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Abstract 

Both total ozone and vertical distribution (below 33 km) ozone data from 

the period 1957-1972 are analyzed. For total ozone, improved monthly zonal 

means for both hemispheres are computed by weighting individual station 

monthly means by a factor which compensates for the close grouping of stations 

in certain regions of latitude bands. Longitudinal variability show maxima 

in summer in both hemispheres, but, in winter, only in the Northern Hemisphere. 

The geographical distributions of the long-term mean, and the annual, quasi- 

biennial and semiannual waves in total ozone over the Northern Hemisphere are 

presented. The extratropical. amplitude of the annual wave is by far the 

largest of the three, as much as 120 m atm cm over northern Siberia. There 

is a tendency for all three waves to have maxima in high latitudes. 

Monthly means of the vertical distribution of ozone determined from 3-8 

years of ozonesonde data over North America are presented. Number density 
y"i& I:i;-A, 1 

is highest (long term mean > 80 x 10" molecu eb ~m'~) in the Arctic near 
0 

18 km. The region of maximum number density slopes upward toward 10 N, where 
5- ; : ,g/ov -3 

the long-term mean is 45 x 1011 molecul s cm near 26 km. Maximum deviations 

of individual observations from the seasonal means occur just above the tropo- 

pause. Periodic analysis of the vertical distribution data shows that the 

amplitude of the annual wave is as much as 18 x 10" molecules cme3 in the 

Arctic lower stratosphere. The annual maximum occurs in the spring throughout 

the extratropical lower stratosphere, but above 26 km in middle latitudes the 

maximum occurs in summer. The quasi-biennial (29 month) oscillation has a 

maximum amplitude of 9 x 1011 molecules cm-3 in the Arctic lower stratosphere, 

but is elsewhere generally much smaller than that. The semiannual wave has 

small maxima between 14 and 18 km in middle latitudes. 
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I. TNTKODUCT ION 

The natural temporal and spatial variability 05 ozone is 05 interest 

for several current stratospheric pollution studies, such as possible effects 

on stratospheric ozone of supersonic transports, space shuttles, chloro- 

fluormethanes, and volcanic disturbances. As a preliminary to studying the 

effects of these disturbances, mathematical models of the ozone distribution 

in the "undisturbed" stratosphere have been constructed. These models must 

be evaluated by comparison with the observed natural temporal and spatial 

variability of ozone. On the scale of decades, estimates of trends in total 

ozone have been made by, among others, Angell and Korshover (1973), Pittock 

(1974), London and Kelley (1974), Komhyr, et al. (1973), and Goldsmith, et al. 

(1973). Also, evaluation of the quasi-biennial variations in total ozone 

have been given by Angell and Korshover (1973) and of the annual variation 

by Wu (1973). 

However, it is the natural horizontal variability at discrete strato- 

spheric levels that is most needed to evaluate the significance of a model's 

results, Therefore, analyses of the quasi-biennial (29 month), annual, and 

semiannual waves in the vertical distribution of ozone as well as in total 

ozone are provided here. Zonal means of total ozone have been reevaluated 

using an improved weighting procedure. Results are presented graphically 

on hemispheric maps, height-latitude sections, and in tabulations. 

11. DATA AND PROCESS ING 

A. DATA SOURCES 

Total ozone data for the period 1957-72 were obtained from the 

World Data Center for Ozone, Toronto. Earlier data also were obtained 

(London, 1962) but have been processed separately because of the difficulty 

in assuring that the measurements at each station are uniformly calibrated 

among themselves and with the other stations, or that they are compatible 

with the more recent data edited at Toronto. The periodic analysis results 

of the two periods will be discussed in Section IV-A. The pre-1957 data 



were not included in the current periodic analysis in order to be more 

comparable with ozonesonde data period. 

The total ozone stations used, their periods of record, and the 

number of months for which data were available are presented in Table 1 and 

Figure 1. Almost all of the western stations use the Dobson spectrophoto- 

meter for total ozone (a few French stations use the Vassy instrument), but 

the Soviet Union and East Germany use the filter ozonometer type M-83. The 

Dobson spectrophotometer is generally thought to be quite accurate while the 

filter ozonometer type M-83 is subject to serious errors under certain sun 

angles and restricted visibilities (Bojkov, 1969). An excellent discussion 

of problems in sensing, including instrument differences and geographical 

bias, is given by Angel1 and Korshover (1973). 

Ozonesonde data were obtained from three sources. The first was 

Air Force Cambridge Research Laboratory, which conducted a program of quasi- 

weekly soundings at 14 stations in North America from January 1963 through 

December 1965 (Hering, 1964; Hering and Borden, 1965a,1966, 1967). Following 

this program, several of these stations, plus two additional ones, continued 

to take data through 1969, while at Bedford sondes continued into 1971. These 

data were obtained from World Data Center-A (Meteorology), Asheville, N.C. 

The second source of data was the World Data Center for Ozone, Toronto, 

which supplied ozonesonde data from 26 stations in both hemispheres, measured 

with various sondes. "Toronto" and ttAFCRLtl stations, their locations, periods 

of record, type of sonde, and total number of observations are given in 

Table 2. It will be noticed that observations from Bedford, Fairbanks, Goose 

Bay, and La Paz are included in both Toronto and AFCRL data sets. In all 

processing these data have been merged, with care taken not to include the 

same observation twice. 

In addition to the two data sets on magnetic tape, data from a 

three-year sounding program using the Brewer-Mast sonde at Boulder, CO (OO.ON, 

105.2W) were extracted from DUtsch (1966) and DUtsch, et al. (1970), and 



punched on cards. These data were merged with the AFCRL data from Fort 

Collins, about 75 km away, 

Ozonesonde data are calibrated to obtain agreement of the inte- 

grated vertical ozone, plus an allowance for ozone above the balloon's 

maximum level, with nearby Dobson total ozone measurements. Craig (1965) 

describes the Dobson instrument, the various ozonesondes and their problems, 

and also the Umkehr method used for estimating vertical profiles from Dobson 

data. As the Umkehr technique is very sensitive to calibration problems and 

to particulates in the atmosphere (Holland and Thomas, 19751, and as accurate 

calibration of the Dobson instrument is almost impossible (DUtsch and Ling, 

1973a), no Umkehr data are used in this study. 

B . COMPUATION PROCEDURE 

1. Total Ozone Monthly Zonal Means 

The data were grouped into 10' latitude bands centered at 15, 25, 

35O, etc. Along a latitude circle, each station is assumed to be representa- 

tive of the arc which extends halfway to the next station in both eastward 

and westward directions. The long-term monthly mean at each station is then 

weighted by the length of this arc, W. 

In addition, all monthly means were weighted by the square root of 

the number of months of data used, N. The zonal mean X is thus given by 

where the X.'s are the long-term monthly means of total ozone at each of the 
1 

M stations in the latitude band. However, this scheme might apply zero 

weight to one of two stations which happen to be at the same longitude. 

Therefore, when two or more stations are separated in longitude by 1/2 degree 



or less, a weight is computed as if there were only one station. The actual 

stations in the 1/2 degree interval each share equally the weight of the 

assumed single station. 

The standard deviation of the station monthly means from the zonal 

monthly means was computed by weighting the squares of the station monthly 

means in the same manner--by the arc length and by the square root of the 

number of observations : 

2. Vertical Distribution 

One objective of this study is to determine ozone number densities 

with 2& km vertical resolution. As pressure was a vertical coordinate given 

in both AFCRL and Toronto data, it was convenient to use it as the working 

vertical coordinate. Each set of data used different pressure levels so it 

was necessary to interpolate (linearly in In p) each observation to many 

standard pressure levels. The heights of the pressure levels were later 

determined as functions of season and latitude using the 10-20 year means 

given in Labitzke, et al. (1972) for the stratosphere, and U. S. Standard 

Atmosphere Supplements, 1966, for the troposphere. 

Number density, n (molecules crn-') , was computed by: 
3 

where p is ozone partial pressure, N is Avogadro's number, R* is the univer- 
3 0 

sal gas constant, and T is temperature. Temperature data were available for 

each sounding except at Aspendale and Boulder where climatological monthly 



mean temperatures had t o  be used. 

In  cons t ruc t ing  monthly h e i g h t - l a t i t u d e  s e c t i o n s ,  on ly  North 

American s t a t i o n s ,  p lus  Grand Turk and t h e  Canal Zone, were used. Th i s  w a s  

neces s i t a t ed  by t h e  e x i s t e n c e  of only a very  few non-North American ozone- 

sonde s t a t i o n s  wi th  a r e s p e c t a b l e  per iod of record .  (Only B e r l i n  and Hohen- 

peissenberg i n  Germany, and Tateno, Sapporo and Kagoshima i n  Japan,  of t h e  

o the r  Northern Hemisphere s t a t i o n s ,  each have more than  100 p r o f i l e s . )  A s  

f i r s t  pointed out  by London (1962), e a s t e r n  North America, e a s t e r n  Asia ,  and 

c e n t r a l  Europe show maxima i n  t o t a l  ozone. This  f i n d i n g  is  supported by our  

a n a l y s i s  of t o t a l  ozone, and by Wu (1973). S ince  our o b j e c t i v e  was t o  

determine monthly mean p r o f i l e s  r e p r e s e n t a t i v e  of t he  e n t i r e  Northern Hemi- 

sphere ,  i t  would t h e r e f o r e  only se rve  t o  b i a s  t he  monthly means on t h e  h igh  

s i d e  were t h e  German and Japanese ozonesondes included.  A t  t h e  same time 

it should be noted t h a t  most of t h e  North American s t a t i o n s  a r e  loca ted  i n  

t he  e a s t e r n  p o r t i o n  of t h e  con t inen t ,  b u t  t h a t  t h e  h igh  b i a s  s o  produced i n  

p a r t i a l l y  o f f s e t  by t h e  i n c l u s i o n  of Boulder/Fort C o l l i n s ,  S e a t t l e ,  Fa i rbanks ,  

and Albuquerque. ' 

MONTHLY VARIATIONS 

A .  TOTAL OZONE : ANNUAL MEAN MAP AND ZONAL MEANS 

Figure  2 i s  a map of t h e  annual  mean of t o t a l  ozone. Wavenumber 

t h r e e  is  dominant i n  t h e  p a t t e r n ,  wi th  maxima over e a s t e r n  North America, 

c e n t r a l  Europe, and e a s t e r n  Asia.  This  i s  i n  agreement wi th  London (1962), 

Wu (1973), and o the r s .  It should be noted t h a t  F igu re  2 r e p r e s e n t s  a good 

d e a l  of smoothing. This  is  e s p e c i a l l y  ev ident  when comparing i t  wi th  t h e  

annual mean t o t a l  ozone map of Wu (1973), which r e t a i n s  much smal l - sca le  

v a r i a b i l i t y ,  e s p e c i a l l y  over t h e  S o v i e t  Union. I n  view of t h e  p rev ious ly  

discussed e r r o r s  a s s o c i a t e d  w i t h  t h e  f i l t e r  ozonometer used i n  t h a t  country,  

t h e  small-scale  v a r i a b i l i t y  has  been smoothed here .  (Dash-dot l i n e s  i n  t h i s  

and i n  a l l  subsequent f i g u r e s  i n d i c a t e  t hose  po r t ions  of t h e  a n a l y s i s  which 



have l a r g e  s t a t i s t i c a l  unce r t a in ty  due t o  s p a r s e  d a t a ,  s h o r t  pe r iods  of 

record ,  o r  o the r  reasons .) 

Figure  3 shows t h e  weighted zonal  means of t o t a l  ozone by month. 

The well-known sp r ing  maximum and f a l l  minimum a r e  c l e a r l y  r ep re sen ted ,  as 

is  t h e  l e s s e r  amount of ozone i n  t h e  Southern Hemisphere than  i n  t h e  Northern 

Hemisphere. The lowest values of t o t a l  ozone occur  from nea r  t h e  equator  t o  

25N i n  December and January,  and poleward of 80N i n  August. Also  ev iden t  i s  

the  h ighe r  l a t i t u d e  of t h e  Northern Hemisphere maximum (-75'~) than  t h e  
0 

Southern Hemisphere maximum (-55 S ) .  This  d i f f e r e n c e  can be expl-ained by t h e  

more zonal  l a rge - sca l e  c i r c u l a t i o n  of t h e  Southern Hemisphere (van Loon, e t  

al., 1972b). Presumably, ozone i s  t r anspor t ed  t o  t h e  lower middle l a t i t u d e s  

by t h e  Hadley c e l l  bu t  i t  cannot be r e a d i l y  t r anspor t ed  t o  south  p o l a r  

reg ions  due t o  t h e  r e l a t i v e l y  small amplitude of s tanding  waves i n  t h e  

Southern Hemisphere (Kao, e t  al .  , 1972) . 
Values i n  F igure  3 agree  w e l l  w i th  t h e  l i t e r a t u r e  (Wu, 1973; DUtsch, 

1969; S t i c k s e l ,  1970) as t h e  g r e a t  ma jo r i t y  of publ ished values a r e  w i t h i n  

one s tandard  dev ia t ion  of t h e  va lues  given he re .  P a r t  of t h e  d i f f e r e n c e s  a r e  

due t o  our  longer per iod  of record.  Other  d i f f e r ences  a r i s e  from our  improved 

weight ing scheme, i . e . ,  t h e  attachment of a l a r g e  weight t o  l o n g i t u d i n a l l y  

i s o l a t e d  s t a t i o n s  whose means d e v i a t e  s i g n i f i c a n t l y  from t h e  means of t h e  

remaining s t a t i o n s  i n  t h e  l a t i t u d e  band. Outstanding examples a r e  Resolu te  

and T i k s i  i n  band 70-80°N (values h igher  than  o t h e r s ) ,  Marcus I s l a n d  i n  band 

20-30°N (values lower),  Po r t  au  F ranca i s  i n  band 40-50's (values h i g h e r ) ,  

and Dumont d l U r v i l l e  i n  band 70-80's (values lower). Table 3 conta ins  values 

from Figure  3 i n t e r p o l a t e d  t o  each f i v e  degrees of l a t i t u d e .  

The (weighted) s tandard  dev ia t ions  of t h e  means i n  F igure  3 a r e  

presented i n  F igure  4,  s e rv ing  a s  a measure of l ong i tud ina l  v a r i a b i l i t y .  

Of i n t e r e s t  i s  t h e  sumnertime maximum i n  both hemispheres. This  f e a t u r e  

r e f l e c t s  t h e  smal l - sca le  v a r i a b i l i t y  of ozone i n  t h e  summer which is  a l s o  

ev ident  i n  t h e  m n t h l y  and seasonal  maps of Wu (1973). The phys i ca l  reason 



f o r  t h i s  v a r i a b i l i t y  has not  ye t  been determined, but  s i n c e  t h e  summer wind 

i s  usua l ly  a d i r e c t  e a s t e r l y  i n  t h e  middle and upper s t r a tosphere  i t  i s  

probably not  t h e  r e s u l t  of v a r i a b l e  hor i zon ta l  advection. The v e r t i c a l  

advection of water vapor may cause a des t ruc t ion  of ozone, as suggested by 

Rangarajan (1969), and Rao and C h r i s t i e  (1973). Possibly mid- la t i tude  sunaner- 

t i m e  thunderstorms account f o r  such water vapor anomalies. C lea r ly  t h i s  is  

an  aspect  of t o t a l  ozone d i s t r i b u t i o n  which r equ i re s  more s tudy.  

While t h e  Northern Hemisphere s tandard devia t ions  show seasonal  

maxima of longi tudinal  v a r i a b i l i t y  i n  winter  a s  w e l l  a s  summer, t h e  Southern 

Hemisphere s tandard dev ia t ions  have only a sumer maximum (except a t  very 

high l a t i t u d e s ) .  This i s  probably a r e f l e c t i o n  of t h e  q u i t e  zonal  mid- 

l a t i t u d e  c i r c u l a t i o n  i n  t h e  Southern Hemisphere winter ,  which i s  r e l a t i v e l y  

i n e f f e c t i v e  i n  t r anspor t ing  ozone f u r t h e r  poleward. 

B . VERTICAL DISTRIBUTION OF OZONE BY LATITUDE 

Figures 5 through 17 a r e  he igh t  l a t i t u d e  s e c t i o n s  of monthly means 

and t h e  annual mean of ozone number dens i ty .  Values of ozone concent ra t ion  

a t  23 km and 5' l a t i t u d e  i n t e r v a l s  w e r e  i n t e rpo la t ed  from Figures  5-17 and 

tabula ted  i n  Appendix A.  The s t a t i o n s  used a r e  indica ted  by l e t t e r s ;  from 

high t o  low l a t i t u d e  they  a r e  Thule, Fairbanks,  Churchi l l ,  Goose Bay, S e a t t l e ,  

Madison, Bedford, For t  Coll ins/Boulder ,  S t e r l i n g ,  Wallops I s . ,  Albuquerque, 

Tal lahassee,  Kennedy Space Center ,  Grand Turk, and the  Canal Zone. Analyses 

which f a i t h f u l l y  f i t  t h e  d a t a  were extremely ragged, a f a c t  which was undoubt- 

ed ly  due more t o  long i tud ina l  than t o  l a t i t u d i n a l  v a r i a b i l i t y .  The d a t a  were 

the re fo re  smoothed t o  be cons i s t en t  with the  s c a l e  of the  s e c t i o n .  (Note 

t h a t  i n  a l l  h e i g h t - l a t i t u d e  sec t ions  t h e  he ight  s c a l e  is the  t r u e  v e r t i c a l  

coordinate and t h e  pressure  s c a l e  i s  only approximate.) 

The f igu res  show t h e  well-known lower s t r a t o s p h e r i c  maximum ozone 

concentrat ion,  with t h e  g r e a t e s t  concent ra t ion  ( > 80 x 1011 molecules mah3) 

i n  January poleward of 70 '~.  I n  January t h i s  b e l t  of maximum ozone s lopes  



upward from 15 km at high latitudes to 25 km at the equator, paralleling the 

mean height of the tropopause. Its intensity at high latitudes decreases to 

near 50 units in summer and the altitude of the maximurn rises to 20 km. The 

poleward gradient of ozone below the level of maximum concentration is 

largest in the spring. 

The rise in ozone concentration in the high-latitude region between 

24 and 32 km from January to March is attributed by Kering and Borden (1965b) 

to an explosive stratospheric warming over North America in January and 

February, 1963. DUtsch, et al. (1970), and Dntsch and Ling (1973b) also link 

sudden stratosphere warnings to increases in ozone concentration, noting that 

the ozone rise lags the temperature rise. Also, since ozone mixing ratio is 

conservative in the wintertime middle stratosphere, the increased concentra- 

tion is quite persistent, and is still evident after the temperatures have 

reverted to normal. However, one must always keep in mind the increasing 

statistical errors as the middle stratosphere is reached. 

In the troposphere, there is least concentration of ozone in the 

tropics all year, and this minimum extends to mid-latitudes during winter. 

Also, there is almost always a tropospheric maximum concentration near 30 to 

40'~ below 4 km. 

C . STANDARD DEVIATIONS 

The standard deviation of individual observations from the seasonal 

mean are shown in Figures 18-21. All four seasons have the highest standard 

deviations just above the tropopause at middle and high latitudes. This is 

due to the fact that these particular levels are part of the time in the 

ozone-poor troposphere and part of the time in the ozone-rich stratosphere, 

(DUtsch, 1966, 1974a; DUtsch, et al., 1970). The maximum variability in 

the stratosphere, within a three-month season, occurs in January-March while 

the minimum is in July-September. 



IV, PERIODIC ANALYSIS 

A. PROCEDURE 

1. S e l e c t i o n  of S t a t i o n s  

I n  t he  pe r iod ic  a n a l y s i s  of t o t a l  ozone, a l l  a v a i l a b l e  s t a t i o n s  

were used. However only over t h e  Northern Hemisphere d i d  t h e  t o t a l  ozone 

s t a t i o n  d i s t r i b u t i o n  warrant  p r e s e n t a t i o n  i n  map form. T o t a l  ozone d a t a  

taken p r i o r  t o  1957 were a l s o  subjec ted  t o  pe r iod ic  a n a l y s i s .  Lower long- 

term means, cons i s t en t  w i t h  t h e  t r end  i n  t o t a l  ozone shown by Angel1 and 

Korshover (1973), were de t ec t ed  a t  a l l  s t a t i o n s .  The d i f f e r e n c e s  i n  

amplitude and phase of t h e  annual  and semiannual waves were gene ra l ly  w i t h i n  

t h e  e r r o r  l i m i t s .  Northern Hemisphere r e s u l t s  given below are f o r  t h e  

s t a t i o n s  and per iods  of r eco rd  i n  Table 1. 

The d i s t r i b u t i o n  of ozonesonde s t a t i o n s  i s  much more s p a r s e  t han  

t h a t  of t o t a l  ozone s t a t i o n s  and t h e r e f o r e  could not  be mapped al though it i s  

expected t h a t  t h e r e  i s  s i g n i f i c a n t  v a r i a t i o n  wi th  longi tude.  Therefore,  on ly  

e a s t e r n  North American s t a t i o n s  were used,  approximating a meridional  s e c t i o n .  

These s t a t i o n s  a r e  Thule,  Church i l l ,  Goose Bay, Madison, Bedford, S t e r l i n g ,  

Wallops Is., Tal lahassee ,  Kennedy Space Center ,  Grand Turk, and t h e  Canal 

Zone. The observa t ion  s e r i e s  a t  S t e r l i n g  and Wallops (220 km a p a r t )  were 

consecut ive r a t h e r  than  concurren t ,  s o  they  were combined t o  make a long 

per iod  of record.  The same was done w i t h  Ta l l ahas see  and Kennedy (430 km 

a p a r t )  . 
2. Analysis  Method 

A pe r iod ic  a n a l y s i s  of both t o t a l  ozone and v e r t i c a l  d i s t r i b u t i o n  

d a t a  was made us ing  t h e  same pe r iod ic  r eg re s s ion  technique as previous ly  

appl ied  t o  wind (Belmont, e t  a l . ,  1974). This  method accommodates unevenly 

spaced d a t a  and can f i t  any pe r iod ic  func t ion  t o  the d a t a .  F u r t h e r ,  i t  y t e l d s  

r e l a t i v e  e r r o r s  of e s t ima te  which h e l p  i n  a s se s s ing  t h e  r e l i a b i l i t y  of ampli- 



tude and phase. Although periods down to three months were included in the 

basic analyses of both total and vertical distribution, the errors are 

relatively large for the three- and four-month waves, so little significance 

can be attached to them and they are not included here. 

A sinusoidal waveform was employed because the annual variation of 

total ozone at Arosa, Switzerland over a 30 year period (Per1 and DUtsch, 

1959, reproduced by Craig, 1965) is almost sinusoidal. Since, to a first 

approximation, seasonal changes of total ozone are a result of variations in 

lower stratospheric ozone concentrations (DUtsch, 1974; Bojkov, 1969b), it 

seems likely that the annual variation of the vertical distribution of ozone 

is also largely sinusoidal. A sinusoid was also used for the QBO because 

time plots of twelve month running means of ozone concentration at several 

levels were reasonably sinusoidal. Also, Angel1 and Korshover (1973) 

determined the QBO in total ozone to be largely sinusoidal. A period of 29 

months was used for the QBO to be consistent with the earlier analyses of 

stratospheric wind and temperature (Belmont, et al., 1974; Nastrom and Belmont, 

1975). 

B . ANNUAL OSCILLATION 

1. Total Ozone 

The amplitude and phase (time of the maximum) of the annual oscilla- 

tion in total ozone are shown in Figures 22 and 23. The maximum, over 120 m 

atm cm, occurs in late winter over northeastern Siberia. The pattern of the 

annual wave amplitude tends to follow the pattern of the mean, i.e., maxima 

over North America, Europe,and Asia, although the apparent oceanic minima 

may be due to lack of observations. The location of the Siberian maximum 

amplitude coincides with that of autumn-through-spring northward winds at 

the level of maximum ozone near 50 and 30 mb. Further, the ridge of large 

amplitudes along the east coast of North America is associated with another 



major region  of northward winds a t  50 and 30 mb, a s  given i n  van Loon, e t  a l . ,  

1972. These flow pa t t e rns  he lp  exp la in  t h e  longitude of t h e  maxima, but  not  

t h e  asymnetry of the  p a t t e r n  which must involve mean v e r t i c a l  motions as 

well .  The maximum of the  annual wave i n  t o t a l  ozone (Fig. 23) occurs f i r s t  

i n  e a r l y  February i n  the  region  of t h e  amplitude maximum. The wave progresses 

r a d i a l l y  from t h i s  loca t ion ,  reaching 3 0 ' ~  i n  two o r  th ree  months. 

2.  V e r t i c a l  D i s t r i b u t i o n  of Ozone 

The annual wave over e a s t e r n  North America (Figs. 24 and 25) has 

i t s  maximum amplitude a t  high l a t i t u d e s  near  13 km with phase da te s  i n  t h e  

spr ing .  This  maximum r a p i d l y  becomes weaker from 50 t o  30N, becoming q u i t e  

small  i n  the  t r o p i c s  a t  any a l t i t u d e ,  I n  Figure 25 i n t e r e s t i n g  f ea tu res  are 

t h e  region  of summer phase da te s  at  middle l a t i t u d e s ,  and winter  da te s  i n  t h e  

t r o p i c s ,  both above 26 km. The annual maximum i s  e a r l i e s t  (February) a t  

h ighes t  a l t i t u d e s  and l a t i t u d e s  and progresses southward and downward. The 

annual maximum i n  t ropospheric  ozone i s  q u i t e  small and occurs i n  l a t e  sp r ing  

o r  summer. 

3 .  Discussion 

DUtsch (1974b), among o the r s ,  suggests  t h a t  the  predominant cause 

of the  high l a t i t u d e  winter-spring maximum i n  t o t a l  ozone i s  advect ion from 

the  middle and upper t r o p i c a l  s t r a tosphere  ozone source. This  t r anspor t  

begins with the  onset  of the  s t r a t o s p h e r i c  w e s t e r l i e s  i n  the  f a l l ,  reaches a 

maximum i n  e a r l y  winter ,  and gradual ly  weakens i n  late win te r  and spr ing .  It 

ceases wi th  the  r e v e r s a l  t o  e a s t e r l i e s  i n  t h e  spring.  During the  winter  and 

spr ing  months, when the re  i s  enhanced v e r t i c a l  mixing i n  t h e  troposphere due 

t o  synoptic  s c a l e  weather systems, ozone is t ranspor ted  downward i n t o  t h e  

troposphere where it  reaches a maximum i n  e a r l y  summer. [Recently Chameides 

and Walker (1973) s a i d  t h a t  photochemistry accounts f o r  gross f ea tu res  of 

t ropospheric  ozone v a r i a b i l i t y  a s  repor ted  by Hering and Borden (1964) f o r  

North American s t a t i o n s .  Although t h i s  theory has not  ye t  gained s u b s t a n t i a l  

acceptance (see f o r  example DUtsch, 1974a; Fabian, 1974; Cunnold, e t  a l . ,  



1975), ozone photochemistry i n  the  troposphere may be s i g n i f i c a n t  . ] 

The mid- la t i tude  amplitude and phase i n  Figures 24 and 25 a r e  q u i t e  

s i m i l a r  t o  these  a t  Arosa (47'~) found by Dfltsch and Ling (1973b), who 

analyzed s i x  years  of ozonesonde da ta .  Both analyses show t h e  surmner t ropo- 

spher ic  maximum (progress ive ly  e a r l i e r  with inc reas ing  he ight ) ,  t he  l a t e  

winter  lower stratospheric'maximum, and a r ap id  phase s h i f t  t o  a pr imar i ly  

summer maximum near  10 mb. I n  Dutsch and Ling's a n a l y s i s ,  t h i s  middle s t r a t o -  

spher ic  summer maximum, which they a t t r i b u t e  t o  photochemical e f f e c t s ,  i s  

a c t u a l l y  de tec tab le  down t o  j u s t  above 30 mb, but only above 20 mb is  it 

l a rge r  than t h e  winter  maximum. The present  ana lys i s  s i m i l a r l y  shows a r ap id  

phase change t o  e a r l y  summer near  20 mb which supports  the  predominance of 

the  photochemical maximum above 20 mb i n  middle l a t i t u d e s .  

The amplitude of the  annual wave i n  the  t r o p i c s  a t  a l l  a l t i t u d e s  i s  

qu i t e  small ,  cons i s t en t  with the  small  t o t a l  ozone annual wave found there .  

The annual February maximum near  10 mb i s  poss ib ly  due t o  t h e  minimum Sun-Earth 

d i s t ance  which occurs during the  Southern Hemisphere summer, producing maximum 

W and hence ozone. 

C . THE QUASI -BIENNIAL OS CILIAT ION (QBO) 

1. To ta l  Ozone 

The amplitude of the  QBO i n  t o t a l  ozone i s  presented i n  Figure  24. 

Although the  ana lys i s  has been smoothed wi th in  t h e  l i m i t s  of t h e  s t a t i s t i c a l  

e r r o r s ,  some t i g h t  g rad ien t s  and outstanding values cannot be ignored. For 

example, t h e  amplitude a t  Dushanbe (39N, 69E) i s  included on Figure 26 

because o f  i t s  r e l a t i v e l y  small  s t a t i s t i c a l  e r r o r  d e s p i t e  i ts  apparent  lack  

of agreement with t h e  Indian s t a t i o n s  o r  t h e  two nea res t  Sov ie t  s t a t i o n s  

.(Alma Ata and Ashkabad). These i r r e g u l a r i t i e s  may rep resen t  geographic 

v a r i a t i o n s  i n  t h e  phys ica l  QBO, o r  they  may be s t a t i s t i c a l  i n  nature. A s  I t  

i s  we l l  known t h a t  t h e  QBO i n  t o t a l  ozone v a r i e s  i n  amplitude and period from 



cycle to cycle in a non-uniform manner (Angell and Korshover, 1973), differing 

amounts of interference could easily occur between stations because of differ- 

ing periods of record, or because of differing periods and amplitudes of the 

QBO, or both. 

The phase of the QBO is more sensitive than is the amplitude to 

inhomogenieties in the data so it is not surprising that the patterns of 

phase progression associated with Figure 26 are very erratic and inconclusive, 

and are not presented here. 

2. Vertical Distribution of Ozone 

Figures 27 and 28 show the QBO in the vertical distribution of 

ozone over eastern North America. The maximum amplitudes occur at high 

latitudes, consistent with the gradient of the amplitude of the QBO in total 

ozone (Figure 26) along 80'~. Similar to the annual wave, the QBO is largest 

in the lower polar stratosphere. The phase (Fig. 28) is earliest near 20 km 

at all latitudes and is latest in the mid-latitude troposphere. 

3. Discussion 

The existence of a quasi-biennial oscillation in total ozone has 

been shown by Angell and Korshover (1964, 1973), DUtsch (1974a), Pittock 

(1968) and others. DUtsch believes it arises from the strengthening of the 

tropical Hadley cell during the tropical QBO's easterly phase. At this time 

the downward leg is extended poleward, advecting greater amounts of ozone to 

lower middle latitudes at the level of maximum ozone, i.e., 20-25 km. This 

then permits an increased poleward transport by the quasi-horizontal eddies 

at this level. From the level of maximum ozone (Fig. 17) the QBO in ozone 

descends with a phase speed much slower than the phase speed of the tropical 

QBO (Dntsch and Ling, 1973b; DVitsch, 1974b). The patterns of the present 

analyses (Figs. 27 and 28) are not inconsistent with this theory. In view of 

the like phase at all latitudes near 20 b, it is clear that transport from the 



t r o p i c s  takes  p lace  very quickly a t  t h i s  l e v e l .  A t  e x t r a - t r o p i c a l  l a t i t u d e s  

t h e  ozone is  then t ranspor ted  slowly downward. It appears t o  accumulate most 

between 8 and 16 km, i . e . ,  j u s t  above the  tropopause. The l a rge ,  lower 

s t r a tosphere  amplitude maximum a t  Thule and Church i l l  must be considered 

t e n t a t i v e  due t o  t h e  s h o r t  (3-year) records a t  ~ h u l e  and Churchil l .  However, 

t h i s  f e a t u r e  is  supported by Fairbanks,  a l s o  having a th ree  year  record,  which 
11 likewise shows a lower s t r a t o s p h e r i c  QBO amplitude maximum (8 x 10 molecules 

- 3 
cm a t  12 km). 

DUtsch and Ling (1973b) have matched t h e  phase of t h e  QBO above 

18-20 km over Arosa during a s ix-year  period with t h a t  of t h e  QBO i n  zonal 

wind i n  the  t r o p i c s .  However, t h i s  r e l a t i o n s h i p  broke down below 18 km, 

presumably due t o  t h e  increased e f f e c t s  of r eg iona l  c i r c u l a t i o n  p a t t e r n s .  

ZUllig (1973), us ing  est imated t o t a l  ozone nor th  of 4 0 ° ~ ,  computed from a 

t r anspor t  model, has a l s o  found a high p o s i t i v e  c o r r e l a t i o n  between t o t a l  

ozone and the  s t r e n g t h  of t h e  e a s t e r l i e s  a t  30 mb over Cahton Is land.  

As discussed e a r l i e r ,  t h e r e  is  undoubtedly an  in f luence  of ind iv i -  

dual  synoptic  events ,  such a s  s t r a t o s p h e r i c  warmings, on l o c a l  ozone concen- 

t r a t i o n .  I n  t h i s  connection, Hering and Borden (1965b) t i e d  t h e  appearance 

of a h igh- l a t i tude  ozone inc rease  i n  1963 t o  increased northward and down- 

ward t r anspor t  of ozone from lower l a t i t u d e s  by t h e  l a rge  amplitude d i s t u r b -  

ances associa ted  wi th  an e a r l y  1963 s t r a t o s p h e r i c  warming. This  i s  r e f l e c t e d  

i n  the  present  ana lys i s  a s  t h e  broad maximum above 22 km a t  h igh  l a t i t u d e s .  

However, t h i s  e f f e c t  does no t  account f o r  t h e  main h igh- l a t i tude  maximum, 

which is  j u s t  above t h e  tropopause, f a r  below t h e  main l e v e l  of sudden warm- 

ings. A s  warmings occur every winter  t o  some degree, t h e i r  occurrence cannot 

have a quas i -b iennia l  period.  Fur the r ,  t h e r e  has been no evidence t o  d a t e  

t h a t  t h e r e  i s  any QBO i n  t h e  amplitude of warnings. It t h e r e f o r e  seems 

un l ike ly  t h a t  sudden warmings a r e  r e l a t e d  t o  the  t r o p i c a l  QBO and t o  t h e  

polar  QBO i n  ozone. This agrees wi th  Dbtsch and Ling's (1973b) view t h a t  the  

QBO i n  ozone i s  more c l o s e l y  t i e d  t o  t h e  t r o p i c a l  QBO than t o  sudden s t r a t o -  



spher ic  warmings. 

D . THE SEMIANNUAL WAVE 

1. To ta l  Ozone 

The semiannual wave i n  t o t a l  ozone i s  mapped i n  Figures 29 and 30. 

The maximum amplitude i s  i n  polar  regions where i t  is  about one-quarter t h e  

amplitude of t h e  annual wave. The f i r s t  maximum of  the  year  i n  genera l  

occurs i n  February a t  low l a t i t u d e s  and rap id ly  progresses t o  almost every- 

where e l s e  w i t h i n  one month. 

2. V e r t i c a l  D i s t r i b u t i o n  of Ozone 

The semiannual wave i n  ozone's v e r t i c a l  d i s t r i b u t i o n  i s  shown i n  

Figures 31  and 32. A r e l a t i v e l y  l a r g e  maximum i n  t h e  semiannual wave, 
-3 

mare than 6 x 10" molecules cm , i s  suggested by Thule k t  h ighes t  l a t i t u d e s  

i n  t h e  middle s t r a tosphere .  The e a r l y  sp r ing  phase da te  i s  cons i s t en t  wi th  

. t h a t  of t o t a l  ozone (Fig. 30) near  80 '~.  It should be noted t h a t  t h i s  high- 

l a t i t u d e ,  h igh-a l t i t ude  maximum is  doubtfu l  due t o  the  few Thule observat ions  

which reached above 26 km and a l s o  s i n c e  i t  i s  not  supported by Churchi l l  

( o r  Fairbanks).  

There a r e  a l s o  maxima near  18 km a t  5 5 ' ~  and 16 km a t  3 5 ' ~  which 

f i r s t  occur i n  late winter  and e a r l y  surmner, r e spec t ive ly .  Because of t h e  

f e w  d a t a  and associa ted  uncer ta in ty ,  t h e  nor thern  of these  two centers  

r equ i re s  v e r i f i c a t i o n  when more d a t a  become ava i l ab le .  The amplitude cen te r  
0 

a t  35 N appears we l l  supported. 

The "early" phase cen te r  near  40N a t  10 km is  q u i t e  d e f i n i t e l y  

shown by t h e  long records of both Bedford and Ster l ing/Wal lops .  The phase 

i s  up t o  f i v e  months l a t e r  near the  ground and l a t e s t  i n  t h e  a r c t i c  middle 

s t r a tosphere ,  



3. Discussion 

A semiannual wave in ozone in the lower stratosphere, as shown here, 

has not been reported previously, even though the amplitudes, which are 10 to 

20% of the mean concentrations, are significant. The cause of this lower 

stratospheric semiannual wave is not known. Rao and Christie (1973) have 

found effects of water vapor and oxides of nitrogen on ozone, so it is 

possible that a periodicity in these trace substances could have a signifi- 

cant effect on the periodicity of ozone. 

V. SUMMARY OF FINDINGS (Asterisk indicates new findings) 

A. MONTHLY VARIATIONS 

1) .The annual mean of total ozone over the Northern Hemisphere 

shows major maxima over eastern North America and eastern Asia with 

a lesser maximum over central Europe. 

2) Monthly zonal means of total ozone over the Northern Hemisphere 

show a larger abundance of ozone, and a higher latitude of the maxim, 

than the Southern Hemisphere. Total ozone is a maximum in the spring 

and a minimum in the fall. 

3)* There is large longitudinal variability in total ozone in the 

summer in mid-latitudes of both hemispheres, and in the winter in the 

Northern Hemisphere mid-latitudes. Small total ozone longitudinal 

variability in the wintertime Southern Hemisphere mid-latitudes is a 

reflection of the predominantly zonal general circulation there. 

4 )  Concerning ozone's vertical distribution over North America, 

the region or maximum concentration extends from between 16km (January) 

and 20km (August) in the arctic to around 26 km at IOON. M a x i m  

variability of ozone concentration occurs just above the tropopause. 



B . PERIODIC ANALYS IS 

I)* The annual wave in total ozone over the Northern Hemisphere 

has greatest amplitude ( > 120 m atm cm) in polar regions, with the 
maximum occurring in late winter there. 

2)* In ozone's vertical distribution, there is a large (amplitude - 3 > 18 x 10" molecules cm ) lower stratospheric annual wave in the Arctic. 

The amplitude of the wave decreases slowly southward through higher mid- 

latitudes and then rapidly through lower mid-latitudes, becoming quite 

small south of 20'~. The maximum occurs in late winter or early spring 

at most latitudes and heights, indicative of the dominance of advective 

effects. Above 26 km in mid-latitudes, an abrupt phase shift to late 

springlearly summer signals the dominance'of photochemical effects above 

that level. 

3)* The quasi-biennial (29 month) oscillation (QBO) in both total 

ozone and its vertical distribution is generally quite a small percent- 

age of the annual mean. The existence of the extratropical ozone QBO 

seems to be due to a rapid advection of ozone from low to high latitudes 

near 20 km. Ozone is then transferred downward much more slowly, and it 

appears to accumulate significantly (QBO amplitude > 9 x 10" molecules 

cmm3) near 13 km in the Arctic. 

4)* The semiannual wave in both total ozone and its vertical 

distribution is also a small percentage of the annual mean. The wave 

appears first in April near the tropopause at middle latitudes and pro- 

gresses both downward and upward, reaching the ground up to five months 

later, and is latest in the Arctic middle stratosphere. 
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APPENDIX 

' L 

OZONE CONCENTRATIONS , l f ~ ~ ~ ~ ~ ~ ~ ~  CM-~) OmR NORTH AWRICA (1963- 197 1) 

Month Ht (!a) 

01 32.5 
01 30.0 
01 27.5 
01 25.0 
01 22.5 
01 20.0 

' 01 17.5 
01 15.0 
01 12.5 
01 10.0 
0 1 7.5 
0 1 5 0 
0 1 2.5 

LATITUDE (N) 

55  50 4 5  40 35 30 2 5  20 1 5  10 

12 13 14 1s 17 la 19 20 20 a 
20 21 22 23 25 25 26 27 20 29 
29 31 32 33 34 35 37 40 41 41 
43 47 49 50 50 51 50 46 44 42 
60 61 61 59 55 52 49 42 38 35 
63 62 60 53 46 38 31 27 23 21 
60 52 44 37 28 19 13 10 8 7 
b5 3 7 . 3 0 2 4  18 10 6 4 3 2 
31 25 2 0  1bc? 10 5 4 3 2 2 
1 6 1 1 - 9  7 - 5  4 3 3 3 2 
7 5 4 4 3 3 3 3 3 3  
5 4 4 4 4 4 4 4 4 3  
7 5 5 6 6 6 5 4 4 3  

12 12 15 17 18 18 19 20 20 20 
20 21 23 24 26 27 28 28 29 30 
30 31 33 34 37 38 40 41 42 42 
40 44 49 50 51 51 49 48 46 44 
57 59 60 60 58 53 50 4 3  39 37 
63  63 62 60 50 40 32 25 21 20 
61 56 48 43 34 20 10 6 5 5 
48 4 3 3 8  3 2 , 2 0  fl 5 4 3 3 
3 8 3 3 2 7  1 8 1 9  5 4 3 2 2 
23 1 7 [ l l  El! 5 4 3 3 3 2 

9 8 6 5 0 4 4 4 3 3  
6 6 5 5 4 4 4 4 4 3  
6 6 6 6 6 5 5 5 4 4  
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APPENDIX (CONT'D) 

Month Ht(km) 

05 32.5 
05 30.0 
05 27.5 
05 25.0 
05 22.5 
05 20.0 
05 17.5 
05 15.0 
05 12.5 
05 10.0 
0 5 7.5 
0 5 5.0 
05 2.5 

LATITUDE (N) 

80 75 70 65 6 0  55 50 4 5  4 0  35  30 25 20 1 5  1 0  

13 13 14 15 16 17 17 18 19 20 21 22 23 23 24 
18 18 19 20 22 23 25 27 27 28 28 29 30 31 32 
25 25 26 27 28 30 33 36 38 40 41 41 42 43 44 
34 35 36 38 40 42 44 46 47 47 47 47 47 47 46 
46 47 48 50 51 52 53 53 53 52 51 46 43 40 37 
60 60 62 63 63 59 56 53 50 42 36 33 29 26 23 
61 61 61 62 61 57 50 43 33 24 19 18 14 10 8 
56 55 54 53 51 47 42 -34 24 16 ,  12 8 7 5 3 
51 49 46 -44 42 39 35-. 30 19 -13 _ 9 7 5 _ 4 3 
37 30 28 28--Pi 26 23 119 7*-] 8 i; 6 5 4 3 
1 9 1 5 1 4 1 3 1 2 1 0  9 8 8 6 6 6 6 5 4 
7 7 7 7 7 7 7 8 8 8 7 7 6 5 4  
7 7 7 7 7 7 7 8 1 0 1 0 9 7 6 5 4  
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Month Ht (km') 
09 32.5 

LATITUDE (N) 
55 50 45 4 0  35 30  25 20  
16 16 17 18 18 19 19 19 
23 24 26 26 27 27 28 28 
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Ht (km) 80 
ANN 32.5 2.(ro.>.\ ;? 12 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 
ANN 



TABLE 1. 

TOTAL OZONE STATIONS 

A. NORTHERN HEMISPHERE STATIONS 

NUMBER NAME LATITUDE LONGITUDE P E R I O D  OF RECORD 

LERWICK 
ESKDALEMUIR 
OXFORD 
BRACKNELL 
P A R I S  
CAMBORNE 
MONT-LOUIS 
L I S B O N  
VIGNA D I  VALLE 
AROSA 
C A G L I A R I  
NAPLES 
AARHUS 
MESSINA 
LONGYEAR 
TROMSO 
MURMANSK 
LENINGRAD 
R I G A  
HRADEC KRALOVE 
BELSK 
POTSDAM 
BUDAPEST 
K I E V  
ODESSA 
KARADAG 
MOSCOW 
KUIBY SHEV 
ABASTUMANI 
H E I S S  I S .  
PECHORA 
SVERDLOVSK 
OMSK 
ASHKHABAD 
DUSHANBE 
ALMA-ATA 
QUETTA 
SRINAGAR 
MOUNT ABU 
AHMEDABAD 
NEW D E L H I  
VARANASI 
DUM DUM 
KODAIKANAL 
GAN 
KARAGANDA 
SEMIPALATINSK 
IGARKA 
DIKSON IS.  
MARKOVO 
PETROPAVLOVSK 
VLADIVOSTOK 
BOLSHAYA ELAN 
KRASNOYARSK 

NUMBER OF 
MONTHLY MEANS 

171  
7 3 

184 
56 

128 
116 
130 
109 
186 
184 
185 
147 
186 
184 

60 
124 
126 
172 
1 3 1  
137 
118 
125 

6 8 
139 
124 

9 1 
125 
123 
120 
47 
48 

126 
132 
127 
108 
149 
1 0 1  
120 
40 

118 
156 
109 
119 
155 

76 
38 
24 
28 

119 
3 0 
5 1 

122 
115 

2 7 



TABLE 1 (CONT'D) 

NUMBER 

5 5  
5 6 
5 7  
58 
5 9 
6 0  
6 1 
6 2 
63 
6 4  
6 5 
6 6  
6 7  
6 8  
6 9 
7 0  
7 1 
7 2  
7 3 
7 4  
7 5 
7 6 
7 7  
7 8 
7 9  
8 0 
81 
8 2  
8 3 
84 

NAME 

IRKUTSK 
YAKUTSK , 
NAGAEVO 
SAPPORO 
TATENO 
TORI SHIMA 
MARCUS I S .  
KAGOSHIMA 
TAIPEI  
FAIRBANKS 
MAUNA LOA 
RESOLUTE 
CHURCHILL 
EDMONTON 
B I SMARK 
BOULDER 
ALBUQUERQUE 
GREEN BAY 
MOOSONEE 
TORONTO 
STERLING 
WALLOPS 
NASHVILLE 
TALLAHASSEE 
BEDFORD 
CARIBOU 
GOOSE 
REYKJAVIK 
CERRILLO 
CASABLANCA 

LATITUDE LONGITUDE PERIOD OF RECORD 

7 1 6 0 - 1 2 1 7 2  
9 1 6 1 - 1 2 1 7 2  
4 1 6 2 - 1 2 1 7 1  
1 1 6 0 - 1 2 / 7 2  
11'60-12/72 
1 2 1 6 3 - 1 1 / 6 5  
1 / 5 8 - 6 1 6 3  
1 1 6 0 -  1 2 / 7 2  
7 1 6 5 - 1 2 1 6 9  
1 2 / 6 4 - 6 1 7 2  
1 1 / 5 7 - 1 2 / 7 2  
7 1 5 7 - 1 0 1 7 2  
1 2 / 6 4 - 1 2 / 7 2  
1 / 6 0 - 1 2 / 7 2  
1 1 6 3 - 1 2 / 7 2  
1 1 6 4 - 1 2 1 7 2  

. 1 1 / 6 3 - 9 1 6 8  
1 / 6 3 - 1 2 / 7 2  
2 / 5 9 - 6 1 6 1  
1 1 6 0 - 1 2 / 7 2  
1 / 6 2 - 6 1 6 7  
6 / 6 7 - 1 2 / 7 2  
1 1 6 3 - 1 2 1 7 2  
5 / 6 4 - 4 1 7 0  
1 0 1 6 3 - 1 1 7  1 
1 1 6 3 - 1 2 / 7 2  
1 1 6 2 - 1 1 / 7 0  
7 1 5 7 - 1 2 / 7 1  
1 / 6 9 - 6 1 7 0  
4 / 6 9 - 1 2 / 7 2  

NUMBER OF 
MONTHLY MEANS 

1 4 5  

B. SOUTHERN HEMISPHERE STATIONS 

ARGENTINE I S .  - 6 2  64W 
ASPENDALE - 3 8  145E 
BRISBANE - 27  153E 
DUMONT D'URVILLE - 6 7  140E 
MACQUARIE I S .  - 5 4  159E 
WELLINGTON - 4 1  175E 
HALLEY - 7 6  27W 
LITTLE AMERICA - 7 8  162W 
KERGUELEN - 4 2  7 0E 
PRETORIA - 26  28E 
BYRD - 8 0  119W 
KING BAUDOUIN - 7 0  24E 
MIRNY - 6 7  9 3E 
BUENOS AfRES - 35 58W 
HOBART -43 147E 
SY OWA - 6 9  40E 
INVERCARGILL - 4 6  168E 
HUANCAYO - 1 2  75W 
SOUTH POLE - 9 0 .  
PUERTO MONTT -41 ' 73W 
PERTH -32 116E 
DARWIN - 1 2  131E 
SALISBURY - 3 5  139E 
HALLETT - 7 2  170E 



TABLE 2. 

OZONES ONDE STATIONS 

STATIONS LAT. LONG. PERIOD OF TOTAL INSTRUMENT 
RECORD ASCENTS TYPE* 

FAIRBANKS 64.8 147.9W 11164-12/65 5 1  R,CI 
GOOSE BAY 53.3N 60.4W 1163-12163 4 9 R 
BERLIN 52.5N 13.4E 11166-12172 355 B 
UCCLE 50.8N 4.3E 12/65-8167 9 9 B , R  
PARIS 48.8N 2.3E 1/64-5167 6 2 V 
HOHENPEISSENBERG 47.8N 11 .OE 3165-12172 372 M,B 
SAPPORO 43.ON 141.3E 12168-12/72 162 C I 
BEDFORD 42.5N 71.3W 6/69-3171 7 7 M 
ELMAS 39.2N 9.OE 7/68-7170 55 B 
TOPEKA 39. lN 95.6W 4/63-5163 10 R 
STERLING 39.0N 77.5W 8162-6/66 179 R, C I  ,M 
TATENO 36.0N 140.1E 3168-12172 159 C I 
KAGOSHIMA 31.6N 130.6E 12168-12/72 143 C I 
HILO 19.7N 155.1W 12164-12/65 17 R 
CANTON ISLAND 2.8s 171.7W 2165-12165 3 2 R , C I  
LA PAZ 16.5s 58.0W 3/65-9165 10 R 
AS PENDALE 38.0s 145.l.E 6165-12172 502 M 
PUERTO MONTT 41.4s 72.8W 12/64-1166 2 2 R 
CHRISTCHURCH 43.58 172.53 3165-12165 25 M 
WILKES 66.2s 110.5E 2163-11163 7 R 
SYOWA 69.0s 39.63 11167-12170 66 CT 
KING BAUDOUIN 70.4s 24.33 3165-12166 27 B 
HALLETT 72.3s 170.3E 2162-11163 2 6 R 
BYRD 80.0s 119.5W 11163-12/66 111 R 
AMUNDSEN -S COTT 90.0s ---- . 3162-12166 111 R 
USNS ELTANIN VARIABLE 3/65-4166 2 1 M 

AFCRL OZONESONDE NETWORK 

THULE 76.5N 68.8W 1/63-1166 9 2 R 
FAIRBANKS 64.8N 147.9W 1/63-9164 56 R 
FT. CHURCHILL 58.8N 94.1W 1163-12/65 100 R 
GOOSE BAY 53.3N 60.4W 1/63-5169 207 R,M 
SEATTLE 47.4N 122.3W 1163-12/65 148 R 
MADIS ON 43. IN 89.4W 1163-12165 8 3 R 
BEDFORD 42.5N 71.3W 12/62-5169 509 M,R 
FORT COLLINS 40.6N 105.1W 1/63-6167 209 R 
WALLOPS IS. 37.8N 75.5W 2/67-5169 94 M 
ALBUQUERQUE 35.m 106.6W 1163-12/65 208 R 
POINT MUGU 34. IN 119.1W 6165-12165 18 R 
TALIAHASSEE 30.4N 84.3W 1163-12165 138 R 
CAPE KENNEDY 28.4N 80.5W 2/66-5169 135 M 
GRAND TURK 21.5N 71.1W 12/63-5169 129 M,R 
CANAL ZONE 9.0N 79.6W 1/63-5169 126 R,M 
LA PAZ 16.5s 58.0W 9163-10163 12 R * 

Instrument types  a r e  i n  d e c r e a ~ i n g ~ o r d e r  of number of ascen t s ;  only 
ins t ruments  used for more than  10% of t h e  a scen t s  are included.  
B = Brewer; M = Brewer-Mast, R = Regener; C I  = Carbon-Iodide; V = Vassy. 
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255 
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3 19 

3 10  

297 
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TABLE 3.  

TOTAL OZONE (m atm cm) 

Am MAY JUN JUL AUG 

350 350 308 281 250 

382 375 312 288 267 

421  396 350 305 279 

465 416 354 317 293 

437 403 347 312 296 . 

423 388 335 309 297 

420 387 349 320 305 

418 386 350 324 306 

401 375 345 320 300 

384 359 333 305 290 

359 340 323 . 302 290 

334 329 314 298 289 

313 309 301  288 278 

283 292 285 277 271 

279 282 279 271 270 

276 275 269 266 270 

270 270 266 264 270 

264 265 263 263 270 

263 264 262 262 268 

262 262 261 261 265 

261 260 260 260 264 

260 259 259 258 263 

263 262 264 268 275 

264 264 270 277 286 

271 275 287 297 306 

276 280 301 316 326 

288 301 320 331 342 

301  325 333 354 351 

310 328 343 359 361 

318 326 342 349 360 

299 299 321  325 324 

277 273 301  310 294 

k 280 279 295 310 306 

287 295 291 310 315 

288 282 283 300 300 

289 288 278 283 285 

288 287 277 280 281 

SEP 

220 
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269 

288 

289 
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297 

298 
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288 

285 

283 

275 

267 

270 
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268 

268 

28 1 

297 

3 19 
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3 98 

340 

3 13 

3 10  
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3 1 0  

3 18 

324 

3 20 
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290 
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253 
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28 1 
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3 04 

3 10  

335 

352 

369 

3 72 

370 
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359 

355 

353 

3 54 

DEC 



Figure 1. The distribution of total ozone (dots) and ozonesonde (squares) 
stations in the Northern Hemisphere. The total ozone stations 
are numbered according to Table 1. 



Figure 2.  Annual mean total ozone from data for the years 1957-1972. 
Units: m atm cm. 
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r 
Figure 3 ,  Weighted zonal monthly means of t o t a l  ozone. Units: m a t m  cm. 



tl I I I I I I I I I I I I 
JAN FEE MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Figure 4. Weighted s tandard  d e v i a t i o n  of t h e  means i n  Figure  3 (m atm em). 



LATITUDE (N) 

Figure 5. Vertical distribution of ozone concentratj-on for January over 
North America. Units are loL1molecules cm-3. Ozonesonde stations 
used are indicated at top of figure; see Table 2 for periods of 
record at each. 



Figure 6 .  Same as Figure 5 except for February. 
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Figure 7, Same as Figure 5 except for March. 
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Figure 8, Same as Figure 5 except for A p r i l .  
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Figure 9. Same as Figure 5 except for May. 
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Figure 10. Same as Figure 5 except for June. 



Figure 11, Same as Figure  5 except for July.  



Figure 12. Same as Figure 5 except for August. 
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Figure 13. Same as Figure 5 except f o r  September. 
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Figure 14. Same as Figure 5 except for  October. 
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Figure 15. Same as Figure 5 except for November. 
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Figure 17, Same as Figure 5 except f o r  annual mean. 
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.gum 13. Standard d e v i a t i o  about the  seasonal means, f o r  January - March R data. Units: 10 molecules ~ r n - ~ ,  
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Figure 20. Same as F i g m e  18 except f o r  July - September. 
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Figure 22. Amplitude of the annual wave of total ozon-e over the Northern 
Hemisphere. Units: m atm cm. 



Figure 23. Phase (time of the maximurr,) of the annual wave of total ozone 
over the Northern Hemisphere. Isolines correspond to the first 
half of the month with which they are labelled. 



Figure 24. Amplitude of the annual wave in ozone concentration near 80% in a 
. - height-latitude section. Units: 1011 molecules ~ r n - ~ .  



Figure 25. Fhase of the anncal wave in ozone concentration near 80% in a 
height-latitude section. Isolines correspond to the first half 

. . of the month with which they are labelled. 



Figure 26. Amplitude of the quasi-biennial (29 month) oscillation in total 
ozone over the Norther3 Hemisphere. Units: rn atm cm. 
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Figure 27. Amplitude of the quasi-biennial (29 month) osc i l l s t ior~  -in ozona 
concentration near 809, in a height-lztitude section. Units: 
1911 molecules cm-3, 
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Figure 28. Phase of the quasi-biennial (29 month) oscillation in ozone 
concentration near 80W, in a height-latitude section. Isolines 
are labelled with the number of months after 1 January 1963 
that the maximum occurs, e .g .  "10" means a maximum occurred near 
1 October 1963. 



Figure 29. Amplitude of the semiannual wave in t o t a l  ozone over the Northern 
Hemisphere. Units: m atm cm. 



Figure 30. Phase of the semianr.ua1 wave i n  total  ozone over the Northern 
Hemisphere. Isolines correspond t o  the f i r s t  half  of the month 
with which they are labelled. 



LATITUDE (N) 

Figure 31. Amplitude of the semiannual wave in ozone concentration near 80°w, 
in a height-latitude section. Units: 10llmolecules cm-3, 
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Figure 32. Phase of the semiannual wave in ozorie concentration near 80W, in 
a height-latitude section. Isolines correspond to the first half 
of the months with which they are labelled. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

