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CONSOLIDATION OF FATIGUE  AND  FATIGUE-CRACK- 

PROPAGATION DATA FOR DESIGN  USE 

By  Richard  C. Rice, Kent B. Davies, 
Carl E. Jaske, and Charles E. Feddersen 

Battelle's  Columbus  Laboratories 

SUMMARY 

Analytical  methods  have  been  developed  for  consolidation  of  fatigue  and 

fatigue-crack-propagation  data  for  use  in  design  of  metallic  aerospace  struc- 

tural components. To evaluate  these  methods,  a  comprehensive  file  of  data  on 
2024 and 7075 aluminums,  Ti-6A1-4V  alloy,  and 300M steel  was  established by 

obtaining  information  from  both  published  literature  and  reports  furnished by 

aerospace companies.  Analyses were  restricted  to  information  obtained  from 

constant-amplitude load  or strain  cycling  of  specimens  in  air at room  temper- 

ature. 

Both  fatigue  and  fatigue-crack-propagation  data  were  analyzed on a  sta- 

tistical  basis  using  a  least-squares  regression  approach.  For  fatigue, an 

equivalent  strain  parameter  was  used to  account  for mean  stress  or  stress ra- 
tio  effects  and  was  treated  as  the  independent  variable;  cyclic  fatigue  life 

was  considered to  be  the dependent variable. An  effective  stress-intensity 

factor  was  used to account for  the effect of  load ratio  on  fatigue-crack  prop- 

agation and was treated  as  the  independent  variable. In this  latter case, 

crack-growth  rate  was  considered  to be  the  dependent  variable. A two-term 

power  function  was  used  to  relate  equivalent  strain  to  fatigue  life,  and  an 

arc-hyperbolic-tangent  function  was used  to relate  effective  stress  intensity 
to crack-growth rate. 

Smooth-specimen and notched-specimen  fatigue  data  were  treated  separate- 
P 

ly. Data for various types  of  notches  and  theoretical  stress-concentration 

factors  were  consolidated by  using a  local  stress-strain  approach.  Both 

cyclic  and  monotonic  stress-strain  curves  were  employed in calculating  the 

local  stress-strain  response  from  nominal  loading  information.  Fatigue-crack- 

propagation  data  from  various types of  specimens  were  treated  by  using  stress- 
intensity  factors  with  appropriate  geometric  scaling  functions. 



INTRODUCTION 

Fatigue  has  long  been an important  consideration  in  the  design  of  air- 

craft  structures  and  recent  experience  with  modern  aerospace  structures  has 

emphasized  the  importance  of  considering  both  fatigue  and  fatigue-crack  propa- 

gation  in  the  design  and  service  performance of aircraft. For conventional 

static  properties  of  metallic  materials,  data  are  consolidated  and  presented 

in  the  form  of  statistically  based  design  allowable  information  in  documents 

such as  MIL-HDBK-5B (ref. 1). For  fatigue  and  fatigue-crack  propagation,  how- 

ever,  such  consolidated  presentations  of  data  and  design  allowable  information 

are  usually  not  available  and  the  data  are  presented  in  terms  of  typical or 

average  values. 

Part of  the problem  for  fatigue  and  fatigue-crack  propagation is  that 

these  behaviors  are  influenced  by  a  wide  range  of  parameters  that  include  cy- 

clic  stress,  mean  stress,  cyclic  frequency,  temperature,  environment,  product 

form  and  orientation  with  respect to loading,  structural  geometry  (size, 

shape,  and  notch  configuration),  metallurgical  and  surface  effects  associated 

with  heat  treatment,  microstructure,  and  machining  practices.  Most  aerospace 

companies  tend  to generate  data  for  a limited  number of  these  many  variables 

to  fulfill  specific  local  design needs. Much  of this information is  retained 

within each  company,  and  that  which  becomes  available  in  open  literature  is 

often  digested  in  accordance  with  particular  theoretical  considerations  and 

analytical  procedures  endemic to a  given  organization.  Since  these  considera- 

tions  and  procedures vary  among  companies,  it  is  difficult to  effect a system- 

atic  consolidation of such data. Assessment  of  fatigue  and  fatigue-crack- 

propagation  data is further  complicated by  the  fact  that  there have  been no 

standard  methods  for  these  types  of  testing.  Recommended  standard  procedures 

for  high-cycle  fatigue  testing  under  nominally  elastic  cyclic  loading  have 

just recently  been  published (ref. 2). Similar  recommended  standard  proce- 

dures  are  still  being  developed  for  low-cycle  fatigue  testing where conditions 

of  cyclic  inelastic  deformation  are  present  and  for  fatigue-crack-propagation 

testing . 
In this study, work was directed  toward  systematizing  and  consolidating 

available  fatigue  and  fatigue-crack-propagation  information on 2024 and 7075 
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aluminum  alloys,  Ti-6A1-4V  alloy,  and 300M steel. Fracture  information on 
these  same  alloys  and  on D6AC steel  were  tabulated  and  graphically  summarized 

as described  in  detail  in  reference 3 ,  but were  omitted  from  the  present  effort. 

It  was considered  imperative  that  the  analytical  procedures  be  compatible with 
statistical  methods  of  data  presentation.  Similar  approaches  were  used  for 

both  fatigue  and  fatigue-crack  propagation,  as  illustrated  in  figure 1. The 

logarithm  of  fatigue  life  was  the  dependent  variable in both  cases. An equiva- 
lent  strain  parameter  similar to  that  suggested  by  Walker  (ref.  4)"and Smith, 

et a1 (ref. 5) was used to  account  for  stress  ratio  effects  and  was  treated  as 

an independent  variable in the  fatigue  analysis. A similar  effective  stress- 
intensity  factor (ref. 4) was used  to  account  for  stress  ratio  effects  and  was 
treated  as  the  independent  variable  in  the  fatigue-crack-propagation  analysis. 

Fatigue-crack  propagation  is  more  complicated  than  fatigue  because  differ- 

ent  life  curves  (fig. 1) are  obtained  for  each  different  state  of  initial dam- 

age. Thus, fatigue-crack-propagation  results  are  usually  presented  in  terms  of 

crack-growth  rate  as  shown  schematically  in  figure 2. The  layering  of  rate 

data  as  a  function  of  stress  ratio  can  be  accounted  for  using  the  effective 

stress-intensity  concept  mentioned  above. 

The  main  body  of  this  report  is  divided  into  three  sections.  Handling  of 
the  data  is  briefly  discussed  in  the  first  section. A very  detailed  descrip- 

tion  of  the  data  handling  system  is  contained  in  reference 3 .  Analyses  of 

fatigue  and  fatigue-crack-propagation  behavior  are  covered  in  the  other  two 

sections.  Analytical  details  and  results  for  each  type  of  behavior  are dis- 

cussed  separately  in  its  respective  section. 

A 

SYMBOLS 

constant  used  to  define  weighting  function  for  fatigue  data 

a  half-crack  length  for  center-cracked  specimen,  m (in.) 

d (2a) /dN  fatigue-crack-growth  rate,  mlcycle  (in./cycle) 

Bo,  B,, B, regression  coefficients 

b  fatigue  strength  exponent 
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Y 
d 

0 
a 

2 

FATIGUE  ANALYSIS, eeq 
FATIGUE CRACK 

PROPAGATION  ANALYSIS, Keff 

log Nf = f [A€,  RI log Nf = f [AK,  R] 

or specifically,  or  specifically, 

log Nf = f  [Aem (ama,/E)”ml log Nf = f [AK K,a,l~ml 

m may be treated as a material parameter 

Figure 1. - Similarity  between  fatigue  and  fatigue- 
crack-propagation analyses. 
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Figure 2. - Schematic  illustration of layering in fatigue-crack- 
propagation  rate  data  for  a  center-cracked  specimen. 



c,, c, 

C 

E 

regression  coefficient  in  arc-hyperbolic-tangent  relation 

fatigue  ductility  exponent 

elastic  modulus, m/m2 (ksi) 

nominal  strain  amplitude 

maximum  nominal  strain 

function  notation 

cyclic  stress-strain  behavior  function 

monotonic  stress-strain  behavior  function 

subscript,  index  notation  for  ith  value 

stress-intensity  factor, MN/m3/" (ksi G) 

stress-intensity-factor  range, MN/3/2 ( k s i  m) 

cyclic  strength  coefficient, MN/m2 (ksi) 

critical  fracture  toughness, MN/m3/" (ksi G) 

effective  stress-intensity  factor, MN/m3/" (ksi <fK) 

fatigue  strength  reduction  factor 

maximum  stress-intensity  factor, MN/$ (ksi m) 

threshold  stress-intensity  factor, MN/m2 (ksi 

theoretical  stress  concentration  factor 

strain  concentration  factor 

strength  coefficients, MN/$ (ksi) 

Stulen-type  equivalent  strain  coefficient 
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k 
U9V 

m 

"4, mz 

N 

Nf 

N Y N  
f90 f 9 9 

n 

n' 

R2 

r 

S 

'a 

'm 

'max 

S Y 

S 
Y*X 

u(  1 

one-sided  tolerance  limit  factor  for  a  normally  distributed 

variable  with  n - 2 degrees  of  freedom  at  level  u  and  the  desired 
confidence w 

equivalent  strain  and  equivalent  stress-intensity  exponent 

exponents  in  optimized  fatigue-life  expression 

number  of  cycles 

number  of  cycles  to  failure 

90 and 99 percent  survival  estimates of fatigue  life 

sample  population 

cyclic  strain  hardening  exponent 

strain  hardening  exponents 

stress  ratio 

correlation  coefficient  squared 

notch  root  radius, mm (in.) 

nominal  stress, MN/m2 (ksi) 

nominal  stress  ampl5tude, MN/m2 (ksi) 

mean  nominal  stress, MN/m2 (ksi) 

maximum  nominal  stress, MN/d (ksi) 

sample  standard  deviation  of Y 

standard  error  of  estimate 

stress  ratio  function 
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U .desired  tolerance  level - indicates  the  percentage of occurrences 
(or nonoccurrences)  which are expected v percent of the  time 

v variance 

VO variance of a  fatigue  data  sample for Nf < lo5 

W panel  width, mm (in.) 

W (log  Nf) weighting  function  applied to fatigue  data 

X independent  variable  in  regression  equation 

Y dependent  variable  in  regression  equation 

- 
Y mean  value of Y 

CY mean  stress  exponent 

be local  strain  range 

E local  strain  amplitude a 

ea(l), ~ ~ ( 2 )  specific  values  of E used  to define  stress-strain  curve a 

I 

€f 

e equivalent  strain 

fatigue  ductility  coefficient 

eq 

max maximum  local  strain 

A €  local  plastic  strain  range P 

V desired  confidence  level  in  determination of tolerance  limits,  a 

95 percent  level  is  commonly  used 

P notch  analysis  material  constant, mm (in.) 

Ao local  stress  range 
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Oa local  stress  amplitude 

0 (l), o (2) specific  values of a, defining  stress-strain  curve,  MN/m2 a  a 
(ksi) 

0; 
fatigue  strength  coefficient, MN/m2 (ksi) 

I 

max initial  local  maximum  stress  in  a  notched  specimen,  MN/m2  (ksi) 

'm mean  local  stress,  MN/m2  (ksi) 

Omax maximum  local  stress, MN/m2 (ksi) 

DATA  HANDLING 

To implement  the  evaluation of existing  fatigue  and  fatigue-crack- 

propagation  data, an extensive  survey  was  made of the  literature  and  of  aero- 

space  companies  that  might  have  unpublished  internal  reports. A computerized 

system was developed  to  compile  and  store  data  obtained  from  this  survey. A 

more  detailed  discussion  of  the  data  handling  efforts  was  included  in  reference 

3 .  

Acquisition 

In this  program,  fatigue  data  from  uncracked  smooth  or  notched  specimens 

were treated  separately  from  fatigue-crack-propagation  data  from  precracked 

specimens.  Reaching  total  fracture  under  cyclic  loading  involves  both  fatigue- 

crack  initiation  and  propagation.  As  shown  in  figure 3 ,  crack-initiation  life 

can  vary  considerably,  depending  upon  the  definition of a crack.  The wide 

range of  sizes, 2.54 x lod4 mm to 2 . 5 4  mm to lo-' inch), considered  to be 

cracks by various  investigators  causes an ill-defined  area  of  overlap  between 

initiation  and  propagation. In most  fatigue  tests  of  small  specimens  of  virgin 

material,  the  initiation  phase is  generally  considered  to  be a  more  significant 

portion of cyclic  life  than  the  propagation  phase.  Thus, it was assumed  that 

the  total  number  of  cycles  to  failure  normally  reported in fatigue  tests of 

simple  specimens was a  reasonable  approximation of the  number  of  cycles 
required to initiate an engineering  size flaw. Fatigue-crack-propagation 
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Figure 3. - Effect of definition  of  crack  initiation on relation  between 
fatigue-crack  initiation  and  fatigue-crack  propagation. 
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information was obtained  from  studies  where  cyclic  crack  growth was measured 

using  a  precracked  sample.  To  give an appreciation  for  extent  of  this  data 

acquisition  task,  the  amount  of  data  analyzed in this  program  is  summarized in 

table 1. 

TABLE 1. - SUMMARY  OF  AMOUNT  OF DATA THAT  WERE  ANALYZED 

Material 

" 

2024  aluminum 

7075 aluminum 

300M  steel 

Ti-6A1-4V 

Overall  total 
~. 

Number  of  data  points 
-. - . . . . " . . . 

Fatigue-Crack  Propagation 
~~~ .. 

1181  3407 

1828 

5 13 

1145 782 

4730  6530 
~ 

Information was taken  both  from  the  open  literature  and  from  company re- 

ports.  Applicable  reports were  obtained  from  the  technical  files  of  the  Metals 

and  Ceramics  Information  Center (MCIC). Throughout  the  program,  new  reports, 

acquired  by MCIC,  were  screened  and  added to  the data  base when applicable. In 

order  to  obtain  as  much  recent  information  as  possible,  literature  searches 

were  obtained  from  the  National  Aeronautics  and  Space  Administration  and  the 

Defense  Documentation  Center. In addition,  pertinent  reports  obtained  through 

the MIL-HDBK-5 (ref. 1) program  were  used. 

Internal  reports  from  aerospace  companies  and  unpublished  data  were ob- 

tained  from  various  laboratories  that  conduct  fatigue  and  fatigue-crack- 

propagation  research. A letter was prepared  and  sent  out  to  members  of  the 

American  Society  for  Testing  and  Materials (ASTM) Committee  EO9 on Fatigue.  A 
similar  letter  was  also  sent  to  members of the  ASTM  Committee E24  on Fracture 

Testing  of  Metals  and  to  members of the  MIL-HDBK-5 (ref. 1) Coordination  Group. 
The  type  of  information  that was requested  in  these  letters is  summarized in 

the  following  two  sections. 

Fatigue  information. - For  the  alloys  of  interest  (2024  and 7075 aluminum, 

Ti-6A1-4V,  and  300M steel), fatigue  life  data  were  collected  from  constant 

11 



amplitude  axial-load  tests of simple  specimens  that  reflect  basic  material 

behavior.  This  requirement  excluded  joints  or  components  but  included  both 

notched  and  unnotched  data, where notch  configuration  and  severity were vari- 

ables. Data for  cyclic  lives  ranging  from >lo2 to <lo7 cycles,  strain-  and 
lpad-controlled  test  data,  and  variable  stress  ratio (or mean  stress)  data were 

of interest. 

Basic  test  data were obtained; i.e., tables  of  stress  or  strain  versus 

lifetime. For tests  involving  cyclic  plasticity,  cyclic  stress-strain  informa- 

tion  in  the  form of stress  and  strain  as  a  function  of  loading  history  were 

requested.  The  cyclic  stress-strain  information  which was obtained  is  included 

in  Appendix A .  

Fatigue-crack-propagation  information. - Fatigue-crack-propagation  data 

were collected f o r  center-cracked  panels (in a variety of widths), part-through- 

cracked  or  surface-flawed  specimens,  compact-tension  specimens,  and  double- 

cantilever-beam  specimens.  Basic  test  data  again  were  desired; i.e.,  tabular 

displays of crack  size  versus  cycles.  Delineation  of  the  stress  cycle  employed 

for  each  test,  as well as test  frequency,  Qas  necessary.  In  some  cases,  multi- 

ple  tests  were  conducted on a  single  specimen  such  that  propagation  occurred  on 

successive  crack-growth  segments  under  different  cyclic-stress  conditions. 

Each  of  these  conditions  was  considered  as  a  single  test  in  the  analysis. 

Recording  and  Storage 

Information  used in this  program  was  stored  in a format  suitable  for 

computerized  analysis.  Detailed  data  were  recorded on punched  cards  as  de- 

scribed  in  reference 3 .  A  computer  program  was  written to store  these  data  on 

magnetic tape. The storage  program  writes  the  data  in  card  image  format on 

seven-track  magnetic  tape  at  a  density of 800 bits  per  inch.  The  tape  was 

organized  as a number  of  data  files  which  divided  the  data  with  respect to  type 

of  material  and  type  of  data.  Table 2 presents  the  data  files  and  respective 

file  number  for  retrieval  purposes.  Specific  data  could  be  accessed  by  uti- 

lizing  a  tape-handling  control  statement to skip  to  the  referenced  file  number. 

A duplicate  data  listing was written  on  the  tape  as  a  back-up  source  of  data. 
The  use  of  magnetic  tape  provided  a  compact  source  of  fatigue  and  fatigue- 

crack-propagation  data. 
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TABLE  2. - ORGANIZATION  OF  DATA  TAPE 

Material  Product  Form 1 sy;'::n 1 I y:: 1 Material I Product  Form 
~~~~~~ ~~ 

Fatigue-Crack-Propagation  Data 

1 7075-T7351 

CT Forging,  STA  +Annealed Ti-6~1-4~ g 
CT Forging,  STA Ti-6A1-4V 8 
cc Sheet Ti-.6A1-4V 7 
cc Plate 300M  6 
cc Sheet 2024-T3  5 
cc Sheet, Clad 2024-T3 4 
cc Sheet 7075-T6 3 
cc Sheet,  Clad 7075-T6 2 
cc Sheet 

I~ Fatigue  Data 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

7075-T6 
7075-T6 
7075  -T6 
7075-T6 
7075-T6 
7075-T6 
7075-T6 
7075-T6 
7075-T651 
7075-T651 
2024-T3 
2024-T3 
2024-T3 
2024-T3 
2024-T3 
2024-T4 
2024-T4 

Sheet 
Sheet 
Sheet 
Sheet 

Sheet, Clad 
Extrusion 
Bar  and  Rod 

Bar 
Bar 
Bar 
Sheet 
Sheet 
Sheet 
Sheet 

Sheet,  Clad 
Bar  and  Rod 

Bar 

S 
EN 
CN 
FN 
S 
S 
S 
CR 
CR 
EN 
S 
EN 
CN 
FN 
S 
S 
CR 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

Fatigue  Data  (Continued) 

2024-T4 

Plate 2024-T351 
Extrusion 2024-T4 
Extrusion 

300M 

Bar,  Annealed Ti-6A1-4V 
Bar,  Annealed Ti-6A1-4V 

Extrusion,  Annealed Ti-6A1-4V 
Extrusion,  Annealed Ti-6A1-4V 
Extrusion,  Annealed Ti-6A1-4V 

Casting,  STA Ti-6A1-4V 
Casting,  STA Ti-6A1-4V 

Casting,  Annealed Ti-6A1-4V 
Casting,  Annealed Ti-6Al-4V 
Casting,  Annealed Ti-6A1-4V 

Forging,  STA Ti-6A1-4V 
Forging,  Annealed Ti-6A1-4V 
Forging,  Annealed Ti-6A1-4V 

Plate,  STA Ti-6A1-4V 
~ Plate,  STA  Ti-6A1-4V 

Sheet,  STOA Ti-6A1-4V 
Sheet,  STOA Ti-6A1-4V 
Sheet,  STA Ti-6A1-4V 
Sheet, STA Ti-6A1-4V 

Sheet,  Annealed Ti-6A1-4V 
Sheet,  Annealed Ti-6A1-4V 

Forging 300M 
Forging 300M 
Billet 300M 
Billet 

S 
CR 
EN 
S 
CR 
S 
CR 
S 
EN 
S 
CN 
S 
EN 
S 
EN 
S 
CR 
S 
S 
EN 
CR 
S 
CR 
S 
CN 
CR 
S 
CR 

a Specimen  type  abbreviations  are  as follows: CC = center-crack  specimen; CT = compact-tension  speci- 
men; S = smooth  specimen;  EN = edge-notched  specimen;  CN = center-notched  specimen; FN = fillet- 

+ notched  specimen;  and  CR = circumferentially  notched  specimen. 
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FATIGUE  ANALYSIS 

Designers of aircraft  structural  components  usually  base their  fatigue 

analysis  on  data  from  stress  versus  number  of  cycles to failure (S-N curves). 
Data for  these S-N curves  are  obtained  from  constant-amplitude  fatigue  tests  of 
simple  notched  and  unnotched  specimens.  The  stress  value  in  the S-N curve  is 

usually  either  Smax  or  Sa  and  the S-N relationship  is  defined  for  a  constant 

value  of  mean  stress  or  stress  ratio. To obtain  estimates  of  fatigue  life  for 

other  values  of  mean  stress,  interpolations  between  existing  data  must  be  made. 

Average  curves  are  often  used  to  construct  modified  Goodman  diagrams  to  aid in 

making  these  interpolations.  Sets  of S-N curves  are  normally  required  for  both 

smooth  specimens  and  for  notched  specimens with different  notch  severities. 

Determination  of  a  meaningful  set  of  average S-N curves  for  a  material  may 

require 100 or more  specimens.  If  a  statistically  based S-N curve is  required 

for  each  condition, this number could  easily  increase  to 500 or  more.  Such 

large  amounts  of  data  are  not  usually  available,  even  for  the  more  commonly 

used,  well-characterized  materials. 

The  number  of  specimens  required to  fully characterize  a  material’s  fa- 

tigue  resistance  would  be  reduced  considerably,  however,  if  data  from  different 

S-N curves  could  be  combined to form  a  single curve. In many  cases,  such  a 

consolidation  would  yield  data  samples  large  enough  for  statistically based 

life  estimates. 

The  following  subsections  describe an analytical  procedure for  combining 

fatigue  data  generated  over  a  range  of  mean  stresses  and/or  notch  concentra- 

tions. The consolidation  of  data  generated at different  mean  stresses (or 

stress  ratios)  is considered first. Three  equivalent  strain  formulations  are 

noted  and  the  method  which  provides  best  overall  mean  stress  consolidations  is 

described  in  detail.  The  consolidation  of  notched  data  is  described  in  the 

next  subsection  and  a  method  for  estimating  stable  local  alternating  strains 

and  maximum  stress  levels  is  reviewed.  The  consolidated  data  are  analytically 

described  in  the  third  subsection  in  which  statistical  variations in the data 

are bounded  by tolerance limits.  The  final  two subsections  describe the over- 

all results  and an example  problem  which  illustrates  usage  of the  developed 

fatigue  analysis  procedure. 
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Consolidation  of  Fatigue  Data  Generated 
at  Various  Mean  Stress  Levels 

It  has  been  found  that  fatigue  life  data  generated  at  various  mean 

stresses  can  be  consolidated  through  the  use  of an equivalent  strain (or equiv- 

alent  stress)  parameter.  Equivalent  strain  is  defined by an equation  relating 

two  terms  that  uniquely  define  constant-amplitude  loading  conditions.  One  term 

represents  the  cyclic  strain  amplitude  in  terms  of  either Ae or gay while  the 

other  term  defines  the  mean  stress  either  directly  as om or  indirectly as amax. 
In the  general  sense,  equivalent  strain  has  application  in  both  notched  and 

unnotched  fatigue  situations.  For  unnotched  specimens,  equivalent  strain  is 

based  on  nominal  values  of  stress  and  strain;  for  notched  specimens,  equivalent 

strain  values  are  dependent on estimates  of  stable  local  stress  and  strain. 

Three  equivalent  strain  parameters  were  reviewed  in  this  analysis.  The 

first was based  upon  a  Stulen-type  of  formulation  as  reported by Jaske, et a1 

(ref. 3 )  and was  expressed  as  follows: 

The  second  was  proposed by Topper  and  Sandor  (ref. 6) and was  represented by 

the  following  relationship: 

'eq = Ea + amC'/E (2)  

The third formulation  was  based on a  parameter  suggested by Walker  (ref. 4 )  and 

was expressed  in  the  following  manner: 

e eq = (2€,Im (amax /E)1-m ( 3 )  

Initial  investigations  on  collections  of  unnotched  fatigue  data  showed 

that  all  three  equivalent  strain  formulations  provided  good  mean  stress  data 

consolidations, but further  detailed  analyses  (ref. 3) revealed  that  equation 
(3) was  as good  or  better  than  the  other  two  for  all  cases  examined. 

Calculation of an equivalent  strain  using  equation ( 3 )  required  the  speci- 

fication of omax and E for  each  specimen  and  a  value  for  the  material  param- 

eter, m. The  majority  of  unnotched  fatigue  data  available  for  analysis  were 

generated  under  load  control  conditions,  where  values  of a,,, were  always 

known, but  values  of  were not known for  those  tests  involving  cyclic  plas- 

ticity.  In  these  cases,  the  cyclically  stable  stress-strain  curve was used to 

a 
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estimate values.of ea from  known  values of oa. This  approach was reasonable 

for  the  type of materials  and  for  the  relatively  small  values of plastic  strain 

amplitude  encountered in the  present  study. 

For all  the  materials  considered  in  this  study,  it  was  found  that  the 

cyclic  stress-strain  curve  could  be  well  approximated  as  follows: 

Values  of  the  equation  constants  for  the  investigated  materials  are  listed in 

table 3 .  Four  different  sets  of  constants  are  defined  for  Ti-6A1-4V  because 

cyclic  stress-strain  properties were found  to  vary  substantially  with  process- 

ing  variations.  When  the  titanium  data were analyzed, the  set  of  cyclic  and 

monotonic  values  that  appeared  to  represent  most  reasonably  the  cyclic  and 

monotonic  stress-strain  response  of  a  particular  material  condition  were  used. 

The  data  upon  which  these  values  were  based  are  reported  in  references 7 

through 10. An  alternate  and  acceptable  approach  would  have  been to represent 

the  cyclic  stress-strain  curve by a power  function  relating  stress  amplitude to 

plastic  strain  amplitude.  In  essence,  any  relation  that  adequately  models  the 

cyclic  stress-strain  response  could be  used  in  place  of  equation ( 4 ) .  
The  value of m in  equation ( 3 )  was determined  for  each  material  through  a 

least-squares  regression  analysis  in  which  a  third-order  polynomial in c was 

fit  to  the  life  data.  The m value  which  provided the maximum  consolidation  of 

data (i.e.,  the minimum  standard  deviation)  was  considered  optimum.  Details 

of  the  statistical  analysis are described in Appendix B. 

eq 

A comparison  of  results  for  the  investigated  materials  revealed  that  a 
value  of  m = 0.40 was  nearly  optimum  for  all  materials,  Specification  of  m  at 

this value  caused  almost  no  increase  in  standard  deviation  for  the  aluminum 

data  samples  and  no  more  than  a  1-percent  increase  for  most of the  steel  and 

titanium  data  collections. On this  basis, an m  value of 0.40  was  used  in  all 

final  analyses. 
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TABLE 3. - CONSTANTS USED TO DEFINE CYCLIC STRESS-STRAIN CURVES 

I 

Mater ia l  
E ,  rcl, 

m/m2 m/m2 
( k s i )  ( k s i )  

2024-T4 Bara I 70 300 I 1165 (10 200)  (169) 

2024-T3 Sheetb 73 100 5135 
(10 600)  (745) 

7 1  000 1406 
(10 300) (204) 

b 72 400 22 260 
(10 500)  (3230) 

b 199 900 1 7  370 

7075-T6 Bara 

7075-T6 Sheet 

300M Billet 
~ (29 000) (2520) 

1 Ti-6A1-4V Annealed P l a t e  b 1 :ii iii) 1 (965) 
6650 

Ti-6A1-4V STA Bard 7440 1 i t :  i::) 1 (1080) 

676  414 
(98)  (60)  (83) 

572 

917 358 435 

0.0059  0.0275  0.200  0.048 

(133)  (52)  (63) 
0.0049  0.0071  0.499  0.150 

896  483 662 
(130)  (70)  (96) 

2550  326 
(370).  (47)  (67) 

465 

0.0068  0.0285  0.213  0.087 

0.0045  0.0071  0.782  0.346 

2400 
(348) 1 :::) 1 (i:;) 1 1 0.0056  0.0098  0.458  0.240 

aValues  based on da ta   o f  Endo and Morrow ( re f ,  7 )  and  Landgraf, e t  a 1   ( r e f .  8 ) .  
bValues  based on da ta   genera ted  by Jaske ,  e t  a 1   ( r e f .   3 ) .  
CValues  based on d a t a  of Gamble ( r e f .  9 ) .  

dValues  based on da ta   o f  S m i t h ,  e t   a 1   ( r e f .  10). 
w 
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Consolidation  of  Fatigue Data Generated  at 
Various  Stress  Concentration  Levels 

Consolidation of notched-specimen  fatigue  data was handled  in  a  manner 

directly  analogous  to  that  used  for  the  unnotched  specimens,  except  that  esti- 

mates  of  stable  local  stress  and  strain  at  the  notch  root  were  used  in  place  of 

nominal  values  in  the  determination  of  equivalent  strains.  The  following  par- 

graphs  outline  the  analytical  procedure  developed  for  the  estimation  of  local 

maximum  stresses  and  alternating  strains  in  notched  specimens  subjected to 

constant-amplitude,  nominal-stress  cycling. 

Smooth  specimen  simulations  of  local  stress-strain  behavior  in  notched 

specimens (ref. 11) have  indicated  that  combined  cyclic  hardening  (or  soften- 

ing)  and cyclic  stress  relaxation  often  occur  at  the  notch  tip  when  nominal 

stresses  are  sufficiently  large to cause  localized  cyclic  plastic  deformations. 

To  estimate  stable  local  values  of  alternating  stress  and  strain  from  nominal 

values,  it  is  necessary  to  compensate  for  this  combined  hardening  and  relaxa- 

tion.  Research  (refs. 12 through 15) has  shown  that  the  effects  of  cyclic 

hardening  or  softening  can be  accounted  for  by  using a  cyclic  stress-strain 

curve  in  combination with nominal  alternating  strain  values  modified by an 

appropriate  notch-concentration  factor  such  as  K t' KfY  or K * 
F: 

All three  modifying  factors were investigated in this  study  to  determine 

which one  gave  the  most  reasonable  indication  of  local  strain  concentration. 

Values  of Kt  were based  on  information  obtained  from  charts  such  as  those  in 

Peterson's  handbook (ref. 1 6 ) ,  and  values  of Kf were computed  from an empirical 

relation as  described  below.  Neuber's  rule  (ref. 17) was used  with  both Kt and 

Kf  in  calculating  values  of  K . The  degree  to  which  notched-specimen  fatigue 

data  of  various Kt's and  notch  types  were  consolidated  was  used  as  a  measure 

of  how  well  local  strain  was  estimated. 

8 

After  completion  of  the  comparative  analysis (ref. 3 ) ,  it was concluded 

that Kf,  when used in the  form 

= Kf  ea 

as a  simple  strain  multiplication  factor,  provided  the  best  overall  consolida- 

tions  of  notched  data  for  the  investigated  materials.  Several  forms of Kf  were 

available, but  the  following  relation  proposed  by  Peterson  (ref. 18) 
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Kt - 1 
K f = l +  

1 + P/r 

was  chosen  because  it was simple  and  has  been  shown  (ref.  19)  to  work  reason- 

ably well in  comparison  to  other  K  formulations. f 
Once  a  value of ca was computed,  according  to  equation ( 5 ) ,  it was neces- 

sary to  compute the  corresponding  value  of omax. Potential  localized  cyclic 

hardening  or  softening  in  combination  with  cyclic  relaxation  of  mean  stress 

made  it  impossible  to  compute amax directly  from  nominal  maximum  stress  values. 
It was found,  however,  that  a  local  maximum  stress  could  be  well  approximated 
by  considering  that  the  notch  root was subject  to constant-strain cycling. 

Thus,  the  local  maximum  stress  produced by the  first  constant-amplitude  nominal- 

stress  cycle  was  definable  in  terms  of  the  monotonic  stress-strain  curve,  and 

subsequent  changes  in omax (for a  constant  maximum  strain)  were  attributable to 
cyclic  changes  in  local  stress  amplitude.  This  concept  is  illustrated  in fig- 
ure 4 ,  where  the  monotonic  and  cyclic  stress-strain  curves  for  a  typical  cycli- 

cally  hardening  alloy  are  shown.  According  to  the  concept  described,  initial 

local  stresses  would  follow  the  monotonic  curve to  its  peak  value of stress, 

Omax 7 

I and  strain,  The  local  maximum  strain cmaX is  approximated by 

‘max f max = K  e 

and oiax is  found  from cmax and  the  monotonic  stress-strain  curve.  Combined 

cyclic  hardening  (in  this  case)  and  mean  stress  relaxation  would  subsequently 

occur  because  of  localized  cyclic  inelastic  strains. The magnitude  of  change 

in olax could  be  approximated  by  the  change  in  stress  amplitude  during  local 
strain  cycling.  This  change  (indicated  by A in figure 4 )  denotes  the  magnitude 

of  shift  in  the  local  stress-strain  loop  from  the  initial  condition, o’ to 

the  final  condition, amax. It can be seen that  this  method  predicts no change 
in  local  maximum  stress  from  that  defined  by  the  monotonic  curve,  unless  there 

is  some  localized  cyclic  plasticity.  This  behavior  has  been  noted  in  some  of 

the  smooth  specimen  notch  simulations  mentioned  earlier  (ref. 11). Analyti- 

cally,  this  approximation  procedure  can  be  expressed  as  follows: 

max ’ 

- fm(Ea)l 
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""" 

Figure 4 .  - Schematic  illustration cf an  analytically  approximated 
stable  stress-strain  loop  after  combined  cyclic 

hardening  and  mean stress relaxation. 
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where  fm  and  f  represent  equation ( 4 )  for  the  monotonic  and  cyclic  stress- 

strain  curves,  respectively.  The  constants  used to define  the  monotonic  curves 

are  given  in  table 4 .  It should  be  noted  that  equation (8) is an empirical 

relationship  that was found  to  work  well  for  constant-amplitude  loading  where 

most  of  the  cyclic  life was at  the  stable  relaxed  local  mean  stress. 

C 

Samples  of  notched  specimen  data  were  analyzed  using  equation (6) to 
calculate Kf, equation (5) -to-cxculate ea, equation (8) to calculate  omax, 

and  equation ( 3 )  to calculate e Optimum  values  of p for  the K expression 
were found  by  using  a  computerized,  iterative  regression  analysis  analogous  to 

that  used  in  the  m-parameter  optimization on mean  stress  effects. Optimum p 

values  are  listed in table 5, along  with  the  number  of  sample  data. 

eq f 

TABLE 5. - OPTIMUM D VALUES  DETERMINED IN NOTCHED  FATIGUE  ANALYSIS 

" " ~- - ~ 
~~~ 

Material 

2024-T3  Sheet 

7075-T6  Sheet 

300M  Forging 

Ti-6A1-4V  Bar  and  Extrusion 
-~ ~ ~- ~ 

.. " . 

Optimum p , 
mm( in. ) 

~~ ~ 

0.21(0.0083) 

0.17(0.0067) 

0.046(0.0018) 

0.020(0.0008) I Number  of Data 

129. 

130 

The  Relationship  Between  Fatigue 
Life  and  Equivalent  Strain 

After  adequate  methods  for  consolidation  of  notched  and  unnotched  fatigue 

data had  been  developed,  it  became  of  interest  to  analytically  describe  the 

consolidated  data  trends.  Since  stress  (or  strain)  conditions  and  notch  geom- 
etry  are  the  controlled  variables  in  most  fatigue  experiments,  equivalent 

strain,  which is  based  on  these  parameters, was  considered  the  independent 
variable.  Fatigue  life was chosen  as  the  dependent  variable,  since  it  is  not 

controlled  and  generally  displays an intrinsic  variability. 
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TABLE 4. - CONSTANTS  USED  TO  DEFINE  MONOTONIC  STRESS-STRAIN  CURVES 

Materiala 

2024-T4 Bar 

2024-T3  Sheet 

7075-T6 Bar 

7075-T6  Sheet 

300M  Billet 

Ti-6A1-4V  Plate 

Ti-6A1-4V Cylindrical  Forging 

Ti-6A1-4V Hot  Rolled  Bar 

Ti-6A1-4V Bar 

E ,  
m/m2 
(ksi) 

70 300 
(10 200) 

73 100 
(10 600) 

74 000 
(10 300) 

72 400 
(10 500) 

199 900 
(29 000) 

110 300 
(16 000) 

115 100 
(16  700) 

108 900 
(15 800) 

110 300 
(16 000) 

Kl 3 

MN/$ 
(ksi) 

841 
(122) 

1013 
-( 147) 

1303 
(189) 

3240 
(470) 

24  950 
(3620) 

4450 
( 645) 

5 100 
(740) 

4120 
(598) 

28 60 
(415) 

E&) 

0,0039 

0.0047 

0.0060 

0.0069 

0.0064 

0.0068 

0.0066 

0.0086 

0.0100 

0.0185 

0.0060 

0.0265 

0.0086 

0.0093 

0.0101 

0.0100 

0.0120 

0.0119 

3.200 

0.200 

0.213 

0.375 

0.588 

0.354 

0.380 

n2 

0.048 

0.032 

0.087 

0.103 ., 

0.342 

0.032 : 
I 

I I 
0.047 1 

0.318  0.056 , 

~ I 
I 

! 

0.202 Ooo3O ' i 
'I 

aAll data  are  from  references  as  cited  in  table 3 .  



A variety  of  functions was reviewed in  an effort  to  find a  relatively  sim- 

ple  analytical  formulation  that  would  describe  fatigue  data  trends  throughout 

the  life  range of interest - from 10” to lo8 cycles to  failure. An  inverse- 
hyperbolic  tangent  function was used  in  the  original  analysis  (refs. 3 and 2 0 ) .  

Additional  considerations  revealed,  however,  that  the  inverse-hyperbolic 

tangent  function was deficient in several  respects. The function  did  reason- 

ably  represent  fatigue  data  trends  between lo3 and lo8 cycles to failure, but 
it  did not accurately  represent  expected  low-cycle  fatigue  data  trends  below 

lo3 cycles  to  failure.  Strain-controlled  low-cycle  fatigue  data  usually  follow 
a power  law  relationship  between  total  strain  range  and  fatigue  life  (when  the 

plastic  strain  range  is  much  larger  than  the  elastic  strain range). The semi- 

logarithmic  concave-downward  shape of the  inverse-hyperbolic  tangent  function 

in the  region  below lo3 cycles  was  completely  in  contrast to  these  trends.  An 

additional  problem  was  encountered  in  usage  of  the  inverse-hyperbolic  tangent 

function when reasonable  upper  and  lower  function  limits  were  necessary  and  no 
valid  data  were  available  in  the  high-cycle or low-cycle  regions to  provide  an 

indication of true  fatigue  data  trends  in  these  areas. 

An  alternate  formulation was developed to avoid  some  of  the  problems 
encountered  in  usage of the  inverse-hyperbolic  tangent  equation.  In  its  gener- 
,a1  form  it  is  expressed  as 

N f  = B, Bl and B, 2 0 

and  essentially  represents  a  universal-slopes-type  relationship (ref. 21) in 

equivalent  strain.  The  exponents, ml and m2, are not  equal  to  the  inverse of 

the  elastic  and  plastic  slopes  of  a  standard  strain-range,  fatigue-life  plot 

as  might  first  be  suspected,  but  they  are  related  to  these  parameters.  The 

interrelationship  of ml and m2 to  the  universal-slopes-type  parameters  is 

illustrated  in  Appendix C. In this work, the  exponents m1 and m8 were  not  from 
the  universal-slopes  expression,  but were found  through  an  iterative  regression 
analysis. 

The  exponents m, and mz in  equation ( 9 )  provide an indication of the sen- 

sitivity  of  fatigue  life  to  changes  in  equivalent  strain in the  high-  and low- 

cycle  fatigue  regions.  This  point  is  illustrated  in  figure 5 where  a  typical 
scatter  band  of  unnotched  fatigue  data  is  shown. In the region  from 10” to IO5 
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1 0 - 3 3  I 
IO0 IO2 I o4 IO6 IO8 10'0 

Fatigue Life, Nf 

Figure 5. - Schematic  illustration  of  typical  fatigue  data 
trends in the region  from lo2 to l o8  cycles to  failure. 

cycles, the  sensitivity  of  fatigue  life  to  variations  in  equivalent  strain  is 

usually  constant  and the variability  in  the  data is relatively  uniform (refs. 

22 and 23). Beyond lo5 cycles to failure,  however, the sensitivity  of  fatigue 
life  to  decreased  equivalent  strains  commonly  increases  along  with  the  intrin- 

sic  data  variability. 

In some  situations where limited data  exist  in  the.high-cycle  regime,  the 

available  data  at lower  lives are  best  described by  a  simplified  form  of 

equation' (9) as 

Nf = B, ' 0  

Another consideration in this study,  beyond  development  of  mean  fatigue 

life  curves,  was  the  construction  of  statistically based  lower  bounds on  the 

consolidated  fatigue data. These  limits were to  be  calculated s o  as to define 

an interval  which  could  be  claimed  to  contain  a  specified  proportion  of the 

data  population  with  a  specific  degree  of  confidence.  Before  these  limits 
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could  be  calculated,  it  was  necessary te etermine  whether  the  data  satisfied 

the  appropriate  statistical  conditions  Primarily,  the  data  had  to  be  inde- 

pendent,  and  log-normally  distributed  with  zero  mean  deviations  and  constant 

variance (ref. 2 4 ) .  Of these  considerations,  the  uniformity  of  variance  was 

of greatest  concern. As is  illustrated  in  figure 5, the  variability  in  fatigue 
data  commonly  increases  substantially  beyond lo5 cycles  to  failure. 

To account  for  this  problem, an empirically  based  weighting  function  was 

devised which pr.ovided essentially  uniform  variances within the  transformed 
fatigue  data. The weighting  function was inherently  quite  reasonable  because 

it was determined on the basis of calculated  sample  estimates  of  variance  at 

various  intervals  of  fatigue  life.  Figure 6 illustrates  the  method  by  which 

the  weighting  function was established.  Constant  variance  below lo5 cycles  was 
calculated  (and  verified) by the  sample  estimates of variance. The rate o f  

increase  in  variance  beyond lo5 cycles  was  described  analytically by a  second- 

order  equation  which  was  fitted  to  the  sample  estimates of variance.  The 

0.3 

0.2 

0. I 

0 
I( 

4 L / 
Constant variance 

* 
Increasing  variance 

Vo= constant V-V, + A(log Nf -5' 
W=l  I /  

7 
w=vo/v 

to2 I o4 I o6 
Fatigue Life, N, 

to* 

Figure 6. - Illustration  of  increasing  variance  for 
Nf > lo5  cycles  and an approximate  function 

describing  these  trends. 
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weighting  function  was  then  analytically  expressed  as 

W (log  Nf) = 1.0, 0 < log Nf 5 5 

vo W (log  Nf) = V, + A (log  N - 5)2’ log Nf > 5 
f 

Values  of A were normally in the range  of 0.08 to 0.15, but in  several  cases 

where scatter  was  quite  large  throughout  the  range of data, A was  essentially 

zero, and  the weighting  of the data  was  uniform throughout. 

Using  equation (9) or (10) to describe the mean  fatigue  life  trends, it 
was  then  possible to develop  approximate  lower  bounds  or  tolerance  limits on 

the  consolidated  fatigue  data.  Tolerance  limits were calculated  at  discrete 

levels of  equivalent  strain  according  to  the  formulation 

where kU represented  a  one-sided  tolerance  limit  factor (ref.  25)  for a 

normally  distributed  variable  with  n - 2 degrees  of freedom. The  subscripts 

u  and  describe  the  tolerance  and  confidence  levels,  respectively,  while 

Y W  

s represents  the  sample  estimate  of  standard  deviation  for  fatigue  data 

with  mean lives  less  than lo5 cycles  to  failure. Log-normality  of the data 

was not  proven,  but  an  examination  of  the  residuals  showed  that  this  assump- 

tion  was  reasonable.  Other  research  (refs. 22 and  23) also  support this 

assumption. 

Y -X 

Equation 12 should  be  used  with  care when developing  tolerance  limits  at 

high  fatigue  lives  (low  equivalent strains). It  is  possible  under  these  condi- 

tions,  especially where only  a  small  number  of  data o r  highly  scattered  data 

exist, that  the  tolerance level  curve will begin to unrealistically  decrease 

for decreasing  equivalent  strain  (increasing  fatigue life). 

Results  of  Fatigue  Analysis 

Through  the  course  of  this  program,  a  fatigue  data  consolidation  and 

modeling  process was developed  through  which  a  conglomerate  set  of  fatigue 

test  data at  various  mean  stresses  and  notch  concentrations  could be 
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consolidated  into a single  curve  and  be  reasonably  described  by  a  simple 
analytical  expression.  Also,  statistical  considerations  were  applied,  incor- 

porating  weight  factors s o  that  probability  of  survival  curves  could  be 

constructed  below  this  consolidated  data  band. 

This  process was successfully  applied  to 2024 and  7075  aluminum  alloys in 

several  different  product  forms  and  tempers  and to 300M steel  in  the  forged 

condition. It was also  used with reasonable  success on Ti-6A1-4V  alloy,  con- 
sisting of numerous  product  forms  and  heat-treatment  conditions. 

In these  analyses,  notched  and  unnotched-specimen  data were treated 
separately  because  combinations  of  the  two  data  types  resulted in substantial 

increases  in  overall  scatter.  If  a  more  realistic  analysis  of  notch-root 

stress-strain  behavior  had  been  available,  the  notched  and  unnotched  data 

possibly  could  have  been  treated  jointly. At this  point,  however, it was 
considered  most  useful  to  analyze  notched  and  unnotched  data  separately, 

especially  since  data  samples  were  sufficiently  large to allow  consideration 

of  each  subset  on  a  statistical  basis. 

Table 6 summarizes  the  results  of  the  analyses  for  all the available  data 

on  the  investigated  materials.  The  number  of  data  points  are  listed  for  each 

set  of  data  along  with  the  standard  deviation,  the  weight  parameter  A,  and 

the  optimum  coefficients  and  exponents  for  equations (9) or (10). The  range 

of applicability  (which  corresponds  to  the  range  of  data)  of  the  regressed 

equation  is  listed  in  the  final  column  for  each  data  set.  Graphic  displays 

of the  consolidated  data  listed in table 6 are  presented  in  figures  7  through 
24. Each  figure  shows  the  consolidated  data  along  with  the  regressed  mean 
curve  and  the  calculated 90 and 99 percent  statistical  tolerance  curves, 

respectively,  which were established  at  a  95-percent  confidence  level;  the 

curves  are  labeled  in  figure 7 so that  it  is  easier  to  identify  these  lines. 

The  number  of  data  points  displayed  in  these  plots  differs  in  some  cases 
from  the  number  presented  in  earlier  reported  work (ref. 3 ) .  This  discrepancy 

is due to  two  factors.  First,  some  of  the  short-life  unnotched  data  included 

in  earlier  plots  were  load-control  tests  which  displayed  substantial  plastic 

strains. The validity of these  data  was  questionable so all  load-control 
unnotched  data with stable  plastic  strain  amplitude  greater  than 0.0005 were 
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TABLE 6. - RESULTS OF NOTCHED AND UNNOTCHED FATIGUE DATA CONSOLIDATION 

Range  of 
Equation 

Applicability, 
log (Sf) 

Logarithmic 
Standard 

Deviation, 
Average 
Nf L lo6 

0.209 
0.269 

0.166 
0.306 

0.207 
0.197 

0.124 

0.383 
0.299 

0.287 
0.287 

0.493 

0.647 

0.284 

0.360 

0.536 

0.301 

0.558 

Parameter, 
Weight 

A 

Regression  Coefficients Iptimum  Exponents Weighted Ra, 
percent 

Type of 
Data 

Unnotched 
Notched 

Unnotched 
Notched 

Unnotched 
h'otched 

Unnotched 

Unnotched 
Notched 

Unnotched 
Notched 

Unnotched 

Notched 

Unnotched 

Notched 

Data P o i n t s  
Number  of 

119 
887 

114 
61 

211 
695 

369 

137 
48 5 

289 
2 18 

67 

188 

277 

297 

45 

147 

124 

Material I c BZ m1 

-5.50 
-8.90 

-7.42 
-7.56 

-6.00 
-8.11 

-4.56 

-5.00 
-6.00 

-6.95 
-5.00 

-13.1 

-6.75 

-9.98 

97 
97 

98 
89 

96 
96 

98 

89 
78 

85 
82 

81 

48 

82 

79 

54 

86 

a 2  

0.147 
0.073 

0.242 
0.110 

0.112 
0.108 

0 033 

0.098 
0.053 

0.143 
0.134 

0.00 

0.018 

0.119 

0.107 

0.177 

0.151 

0.083 

1.04 x IO-' 
1.02 x 10-16 

7.94 X 1 0 - l ~  
9.83 x 10-13 

1.04 x 10'' 
7.65 x lo-" 

5.92 X 10-7 

9.03 x IO-' 
1.02 x 10-8 

2.8 - 7.0 
1.8 - 7.3 
1.0 - 6 . 3  
3.0 - 6.7 
2.8 - 7.1 
2.0 - 7.2 
3.3 - 6.1 
3.4  - 6.5 
2.6 - 7.0 
2.4 - 6.2 
3.1 - 6.3 
3.7 - 6.8 
4 . 3  - 6.9 
3.9 - 6.8 

3.6 - 6.8 
4.2 - b.3  

2.9 - 6.5 

2.7 - 6.5 

1.71 x 
" 

2024-T3  Sheet 

2024-T4 Bar and  Rod 

7075-T6  Sheet 

7075-T6 Clad  Sheet " 

8.21 X 10-37 
7.13 X 10-36 

7075-T6, "1651 Bar 
! 

3.08 x lo-" 
5.74 X 10-7 300Y  Billet and Forging 

1.47 x 10-40 
" 

Annealed  Ti-6A1-4V 
Sheeta 
Bar. Extr  sion,  and 

bar .  Eztrunian. and 
Castinp 

Forginga 

E 

Annealed  Ti-6Al-4V 
Bar, Extrusion,  and 

cast i n g b  
' Sheet, Ear. Extrusion, 
j and  Forglnga 

I STA Ti-6A1-4V 
' Sheet,  Forglng,  Cast- ' ing. and Plate' 1 jT.4 Ti-6hl-LV 
! Sheet,  Casting.  and , plateC 

1.45 x 1 0 4 3  

2.73 x 1Ulo 

1.16 X 10-17 

" 

" 

" 

" . -8.33 I " 3.60 X 10-13 

2.68 x 

1.83 x 10"' 

1 
6.96 x 10"' 

I 

%notonlc and  cyclic  streas-strain  calculations  were  baaed  on  data  from  Ti-bA1-4V  hot-rolled  bar  (see  tables  3  and 4 ) .  

honotonic and  cyclic  stress-strain  calculations  were  based  on  data  from  Ti-6Al-4V  cylindrical  forging  (see  tables 3 and 4 )  

Cnonotonlc  and  cyclic  atreas-strain  calculations  were  based on data  from  Ti-6A1-4V bar (lee tables 3 and 4). 
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excluded.  Second, some of  the  titanium  data were reorganized  in an attempt to 

achieve  better  overall  consolidations. 

Figures  7  through 10 are for  2024-T3  and  2024-T4  aluminum;  figures 11 

through 15 are  for'7075-T6 and  7075-T651  aluminum. For both  series of alumi- 

num, the  data  consolidation was substantial  (the  unnotched-specimen  data  dis- 

played a  slightly  better  consolidation  than  the  notched-specimen data). 

Results  for 300M steel  are  presented in figures 16 and  17. The  standard 

deviation  of  these  data  samples was greater  than  that  found  for  the  aluminum 

alloys,  but  the  overall  data  collapse was considered  good  since  the  inherent 

data  scatter  for  this  alloy was quite  large. 

The  Ti-6A1-4V alloy  data,  displayed  in  figures 18 through  24,  were  the 

most  difficult  to  analyze  and  provided  poorer  results  than  the  steel  and 

aluminum  alloys.  The  difficulties were due  to  two  major  factors. First, the 

titanium  data  file  consisted  of  a  large  number of different  product  forms  and 

heat  treatments.  Although an attempt was made  to  develop  accurate  monotonic 

and  cyclic  stress-strain  data  for  each  variation,  only  a  rough  approximation 
of  these  curves  was  possible  in  most  cases.  Second,  the  inherent  scatter  in 

most  of  the  titanium  data was great,  making  a  consolidation  effort  difficult. 

The best  results  were  found  for  the  Ti-6A1-4V  in the solution-treated  and  aged 

condition. 
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Fatigue Life, cycles to failure 

Figure 7. - Consolidated  fatigue  data,  mean  curve,  and 
tolerance  limits  for 2024-T3  sheet,  unnotched. 
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Fatigue Life, cycles to failure 

Figure 9. - Consolidated  fatigue  data,  mean curve,  and 
tolerance limits  for 2 0 2 4 - T 4  bar and rod,  unnotched. 

Io- 31 I 1 1 1 1 1 1 1 ~  I I 1 1 1 1 1 1 ~  I 1 1 1 1 1 1 1 ~  1 1 1 1 1 1 1 ~  I 1 1 1 1 1 1 1 ~  1 1 1 1 1 1 1 ~  I 1 1 1 1 1 1 1 ~  I I l l l uL  
IO0 IO1 IO2 lo3 lo4 lo5 IO6 lo7 IO8 

." 

Fatigue  Life, cycles  to failure 

Figure 10. - Consolidated  fatigue  data,  mean  curve, and 
tolerance  limits for 2 0 2 4 - T 4  bar and  rod,  notched. 
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Fatigue Life, cycles to failure 

Figure 11. - Consolidated  fatigue  data,  mean  curve, and 
tolerance  limits for 7075-T6  sheet,  unnotched. 

r 1 

Figure 12. - Consolidated  fatigue  data,  mean  curve, and 
tolerance  limits for 7075-T6  sheet, notched. 
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IO0 IO' I o2 lo3 lo4 lo5 IO6 lo7 IO8 
Fatigue  Life, cycles to failure 

Figure 13. - Consolidated  fatigue  data,  mean  curve, and 
tolerance  limits  for 7075-T6 clad  sheet,  unnotched. 
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Fatigue Life, cycles to failure 

Figure 14. - Consolidated  fatigue  data,  mean curve,  and 
tolerance 'limits for 7075-T6, -T651 

aluminum bar, unnotched. 

. 

Figure 15. - Consolidated  fatigue data, mean  curve, and 

aluminum bar, notched. 
tolerance  limits for 7075-T6,  -T651 
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Fatigue Life, cycles to failure 

Figure 16. - Consolidated  fatigue data, mean  curve, and tolerance 
limits f o r  300M forging and billet,  unnotched. 

Fatigue  Life, cycles to failure 

Figure 17. - Consolidated  fatigue  data,  mean curve,  and tolerance 
limits f o r  300M forging  and  billet,  notched. 
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Figure 18. - Consolidated  fatigue  data,  mean  curve,  and 
tolerance  limits for Ti-6A1-4V  annealed  sheet,  unnotched. 

10-31 I 1 1 1 1 1 1 1 1  1 1 ~~~~~1~ I I 1 1 1 1 1 1 1  1 Ill11111 1 1 ~~~~i~~ 1 1 ~ ~ ~ i ~ l I  I 1 ( l i l ~ i l  1 ( 1 1 1  
IO0 IO' IO2 I o3 lo4 1 8  IO6 IO? 

Fatigue Life, cycles to failure 

Figure 19. - Consolidated  fatigue data, mean  curve, and 
tolerance  limits  for.Ti-GAl-4V  annealed 
bar, extrusion,  and  casting,  unnotched. 
(See footnote "b" in  table 6.) 
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Fatigue Life, cycles to failure 

Figure 20. - Consolidated  fatigue  data,  mean  curve,  and 
tolerance  limits for Ti-6A1-4V annealed bar, 

extrusion,  and  forging, unnotched. 
(See footnote "a" in table 6.) 
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Fatigue  Life, cycles to failure 

Figure 22. - Consolidated  fatigue  data,  mean  curve,  and 
tolerance  limits  for  Ti-6A1-4V  annealed  sheet, 

bar,  extrusion,  and  forging,  notched. 
(See footnote "ar' in  table 6.) 
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IO0 IO' IO2 lo3 lo4 IO5 IO6 10' IO8 

Fatigue Life, cycles to failure 

Figure 23. - Consolidated  fatigue  data,  mean  curve, and 
tolerance  limits  for  Ti-6A1-4V-STA  sheet, 
forging,  casting,  and plate, unnotched. 

Figure 24. - Consolidated  fatigue  data,  mean curve, and 
tolerance  limits  for  Ti-6A1-4V-STA  sheet, 

casting,  and plate, notched. 
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Example  of  Fatigue  Life  Calculations 

The  following  is  a  sample  problem  illustrating  use  of the concepts  develop- 

ed  in  this  study  for  calculation  of  statistically  based  fatigue  life  estimates 

for  constant-amplitude  loading.  The  material  and  conditions were selected  to 

represent  a  typical  fatigue  situation.  Those  conditions  are  listed  below  along 

with the known material  parameters.  The  fatigue  life  estimates were calculated 

according to a  five-step  process,  similar  to  that  described in previous sec- 

tions. Three  estimates  are  calculated - a  mean  fatigue  life  value,  a 90 per- 

cent  survival  value,  and  a 99 percent  survival  value. 

Material  and  Conditions 

Material 

Theoretical  stress  concentration 

Notch  root  radius 

Stress  ratio 

Maximum  stress 

Known  Material  Parameters 

Equivalent  strain  material  parameter 

Notch  analysis  material  parameter 

Elastic  modulus 

2024-T3  Sheet 

Kt = 4.0 
r = 1.45 mm (0.057  in.) 

R = 0.2 

'max = 172  MN/m2  (25.0  ksi) 

m = 0.40 

p = 0.21 mm (0.0083  in.) 

E = 73 100 MN/m2 (10 600 ksi) 
= 1013 MN/m2 (147  ksi) 

= 431 MN/m2 (62.5 ksi) 

nl = 0.200 

Monotonic  stress-strain  parameters 
n2 = 0.032 
ea (1) = 0.0047 
ea(2) = 0.0060 

aa(l) = 344 MN/m2 (50 ksi) 

aa(2) = 364 MN/m2  (53  ksi) 

Kl = 5135 MN/m2 (745  ksi) 

K, = 917 MN/m2 (133  ksi) 

nl = 0.499 

Cyclic  stress-strain  parameters 
ns = 0.150 
ea(l) = 0.0049 

ea(2) = 0,0071 

oa(l) = 358  MN/m2  (52  ksi) 
oa(2) = 435 MN/m2  (63  ksi) 
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Fatigue  life 
Equation 

Nf = 8, Jnl ‘eq 
where B, = 1.02 x 10-l‘ 

ml = -8.90 

Standard  deviation  of  data, s = 0.269 
N g 106 cycles 
favg 

Weight  factor on data  variability A = 0.073 

Step 1 - Compute Kf 
Kt - 1 

Kf=l-I- 
1 + p / r  

= 3.62 

Step 2 - Compute ea and cmaX 

sa 
c a = K  e = K f y  f a  

= 5.12 x 10-3 

K f  Smax = K  e - 
‘max f max E 

- 

Step 3 - Compute omax 

= 386.5 MN/m2 (56.06 k s i )  

Step 4 - Compute e 
eq 

= 6.89 X 

Step 5 - Compute  N N and N 
f7 €9, f9 8 

= 17  720 

log N = l o g  Nf - k90,95 s ~ . ~ / ~ . O  
f90 

= 4.248 - 0.369 
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N = 7570 
f, 0 

log Nf,, = 1% Nf - k99,95 s y.x /1.0 

= 4.248 - 0.662 
N = 3855 
f 9 0 

This  concludes  the  fatigue  life  calculations. It is worth  noting  that 
the 90 percent  life  calculated  by  this  approach  is  slightly  less  than $ of 

the  mean  fatigue  life  and  the 99 percent  life  is  about  of  the  mean. 

FATIGUE-CRACK-PROPAGATION ANALYSIS 

Extensive  and  varied  laboratory  studies  have  been  conducted to character- 

ize  constant-amplitude  fatigue-crack  growth.  Experimental  data  have  been 

generated  with a variety  of  specimen  configurations,  initial  crack  sizes,  and 

environmental  conditions. In general,  the  relationship  between  crack  size and 

number  of  applied  loading  cycles  is  presented as a  crack-growth  curve  drawn 

through  the  locus  of  experimentally  derived  data  points.  For  a  given  material 

and  initial  crack  size,  families  of  crack-growth  curves,  parametric  on  maximum 

stress,  stress ratio, and  environment  may  be  generated  as  these  conditions  are 
varied. In practice, fatigue-crack-propagation data  in  the  basic  form  of 

crack-length  measurements  and  cycle  counts  are not directly  useful  since,  in 

addition to  the above  parameters,  a  variety  of  initial  boundary  conditions and 

geometric  configurations  are  also  encountered. To make  a  broader  use  of  these 

data,  they  are  generally  interpreted  in  terms  of  rate  behavior, d(2a)/dN,  and 

expressed  as  some  function  of  the  stress-intensity  factor 

in which f(a,W)  is a  geometric  scaling  function  dependent on crack  size  and 

shape  and  specimen  geometry.  Data  converted  to  this  form  are  usually  plotted 

on  logarithmic  axes  to  obtain  crack-growth  rate  curves  for  a  given  material. 

The  logarithmic  plot  of d(2a)/dN versus  Kmax  reveals  a  curve  having  a 

sigmoidal  shape;  rapidly  decaying  crack-growth  rate is  observed  near  the 

threshold  of  crack  propagation  and  a  rapidly  increasing  rate  near  the  terminal 

point of stable  crack  growth.  Within  the  general  curve  shape,  systematic 
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variations  in  the  data  point  locations  are  observed.  For  example,  when  data 

from  tests  conducted  at  several  different  stress  ratios are  present,  the  plot 

of crack-growth  rate  versus  stress-intensity  factor  will be  layered  into  bands 
about  the  locus  of  points  having  zero  stress  ratio.  Layering  of  data  points 

may also  occur  as  a  result  of  variation  in  other  parameters  such  as  test 

frequency,  environment,  and  specimen  grain  direction. 

It is  particularly  desirable  to  predict  the  characteristic  effect of the 

stress  ratio  parameter.  Assuming  the  variables  Kmax, R, and  d(2a)/dN, the 

general  form  for  the  fatigue-crack-propagation  model  can  be  expressed  as 

= f(Kmax,R) dN 

The following  subsections  describe  a  useful  method  for  characterizing  and 

quantifying  the  fatigue-crack-growth-rate  function.  Methods  of  calculating 
crack-growth  rates  from  laboratory  data  are  discussed  first.  An  approach  to 
consolida.ting  crack-growth-rate  data  is  considered  second.  Then,  a  functional 

form  for f(K R) is  developed. Finally, the  results of the  application  of 

this approach  and  an  example  of  fatigue-crack-growth-rate  calculation  are 

presented. 

max ’ 

Calculation  of  Crack-Growth  Rates 

In concept,  the  cyclic  rate  of  fatigue-crack  propagation, d(2a)/dN,  is 
determined  as  the  derivative  (i.e.,  local  slope)  of  the  crack-growth  curve  (a 

versus N). However,  in  reality,  since  the  crack-growth  curve  is  known  only 

from  a  point-wise,  experimental  sampling of  the  crack  size  at  finite  intervals 
of cycling,  the  growth  rate  must  be  inferred  from an interpolation  scheme  based 
on  the  discrete  samples  of  crack-growth  measurements. Two general  approaches 

exist  for  doing  this.  One  approach  is  curve  fitting wherein an analytical 

expression is fitted  to  all  or  part  of  the  crack-growth  data  by  least-squares 

regression  techniques  and,  subsequently,  differentiated to obtain  the  effective 

rate  behavior.  The  other  approach  is  incremental-slope  approximation  in  which 

a  slope-averaging  technique  is  used  in  a  local  sense  to  define  the  rate 
behavior. 

From the  previous  study  (ref. 3 )  of  several  methods  of  rate  calculation, 

it was concluded  that  a  five-point (or fifth  order)  divided-difference  scheme 
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provided  the  most  suitable  results in terms  of an adequate  fit  of  data  without 

undue  complexities of computational  routines.  This  method  consists  of,  first, 

considering  the  crack-growth  data in sequential  five-point  subsets  and  then 

determining  the  crack-propagation  rate  at  the  midpoint  of  each  subset as a 

wesghted  average  of  the  four  slope  increments  directly  adjacent to  (i.e.,  two 

increments  preceding  and  two  increments  following) .the midpoint,  The  nomen- 

clature  and  conventions of this  scheme  are  founded in numerical  analysis  and 

are an application  of Newton’s interpolation  formula  with  divided  differences 

(ref.  26). The computational  procedure  involves  constructing  sequential 

triangular  arrays  of  divided  differences  and  using  these in the  derivative  of 

Newton’s  formula.  For  the  ith  five-point  subset,  the  average  rate (i.e., 
derivative  of Newton‘s formula)  at  the  midpoint,  i + 2, may  be  expressed  as 

where f[N,, ...Ni+k] is  the  kth  divided  difference.  This  formulation  is  for 

the  forward  diagonal,  which  is  one of several  paths  of  equivalent  accuracy  that 

may  be  taken  through  the  triangular  array  of  differences.  It was  adopted and 

retained  because  it  could  be  readily  contracted  or  expanded  for  comparing  other 

n-point  groupings.  Use of  a  divided-difference  technique  implies  that  a 

certain  number  of  data  points  has to  both  precede  and  follow  the  data  point  at 

which the  slope was being  evaluated. 

Consolidation  of  Crack-Growth-Rate  Data  Generated 
at  Various  Mean-Stress  Levels 

To account  for  the  effects of stress  ratio,  and  thus  collapse  data  about 

the  locus o f  points  having  R = 0 ,  it was  suggested  that  the  independent  vari- 

able  be  some  function  of K and  R. A s  a general  form  for  the  independent max 
variable, it was  assumed  that 

where U(R) was a  functional  relation  to  account  for  the  effect  of  stress  ratio. 
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A number of different  forms  for U(R) have  been  proposed.  The'  study  cited 

previously  (ref. 3)  presented  the  results  of  comparisons  of  several  expressions. 

This  comparison was made on the  basis  of  application  of  the  various  equations 

to  selected  sets of fatigue-crack-propagation data. The  expression  yielding 

the  best  fit  to  the data was selected  for  the  form of U(R). Of those  relations 

compared,  the  expression  proposed  by  Walker (ref. 4 )  produced  the  most 

satisfactory  consolidation.  Walker  postulated  that  the  independent  variable 
should  represent  a  combination of maximum  stress-intensity  factor  and  stress- 

intensity-factor  range.  Letting U(R) = (l-R)m, Keff  becomes 

Keff = (l-R)nk,ax (17) 

where  m is a  coefficient  to  be  optimized  by an iterative  procedure  for  each 

collection of data. Thus,  the  fatigue-crack-propagation  data  analyzed  in  this 

study  were  plotted  and  modeled  in  terms  of d(2a)/dN  and Keff  as  defined by 

equation (17). 

Functional  Relationship  Between  Crack-Growth  Rate 
and  Effective  Stress-Intensity  Factor 

Numerous  models  of  the  type  illustrated  by  equation (14) have  been 
formulated by researchers  during  the  last  decade.  Collections  of  proposed 

fatigue-crack-propagation  models  are  presented  in  papers by Erdogan (ref.  27), 

Hoskin (ref.  28), and  Coffin (ref.  29).  Most  of  these are  empirical  relations 

designed to  be  fitted  to crack-growth  data by least-squares  regression. 

Having  shown  that  considering  crack-growth  data  in  terms  of  crack-growth 

rate  and  effective  stress-intensity  factor  resulted  in  good  consolidation,  it 

was necessary to  select an appropriate  functional  relation  between  those  vari- 

ables. A fatigue-crack-propagation  model  was  formulated  that  would  fit  the 

sigmoidal  shape of  the  crack-growth-rate  data.  Collipriest  (ref. 30) suggested 

that  the  inverse-hyperbolic-tangent  function  would  provide  a  suitable  curve 
shape. A fatigue-crack-propagation  model  was  derived  utilizing  this  functional 
form  with  Keff as the  independent  variable.  The  resulting  model was 
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In this  equation, C, and C, are  regression  coefficients  to  be  determined  by 

least-squares  curve  fitting. The asymptotic  lower  and  upper  limits  of  stable 

crack  growth,  KO  and Kc,  on the  Keff  axis,  are  selected  either by inspection 

of  the crack-growth-rate  curve, plotted with  Keff as the abcissa,  or  by 

derivation  from  compilations  of  threshold  and  critical  stress-intensity-factor 

values  found  in  the  literature. In the  latter  approach,  Kc  corresponds 
directly to a  critical  value  presented  in  terms  of  Kmax. KO, OR the  other 

hand,  corresponds to a  threshold  value  presented  in  terms  of  K  multiplied 

by  (l-R)m where R is the  largest  value  of  stress  ratio  found  in  the  crack- 

growth-rate  data  collection  being  analyzed.  The  selections  made  for  K  and 

K must  be  checked  to  verify  that  no  values  of K  for  the  data  being  analyzed 

lie  outside  those  limits. 

max 

0 

C ef f 

The inverse-hyperbolic-tangent  model was compared  with  several  commonly 

used  fatigue-crack-propagation  models by applying  all of them  to  the  analysis 

of  selected  sets  of  data  (ref. 3 ) .  In all  cases,  equation (18) was found  to 

give  a  better  fit  to  the data; thus,  it was  selected  for  use. 

Results of Fatigue-Crack-Propagation  Analysis 

A computer  program  was written to  apply  equation (18) to  the  analysis  of 
fatigue-crack-propagation  data.  It  performed  the  following  analytical  steps: 

Computed  crack-propagation  rates  from  the (a , N . )  pairs by 

equation (15). 

Calculated  Kmax  values  at  each  a  for  which  a  rate  had  been 

calculated  by  selecting  the  appropriate  stress-intensity- 

factor  formulation  for  the  specimen  geometry. 

Computed  regression  coefficients, C, and C, and  optimized 

coefficient m by an iterative  least-squares  procedure. 

Iterated  until  the  minimum  sum  of  squares  of  the  deviations 
was  achieved. 

Calculated  standard  error  of  estimate  and  sum  of  squares  of 

the  deviations.  Tolerance  limits  of 90 percent  and 99 per- 

cent  with 95 percent  confidence were computed  by  the 
expression 

i 1  

i 
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(5) Printed  out  statistical  parameters  and  regression  coeffi- 

cients.  Plotted rate, ( d(2 dl 1 Keffi) data,  the  mean 

curve,  and  tolerance  limits. 
i' 

Extensive  data  sets on five  materials  were  analyzed  by  the  methods 

described.  These  materials were 7075-T6,  7075-T7351, and 2024-T3  aluminum 

alloys;  300M  steel; and Ti-6A1-4V alloy. Fatigue-crack-growth-rate curves, 
resulting  from  the  regression  analysis  are  presented  in  figures  25  through 29. 

These  plots  show  the  experimental  data,  the  mean  curve,  and  the  tolerance 

limits  as  plotted  on  logarithmic  axes d(2a)/dN and  Keff.  Table  7  presents  a 
description  of  the  data  sets,  regression  and  optimization  coefficients, 

limits,  and  statistical  parameters. 

Good  consolidation  and  representation  of  the  data  were  obtained  in  most 

cases.  Particularly  satisfactory  results  were  achieved  for  the  titanium  alloy. 
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Effective  Stress  Intensity Factor, Keff, MN/rn3’* 

Figure 25. - Fatigue-crack-propagation-rate 
curve  for 7075-T6 alloy. 
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Effective  Stress  Intensity Factor, K,ff, MN/m3’* 

Figure 26. - Fatigue-crack-propagation-rate 
curve for 7075-T7351 alloy. 
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Effective  Stress  Intensity Factor, Keff, MN/m3'* 

Figure 27. - Fatigue-crack-propagation-rate 
curve  for 2024-T3 alloy. 
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Effective Stress Intensity Factor, Keff, MN/ITI~’~ 

Figure 28. - Fatigue-crack-propagation-rate 
curve  fdr 300M steel. 
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+ Experimental data 

Effective  Stress Intensity Factor, Keff, MN/rn3’2 

Figure 29. - Fatigue-crack-propagation-rate 
curve for Ti-6A1-4V alloy. 

52 



TABLE 7. - CRACK-PROPAGATION  DATA  CONSOLIDATION 

Material 

2024-T3  Bare  and  Clad 
Sheet  and  Plate 

7075-T6  Bare  and  Clad 
Sheet  and  Plate 

7075-T7351  Bare  Sheet 
and  Plate 

300M  Plate 

Ti-6A1-4V  Sheet  and 
Forging 

I 
Number 

Specimen 1 of  Data 
Typesa 1 Points, 

746 

cc 1082 

cc I 513 
CC,  CT I 782 

Standard 1 Regression 
,,2 Error of  11 Coefficients b 

I n- I Estimates, I;"---- 

0.923 0.255 -4.490 

0.912  0.252  -4.207 

0.952 0.177 -4.043 

0.661  0.236  -5.186 

0.982 0,215 -4.046 

c2. 

3.465 

2.241 

2.574 

1.296 

2.825 

Optimized 
Coeffici- 
ents, 
m 

0.420 

0.320 

0.350 

0.335 

0.580 

2.20 
(2.00) 

3.29 
(3.00) 

4.36 
(4.00) 
8.78 
(8.00) 

4.39 
(4.00) 

KC 9 

~ ~ / m 3  12 
(ksi- 
in.$) 

142.74 
(130.00) 

85.64 
(78.00) 

109.90 
(100.00) 

65.88 
(60.00) 
274.50 
(250.00) 

a 

bRegression  coefficients C, and C, were  derived  from  data  in  terms  of  customary  units.  Convert 

CC = center-cracked  specimen; CT = compact-tension  specimen. 

resulting  data  to SI units  (m/cycle)  by  multiplying  rate  by  0.0254  m/in. 

I cn 
w 



Example of Fatigue-Crack-Growth-Rate  Calculation 

The application of the  crack-growth  rate  model,  equation (18), is now  il- 

lustrated  by an example  for  a  center-cracked  panel.  Suppose  that  it  is  wished 

to know the  crack-growth  rate when a  crack  is  0.014m(0.543 in.) long in a 

0.244 m (9.62  in.) wide Ti-6A1-4V panel. The  panel  is  to  be  cyclically  loaded 

to  a  maximum  stress  level of 206.8 MN/d (30.0 ksi) with R = 0.70. 

The  procedure to  be  used  is  as  follows: 

Step 1 - Select  the  appropriate  data  for  Ti-6A1-4V  from  table  7.  Thus, 
C, = -4.046 

C, = 2.825 

m = 0.580 

n = 782 
Kc = 274.50  MN/m3/" 

KO = 4.39 MN/ITI~/~ 
s 

Y'X 
= 0.215 

Step  2 - For  the  center-cracked  panel  assume  that 

Kmax = s 4 rra sec (E) \ W  
Using  this  relation,  the  maximum  stress-intensity  factor  is 

found  to  be 

= 30.4  MN/m3/2  (27.7 ksi-in. 2) Kmax 
Step  3 - Using  equation (18), the  crack-growth  rate  is  given  by 

log dN = -4.046 + 2.825  tanh-l flog [(274.5 x 4.39)/ 

((30.4)(1-0.70)*58>2]/l~g [4.39/274.5]} + log(0.0254) 
s o  that 

= 1.44 X m/cycle  (5.67 x loe6 in./cycle) dN 
Step 4 - Tolerance  limits may  be  established on the  calculated  growth  rates 

by using  equation (19). The  99 percent  tolerance  limit  on  rate, 

corresponding  to  k = 2.445  for 782 data  points, is 
U , Y  

Y s o  that 

d (2a) 
dN 

d (2a) 
log dN (2.445) 

'99 = 
4.83 X m/cycle (1.90 x 10" in.  /cycle) 
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CONCLUSIONS 

As a  result  of  this  study,  it  was  found  that  large  amounts of fatigue  and 

fatigue-crack-propagation data  can  be  consolidated  for  use  in  design  applica- 

tions.  These  two  areas  of  material  behavior were treated  separately,  using 

large  files ofpertinent data  that were gathered on 2024  and 7075 aluminum 
alloys,  Ti-6A1-4V  alloy,  and 300M steel.  The  analyses  were  limited  to  constant 

amplitude  cycling  conditions. 
From studies of fatigue  data,  it was concluded  that 

(1) An  equivalent  strain  parameter  can  be  used to account  for  effects 

of  mean  stress o r  stress  ratio. 

(2) A local  stress-strain  analysis,  which  uses an empirically  computed 

Kf  value  and  a  technique  to  approximately  account  for  cyclic 

stabilization of mean  stress,  can  be  used to account  for  notch 

effects. 

( 3 )  Fatigue  life  can  be  related  to  equivalent  strain  using  a  two- 

part  power  function. 

( 4 )  Using  the  two-part  power  function,  it  is  possible  to  compute 

mean  fatigue  curves  and  one-sided  tolerance  limit  curves  for 
90 and 99 percent  probability  of  survival  with 95 percent  level 
of  confidence. 

From  studies of fatigue-crack-propagation data, it was  concluded that 

(1) Crack-growth  curves  can be simply  and  effectively  approximated 

using a five-point,  divided-difference  scheme. 

(2) The  Walker  effective  stress-intensity  formulation  can  be  used 

to  account  for  stress-ratio  effects. 

( 3 )  The  inverse  hyperbolic-tangent (tanh-I) function can be  used 

to model  crack-growth-rate  curves. 

(4) Using  the  tanh-I  function,  mean  growth  rate  curves  and  one- 
sided  tolerance  limit  curves  for 90 and 99 percent  probability 
of  maximum  crack-growth  rate  with  95  percent  confidence  level 

can  be  developed. 
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APPENDIX A 

CYCLIC STRESS-STRAIN DATA 

The  method of fatigue  analysis  developed in this  program  required  the  use 

of  both  cyclic  and  monotonic  stress-strain  curves.  Using  information  from MIL- 

HDBK-5B (ref.  l), it  was  possible  to  characterize  the  monotonic  stress-strain 

response  for  the  materials  of  interest.  However,  outside  of  the  data  reported 

by  Endo  and  Morrow  (ref. 7), Landgraf,  et  a1  (ref. S),  Smith, et a1 (ref. lo), 

and  Gamble (ref. 9 ) ,  there  was  no  appropriate  information  available on the 

cyclic  stress-strain  response  of  these  same  materials.  To  fill  this  void  of 

information,  a  limited  amount of complementary  tests were conducted  on 2.29 mm 

( 0 . 0 9  in.) thick  2024-T3  and  7075-T6  aluminum  sheet. 

All  specimens were axially  loaded  using an electrohydraulic  test  system 

operated  in  closed-loop  strain  control  at  a  constant  strain  rate of 4 x 
sec-l.  Experimental  procedures  were  similar  to  those  reported by Jaske,  et  a1 

(ref.  31). Special  lateral  guides were used  to  prevent  buckling.  These  guides 

were  clamped  about  the  specimen  with  a  force  light  enough  to  avoid  significant- 

ly  influencing  loading  of  the  specimen.  Strain was measured  over  a  12.7 mm 

(0.500  in.)  gage  length  using a  special  extensometer with a  linear  variable 

displacement  transformer (LVDT) as  the  transducer.  Load was measured  by a 

standard  load  cell  in  series with the specimen  and  continuously  recorded on a 

time-based  chart.  Load-strain  records were made  periodically  using an X-Y 

recorder. 

Results  of  these  experiments  are  summarized  in  table A l .  For  each  alloy, 

three  incremental  step  tests (ref. 8) were used  to  develop  continuous  monotonic 

and  cyclic  stress-strain  curves up to 0.01 maximum  strain  (see  figs.  A1  and 

A2). To  see  if  the  cyclic  stress-strain  curves  from  the  step  tests  could  be 

used  to  predict  cyclic  stress-strain  response  under  constant-amplitude  strain 

cycling,  seven  specimens  of  each  alloy were tested  under  constant-amplitude 

loading. For three  tests  the  strain  ratio  (algebraic  ratio  of  minimum to 

maximum  strain) was equal  to  -1.0  (i.e.,  the  mean strain was zero). A positive 

value  of  mean  strain was used in the  other,  four  tests - three were with  a 

strain  ratio of 0.0 and one was  at  a  strain  ratio of 0.5. 
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APPENDIX A 

In all  cases,  results  from  the  constant-amplitude  tests were close to 

those  predicted  by  the  cyclic  stress-strain  curve  from  the  step  tests  (figs. 

A1 and A2). Thus,  it was concluded  that  these  cyclic  stress-strain  curves 

could  be  used  to  describe  the  stable  stress-strain  response of these  two  mate- 

rials. 
Cyclic  stress-strain  data were also  generated on  300M steel  and  annealed 

Ti-6A1-4V  alloy.  Experimental  procedures  were  the  same  as  those  described 

earlier,  except  that  a 6.35 nun (0.250 in.) diameter, 12.7 nun (0.500  in.)  gage 
length  specimen was used.  Cyclic  stress-strain  curves  for  these  two  alloys  are 

presented  in  figures A3 and A4. Samples  of  the  titanium  alloy  from  the  trans- 

verse (T) direction  and  from  electron-beam (EB) welded  plate  cyclically  harden- 

ed, whereas  samples  from  the  longitudinal (L) direction  cyclically  softened. 
The cyclic  curve  shown in  figure A4 is  for  the L direction  and  the  monotonic 
curve  was  estimated  from  published  data  (ref. 1). To show  the wide variation 

in  cyclic  stress-strain  behavior  of  this  alloy,  data  from  Smith,  et a1 (ref. 
10) are presented in figure A5 and  data  from  Gamble  (ref. 9 )  are presented  in 

figures A6 and A 7 .  
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TABLE AI. - RESULTS OF CYCLIC STRESS-STRAIN TESTS AT A STRAIN RATE OF 4 X SEC-~ 

Stable  Strain  Range 
" 

Stable 

(or  blocks) MN/m2 (ksi) 
Nf , cycles' Stress, urn, b 

Stress Fatigue  Life Stable  Mean Type of Strain ' Specimen Testa  Ratio Range,  Ao, Plastic, Total, 
A€ MN/m2 (ksi) AEP 

2024-T3  Sheet 

2 

1 
STEP 4 
STEP 3 
STEP 

CA 6 
CA 8 
CA 7 
CA 5 
CA 9 
CA 

10 CA 

STEP 
STEP 
STEP 
CA 
CA 
CA 
CA 
CA 
CA 
CA 

-1.0 

0.0200  max -1.0 
0.0204  max -1.0 
0.0204  max 

-1.0 

0.0005 0.0098 -1.0 
0.0029  0.0152 -1.0 
0.0105 0.0233 

0 0.0206  0.0075 
0 0.0153 

0.0002 0.0100 0.5 
0.0001 0.0101 0 
0.0029 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
0 
0 
0 
0.5 I 0.0208  max 0.0204  max 

0.0206  max 
0.0201 
0.0150 
0,0097 
0.0204 
0.0152 
0.0101 
0.0096 

7075-T6  Sheet 

" 

19-39/40 " " 

17-2/40 " " 

23-1/40 " 

938  (136) 

745  (108) 
756 " 917 (133) 
324 " 

" 6 140 
917 (133) 23  (3.4) 

4 260 36  (5.2) 717  (104) 
6 270 15  (2.2) 710 (103) 
1 137 7.6 (1.1) 917 (133) 
178 

0.0056 
0.0011 
0.0001 
0.0050 
0.0007 
" 

" 

" " 

" " 

" " 

1 050 (152) 

" 710 (103) 
" 944 (137) 
" 

1 000 (145) 49 (7.1) 
979  (142) 43 (6.3) 
703  (102) 160 (23.2) 
684 (99.2)  198  (28.2) 

28-5/40 
34 

292 
1 209 
6 173 
270 
511 

4 611 
3 270 

30-37140 

aSTEP  indicates an incremental  step  test  and  CA  indicates a constant-amplitude  test. 

bRatio of minimum  to  maximum  strain. 

CCycles  for  constant-amplitude  tests  and  blocks  for  incremental-step  tests. 
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Constant-Amplitude  Cycling 

0 Strain  ratio of -1.0 
A Strain  ratio of 0 
0 Strain  ratio of +0.5 

700 

600 t "  - f- 

Strain 

Figure AI.  - Cyclic  stress-strain  behavior of 
2024-T3 aluminum  sheet. 

. . ~ r "  ~ 

__- Constant-Amplttude Cycling 

0 Strain  ratlo of  -1.0 
A Strain  ratio of 0 

0 0.0025 0.0050 0.0075 0.0100 0.0125 

Strain 

Figure A2. - Cyclic  stress-strain  behavior 
of 7075-T6 aluminum sheet. 
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t 

0.020 0025 

Straln 

Figure A3. - Cyclic  stress-strain  behavior 
of 300M steel forging. 

Slroln 

Figure A 4 .  - Cyclic  stress-strain  behavior 
of annealed  Ti-6A1-4V plate. 
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Figure A5. - Cyclic  stress-strain  behavior of 

bar, data  from  Smith, et a1 (ref. 10) .  
solution-treated and  aged (STA) Ti-6A1-4V 

1400 
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Figure A6. - Cyclic  stress-strain  behavior 
of  annealed  Ti-6A1-4V  forging, 

data  from  Gamble (ref. 9). 
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Figure A7. - Cyclic  stress-strain  behavior of annealed 
Ti-6A1-4V bar, data  from  Gamble (ref. 9). 
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APPENDIX  B 

STATISTICAL  CONSIDERATIONS  IN  THE  ANALYSIS  OF 
FATIGUE  AND  FATIGUE-CRACK-PROPAGATION DATA 

The phenomenological  approach  to  the  study  of  fatigue  and  fatigue-crack 

propagation  usually  involves  the  formulation  of  a  model  of  material  behavior. 

In this  work,  the  model  took  the  form  of a regression  equation  that  was  fitted 

to  empirical  data.  Statistics  provided  the  means  for  comparison  and  evaluation 

of  the  various  empirical  models.  The  following  paragraphs  describe  the  empir- 

ical  models  which were used  and  outline  how  they  were  optimized  and  evaluated. 

In the  fatigue  analysis, a nonlinear  model  was  used  where  necessary to 

describe  the  relationship  between  equivalent  strain  and  fatigue  life.  The 

general  equation  form  was 

Y = B, X? + BZm2 
where Y represents  the  dependent  variable,  fatigue  life, and X represents  the 
independent  variable,  equivalent  strain. 

In the  fatigue-crack-propagation  analysis,  it  was  possible to use a linear 

regression  equation  to  describe  the  data  as  follows: 

Y = Bo + B,X 
In this  case, Y represents  the  logarithm  of  crack-growth  rate  and X represents 
the  transformed  variable-effective  stress  intensity. 

Optimum  values  of  the  equation  coefficients (Bo  and  B,,  or  B,  and  Ba) were 

determined  through  least-squares  regression  analyses.  When  optimizing  coeffi- 

cients  in  equation (Bl), the  exponents m, and  m2 were fixed s o  that  the  equa- 

tion  could  be  handled  through  linear  regression  techniques.  Repeated  optimiza- 

tions  for  increasingly  accurate  values  of  ml  and % gave  best  values  for  the 

exponents  in  the  nonlinear  expression. 
The  optimization  procedure  was  based on a  minimization  of  the  standard 

error  of  estimate  for  the  data  as  applied  to  equations (Bl) or (B2). This 
factor  was  expressed  as  follows: 

I n  

I C (Yi - Bo - BIX,)" 
i=l 

S y.x i 
- - 

n - 2  

6 3  
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After  the  least-squares  line  and  its  parameters were established,  it was 

of interest  to know  how  well this  line  described  the  data. The measure  of  fit 

used in this  analysis was R2, where R is  the  correlation  coefficient. It was 
calculated as follows: 

where s was  determined  according  to  equation (B3), and s the  sample  stan- 

dard  deviation  of Y, was calculated  according  to  the  standard  formula 
Y’X  Y’ 

The  value of R2, determined  from  equation (B4), indicated  the  percentage  of  the 

total  variation (s2) in  fatigue  life  or  crack-growth  rate  which  was  accounted 

for  by  the regression  equation. A high  value  of R2 (approaching 100 percent) 

indicates  that  the  chosen  relationship  reasonably  represents  the  underlying 

physical  phenomenon. 

Y 

Equation (B4)  differs  slightly  from  that written in the  earlier  presenta- 

tion  of  this work (ref. 3). The  equation  presented  here  is  the  correct  formula- 

tion  and is  the one that was actually  used  in  all  calculations. 
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THE INTERRELATIONSHIP  BETWEEN THE EQUIVALENT  STRAIN 
EXPONENTS (ml ANDma) AND THE UNIVERSAL- 

SLOPES-TYPE  EXPONENTS (b AND C) 

As  mentioned in the  text of this report, the  exponents  ml  and q in the 
equivalent  strain-fatigue  life  expression 

are  related  to  the  commonly  used  parameters,  b  and cy found in the  following 

universal  slopes-type  equation  originally  recommended  by  Raske,  et  a1 (ref. 

32). 

The  interrelationship  of  parameters is  illustrated in figure  C1  for  the 

unnotched-specimen,  2024-T3  aluminum  data examined in this  study. The  tri- 

linear  logarithmic  approximation  of  the  cyclic  stress-strain  curve (eq. 4 )  is 
shown  along  with  a  plot of strain  amplitude  and  equivalent  strain  versus  fatigue 

life. A value  of 0.40 was used  for m  in  determination of specific  values  of 
equivalent  strain.  Fully  reversed  fatigue  cycling  was  considered  in  this  ex- 

ample, but a  similar  illustration  could be  developed  for  other  stress  ratios  or 

mean  stresses  if  stable  values  of  both  strain  amplitude  and  maximum  stress  were 

available. 

In the  fully  reversed  load  or  strain-controlled  fatigue  test,  a  specific 

value of  equivalent strain  is  definable for  each  point  along  the  cyclic  stress- 

strain curve. Since  each  equivalent  strain  value  describes an expected  value 

of  fatigue  life,  each  point on the  stable  cyclic u-E curve is related to a 
corresponding  point on the -N curve.  The  observed  trend  is  that  large 

strain  amplitudes  with  corresponding  stress  amplitudes  considerably  greater 

than  the  cyclic  yield  strength of the  material  generally  fall  above  the  eeq-Nf 

curve,  while  smaller  strain  amplitudes  involving  little or no  plastic  strain 

fail  below  the E -Nf  curve. Two distinct  slopes  are  apparent  for  each  fatigue 

life  curve, but  those  slopes  are  dissimilar,  at  least in the  low-cycle  fatigue 

region. It is  the  intent of this  brief  discussion to demonstrate  the  interrela- 

tionships  between  these  two  fatigue  life  expressions  in  the  low-  and  high-cycle 

regimes. 

eq f 

eq 
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Cyclic  stress-strain  curve 
"~ 

Cycles to Failure, N f  

Figure C1. - Illustration of the  interrelationship  between the cyclic-strain  curve, 
the  equivalent  strain  function (E  ), and  the  universal-slopes-type  equation (ea). 
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Low-Cycle  Fatigue 

For small  values of Nf,  where  the  inelastic  strain  range is  much  larger 

than  the  elastic  strain  range,  the  following  approximations  are  reasonable. 

Since  all  three  equations are simple  exponentials,  their  logarithms  may be 

developed  and  derivatives  taken so that  their  respective  logarithmic  slopes  may 

be  found  as  follows: 

d(1og  Ac)/d(log  Nf) = c (C7 1 

d(1og E )/d(logAc) = m + (1-m)n' 
eq (C8)  

A  combination  of  these  three  equations  also  shows  that  the  product  of  the 

slopes  in  the  low-cycle  region  for  the  Ae-Nf  and E -Nf curves  should  be 

approximately 
eq 

cml - I/ (m + (1-m)n') ( C 9 )  

Since m and n' have  been  found to  be  about 0.40 and  0.15,  respectively,  for  the 

investigated  materials  and  c  is  around -0 .50  for  most  aluminum  alloys  and -0.60 

for  several  high-strength  steels (ref. 3 3 ) ,  q would  be  expected  to  have a 
value of  approximately - 3 . 5  to -4 .5 .  Actual  optimized  values of ml were  some- 

what less  than  this  with  the  majority  of  the  values  for  the  unnotched  specimen 

aluminum  and  steel  data  ranging  from -4.5 to -7. The difference  is  attribut- 

able  largely  to  the  fact  that  very few valid  data were  available  for  Nf < 103; 
therefore,  the  slope of the E -Nf  function was determined  primarily by fatigue 

data  for  which  the  simplifying  assumptions  of  equations ( c 3 )  and ( c 4 )  were  only 

marginally  applicable. Even if a  large  quantity  of  low-cycle-fatigue  data  had 

been  available, q would  have  been  expected  to  have  a  lower  value  than  the 

eq 
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estimate  from  equation ( C 9 )  because  the  exponent  c  applies  only  to  plastic 

strain while q applies  to  total  strain. 

High-Cycle  Fatigue 

For the  large  values  of  N  where  the  elastic  strain  range is much  larger f' 
than  the  inelastic  strain range, the  following  approximations  are  reasonable: 

By  taking  logs  and  derivatives  as  done in the  low-cycle  fatigue  section,  it  is 

possible  to  see  that  the  logarithmic  slopes  of  the E -N and  he-N  functions 

should  be  inversely  proportional  which  means  that  the  product  of  the  slopes 

should  be  approximately  equal  to  unity, 

eq f f 

bm,-l (C13) 

Since  b is in  the  range  of -0 .09 to -0.12 for  many  materials  (ref. 33) , m, 
would  be  expected  to  fall in the  range  of -8 to -11. Actual  optimized  values 

were again  somewhat  lower  than  this  with  slopes  for  unnotched  specimen  data 

ranging  from -13 to -16. The  low  values  of .m, are  partially  due to  the  corre- 

sponding  low  values  of 9. The  exponent 9 in  the  first  term  of  equation (Cl) 
causes  the  optimum  values  of m2 to  increase  if  it  is  raised  and  decrease  if 

it  is  lowered.  Optimum  values  for m,. and m, cannot  be  independently  selected. 

The  primary  exponent ml should  first  be  optimized  and  then  the  secondary 

exponent % should  be  set  at an optimum  or  reasonable  value. In some  cases 

where only  a  small  quantity  of  high-cycle  fatigue  data are available,  the  sec- 

ond  term  (and m2) in  equation (Cl) may  be  eliminated  entirely  with no reduction 

in  quality  of  the  overall  data  representation. 
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