - !
o = ¥ " Yjerr T VpRe (V-2) ;
;
where wz is the gross weight on the positive side of the cur- %
rent event, W; is the gross weight on the negative side of the é
‘5, 3
current svent, wjett is the jettison weight, and wPR is the §
weight of propellant remaining. These options are obtained au- ¢
tomatically, based on user input. %
The propellant remaining is given by :
wPR = wp - wpc, (V-3) ;
i 3
vhere wP is the initial weight of propellant and NPC is the ]
i
amount of propellant consumed. This latter term is given by
= X + W V-
wpc fw dt ¢ (V-4)

.

wvhere W is the total rate of change of the vehicle's weight.

V-1
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3 At the beginning of eacih phase, the constant WC can be
x 0

eitner input or carried across the event as the total amount of
weight consumed in the previous phase.

The amount of propellant jettisoned can be computed as:

= 1) The amount of propellant remaining at the beginning of
- the current pnase,

E 2) Tihe amount of propellaut remaining at some prescribed
- prior event. 19

ne constant jettison weight is either computed from an in-
put constant value or determined frcm an input mass-fraction table.
A When a mass-fraction table is used the jettison weight is given
by

1 -
wjett = wPi [A - l] ’ (v=3)

wnere A is the mass fraction computed from the table. -

Propulsion Calculations

POST can simulate both rocket and jet engines. The program
~ can simulate up to 15 engines in either mode.

Rocket engines.- There are two input options for engine data
in the rocket mode. In the first option, tables for vacuum thrust
and maximum weignt flowrate are input for each engine. In the
second option; tables for vacuum thrust are input, along with
tne vacuum specific impulse for eacn engine. The vacuum speci-
fic impulse is tnen used to calculate the mass flowrate.

_A The rocke: tirust per engine is given by

T =n T - A p(n), (V=9) 3
Ri vaci Ei

p - —
2 o e - I P S S S T I PO T A S S et v T S T L P T L T I I PP - P - S e = s



where n 1is the throttle setting, Tvac is the vacuum thrust
i
of the ith engine, AE is the nozzle exit area, and p(h) is the

atmospheric pressure. Summing over all engines yields the total
rocket thrust

M
eng
Tg = Z Tni’
i=1
where N is the number of thrusting engines. and N < 15.
eng eng —

The weight flowrate in the rocket mode is given by

N
( eng

2 157

!

N
eng

-n E T 1
( vai/ Spvac)i

\ i=1

Jet engines.- In the jet engine mode the net jet thrust per
engine is given by

(T
() - oo,

where

v-3

(v-7)

(v-3)

(v-9)

(V-10)

T T U P RV O

%

ol

Xl

.

g 4 et

——apa
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T

and ;i (M, a monovariant table. The total jet thrust is then
- given by
' N
eng
= { / 7 -
T, = p\h)/ (Pse) (TJ/ai). (V-11)
i=1
-«
The weight flowrate in the jet engine mode is
N i
eng T v
- W= - E :rf_(.‘.‘_)_ g,(l‘l (§/_F;§) (.6.:1_) 5. (V-12)
. SL \ SL % i 1
= i=1
i
|
. The thrist vector components for both rocket and jet engines
; are determined from the thrust magnitude TR or TJ and the
A i i

thrust incidence angles ip and iy . The tirust accelerations
i i

in the body axes are then given by

cos i cos 1 7]

l"A )
=

eng Yi Pi
=~ T T (V-13)
- N DAL P - I
=TB i — y. ——
. m i m
i=1
cos i sin i
Yi Py
- =

In tiue abcve equation T, denotes the thrust magnitude for the

. i
it“ engine (either rocket or jet) and m denotes the instantaneous
mass of the vehicle. The engine gimbal angles are determined
from tue static trim equations in the moment balance option or
by input if the moment balance option is not used. The engine
gimbal angles are illustrated in figure V-1.

V-4
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Figure V-1l.- Engine Gimbal Angles

Note tnat thrust misalignments can be simulated by inputting the
engine gimbal angles and using the standard three-degree-of-
freedcm option.

Aerodynamic Calculations

The aerodynamic force cvefficients can be expressed in terms
of the 1if*+, drag, and side-force coefficients CL’ CD’ and CY

(fig. V-2), where CL and CB are directed normal to, and along the

velocity projection in. the X,"25 plane. Nove that CY procuces

Ays

Lift and drag force coefficients are transformed to axial
and normal force coefficients as fcllows:

a side-force, F , acting in the direction or g

CA [cos a =sin a CD

C l?in a cos o (o

N L

wnere o is tne angle-cf-attack.

V-5

(V=14)
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Figure V-2.- Aerodynamic Angles

The aerodynamic ccefficients can also be expressed in terms
of tue axial force, normal force, and side force, CA’ CN’ and CY’

respectively. iere CA and CN produce forces that act in the

—Xg and -~z directions, and CY produces a force acting along Yg*

Each aerodynamic coefficient is computed by interpolating
the values in the table. In general, eight tables are allocated
to each coefficient. These %ables can be monovariant, bivariant,
or trivariant, and seven tables per coefficient can have arbi-
trary nollerith mnemonic multipliers. This generality enables
all standard forms of aerodynamic data to be directly input into
tue program,




ol

TP

The aerodynamic force coefficients are given by: T

0 o "L, Ly, 4
1
!

= C + C M A
C LD CD IC. + C 1 + C M

D N -
C D ip D dy 7D (V-153)

o
[ ]
(9]
+
g}
=
+
o
X
+
(]
=
—

, oM. +C, M }
1o Sy Asp On (V-16)

CD’ CD . CD , etc, denote
p Sy

tne tables, and MC . Mc s MC , MC , etc, denote tie mnemonic 4
h] D D D
0 Sp Sy ;

table multipliers. Typical table arguments anc multipliers would

be a, B, M, RN’ ép, and dy.

In tne above expressions, CD s
n

The Macin number and dynamic pressure are given by:
. \Y
4= _4 (vV-17)

‘s

1
q =30V,

where p is thne atmospheric density, VA is the velocity of the
vehicle with respect to the atmosphere, aund Cs is the speed of

sound. These atmospheric parameters are determined from the at-
mospheric models as a function of the altitude h above the oblate
spheroid; 1i.e.,

V-7




p = po(h)
CS = Cs(h)
p = p(h)
T = T(h). J

The angle of attack in pitch (a) and the angle of sideslip
(B) required to determine the aerodynamic coefficients are cal-
culated as follows:

o = tan—l [______sin G]
cos a

-1
B = tan [:_1_::__2_] .

gina = wB (V-19)

cos 3 = !u§+w§

v
A J

The total angle of attack is

ap = cos (VABx/vA ) . (V-20>

Tne aerodynamic forces in the body frame are

oo -

-C
(v-21)
=ap "~

where q 1s the dynamic pressure and S is the reference area.

V-8
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The resulting accelerations in the body system are theu ob-
tained from

1
Ay " 3 - v-22)

Aeroheating Calculations

POST provides for a wide variety of aeroheating calculations.
Some of these optionc are specific in nature and apply only to
particular vehicles, whereas others are quite general. The gen-
eral heat rate option is based on trivariant table interpolation
and provides complete flexibility with regards to vehicle shape
and heat-transfer methodoiogy. The various heat rate equations
are described below.

o e

V-9




Heat rate equations.-

;," 1) Chapman's equations. In this calculation the heat rate

= is given by

- 3.15

. G 11600 (o % (ﬁg)

oW .

where RN is the nose radius, p 1is the atmospheric demsity,

N and VC is the reference circular orbital velocity.

i.? 2) General table lookup. This heat rate is given by

— - L

| Q= Qt (xlo X2, X3), (V-Zlo)

vhere x;, x;, and x3 can be any internally computed variables.
For example, the valuee that would normally be celected are x; = a,

x =h, and x3 = VR.

3) Modified Chapman's equation. Here the heat rate 1s given
by

Q= Q, (x1, X2, X3) Q,» (v-25)

where Qt is an arbitary table and 6c is the standard Chapuan's

equation.,

4) Turbulent-flow heat rate. The turbulent-flow heat rate
is given by

- 3.18
_p_“°°°( v, )

Q= Qt (x;, %2, x3) |1500 (DSL) To¥ (v-26)

- 5) Maximum centerline heating. The equations for this method
are ‘given below in sequence.

a) Altitude-velocity correction:

Ah = 10° [1.06112 - 6.16586 vA/xo"]

+ $3.12090 (vA/Lo“)“ - zo.sazss(v A/1°'°)5] $ s
+ 22.52598 (v‘/lo“)z - as.zaoao( v, /lo“)3

hrcf = h + Ah. )

AR

v-10




b) Maximum centerline heat rate at reference conditions:

- if h > 103 600 m: A
ref —

. = 2 5 - . 5\2
9 ef 10 [277.93332 + 134.55760 href/lo 807.75941 (hreﬁ/lo )

+ 2.90536 (href/105)3 + 722.36896 (hreﬁ/ioS)“ - 311.40176

y h 03) 51;
T -—- 4f h___ < 103 600 m; ( cet/! )
ref —
1 - 104 - 5
Q¢ = 10 [}115.39692 34 881.13588 href/“° + 69 saa.zaiai
- (href/io )

- 71 534.98453 (hret/105}3 + 37 506.13054 (hraf/los)“ -

? (v-28)

- 8048.55112 (href/loS) 5].

14

¢) Angle of attack correction:

q

mx.a/qmax,ansm = [4n (x)]z’

wvhere

x = 102 [0.01136 +.0.01343 /102 + 1.42672 (a/102)% - 0.75623
(V-29)

(a/102)5]) + 0.30535 (a/102)2 - 1.06269 (2/102)3.

d) Maximum centerline heat rare:

Ipax - (imax.u)//x&max.c-so') (6ref)' (V=30)

{ In addition to the heat rate calculations, the program alsc
- provides the capability to calculate other aeroheating indicators
that can be used for trajectory shaping purposes.

Aerodynamic heating indicators.- The heating rate for zero

total angle of attack oy is

6 =q vA' (V"'31)

v-11




The aerodynamic heating indicator for zero total angle of attack
is

t
' .
. Q 'IQ dt. (v=-32)
0

The heating indicator for non-zero angles of attack is
given by

t
Q° -f £ (a”, M) Q dt, (v-33)
¢
where

7 5/7
f («°, M) -(1 +-5-M2 sin? a‘) K,

K = 1+S—2[1-(1+-7-M2 s1n? a‘)2/7] s
M 5

and

for a > 0°

|
|

; AT
|

} (V=34)

v-12




The heating indicator for laminar flow is calculated as

t 3.15

o \*f 'a 35)

= — ——me V-~

 am f 17600 K“T("o) (zs ooo) dt, ¢
0

where

= v-36
KGT £ (o). (V-36)

The heating indicator for turbulent flow is calculated as

2—.0.8 VA 3.18
U urb -f 1500 K“‘r (‘)0) ( n 000) dt (v-37)

Ten-Panel Vehicle Heating Model.- Special aeroheating calcr
lations are availablie for a ten-~panel vehicle model. The heatiig
ratios are referenced to the heet rate calculation. The total
heat for each panel is given by

Q = Hy Q& (v-38)

where Q 1is the total heat and H is the heat ratio for panel

R

i. The weight for each panel is the product of the weight per
unit area and the area of the panel. The total weight is the sum
of the individual weights for each panel:

10
0 - V—39
Wp E W uh, A ( )
{=1

where wu is the weight per unit area and Ai 18 the area

Ai
of the ith panel.
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Steering Model ;

The steering optious control the actitude of the vehicle j
during the trajectory simulation. The general types of steering !

options available are:
1) Body rates: ‘
2) Aerodynamic angles;
3) Inertial Euler angles; ;

4) Relative Euler angles.

The body rates are generally used to simulate strapdown—-type
systems and are computed from user-specified rate polynominals.
The aerodynamic angles are generally used for ree~try problems,
and the inertial and relative Euler angles are us'ally used to
simulate venicles that employ jnertial or local horizontal ref-
erence systems. All of these angles can be computed from: (1) )
polynominals; (2) tables; (3) piecewise linear functions; or (4)
closed-loop linear feedback systems.

The functional relationship used to compute the steering com—
mands suggest twc natural steering classifications:

1) Rate steering;

2) Angular steering.

These classifications provide an efficient outline for pre-
senting the ejuations used to compute the steering commands.

Rate steering.- Rate steering uses the body rates, in con~-
junction with the quaternion equations, to determine the attitude
of the vehicle. When using this option the user must specify:

1) The initial attitude of the vehicle;

2) The polynominal option used to compute the body rates.

The initial attitude is used internally to initialize the quater-
nion rate equation

|-

(E] w (v=40)

v-14
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where
e = (e, e, e, e3),
Q= (“x» wy: wz)’
-e) e2 eﬂ
E] = -
[E] eg er e3 (V-41)
ey -e} ej3
eo el -ez
XXB
—::////////// w
x
W
D
w \\\\\\
z
‘ B
s
Figure V-3,- Body Rates
There are two options available for initializing the quaternion
elements: (1) inertial Euler angles, and (2} aerodynamic angles.
When inertial Euler angles are input the initial cuaternion vector
!s given by
= ] * -
g " (¢r) "2 (¥) "2 (%) (V-42)
whare the asterisk denotes quaternion multiplication and where
e (’1) = cos (0.5 "1) + sin (0.5 °1) 1
- 3 3 -4 3)
Y (WI) cos (O.J *1) + sin (0.) WI) k (V=43)
e (°1) = cos (0.5 °1) + sin (0.3 67) 3-
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When aerodynamic angles are input, then the initial quater-
nion vecr-r is given by

S072 (bn) * 200 *a (1) e [0) *2 (fg) 2 (4] * a0
e (M) 2 (va) * &) * 2B * 2@, (V-44)
where

e (A

z) = co8 (0-5 Au) - sin (0.5 Ay ) k

e(90) cos (45) + sin (45) 3

& (4) = cos (05 ’x.') +sin (0.5 0) J

e (-eL) cos (0.5 91.) - sin (o.s eL) k
2 (8g) = cos (03 e,) +sta (0.3 o)
e (¢c) cos (o.s ¢c) - 8in (0.5 6)

s(0) con(O.So\# kain 0.50) 1
/

a(-8) cos(O.SB)— (sin 0.58) k

a(a) coo(O.Sa)* (sin 0.5a) j. J

The user must also select the option for computing the body
rates. These options are ccmbinations of the basic rate poly-
nominals shown at the top of next page:




where

X, Y

asy bi’ and c1 are the polynomial coefficients, and
, and 2z are the polynomial arguments.

The available combinations of these basic rate polynomials

1) Input the coefficients and the arguments of wes wy'

2) Input the coefficients and the arguments of a, B8, O:

and calculate w , w , and w_ via
x y 2

w



0 a) + dyo + (sin a) B
i | wy = la, + doo + a (V“47)
. w, l?3 + d30 - (rnm a) B]; Y
[}
3) 1Input the coefficients of the 5. w , and w, poly-
. nomials and calculate w  via y
—* w_=a; + dlé’ + tan a (83 + d3é - mz); (V-43)

4) Input the coefficients of the w_» é, and W, poly-

- nomials and calculate wy via

g -t (wz - 33) tan a ]‘ (V-49)

W
wy*az+a+d2[ d; + d; tan a

5) Input the coefficients of the w_ s wy, and B poly-

nomials and calculate w, via

. d .
w_ = a3z - (cos a) B + hd [mx - a) -(sin a) 8]; (V-50)

2 d;

6) Input the coefficients of the 5, o, and w, poly-

nomials and calculate wx and my via

w =a+ dd + tan a (a3 + d3d - wz\

. (V=-51)
w, = a; + d,d + & ;

'!

-

7) 1Input the coefficients of the wer Ay and 8 poly-

nomials and calculate uy and w, via

R I

RPN L W

o . A a g




wy = a, + a +-ET w, = ay - (sin a) B) (V-52)
dj .
w, = a3 - cos a B +'EI (wx - a] (sin a) B) :

8) Input the coefficients of the 8, my, and é polynomials

and calculate ux and w, via
W = a; + dl& + (sin a) é (V-53)
w = a3+ d30 - (cos a) B;

9) 1Input the coefficients of the @R, BR, ¢R polynomials and

and calculate w , w_, and w_ via
x’ 'y z

x ¢R - 8in eR Y

R
- . M v
wy a + |cos ¢R eR + s8in ¢R cos GR YR (V-34)
wz cos ¢R cos GR wR - sin ¢R 0
| | -
where
(V-55)

v
tan ¢,

v-19




The variables used in these equations are:

o)
vJ = [IG] !I’ (V-36)
w
e
'Y I PUA v
- (V=57) T
Vo [1G] !-AI’ L
Ya
- - ﬂ - '-_L - . i A - .
aj r Y, 8in X, (v-58)
i a; |= [GB) -'-9-+§Acosx
I
as -v tan ¢
" c + AA
== = - 1
p d; cos AA cos Y,
do | = [GB] |sin AA cos v, (V=59)
dj - gin YA
L | -
where
A= UA VAT VA Y (V-60)
2 2
wtva
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and

»
L

- duw . j
u, = u + an h J
de . S
) Y, =V- Qp(r cos ¢ *+r ¢, sin ¢C) + 9 h
m— * . dw
v, = w + Tl h
(Vv-61)
) VA = VA [PAUA + VaVa + WAWA] }
. dRs
N = -W - —d¢ ¢C
c
2
L [
: Eoion L0 A R
Re y

Angular steering.- Angular steering uses four different
functional relationships to determine the attitude of the vehicle.
These “wmctional steering equations are:

1) Cubic polynomials;

2) Tables;

3) Pilecewise linear equations;

4) Closed-loop linear feedback systems.

Each of these steering techniques is available for all of the
steering angles; i.e., aerodynamic angles, inertial Euler angles,
and relative Euler angles. There is also a separate channel
steering capability. This opticn enables the user to specify
different functional relationships in each triplet of steering
angles. This means, for example, that the anyle of attack could
be computed from a polynomial, the bank angle from a table, and
the sideslip angle by yet another method. However, this option
does not allow the user Lo mix the steering triplets (i.e., mix
the aerodynamic angles with the Euler angles) .
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In the following discussion, it is convenient to let & de-
note an arbitrary steering angle. The steering equations de-
scribed in terms of tnis variable then apply to all of the steer-
ing angles.

Polynomial steering: Under this option the steering angles
are computed from a cubic polynomial

3

8(y) = Z ey, (V-62)
i=Q

wihere the user selects tne coefficient g and the independent

variable y. The highest-order coefficient that is input deter-
mines the degree of the polynomial. The argument can be selec-
ted as any internally computed variable; e.g., time, velocity,
altitude, etc. The constant term of the polynomial, Cqs can

be either input at the beginning of each phase or carried across
as the value of the angle at the end of the previous phase. The
polynomial coefficients are generally used as the independent
variables for targeting/optimization.

Table steering: Under this option the steering angles are
computed via table interpolation, which is denoted by

e(y) = o, T [£(]. (V-63)

The user initially inputs the table multiplier Sm, the order or

interpolation n, and the table data (y, £(y) ). The table mul-
tiplier or the dependent table values can be used as independent
variables for targeting or optimization. The order of interpo-
lation can either be linear or cubic. The tables can be mono-

variant, bivariant, or trivariant functions of the table argu-
ments.

vV-22

L+ e s et e s - <




BN ay-T vt T A o
e g ~J—-—-—.~.«*-m_..;

‘h

Piecewise linear steering: Under this option the steering
angles are computed from a general piecewise linear function of
the form

Cr = Cl
9(y) = ¢ + P—— (y - yl), (V-64)

where c¢; 1s equal to 0@ at the beginning of the current phase,
¢, 1s the desired value of 6 at a designated later event, y is
equal to the value of the designated event criterion at the begin-
ning of the current phase, y, is the desired value of the desig-
nated event criterion at the designated event, and y 1is the cur-
rent value of the designated event criterion.

This option is simular to the polynomial optibn except that
the values of 6 are specified directly rather than as 8, 9,

5 and 8. Clearly, 6 1s linear in time if y = t; otherwise

5 1is only linear in y. When the desired values of the steering
angles are used as independent variables, the problem of cascaded
steering effects is avoided and the targeting/optimization algorithm
generally converges faster. This option also automatically com-
putes the steering angle rates required to change the attitude

to the desired value at the designated event, which reduces the
problems related to guessing accurate initial pitch rares.

Linear feedback steering: Under this option the steering angles
are computed from the linear error-error rate feedback control
law

8 =c) + Ky (F - Fy)+Kp (Fo - Fy)s (V-65)

where c¢; 1is a nominal steering angle profile, KD is the dis-
placement error gain, KR is the rate gain, Fa - Fd is the errxor

in the steering function F, and F; - Dé is the derivative

of the steering function error.

This option is, of course, the classic path control law, and
enables the user tu steer to & wide variecy c¢f trajectory profiles,
such as velocity vs altitude profile, acceleration vs altitude
profile, etc. This option is particularly useful for reentry
trajectory shaping.
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Generalized Acceleration Steering. - Under this option the
steering angles are computed by solving a set of user specified
equations. The dependent and independent variables in these
equations must be selected from the dictionary of variables al-
ready computed in POST. The only restriction is that these equa-
tions must be explicityly a function of some derivative computed
in the inner loop of the program. As a consequence, this option .
cannot be used to solve equations that are functions of integrals
of the equations of motion. For example, this option cannot be

SRR L R L
. .4

used to maintain constant altitude by zeroing h. This is because
the time derivative of altitude is zomputed from velocity, and
velocity is computed from the integral of acceleration. The lin-
ear feedback model should be used to solve problems involving in-
tegrals of the equations of motion.

In more precise terms, the steering variables are determined
from the iterative solution of the problem:

For each instant of time, determine the values
of the steering variables, 9§, that satisfy the
steering equations,

e(®) =y -y, =9, (V-66)

where y is a n-component vector of dependent variables, Yy is

the desired value of these varialles and e the error in dependent
variables.

= Typical applications of this option are given as

1) Control normal acceleration to 1g and axial acceleration
- to 3g by calculating the angle of attack and throttle
setting that solves the equations

Level unaccelerated flight is implicitly acieved in example 2 be-

cause QA = ) implies constant velocity, and ;A = 0 implies con-

E. AxB (a, n) - 96.6 =0 (V-67)
i AzB (ay n) = 32,2 =0

5, 2) Obtain level unaccelerated flight by solving the equa-

E tions

4 U, () =0 (V-68)
l qA (ay, 1) =0,

stant altitude (that is, if Yo " 0 when this option is initiated).

PO P
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VI, TRAJECTORY SIMJIATLON

The following sections present tiae equations used in the
trajectory simulation subroutines. These equations summarize the
principal computations performed by tne program, and motivate many
of the program input procedures.

T e ROt o

Events/Phases

Simulation data are input according to phase, where the
phases are defined by a user-specified sequence of events. The
simulation equations are then solved sequentially by phase.
Therefore, the user is required to input a sequence of trajectory 4
segments that define the problem being simulated from beginning
to end. These trajectory segments, or phases, are defined by
two events--a beginning event and an ending event. An event is
an interruption of the trajectory simulation that occurs when a
user-specified variable reaches a user-specified value. An event
must be created whenever the user wishes to change any input data
for the problem or to cause any change in the method of simulating
the problem. For example, the sequence of events for a typical
ascent problem could result in a simulation setup similar to that
shown in figure VI-1.

. .
P I N PRI T S R P Y

m
<
.3
3
~

Description

§

o

Lifeoff L
Initiate pitch rate 1 at 20 sec o
Initiate pitch rete 2 at 30 sec P
Infciate pitch rate 3 at 60 sec }
initfate angle of attack control at 75 sec |
Jettison stage 1 when propellant consumed i
Initiate pitch rate & 20 sec after staging
Initiate yaw rate 1 100 sec after event 7 i
Orbit injection at inertial velocity nf 25 568.0 fps ;
i

>
V@ NPWV S W -

Figure VI-1l,- Event Sequence Setup ;
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The event numbers for a given problem must be specified as
real numbers by the user in monotonic increasing order. These
event numbers are then used by the program to determine the order

in which the events are to occur. The program requires that each
problem have a minimum of two events—-an initial event and a final

event. Since a phase is initiated by the corresponding event,
the event criterion for a given event specifies the conditions

at the beginning of the corresponding phase. A problem is termi-

nated by specifying the last event that is to occur. The prchblem
can also be terminated in a psuedo—abort mode by specifying the
maximum trajectory time, maximum altitude, or minimum altitude.

Although event numbers must be monotonic increasing, they
need not be consecutive. This allows the user to easily add or
delete events from an input deck.

Four types of events have been defined to provide flexibil-
ity in setting up a given problem:

1) Primary events - These describe the main sequential
events of the trajectory being simulated. These events
must occur, and must occur in ascending order according
to the event number. Most problems will usually be sim-
ulated by a series of primary events;

2) Secondary events - These are events that may or may not
occur during the specified trajectory segment. Secon-
dary events must occur in ascending order during the
interval bounded by the primary events. The occurrence
of a primary event will nullify the secondary events
associated with the previous primary event if they have
not already occurred;

3) Roving primary events - These events can occur any time
after the occurrence of all primary events with smaller
event numbers. They can be used to interrupt the tra-
jectory on the specified criterion regardless of the
state of the trajectory or vehicle.

4) Repeating roving events - These events are the same as
primary roving events except the interrupt values are
input differently. There are two options for criteria

value specifications. Option 1l: Input the initial value,

tke increment, and the number of times the event is to
be repeated. Option 2: Input an array of event cri-
teria values,

The program monitors as many as ten events at a time, depend-
ing on the types of events to determine which event is to occur
next. This gives the user a powerfuvl tool for simulating complex
problems.

VI-2
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Multiple events are monitored in the following sequence: R

1) The next primary event is monitored;

RN

2) As many as nine primary roving events are then monitored,
provided there are no secondary events. A roving pri-
mary event is added to the 1ist of those being monitored
as soon as the primary event immedistely preceding that i
roving event has occurred;

]

3) Next, as many as nine secondary events are monitored,
provided there are mno primary roving events. (Note that
caution must be exercised when using gsecondary events
because of their nature. Since as many as nine sec-
ondary events are monitored at a time, any one of those
nine will occur as soon as its criterion has been met.
Because thev are secondary events, the event that occurs
will cancel all secondary events with smaller event
numbers.) ;

4) Finally, a total of nine primary roving and secondary
event: are monitored.

. -

Since the program can only monitor nine events (in addition
to the next primary event), the sum of the primary roving events ;
and the secondary events must be less than or equal to nine or a
fatal error will - :sult.

The time-.o-go model (TG¢M) determines when the events
occur during the trajectory simulation. Basically, TGPM checks
the values of the criteria being monitored at each integration
gscep. If none of the criteria values has bracketed the desired
cutoff value. then another integration step is taken. If a
criterion variable is bracketed with the input step size, then
TG@M computes a new stepsize equal to the predicted time-to-go.

The predicted time-to-go for each event is computed from the
equation

at* = - y(t) st/ (y(t + 4t) = y(t)) (Vi-1)

where y(t) 1is the difference between the actual and the desired
value of the event criterion. If more than one event is bracketed,
then the minimum predicted time-to-go is used as the integration
stepsize. This process is repeated until the criterion value is
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within the specified tolerance of the desired value. 1If the
desired condition cannot be achieved in 20 iteratioas, an error
message is printed and the program stops. Generally this situa-
tion is caused by an input error. The fundamental features of
the time-to-go logic are shown in figure VI-2,

—_— - — - - -
/

}
,i
4
a
Y/ |--

Figure VI-2.- 1lllustration of Time-to-Go Logic

Translational Equations

The translational equations of motion are solved in the
planet-centered inertial coordinate system. These equations are

=Yy

Y -1
Vp = 870 [Ag + A, ) + 6

where éTB is the thrust acceleration in the body frame, éAB
is the aerodynamic acceleration in the body frame, and QI is

the gravitational acceleration in the ECI frame.

Vi-4
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Initialization.- There are five options for initializing
the velocity vector and two optioas for initializing the position
vector. These options are described below,

Inertial position components (Xp» Yy Z7)°7 The inertial

position components can be input directly since no transformation
is required.

Earth-relative position (GI ecr 6, ¢c or cg’ h or r).- In this

option the equations vary and the sequence of calculation varies
according to the choice of input. However, the basic equations
used are:

6, =0 + Qp (c - ‘o) if 6 is input,
6, = tan—! (kZ tan ¢ ) if b, is input, (Vi-4)
r, = h + Rs (@c) if h is input,
and
[ cos ¢c cos 61-
r, =71, | cosé sin 6, (VI-5)
Lsin ¢c _

Inertial velocity components (VXI’ VYI’ VZI)'_ These variables

can be input directly.

Inertial local horizontal (VI’ YI’ AZI).- The inertial com-

ponents in the horizontal frame are first transformed to the
geographic frame as

cos v; cos AZI

!IG =V, | cos vq sin A (Vi-6)

-sin YI

VI-5
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and then transformed to the ECI frame by

- -1
¥y = (16177 ¥yg

Earth-relative local horizontal (VR, YR’ AZR)'- The Earth-

relative velocity components are first transformed to the geo-
graphic frame as

cos YR cos AZR

!RG = VR cos Yo sin AZR

-s8in YR

and then transformed to the ECI frame by
V. = -1
Yy (1G] !RG + Qp X I,

Atmospheric relative local horizontal (VA’ YA’ AZA)'- The

atmospheric relative velocity components are first transformed
to the geographic frame as

cos YA cos AZAT waéw
!AG = VA cos YA sin AzA + VWYG .

-sin YA VWZG

S, — —

and then transformed to the ECI frame by

- -1
v, = [16]71 y

—AG

+ Qp xr

(Vi-7)

(VI-8)

(Vi-9)

(VI-10)

(Vi-11)

Orbital parameters (hp, ha’ i, q, wp, 6).- This option initializes

both position and velocity. The equations used to transform the

orbital parameter to the ECI position and velocity are:

Vi-6
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r,=h +Ry

r,=h, +R

(ra + rp)/Z

(ra - rp) / (ra + rp)

p =06 +uw

p =a(l-ed)
H = up
r =p/(l + e cos 6)
cos @ -gin 0
Er = gin Q cos 0
0 0
and
r =Tru
- -

2 1
vefE-2]

sin~! (B/xV)

y =
cos p -sinp O
u = sin ¢ cosp O
0 0 1

s (V1i-12)
1 0 0 cos p
0 cosil -sin i sin p
1 sini cos 1 0 J
W
0 0
$(VI-13)
cos 1 -sin i
sin 1 cos 1
cos @ =-sin @2 O cos Y|
oin Q cos & O sin
0 0 1 0
P
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Instantaneous velocity additions.

= At the beginning of each
event an instantaneous velocity can be added in the direction of

the thrust vector. The magnitude of the velocity addition can be
input directly, or can be calculated‘from the rocket equation
from the amount of propellant consumed

V= —C& ___ (
v -'5
A & I 2n W W I-15)

If AV is input, then the amount of propellant required to
achieve this change in velocity is given by

Wpe = Ve [1 - exp (- AV/gy Ispﬂ' (VI-16)
The inertial velocity after the impulse is then given by

cos 1 cos 1
y

+ - . 3
=] sin 1 -
Vi = ¥, + v [1B] sin y (Vi-17)

cos 1 sin i |
y P

This option is generally used to simulat: short burns for
orbital maneuvers. The directicn of the impulse is controlled
via the attitude of the vehiczle and the engine gimbal angles.

Static Trim

The static trim option is used to calculate the engine gimbal
angles or the flap deflection angles required to balance the
pitch and yaw moments cuased by the thrust and aerodynamic forces.

The static moment equation,

M=0, (VI-18)

1s generally nonlinear, and thus an iterative algorithm is used to
determine the required solutions. This algorithm is a successive
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approximation technique based on the analytical solutions that
result from small-angle approximations. Tne computation of the
pitch end yaw moments is presented below.

Moment equation in the pitch plane.- The aerodynamic momert

. : and thrust moments for the ith engine are shown in figure 16. The
locations of the center of gravity, the aerodynamic reference, and
the engine gimbal points are specified in the body references

. systen.
; A
*R .Z
. - A - r
C
. N z
1 Xg bz. T cg
- i . I R |
¢ Az b
! p ¥ A _’)E rei
H zn ip\\ T M
4
) LD G
T
i AX T R
y p Z
Xp ¢ 1 -+ +
‘ cg gP ref

Figure VI-3, - Moments in Pitch

The total aerodynamic moment in pitch is
- l - -
. Ap = 98 \CM top + Oy 8%p ~ Cy AzR). (V1-19)

The total thrust moment in pitch for the pontrimming engines is

X ; TMlP ~ 2: TRi cos iy

c i Az - 8in 1 Ax -
( os p P, pi)' (VI-20)
LN

1 Py 1
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and the moment for the trimming engines is

'l‘uzp = cos ip 2 TR cos 1y Azp

i i i
ieN
1 (VI-21) i
- 8in i T, cos i Ax .
p 2 R y;, P
i i i
ieN
T
‘ 4
The static moment equation in the pitch plane is then given by 1{
o= Ae ¥ e * Tvop (v1-22)
_.'1
where AMP depends on the flap deflection angles and Tsz

depends on the engine gimbal angles.

Moment equation in the yaw plane.- The aerodynamic moment and
the thrust moment for the ith engine are shown in figure 17.

S
k
i
xCS xsp Xref |
-—y +a + 4
xR ﬁr DY XR \1
Ax

iy CIRTTX c -+ ygp
Ay TY ® \ y

-]

ref

N T PP T I W WA

Figure VI-4., - Moments in Yaw




The total aerodynamic moment in yaw is

My = a5 (C, gy * Cy 8xp = C, 8¥g): (V1-23)

The total thrust moment in yaw for the nontrimming engines is

Ty = 3 TRi (cos 1P1 cos 1yi Aypi + sin 1y1 Axpi), (VI-24)
14N,

and the moment 10v the trimming engines is

T =
M2y ~ ¢os :I.p E ; TRi cos ip Ayp
iel A |
T
+ sin i 2‘ T, Ax . (V1-25)
y Ry Py
ieNT

The static moment equation in the yaw plane is then given by

M= Ay Y Ty ¥ Ty (vV1-26)

where AMY depends on the flap deflections and TM2Y depends on
the engine gimbal angles.

Integration Methods

The number of integrals computcd Jduring any particnlar phase
is determined fiom the options requested by the user. As a
minimum, the translational equations of motion cve integrated to
give the position and velocity of the center of mass of the
vehicle. The user may also select additional variables to be in-
tegrated. The only restriction is that no more than 30 integrals
can be computed per phase.
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p - POST contains 3 general purpose integration methods and sev-
2 eral special purpose orbital propagation methods. These methods
are svmmarized below.

Runge-Kutta Methods.- POST contains two Runge-Kutta integra-
tion methos: (1) the standard 4th order method, and (2) a 8th order
. method. The calculations for these integration methods are based
upon the formuia

s
Yy 'Y+£ bk,
n+l n =l i1

where
8
K, - hf(xn *eh,y + i);:l aijkj), 1=1,2,""",s.

These formula are represented by the array

1| *11 %12 °r q1s ,
- €2 %1 %22 v %2 1
. [ ) . . 4
s | 31 %2 © 8
b. b, ... b

1 2 8 {

The coefficients for the two methods are given in Tables Vi-1 and
Vi=2, respectively

Table 1IV-1

Runge-Kutta 4th order (Kutta)

0
12| 12 --
s 1200 12 -
3 1 Jo o 1 -

| 6 1/3 13 16
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Runge-Kutta 8th order (Shanks (1966))

0.000 | -~--
0.111{ 0.1111 ----
0.167 | 0.0042 0.1250 ----
0.250 | 0.0069 9.0000 0.1875 ----
0.100 | 0.0580 0.0000 0.0780 -0.0360 --—-
0.167 | 0.0340 0.0000 0.0000  0.0041 0.1286 ----
0.500 [ -0.5838 0.0000 0.0000  2.1111 3.4722 -4.5000 ----
0.666 | -0.1235 0.0000 0.0000 -0.1317 0.5144  0.0000 0.4074 =--—-
0.333 | 3.6265 0.0000 0.0000 -10.6667 19.2901 26.0000 0.7463 <-0.0833 ----
0.833 | 0.9043 0.0000 0.0000 -2.6296 4.2438  5.6667 -0.3642 0.5000 1.000 -—--
0.833 | 0.8043 0.0000 0.0000  2.6296 -4.2438  6.1667 0.6358 0.0000 0.0000 0.1000 ----
1.000 [ -1.9411 ©0.00C0 0.0000  6.9377 11.0095 -14.9268 0.0854 <-0.1646 -0.4390 -0.2927 0.7317 ----
- 0.0488 0.0000 ©.0000 0 0.0000 0.0000  0.257L 0.3238 0.0321 0.0321 0.0429 0.2143 0.0488
o Krogh Variable-Step Variable-Order Integrator
]
. Tne variable—-step length variable-order predictor-corrector
b ! developed by F, T. Krogh of the Jet Propulsion Laboratories pro-
] cedure represents the state-of-the-art in numerical solution of
syatems of ordinary differential equations. It includes all of
_ the following facilities:
LR *
! 1) A core integrator for advancing the solution from one
uniform step to the next consisting of variable order
f Adams predictor-corrector equations renuiring the stor-
f, age of a difference table for only the highest ordered
" derivatives;

2) A method to scarc integration with first-order equations
and increase the order to as high a level as numerical
stability permits;

3) Algorithms for changing the step size and updating ac-
cordingly the difference tables of the highest-order
derivatives including appropriate smoothing to prevent
numerical instability;

4) Algorithms for decidiag when and by how much to chaage
the step sizz baszed upon the accuracy requested by the
user;

5) Tests for numerical stability of the predictor-corrector

Jsrder and step size tentatively chosen in the context of
J the current differential equation set;

vVi-13
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0) Test for accuracy requests that are so stringent that
round-cff error prevents their satisfaction;

7) Algorithms for the automatic selection of the core inte-
grator to fit the characteristics of the set cf differ-
ential equations at hand.

8) An interpolation algorithm for obtaining dependent vari-
able values to the user-specified accuracy at values of
the independent variable different from normal integra-
tion steps.

The Krogh integrator was developed to meet the conflicting
goals of (1) reliability, (2) efficiency (in the sense of mini-
mizing the number of derivative evaluations to obtain a given
accuracy), (3) flexibility, (4) low integration overhead, and (3)
cmall storage requirements. The goals are listed in the order in
which they are emphasized in the procedures. The package has no
equal in reliability. All the user need provide the integrator
is nis accuracy requirement and a tentative step size that is
less than the integration interval. The integrator then uses
all eight of its algorithms to provide a solution requiring as
few derivative evaluations as pcssible while remaining within
accuracy tolerances.,

This documentation restricts itself to algorithms (1), (2),
and (3). Algorithm (3) is thoroughly described in Reference 9,
Algorithms (4) through (7) are not amenable to rigorous mathe-
matical analysis, but rather have evolved from extensive numer-
ical experiwentation by Krogh and his associates at JPL. They
are adequately described in the source code and references. Fur-
ther, to simplify exposition, equations will be given for the

single dth order differential equation

(d)

Yy = f(t. Y, Y!, e, Yd"l)

The following notation is used:

¢ = independent variable

h = integration step size

y(t) = corrected (final estimated) value of Y(t)
tn = value of t at current integration step

t =t + kh
n

n+k
yna Yno y;' toe = Y(tn)’ Y(tn)' yl(tn)v b
Py " predicted (initial estimated) value of Y(tn)

, yn(d-l))

- l [N X ]
fn f(tn’ Ya* Ya?

Vi-14
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i-1 i-1 for i=1,2, - [10]

i f (tn' Pn' Pll.lo e, pr(‘d-l)) for i=0
Ve, = [11] Vo
V;-lfn - it £, for 1=1,2, *++ A

The predictor and corrector equaticms of the core integrator
: are obtained by integrating Newton's int.erpolating polynomials
i for the most recent q and g+l values, raspectively, of the highest
order derivative, f. For the predictor, f is approximated as the
(q-1)th degree polynomial

q-1

¢P ,Z (s + i—l)vif ~ £(x_ + sh). "12] -
n-rs i n n
1=0

Successively integrating approximation [12] from s=o to s=1 yields
the predictor equations.

3-1 q-1

k=0 X! 1=0

” ., {
where cio(s) -\ s + 1-1) for i=1,¢°+,q, [14)
i

s
o,,(s) = o (r) dr for i=1,¢°+,q, [15]
y(0) = §, 7oen oS

and = g, (1) for i=1,¢°°,q [16]

Yij ij J-l.ooo.d

For the corrector, f is approximated as the qth degree poly-
nomial

f

c - ¢P i
e " fnes * 90 (-) fonz f£(x_ + sh). [(17)

vi-15
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Successively integrating approximation [17] from s=o to s=l gen-
erates the corrector equations

@3 . @3 , 3 q |
Yo+l Porr 0 Vg5 Yo Enel for =1, eee,d. [18]

Notice that in the equations [13] and [13] the coefficients Yij

are independent of the order, q. Hence, Adam's method has the
practical advantage that its order can be increased simply by
adding more terms to the predictor and corrector equations with-
out revising their coefficieats. Systems of differential equa-
tions are handled by applying equations [13] and [18] to each
component of the system. Different components may have differ-
ent values of d and q.

The starting algorithm requires no special techniques such
as Runge-Kutta equations or Taylor-series expansions. Instead,
q is simply taken as 1 in the normal predictor and corrector equa-
tions. There is, nonetheless, 1 starting phase during which the
highest-order derivative evaluation following the calculation of
the corrected values of the integrals is skipped. During this
starting phase, the values of ¢ and h increase quite rapidly.
When numerical stability problems appear during this initial phase,
the ordinary corrector equation, [18}, is replaced by

(d-3) (d-3)

- h|
Yn+l pn+l +h

1 ¢ = XX}
a Yij Vp fn+1 for j=1,2, yd. [19]
Here a is chosen on the close. interval from % to 1 to give opti-
mal stability characteristics.

Algorithms [3] for changing the step size are only equipped
to double or halve h., Hence, algorithm [4] for selecting the
step size is restricted in the same way. Both procedures are,
nowever, very efficient so that adjustment to the optimal step
length occurs as quickly as reliability permits. The two algor-
ithms are described in detail in Reference 1l.

Like the predictor and corrector equations, the interpolation
equations of algorithm [8] are also generated by successively in-

tegrating a qth degree interpolating polynomial for the highest
order derivative. Indeed

i .
e,, - (84 12 6y~ £0xg + o0 [20)
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d L (0 (d-1)
(a-1) _ , (e-1) 2 : p,, vV £ =Y (x_ + sh) [21]
yn+s Yn M T=0 i1 ots o
where H
1l
+ 1-2

p -S (’ )ds [22]

il Jy 1

Evaluating the differences, Vz f§+s’ using definition [20] and
substituting the resuits into definition [21] yields

q i
(d-1) _ (d-1) Z Z 8 + 1~4-2)| o1
Yn+s n + Pe1 1-2 v fn+1 [23]
i=0 £=0

Generalizing this procedure to derivatives of lower order produces

j-1 q-J
@3 kK (d=j+k) | ] Z 3oL
yms gTyn + h Ti v fn+1 [24]
k=0 K¢ 1=0

for j=1, °*°,d

where

1] ()= (s ; 1—2-2) [25]

and
q-]

T (s) Z Pa Ty (b (#) [26]
=0
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Laplace's method.- Laplace's method is an iterative technique
for propagating the position and velocity (in planet-centered
cocrdinates) of a nonthrusting vehicle in vacuum during flight
over a spherical planet. The technique is based on the analytical
solution of the two-body equations, and yields the inertial state
at time t + At as a function of the state at time t. |

The equations used in Laplace's method are:

b (t + At) = f b 2 (t) + ¢ !1 (t)
(vi-27)

Y (e +80) = fr; (t) +g ¥ (1),

where the scalar coefficients £, g, f, and é are given in
Table VI-3.

Table VI-3 - f and g Series

% *
Coefficient Elliptical Hyperbolic

£ 1-22 gin2 28 1+ 22 ginn? 2B
rn 2 r 2

g at - (AE - sin AE) | 4t - 1 (AE ~ sinh AE]
n n '

- Vua sin AE -vVha sinh AE

r r r
n nt+l

rhe

r
n nt+l

g 1-22 sm?-éz—hl 1+22 sinhz—g—E'
o+l l T+l

*Note that r, = lr(t + 3 at)|, and n =.§1 .

As indicated in the above table, the f and g coefficients
are computed analytically from the change in eccentric anomaly
during the time period At. This is in contrast to the standard
Laplacian method, where these coefficlents are infinite series
in At. The change in eccentric anomaly is calculated by solving
a special version of Kepler's equation via the Newton-Raphson
. algorithm

AE = E _w)._’n.l’z’

w1 " B T R [ (VI-28)
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This algorithm converges rapidly from the initial estimate

AEO = n At. (VI-29)

The form of Kepler's equation that is computationally ef-
ficient for this application is

T 7 r °*v

[——11—1 sinAE+21——181n2§-E-+AE-nAt,

a 4 A a 2 for e <1

¥(AE) = (V1-30)

rn | "I"'ﬂ‘!n 3

rale 1] sinh AE - 2 —= sith? AE + AE - n At, b
- ua for e > 1. i

The derivative dF/dE used in the Newton-Raphson algorithm

is given by i

) L % ;
7 cos AE + ———— sin AE + 1, for e < 1 H
- 3
[—l-.-tl-l7 coshAE—E—t-l——:,:n—sinhAE-l,fore>l. ,*
a . Yu a P

Encke's method.~ The Encke method used in this program is i g
modified from the usual Encke technique in that it rectifies the ‘
reference conic at every integration step and does not use the
standard Q-series expansion in calculating the gravitatiomal in-
crement. P ]

The Encke method should be used for orbital problems where
small perturbing accelerations, such as the oblateness of the
planet, atmospheric drag, or solar electric propulsion, must be -
included in the simulation. Numerical results indicate that, for
problems involving small perturbations from Keplerian motion,
Encke's method is approximately four times faster than Cowell
methods, which integrate the total acceleration.

' The Encke method determines the total motion by summing the
motion due to the two-body equations and the motion due to the
perturbations to the two-body equations. The position and veloc-
ity in the inertial planet-centered system at time t + At s
given by

V1-19




I (t + At) = r, (t + At) + Ar (t + At)
| (VI-32)
v, (t +At) = Vo (t + At) + 4V (t + At),
*

where (r;, V,) denotes the Keplerian motion computed by Laplace's
equations; that is,

r; (t + At) = £ ry (t) + g V, (t)

. . (V1-33)
Vo (v +At) = £y () + g Vo(t),
and (Ar, AV) denotes the numerical solution of the differential
equaticns
ar =AY
. = _1 - - *
AV [[IB] [5\_“ + AAB] + 91] g2 (r2 + Ar) (VI-34)

Ar(t) = AV (t) = O,

where g, (r; + Ar) 1is the two-body acceleration at r, + Ar.
The Runge-Kutta or Adams-Bashforth method can then be used to solve
the above equations.

Integration step models.- The integration step, At, is gen-
erally specified in terms of an increment in time. However, this
option enables the user to specify the integration step in terms
of an input increment in true anomaly. This option 1s useful in
orbital problems where the geometry is easily expressed as a func-
tion of true anomaly.

The following equations are then used to calculate At as a
function of 46.

\
8, = 8; + 46
5 62
- -1 { l-e }
E; = 2 tan — tan 3=
1l+e
r; = a(l - e cos E») > (Vi-35)

JE = E; - E)

3 r2tl
it a’ (OE - sin QE) + ___ sin A6,
" H
J

In these equations, subscripts 1 and 2 denote current and future
values, respectively.
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Launch Options

There are two specific options for simulating particular
launch conditions: (1) hold-down for vertical takeoff, and (2)
nold-down for horizontal takeoff. These specialized options are
required to simulate certain physical constraints that are not
modeled in the equations of motion.

dolddown for vertical takeoff.- This option is used to simulate

vertical (rocket type) takeoff. When using this option, the rel
ative position and velocity remains constant while the inertial
position changes by the Earth rotation. The inertial velocity
magnitude remains constant while its direction changes. This
model simulates physical constraints that hold the rocket on the
launch pad until the rocket is released. The equatioas used to
calculate the accelerations that produce this motion are

—A-I - B_ x —V'I (VI"36)

Holddown for norizontal takeoff.- This option is used to simulate

horizontal (aircraft type) takeoff. When using this option the
venicle accelerates in the local horizontal plane according to
the forces described by the user input. The vertical component
of acceleration is internally computed to produce the proper hor-
izontal motion. The equations used are:

AN

Mg = [19] agp. (V137)
- -

Ay i Az

Ay | = |NARG * A

Ac (v)zcc + vazrc) /gl s

h— — el d

and

A - [uﬂ" A (VI-38)
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| VII. AUXILIARY CALCULATIONS

In additior to computing the basic variables, POST also com-
putes numerous auxiliary variables that are related to: (1)
conic¢ parameters, (2) range calculations, (3) tracking data, (4)
analytic impact calculatioms, (5) velocity losses, and (6) veloc-

ity margins. The equations used to calculate these variables are
. presented below.
3] Conic Calculations
E - The following Keplerian conic variables are computed.
2
VI "
& energy, 53— =
r
1
a semimajor axis, -u/26
h angular momentum, LII X'XII
P semilatus rectum, hZ/u
e eccentricity, /[1 - p/al
I\ velocity required to circularize orbit, YoV - AV, where
u, =h/h
K _ vpr = 5y/Ty
R U
1,
. - 5
‘ Yo = W)y,
o=V - Y
i inclination, cos-} (hz/h)
Q longitude of ascending node, cos~! (21 . gﬂ,, where
|
J
VIiI-1
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u, = 2 * h/|z; x h|

Uq
p argument of vehicle, p = cos~! (Er . EQ)
TSP time since perigee, %; M
TTP time to perigee, P - TSP
¢p latitude of perigee, tan~! (u3/¢u% + u% , Where
u = cos(w)l_z9 + ain(w)(gh x 30)
ep longitude of perigee, tan~! (uy/u;)
hp altitude of perigee, rp - Rs(¢p)
ha altitude of apogee, r, - Rs(¢p)
Vp velocity at perigee, -& i t :
v velocity at apogese, /i <l4:~5)
a al\l+e
v, hyperbolic excess velocity, /26
emax maximum true anomaly for hyperbolic orbit, cos=1 (-1/e)
6RA declination of outgoing asymptote, sin-! [ut (3)], where
Yp T8, Y Yy
urm - cos(emax - 8) u + sin (emax - 6) ur
u (2) o
RA right ascension of outgoing asymptote, tan~! ;;” )

-]
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-1 (1 (E _
9 true anomaly, cos (e (r 1))

E eccentric anomaly, 2 tan‘l(J[E-; : tan %)
M mean anomaly, E - e sin E

w argument of perigee, p - 8

rp perigee radius, a(l - e)

L apogee radius, a(l + e)

3
P period, 27 /ﬁ—

Range Calculation:

The progam provides for various types of range calculations.
The equations for these calculations are given below.

Dot product downrange.- The relative range angle, measured
from the vehicle's initial position to its current position, is
given by

= —l L
b = co8 (ET 2 )
80 s

where u, is a unit vector along the initial position vector
so

in Earth-centered rotating coordinates and u is a unit vector
s

along the current position vector in Earth-centered rotating co-
ordinates. The range over an oblate spheroid is calculated from
the average radius to the surface, and is given by

rso + ts
Ry = 2 R

Crossrange and downrange via orbital plane reference.- Re-
ferring tc figure VII-1, identify the vehicle's position at time

* *
t by O, and at a later time t by P. At time t , the ve-
* 'y ,
hicle has a latitude of ¢ , a longitude of 6 , and a velocity

VIil-3
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Note: O - position at initial time, .
p - position at subsequent time. ]
Figure VII-1.- Downrange and Crossrange Angles
\. 3
' :
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heading of k*. At time t the vehicle is at latitude ¢ and
longitude- 6. The downrange angle (u) and the crossrange angle
(v) shown in the illustration are measured along, and normal to,
the great circle through O, and are inclined to the meridian by
A*. F¥rom analytical geometry, v and u can be expressed as

* *x *
gin v = -sin A sin ¢ cos ¢c cos 67 - cos A cos ¢c sin © \

* *
+ sin A cos ¢ sin ¢c
(VII-3)

* * *
sin u = (—cos A sin ¢ cos ¢ cos 9”7 + sin X cos ¢c gin 68~

* *
+ cos A cos ¢ sin ¢c)/cos v

* . *
cosS Y = (cos p cos ¢ cos 8° + sin ¢ sin ¢C)/cos Vv,

* *
vhere © and A can be defined in either of two ways:

1) The great circle to which v and u are referenced 1is
fixed and rotating with the Earth. Then

*
A" = Earth's relative heading = sin~! =
Ug * VR (VII-4)

*
9% = 4 -8 ;

2) The great circle to which and v are referenced is
inertially fixed, having the Earth rotating below it.
“hen

*

A = inertial heading = sin~! M/
J u? + v?
(V11-5)

® ]
p° =9~ 0 + Qp (t-t).

vii-3
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Knowing v and u, and crossrange CR and downrange D

distances are R

Q! (VII-6)

where Rave is the average Earth radius between the initial and
final points. -

K 2
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Auxiliary Position and Velocity Calculations

The solution from the translational equations is then used
to calculate numerous output variables. The key variables directly
computed from (xI, Vs zI) and (VXI’ vYI’ vZI) summarized below.

B AT W T AR s Iy T I

B
4 §
r, - geocentric radius :{
& !
. (& * &) :
: ¢
— VI = maghitude of the inertial velocity ,§
= . ;5 1
‘ (Y - ¥)
| i
. V. = relative velocity |
Yt xrn %
\ ii
V, = atmospheric relative velocity g'
| - |
Yo + Yy ?
- »
VR = magnitude of the relative velocity %
- vV 3
(Y * %)
VA = magnitude of the atmospheric relative velocity :
K
= -« \ N
LA A
i
Yar unit vector along radius vector ¢
. b _r_I/rI .
My < unit vector along inertial velocity vector "
i .
" Yp/Vy
f Yy " inertial flight path angle
| = sin”} [u,. + u
3 Rl =1 ?(vn-n
=
i
u
F
-
=

VI1-7
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relative flight path angle
-1
w17 [iny . g

atmospheric relative flight path angle

sin~! [!RI ' EVA]

= inertial velocity in the G-frame

(16] ¥,

relative velocity in the G-frame

(16} v

atmospheric relative velocity in the G-frame

[16] ¥,

inertial azimuth
-1

tan [VYGIVXG]

relative azimuth

-1
tan [VRYG/vac]

atmospheric relative azimuth
~1

tan [VAYG/vAxc]

geocentric latitude
-1 h

sin [zl/rI

inertial longitude

tan~! [yI/xIT

} (VII-7)
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~p

:L:P
-

relative longitude

6. - Q (t-t

1~ % o)

= gensed acceleration in the B-frame
Arg * App
magnitude of the sensed acceleration
L
= . 2
(A5 * A)
= gensed acceleration in the ECI-frame

(18)7! [ATB M éAB]

ot i P i B, S T T AT
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Auxilary Attitude Calculations
The attitude angles that are not used to generate the steer-
ing commands are computed for output in the auxiliary calculation
tubroutine. These equations are summarized below:

1) Aerodynamic angles:

a = tan~! (VAZB/VAXB)’ W

8 = tan™! (VAYBZ/;§XB + Vize)

GBy3 + sin B sin

= tan-! ( A .
¢ tan \GBy, cos AZA - GBy; sin AzA cos YA)

? (Vii-8)

2) Inertial Euler angles:

OI = tan~! (L323/L322),

v = -sin~! (LBy), (V11-9)

91 = tan~! (LB31/L311);

3) Relative Euler angles:
Vg = tan~! (GBlz/ﬁBn).

eR - —sin'l(GBl3)» > (VII-10)

OR = ta: (G323/GB33) .

VIiIi-10




3) Relative Euler angles:

-
¢R - wR sin BR

w = [GB] i + é cos ¢R + @R sin ¢R cos f (VII-13)

y r R R

v
Luz Lr tan ¢c L¢R cos ¢R cos GR BR sin ¢R

Vii-11

3 Th~ ~elationship between the body rates and the attitude
angles are:
'{ 1) Aerodynamic angles:
E wg a; + dlé + (sina) éT
3 vl = |22 + doo + a 3 (VII-11)
R . ’ w a3y + d36 - (cosa) B j
z
S L. -
" 3 2) 1Inertial Euler angles:
Mt 0. - v &in 0 | |
. W ¢I cos wI cos 0, wI n o, ;
4 . . (VII-12) =
| wy = SI - ¢I sin wI H
" - . &
F b w, OI cos wI sin 61 + wI cos e1 i
l
>




@ Tracking Data

POST computes tracking information for as many as ten
tracking stations per phase. The tracking stations are located
on a reference ellipsoid and are specified in terms of their lati-
tude, longitude, and altitude above the ellipsoid. These variables
are illustrated in figure VII-2,

Tracking
station

Figure VII-2.- Radar Tracking Schematic
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The position components of the tracker in the Earth-relative
frame are given by

cos ¢T ~os OT

g * (Rs + hT) cos ¢T sin GT . (VII-14)
sin ¢T

where hT is the altitude of the tracker, ¢
the tracker, and 6

ot the latitude of
T the longitude of the tracker.

The slant range vector in the ECI frame is given by
= - -1 -
Igp = Iy - [IP]=% rop, (VII-15)
and the slant range is then computed as

TsR " Isr " Isk’ (VII-16)

The elevaticn angle can then be computed as

- -1 . -
Yop sin (51'R —r-SR/rSR)’ (V11-17)
where
upe = [IP]-1 g,m/lmrl Tegl (VII-18)
The slant range vector, transformed to the geugraphic frame,
is
Ispe ™ [1G] Ter? (Vi1-19)

and thus the tracker's azimuth is given by

AZ'I‘ = tan~! (ySRG/ xSRG)' (V11-20)

The look angles sre calculated from the slant range vector
transformed to the body frame; 1i.e.,

Tgpp = [1B] Ig,- (VI1-21)
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Using the components of TgRp® the cone angle is then given by
- -1 -
Vp = cos (xSRB/rSR)’ (V11-22)

and the clock angle is given by
a = tan-1 (ySRB/zSRB)’ (V11-23)

Space losses are calculated for the tracking stations as
fo.lows:

SL; = 36.56 + 20 Log,g (RSLM . rnl)
SL, ~ 36.56 + 20 Log,g (RSLM . rnz) (V1I-24)

SL3 = 36.56 + 20 Log;o (RSLM . FR3),

where
FR; = 420.0 (command frequency)
FR; . 2287.5 (telemetry frequency)
FR3 = 5765.0 (tracking frequency)
RSIM = glant range distance in statute miles.

Analytic Impact Calculations

The analytlc impact calculations predict the geodetic lati-
tude, longitude, and time of flight at impact for a vehicle with
a given position and velocity to its intersection with the sur-
face of the oblate planet. These calculations assuvme Keplerian
motion and are no: corrected for drag effects.

The basic pro.olem in determining an impact pcint from a
specified position and velocity (510, !Io) is in calculating

the impact eccentric anomaly. This angle is determined by
iteratively solving the equation

VII-14




r 4

r (E) = R, (¢c,) + hip (VII-25)

where h ip is the desire. impact altitude above the oblate
planet and the position vector is giveu by

g_I(E) = £(E) r;o + g(E) Vio

f(E) = (cos (E - Eo) -e cos EO) / (1 - e cos Eo) (VII-26)

3
a
g(E) /u (sin E—Eo) e sin E + e sin Ej .

Once the impact eccentric anomaly, Eip’ is determined, then

the time, latitude, and longitude of impact are calculated as

3
a
- - - - +
tip to + 2 (Eip Eo e sin Eip e sin EO)
. /__2___2 (V11-27)
= tan~ kz X +
°sip { 1p/ 1 * Vip)

y
9, = tan-!{=R}-qt
ip xo) PP
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Velocity Losses

There are twc velocity loss options: (1) imertial velocity
losses, and (2) atmospheric relative velocity losses. The iner-
tial losses are used for orbital problems while the atmospheric
relative losses are used for atmospheric flight problems.

The total change in the magnitude of the velocity is given

by:
- - * - - -
Vf Vi = AV = AV AVTV AVAERO _ Avg AVatm (VII-28)
vwhere
AV* -S Z n :LTv ac, /- dt =  jideal velocity
Av, -S-:-l- T, - T, * U)dt = thrust vector loss
v m ( R R —)
1
A\ - Pe—— . -
&Y ero J. gt A aerodynamic loss
AV8 -Ig sin vy dt = gravity loss
Av.m -S-:—a-EAEi dt =  atmospheric pressure loss

Inertial losses are computad when U = [IB]V,/V,, and simu-
larly atmospheric relative losses are computed when U = [IB]_v_AniA.

Velocity Margins
The program computes the amount of velocity margin avail-
able and the amount vequired, based on a percentage of the ideal
velocity,
The velocity margin is calculated as
AvM - goIsP La (WG/ WG - wp) (V11-29)

The excess velocity is then given by

AV = Ly, - AV, vi (V1I-30)
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f: . \ Sun-Shadow Calculations

The program computes several sun-shadow variables. These
variab.les are used to calculate the sun-vehicle orientation angles,
3 / the sur-snadow conditions, and :rhe position and velocity of the
’}‘:I vehicle in the vernal equinox system. These auxilary variables
o . o . are based upon the Greenwich hour angle (GHA), the Greenwich
hour angle of the Sun (GHAS), the declination of the Sun _GS s

and the time of reference past midnight (TRPM). The Greenwich
.. \ . hour angle, the right ascension and declination of the Sun remain
3 constant during the simulation.

, The vehicle position and velocity vectors in.the vernal equi-
nox system are given by

- -

3 g = (1Y) £, (VII-31)

and

- [
Yoe = 12V] Y. (VII-32)

The Sun unit vector in the (VE) system is

E, c58 cﬂs (VI1-33)
2‘ - CG‘ 898 }
:
88
8

where
Qa = GHA + GHAS.
The Sun unit vector in the ECI system is calculated as
Y = [V,

The cone and clock angles of the Sun vector in the body system
are given as

-1
6cone - cos (!B ‘ 201) (V1I-34)

-1
6clock < tan (yoB/'oB)
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where ug is a unit vector in the direction of the xB axis, and

- -
st

Ye | = [13]231. (VII-35)

sz

—
The program also computes a shadow function, which is used to de-
termine when the vehicle is in or out of che Earth's shadow. Thiz
function is based upon a cylindrical shadow model and is given by

A-’i(RE*-Rp) if xp cu <O,
S = (VII-36)

>0,

-A + %(RE + Rp) tif r.

=1 51

If S<0, then the vehicle is in the shadow of the Earth. If s20,
then the vehicle is in the sunlight. The vehicle is entering the

shadow 1if éiO, and exiting if $>0.

Multiple Vehicle

The program has the capability to simultaneously simulate
the motion of two independent vehicles. One of the vehicles 1is
active in the saense that it can be controlled using' propulsion
and/or aerodynamic forces. The other vehicle is passive in the
sense that ic cannot be controlled and is assumed to be out of the
atmosphere and nonthrusting. As a result, the active vehicle is
referred to as the pursuer, and the passive vehicle the target.
The relative geometry between these two vehicles is defined in
Figure VII-3,

A large number of output variables are calculated for the
target veiii~le. These variables are computed using equations
tha! are identics) to :hose used for the active vehicle. A com-
plete list of these syuations is given in Volume II - Utilization

Manual. Only the key equations are in this section.




il 3

The increment in position, velocity, and acceleration between
the active and the target vehicle are given by

Ay = T, =~ ¥ = Ar + [AV dt
=1 -=It ) -
(VII-37)

AX'XI-XIt’A!O"' J4a dt

2 Orbit of
Target Vehicle

Target Vehicle

Active Vehicle

Figure VII-3.- Relative Geometry between
Active and Target Vehicles
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VIII. TARGETING AND OPTIMIZATION

POST uses an accelerated projected gradient algorithm (PGA)
as the basic targeting/optimization technique. PGA is a combina-
tion of Rosen's projection method for nonlinear programning (refs.
3, 4, and 5) and Davidon's variable metric method for unconstrained
optimization (ref. 6). The program also contains backup single-
penalty function methods that use steepest descent, conjugate
gradients, and/or the Davidon method. These standard gradient
method are well documented in references 6 and 7 and are only
briefly described in the following discussion.

The projected gradient algorithm is an iterative technique
designed to solve a general ciass of nonlinear programming prob-
lems. PGA employs cost-function and constraint gradient informa-
tion to replace the multidimensional optimization problem by an
equivalent sequence of one-dimensional searches. In this manner,
it solves a difficult multidimensional problem by solving a se-
quence of simpler problems. In general, at the initiation of the
iteration sequence, PGA is primarily a constraint-satisfication
algorithm. As the iteration process proceeds, the emphasis
changes from constraint satisfaction to cost-function reduction.
The logic used to effect this changeover process will be dis-
cussed below.

Since numercvus analytical developments of this technique are
available (see refs 3, 4, and 5), this presentation will pri-
marily emphasize the geometrical aspects of the algorithm. This
geometric interpretation clearly motivates the equatfons and
logic contained in PGA, and a basic understanding of these con-
cepts is usually sufficient to enable the user to efficiently
use the algorithm.

Problem Formulation

The projected gradient method solves the following nonlinear
nrogramring problem:

Determine the values cf the independent variables, u, that mini-
mize the cost function (optimization variable)

F(uw), (VIII-1)
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subject to the constraints (dependent variables)

c(u) 20, (VIII-2)

where u € R c 1s a vector-valued function, 1i.e., E;RP o

and F 1s a scalar-valued functiomn, i.e., ¥:R" -+ R;.

The algorithm is actually more ver--’ {le than this simple
formulation might indicate. In order to ..«aximize any particular
function, say W(u), all that is required is to define
F(u) = -W(u) and determine the minimum of F(u). The equality
constraint case is alsv contained within the above formulation
since constraint equations of the form

cj(g) =0 (VIII-3)

are special cases of Eq (VIII-2).

In the trajectory optimization, the cost fuuction and the
constraints are not explicitly a function of the independent
variables, but rather depend explicitly on the state variables

- I !I’ m, and Q. The explicity equations re¢lating the state
- (dependent) variables to the independent variables are the in-
tegrals

r, = + I!I de
o

A [N R R L
m=nmn 1-4/:& dt

[o]
fé de.

(VIII-4)

o
]
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If x denotes the above state variables of the system being
sisulated at the ot event, and 5;* and Zn— denote the value
of x, on the plus and minus sides cf that event, then

- - + -
where u are the independent variables in phase n, and 1;

represent the solution of the state differential equations over
phase n. The values of the state variables on the positive side
of event n are then

x = x4 Ax (VIII-6)
n - -n
where Agn represents the discontinuity in state (e.g., velocity
impulse at the nth event) .
The cost function and the trajectory constraints are computed

at the positive side of the specified events, and are therefore
given by

F(u) = f(:_:: ) (VIII-7)
£
and
g +\ ]
<, (=)
clu) = . , (VIII-8)
&, (=)
1\
b -

vhere vf denotes the event at which the optimization variable

is specified and vj denotes the events at which the dependent

variables are specified. This generality enables the program to
solve problems in which intermediate constraints are defined, as
7all as problems where the cost function is not specified at the
final event.

VII1-3
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The trajectory propagator, Tn’ can reoresent either numer-

ical integration or analytical Keplerian equations.

Fundamental Concepts and Nomenclature

To facilitate the discussion of the projicted gradient algo-
rithm, the following nomenclature and basic ccncepts will be in-
troduced.

A real k-dimensional Euclidean vector space is denoted by

Rk, and x denotes a column matrix whose elements are

Xy where i =1, 2, ..., k. The vector inequality x > 0 im-

plies x, > 0 for each i, and A" denotes the transpose of the
real matrix A.

The cost gradient is an m-vector of partial derivatives de-
noted as YF or 3F/3u, and 1s defined as

oF
0y " By

The gradient to the ith constraint is similarly represented.

The .Jacobian matrix of the constraint vector functicn with

respect to the independent variable js a matrix whose 1ch row is
the gradient vector 291. This matrix is denoted as

ac

J(u} =53 (VII11-10)

and contains n rows and m columns. Clearly,

J1J " 30 (V1II-11)
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The jth constraint is said to be active at é. if and only if

a) cj@ <o, (VI11-12)
An active constraint is said to be unconstraining if and only if
b) cy (u) = 0 and Ty - [(SS')’1 s;]j < 0. (VIII-13)

Condition a) implies that the jth constraint is either vio-
lated at u, while b) indicates that the negative of the cost
function gradient "points" outside the feasible region.

The senstitivity matrix is that matrix whose rows are the
gradients to the active constraints, and is denoted by

de
S(u) = a—: (VIII-14)

vhere e 1is the na-vector of active constraints. Equality con-

straints are always active and thus are loaded into the upper
elements of the e. Thus, e 1is essentially the error vector
for the active constraints. The error function is defined to be

E(u) = e’e. (VIII-15)
The sensitivity matrix, S, 1is obtained from the Jacobian
matrix, J, simply by deleting those rows that correspond to

inactive constraints.

Corresponding to each constraint function c¢ (u) is a
bowundary hypersurface, B» defined by

B, = Juzc,(w = o;. (VIII-16)

Clearly, B1 is an m-1 dimensional nonlinear manifold. It can,

hovever, be approximated at each point @4 in R" by an m-1
dimensional linear manifold

¢, (@= {.‘ylci'(_q) (u-9 + ci@ - g}, (VILI-17}

VIII-:

T S T T TRy v I T ST SR « N N D S A T T e T U T T S .L L



,' The feasible region for the 1th inequality constraint is the
half-gpace in the independent-variable space defined by the set

&
R, = {g;ci(g) >0, (VIII-18)
while the complete feasible region for all of the constraints is
PEEad n
R= N Ri' (VIXI-19)
i=]
- The boundary of the complete fcasible region must be
n
B(R) = U (Bir\ R) (VI11-20)
i=1

The intersection in the preceding equation is required to select
from the unbounded boundary, B 1° of the feasible region of the

1th constraint that portion which is adjacent to the feasible

segion, R, for all of the constraints.

At any particular © ¢ R‘Il it is useful to define the local
boundary hypersurface, B(d), to the complete feasible region as
the intersection of the active constraints at (. Let N(d)
denote the set of indices of the fi_ tight constraints at .
Then, symbolically, s

B(Q) = ﬁk By (VI1i-21)
1eK(u)
Clearly B(d) is an m-k dimensional nonlinear manifold in the
a
m~dimensional independent variable spacas.

hn m-k‘ dimensional linear manifold C(4) approximating

B(3d) 1is the intersection of the active iinearized constraints at
d; that is,
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-{ysmug—g>+g@>-g}

Now let a(g) denote the linear space spanned
to the active constraints; that is,

k

(VIII-22

(VIII-23]

by the gradients

a
PR :§ :
Q(u) -g u:3 Ags =ees @ for which u = aj Sij(g) R (VIII-24)

( a i=1

and let Q(d) denote the orthogonal complement to
is,

= Q@) @ GG@).

d(a); that

(VIII-25)

It can be shown that Q(d) 1s the unique linear space that can

be translated to obtain the linear manifold C{(d).

Furthermore there exist unique orthogonal projection oper-
ators P(d) and ?(ﬁ) that resolve any vector in the independent-

variable space into its corresponding components in
5(9), respectively; that is, for any u ¢ R™
u = Py + F(@u,
where
. N~
P(u ¢ Q(u) and B(Du ¢ Gu).
In particular,
F=s(s) s
and

P=1-F.

Y T O P U P S S S g T ST D TP A, ST O T Y S

Q(d) ard

(VI1I-26)

(VIII-27)

(VI11-28)

(VIII-29)
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\ An additional concept is the idea of problem scaling. The

purpose of problem scaling is to increase the efficiency of the

targeting/optimization algorithms by transforming the original

j 3 problem into an equivalent problem that is numerically easier to
solve.

To numerically scale a preblem, two general types of scaling
are required: (1) independent-variable scaling, and (2) dependent-
variable scaling. Independent-variable scaling is accomplished

v by defining a positive diagonal scaling matrix, Wu, such that, -
= - the weighted independent variables are given by
y ;
us= [Wu]g. (V11I-30) :

Simularly, dependent-variable weighting is accowplished by ‘
defining an optimization-variable scale factor, WF» and a |

positive, diagonal, dependent-variable scaling matrix, W , such
that the weighted optimization variable is e

5 pl = wFF(g) (VIII‘31)

and the weighted dependent variables are given by

. v - -1 5 -
g ) [We]s (v, &), (VIII-32)
4
; yielding a veignred crror rur.:tion
o ’\4"\4
P, =2 (V). (VIII-33) ;

| The program contains several options for computing the in-
i dependent-variable weighting matrix. However, the option most
often used is the percentage scaling matrix

1 |
w = T (V1:i1-34) 3
{“Ju Ui -

Viii-8
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The dependent-variable weighting matrix is always computed
as the reciprocal of the constraint tolerances, and is given by

[w ] - %—- , (VII1-35)
it 1
where € is the tolerance for the ith constraint. The optimiza-

tion scale factor is merely ‘nput so that P2 is approximately
equal to one.

For simplicity, the folloving discussion of the algorithm
assumes an appropriately scalec problem. However, the scaled
equations can be obtained by maiiing the following simple sub-
stitutions:

3"

u replaced by u

F replaced by P

replaced by E

c

b replaced by PZ

s laced by |w |rsifw ]t
replaced by [e] [u_l

7F laced by W. W1 VF

JF replaced by W_ W = VF.

The final key concept employed by PGA 's the idea of a direc-
tion of search. Heuristically, the directioa of search is nothing
more than a particular line in the independent-variable space
along which the constraint error is reduced, or along which the
cost-function is decreased. Ir a more precise sense, the direc-
tion of search at (4 1is a half-ray emanating from G. Thus, for
any positive scalar, Yy, the equation

u=14+ y8 (VIII-36)

sets the limits of this half-ray and represents 'movement' in the
direction 8 from . This is illustrated in figure VIII-l.
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Figure VIII-1.- Direction of Search in the
Independent-Variable Space

If § 1is a unit vector, then Yy represents the actual dis-
tance "moved" in the direction §. This concept of direction-of-
search is particularly important since it enables the m-dimen-
sional nonlinear programming problem to be replaced by a sequence
(hopefully finite) of one-dimensional minimizations. What remains
to be explained then is: (1) how to select the direction-of-
search; and (2} how to determine the step size in that direction.
All "direct" optimization methods employ this concept and, hence,
differ only in their answers to the two preceding questions. The
technique by whi-:h s, and Yn are selected by PGA will be de-

scribed in subsequent sections.

Direction of Search

The projected gradient method uses two basic search direc-
tions. For this discussion, they will be termed the constraint
and optimization directions, respectively. PGA proceeds by tak-
ing successive steps in one or the other of these two directions.
The computation of each of these search directions is described
below at a particular poirt 4 in the independent-variable space
where ﬁa of the constraints are active.

V111-10
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Constraint direction.- The constraint direction depends

critically on the number of active constraints. Three cases are
distinguished below:

a

1) Case 1.~ 1f na< m, then that unique control correc-

tion A4 1is sought, which solves the linearized con-
straint equation

S(d) Au + e(@ =0 (VIII-37)

and minimizes the length of 0Ou. The solutions to the
preceding vector equations define the m—n dimensional

linear manifold C(8), which apptoximates the local
boundary at 4 as described in detail in the preceding
section. The desired minimum norm correction, Ad, 1s
then the vector of minimum length in the indepdendent-
variable space from @ to the linear manifold C(d).
Analytically, it is given as

AQ = -s°[sS” 1 e(a) (VIII-38)

This correction is illustrated in figure VIII-2.

The direction of search then is simply taken to be this
minimum-norm correction to the locally active linearized
constraints; that is,

8 (d) = Ag. (VITT-39)

L4, minimum norm c(d), intersection of

correction -_L l1inearized conatraints
[T s e e

.......
e 28

.........
---------

-----

.
-----
------

First linearized Second linearized
constraint constraint

Figure VI1I-2.- Illustration of Minimum-Norm Constcaint,
Direction for ﬂ. =2 <m= ]
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’ 2) 1If ﬁa = m, then the linearized local boundary C(d)

: A reduces to a single point. Thus, there is a unique solu-
tion to the linearized constraint equations without the
additional requirement that the length of the independent-
- variable correction be minimized. The minimum-norm cor-
k| . rection formula then reduces to the familar Newton-

3 Raphson formula for solving m equations in' m unknowns;
namely

Ad = - 5! e(d). (VIII-40)

- The Newton-Raphson correction is illustrated geometrically
S in figure VIII-3.

‘ Second linearized
3 ’ constraint
b Ad, Newton-Raphson

Third linearized \ correction

\H
N\ 2

7

» \\\\\\‘ n o
A\ b

constraint

Figure VIII-3.- Illustration of Newton-Raphson Constraint, Direction
for n,=a-= 3

Ie>

- . The direction of gearch is taken to be this unique -.or-
rection .ctor satisfying the linearized constraints;
that {is,

8°(0) = AQ. (VIII-41)
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3) If ﬁa >m, then C(3) is empty, since a simultaneous

solution of all of the linearized constraint equations
does not exist. Hence, an entirely new method for choos-
ing the search direction must be devised. PGA deals

with this problem by seeking the unique independent-
variable correction Ad that minimizes the sum of the
squares of the deviatious from the linearized constraints.
Thus, the function

£(bu) = |SCa) du + e(d) |2 (VI1I-42)

is minimized with respect to Au. Gauss demonstrated
that the formula for this '"least squares' correction is

pG = ~(S8°5)”! s e(d). (VI1I-43)

Figure VIII-4 {llustrates the least-squares corraction pic-
torially. As in the preceding two cases, the search
direction is then taken to be this optimal correction;

that is,

s (@) = Ad. (VILI-44)

lﬁh
Fourth linearized /// 'IK X Ad, least-squares
constraint /

/ §\ correction
/7

A S 8
///////,, 'l 1N

First linearized
constraint

Third linearized
constraint

Second linearized
constraint

Second linearized
conatraint

Figure VIII-4.- Illustration of Least-Squares Constraiut,
Direct for n, = 4>m=3
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Optimization direction.- When the number of active comnstraints
is less than the number of independent variables, it is then pos-
sible to reduce the nonminimal cost-function. Obviously the
steepest descent direction, -VF(d), would be the best local
search direction for reducing the cost function. Such a direc-
tion, however, would generally produce unacceptable constraint
vialations. To avoid this difficulty PGA orthogonally projects
the unconstrained negative gradient, -VF(3), diato a direction
parallel to the local linearized comstraint boundary c(a). By
searching in the direction of this negative-projected gradient
the algorithm can guarantee that there is no further constraint
violation than that of G for the case of linear constraints.

To calculate this direction, it is only necessary to apply to

the unconstrained negative gradient the projection operator P(1),
which maps any vector in the independent-variable space into its
component in Q(d), the unique linear space that can be trans-
lated into coincidence with the linear manifold C(&). Thus,

2@ = -P(@) TF(D)

= -[I - F(a)] YF(Q) (VI1I-45)

= -[I -53° (s8°)7! s(a)] YF(d)

The direction of search for the accelerated projected gradient
method is

o
5@ = -H P YF(@ (VIII-46)

where

H =1 (VI1I-47)

and

+A +B, where n=2
n n

“n-l
W A e

-]
L]

“p-1

F(u) - 2F\2p-1)-

AC

r
2

VIiIl-14

n “[“n-l xns.,“l,;_l] /s,;ﬂn_lx“. (VIII-48)
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Figure VIII-5 illustrates the direction of the negati\e—projected
gradient for the case of a single active constraint.

Pirst inactive
const raint

Sole acti ‘e
constraint
Linearized approximation (paraboloid

:: :ole active constraint s of revolution)

Unconstrained negative
gradient to cost
function at u

Second inactive
Negative projected constraint v
gradient at v

Figure VIII-5.- u_rection of Negative-Projected Gradient for n = 1

and m = 3 (Feasible region is that region inside
parcboloid, above lower plane, and below upper plane;
cost-function is vertical height)

If there ara no equality constraints, and if all the inequality
constraints are inactive, then S 1is the zero matrix and the
direction of search becomes the standard deflected gradient
direction

s°(@) = -H_ IF (). (VIII-49)

Similarly, if the single-penalty-function methods are used,
then the directions of search that minimize

P,=F+ We'e (V1I1-50)

1) Steepest-descent method

8% (@ = -9, (@3
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2) Conjugate gradient method (steepest-descent starter)

_ 5 () s ()

S, ° YPyu, ¥ Y?Q(En-l)Z?Z(Pn-ﬂ s

» Where n > 2,

3) Davidon's method (steepest-descent starter)

o 1
s, = -H XPZ(En)’ where n > 2

and

= + +
Hn Hn—l An Bn’

where An and Bn have the same definitions as in the

accelerated projected gradient mode.

Step-Size Calculation

At any particular point G in the independent-variable
space, the PCA algorithm proceeds by reducing the multidimen-
sional problem to a one-dimensional search along the constraint
direction to minimize the sum of the squares of the constraint
violations, or along the optimization direction to minimize the
estimated net cost-function. In either case, once the inicial
point u and the direction ofsearch § are specified, the prob-
lem reduces to the numerical minimization of a function of a single
variable--namely, the step size. PGA performs this numerical
minimization via polynominal interpolation, based on function
values along the search ray and the function's value and slope at
the starting point. Consider then, in detail, the calculation of
this latter pair of quantities for the respective functions asso-
ciated with the constraint and optimization directions.

Constraint direction.- The function to be minimized along
. . c
the constraint direction, s , 1is the sum of the squares of the

constraint viotations; namely

h () = efut s ) (VI11-51)
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Clearly
h_(0) = le(a) 2. (VIII-52)

Differentiation via the chain rule yields

h "(0) = 2¢"(D)S(®) §°. (VIII-53)

~

Recall that the search direction sc was obtained as an in-
dependent-variable correction either satisfying all the linearized
constraint equations if na <m, oOr minimizing their violation if

m < ﬁa. Thus, if the constraints are reasonably linear, a good

initial estimate for the Y minimizing hc is one.

Optimization direction.- The function to be minimized along

the optimization direction, éo, is the estimated net cost-
function which is defined as

h (1) = Fla + %) - F(@) + LF@ [-S'(SS‘)-1 efu+ ~,§°)] . (VIII-54)

(. 7 \ J
N T

change in cost- linearized approximation to

function produced change in cost-function re-

by step of length quired to perform minimum-

along &° norm correction back to the

' g8 2 feasible region

Clearly
h,(0) = -V "F(2) $ (58" "1 (a)e(a). (V111-55)
By expanding ho in a Taylor series in about . = O,

and by making use of the fact that fé? = 0 since g? lies in
Q(d), it can be shown that

h;(0) = LF(&) 8°. (VIT11-56)

These properties of ho are illustrated in figure 25.
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Cost index

Equal
slopes

Estimated change /
ﬂ in cost function ’[
due to constraint /f

correction ’,
/7

Estimate net
coat function

b

' [} [ [ Y
A (optimal step length) Change in cost
function along
——— direction of
-~ — ﬁ___fearch

Figure VIII-6.- Properties of Estimated Net Cost Function

Both the constraint and optimization directions are based on
a sensitivity matrix that depends critically on which constraints
are active. Hence, for searches in either direction, it is im-
portant to limit the step size so that the set of active constraints
does not grew. Such a limit can be obtained based on linear ap-
proximation and suffices to deal with inactive constraints becom-

ing active.

The reverse situation--of active constraints becoming in-
active--poses no difficulty. To see this, note that because of
our treatment of the active constraints as linear manifolds, a
first-order approximation of the distance to a particular active
constraint boundary would not change along the optimization cirec-
tion. Furthermore, along the constraint direction any change in
the status of an active constraint will be appropriastely treated
by minimizing hC with respect to the step length.
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Let K(d) denote the set of active constraint indices at
, and let

=

L 87(@)¥c, (D), (VII1-57)

where s(d) 1is the search direction at vector 4. Then assign
to eack k in K the number

—ck(g)/rk if r, < 0 1

A(k) = ’(VIII-SS)

R 1if rk >0

where R 1s a very large real number. Then A(k) 1is a linear
approximation to the distance along the search ray from u to
the boundary, Bk’ of the kth constraint. Hence a resonable
upper bound for the step length is

A =min [A(k)]. (VIII-59)
keK

One-Dimensional Minimization

Monovariant minimization in PGA is performed exclusively by
polynominal interpolation. First the actual function, f, to be
minimized is fitted with cne or more quadratic or cubic poly-
nominals until a sufficiently accurate curve fit, p, is ob-
tained; that is,

n
p(y) = E a Yi ~f(y) for all y of interest. (VI11-60)

i
i=0

Then the independent variable value, Ym, that minimizes f 1s
approximated by the value, y:, which minimizes p. Clearly,

y: can be determined analytically if =n < 3.

VIII-19
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The minimization routine makes ingenious use of all the in-
formation it accumulates about £ to obtain a good curve fic.
First, f 1s fitted with a quadratic polynominal, p), based
on:
1) £(0)
2) £°(0)
3) f(y: , where y: > 0 is an initiul estimate of the
y value that miaimizes f.
The coefficients of this quadratic polynominal are then calcu-
lated from the formulas:
ag = f(O)
a8 = £7(0) (VIII-61)
- 2
m m m
a; = [f(yo) - aoj/yo + ‘1/Y°~
The value of the independent variable that minimizes this poly-
nominal is
L]
Y1 = -a1/2a;. (VII1-62)

1f y? and y% do not differ significantly, yn is taken
to be y? and the minimization prccedure is considered complete.
Similarly, if p;(y?) is not significantly different from

£ yT), then Y" is taken to be equal to y? and the process

is terminated. Otherwise f is fitted with a cubic polynominal,
p2,» based on

v £(0)
2) £°(0)

3) f (73) and y: >0

4) £ (v?).
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If f is fitted using p,, then coefficients are calculated
from the following formulas:

£(0) B

]

a; = f‘(O)

>
[ ]

max ('Y‘g ,Y?)
min (v'g,v'i‘)/k

a; = [Aa; a +ag (L +0)+ (a2 £(A) - £(ar))/ QA - &)1/ (A 3a2)

$ (VILI1I-63)

=]
"

a3 = [(£(ar) - BEQ))/ @ - a)~da(d + a3 -(L +a = az)aoll(kzuzzJ

The value of the independent variable, A?,— that minimizes this
cubic polynomial is

/
Y3 = (e + A2 - 2aa)) [ 3as (VILI-64)

If Y? and y? do not differ significantly, ym is taken
to be Y? and the minimization is stopped. Similarly, if pz(vg)
is not significantly different from f(yg), then ym is taken
to be equal to y? and the procedure is terminated.

If none of these stopping conditions is met, a third quad-
ratic curve-fit is attempted. The accumulated set of ssmjlc

T?ints on - f, namely [0,£(0)], [Yg, f(vg)]. [YT.f(YT ,» and

Y?, f(v? , 1s arranged in the order of their ascending abscissa
values. en the first point whose ordinate value is less than
that of the following point is selected.

To simplify the notation in the following pages, relable this
point as [y, f(y7)], the preceding point as [v;s £(v1)}, and
the following point as [vy3, f(y3)].
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Another quadratic polynomial, p3, is then fitted to

1) £(v1)
2) f(y3)
3) £Gv)).
The formulas for these quadratic coefficients are as follows:
- B
byg T Y1Yy
c1j - Yi + Yj
dyg =Yg 7Yy
by3 b3 by2 &(VIII-65)
ag = — £(v)) + —— f + —— f )
0 d12d:3 (va 451923 (v2) d31932 (v3)
€23 £Cv1) c13 £(yn) €12 £(ya) 4
a R ——— - — — - — ——
L e PR PYT YR PYT PPl i
1 1 :
a, = f + —f + —f .
2 djadig e dz1d23 (r2) djids2 (r3) y
The value of the indeperdent variable that minimizes this quad-
ratic 1is
Y3 = -a,/2a;. (VIII-66)

1f Y? and v? do not differ significantly, Yo is taken
to be y? and the search is discontinued. On the other hand, if
p3(y'§) is not significantly different from f(y";), then "
is taken to be (y?) and the process is terminated.

If neither of these stopping conditions is met, then a cubic
polynomial 1is fitted to
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1)
2)
3)
4)

f
f
£

£

(v1)» M1
(v2)» Y2
(v3)» v3

m
(Yy)s Yy = Y3.

The formulas for these coefficients are as fallows:

Dy = (v2 -~ vy (v3 = v1)(ry = 71) W
Do = (y; = v2)(y3 = v2)Cry = Y2)
Dy = (vy - v3)(vz = v3)(vyy = v3)
Dy = (v1 =~ vu)(v3 = vu)(v3 = vu)
Y2Y3Vy YiY3Yu Y1Y2Yy Y1Y2Y3
ag = — f(vy) + b, f(yp) + Ds f(y3) + Da - £(vy)
Y2Y3 + vovu + Y3vy (Y1vs + 1 Yo+ vuv3)
a) = D, f(yy) + D; f(vz)
(VIII-67)
. Criva + vive + v2vy) (v1v2 + v1vs + Y2Y3) .
D, f(y3) + By (vy)
(v, +v3 + Yuy (y1 + v3 + vy
a; = D, f(yy) + D, f(v2)
rp + v2 + vy) (vip +v2+ vy
+ f(Y3) + f(Yl..)
D3 Dy,
1 1 1
aj3 D] f(vy) - D, £(vy) - D, f(v3) - o f(vy). ]

The value of the indpendent variable minimizing this fourth cublec
polynomial is

Yh = (-a; +/a§ - 3aja;)/3a3. (VI1I-68)
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1f yE and y? do not differ significantly, Ym is taken
to be Yz and the minimization is stcpped. Similarly, if
, P“(YE) is not significantly different from £ yf), then Ym
A8 is taken to be equal to yE and the procedure is terminated.
1f none of these stopping conditions is met, the accumulated i

set of sample points is searched for the point with the minimum
ordinate value. The abscissa value of thie poiut is taken to be o

Ym, and the minimization is considered complete.

.
[ N

Algorithm Macrologic

o After being initialized the projected gradient algorithm

: proceeds as a sequence of iterations, each consisting of an op-

i timization step followed by a constraint-correction step (see

fig. VIII-7). The very first step from the user's initial independ-
ent-variable estimate is however, one of constraint correction.
Furthermore, the optimization step is also omittad on any itera-
tion for which the constraint-violation function, hc’ was not

reduced by the constraint correction step of the preceding itera- i
tion.

The optimization search direction that emana’es for u is

based on the sensitivity matrix, S(gn); that 1is,

o Ly ‘
s =8 (gn ) -PUF (_l_ln) , (VIII-69)
as discussed previously. Hence, g: lies in the subspace Q(gn). ]

The value of the independent-variable vector, g:, after

the optimization is

(] o ;
u "u *y, 8 (VIII-70) .

where Yo 18 the optimum step size.
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Initalize flags
and start
iteratica cycle

Integrate nom~
insl trajectory

Test for

convergence

Integrate perturbed
trajectories and cal-
culsted sensitivities
(a) +¥, u2d (b) (8]

1

Determine the direction
of seach

a) constiaint direction g:

b) optimization direction g:

Determine the step size, v:.

that minimises the estinated
net cost function

b, - ho(u‘+ Y g:)
1

Los s

-

L]
Determine i..2 step size, Ye

that sinimises the comsvraist
ervor fumctiom

h s oe (s 0 v £)

i

Update the inde-
pendent varisdbles

lm'la": LY

FPigure VIII-7.- Macrologic of Projected
Gradient Algorithm
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The direction of the constraint-correction search emanates
from g:; however, since generating a new sensitivity matrix

ie such an expensive calculation, the old Jacobian matrix, J,
of the constraints with respect to the controls evaluated at

u_ 1is used in conjunction with the error at o’ Thus,
-n -n
¢ . ¢~ sy=1 o
s S°(SS°) (u )g(u ). (VIII-71)

It car be shown by direct computation that

?(gn)g: = gs, | (VIII-72)

where g(gn) is based on S(gn). Thus, 5: lies in the sub-

space Q(En) in the independent-variable space.

v
Since u and Q(gn) are orthogonal complements, it
follows vhat the optimization and coustraint directions for any
iteration are exactly orthogonal; that is,
o\ ¢

(gn) s 0. (VIII-73)
The result of the constraint correction step is then the inde-
pendent-variable vector for the next iteration. Thus

(] [
Ut u + Y. & (VI1II-74)

Figure VIII-8 geometrically illustrates a cumplete PGA iteration.
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Plane determined by
gradient to the cost
function and the gradienc
to the active coanstraint

Unconstrained gradient
of cost function, VF(u) —

Gradient to cj,
Vej (g)/<

Minimum-norm constraint

Cc
step, Y 8

Linearization of
sole active

o, constraint
m—
'
) Sole active nonlinear
. constraint, CJ
- ‘Projected gradient
- optimi :
; P zation step, Yo 84
i Figure VIII-8.- Complete PGA Iteration, Consisting ofAOptimization
- Step Followed by Constraint Step for n = 1 and
=
=

m = 3 (Feasible region is the unbounded region
below the indicated nonlinear constraint manifold)

Finally, the algorithm has two stopping conditions. First,
the search is stopped if the change in the cost function and the
change in the length of the independent-variable vector between
two successive iterations fall below their respective input
tolerances; that is, if

IFlune1) = Fitn) | < €

s \ 1 i

(VI11-75)
O N
Second, the procedure is discontinued if the number of the cur-

rent iteration equals the ma..Imum permissible number input by
the user.

B AR A5 U Y LN
-

vVi11-27




10.

11.

REFERENCES

D. E. Cornick, R. Stevenson, G, L. Brauer, and R. T. Stein-
noff: Program to Optimize Shuttle Trajectories. MCR-71-
731, prepared under Contract NAS1-108ll. Martin Marietta
Corporation, Denver, Colorado, 1971.

G. L. Kessler: Generalized N-Phase Trajectory Program (UD-
213). Martin Marietta Corporation, Denver, Colorado, Jan-
uary 1971.

W. E. Wagner, and A. C. Serold: Formulation on Statisti-
cal Trajectory Estimation Program. NASA CR-1482, January
1970.

J. B. Rosen: The Gradient Projection Method for Nonlinear
Programming. Part I - Linear Constraints., J. Soc. Ind.
Appl. Math., No. 3, 1967, pp 181-217.

J. B, Rosen: The Gradient Projection Method for Nonlinear
Programming. Part II - Nonlinear Constraints. J. Soc. Ind.
Appl. Math., No. 3, 1961, pp 514-532,

B. A. Glassman, et 2l.: A Parameter Optimization Procedure
for Multistage Vehicles. Vol. II. A4AS Science and Tech—
nolog; Sertes, M. L. Anthony, ed, pp 223-241, 1967.

W. C. Davidon: Variable Metric Method for Minimization.
Report No. ANL-5990 (Rev). Argonne National Laboratory,
Oak Park, Illinois, 1959,

R. Fletcher and M, J. D. Powell: A Rapidly Convergent De-
scent Method for Minimization. Computer J., July 1963.

F. T. Krogh: 'Variable Order Integrators for the Numerical

Solution of Ordinary Differential Equations." TU Doc. CP2308,

NPO-11643, Jet Propulsion Labor.itory, Pasadena, California,
1969.

F. T. Krogh: "An Integrator Design." Technical Memo 33-479,

Jet Propulsion Laboratory, Pasadena, Califormia, 1971.

F. T. Krogh: "Algorithms for Changing the Step Size."
SIAM Jourmal on Numerical Analysis. Vol 10, No. 5, October
1973,

IX-1

s

LA A S,

W

v
by
e

P A e

L WO



APPENDIX A
DECOMPOSITION BY PARTITIONING INTO FULL-RANK SUBPROBLENMS

Consider a trajectory consisting of s mission segments each of
which may consist of one or more phases. Suppose that each seg-

ment has its own physical control vector, EF» containing m com=
k
ponents and its own constraint vector ¢ having n components.

Let XF be the target value of the constraint vector for segment
k. Finally, suppose there are n constraints Ci’ which are best

associated with the mission as a whole rather than any particular
segment. Let Vi deriote the turget values of these constraints.

The problem is then

()2 ()

subject to:

k k 1
veom ey (_H_g_) for k=1,...,8

=1
for i-l,...,nk

k for i=1,...,n.
Vi-Ci(.H.g) J

k=1

When numerous segments are present with varving degrees of in-
fluence on the overall objective, F, solution of problem [1] in
a single piece by means of any existing equality~-congtraint
minimization procedure becomes impractical if not impossible.
By solving coordinated sets of subproblems representing the in-
dividual segments, the decomposition procedure is able to solve
problem [1] routinely. The decomposition technique thus Yoth
imitates and extands the intuitive approach of the experienced
trajectory designer.

The notation -H-donotu the ordered union of the indexed quantity

k=1
immediately to its right. A-1




The process of decomposing a problem by partitioning it into full-~
rank subproblems is based upon two fundamental ploys. The first
is the use in each segment of certain key control variables to
satisfy the constraints of that segment. Thus segment k is made
into a full-rank subproblem by designating n of the physical con-

trol vector components as subproblem variables and using them
to satisfy the ny constraints of that segment. The remaining

control vector components of segment k are grouped together with
similar variables from the other segments. This collection of
controls, together with the overall mission objective, F, and
constraints, C, are made into a master problem of minimization
subject to equality constraints. This partitioning of the orig-
inal problem lends itself well to computation. The subproblems,
which must be re-solved for each new choice of master problem
controls, are solved by the highly efficient Newton-Raphson pro-
cedure. The master-problem, which serves to coordinate the sub-
problem solutions, uses the equally efficient but more time-con-
suming accelerated projected-gradient algorithm.

The second fundamental ploy is use of constraint target values

of the various subproblems as master-problem independent variables.
To obtain an optimum composite trajectory from a set of mission
segments, the mission analyst typically varies the segment ain
poiats parametrically and chooses the endpoint combination that
results in the lowest overall cost. Indeed, in trajectory
aralysis the decision "where to go" 1s usually more important

than "how to get there." By using subproblem constraint targets
as master-problem controls the decomposition procedure automates
the analyst's successful design approach.

The successful convergence of the decomposition procedure demands
a reasonable partitioning of the original controls and constraints
i{ato the master-problem and subproblem categories. To be more
precise, the subprotlem controcls and constraints must be so chosen
that each subproblem will have a solution for any sat of subproblem
constraint target valuaes that might reasonably arige during the
master-problem iteration process. Thus, for a given subprcblem,
the controls that have the most substantial effaect on that subprob-
lem's constraint set should be chosen. Similarly if a particular
constraint cannot be assigned to any subproblem whose controls

can achieve its satisfaction, it should be designated a master-
problem constraint. Finally, the number of master-problem con-
strains should be held to a minimum. Indeed the master-problem
should be kept as simple as possible hecause each of 1its iterations
requires the re-solution of all the subproblems.

A-2
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The decomposition procedure maintains simulation flexibility in
obtaining master-problem control sensitivity information by using
numerical differencing. Solution of the master-problem by descent
requires constrained derivatives--quotients of dependent perturba-
tions Lin the master-problem objectives and constraints by inde-
pendent perturbations in the master~problem controls assuming that
the subproblem controls adjust uniquely to keep the subproblem
targeted. These derivatives could be approximated by the numerical
differencing of master-problem trajectories consisting of iterative-
ly targeted subproblems. This approach, however, must be rejected
because it is both susceptible to numerical error and demanding ¢
in computational effort. Instead formulas are used that relate -
the constrained derivatives to the partial derivatives of the
master—problem objective and constraints with respect to all of

the physical controls of the original problem. These partial
derivatives are approximated conveniently by numercial differ-
encing of the master-problem trajectories without subproblem
targeting. Thus, the need for deriving variational equations

for each simulated trajectory is eliminated for a reasonable
computational price. Any trajectory that can be simulated, can

be shaped with 20 additional analytical effort.

To precisely define the procedure, considerable nomenclature -
must be established. Most of the user supplied parameters have
already been defined. Two, however, remain. The first is Pys

the number of subproblem constraint target values from segment
k which are to be used as master-problem independent variables.
The second is Q> the number of master-problem constraints aris-

ing from segment k.

Consider next the procedure's working variables. To simplify
notation, the subproblem and master-problem controls are given

distinct literal symbols and resequenced. Indeed, let yjk denote

tne jth subproblem control arising from segment k and zjk be the

jth master-problem control from that segment. Similarly, the
segment constraint target values are assigned new symbols to
distinguish those that sre to be held fized from those that are
to be used as master-problem independent variables. Indeed, let

rik denote the ith constraint target value from segment k that

is to be used as a master-problem independent variable, and tik,
the ith constraint target value to be held fixed for that segment.
Finally, the master-problem constraint vector is resequenced so
that 1ts first q; components denoted by C arise from the first
subproblem, and the next q, components denoted by C arise from
the second subproblem, and so forth. In terms of this new nota-
tion, the original problem (1] becomes
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1’

\
mininize:
s 8
k k
[ (o) - el e )
k=1 k=1
subject to:
8
¢ .U (gk U zk) -c .U.(y,k U zk) for =1,...,8
k=1 k=1
where:

EF is a master-problem independent variable

5# is a master-problem independent variable

XF l ' (EF U EF) is the unique vector of subproblem independent

k=1
varlables for subproblem k, satisfying that subproblem's constraint
set for the current set of master—problem independent variables.

To solve problem [2], a procedure must first be established for
solving the subproblems, that is, for determining the unique

z# glven the EF and 5}. As noted above, the Newton-Raphson
algorithm for solving full-rank systems of nonlinear equations
is the technique selected. To start the iterative solution, the

user must input a goocd estimate, ZF o’ for the physical-control

vector of subproblem k, which approximately yield the constraint
target values for that subproblem. The procedure, then, succes-

sively refines this estimate using the Newton-Raphson recursion
formula

(Y-k)wl . [lk _(Akk)"l (Sk ) !k)]\)

where
2k e
A = — for i=1,...,s8
9y for k=1,...,¢
A-4
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After the first set of subproblems are solved, the converged sub-
problem control values from one subproblem set are used as the
starting estimates for the next subproblem set. Further, the {

Jacobian matrix, Akk, is updated from one iteration to the next
only if the old Jacobian does not reduce the constraint errors
in norm by a user specified fractiom, p.

The equality constrained minimization that is the master-problem ﬁ=
is carried out by the projected gradient algorithm already familiar 4
to POST users. The only new technique involved is the computa-

tion of the constrained derivatives in terms of the partial )
derivatives of the master-problem objective and constraints with i
respect to all of the physical controls of the original problem.
First, the perturbation of the subproblem independent variables
caused by perturbations in the master-problem independent vari-
ables must be determined. Both master-problem physical con-
trols and subproblem constraint target values must be consid-
ered. Once these constrained derivatives of the subproblem
independent variables are determined, thzy can be used to
calculate the desired constrained derivatives of the master-
problem objective and constraints with respect to all of the
master-prcblem independent variables. ‘

e b b e ke e in o st

- SN AR

The constrained derivatives of the subproblem controls are all
derived from the basic subproblem equation

2-1 L
At Z% = 5% - E Ak XF - E gk EF for 9=1,...,s [5]
k=1 k=1
where
acl
3K - = for 2=1,...,8. [6]
azk for k=l,...,%

The constrained derivatives with respect to the master-problem
physical controls are given by the equation

rxl 1 -1 dx? for ¢=1 8
. _(A“) 'k 4 2 A’ -~ for k=l,...,7. (7]
‘\E o=k 6!_
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The constrained «erivatives with respect to the subproblem con-
straint target values are computed from the two formulas

¢y ~1 p
% (Akk) E k for k=1,...,s
e M

A

P.
where E. “ is the matrix consisting of the first Py columns of

the identity matrix of order nk,

for ¢=1,...,s.
k for k=1,...,¢-1

234

The constrained derivitives of rhe master-problem objective with
respect to both the master-problem physical controls and the sub-
problem constrain’ target values follow from the "chain-rule" for
differentiation. They are computed as

S o
NFe) b4

" for k=1,.
iz
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Finally, the constrained derivatives of the master-problem con-

: straints with respect to the master-problem physical controls

\ and the subproblem constraint target values follow from a straight-
f rward application of the '"chain rule." They are related to the
appropriate partial derivatives by the equations

L L o
¢C 8y
o ! = _ ntk L0 for 2=1,...,s
W ¢ K for k=l,...,0° [14]
; oz o=k oz
and
o 3 ) o
. c - Gﬂo 24 for £=1,...,s [15]
: ' k k for k=1,...,1°
ér dr
- where
£
DQk - o9C for ¢=1,...,8 (16]
k for k+1,...,2°
az.
and
2
: aC for ¢=1,...,s
Gﬁ'k = —— for k=1,...,¢" [17]
.k
3y
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