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HIGH TEMPERATURE ELECTRICALLY 

CONDUCTING CERAMIC HEATING ELEMENT 

AND CONTROL SYSTEM 

By Carl R. Halbach and Russel l  3. Page 

ARTCOR 

Costa Mesa, Cal i fornia  92026 

SUMMARY 

The technology of an old a r t  ( c i r ca  1900 by D r .  Nernst) has been advanced 
r e l a t i v e  t o  t h e  use of s t a b i l i z e d  zirconia a s  an e l e c t r i c a l  conductor. Improve- 
ments have been made i n  both electrode technology and ceramic conductor qual- 
i t y  t o  increase s ign i f i can t ly  the  l i f e t ime  and thermal cycling capabi l i ty  of 
e l e c t r i c a l l y  conducting ceramic heater  elements. I n  addi t ion ,  these  elements 
have been operated i n  vacuum, i n e r t  and reducing environments a s  well a s  
oxidizing atmospheres adding t o  the  v e r s a t i l i t y  of the  conducting ceramic as 
an ohmic heater.  

Using s t ab i l i zed  zirconia conducting ceramic heater  elements, a furnace 
has been fabricated and demonstrated t o  have excellent  thermal response and 
cycling capabil i ty.  The furnace was used t o  melt platinum-20% rhodium a l l o y  
(melting point  1904OC) with an isothermal ceramic heating element having a 
nominal working cavi ty  s i z e  of 2.5 cm diameter by 10.0 cm long. The furnace 
was operated t o  1940°C with the  isothermal ceramic heat ing element. 

The same furnace s t r u c t u r e  was f i t t e d  with a p a i r  of  main heater  elements 
t o  provide a x i a l  gradient  temperature control  over a working cavi ty  length 
of 17.8 cm. Inside diameter of the  heater  was 1.77 cm f o r  an overa l l  L/D 
of 10 t o  1. -4 shor ter  7.6 cm long secondary heater  element using a platinmi- 
10% rhodium a l loy  winding was used. The primary heater  element was of  s t a b i -  
l i zed  zirconia ceramic and was placed on top of the  secondary heater.  This 
combination was used t o  demonstrate typica l  a x i a l  zradients  with maximum 
temperatures of  from 2050 t o  2100"~  during a run i n  which high pur i ty  alumina 
was melted. An a x i a l  temperature gradient  of 2 5 0 ' ~  per  cm was demonstrated 
based on heater  element wall temperatures. 

Transient response of the low mass ceramic heaters  was found t o  be 
excellent .  Heat up response depends on the  limits s e t  f o r  the  applied power. 
In cool down response t e s t s ,  f o r  example, i n  which the  isothermal heater  was 
commanded t o  a 1 0 0 ' ~  lower s e t t i n g ,  99% rasponse occurred i n  25 seconds. 



Faster  responses were noted fo r  t h e  smaller a x i a l  gradient heater .  Using an 
indus t r i a l  type s o l i d  s t a t e  power cont ro l ler ,  with both current  feedback and 
temperature feedback modes, thermocouple sensed cavi ty  temperature e r r o r  was 
found t o  be  l e s s  than +l°C. 

M i l e  t h e  conducting ceramic heater must be  operated with a l t e rna t ing  
current ,  it can be read i ly  adapted t o  DC power sources. A t yp ica l  power con- 
t r o l  adaptation is discussed r e l a t i v e  t o  a TE powered conducting ceramic 
furnace f u r  a sounding rocket  f l i g h t  applicat ion.  

INTRODUCTION 

Past manned space f l i g h t  experiments have v e r i f i e d  t h a t  t h e r e  is a great  
potent ia l  i n  processing mater ia ls  i n  space. Near-term opportunit ies  t o  fu r the r  
demonstrate f e a s i b i l i t y  a r e  contingent on experimental invest igat ions being 
considered f o r  sounding ~ o c k e t  f l i g h t s  and t h e  Apollo-Soyuz mission. The next 
major opportunity t o  process materials  i n  manned space f l i g h t  await t h e  1980's 
with ?he Shuttle/Spacelab. The forthcoming 3ASA Soundi~lg Rocket Program allows 
the  e a r l i e s t  o p p o r t ~ ~ i t y  t o  explore the  low accelera t ion  environment avai iable  
i n  space t o  achieve, i n  automated f a c i l i t i e s ,  promising processing conditions 
f o r  periods of several  minutes t h a t  cannot be  abtained on ear th .  A t  t h i s  time, 
however, not only a r e  t h e  requirements f o r  the  experiments not known, but  even 
spec i f i c  pr inc ip le  i n v e s t i g a t o ~ s  themselves a r e  not identif ied.  The needs of 
inves t iga to is  a r e  known i n  general t o  involve the  s o l i d i f i c a t i o n  of pure 
materials,  a l loys ,  composites, g lasses  and e lec t ronic  materials  under ce r t a in  
gaseous environments with c e r t a i n  needs f o r  access, posi t ioning and manipula- 
t i o n  of the  sample, scheduling, e tc .  This broad range of po ten t i a l  require- 
ments d ic t a t e s  t h a t  t h e  f a c i l i t y  be general-purpose and adapt e a s i l y  t o  
speci f ic  needs. In  general, t h e  requirements of the  f a c i l i t y  are t h a t  it 
must: 

(1) i4utornatically take  the  sample quickly through the  desired process 
phases such as  heat-up, es tabl i sh ing a thermal gradient ,  tempera- 
t u r e  soak and cool down, etc . ;  

( 2 )  Be e f f i c i e n t  with regard t o  power required so  a s  t o  e i t h e r  maximize 
the  sample s i z e  o r  t o  minimize the  heat  loading i n  the  balance of 
t h e  system; 

(3) Perform i n  a rugged environment; 

(4) Permit accurate da ta  gathering automatically; 

( 5 )  Be l i g h t  i n  weight and compact, f i t t i n g  within the  envelope con- 
s t r a i n t s  of the  sounding rocket; 

(6) Be cost  e f fec t ive .  That i s ,  be low i n  i n i t i a l  and refurbishment 
cos t  r e l a t i v e  t o  the  r e l i a b i l i t y  needed; 

(7) Have a long l i f e  so t h a t  it may be  reused and readapted quickly fo r  
subsequent experimenters; 



(8) Be modular i n  construction s o  t h a t  various experiment formats can b e  
interchangeably pursued such a s  isothermal t o  gradient or  specia l ,  etc . ;  

(9) Be adaptable t o  incorporation of specia l  fea tures  of sample posi- 
tioning, devices, access f o r  mechanical s m p l e  manipulation, opt icdl  
window systems, cooling, e tc .  

NASA(ref. 1) has developed CA highly v e r s a t i l e  - ear ly  a v a i l a b i l i t y  furnace 
with temperature capabi l i ty  t o  1150°C. Used on Skylab (and planned f o r  t h e  
Apollo-Soyuz mission) the M518 Multipurpose Furnace has proved it advantageous 
t o  u t i l i z e  t h e  zero gravity of space f l i g h t  t o  advance t h e  a r t  of  processing 
ce r t a in  materials.  Logically, t h e  operating temperature l i m i t  needs t o  be  
extended t o  accommodate higher melting temperature g lass  and c r y s t a l  growing 
materials  experiments and processing. 

There a r e  many basic types of furnaces and numerous var ia t ions  of each 
which might a t  first be considered f o r  t h i s  applicat ion.  I t  is c lea r  t h a t  i n  
t h e  case of the  sounding rocket ,  t h a t  under p rac t i ca l  conditions t h e  e l e c t r i c  
furnace, operating from b a t t e r i e s ,  provides t h e  g r e a t e s t  control  of tempera- 
t u r e  and thus provides an opportunity t o  do materials  sciences research i n  
g rea te r  depth. E lec t r i c  r es i s t ance  furnaces provide r e l a t i v e l y  high ef f ic iency 
of heating as w e l l  a s  control and cleanliness.  

In manufacturing processes where oxidizing o r ,  f o r  tha t  matter,  reducing 
atmospheres and high temperature a r e  required, the  furnace materials  exposed 
t o  the  working cavity must chemically and physical ly withstand these conditions. 
Whzre careful  temperature d i s t r i b u t i o n  control and freedom from charge contam- 
inat ion are required, a res i s t ance  furnace using a heating element-of conductirlg 
ceramic i n  the  cavity is pa r t i cu la r ly  a t t r a c t i v e .  The muffle furnace (heating 
element i n  a protect ive external  i n e r t  atmosphere chamber) has been used t o  
s a t i s f y  those requirements t o  some extent.  With aluminum oxide muffle 
material ,  t h e  long l i f e t ime  temperature is l imited t o  about 1800°C an1 the re  
are no other p rac t i ca l  muffle materials  with higher temperature capabil i ty.  
There is possibly b e r y l l i a  whose use is l imited t o  a completely dry atmosphere. 
Zirconia and thor ia  have of ten  been suggested a s  muffles but they a r e  ionic  
conductors. Oxygen would pass through the  walls  by ion ic  d i f fus ion and s t rack 
the heating elements. While hydrogen can be  introduced 3n the  heater  element 
s ide  t o  consume the  oxygen, the  subsequently occurring gradient i n  stoichiome- 
t r y  through the  ceramic wall becomes a f a i l u r e  mode. Short-circuit ing of  the  
heater  element would occur should they come i n  contact with the  ceramic muffle. 

The highest temperature capabil i ty requirement is tha t  of thz  heater  
res is tance  elements. Table I summarizes the  s ta te-of- the-ar t  of e l e c t r i c  
heater  materials  f o r  res is tance  furnaces, comparing the  more conventional 
materials with zirconia and thor ia  (used as conductors i n  t h i s  case). 



TABLE I. 

COMPARISON OF HEATER ELEMENTS 
FOR RESISTANCE FURNACES 

Material  .-- Temperature O C  

Thciria 
S t ab i l i zed  Zirconia 
Iridium 
Platinum-Rhodium 
Molybdenum Ciisci l ic ide 
S i l i con  Carbide 
Kantha l A- 1 

Working Melting 

*Si l icon  dioxide (cubic) melts  a t  1 7 1 2 ' ~  

Tnd~ i s t r i a l  furnaces constructed i n  t h e  l a s t  decade have used hea t e r  
elemznts of mater ia l s  molybdenum d i s c i l i c i d e ,  s i l i c o n  ca rb ide  o r  (Fe, C r ,  
A l ,  Coj a l l o y s  f o r  cx id iz ing  se rv i ce .  The first two of t hese  high temperature 
e ? e c t r i c a l  conductors a r e  s u i t a b l e  f o r  s e rv i ce  a t  high temperature i n  a i r .  
These form a p ro t ec t ive  glassy-phase coat ing of pr imar i ly  s i l i c o n  dioxide 
which sof tens  zt a b c ~ t  1525 '~ .  While t hese  ~ m t e r i a l s  have been used a t  
temperatures a s  high as 1 7 2 5 ' ~  as air  hea t e r  elements, they a r e  more r e a l i s t i -  
c a l l y  r a t e d  from 1525 t o  1 6 2 5 ~ ~  f o r  long l i f e t i m e  and c lean  air. The Kanthal 
A-1,  o f  lower temperature capab i l i t y ,  is dependent a l s o  on forming a p ro t ec t ive  
oxide coating. L i f e  is  dependent on t h e  performance of  t h e  coat ing and its 
removal due t o  var ious causes ( i  . e. , over-temperature melt ing and s l u f f  -off,  
reduct ion,  e t c . ) .  Small furnaces f o r  s c i e n t i f i c  o r  medical purposes have 
been constructed us ing  platinum-rhodium elements. C n c i b l e s  have been con- 
s t r u c t e d  o f  i r idium, but  not without some chemical in te racz ion  problem.  
While i r idium has a high temperature c a p a b i l i t y  i n  a i r ,  it does have a severe  
oxidat ion r a t e  problem and, hence, a sho r t  l i f e .  The dependence on the  noble 
metals has been expeasive i n  t ime and money t o  t h e  s c i e n t i f i c  community. 

P r a c t i c a l  hea t e r s ,  t o  da te ,  have been l imired t o  1 7 0 0 ~ ~  i n  an oxidizing 
environment. I t  is bel ieved t h a t  a whole c l a s s  of manufacturing techniques 
i n  oxidizing environments would be  denied above t h i s  temperature - where f i n e  
temperatcre con t ro l  s p a t i a l l y  and time-wise is  requi red  - i f  it were not  f o r  
t h e  conducting ceramic element. 

The ceramic element furnace u t i l i z e s  an e l e c t r i c  r e s i s t a n c e  hea ter  
element made of s t a b i l i z e d  zirconium oxide ceramic. This  technology was first 
demonstrated i n  t h e  l a t e  nineteenth century i n  t h e  form of a l i g h t  emit t ing 
device ca l l ed  a Nernst glower. These devices a r e  still- being used today, 
predominately a s  i n f r a red  sources f o r  I R  spectrophotor.eters.  I n  addi t ion  
t o  s t a b i l i z e d  zirconium oxide, thorium oxide is a l s o  used f o r  t hese  e l e c t r i c  
r e s i s t ance  devices .  Both a r e  capable of operat ion i n  oxidizing environments 
t o  temperatures of 2200 '~  and higher .  



Several investigators (rcf. 2, 3, 4) have used zirconia and thoria f o r  
heating elements i n  oxidizing environment furnaces. Improved high tempera- 
ture  insulation (Zircar, a Union Carbide tradename fo r  zirconia f i be r  insula- 
tion) has made it possible co fabr icate  a re la t ively  compact - light-weight 
high temperature furnace with excellent thermal performance. Energy require- 
ments are  low because of the  low thermal conductivity of Zircar and t ransient  
response is f a s t  because of the low capacitance of the  Zircar insulation. 

The ~ b j e c t i v e s  of t h i s  study program include improvement i n  the conducting 
ceramic qual i ty  fo r  greater l ifet ime and thermal shock resistance,  improve- 
ment of the electrode-to-ceramic design for  greater temperature capabil i ty,  
and the design of a furnace t o  demonstrate high temperature - oxidizing 
environment - long l ifet ime f ea s ib i l i t y  of the  conducting ceramic heater 
element concept. A fur ther  objective was delivery of a zirconia conductor 
furnace t o  NASA/MSFC. This furnace, designated the Model 40 zirconia 
conductor furnace, has heater eleaent interchange capzbil i ty i n  order t h a t  
it can be used with isothermal a s  well as axial  gradient heatei- elements. 



LIST OF SYMBOLS 

thermal diffusivity, m2/s 

area, m2 

elatic modulus, ~/rn~ 

fracture parameter, defined by eqva. (6) 
evaporation rate, kg/m2-s 

thermal conductivity, w/m-K 

molecular weight 

vapor pressure, ~/rn~ 

heat Ziux rate, W 

gas constant, J/kg-K 

thermal stress resistance parameter, K 

thermal stress resistance parameter, W/m 

thermal stress resistance parameter, m2-K/ s 

geometry parameter 

temperature, K 

thickness, m 

coefficient of linear thermal expansion 

surface recession rate, m/s 

normal emissivity 

Poisson's ratio 

density, kg/m3 

fracture stress, P4/rn2 

surface temperature change rate, K/s 



CERAMIC ELEMENT FURNACE CONCEPT 

The concept of t h e  ceramic element furnace using s t a b i l i z e d  z i r con ia  
centers  around t h e  e l e c t r i c a l  c h a r a c t e r i s t i c s  of the  oxide ceramic hea t e r  
element i t s e l f .  Figure 1 presents  hea t e r  element r e s i s t a n c e  d a t a  obtained 
on t h e  Model 40 furnace. When cold,  t h e  hea t e r  element has a r e s i s t a n c e  
measured i n  megohms and a c t s  as an  exce l l en t  i n s u l a t o r  of  e l e c t r i c a l  cu r r en t  
flow. With increas ing  temperature, r e s i s t a n c e  is seen t o  decrease rap id ly .  
During t h i s  i n i t i a l  hea t ing  phase c a l l e d  "preheating" a sepa ra t e  prehea ter  
furnace element is required.  Once t h e  ceramic hea t e r  element temperature 
exceeds about 600°c, r e s i s i ~ n c e  is reduced t o  1000 ohms o r  l e s s  and t h e  cera- 
mic hea t e r  element w i l l  begin t o  conduct s u f f i c i e n t  cu r r en t  t o  hea t  i t s e l f  
fu r the r .  From a temperature of about 800°C, t h e  ceramic hea t e r  element is  
se l f - sus t a in ing  and the  prehea ter  element can b e  turned o f f .  

Figure 2 i nd ica t e s  a s imp l i f i ed  arrangexient of a prehea ter  element and 
a ceramic hea t e r  element wi th in  an in su la t ion  system with a cavi ty  space f o r  
conducting high temperature experiments. If t h e  prehea ter  were loca ted  i n  
t he  same cav i ty  a s  t h e  ceramic hea t e r ,  then  cav i ty  temperature would be  
l imi ted  t o  t h e  capabilj 'y ~f t h e  preheater .  The preheater  is separated from 
t h e  experiment cav i ty  by an  in su la t ion  b a r r i e r  and y e t  is  surrounded by 
in sn la t ion  t o  minimizc its power consumption. Referring t o  t h e  temperature 
curves i n  f i g u r e  2 ,  t h e  dot ted  l i n e  ind ica t e s  t h e  temperature p r o f i l e  t h a t  
would e x i s t  with only t h e  prehea ter  turned on and s e t  f o r  1000"~ .  

By proper s i z i n g  of  t h e  in su la t ion  system, an experiment cav i ty  tempera- 
t u r e  of say  80~'C would occur with preheat ing,  s u f f i c i e n t  t o  allow i g n i t i o n  
of t he  main hea ter .  The s o l i d  curve ind ica t e s  t h e  temperature p r o f i l e  
occurring wi-ch t h e  preheater  o f f  and t h e  ceramic hea ter  holding maximum 
temperature. The in su la t ion  system is s i zed  under t h i s  condi t ion s o  t h a t  
t h e  preheater  is not  overheated by t h e  high temperature wi th in  t h e  experiment 
cav i ty  . 

Separate  con t ro l s  are provided f c r  t h e  preheater  and t h e  ceramic hea ter .  
While t h e  preheater  can b e  operated from e i t h e r  AC o r  DC e l e c t r i c a l  power, it 
i s  necessary t o  use AC power f o r  t h e  ceramic hea ter .  This is t h e  r e s u l t  o f  
t he  oxide ceramic being a s o l i d  e l e c t r o l y t e  and conducting e l e c t r i c i t y  by t h e  
motion of  negatively-charged oxygen ions o ' ~  through t h e  oxide r a t h e r  than 
e lec t rons .  

Noble metal e l ec t r cdes  i n t e r f a c e  the  oxide ceramic c.1 each end. With an 
e l e c t r i c a l  cur ren t  flowing, e lec t rons  move i n  t he  metal wires  t o  t h e  electrodes.  
In  the  case  of a d i r e c t  cu r r en t ,  e l ec t rons  flow toward one e l ec t rode ,  t h e  
cathode. Four e lec t rons  combine with each oxygen molecule i n  t h e  surrouxiding 
atmcrsphere cau.;ing the  oxygen t o  en t e r  t h e  ceramic a t  t h e  cathode and proceed 
through the  ceramic a s  two individual  oxygen ions.  The reverse  occurs a t  t h e  
opposi te  e lec t rcde  (anode) where the  two ions form an oxygen molecule a s  i t  
passes back i n t o  t h e  s u r r ~ ~ u n d i n g  atmosphere while the  r e l ea sed  e l ec t rons  pro- 
ceed through t h e  me ta l l i c  c i r c u i t  t o  complet.: t he  c i r c u i t .  

Under t he  inf luence of d i r e c t  cu r r en t ,  a po lc r i za t ion  e f f e c t  occurs i n  
which oxygen ions within the  oxide ceramic a r e  depleted near t h e  cathode and 



lo0 
0 430 800 1200 1600 20CO 2400 

CAVITY TEMPERATURE, .C 164-1 

Figure 1.-  Model 40 zirconia conductor furnace ceramic heater elcment 
resistance, 



Figure 2.- Ceramic Element Furnace Concel~t. 



accumulate near t h e  anode. This is undesirable and can ef fec t  t h e  e l e c t r i c a l  
performance of the heater  inducing a temperature gradient  along the  heater  
element and possibly a time varying performance cha rac te r i s t i c .  Without a 
surrounding atmcsphere containing oxygen nolecules (as with a vacuum o r  
reducing environment), t h e  e f f e c t  is more pronounced a s  the  oxide ceramic is 
sh i f t ed  i n  its s t o i c h i o ~ e t r y  (reduced toward t h e  metal const i tuent) .  

Under the influence of a l t e rna t ino  current ,  ths oxygen molecules i n  the  
a i d e  ceramic merely d i the r  back and forth as t he  cathode and anode are 
r ap id ly  interchanging. With XC, t h e  oxide ceramic has s u f f i c i e n t  s t a b i l i t y  
agains t  reduction t o  be used even i n  vacuum and reducing type environments. 

FURNACE USER REQUIREMENTS 

A P a n a c e  user  survey was dirncted t o  a broad spectrum of  po ten t i a l  
users  t o  s o l i c i t  current  design requirements. Since t h e  temperature c a p a b i l i v  
o f  the  ceraniic furnace is po ten t i a l ly  very high, it was expected t h a t  the  re- 
sponses t o  the  survey would be large. From a t o t a l  of 216 corporate research 
and univers i ty  i n s t i t u t i o n s  s o l i c i t e d ,  a response o f  12% was achieved. The 
depth of response t o  the  r a t h e r  de ta i led  questionnaire varied. Some desired 
t o  communicate fu r the r  a s  experben t  requirements become b e t t e r  known. Others 
had no reqaireaent f o r  those c a p a b i l i t i e s  now exis t ing  while some thoughtfully 
offered thoroagh and conpletely de ta i l ed  information followed i n  severa l  
cases by technical  v i s i t s .  The ant ic ipa ted  pr inc ipal  beneficiary technologies 
were expected t o  be  those of g lass ,  crystal growth and ceramics. 

The r e s u l t s  of the  survey (see Table 11) a r e  considered valuable f o r  
design requirements. A few par t i cu la r ly  a t t r a c t i v e  experiments where the  
ceramic furnace was a unique f i t  a r e  Surveys 3 and 4 - glass  paking and oxide 
c r y s t a l  growing. Orbi ta l  f l i g h t s  would be required f o r  the l a t t e r  because of 
t h e  t ise involved while the  foxmer would adapt t o  t h e  e a r l i e r  scheduled 
sounding rocket experiment opportunit ies .  

bhxim~ln process temperatures t o  2400"~  a r e  indicated by the  survey as a 
requirement. Atmosphere requirements a r e  broad including vacuum, i n e r t ,  
oxidizing and reducing. I t  is generally considered t h a t  the  a v a i l a b i l i t y  of 
a very high temperature ~ x i d i z i l l g  environment furnace would be benef ic i a l  
i n  a var ie ty  of experiments, especia l ly  those involving the  high melting point  
oxide materials.  

Spa t i a l  ~ n i f o r m i t y  i n  the  furnace cavi ty  of 220°C o r  l e s s  is  desired with 
two invest igators  suggesting 20.5 and +lOc, respectively,  a t  temperatures of 
2000°C and grea ter ,  Sample s i z e  requirements range from the  order of 1 cent i -  
meter fo r  sounding rocket f l i g h t s  t o  the  order of 10 centimeters f o r  Spacelab 
f l i g h t s .  Furnace cavity s i zes  t o  15 cm diameter by 20 cm long z r e  indicated 
f o r  the  Spacelab f l i g h t s .  

PROPERTIES OF THE COhiUCTIF4G CEnUlIC VlDES 

The physical cha rac te r i s t i c s  of the conducting ceramic heater  material  
zirconia, Zr02, a r e  tabulaced i n  Table 111. Character is t ics  of another con- 
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TABLE I 1  

Remarks 
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- .  
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(c) 200.C superhcar over moltlng required t o  etlmlnate 
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(d) This cars  car r fu l ly  calculated as  r r p r o e n t r t l v a  of r r s t  
( s ~ r  text). 
(0) Larger furnaces It is br l l rvrd  rlll require transport 
muchonlrm. 

t h e  surface tension w l l l  be suff lc iont  a t  zero t o  
allmlnata nood for levitation.  I h e  rime requlrrment 
provonts conrldrratlon for  soundlng rockot. 
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ducting ceramic material  tho r i a ,  Tho2, and the  noble metal platinum a r e  2 lso  
shown f o r  comparative reference. 

Thoria has the  highest  melting point of any oxide and is, f o r  t h a t  reason, 
of considerable i n t e r e s t  fo r  high temperature applicat ions.  Its melting 
point  is l i s t e d  i n  the  range of 3200-3600K by various sources; the  most prob- 
able  f igure  is 3540K according t o  reference 5. I t  is very i n e r t  i n  its 
chemical propert ies .  Thoria is s t a b l e  under most conditions. I t  requires no 
phase s t a b i l i z e r s  and l i k e  s t ab i l i zed  zirconia,  is an e l e c t r i c a l  conductor 
a t  elevated temperatures. Thoria does have some disadvantages, however. 
Its creep s t rength  is less than one th i rd  t h a t  of zirconia. This becmes a 
c r i t i c a l  design fac to r  r e l a t i v e  t o  f l i g h t  hardware. Also its r e s i s t i v i t y  is  
appreciably higher than zirconia. A s  a r e s u l t ,  t he  ign i t ion  temperature is 
excessively high complicating the  design of t h e  przheater.  Because of these  
f ac to r s ,  tho r i a  was re jec ted  a. . re heater  element material  f o r  t h i s  project .  

Zirconia was selected f o r  c.~e main heater  element mster ia l  f o r  both the  
isothermal and the  ax ia l  gradient  furnace systems because its better 'mechani- 
c a l  propert ies  give t h e  main heater  element increased s t rength  and improved 
r e l i a b i l i t y .  

The discussion which follows r e l a t e s  t o  those proper t ies  spec i f i ca l ly  
invo1ve;l i n  the  design of a high temperature furnace u t i l i z i n g  conducting 
ceramics f o r  e l e c t r i c  res is tance  heater  elements. For more deta i led  pro- 
p e r t i e s  information, references 5 through 8 a r e  recommended. 

I n  pure ZrO, a :eversible monoclinic-to-tetragonal transformation a t  
atmospheric pressure occurs a t  about 1150°C. Tine monoclinic-to-tetragonal 
inversion is accompanied by a 3.2 percent length reduction or! heat ing and an 
associated length increase ( a t  about 1~00°C) on cooling. Rapid cooling 
expansion occurs withia a 1 0 " ~  temperature in te rva l  and t h i s  would fragment 
a pa r t  made of pure Zr02. To permit its use i n  so l id  p a r t s  a t  high tempera- 
tu re ,  Zr02 must be s t ab i l i zed  by adding cubic oxides with cat ions of similar 
radius t o  zr4+. S~ich mixtures convert Zr02 i r r eve r s ib ly  t o  the  cubic form 
when heated. Many s t a b i l i z i n g  oxides a r e  ava i l sb le  ( r e f .  7).  CaO-stabilized 
and Y2a3-stabilized forms a r e  q u i t e  c o i o n  and w i l l  be  discussed a s  examples. 

Zirconia can be f u l l y  s t a b i l i z e d  by the  addi t ion  ( typica l ly)  of 5 weight 
percent (10.4 mole percent) CaO o r  of 15 weight percent (8.8 mole percent) 
Y2O3. Pur i ty  has an important e f f e c t  on some of the  thermophysical propert ies  
of zirconia. There a r e  many impurities which can be  found accompanying 
zirconia i n  i ts  natura l  s t a t e  o r  unintentionally added i n  processing i n  
addition t o  those del ibera te ly  added f ~ r  s t a b i l i z i q g  c r y s t a l l i n e  s t ruc tu re ,  
enhancing e l e c t r i c a l  conductivity, e tc .  For instance, comparing the two 
important s t a b i l i z e r s  Y203 and CaO on the bas is  of f u l l  s t a b i l i z a t i o n ,  
zirconia s t ab i l i zed  with the  former is  more ref rac tory  than the  l a t t e r ,  
having a melting point  approximately 100°C higher. Of the various impuri t ies ,  
A1203 has a s trong influence oq e lec t r i ca l  conductivity, but  a c t s  a s  a poison 
i n  percentages around 2%, an undesirable f ea tu re  i n  conducting ceramics. 

Figure 3 compares the e l e c t r i c a l  r e s i s t i v i t y  of typica l  high temperature 
heater element m?terials.  There a r e  two d i s t i n c t  groups of curves, divided . 



TABLE I11 

PHYSICAL, 'IHERMAL AVD MECHANICAL 
PROPERTIES OF HIGH TEMPERATURE MATERIALS 

I n o r i a  Zirconia 
! 

Property Tho2 zfl2 
LFor reference) ! , 

Additives 
i 
i None 

Melting point ,  K 1 3540 

Specif ic  gravi ty  i 0.86 

Speci f ic  heat ,  J/kg K i 
@ 288K f 235 

1200K 1 304 
2000K ! 331 

I 

Thermal conductivity Wlm K j 
373K 11.3 

1200K 1 3.0 
1600K i 2.5 
2000K 1 2.4 

Thermal d i f fus iv i ty ,  m2/s  
1200K ! 9.8 x lo-7 
2000K i 7.0 x lo-7 

i 
Thermal linear expansion, % 1 

i 
(298- 1800K) i 1.54 

;Electr ical  r e s i s t i v i t y ,  p , Q-m 
i 298K I 

! - 
1200K : 4 x  10 
1600K 1 
2000K 14 x lo-2 

Total normal emissivity, E 
I 

1200K 0 . 2 9  
1600K 

I 
0.27 

2000K 10.30 - 0.55 
I 

Modulus of e l a s t i c i t y ,  i 
u / m 2  x i i 

298K j 14.6 
12 00K ' 12.4 

Estimated workin2 s t r e s s  
(creep) I 
10,000 h r s  @ 1800K. kWm2 I 300 

Sublimation recession a t  
1800K, kg/m2s 11.7 r 

1 

Platinum 
(For reference) 

N i l  

5 x 10-7 
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essen t i a l ly  i n t o  the  metals and the  conducting ceramics. Rhenium is shown 
f o r  reference only; it is - not oxidation r e s i s t a n t .  A s  a p r a c t i c a l  matter,  
zirconia and thor i a  do not conduct e l e c t r i c a l l y  below t h e i r  ign i t ion  tempera- 
tures  - lOOOK f o r  zirconia and 1600K f o r  thor ia .  A t  high temperatures they 
have orders of  magnituae higher res is tance  than the  metals and hence a r e  low - current  devices. This is a marked advantage i n  spacecraft  design where wlre 
s i z e  (wzight) is thus smaller and I ~ R  losses a r e  less. Note, however, t h a t  
the  r e s i s t ance  cha rac te r i s t i c s  of these  ceramics a r e  negative with respect  t o  
increasing temperature. The h o t t e r  they are ,  t h e  more they can conduct under 
a constant voltage. Either  a s e r i e s  r e s i s t o r  (ba l las t )  must be used t o  
regula te  the  power consumpt?+m of a conducting ceramic heater  element, an 
ine f f i c i en t  method, o r  a current  l imi t ing  con t ro l l e r  m u t  be  used. 

The l i n e a r  thermal expansion of several  materials  is shown i n  f igure  4. 
T'ne exransion charac te r i s t i c s  of ZrOz and platinum a r e  c lose ly  comparable. 
Therefore, platinum metal can be  used with the  s t cb i l i zed  z i rconia  ceramic 
heater  element f o r  forming an electrode in ter fac ing the  flow of electrons 
with oxygen ions. 

The electrodes a r e  designed t o  operate w e l l  below the  element maximum 
temperature t o  prevent melting of the  platinum. The temperature gradient  
from electrode t o  t h e  maxirmun temperature zone i n  the  ceramic element i s  
high, r e su l t ing  i n  a very shor t  distance (e.g., a few millimeters) t o  the  hot 
zone. Proper electrode design is a v i t a l  key t o  long l i f e  and is discussed 
i n  the  furnace design sect ion.  

The process of sublimation, o r  evaporation, of material  from a surface 
can be an important fac tor  i n  determining the  service  l i f e  of a device 
operating a t  high temperatme. The surface recession r a t e  is  g rea tes t  i n  a 
vacuum; i t  can be  suppressed by several  orders  of magnitude by adding an 
i n e r t  atmosphere. 

The surface  recession r a t e  due tc sublimation is determined from: 

where % is the  surface recession r a t e  i n  m/s, G is the  mass loss  r a t e  i n  kg/m2s, 
and a is the  density. G may b e  determined from experimental da ta ,  o r  may be 
found  fro^ the  vapor pressure: 

The recession r a t e s  f o r  Zr02, Tho2, Pt, I r  and Re i n  a vacuum a r e  given i n  
f igure  5. 

I t  i s  important t o  note t h a t  the  sublimation r a t e s  a r e  unacceptable fo r  
Long l i f e  f o r  a l l  of these materials  under vacuum conditions i n  the  temperature 
range of  i n t e r e s t .  The suppression of sublimation by an ine r t ing  atmosphere 
has long been used. 1,angmuir used t h i s  f a c t  i n  tile invention and development 
of the gas f i l l e d  tungsten-filament lamp. To Zr02, an oxidizing atmosphere is 
such an i n e r t  suppressant. 



TEMPERATURE, O K  

Figure 4.- Linear t'sermal ex?ansion of zirconia compared with 
platinum. 
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Figure 5,- Sublimation of. zirconia compared to other materials in a 
vacuum. 



Prolonged high temperature t e s t s  have indicated t h a t  t h e  surface  recession 
r z t e  f o r  s t ab i l i zed  zirconia heater  element material  is l e s s  than 10'13 meters 
per second a t  2200K with oxidizing and i n e r t  gas atmospheres. Sublimation of 
the  ceranic heater  element is not considered a problem. 

Creep, the  deformation o f  a material  with time under compressiv~ o r  t e n s i l e  
loading due t o  pressure o r  res t ra ined d i f f e r e n t i a l  thermal expansion, is an 
i m p o r t a t  cons ide ra t im i n  the  design of electrothermal devices t h a t  must have 
long service  l ives  with many pa r t s  operating a t  high temperature. Creep can 
cause two e f fec t s  which cannot be cornyensated f o r  and must be  accommodated i n  
the  design. First, the  p a r t s  nay change shape t o  the extent  t h a t  surfaces of 
a d i f ferent  e l e c t r i c a l  po ten t i a l  may touch causing shor t -c i rcui t i :~ .  Second, 
they may creep t o  f a i lu re .  The design must be s u i t a b l e  t o  withstand these  
effects during the  furnace lifetime. 

An extensive survey of avai lable  creep data  f o r  ZrOe and Tho2 was con- 
ducted under Contract XASl-10353 (ref.8).  Unfortunately, few da ta  a r e  avail-  
ab le  on low s t r e s s ,  long- ten  creep at  t e q  :stures abgve 1600K. No t e n s i l e  
creep data  are avai lable  a t  a l l .  From t h e  ~ v a i l a b l e  data,  it is apgarent 
t h a t  Zurnaces employing ceranics must be  careful ly  designed so  t h a t  pa r t s  opera- 
t i n g  at temperatures i n  excess of about 1300K must be i n  compression or ,  if  
i n  tension, must have a stress w e l l  below lo5 ?4/aZ (15 ps i ) .  

I f  a body is uniformly hezted, thermal s t r e s s e s  do not  occur provided t h e  
body is homogeceous, i so t rop ic  and unrestrained. Thermal s t r e s s e s  a r i s e  from 
temperzture gradients,  d i f f e r e n t i a l  t h e m z l  e q a n s i o n  and var ia t ions  i n  
materis l  ?ropert ies  i n  the  body of i n t e r e s t .  The s u s c e p t i b i l i t y  of ceramic 
materials t o  thermal s t r e s s e s  has long been recognized and studied. I t  is an 
important consideration with regard t o  t h e i r  potent ia l  f o r  use i n  furnaces where 
high heat flux r a t e s  and temperature gradients  might e x i s t  i n  scme imposed 
circiunstances. 

Kingery (ref .  9) shows the  various aaa ly t i ca l  descript ions which have 
been de-deloped f o r  the  conditions t o  i n i t i a t e  f r ac tu re  of a b r i t t l e  material  
considering simple shapes i n  a var ie ty  of  thermal s t r e s s i n g  s i tua t ions .  Based 
upon these analyses, no s i n g l e  paraneter o r  t e s t  value is a s u i t a b l e  index t o  
r a t e  a material 's  res is tance  f o r  a l l  conditions of thermal stressir.g. The 
material pro2ert ies  which a f f e c t  thernal  s t r e s s  r s s i s t ance  a r e  e l a s t i c  s trength,  
c o e f f i c i e i ~ t  or' thermal expansion, Poisson's r a t i o ,  and i n  some cdses, thermal 
conductivity, d i f f u s i v i t y  o r  emissivity. 

Analyses f o r  d i f ferent  conditions r e s u l t  i n  the following three  parameters 
t > a t  can be used t o  r a t e  the  thermal s t r e s s  res is tance  of material  under con- 
d i t i m s  where p l a s t i c  s t r a i n  is ins igni f icant :  



where of is e i t h e r  ihe t s n s i l e  o r  shear f r a c t u r e  s t r e s s  of  t h e  material ,  
whichever is s ign i f i can t  t o  the  problem, E is 'oung's modulus, a is the  
coeff ic ient  of l inea r  thermal expansion, k is  t h e  thermal conductivity, a is 
t h e  thermal d i f fus iv i ty ,  and is  Poisson's r a t i o .  For :ermics,  t h e  most 
serious thermal s t r e s s e s  are tens i l e .  Since t h e  cmpress ive  s t rengtn  is 
general ly four t o  eight  times the  t e n s i l e  s trength,  f a i l u r e  from compressive 
stresses is r e l a t i v e l y  unimportant. Shear s t rengths  f o r  ceramics are always 
greater  than o r  equal t o  the  t e n s i l e  s trengths.  

Conceptually, t h e  c r i t i c a l  condition f a r  f r ac tu re  f is defined by t h e  
product 

f = R x S  

\;here R is the  appropriate material  parameter (R1, R2, o r  R3), and S is a 
corresponding parameter dependent only on specimen geometry and s i z e ,  R1 
can apply when f rac tu re  r e s u l t s  from an extreme thermal shock, i n  which case 
f is the  instantaneous surface  temperature change AT of  iin object,  i n i t i a l l y  
at  one temperature and then suddenly heated o r  cooleg, a s i t u a t i o n  which is 
general ly referred t o  a s  thermal shock. R2 can apply under conditions of  a 
s teady-s tate heat  flux %ax t h a t  w i l l  cause a s u f f i c i e n t  temperzture gradient  
t o  induce fracture.  Rg can apply t o  the  minimum constant r a t e  of surface  
temperature change Q~ t h a t  w i l l  cause fracture.  The th ree  corresponding 
equations are 

I n  summary, it should be emphasized t h a t  t h e  use of these  fac to r s  would 
be  exact only t o  a homogeneous i sot ropic  body whose physical propert* ~ e s  a r e  
substant ia l ly  independent of temperature. These re la t ions  do not cover a l l  
possible conditions but  a r e  representat ive of the  fac to r s  comprising rhermal 
stress resistance.  

The s i z e  and shape of a ceramic p a r t  great ly  iniluences its rezistance t o  
thermal s t resses .  I n  pa r t i cu la r ,  f o r  moderate rates of temperature change, 
the  t h e m a l  s t r e s s  res is tance  of a pa r t  is inversely proportional t o  specimen 
dimensions. For very t i g h  ra tes  of change, t h i s  s i z e  e f f e c t  is only important 
fo r  small dimensions. I n  general.  shapes having sharp corners o r  edges a r e  
t o  be avoided, a s  a r e  pa r t s  having both th ick  and t h i n  sect ions together. 

For complex shapes o r  materials  which a r e  subject  t o  p l a s t i c  flow, experi-. 
mental measurements a r e  the  only r e l i a b l e  method for  measuring thermal s t r e s s  
res is tance  of the specif ic  system, 

A useful parameter fo r  comparing steady-state heat  f lux  capacity parameter 
R2 as  i n  equatior. (8) is 



where is the  maxinnun heat  f lux ,  X t he  thickness normal t o  flow, and A is 
ransfer  surface area. This is shown compared i n  Table I V  f o r  t h e  t h e  h e b ~  

contemporary as well as the  new materials.  

Table IV summarizes t h e  various considerations r e l a t i v e  t o  t h e  choice 
c?f  material  f o r  an e l e c t r i c  r e s i s t ance  heater  element. For high temperatme 
with an  oxidizing atmosphere, the  ceramics thor i a  and z i rconia  are bes t .  
From creep s t r eng th  considerations, zirconia becomes t h e  prime candidate. 

Another property, not  e a s i l y  speci f ied  i n  absolute value, is t h a t  of 
s t a b i l i t y  r e l a t i v e  t o  conducting cerzmic heating elements. The ceramic 
furnace concept was "born too soon." This f a c t  has been t \ e  p r inc ipa l  b a r r i e r  
t o  its acceptance. Its premature introduction a t  t h e  tu rn  of the  century 
caused ba r r i e r s  t o  acceptance which haunt t h e  s c i e n t i f i c  user  cornsunity today. 
The ba r r i e r s  of ten  c i t e d  a r e  an eleczrothermal i n s t a b i l i t y  caused by its 
negative res is tance  coeff ic ient  with temperature r e su l t ing  i n  low l i fe  and 
poor cyc l i c  capabil i ty.  This hzs been brought about by the improperly pre- 
pared ceramic elements and electrode-to-ceramic interfaces. 

Heating elements c O H I F O S ~ ~  of  materials  which exhibi t  the  negative e l e c t r i c  
r e s i s t i v i t y  cha rac te r i s t i c s  can be  subjec t  t o  t h i s  electrothermal i n s t a b i l i t y  
phenonzna-. This requires careful  appi ica t ion  of the  manner i n  which t h e  
eleinents a r e  used. One well-known i n s t a b i l i t y  phenomenon of t h i s  type, when 
connected d i r e c t l y  across a constant po ten t i a l  source, is the  tendency of  such 
elements t o  allow "unlimited" current  t o  flow through t h e  conductor u n t i l  it 
f a i l s .  This condition is always encountered i n  t h e  applicat ions o f ,  f o r  
e-xanple, fluorescent lamps, a r c  discharge devices, and oxide ceramics i n  in f ra -  
re; radia t ion  sources. X c c n o n  and s inp le  so lu t ion  is t o  use a b a l l a s t  
r e s i s t o r  - a res is tance  eleaent ,  -asually n e t a l l i c ,  wizh pos i t ive  temperature 
coeff ic ient  of r e s i s t i v i t y  - i n  s e r i e s  with the  negative res is tance  elenent 
t o  produce a ne t  pos i t ive  resistance.  Another so lu t ion  is t o  employ a con- 
s tant-current  type of power source. Thus, adequate so lu t ions  f o r  thac zype 
of "one-dimeilsioasl" i r ~ t a b i l i t y  have long been ava i l ab le  and i n  use. 

There is zncther type of  instabilit) . ,  a phenomenon of s p a t i a l  (circum- 
fe ren t i a l )  current  d i s t r ibu t ion  i n s t a b i l i t y ,  frequently r e fe r red  t o  as  
channeling (or s t z i a t ion)  vhich can occur only i n  conductors with negative 
res is tance  c h d a c t e r i s t i c s .  Basically, it occurs because any perturbat ion t o  
a symmetrical d i s t r ibu t ion  of  current  i n  such a conductni-, from whatever cause, 
has a tendency t o  feed on i t s e i f  and t o  grow larger ,  ul t imately c rea t inz  a 
channel of  intense current  and excessively high temperature i f  not o t h e r ~ i s e  - 
controlled. 

. I t  appears t h a t  1i t ;Je a t t en t ion  has been given t o  t h i s  kind o f  s t z b i l i t y  
control  there  bei,lg l i t t l e  t reatnent  of t h i s  i n  the  open l i t e r a t u r e .  The 
reasons f o r  t h i s  a re :  (1) the  qua l i ty  ( l i f e )  of ceramic heaters  was poor when 
t h e i r  use i n  t h i s  rnanr'zr was f i r s t  discovered and the  incentive t o  so lve  the  
problem was low, and (2) no nign speed computers were a v a i l ~ b l e  with which t o  
solve the  highly non-linear zquations i n  the  geometries of  i n t e r e s t .  

In  small-sized conductors such a s  Kernst globers, t h i s  channeling 
phenomenon nornally produces no noticeable ef fec t  apparently because of the  
high thermal gradients  which develop i n  such small-sized elements conducting 
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t h e  heat away from the  channel rapid ly  and l imit ing its growth. Because o f  
t h i s  lack of an understanding of the  problem, t h e  l a rge r  oxide ceramic heat ing 
e l e ~ e n t s  i n  t h e  past  have not general ly been b u i l t  successful ly i n  s p i t e  of 
the  f a c t  t h a t  they a r e  needed f o r  a va r i e ty  of  research devices. Those t h a t  
were found t o  have been b u i l t  i nd i sc r i a ina te ly  i n  t h e  p a s t  i n  l a rge r  s i z e s  
usually developed a channeling i n s t a b i l i t y  condition and quickly fa i led .  

I t  has been shown ana ly t i ca l ly  and it has been ve r i f i ed  experimentally 
t h a t  By means of thermal r ad ia t ive  sharing between various elercents of a cavity, 
i n s t z b i l i t y  is no longer a problem as long a s  ce r t a in  s t a b i l i t y  c r i t e r i a  are 
ne t .  In  the  furnace design, it is necessary t o  provide guard heaters  and 
ef fec t ive  high temperature thermal insulat ion.  

Mechsnical Design 

Furnace Design.- The coaplezed Vodel 40 z i rconia  conductor furnace 
assembly is shown i n  figures 6 and 7. Figure 8 i d e n t i f i e s  t h e  Wodel 40 
isotherha1 furnace comp&ents and shows the  general component arrangenent. 
The furnace assenbly has overa l l  dimensions of 23.5 cn (9.25 inches) d i a s e t e r  
by 47.0 c m  (18.5 inches) high not including the  extensions due t3 t he  air 
i n l e t  tubulation and +,he e l e c t r i c a l  conduit connector, The furnace assenbly 
weight is 13.1 Kgm (28.9 pounds) . 

The furnace main s t r u c t u r z l  components cons i s t  o f  t ! e  following: 

(1) A s t a i n l e s s  steel housing 

(2) An aluminum base 

(3) A flat aluminum bo t tos  cover 

(4) X nickel  p lz ted  s t e e l  sa fe ty  cage 

These components are shown i n  f i g u r e  9. 

Preheater power coilnections, preheater thermocouples and the  main heater  
upper electrode connection a r e  brought out t o  an electrode terminal p l a t e  
assembly on the top of the  furnace. The main heater  lower electrode terminal 
is brought out through the  housing and is located adjacent t o  the  lower 
terminal heat sink. Figure 10 shows the  t e rn ina l  p la t e ,  the  two t e m i n a l  heat  
sinks and a conduit-terminal s t r i p  connector t o  which external  e l e c t r i c a l  
connections a r e  made. The e l e c t r i c a l  schematic is shown i n  f igure  11. External 
e l e c t r i c a l  connections a r e  made t o  the  appropriate t e rn ina l  per the  schematic. 
The f i ~ r e  11 terminal s t r i p s  correspond t o  those shown on the conduit 
connector terminal s t r i p  panel i n  f igure  10. 

A separate a i r  b l m e r  is  connected t o  the a i r  blower i n l e t  t o  provide 
cooling of two terminal heat  s inks  t o  which t h e  mair, heater  electrodes a r e  







Fibure 8.- Model 40 isothermal zirconia conductor furnace components 
identification. . 
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at tached.  The heat s inks  r e s t  on e i t h e r  end of an alumina tube  which serves  
as t h e  core f o r  t he  preheater .  The preheater  assembly cons i s t s  of nichrome 
a l l o y  wire wound on t h e  core tube and covered with thermal i n su la t ion .  This 
i n su la t ion  forms an annular passe,, with t h e  furnace housing t o  duct  a i r  
flow from one terminal hea t  s ink  t o  t h e  o ther  and over t h e  e x t e r i o r  thermal 
i n su la t ion  of t h e  preheater .  

The, preheater ,  shown i n  f i g u r e  12, i s  a r e l a t i v e l y  rugged s t r u c t u r a l  
component comprised of an al lmina core tube with a 7.62 cm (3.0 inches) bore 
and a 0.635 cm (1/4 inch) wal l .  Heavy 0.13 cm (.051 inch) dian-ater nichrome 
wire is wound i n  a s p i r a l  groove i n  t h e  core tube. One groove is skipped 
1 /3  of t h e  way down from t h e  t o p  end. Two (2) type K (Chromel-Alumel) 20 
gauge thermocouple junct ions a r e  placed i n  t h i s  groove and brought ou t  t o  a 
b a r r i e r  terminal s t r i p .  One of t h e  thermocouples i s  used t o  provide a feed- 
back s igna l  f o r  a prehea ter  power con t ro l l e r .  The second thermocouple 
serves a s  a spare and can be used a s  an input  t o  a preheater  temperature 
i nd ica to r  i n  cases where t h e  c o n t r o l l e r  used has no temperature i nd ica to r .  

Also shown i n  figrire i 2  a r e  var ious ceramic p a r t s .  The l a rge  diameter 
r i ngs ,  made from LAVA A e l e c t r i c a l l y  i n s u l a t e  t h e  terminal  hea t  s inks  from 
the  furnace housing. Shown.directly above these  p a r t s  a r e  ceiiamic base 
s t r u c t u r e  p a r t s ,  a l s o  of LAVA A, upon which t h e  preheater  - main hea t e r  
assembly r e s t s .  The longer-smaller diameter hollow cyf inder  is  t h e  lower 
plug support made o i  alumina. 

A conducting ceramic (main) hea t e r  assembly is located within t h e  core 
tube separated from the  core by an i n t e r n a l  i n su la t ion  system made of Zi rcar  
high temperature insu la t ion .  This i s  the  main hea t e r  a s  dis t inguished from 
the  preheater  ana i s  shown i n  f i g u r e  13. The main hea ter  r e s t s  on a s l o t t e d  
Zircar  block a s  shown i n  f i gu re  13. S l o t s  a r e  provided t o  pass  t h e  12 
e lec t rode  lead wires downward t o  t he  screw terminals  i n  t he  terminal  hea t  
s ink.  Not showq a r e  Zircar  block wedges which surround t h e  main hea t e r  
element over t h e  hot  zone t o  form t h e  i n t e r i o r  thermal i n su la t ion  system (see 
f igu re  7 ) .  

The conducting c e r a i c  used f o r  t he  main hea t e r  i s  s t a b i l i z e d  z i rconia .  
The z i rconia  is polymorphic and i s  s t a b i l i z e d  i n  t h e  cubic phase t o  achieve 
a thermo-mechanically s t a b l e  mater ia l .  The main hea t e r  element i s  c y l i n d r i c a l  
i n  shape having a nominal O.D. of 4 . 3  cm (1.69 inches) and a nominal ove ra l l  
length of 15.5 cm (6.1 inches) . The in s ide  diameter of  the  element va r i e s  
depending upon t h e  configurat ion from about 3 . 0  t o  3.5 cm. Platinum 
e lec t rode  wires a r e  cemented t o  each end of t h e  cy l ind r i ca l  hea t e r  c lo se  t o  
t h e  hea ter  ends. A heated t y p i c a l  length (between electrodes)  is 13.2 cm (5.2 
inches).  As seen i n  f i gu re  13, t he  main hea ter  element i s  b u i l t  up from 
extruded tubes. This s t r u c t u r a l  arrangt..rent has s i g n i f i c a n t  thermal-mechanical 
advantage over a s o l i d  cy l inder  being l e s s  suscept ib le  t o  thermal expansion 
f a i l u r e  e f f ec t s .  

Nominally, a working cavi ty  s i z e  of 2.5 cm diameter by 10 .0  cm long i s  
provided within t h e  main hea ter .  Plugs of Zircar  i n su la t ion  a r e  used a t  both 
ends of the  main hea ter  cavi ty  t o  ?revent l a rge  r ad i a t ion  and d r a f t i n g  losses  
fro% t h e  furnace working cavi ty .  Both in su la t ion  plugs a r e  removable f o r  ac- 
cess t o  the furnace cavi ty .  Figure 14 i s  a photograph looking through t h e  
furnace cavi ty  with t h e  end plugs removed. The Zi rcar  block wedges a r e  









v i s i b l e  i n  t h i s  view. 

Cooling Package Design.- The cooling package is compact and consis ts  
o f  a cabinet mounted blower, a i r  f i l ter,  power switch, indica tor  l i g h t  and 
fuse and a separate f l e x i b l e  duct. The coolirlg package is contained i n  an 
enclosure separate from the  furnace. Cooling air is ducted t o  the  furnace 
assembly by a 0.91 meter (36 inches) f l e x i b l e  conduit 5.08 cm (2 inches) i n  
d i a e t e r .  Cooling is provided by a squ i r re l  cage blower r a t ed  a t  80 CFM of 
f r e e  a i r .  When connected t o  t h e  furnace, t h e  u n i t  de l ivers  approxinately 29 
CFM a t  a s t a t i c  furnace i n l e t  pressure of 0.6 inches of  H20. I n l e t  a i r  is 
f i l t e r e d  t o  prevent contamination of the  furnace. 

Thewal Design 

Thermal considerations a r e  most important i n  the  design of the  conducting 
ceramic furnace. The interfacing of materials  r e s i s t a n t  t o  oxidation a t  high 
:emperatme is a c r i t i c a l  design consideration as  well a s  t h e  insula t ion  
system t o  e f f i c i e n t l y  contain temperatures t o  2 2 0 0 ~ ~ .  

Figure 15 schematically presents  t h e  isothermal furnace t o  a s s i s t  i n  
visual izing various thermal considerations. The heater  element electrodes 
present the  most c r i t i c a l  thermal design area. The electrode ceramic-to- 
platinum junction temperature must be  saintained between the  acceptable l i m i t s  
of  1000°C t o  1500°C during operation. If t h e  junction temperature is cooler,  
ceramic element res is tance  increases and adequate e l e c t r i c a l  current  ccnduction 
becmes a problem. .When junction temperature i s  too high, increased 
electrode metal evaporation can seriously shorten heater  element l i f e  and, of 
course, i f  the  junction temperature is excessively high, melting of the  
electrode metal w i l l  c a s e  catastrophic f a i lu re .  

I n  order t o  protec t  the  electrode regions from the  in tense  cavity 
temperatures, cavi ty  end insula t ion  plugs a r e  projected i n t o  the  hot zone 
region nominally 1.4 cm beyond the  electrodes. I n  e f f e c t ,  a 10 un iong 
working cavi ty  is avai lable  t o  a diameter of 2.5 cm. The 2.5 cm diameter i s  
~ r b i t r a r y  and provides a reasonable stand-off d is tance  from the  main heater  
element wall. 

Some stand-off distance between the  furnace cavi ty  inside wall surface 
and the furnace load is required t o  aliow the  heater  element t o  d i s t r i b u t e  
any local  high heat f lux  regions t o  adjacent surfaces t o  prevent s p a t i a l  
current d i s t r ibu t ion  i n s t a b i l i t i e s .  In the  case of a load which follows the  
heater element wall temperature closely a s  with slow power t r ans ien t s  and 
which re- radia tes  ef fec t ive ly ,  the  stand-off distance can be  shor t .  I n  the  
othez extreme, a s  f o r  example, f o r  a r e l a t i v e l y  cold load t h r x s t  i n t o  the  
furnace cavity,  more stand-off distance is required. 

Electrode cooling is accomplished primarily by radiat ion of t ! ~ e  ceramic 
heater s t ruc tu re  i n  the  v i c i n i t y  of the electrode t o  adjacent cooler s t ruc tures .  
Sofie .-.cnvective cooling may occur as well which is d i f f i c u l t  t o  determine 
analy t ica l ly .  However, the  convective cooling contr ibution is su f f i c i en t ly  
small t3 be of l i t t l e  consequence in  the overa l l  electrode configuration 
design. Secondary cooling is  provided by thermal cond~c t ion  though the  
electrode lead wiies t o  the  upper and lower terminal s inks.  The sinks a r e  
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Figure 15.- Isothermal furnace schematic. 
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finned meta l l ic  r ings  cooled by a i r  flow supplied by t h e  a i r  blower. The a i r  
flow is about 29 CFM and removes ~pproximately 0.5 Kw from t h e  electrode s inks  
t o  maintain a system thermal balance a t  f u l l  temperature. 

Figure 15 indicates  t h e  re la t ionship  of  the  various insula t ion syst-. 
There are bas ica l ly  th ree  systems, t h e  in te rna l  insula t ion system between 
r3e cerzsic heater  and preheater,  t h e  exter ior  systeln between t h e  preheater 
and air cooling annulus, and t h e  upper and lower plugs. The plugs control  
d i r e c t  a x i a l  thermal losses fras t h e  funrace cavity. The in te rna l  and external  
insula t ion s y s t e u  control r s d i a l  losses and are arranged t o  provide proper 
thermal coupling between the preheater and ceramic heater. The re la t ionship  
between these  insula t ion syszems and t h e  two heaters  was explained i n  t h e  
Ceramic Element Furnace Concept Section (see figure 2 ) .  

Figure 15 shaws more accurately t h e  temperature d i s t r ibu t ion  resul t ing  
from a typical  heater- insulat ion arrangement. The curves shown a r e  calculated 
design r a d i a l  temperature d i s t r ibu t ions  f o r  t h e  in te rna l  cavi ty  condizion of 
2200°C (247%) and f o r  a s t a r t i n g  preheater temperature of 97s°C w i t h  cooling 
air flow. Yote &\at only a s l i g h t  overtemperatuze of about 2 0 0 ' ~  is 
required on the  preheater t o  achieve an igni t ion  conditior, (dashed curve). 
Note a l s o  t h a t  with f u l l  cavi ty  temperature and -&e preheater power o f f  
(sol id curve) :he preheater temperature is only s l i g h t l y  increased a t  its 
ins ide  surface. 

Additional discussion on the  theraal  aspects of the isothermal heater  
element r e l a t i v e  t o  temperature capabi l i ty  is given i n  t h e  Thermal Design 
Sectiqn maer Axial Gradi=nt Furnace. 

t-izchanical Design 

The axial gradient f u n a c e  u t i l i z e s  t h e  same housing, base, and preheater 
and has the sane external physical dinensions as the isozhennai furnace. X 
schematic of the  ax ia l  gradient furnace depicting a two-zone heater  element 
arrangement is s h m  i n  f igure  17. In  place oT t h e  s ing le  conducting ceramic 
heater element zcne of the  isothermal Eurnace, the  ax ia l  gradient  furnace 
has two separateiy control led heater element zones. The overa l l  working 
cavi ty  length between the faces of the lower support and upper insula t ion plug 
is 17.8 cm (7.0 inches) . 

The preheazer funczion is t h e  same as i n  t h e  isothermal furfiace t o  
provide igni t ion  f o r  the ceramic heater  elemenf. The sane type K (Chromel- 
Alumel) thermocouples are provided f o r  preheater temperature control  and t h e i r  
leads a r e  terminated a t  z b a r r i e r  s t r i p  ar shown i n  t h e  e l e c t r i c a i  schematic, 
f igure  18. 

Tine main heater is comprised c f  two separate heating elements. Tine higher 
temperature primary element is made of s tabi l ized zirconia and is 17.7 II;~ (0.697 
inch) I D  and 22.6 mm (0.390 inch) OD by 127 rum (5.0 inches) long. Figure 
i9 shows the  prinary eZement construction t o  b e  s imi la r  to  t h e  element i n  the  
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isothermal furnace. Tubular elements a r e  spaced i n  t h i s  case  by a l t e r n a t i n g  
sho r t e r  tubes on each end i n  t h e  e lec t rode  region. Such cons t ruc t ion  o f f e r s  
good v i s i b i l i t y  as evidenced by t h e  dime suspended wi th in  t h e  element. The 
primary element e lec t rode  wires a t t a c h  t o  i d e n t i c a l  upper and lower terminal 
s inks  as used i n  t h e  isothermal furnace. 

The lower temperature secondary element is made from platinum-10% rhodium 
a l l o y  wire C.508 mm (0.020 inch) diameter wrapped on an alumina core  tube. 
The co-e tube  has a n  I D  of  19.0s mm (0.75 inch),  an  OD of 28.58 ~ I Q  (1.125 
inches) and is 76.2 mm (3.0 inches) long. The secondary element's lower lead 
wire is terminated a t  t h e  lower terminal s ink  making it common with t h e  p r i -  
mary element lower lead  wire. The secondary element's Epper lead  wire  
passes upward through t h e  in su la t ion  and is brought ou t  on a sepa ra t e  terminal  
on t h e  terminal  p l a t e  assembly. 

Components which make up t h e  a x i a l  gradient  furnace main hea t e r  i n  
addi t ion  t o  t h e  primary element (f igure 19 )a re  shown i n  f i gu re  23. The 
secondary element is seen wrapped with Zircar f e l t  insu la t ion .  Z i r c a r  block 
in su la t ion  wedges a r e  shown which surround the  primary element. A l l  cjf t h e s e  
f i t  i n s i d e  the  l a rge  cyl inder  made of a lumina-si l ica  i n su la t ion .  A piatinurn- 
13% rhodium thermocouple is  f i t t e d  t o  t h e  ou t s ide  grootres i n  t h e  l a r g e  
cy l indr ic21  in su la t ion  body, through the  hole  i n  t h e  Zircar f e l t  surrounalng 
the  secondary element, with t h e  junct ion located i n  z hole i n  t h e  secondary 
element core  tube. This thermocouple provides 3 Zeedback s i g n a l  f o r  conti-01 
of  t h e  secondary element. 

Thermal Design 

The thermal design considerat ions discussed r e l a t i v e  t o  t h e  isothermal 
furnace apply t o  t he  a x i a l  gradient  furnace a s  wel l .  Preheater  temperature 
with t h e  main hea ter  under power zzd the  preheater  unpowered a r e  lower 
because of t h e  smaller  diameter o f  the  main heater .  

A s i g n i f i c a n t  thermal d i f fe rence  e x i s t s  between t h e  conducting ceramic 
element of t h e  isothermal furnace ( f igure  13) r e l a t i v e  t o  t h a t  of t h e  gradient  
furnace (f igure 19). The mechanical d i f fe rence  is obvious i n  t h a t  h a l f  of t h e  
tubes forming t h e  gradient  furnace primary element a r e  f u l l  length and, there-  
fo re ,  a c t i v e  conducting elements, t h e  other  half being discontinuous and ac t ing  
as spacers  on each end. Recal l  t h a t  the platinum-to-ceramic e lec t rode  i n t e r -  
fac ing  region must operate  a t  a temperature below t h e  melting poin t  of 
platinum (preferably 1 5 0 0 ~ ~  o r  l e s s ) .  I n  t h e  case  of t h e  hea ter  element c9n- 
s t r u c t i o n  shown i n  f i g u r e  13, t h e  conducting por t ion  o f  t h e  element (between 
electrodes)  would tend t o  be  equal ly high i n  temperature over t h e  f u l l  con- 
duction length exce?t f o r  t h e  e f f e c t  of t h e  Zircar  block insu la t ion .  

The Zi rcar  block in su la t ion  adjacent  t o  t h e  conducting length of t he  i so-  
thermal f ~ r n a c e  heating element is made sho r t e r  than the  conducting length 
thereby reducing hea t  losses  over a cen t r a l  port ion of the element. The 
e lec t rode  region operates  cooler  because of increased thermal losses  t o  t he  
preheater  core tube wall .  Unfortunately an adverse compensating e f f e c t  
e x i s t s  i n  t h a t  cur ren t  i s  the  same throughout t he  conducting length,  y e t ,  i n  
the  cooler  regions near t he  e lec t rodes ,  r e s i s t i v i t y  is higher and the  loca l  





ohmic ( I ~ R )  heat ing is grea te r .  Some temperature difference is achieved with 
t h e  e lec t rode  region operat ing cooler  than t h e  c e n t r z l  working cav i ty  region. 
Thus, cav i ty  temperatures t o  2 2 0 0 ~ ~  a r e  poss ib le  with e l ec t rode  region 
temperatures l imited t o  of  t h e  order  o f  1750~C. 

Another technique used t o  achieve an even cooler  r e l a t i v e  temperature 
i n  t h e  e lec t rode  region is depicted i n  f igure  7. Here t h e  conducting ceramic 
heater  elenient has taper ing  incorporated. The sec t ion  adjacent  t o  t h e  
electrodes is of increased cross  s ec t ion  thereby reducing l o c a l  resistance 
r e l a t i v e  t o  t h e  c e n t r a l  por t ion  based on t h e  same temperature. Using fore- 
shortened i n t e r i o r  thermal i n su la t ion  as before ,  t h e  e l ec t rode  reg ion  
temperatures can b e  reduced t o  about 1500~C for-working cav i ty  temperatures 
t o  2200°c. 

S t i l l  another technique is shown i n  f i g u r e  19 and is used wi th  t h e  a x i a l  
gradient  furnace hea t e r  element. The sho r t e r  spacer  tubes a r e  non-conducting 
tubes. Using foreshortened i n t e r i o r  thermal i n su la t ion  j u s t  covering t h e  
open p r t i o n  of  t h e  hea t e r  element, t h e  e lec t rode  reg ion  i s  ailowed t o  cool  
e f f ec t ive ly  permit t ing a l a r g e  temperature d i f fe rence  between t h e  working 
cavi ty  and t h e  e lec t rode  region. 

I n  t h e  d iscuss ion  above, it is assumed t h a t  i n t e r n a l  end plug i n s u l a t o r s  
a r e  used t o  prevent d i r e c t  r a d i a t i o n  of the  working czv i ty  space onto t h e  e lec-  
t rode regions.  Open end operat ion would increase  thermal loading of t h e  
electrodes and neces s i t a t e  reducing t h e  maximum operat ing temperature. In 
general,  t h e  upper e lec t rode  su f f e r s  t he  g r e a t e s t  thermal loading i n  such a 
s i t u a t i o n  with convective d ra f t i ng  prcviding some cooling of t h e  lower e lec-  
t rode while adding t o  t h e  upper e lec t rode  thermal load. 

I t  is because of t he  d r a f t i n g  e f f e c t s  t h a t  t he  lower temperature secondary 
main hea ter  s ec t ion  is located below t h e  primary hea t e r  sec t ion .  The Pt-Rh 
a l l o y  secondary hea ter  is r a t ed  f o r  temperatures t o  150CJ0c while t h e  primary 
hea ter  is r a t e d  f o r  1000 t o  2200"~.  The preheater  can be  used t o  hold a back- 
ground (guard) temperature t o  con t ro l  t he  t r a n s i t i o n  between the  toy  of t h e  
secondary hea ter  element and the  bottom end of  t h e  conducting region o f  t he  
primary element, t h a t  is ,  i n  t he  lower non-conducting region o f  t he  primary 
heater.  Between t h 3  t h r e e  hea t e r  elements (preheater ,  secondary and primary) 
considerable f l e x i b i l i t y  of  temperature and gradien t  con t ro l  a r e  provided by 
the  Model 40 gradien t  furnace. 

FURNACE POWER CONTROL 

General Consideration 

Separate cont ro ls  a r e  required f o r  the  various hea ter  elements, the  pre- 
hea ter  and the ceramic or  mzin hea t e r  i n  the  case  of the  isothermal furnace, 
the preheater and the  primary and secondary main hea ters  i n  t he  case of t he  
a x i a l  gradient  furnace. While the  preheater  and the  secondary Pt-Rh a l l o y  
hea ter  can be operated from e i t h e r  AC o r  DC e l e c t r i c a l  power, it i s  highly d e s i r -  
ab l e  to  use AC power for t h e  ceramic hea ter .  This is the  r e s u l t  of the oxide 
ceramic being a s o l i d  e l e c t r o l y t e  and conducting e l e c t r i c i t y  by the  motion of 



negatively-charged ions ( o - ~ )  through t h e  oxide r a t h e r  ?+an electrons.  

Noble metal electrodes in te r face  the  oxide ceramic on eac3 end. With 
an e l e c t r i c a l  current flowing, electrons move i n  the  metal wires t o  the  
electrodes. I n  t h e  case of a d i r e c t  current ,  electrons flow toward one 
electrode,  the  cathode. Four electrons combine with each oxygen molecule i n  
the surrcindinq atmosphere causing the  oxygen t o  en te r  t h e  ceramic a t  the  
cathode and proceed through t h e  ceramic as  two individual oxygen ions. The 
reverse occurs a t  the  opposite electrode (anode) where the  two ions form an 
oxygen molecule a s  it passes back in to  the  surrounding atmosphere while the  
released electrons proceed through the  me ta l l i c  conductor t o  complete the 
c i r c u i t .  

Under the  influence of d i r e c t  current ,  a polarizat ion e f f e c t  occurs i n  
which oxygen ions within t h e  oxide ceramic a r e  depleted near the  cathode 
and accumulate near the  anode. This is undesirable and can e f fec t  the  
e l e c t r i c a l  performance of  the  heater  inducing a temperature gradient  along 
t h e  heater  element and possibly a time varying performance characrer is t ic .  
Without a surrounding atmosphere containing oxygen molecules (as with a 
vacuum or  reducing environment) , t he  e f fec t  is more pronounced as  the  oxide 
ceramic is sh i f t ed  i n  its stoichiometry (reduced toward the  metal cons t i tuent ) .  

Under the  influence of a l t e rna t ing  current ,  t he  oxygen molecules i n  the  
oxide ceramic merely d i the r  back and fo r th  as the  cathode and anode a r e  
rapidly interchanging. With AC, t h e  oxide ceramic has su f f i c i en t  s t a b i l i t y  
against  reduction t o  be used sven i n  vacuum and reducing type environments a s  
well a s  i n  oxidizing enviroments. 

Using the Model 40 isothermal furnace a s  an example, a schematic of a 
typica l  control system i s  shown i n  f igure  21. The preheater is designed 
t o  achieve ignit ior .  temperatures with a nominal voltage of 120 vo l t s .  Llnless 
a current  l imi t ing  cont ro l ler  i s  used, the  preheater shculd be connected t o  a 
120 vo l t  AC supply t o  prevent excessive current  flow. The main (ceramic; 
heater  is  a l s o  operated with a 120 vo l t  AC supply, however, a 240 v o l t  AC 
supply can be used t o  provide hirght- voltage t o  improve ign i t ion  respcnse. 

Figure 21 shows t h a t  t h e  preheater is operate4 closed loop using a 
thermocouple feedback s ignal .  The contro l ler  includes a-temperature 
indica tor  f o r  monitoring the  preheater temperature. Power ro r  the  a i r  blower 
is provided by the  main power switch so t h a t  cooling a i r  flow is assured 
p i o r  t o  operztion of the  furnace. 

The ceramic heater  i s  a l s o  normally operated closed loop although it 
can be operated on a power schedule having previously established a power 
versus temperature ca l ibra t ion .  Closed loop control  i s  recommended, however, 
t o  prevent accidental  over-temperature of the  Zurnace. Feedback s ignals  which 
can be used izelude the  following: 

1. Ceramic heater  element res is tance  

2. Ceramic heater  element current 

3. Thermocouple output 

4. Pyrometer output 
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Resistance 02 t h e  ceramic hea t e r  der ived from a vol tage  and cu r ren t  
s igna l  o f f e r s  t h e  most e f f e c t i v e  means of f t r n a c e  cav i ty  temperature cont ro l ,  
e spec i a l ly  a t  very high temperatures where thermocouples become inadequate 
(incapable of withstanding t h e  very high temperatures and/or su f f e r ing  from 
oxidat ion) .  Recalling t h e  hea t e r  element r e s i s t a n c e  versus temperature 
c h a r a c t e r i s t i c  given i n  f i g u r e  1, t h e  ceramic hea t e r  r e s i s t a n c e  provide; an 
accurate  s igna l  f o r  cav i ty  temperature cont ro l .  A r e s i s t a n c e  s i g n a l  net-  
work which r a t i a s  t h e  hea t e r  element vol tage  and cur ren t  is  used t o  de r '  ~ v e  a 
r e s i s t ance  s igna l  which is  used t o  command the  ceramic hea ter  power con t ro l l e r .  
Data a r e  pressnted i n  t h e  Experimerltal Performance Sect ion t o  i n d i c a t e  how 
well  ceramic hea t e r  r e s i s t a n c e  represents  cav i ty  temperature even with varying 
thermal loading condit ions.  Thermal loading condit ion a s  used he re  is meznt 
t o  include those  e f f e c t s  on furnace power consumptior, assoc ia ted  with t h e  
penet ra t ions  i n t o  t h e  cavi ty  r e l a t i v e  t o  an  unloaded-completely sea led  furnace 
cavi ty .  That is ,  t h e  u s e r  modifies t h e  power v s  temperature c h a r a c t e r i s t i c  
with h i s  p a r t i c u l a r  experimental setup.  

Voltage o f  t h e  ceramic hea t e r  element is  r e l a t i v e l y  cons tan t  over t h e  
operat ing temperature range of t he  hea ter  i n  t h e  case of a f ixed  thermal load 
s i t u a t i o n .  Therefore,  hea t e r  element cur ren t  a l s o  can be used a s  an e f f e c t i v e  
feedback s igna l .  This  s i m p l i f i e s  t h e  cont ro l  feedback s igna l  adapta t ion  
considerably over t h e  f i r s t  method of using a computed hca t e r  element r e s i s t ance .  
A c a l i b r a t i o n  of t h e  cu r r en t  versus cav i ty  temperature is requi red  f o r  t he  p a r t i -  
cu l a r  experimental setup.  Where the rna l  loading of t h e  cav i ty  is dnchanged 
from the  c a l i b r a t i o n  value,  t h e  cur ren t  feedback s igna l  can be  more accurate  
than t h e  r e s i s t ance  feedback s igna l  i n  not  having t o  compute a parameter from 
t l ~ o  ueasured parameters (vol tage and car ren t )  . 

Thermocouples appropriate  t o  t h e  furnace cav i ty  atmosphere a r e  required i f  
t h i s  method is t o  b e  used. In  an oxidizing atmosphere, Pt-6Rh/Pt-SORh is  recom- 
mended f o r  long se rv i ce  t o  1 7 5 0 ~ ~  and sho r t  s e r v i c e  t o  1800°C. Iridium-Rhodium 
can be used f o r  higher tempe;atures, however, t h i s  thermocouple s u f f e r s  from 
oxidat ion of  t h e  i r idium and is not  recommended f o r  long exposure t imes. I t  
should b e  mentioned t h a t  while t he  ceramic hea t e r  element concept has proven 
a p p l i c a b i l i t y  t o  atmospheres o the r ' t han  oxid iz ing  ones, t he  Mcdel 40 furnace used 
t o  demonstrate the  ceramic hea ter  clement concept was used only with an a i r  
environment. With a s u i t a b l e  environmental enclosure,  o ther  atmosphere e n v ~ r o n -  
nents  can be used. Tests  on sample hca t e r  elements were conducted i n  a v a r i e t y  
of atmospheres f o r  the  purpose of qua i i fy ing  t h e  furnace concept i n  these  atmo- 
spheres. 

A pyrometer having a s u i t a b l e  output s i g n a l  to ?da?t t o  a process c o n t r o l l e r  
can be used t o  cont ro l  cav i ty  temperature. In  t h i s  case  t h e r e  a r e  no r e s t r i c -  
t i ons  on temperature o r  kind of atmosphere within t h c  cavi ty .  With a pyro- 
meter, however, en  unobstructed view of t h e  cavi ry  must b e  provided. I n  t he  
event t h e  view i s  obstructed,  even p a r t i a l l y  a s  by smoke f o r  example, a Ealse ---- 
s igna l  - lower-than-actual -conditions - w i l l  r e s u l t  and poss ib ly  cause burn-out 
of the furnace due t o  over-temperaturing. The b e s t  p ro tec t ion  I n  t h i s  s i t u a -  
t i o n  i s  t o  use a cur ren t  l i m i t  s e t t i n g  based on a p re -ca l ib ra t ion  f o r  the  p a r t i -  
cu l a r  thermal load condit ion t o  back up the  pyrometer feedback loop. 

For laboratory operat ion,  t he  furnace can be operated manually :ising au to  
transformers (Variacs) f o r  vo l tage  cont ro l .  Figure 22 shows such a se tup  f o r  
t h e  isotheimal furnace operat ing from a 120 v o l t  AC supply. The Variacs a r e  
wired f o r  0-140 v o l t  operat ion f o r  g r e a t e r  f l e x i b i l i t y .  The prehea ter  r e s i s -  
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tance is  near ly  constant over i ts tem2era tue  operating range and only one 
parameter (current o r  voltage) need be monitored. The preheater thermocouple 
is put on a temperature indica tor  t o  show core temperature. 

Both current  and voltage instrumentation are provided f o r  the  ceramic main 
heater .  aecause of the  "negative resistance" c h a r a c t e r i s t i c  of  the  conducting 
ceramic heater ,  a b a l l a s t  r e s i s t o r  nust be  used i n  series with t h e  ceramic 
heater  t o  provide power s t a i i i l i t y .  The b a l l a s t  r e s i s t o r  should have a resis- 
tance of  apprGximately 20% of the  desired operating point  r e s i s t a x e  of t h e  
cerayz.: heater .  To prevent too rapid  a power increase,  t h e  b a l l a s t  r e s i s t ance  
should be ferger  a t  loher tenperatures and reduced accordingly a s  t h e  ceramic 
heater  res is tance  de:;-eases (ca;*ity temperature increasing). 

Sol id-s ta te  (SCR) 3 j ~ s  con t ro l l e r s  are most convenient f o r  closed loop 
operation. Either  t h e  phase angle f i r i n g  o r  zero-crossing f i r i n g  types ca!t b e  
used. The zem-crossing ? i r ing  type of con t ro l l e r  has the advantage of l e s s  
electro-magnetic in ter ference  where EM1 is a prablem but has the disadvantage 
o f  not providing current  l imi t ing  t o  reduce start up power surges o r  being 
a b l e  t o  be used i.1 a current  feedback mode. For most applj-cations the  phase 
angle f i r i n g  type of control  's acceptable and has g rea te r  v e r s a t i l i t y .  EM1 
i s  control led by shielding a l l  power leads with me ta l l i c  conduit and using t h e  
pr3tec t ive  (shield) cage over t5e furnace housing as shown i n  figure 6. 

S~ac= Fl igh t  Considerztions 

The control  aspeiEs of adapzing the  conducting ceramic heater  elemeiit 
furnace f e r  space f l i g h t  applicat ions was studied during t h i s  program. Eventual 
use of t h i s  furnace concept f o r  materials  processing within the  Shuttle/Spacelab 
programs is possible. Most l i k e l y  z l te rnat ing  current  power would be avai lzble  
and power control  philosophy would b e  much l i k e  t h a t  discussed i n  t h e  previous 
sect ion.  

Adaptation of t h e  ceramic furnace t o  soundiag rocket f l i g h t s  requi res  a 
d i f f e r e n t  power control  philosophy i n  t h a t  power is ba t t e ry  supplied and is 
therefore DC. I n  addit ion t o  power adaptation, the stcdy includes an evaluat ion 
of instrumentation conditioning equi2ment compatibi l i ty with the vehic le  
e l ec t ron ic  recording and f i i g h t  telemetry system which requires a 0 t o  5 v o l t  
DC input. The Black Brant VC sounding rocket was used as a reference vehicle 
f o r  the  study. 

A basel ine  system was defined r e l a t i v e  t o  t h e  isgthermal ceranic furnace 
concept having a s  a groundru1.e the  requirement t h a t  t h e  ceramic heater  siement 
be  brought t o  the  des i rea  operating temperature p r i o r  t o  rockot launch. That 
is, the  preheater is t o  be operated from a ground con t ro l l e r  t o  achieve ceramic 
heater  ign i t ion  an2 Che ceramic heater  i s  t9 be powered up t o  the  operating 
condition a l s o  from ground control .  This i s  necessary because of the  r e l a t i v e l y  
shor t  zero-gravity time (3 t o  7 minutes) i n  t h e  sounding rocket  f l i g h t .  

Table y presents  a con t ro l l e r  and instrumentation preliminary specif ica-  
t i c n  f o r  a ceramic furnace requir ing a maxinun of 2500 watts of power f r cn  a 28 
v o l t  IH: ba t t e ry  supply. For cost  effect iveness,  cont ro l  system accur3c;- i s  s e t  
reasonably loose from a furnace control  point-of-view while being t i g h t  r e l a t i v e  



TABLE V 

Preliminary Speci f ica t ions  for 

MAIN POWER CONDITIONING, COaVTROL AND 

TELEMETRY SIGIVAL CONDITIONING 

Control ler  Input Voltage 

Contro l ler  Input Signal  Operating Range 

Control Accuracy 

Control S t a b i l i t y  

Control Proportional Band 

Main Heater Power 
Voltage 
Power 
Frequency 
Duty Cycle 
Secondaqr Switching 
Efficiency 

Operating Temperature Range 
DC/AC Inver ter  Transforaer 
Electronics 

24 - 32 VDC 
0-20 m i l l i v o l t s  

2 1 0 0 ~  v o l t s  

20p v o l t s  pe r  10 minutes 

0.1 to 5.0 m i l l i v o l t s  

80-120 VAC * 
2500 watts  maximum average 
10 KHz 
0- 1OCt  
Zero Crossing 
288% 

In ter faces  
Input Signals  Required 

Temperature Programer 
a) 10 l i n e  binary 
b) 12 l i n e  BCD 
c) Two d i s c r e t e  programmed temperatures by switch 

closures or log ic  l e v e l s  

Output Signals  
Analog Telemetry 

Channels 

Signal  Range 
Coupling 
Sampling Rate 
Required Accuracy 

29 p lus  c a l i b r a t i o n  and 
frame s)mc. 

0-5 VDC 
Dif fe ren t i a l  
1 Frame/Sec. minimum 
1% oE FS o r  b e t t e r  

* The con t ro l l e r  output sees  a f iunace wizh a r e s i s t i v e  load which rtiay 
drop t o  2.0 ohms and requ i re  an average pswer of 2500 wat ts  maximum 
(average voltage of 70.7 v o l t  and average current  of 35.4 a q s ,  f o r  example). 
To provide a s l i g h t  reserve  i n  t h i s  case,  the  i n v e r - e r  transformer would 
be wired f o r  an SO v o i t  output r e su l t ing  i n  a 78% duly cycle with a peak 
current  of 40 amps. For higher furnace load res i s t ance ,  t h e  transformer 
would be wound f o r  A correspondingly higher voltage not expected t o  exceed 
120 vol ts .  Teak current  would bs correspondinqly lower. 



t o  typica l  experimenter's requirements. Furnace and control  parameter mo~3- 
tor ing  has been included which is s u f f i c i e n t l y  broad t o  g ive  a high degree of 
y ie ld  t o  ar.y required diagnostics which might b e  ca l l ed  upon i n  t h e  everit a 
first o r  ee r ly  f l i g h t  su f fe r s  abnormal problems. Temperature programning 
capabi l i ty  is included t o  add f l e x i b i l i t y  t o  t h e  f amace  usefulness and a l s o  
t o  allow t h e  us2 of furnace heater  t h e m 1  c a p c i t a n c e  t o  bridge any t r a n s i e n t  
power gaps which might arise, The basel ine system is described as follows. 

The functions of the  e lec t ronics  subsystem a r e  t o  convert t h e  nominal 28 
VDC mains power f o r  instrument power and f o r  heater  power, t ~ r  maintain t i lo  fur- 
nace set temperature by co=ltrol l ing heater  power, t o  accept switch closures 
o r  d i g i t a l  s i g r a l s ,  t o  s5.c the  furnace temperature, t o  inonitor fairzace and 
e l e c t r i c a l  s ignals  and condition t h m  f o r  telemetry, and t o  provide GSE func- 
t ions .  Figure 23 is a block d i a g r a ~  o f  t h e  fusnace system study base l ine  
design. The elements a r e  described as follows: 

Furnace Controller.- Referring Zo t h e  block dizgram, t h e  base l ine  design 
employs a thermocouple t o  sense t h e  furnace t e q e r a t u r e .  Ceramic element 
resistance,  derived fros voltage and current  measurenents, can be used a s  an 
a l t e r n a t e  feedback s i g ~ ? a l  and is recomended. For the  basel ine design, the  
thennocouple type can be  optimized f o r  the  s p e c i f i c  experiment. For very high 
t c - ~ p e r a t u e  operation ( to  2200~C), iridium-rhodium thermocouples o r  tungsten- 
zheniun themcou? les  sheathed against  t h e  oxidizing envircnment would be 
applicable. -4 platinum-rhoaim thermocou?le standing back from t h e  furnace 
cavi ty  can a l s o  be  used by corre la t ing  i t s  response t o  the  cavity temperature, 
although t h i s  approach would have a slower response. Response of the  r e s i s t ance  
feedback s igna l  is essen t i a l ly  instantaneous. 

The thermococple s igna l  va r i e s  from zero t o  20 mi l l ivo l t s  f u l l  s c a l e  f o r  
t h e  range of  furnace temperatures and is amplified by an operat ional  amplif ier  
(temperature sensor aa2 l i f i e r )  having a =mimum o f f s e t  d r i f t  of  14 microvolts, 
corresponding t o  appoximately 1 ,5O~,  i n  t i e  environmental temperature range 
of 0-70°C. In  the  "difference amplifier" t h e  thernocouple s ignal  is  compared 
t o  a K voltage derived from tfie d i g i t a l  "teaperature programmer" through the  
"dig i ta l  t o  analog converter." A f ixed o f f s e t  derived from the  "precision 
reference DC supply" is used t o  compenszte the  1C0"C themocouple reference over 
temperature e i t h e r  t o  OOC o r  t o  any desired lower bound f o r  t h e  furnace tempera- 
t u r e  se t t ing .  The resul t ing  voltage difference,  o r  e r r o r  s ignal ,  which is  pro- 
port ional  t o  t h e  difference betaeen the  furnace sensor temperature and the  s e t  
temperature, is used r o  modulate the  duty cycle of a 100 Hz square wave i n  t h e  
"voltage t o  duty cycle converter." This square wave w i l l  b e  high f o r  zero t o  
130% of  each cycle, proportional t o  the  e r r o r  s ignal ,  and is  a low power analog 
indicat ing the  proportion of  time f o r  shich power is applied t o  t h e  furnac9. 

The ac tua l  high power furnace d r i v e  is provided by the  l1DC/.\C inverzer" 
shown i n  t h e  block diagram. The furnace power is assumed t o  be aboct 120 v o l t s  
RYS AC dce t o  the  cha rac te r i s t i c s  of the  cerainic heating element, thus requir ing 
transformer coupling fram t h e  nominal 28 vo l t  ba t t e ry  supply. X minimum 
transformer weight can be achieved with f e r r i t e  cores operated a t  high f r e -  
quency, i n  the  5 t o  15 KHz range. Also, i n  order t c  improve power handling 
eff iciency,  raw power from t h e  ba t t e ry  mains i s  u t i l i z e d  f o r  the  inver ter  input.  
The basel ine inver ter  design employs a f e r r i t e  transformer driven a t  10 KHz by 
the  o s c i l l a t o r  shown i n  the  block diagram. The transformer could be eliminated 
i f  a higher voltage bat tery  could be provided on che sounding rocket. 
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The 120 vo l t  square wave inver ter  output is  gated t o  the  furnace heating 
element by Tr iac  gates i n  the  "heater power control  gates" which ai-e driven by 
the  "voltage t o  duty cycle converter." The high level  o f  the  var iable  duty 
cycle 100 Hz square wave enables the  high power Tr iac  ga tes  t o  f i r e .  Thus, 
during each 10 miliisecond in te rva l ,  an in teg ra l  number from zero t o  100, of 
10 KHz-120 v o l t  square wave cycles is applied t o  the  ceramic heater .  This 
power is switched only at  zero crossings of t h e  high power waveform. 

Not shown i n  figure 23 is a current  l imi te r  loop which derives a s igna l  
from a current  transformer i n  t h e  heater  element measurement c i r c u i t .  This 
serves t o  l i m i t  current  t o  a p rese t  value and p ro tec t  t h e  con t ro l l e r  high power 
components. 

The furnace temperature can be  set by severa l  methods as fc?llows: 

For normal ground operation, thumbwheels i n  t h e  GSE 
can be s e t  t o  a decimal d i g i t a l  number from zero t o  
999. This nlmber is generated a s  a BCD :ode and t rans-  
mitted t o  t h e  instrument through t h e  wnbilical.  I n  the  
instrument the  BCD number is  converted t o  a binary code 
i n  the  "tenperature programmer" and then converted t o  a 
DC voltage by the  "d ig i t a l  t o  analog converter." The DC 
voltage is then applied t o  the  d i f ference  amplif ier  as 
previously discussed. 

2. X BCD o r  s t r a i g h t  binzry code can be input t o  the  ins t ru -  
ment temperature progranmer by the  payload programer 
control .  This s e t t i n g  may be ?re-programmed o r  set by 
radio command. 

3. Two or  more switch clcsures o r  logic  l ines  may be used t o  
s e t  two o r  more d i s c r e t e  temperztures. These inputs  a l s o  
may be pre-programmed o r  commanded. 

I n  order  tha t  the  experimenter can tu rn  the  furnace/control ler  power o f f ,  
a 28 VDC r e l ay  c o i l  power in ter face  is  p r ~ v i d e d  which is closed by the  experi- 
menter's sequencing timer. Thus, the  furnace can be pre-programmed off  p r i o r  
t o  reent ry  and a f t e r  completion of the  heating phases of the  experiment. 

The following f i v e  con t ro l l e r  parameters should be monitored and t e l e -  
metered : 

1. Temperature sensor amplifier output 

2. Control temperature ( se t  temperature) 

3. Error s ignal  (AT error)  

5. Ceramic heater  voltage 

5. Ceramic heater  current  

Preheater Control.- The preheater element i s  a platinum res is tance  heater  
with temperature sensed by a thermocouple. This preheater can be control led 



by a commercial thermal con t ro l l e r  i n  the  instrument GSE located i n  the  block- 
house o r  on t h e  pad. In  order t o  avoid a long run of thermocouple wire, the  
thermocouple can be  terminated i n  an e lec t ronic  temperature "compensated 
reference junction" i n  the  instrument. Copper wire can be  used t o  transmit 
t h e  s ignal  t o  the  cont ro l ler .  Power f o r  the  e l ec t ron ic  reference can be  pro- 
vided through the  umbilical i n  order  t h a t  the  preheater  may operate independently 
of the  f l i g h t  power source. 

Temperature Measurement.- The instrument may contain up t o  fourteen thermo- 
couples, one i n  the  main heater  loop, one i n  t h e  preheater loop, and twelve used 
for-  m o ~ i t o r i n g  temperature of the  fbrnace assembly. The reference temperature 
f o r  all but  the  preheater is  provided by the  tfthermocouple reference oven." .4n 
a l t e r n a t i v e  approach t o  providing the  reference would be individual  e l ec t ron ic  
references. The cos t  of t h i s  approach would be higher. If the  s igna l s  can 
b e  multiplexed, a s ing le  synchr6nously multiplexed e lec t ron ic  reference f o r  t h e  
twelve monitors would be cost  e f fec t ive .  In  t h i s  case a separate e l ec t ron ic  
reference f o r  t h e  main heater  cont ro l ler  woula be preferred. The o f f s e t  d r i f t  
o f  the  amplif iers  used f o r  the  temperature n t ~ n i t o r  thermocouples corresponds t o  
l e s s  than 7°C measurement e r r o r  over the  0 t o  7 0 " ~  environmental temperature 
range. 

Housekeeping Measurements.- Monitor c i r c u i t s  and telemetry inferfaces 
should b e  provided f o r  verifying instrument performance and f o r  rout ine  ground 
diagnostics. These housekeeping functions wocld include the  following in addi- 
t i o n  t o  furnace con t ro l l e r  functions and furnace assembly temperatures: 

1. Reference Oven Temp.-Tem?. 

2 .  Precision DC Supply - Voltage 

3. 28V Heater Power - Voltage 

4. 28V Instrument Power - Voltage 

5. Control Temp. Bias - Voltage 

6 10 KHz Osc i l l a to r  - Frequency 

7. Inver ter  Transformer - Temp. 

8.  12C VAC square wave - Voltage 

9. Ir'strument Electronics - Temp. 

10. ->SV Supply - Voltage 

11. +15V Supply - Voltage 

12. -1SV Supply - Voltage 

P.11 of these signals  should be converted t o  0-SVDC s ignals  and s e n t  t o  
payload tel-emetry. 

Instrument Poicrer Supply.- The inver ter  f o r  t h i s  supply has th ree  secondary 
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windings, one each fo r  the  +5 v o l t  regulated logic  supply and the  +15 v o l t  
and the  -15 v o l t  regulated analog e lec t ronics  supplies. Additionally, un- 
regulated +15 and -15 v o l t s  a r e  supplied t o  the  oven heater  and -20 v o l t s  
unregulated t o  t h e  analog switches. The supply input  is current  limited. 

Te1enietry.- The 29 functions t o  b e  telemetered a r e  individually hard 
wired t o  t h e  vehic le  telemetry. Analog FM-FM telemetry with a fu l l - sca le  
accuracy of  1% is assumed with no multiplexer located i n  t h e  experiment package. 
An accuracy of 0.5% of f u l l - s c a l e  is  des i rable  f o r  t h e  temperature monitors 
but  is not required. Lacating a multiplexer i n  t h e  instrument would be des i r -  
able. 

Present S t a t e  of  Development.- A 1 1  of t h e  e lec t ronic  approaches d is -  
cussed u t i l i z e  current commercial prac t ice ;  however, t h e i r  implementation does 
requi re  careful  a p p l i c a t j m  of g o d  engineering prac t ice .  F O ~  example, i n  
order  t o  meet t h e  furnace control  accuracy requirement, an amplifier thermal 
o f f s e t  s t a b i l i t y  of 1.4 microvolts per  O C  is required. Three commercizl I C  
operat ional  ampi-fiers have beep found wnich exceed t h e  requirement. Two a r e  
speci f ied  at  0.2 rnicro\*olt/"~. The only area  of  development is t h a t  of t h e  high 
power inver ter ,  and even here similar supplies have been manufactured commer- 
c i a l l y .  Overall ,  t h e  ~ l e c t r o n i c  techniques discussed a r e  highly developed and 
need only b e  adapted t o  these  pa r t i cu la r  c i r c u i t s .  

Providing a separase high power b a t t e r y  f o r  t h e  furnace inver t e r  would 
help  reduce electromagnetic interference.  X higher voltage ba t t e ry  could be  
provided and could contair? the  same number of c e l l s ,  hence, not be any l a rge r  
i n  volume o r  weight. The main power l i n e s  would ca r ry  a much lower current  
naking the  e lec t ronics  design eas ie r  and it would el iminate a heavy transformer. 

Weight and s i z e  estimates.- The study contra1 system depicted i n  f igure  
23 f o r  a 2500 w a t t  ceramic h z t e r  power was evaluated i n  su f f i c i en t  d e t a i l  t o  
def ine  t h e  number of com7onents required. These i n  turn were projected i n t o  
t-vpical packaging configurations t o  estimate the  weight and s i z e  of a typica l  
sounding rocket f l i g h t  cont ro l ler .  Including t h e  transformer but  not the  28 
vo l t  ba t tery ,  the  2500 watt  isothermal furnace con t ro l l e r  with instrumentation 
i s  estimated t o  have a ueight  of 9.1 Kgm (20 pounds) and a volume o f  6600 cubic 
c m  (400 cubic inches). The isothernal  furnace would have a weight of about 
15.9 Kgm (35 pounds) and a volume of ll5OO cubic cm (700 cubic inches).  

Estimates were a l s o  made f o r  the  case o f  an  a x i a l  gradient furnace having 
three  separate heater  element zones requi r ing  i n  f l i g h t  control .  These were 
s ized  f o r  900 watts  each of  maximum parer.  The same furnace housing and pre- 
heater  subassembly a r e  -&ed with changes only i n  the  main heater  c o n f i y r a ~ i o n .  
Furnace weight and s i t e  a r e  bas ica l ly  unchanged. 4 three-900 watt loop con- 
t r o l l e r ,  however, w i l l  weigh approximately 16.3 Kgm (36 pounds) and occupy 9000 
cubic cm (550 cubic inches).  

Ceramic heater  element t e s t s  were conducted on sample elements as  well a s  
on the completed furnace elements (f igures 13 and 19). Electrode inrer fac ing 
is well modeled with the  s ing le  elements and r e s u l t s  obtained a r a  representazive 
of the  mult iple tube assemblies themselves. 
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Two isothermal furnace elements were t e s t ed ,  one being t h e  f i g u r e  1 3  
element. The o the r  had a c a v i t y  diameter of  2.6 cm and leagth of 7.0 cm. 
Two ceramic elements f o r  t h e  a x i a l  gradient  furnace were f ab r i ca t ed .  The one 
shown i n  f i g u r e  19 has an a l t e r n a t e  tubular  arrangement of long and s h o r t  tubes 
providing a cage l i k e  s t ruc tu re .  The second -{as s i m i l a r  i n  s i z e  t o  t h e  f igu re  
19 element bu t  with a l l  tubes of  t h e  same length g iv ing  it t h e  appearance of 
t h e  f i g u r e  13 element. This  element was not  t e s t e d  extensively.  The follow- 
ing sec t ions  d iscuss  t h e  experimental r e s u l t s  of t h e  var ious  element t e s t s  and 
furnace assembly t e s t s .  

Sample Heater Elements 

The sample hea t e r  elements a r e  made f r m  tubes of s t a b i l i z e d  z i rconia  
having an OD of about 2.9 mm and an I D  of  about 1.3 mm used t o  f a b r i c a t e  t h e  
isothermal furnace hea ter  element and tubes of  about 1.6 mn OD by about 0.6 mm 
I D  used f o r  t h e  a x i a l  g rad ien t  furnace elemects. 

The tubular  elements a r e  formed by extrusion.  Electrodes a r e  a t tached  i n  
the same manner as those  on t h e  furnace h e a t e r  element assemblies. Braided 
platinum wire  i s  used f o r  t h e  e lec t rodes  and a t tached  with s t a b i l i z e d  z i rconia  
cement. The cement is  appl ied  a s  a pas t e  using a s u i t a b l e  b inder  and then  
f i r e d  t o  s i n t e r  t h e  cement i n  p l ace  over t h e  platinum e l ec t rode  wires.  

The s t a b i l i z e d  zii 'conia is made a t  ARTCOR by a propr ie ta ry  process  and 
r e s u l t s  i n  a conducting ceramic element which can withstand extrems thermal 
shock and many heat-up cycles .  These n a t e r i a l s  a r e  rout ine ly  evaluated a s  
sample conductors i n  c y c l i c  tests t o  v e r i f y  t h e i r  i n t e g r i t y .  Cycling t e s t s  t o  
very high temperatures r e s u l t  i n  e a r l i e r  e l ec t rode  f a i l u r e s  r a t h e r  than cera- 
mic f a i l u r e .  Therefore, more meaningful evaluat ion o f  the  ceramic cycl ing 
c a p a b i l i t y  is  obtained a t  a nominal lower teniperature of  about 1600°c. Rela- 
t i v e  t o  a furnace condition, t h e  sample hea t e r  elements z r e  operated free-  
standing, without i n su la t ion ,  r e s u l t i n g  i n  more severe wall temperature grad ien ts .  
The increased wall temperature grad ien t  is the  r e s u l t  o f  increased thermal l o s ses  
( rad ia t ion  and convection) from t h e  su r f ace  o f  t h e  free-standing element. I n  a 
furnace appl ica t ion ,  t h e  p e r  u n i t  a r e a  l o s s e s  a r e  reduced considerably by t h e  
surrounding insu la t ion .  

Fa i lures  experienced a r e  genera l ly  assoc ia ted  with e l ec t rode  wire f a i l u r e  
by deple t ion  of  t h e  wire mater ia l  due t o  vaporizat ion and oxidat ion.  There- 
fo re ,  t he  temperature of  t h e  ceramic tube  ad jacent  t o  t h e  e lec t rode  in t e r f ac ing  
region i s  most c r i t i c a l .  I n  genera l ,  with a ceramic tube su r f ace  temperature 
of 1 6 ~ 0 ' ~  adjacent  t o  .the e lec t rode  region, a l i f e t ime  of about 4000 hours can 
be expected f o r  stead;.-state condit ions.  Dropping t o  ~ S O O ~ C ,  t he  l i f e t i m e  i s  
extended beyond 6000 hours. A t  1700°c, l i f e t i m e  i s  reduced t o  about 2000 hours. 
With hourly cycles  included, t h e  l i f e t i m e  is reduced approximately 1500 hours 
fo r  each of t he  above condit ions.  I t  is  not  l i k e l y  t h a t  t h e  furnace wou1' be 
used i n  such a severe cycl ing condit ion and l i f e t imes  approaching the  steady- 
s t a t e  values a r c  t o  be expected. The above values a r e  those corresponding t o  
operat ion with an air  environment. 

Accelerated s t eaby- s t a t e  l i f e  t e s t s  conducted with a i r  a t  a ceramic su r f ace  
temperature o f  1 9 4 0 ' ~  r e s u l t s  i n  e l ec t rode  f a i l u r e  i n  about SO0 t o  600 hours. 



Tests  a r e  being conducted under an A i r  Force cont rac t  ( reference 10) t o  
eva lua te  t h e  conducting ceramic hea t e r  elements i n  var ious atmospheres. I n  
one of t hese  t e s t s  a n  i d e n t i c a l  element t o  t h a t  above was operated i n  argon f o r  
3000 hours a t  a sur face  temperature of  1 9 4 0 ' ~  without f a i l u r e .  I n  t h e  absence 
of oxidat ion o f  t'-e platinum e lec t rode ,  l i f e t i m e  appears t o  be  extended a 
f a c t o r  of 5 o r  more. Oxidation and not  vapor iza t ion  is ,  the re fo re ,  t h e  l i f e  
determining mechanfsm o f  t h e  platinum e lec t rodes  r e l a t i v e  t o  opera t ion  i n  air.  

Another conclusion from t h e  argon t e s t s  is t h a t  t h e  conducting ceramic 
hea ter  elements funct ion well i n  an  i n e r t  environment with AC. 60 Hz AC is  
used i n  t e s t i n g  the  ceramic hea t e r  elements. Another t e s t  s e r i e s  as p a r t  of 
t h e  re ference  10 program included opera t ion  of t h e  ceramic elements i n  a 
reducing environment. 

Also as p a r t  of t he  re ference  10 study, a sample hea t e r  element was placed 
i n  a quar tz  environmental chamber and was ign i t ed  i n  air. Af te r  two days, t h e  
chamber was purged with n i t rogen  (high p u r i t y  grade) f o r  two days and then  
exposed t o  d ry  h-idrogen (high p u r i t y  grade).  Af te r  31.5 hours on H2, t h e  
hea t e r  was unin ten t iona l ly  shut  of f .  During an  attempt t o  r e - i g n i t e  t h e  hea t e r  
i n  an a i r  environment with a flame p reh r s t e r ,  t h e  hea t e r  element cracked. 
While t h e  flame preheater  exposed t h e  element t o  severe thermal shocks and 
gradien ts ,  t h e  f a i l u r e  was considered t o  be  due t o  changes i n  t h e  oxide 
s toichiometry (sub oxide on hydrogen r e v e r t i n g  toward s toichiometry i n  a i r ) .  

A second hea t e r  element was subsequently t e s t e d  and operated 812 hours on 
hydrogen. Using ni t rogen purges between gas changes, t h e  same hea t e r  was cycled 
f i v e  (5) times t o  carbon dioxide and back t o  hydrogen. F ina l ly  t h e  element was 
exposed t o  a i r  and secured a f t e r  1324 hours of which 956 hours were on hydrogen. 
Temperature was held a t  a inoderate 1525°C during t h e  t e s t  with c a l i b r a t i o n  
excursions made from 1325 t o  1625'~.  1 5 2 5 ' ~  is a t y p i c a l  e l ec t rode  condi t ion  
where l i f e t i m e  c r i t e r i a  of  t h e  hea t e r  elements is assoc ia ted  with e l ec t rode  
f a i l u r e  conditions.  

Of importance here  is t h a t  t h e  s t a b i l i z e d  z i rconia  hea t e r  elements can 
s u s t a i n  cycl ing between reducing and oxidizing atmospheres. Stoichiometry does 
appear t o  change. That is, X i n  ZrO, becomes l e s s  than 2.0 wnile on hydrogen 
as observed by t h e  gray appearance of t he  first element a f t e r  i t  was secured 
under hydrogen. I t ,  therefore ,  appears t h a t  t h e  z i rconia  conductor furnace w i l l  
have a more universa l  pos i t i on  i n  being a b l e  t o  b e  used with oxidizing,  i n e r t ,  
and reducing environments. 

A sample ceramic hea t e r  element was operated on DC t o  v e r i f y  t h e  tyFe of  
problem assoc ia ted  with t h i s  kind of power supply. Upon i g n i t i n g  t h e  sample 
hea t e r  element with DC power, a severe c i rcumferent ia l  temperature grad ien t  
of  200 t o  3 0 0 ' ~  developed i n  a few minutes. Under AC, t h e  c i rcumferent ia l  
tempera.ture d i f fe rence  would be  no more than 1 0 " ~ .  An a x i a l  g rad ien t  -of 150'-~ 
developed a s  wel l  which would have becn nominally about 1 5 ' ~  under AC. The 
cathode end corresponded t o  t h e  lower temperature i n  t h i s  s i t u a t i o n .  These 
t e s t s  were conducted i n  a i r .  I n  a reducing atmosphere, ca t a s t roph ic  e f f e c t s  
would be expected with DC. This  t e s t  on DC was with a free-standing - uninsu- 
l a t ed  hea ter  element. In  2 fvrnace cavi ty ,  thermal loading would be reduced 
and so  too would be the  teri3ency t o  genera te  a mald is t r ibu t ion  of  temperature. 
The important f a c t o r  is t?-tat such a tendency e x i s t s  and is  g r e a t l y  amplified 
wi th  DC power r e l a t i v e  t~ it-r lJower. 
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A sample hea t e r  element t e s t  was conducted t o  denons t ra te  t h e  e f f e c t  of  
contouring of t h e  element on i ts  sur face  temperature. Tapering o f  tile ceramic 
element t o  achieve a lower e l ec t rode  region temperature r e l a t i v e  t o  t h e  cav i ty  
zone temperature is mentioned i n  t h e  thermal design d iscuss ion  i n  t h e  Axial 
Gradient Furnace Section. The sanp l s  elet: q t  had a reduced c ros s  s ec t ion  
corresponuing t o  an outs ide  diameter of 2.27 mm over a por t ion  of  its length. 
Near t h e  e lec t rodes ,  t h e  outs ide  diameter was 2.84 mrn while  zhe i n s i d e  d ia -  
meter of the element was 1.27 nun. 

Figure 24 ind ica t e s  t h e  arrangement of t h e  contouring being c l o s e r  t o  t h e  
lower e lec t rode  than t h e  upper electrode.  Temperature p r o f i l e  measurements 
are shown and ind ica t e  t h a t  g r e a t e r  than 200°C temperature d i f f e r ence  is 
achieved a t  about 2200 '~  with a reduct ion i n  diameter o f  20 percent .  Greater 
temperature d i f fe rence  would occur  with a g r e a t e r  reduct ion i n  diameter r e l a -  
t i v e  t o  t h e  diameter near  t h e  e lec t rodes .  

To b e t t e r  i nd ica t e  t h e  consequence of contouring o f  ceramic cocductor 
elements, f i g u r e  25 is presented showing how temperature v a r i e s  with cu r r en t  
f o r  a family of element s i z e s  (OD). Experimerltal da t a  f o r  an element of 2.8 
mm OD (0.11 inches) is compared t o  t h e  ca lcu la ted  values and shows exce l l en t  
agreement. The f i g u r e  25 data a r e  f o r  a free-standing element without thermal 
i n su la t ion  i n  f r e e  v e r t i c a l  c o n ~ e c t i o n  sub jec t  only co r ad ian t  and convective 
hea t  l o s ses  t o  an  ambient environment. The dashed l i n e  example shows how an 
element could run  a t  2202OC (2475K) y e t  h a w  e lec t rodes  which a r e  subjected t o  
only 1 9 2 7 ' ~  (2200K). With t h e  addi t ion  of i n su la t ion  over t h e  higher  tempera- 
t u r e  region,  t he  temperature d i f f e r e n t i a l  can be f u r t h e r  enhanced as discussad 
i n  t h e  Thermal Design Sect ions.  

Isothermal Furnace 

The s ~ a l l e r  of t he  two isothermai furnace ceramic elements (2.6 crn ID by 
7.0 cm long) was used as a model t o  evaluate  t he  e f f ec t  of changes i n  thermzl 
loading on the  use  of t he  element e l e c t r i c a l  r e s i s t a n c e  a s  a teEperature s igna l .  
The model furnzce includes a prehea ter  and t h e  cav i ty  was closed a t  both ends 
with Zi rcar  i n su la t ion  plugs. To s imulate  a l a r g e  change of thermal loading, 
t h e  preheater  a c t i n g  l i k e  a thermal guard zone when the  ceramic hea t e r  is 
conducting, was var ied  i n  pohzr. 

The model furnace was operated with manual power cont ro ls  (autotrans2ormers) 
i n  two modes. In  t he  first mode the  preheater  was under power t o  maintain a 
preheater  temperature of 1200K. I n  the  second mode, t he  prehea ter  was l e f t  o f f .  
The corresponding conducting ceramic (main) hea t e r  element r e s i s t a n c e  i s  shown i n  
f i g u r e  26 over a t y p i c a l  range of temperature. Di f fe ren t  symbols a r e  used f o r  t h e  
preheater  on and preheater  off cases  and show no s i g n i f i c a n t  difference i n  t h e  main 
hea ter  r e s i s t ance .  

To ind ica t e  t h e  main hea t e r  power change f o r  t h e  two modes, fo r  example, 
consider t h e  d a t a  poin ts  near about 1760K. With the  preheater  on holding 1200K, 
the  main hea t e r  used 236 watts  while with t h e  power o f f  ( a t  868K), t he  main 
hea ter  used 325 watts .  A l l  of t h e  d a t a  points  f a l l  on the  curve f i t  wi th in  the  
instrumentation accuracy of t he  t e s t  setup (21%) and indica te  t h a t  t he  ceramic 
heater  elzment r e s i s t ance  provides an accurate  temperature s igna l  s u i t a b l e  
f o r  fine cont ro l  of the furnace. 
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Figure 25.- Effect of ceramic conductor size on tl r crent-temperaturebrelationship, 
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Fi~ure 26.- Iscthermal furnace element resistance characteristic. 
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The follawing discussion describes t h e  da ta  obtained fron: i e s t s  of  the  
Model 40 fmnace  (f igure 6) .  A s ing le  Research Inc. Thermac Model 625 power 
con t ro l l e r  was used. Both t h e  preheater and mai? heater  were operated with 
t h e  con t ro l l e r ,  one a t  a t i n e ,  using an autotransformer f o r  t h e  u n i t  not on the  
cont ro l ler .  In  t h i s  way, control  s t a b i l i t y  was checked on both heaters .  On 
t h e  p r d e a t e r ,  t h e  con t ro l l e r  was operated i n  the  -i;emperature feedback mode 
using the  b u i l t  i n  type K thermocouple. The main heater  was operated i n  b ~ t h  
the  current  feedback mod= i n  some t e s t s  and i n  t h e  temperature feedback mode 
i n  o ther  tests. Temperature was sensed by a Pt-GRh/Pt-30Rh thermocouple 
placed i n  t h e  main heater  cavity.  This thermocouple was good f o r  measurements 
j u s t  over 1800'~. I n  sane instances the  Pt-6R.h leg was melted ( 1 8 2 ~ ~ ~ )  serving 
a s  a ca l ib ra t ion  point .  Other platinum-rhodium a l loys  were used i n  t h i s  manner 

- to  es tab l i sh  higher temperature ca l ib ra t ion  points.  

Table VIsummarizes t h e  highlights  0.2 the  Model 40 furnace test and indi-  
c a t e s  the  platinum-rhodium meit run points  taken. 

HODEL 30 FURNACE TEST S ~ ~ Y  

Tota l  Time :-fain Heater Conducting 75.3 h r s  

Total  Time a t  1800 '~  o r  Greater 12.3 h r s  

Maxinm Cavity Tem2erature Achieved 1 9 4 0 ~ ~  

Platinum-Khodium Alloy Melt Runs Made 

2i-6Rh (182S°C) 2 r ~ n ~  

Pt-1OW1 j1851°c) ' i run 

Pt-I3Rh (1867'~) 2 runs 

Pt-20531 (1904'~) 2 runs 

Figure 27 presents the  e l e c t r i c a l  c h a r a c t e r i s t i c  of  the  ?reheater and che 
resu l t ing  steady-state temperature. The main heater  cavi ty  temperature which 
r e s u l t s  a t  various steady-state preheater conditions is indicated i n  Figure 25. 
Figure 29 shows how the  main heater  r e s i s t ance  va r i e s  with main heater  cavi ty  
temperature. An ign i t ion  region is indicated where main heater  res is tance  is 
from 100 t o  1000 ohms. Having preheated the  main heater  t o  6 0 0 ' ~  o r  nore, the  
main heater  w i l l  begin t o  conduct e l e c t r i c i t y  and heat  i t s e l f  with nominal 
applied voltagcsJLesthcsn- 1.50. v~ l - t s ) ,  .This self-heat ing condition is  
refer red  t o  a s  ign i t i cn  of the  main heater  element. Igni t ion  is  possible z t  
cavi ty  temperatures 3elow 6 0 0 ' ~  with correspondingly higher applied voltages; 
however, it is recommended t h a t  the  600°C condition be reached t o  avoid having 
t o  apply unnecessarily h 'zh voltages t o  the  main heater  element. 

In  terms of the  6 0 0 ' ~  main heater  ign i t ion  condition, one can t r ace  back 
through f igure  28 t o  f igure  27 and f ind t h a t  a minimum preheater voltage of  
109 v o l t s  is reqcired f o r  aormal ign i t ion  conditions. A t  109 v o l t s ,  the  time 
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.Figure 27.- Mode; 40 zircon:& conductor furnace preheater steady scate  
performance. 



Figure 28.- Model 40 zirconia conductor furnace cavity temperature for 
preheating only. 
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Figure 29.- 3oJe i  40 z i r con ia  conductor funace cerasic h e a t e r  element 
resistance. 



t o  reach, say a 1000 ohms main hea t e r  r e s i s t ance ,  would be  long. Figure 30 
ind ica t e s  t h e  t i m e  requi red  t o  reach normal i g n i t i o n  condit ions with higher  
prehea ter  vol tages.  For example, t h e  1000 ohm condit ion is reached i n  about 
30 minutes with a prehea ter  vo l t age  o f  about 123 v o l t s .  

Figures 31 and 32 present  main hea t e r  e l e c t r i c a l  c h a r a c t e r i s t i c s  and t h e  
corresponding main heazer cav i ty  tempeznture. I n  addi t ioc ,  t h e  e f f e c t  o f  v a r i -  
ous preheater  condi t ions f o r  cu r r en t  below 10 amperes i s  shown where t h e  
prehea ter  w a s  powered simultaneously with the main hea t e r  t o  hold t h e  pre- 
h e a t e r  power at 500 and 7 0 0 ~ ~ .  Above a main hea t e r  cu r r en t  of 10 amperes, t h e  
prehea ter  power was off .  Some r e s u l t i n g  prehea ter  temperatures a r e  i nd ica t ed  
i n  t h e  above 10 amperes range as a r e s u l t  o f  h e a t  conducting r a d i a l l y  outward 
from t h e  main hea t e r  cav i ty  t o  t h e  preheater  core. Data were obtained f o r  a 
main hea t e r  c a v i t y  temperature t o  1940°C (2213K). Performance o f  t h e  Model 10 
furnace is projected (by ex t rapola t ion  of t h e  test da t a )  a t  a 2200°C (2475K) 
condit ion t o  be  18.2 amperes a t  77.0 v o l t s  corresponding to  1400 watts o f  power. 

Figure 33 presents  an enlargement of t h e  high temperature end o f  t h e  
m i n  hea ter  resis tar ice curve o f  f i g u r e  29. Included a r e  d a t a  f o r  t h e  two 
prehea ter  temperature condit ions o f  500 and 7 0 0 ~ ~ .  Holding t h e  prehea ter  a t  
t h e s e  two d i f f e r e n t  temperatures represents  e f f ec t ive ly  a d i f f e r e n t  tnermzl load- 
ing on t h e  main hea t e r  element. That is, t h e  n a i n  hea t e r  power requirement is 
a f f e c t e d  by a n  ex terna l  f a c t o r ,  i n  t h i s  case t h e  preheater  temperature,  r a t h e r  
than j u s t  having a normal t rend  of  power versus c a v i t y  temperature. The f i g u r e  
33 d a i a  i nd ica t e  t h a t  main hea ter  r e s i s t a n c e  is af fec ted  l i t t le  if aily by 
nominal changes i n  ex t e rna l  t he rna l  loading. Thus a s a l n  hea t e r  r e s i s t a n c e  
s igna l  would provide an  idea l  cont ro l  feedback s i g n a l  f o r  app l i ca t ions  where 
t h e m a l  loading n igh t  change as noted r e l a t i v e  t o  f i g u r e  26 a s  wel l .  I n  f i g u r e  
32,  hetween 4 and 7 anperes,  :he e f f e c t  cf thernial load chznge on c a v i t y  
temperature caused by the two preheater  condi t ions i s  apparent. For appl ica-  
t i o n s  where t h e  t h e r m l  load c h a r a c t e r i s t i c  is not  changing except with cav i ty  
t enpe ra tme ,  cu r r en t  feedback provides a siinpler con t ro l  sign?-l than  does 
r e s i s t a n c e  fee6back. 

Transient  response was observed i n  t h e  1600 t o  1 8 0 0 ~ ~  range f o r  s t e p  
changes i n  power. Using a Variac (auto-transformer) with a s u i t a b l e  b a l l a s t  
r e s i s t o r  i n  s e r i e s  with t h e  main hea t e r ,  t h e  cu r r en t  was stepped between 11.65 
and 13.15 amperes c3rresponding t o  1728 and 1858°C s t eady- s t a t e  condit ions a s  
shown i n  f i gu re  34. Stepping up i n  power (heating up) r e s u l t e d  i n  a t ime 
constant  (63.2% response) of 75 seconds. Stepping down i n  power (cooling off)  
r e su l t ed  i n  a time constant  o f  95 seconds. These responses a r e  f o r  a ba re  
Pt-5Rh/?r-30Rn thermocouple located i n  t h e  center  of  t h e  furnace cavi ty .  
Heater element response is necessar i ly  f a s t e r  assuming some lag occurs  i n  t h e  
thermocouple response. 

Using t h e  Research Inc.  Thermac 625 power c o n t r o l l e r ,  s imi l a r  t r a n s i e n t s  
were observed, i n  this case  between 1630 and 1730 '~ .  I n  t h e  cu r r en t  feedback 
cont ro l  mode, r e s p n s e s  s i m i l ~ o _ t h o s e  above occur- a s - t h e  s t e p  would be  
between d i s c r e t e  cur ren t  s e t t i n g s .  I n  t h e  temperature feedback mode with t h e  
cav i ty  located thermocouple providing a feedback s igna l ,  f a s t e r  responses a r e  
r ea l i zed  s ince  t h e  c o n t r o l l e r  can operate  outs ide  of power l eve l s  correspond- 
ing t o  t h e  s teady-s ta te  power l eve l s  f o r  1630 and i730°c. For example, i n  a 
cool-down s t e p  from 1730 t o  1630'~, t he  c o n t r o l l e r  goes t o  zero power u n t i l  
1630°C is approached c lose ly  (depending upon t h e  c o n t r o l l e r  gain s e t t i n g s ) .  
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Figure 30.- Model 40 z i rconia  conductor flumace t ime t o  reach main 
hea ter  i g n i t i o n  condition. 
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Figure 33.- Model 40 zirconia conductor furnace main heater element 
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Figure 34.- Model 40 zirconia condcctor furnace transient response. 
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These more severe  t r a n s i e n t s  were run a l s o  t o  v e r i f y  t h a t  t h e  main hea t e r  
element could handle some reasonably severe thermal shocks. Typical ga in  and 
r e s e t  s e t t i n g s  were used t o  provide a narrow proport ional  band (corresponding . 

t o  l e s s  than 10°C). I n  order  t o  prevent over-ranging the  hea t e r  element during 
increasing temperature s t eps ,  t he  con t ro l l e r  cur ren t  l i m i t e r  was used and ad- 
jus ted  f o r  15 aniperes (corresponding t o  about 2000°C) . The following response 
t o  s t e p  changes i n  t h e  c o n t r o l l e r  s e t  o i n t s  of 1630 and 1730°C were observed. ! - During t h e  cool-down from 1730 t o  1630 C t n e  cavity-mounted ~hermocouple reached 
1 6 4 0 " ~  i n  18 seconds, had undershoot t o  1 6 2 6 ' ~  a t  22 seconds arid reached 1 6 2 9 " ~  
i n  25 seconds. During a heat-up from 1630 t o  1730°C, t h e  thermocouple reached 
1720°C i n  32 ssconds, reached 1725°C i n  120 seconds, and reached 1724°C i n  240 
seconds. Control i n  both cu r r en t  feedback and thermocouple feedback modes was 
found t o  be exce l l en t  with f l uc tua t ions  i n  t h e  thermocouple-sensed c a v i t y  
temperature being much l e s s  shan +-1°c. 

The above t r a n s i e n t  t e s t  r e s u l t s  corresponding t o  s t e p  changes i n  temperature 
of 110 and 100°C a r e  i nd ica t ive  of l a rge r  s t e p  changes i n  temperature (response) 
and cur ren t  (dr iving fo rce ) .  These ind ica t e  t h a t  t h e  conducting ceramic 
furnace can change temperature r a p i d l y  r e l a t i v e  t o  the time frame of t h e  
sounding rocket experiment f l i g h t s  depending on t h e  "acceleration" power ava i l -  
able .  

Power c o n t r o l l e r  accuracy experienced with t h e  Thermac 625 d r iv ing  the  
Model 40 furnace was exce l len t .  Control l ing the  preheater  using the  preheater  
type K thermocouple f o r  a feedback s igna l ,  t h e  c o n t r o l l e r  held 1 0 . 2 ~ ~  a t  97S°C. 
Using gain adjustments only, t he  temperature droop was of the  order  of 1 0 ' ~ .  
Applying r e s e t  t o  the  cont ro l  loop reduced t h e  droop t o  about O.l°C. 

Controlling t h e  ceramic main hea t e r  a t  1700°c, t h e  c o n t r o l l e r  operat ing 
closed loop on a bare  Pt-6Rh/Pt-30kh thermocouple junct ion i n  ;he center  of t h e  
hea ter  cavi ty  he ld  +-0.25"~.  Control l ing t h e  main hea t e r  with ca r r en t  feedback, 
t h z  hea ter  cavi ty  was held t o  iO.S°C. Using ga in  and r e s e t  adjustments, d r o ~ p  
could be  reduced t o  a f r a c t i o n  of a degree cent igrade.  

Axial Gradient Furnace 

Of primary importaace i n  t h e  t e s t s  of t h e  a x i a l  gradient  furnace was 
documentation of t he  temperature gradient  aloag t h e  furnace cav i ty  ax i s .  This 
was done using a thermocouple of Pt-6Rh/Pt-30Rh and an alumina r a d i a t i o n  t a r g e t  
viewed by a Micro-Optical pyrometer. The thermocouple consisted of  a bz re  
junction of .05 mrir diameter wires supported by a 3 mrn (1/8 inch) OD double 
bore high pu r i ty  99.8% alumina tube. Near t he  junct ion,  a bead of the  sane tube 
7.5 mrn long was used a s  a pyrometer t a r g e t .  The ')cad, separated from the  sup- 
p o r t  tube and having only cont rac t  r e s i s t ance  with t h e  suppcrt tube, responded 
b e t t e r  t o  the furnace cavi ty  temperature than would have t h e  end of t he  support 
tube. 

In addi t ion ,  f o r  operation above 1 8 0 0 " ~ ,  a s imi l a r  support tube  was used 
t o  hold two separa te  3 mm long beads. These were held on top of t he  support 
tube by a U-shaped loop of .025 mm diameter 6CIr-40Rh a l l o y  wire. The upper 
most bead appeared t o  have exce l len t  response t o  cav i ty  temperature changes. 



These support tubes were in se r t ed  i n t o  t h e  furnace cav i ty  through a hole  
i n  t h e  lower support o f  t h e  furnace 2nd, i n  t h e  case of pyrometer s igh t ings ,  
were viewed through a 3 mm diameter hole  i n  t h e  upper i n s u l a t i o n  plug. The 
da t a  thus repor ted  is i n  terms o f  t h e  measured temperatures which a r e  not 
neces sa r i l y  t h e  same as t h e  hea t e r  element temperatures,  they being higher  by 
some d i f f e r e n t i a l  amount allowing f o r  r a d i a t i o n  and conduction e r r o r s  of t h e  
thermocouple and support tube. For la rge  p e n e t r a t i o ~ ~ s  i n t o  t h e  furnace, good 
agreement was genera l ly  found between the  thermocouple and t h e  s i g h t i n g  on t h e  
s i n g l e  supported bead below t h e  thermocouple junc t ion  suggest ing t h a t  any e r r o r  
i n  measured temperature va lues  was small (less than  1%) .  

Toward t h e  bottom end of t h e  working cav i ty ,  support tube conduction e r r o r s  
were observed t o  become s i g n i f i c a n t  and measured temperatures i n  t h i s  reg ion  
would be  low r e l a t i v e  t o  t h e  secondary hea t e r  element wal l  t rmperatuie .  This 
was evident  s i n c e  the  pyrometer s igh t ings  on t h e  alumina bead yielded tempera- 
t u r e s  s i g n i f i c a n t l y  higher than  the  thermocouple s igna l l ed  temperatures.  For 
example, a t  a n  a x i a l  l cca t ion  2 cm up from t h e  bottom of t he  furnace cav i ty  
with the  secondary hea ter  a t  1020°C, the  pyrometer reading ind ica ted  1 0 9 0 ~ ~  
while t h e  thermocouple i nd ica t ed  700 '~ .  Undoubtedly the  thermocoupie leads 
which pass  through t h e  a l m i n a  'oc2.i have a cool ing e f f e c t  or1 t h e  bead. The 
bead i n  t u r n  was responding t o  r a d i a t i o n  being received from t h e  primary 
(ceramic) hea t e r  which was a t  a nominal temperature o f  147s°C. For t h i s  reason, 
t h e  double beaded support without a thermocouple is bel ieved t o  represent  more 
accura te ly  t h e  t r u e  cavi t f  temperature. 

Figure 75 presents  some t y p i c a l  temperature grad ien t  data .  The lower two 
curves correspond t o  thermocouple da t a ,  t h e  middle curve t o  the  bead ad jacent  
t o  t he  thermocouple, and the  upper two curves a r e  front t h e  pyrometer readings 
on t h e  double beaded support tube. The bot ton  curve corresponds t o  prehea ter  
power only with t h e  preheater  core a t  8 0 0 " ~ .  Rela t ive  t o  t h e  isothermal 
furnace (see f i g u r e  28) i n s u f f i c i e n t  heat ing of  t h e  primary hea t e r  has 
occurred f o r  a n  i g n i t i o n  condit ion.  

The second curve from t h e  bottom shows how i g n i t i o n  temperatures a r e  
achiev9d by adding the  secondary hea ter  (preheater  a t  820°C and secondary 
hea ter  a t  925°C). For t h e  remaining curves, a l l  t h r e e  hea t e r s  a r e  being 
powered t o  hold nominal temperatures as indicated.  The primary hea t e r  tempera- 
t u r e  was not  measured and call b e  taken t o  be  a t  l e a s t  t h e  maximum observed 
temperature on each curve s ince  element temperature does not vary s i g n i f i c a n t l y  
over the  a c t i v e  length of t h e  conducting cera2ic  element. Most l i k e l y ,  t h e  
t r u e  element temperature i s  s l i g h t l y  higher ,  perhaps 1 9 5 0 ~ ~  i n  t h e  case  of  t h e  
upper-most curve of f i gu re  35. 

The maximum temperature grad ien t  r e f l e c t e d  i n  t h e  upper most curve of 
f i gu re  35 j.s no more than about 1 0 0 ~ ~  per cm. However, t h i s  is the  gradien t  
response r eg i s t e r ed  by t h e  pyrometer ta rge ,  of 3 mm diameter i n  a 17.7 mm 
cavi ty .  The t a r g e t  na tu ra l ly  responds s i g n i f i c a n t l y  t o  r ad i a t ion  f luxes  
r e l a t i v e  t o  a considerable d i s t ance  i n  both d i r e c t i o n s  along t h e  furnace 
cav i ty  ax i s .  Consider f o r  example t h e  upper most curve of f i g u r e  35 and an 
a x i a l  s t a t i o n  of 9 cm. This  s t a t i o n  is  ?bout midway between t h e  top  most end 
of t he  secondary hea ter  estimated t o  have a wal l  temperature of no inore than 
1300°C and t h e  bottom end of t h e  high temperature zone of the  primary hea ter  
estimated t o  have a wall temperature of not l e s s  than 1 9 0 0 ~ ~ .  The a x i a l  
d i s tance  between these  two s t a t i o n s  is 2.36 cm (0.93 inch) and the  corresponding 
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Figure 35.- Temperature gradients for the axial gradient furnace. 
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gradienL i n  terms of  furnace wall temperature is  a t  l e a s t  250°C per  cm. With 
h i g t e r  primzry element temperatures and lower secondary elemen. temperatures 
t h e  a x i a l  gradient  i n  terms of wai l  temperature can b e  increased f u r t h e r .  

To demonstrate a higher  temperature, t h e  primary hea t e r  element was 
increased incrementally [about 2 5 " ~  per  increment) while observing t h e  t o p  
bead of t h e  double beaded support tube  set a t  a n  a x i a l  l oca t ion  of 14 cm. 
The 6QIr-JOEh w i r e  was observed t o  evaporate and ox id i ze  t o  near  nothing as 
2000°C was reached. A t  a pyrometer reading of 2020°C ( Z ~ O C ) ,  t h e  99.8% 
aiurniila bead was observed t o  melt. Temperature by pyrometer reading was 
increased t o  2027°C a t  which time t h e  alumina support tube began t o  sag. To 
avoid having t h e  alumina tube touch t h e  pr inary  hea t e r  t h e  furnace power was 
reduced. It is  estimated t h a t  t h e  primary hea t e r  element temperatrrre reached 
from 2050 t o  2 1 0 0 ~ ~  when t h e  melting was observed. 

E l e c t r i c a l  c h a r a c t e r i s t i c s  f o r  t h e  primary heazer are shown i n  f i g u r e  36- 
The power and temperature curves have t rends  similar t o  those  f o r  t h e  i so the rna l  
furnace ( f igure  31). The vol tage curvo, however, is  d i f f e r e n t  a;.d is increas ing  
r e l a t i v e  t o  near constant  vol tage f o r  t h e  i s o t h e r m 1  furnace ceramlc hea t e r  
over t h e  same temperature range. While no t  shown on t h e  f i g u r e  3b curve, 
vo l tage  continues t o  decrease with decreasing cu r ren t  down t o  i g n i t i o n  coriditions 
(about 1 ~ 0 0 " ~ ) .  For example, with a preheater  t e n p e r a t m e  of  8 0 ~ ~ 2 ,  a secondary 
hea t e r  tern7erature of 1200°c, t h e  p r i m r y  hea t e r  Dperates a t  55 v o l t s  a t  1 0 0 0 " ~  
and 91 v o l t s  a t  120o0C. Figure 37 presents  t h e  primary hea t e r  r e s i s t a n c e  f o r  
zhese sondi t ions  as & e l l  a s  axothe-. set of prehea~er-seconaary hea t e r  condi t ions.  
The voltage is  s e n s i t i v e  t o  both t h e  preheater  and secondary hea t e r  temperatures. 
Thus, primry heater  vo l tage  a s  w e l l  as cu r ren t  can b e  used as a temperature 
s igna l  f o r  o ther  cor.ditions (preheater  and secondary hea t e r ,  f o r  example) 
u3onstEnt. 

Transient  lesponse of ?he a x i a l  g rad ien t  furnzce ceraiiic hea t e r  wzs 
abserved t o  be  considerably fziszer than t h a t  f o r  t h e  isothermal ceramic hea t e r  
(see t h e  d iscuss ion  r e l c r i v e  t o  f i g u r e  35). This is t o  b e  expected because 
o f  t h e  snaller s i l e  02 t h e  a x i a l  g rad ien t  element. While t h e  gap type  const-ruc- 
t iori  ~f t h e  axia! gradient  element over t h e  i so the rna l  element exposes sone 
of t h e  i n t e r n a l  i n su la t ion  which would tend t o  slow t h e m 1  response, Chis 
f - - tor  ap?esrs t o  be  compe~~sated by t h e  reduced mzss of t h e  conducting element 
Cevery other  conductor is eliminated i n  t h e  high temperature zone,. Temp?ra- 
C-ue sf,anges of  sever21 hundxed degrees cec t igrade  per minute a r e  poss ib le  wi th  
cinall d r iv ing  forces  {power per turbz t izns)  u i t h  t h e  a x i a l  g rad ien t  h e a t e r  e l e -  
ment shown i n  f i g u r e  19- 

Chemicai i n t e r a t ~ t i u ~ s  of t h e  furnace mater ia l s  and mater ia l s  t o  be  pro- 
cessed within t h e  furnace nre  d i f f i c u l t  t o  spec i fy  without a c t u a l  experimental 
da ta .  !n general ,  t h e  processed iaa te r ia l s  do not d i r e c t l y  contac t  t h e  furnace 
m a t e r i i i s  bu t  a r e  t r ans fe r r zd  t o  t h e  f u n a c e  p a r t s  a s  vapors o r  a s  f i n e  pa r t i -  
cT21a' :s. The thyee most suscept ih ie  furnace mater ia l s  include che s t a b i l i z e d  
= i r c c i l i ~  hea ter  element, t h e  z j rconia  i r i su lz t ioa  and the  pl-cix~rn e lzc t rodes .  
These a r e  located nebr t h r  PI -a;; a a t e r i a l s  i n  regions of high tenperxrulz  
and woula be most susct:rlble LC poss ib le  c5emical reac t ions .  Reactions must 
be r e l a k d  t o  t h e  furnace cav i ty  atnosphere 35 well  as opera t ing  te3pera ture .  
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Figure 36,- Electrical ~ n a ~ a c t s r i s t i c s  of the axial gradient furnace 
ceramic h-eater. 



Figure 37.-  Axial gradient furnace ceramic heater elenent resista..ce. 



While t h e  ceramic heater  element within the  furnace cavi ty  is  a t  the  
highest temperature, t h e  surrounding insula t ion  and adjacent electrodes being 
cooler ,  po ten t i a l  contaminating o r  reac t ing  vapors tend t o  be driven away 
toward the  cooler locat ions within the furnace. Extraneous vapors being emitted 
by the  process f ind  t h e i r  way t o  the  cooler reaions a t  tenperatures where con- 
densation [or so l id i f icaz ion)  can occur. Par t icula tes  which nay dust  of f  a 
process material  body o r  form a s  the  r e s u l t  of  a comingling of d i f ferent  vapors 
nay i n t e r a c t  d i r e c t l y  w i t h  even t h e  ho tes t  port ions of t h e  ceramic heater  
element. 

Direct  mechanical contact  a s  the r e s u l t  of f a u l t y  placement of process 
material ,  o r  f a i l u r e  i n  support f ix tu res ,  o r  from sp la t t e r ing  o f  = boi l ing  
m t e r i a l ,  f o r  example, a r e  t o  b e  avoided. These would represent abnormal 
abuses t o  t h e  fez-nace heater  elenent  and would be d i f f i c u l t  t o  design against.  

Borh mater ia ls  t o  be processed and f i x t u r e s  such a s  crucib les ,  seed holders, 
pull rods, i n s t m e n t a t i o n ,  e t c .  a r e  t o  b e  regarded a s  po ten t i a l  contaminants 
cT t h e  furnace heater  elements. Compounds from these  materials  such a s  oxides 
i n  t h e  case of  an oxidizing atmosphere, must a l s o  be considered. Thus chemical 
in te rac t ion  phenomenon are c.mplicated with inany aspects.  The furnace user  
should evaluate r e l a t ed  published data  i n  choosing fi-:trues and process 
materials  and, if necessary, is encouraged t o  run sw,., of  t h e  appropriate 
materials  t o  determine t h e i r  s u i t a b i l i t y  with the  furnhce n a t e r i a l s .  

The following presents  a br ief  discussion of some s p e c i f i c  r e s u l t s  of 
having exposzd Z r 0 2  and Thoz t o  typica l  materials  t o  b e  ased a s  furnace f ix -  
tures, 

Reference 11 indica tes  t h a t  both 30, and Thoz can be used i n  vacuum f o r  
extended periods t o  at l e a s t  2300"~.  Short time ( a few minutes) s t a b i l i t y  pro- 
blems arise f o r  t h e  following materials  combinations: 

1. S r 0 2  with W or C at 1630°C. 

2.  Z r 0 2  with B e 0  at 1 9 0 0 ~ ~ .  

3. E d 2  with MgO a t  2000°C- 

4. Z r 0 2  with Mo or  Tho2 at  2 2 0 0 ~ ~ .  

6.  Tho2 with C at 2GOC°C. 

7. Thoe with BeO a t  210d°C. 

8 .  Tho2 with W and NgO a t  2200'~. 

Further da ta  r e l a t i v e  t o  i n  vacuum performance a r e  given i n  reference 12 
which ind:.-ate t h a t  nei ther  310 nor W r eac t  with ZrOz a t  1 ~ 0 0 ~ ~  a fzz r  500 hours 
exposure. With Ta a t  t h e  same conditions, a s l i g h t  r e a c t i ~ n  was noted. 

Reference 13 describes a c r y s t a l  pu l l e r  f idrnac~ used t c  grow h%O, Ti2C13 
and A1203, f o r  exainple, having melting points  of approximately ?945, 2000 and 
2050°~,  respectively.  I t  is mentioned t h a t  dense s t ab i l i zed  ZrOz  can t e  used 



a s  a s u i t a b l e  pedes ta l  ma te r i a l  f o r  supporting c ruc ib l e s  of  I r ,  Wo, W o r  Ta. 
An argon atmosphere was used f o r  t h e  t e s t s . d e s c r i b e d .  Regarding in t e rac t ions ,  
re ference  13 mentions t h a t  c ruc ib l e s  o f  W ana Ta can b e  used with 410 supports ,  
hcwever, a t  2000°c, Ir r e a c t s  with Mo. Rela t ive  t o  Z r O g ,  r eac t ions  were noted 
with h i0  and a l s o  V203 where Z r 0 2  c ruc ib l e s  were destroyed with these  melts.  

Some r eac t ion  d a t a  between pe r t i nen t  oxides i n  oxid iz ing  atmospheres is 
given i n  re ference  14. I n  ma te r i a l s  compat ib i l i ty  t e s t s  t h e  following were 
noted : 

1. Z r 0 2  + Tn02 d i d  not  r e a c t  %a form a compound a t  2000°C - 10 minutes. 

2. + Al2O2 form a e u t e c t i c  j u s t  d o v e  1900°C. 

3. Zr02  + BeO appear t o  react s i g n i f i c a n t l y  ar about 1950°C. 

4. Tho2 + X1203 form a e u t e c t i c  melt ing a t  about 1 9 0 0 ~ ~ .  

5. Tho2 + MgO appear t o  form a e u t e c t i c  above 2000°C. 

The combinatian o f  Z r 0 2  i n  contac t  with Tho2 is t h e  b a s i s  f o r  t h e  e l ec t rode  
t o  element t r a n s i t i o n  i n  t h e  Geller ( re ferenzss  3 aild 14) furnace and a l s o  i n  
t h e  Rothwell ( reference 4) f u n a c e .  Rothwell used CaO s t a b i l i z e d  21-02 i n  con- 
t a c t  with Y203 d o ~ e d  Tho2. Ge l l e r  used Y203 s t a b i l i t e d  Zr02 with var ious ly  doped 
thor ias .  Davenport ( reference 2) used z inc  oxide a s  an  e l ec t rode  i n t e r f a c e  wi th  
s t a b i l i z e d  z i rconia ,  however, temperatures a r e  l imi ted  t o  1300°C a t  zhe in t e r -  
f a c e  Secause of v o l a t i l i t y  of  t h e  z inc  oxide. 

Reference 1s presents  t a b l e s  o f  poss ib le  c ruc ib l e  ma te r i a l s .  Of t he  high 
temperature oxides l i s t e d ,  a l m i n a ,  magnesia, and t h o r i z  a r e  suggested f o r  
working temperatures t o  1900, 2500 and 2800°C, respec t ive ly ,  m d  a r e  r a t e d  
f a i r  i n  thermal shock r e s i s t ance .  t i r c c n i a  and b e r y l f i a  a r e  r a t e d  f o r  2300°C 
with z i rconia  r a t e d  good s-nd b e r y l l i a  r a t e d  very good i n  therinal shock r e s i s -  
tance. These r a t i n g s  a r e  wichout regard t o  chemical r e a c t i o n  and a r e  based on 
c a p a b i l i t y  of t h e  r e spec t ive  ma te r i a l s  themselves. 

Zirconia and t h o r i a  and ceramic oxides  which a r e  used as s t a b i l i z e r s  f o r  
z i rconia  a r e  evaluated r e l a t i v e  t o  platinum and platinum-rhodium a l l o y  with an  
air atxasphere i n  re ference  10. This study, while  evaluat ing the  noble metals 
a s  e lec t rode  mater ia l s  f o r  t h e  conducting ceramic oxides,  a l s o  equate t o  t h e  
-&e of  t h e  noble metals as c ruc ib l e s  f o r  t h e  oxides t e s t ed .  

In  t h e  re ference  10 t e s t s ,  ceramic oxide powder samples were placed i n  
dense-high p u r i t y  aiumina c ruc ib les .  Pieces of  chin ribbon wire  of platinum 
and or" 90 plztinum-10 rhodium were placed i n  t h e  powder a s  wel l .  Two runs were 
made t o  expose these  mater ia l s  t o  high eenperatdre.  The f i r s t  run was t o  1 6 0 0 ~ ~  
f o r  one hour and t h e  second run with new samples was t o  1700°C fo r  one-half 
hour. The second run was made t o  v e r i f y  ~ b s e r v a t i o n s  made from the  f i r s t  run,  
zone of whlch ind ica ted  very s l i g h t  reac t ions .  

Resul ts  of  t hese  t e s t s  a r e  presented i n  TableVII using a numerical grading 
system of  0 t o  5 where 0 ind ica t e s  no r eac t ion  and 5 ind ica t e s  a prominent 
reac t ion .  I n  a l l  cases ,  any r eac t ion  is  based on observed co lo ra t ion  of t h e  



TABLE VII 

Ceramic 
Oxide 

SOBLE METAL VERSUS CERAMIC OXIDE 
INTERACTION TEST RESULTS 

Exposure at 
1700°C - 30 Minutes 

Gradzd on the basis of  0 to  5.  0 for c:, c?loration, 5 for most prominent 
coloration occuring with La2O;. A 1 1  colorati~ns observed were yellowish 
except with La203 which appeared brownish-gray. 



oxides where they made contact with the  noble metzl s t r i p s .  A l l  ceramic oxide 
powders used were white with t::s exception of che Ce02 powder which was very 
l i g h t  yellow. The furnace atiic.;phere was a i r  and no changes i n  color of the  
bulk o f  the oxides was not&. 't must be mentioned t h a t  any compounds t h a t  
might have formed and were whire i n  color would have gone unnoticed f o r  the  
oxides except perhaps f o r  rile Ln203 and CeU,  iind MgO with Pt-10 Rh. The 
blanks i n  TableVIIiniica;-.e t h a t  the  firsi t e s t  with La203 and Ce02 was con- 
c lus ive  and not repeated a t  1 7 0 0 ~ ~ .  

The conclusions t o  be made fim these  r e s u l t s  r e l a t i v e  t o  noble metals 
a r e  as follows: 

1. La203 and Ce02 are expected t o  present near-term problems 
with e i t h e r  P t  o r  Pt-fiir al loys.  

2. Y203, Z r O 2 >  Sc2a3 and YgO appear su i t ab le  with P t .  5ome reac- 
t i o n  is  indicated with Y2O3 and ZrO, with Pt-Rh al loy.  A 
greater  zeacticn of blgO t o  Pt-Rh al loys  is inciicated. 

3. Zr02 is compatible with P t  but  not Pt-IU1 a l loy.  And f i n a l l y ,  

4. A s l i g h t  raa:tion problem is t o  be expected with Tho2 with both 
Pt and Pt-Rh al loy.  

I t  is  a l so  worthy of mention tha t  no apparent react ion occurred with t h e  
oxides tes ted  and t h e  A1203 crucible with the  exception of MgO. Some wetting 
of the crucible  by t h e  NgO was noted. 



Stab i l i zed  zirconiun dioxide ceramic has b ~ e n  used t o  f a b r i c a t e  furnace 
hea t e r  elements sapab l e  of high temperature operatiori  t o  2 2 0 0 ~ ~  with oxidizing 
ataospheres.  While t h i s  technology is  an o l d  art, improvements i n  t h e  ceramic 
oxide q u a l i t y  ar?d i n  t h e  platinun: t o  ceramic e l ec t rode  in t e r f ac ing  have 
r e s u l t e d  i n  a r e l i a b l e  furnace hea t e r  element capable o f  many thermal cyc les  and 
r ap id  changes i n  temperature. The unique geometry of t h e  conducting ceramic 
hea t e r  elements ( p a r a l l e l  tubes) i n  p a t  cont r ibu ted  t o  t h e  success  of t h e  
demonstrated Curnaces . 

I n  addi t ion  t o  being compatible a t  high temperature wi th  oxidizing environ- 
meats, t h e  s t a b i l i z e d  z i rconia  conducting ceramic hea t e r  elements were shcxn t o  
b e  compatible with i n e r t  and hydrogen reducing envtronments. Operation wi th  
hydrogen waz demonstrated by changing from oxidizing t o  reducing back t o  oxi- 
d iz ing  env i r amen t s  s eve ra l  times wnile t h e  furnace hea t e r  element remained 
hot .  The cmduct ing  ceramic hea t e r  element i s ,  therefore ,  un ive r sa l  having 
been operated i n  vacuum, i n e r t  and reducing environments as w e l l  as i n  oxidizing 
environments. 

Both an  isothermal type  ceramic oxide hea ter  e1emer.t having a working 
cav i ty  s i r s  of 2.5 cm by 10.0 cm and an a x i g l  grad ien t  hea t e r  element having an  
i n s i d e  d i a a e t e r  of 1.77 cm and o v e r a l l  length t o  diameter r a t i o  o f  10 t o  1 were 
demonstrated. Temperatures t o  1 9 4 0 " ~  were demonstrated with t h e  isothermal 
element and from 2C50 t o  2100°C with t h e  a x i a l  g rad ien t  element. I n  t h e  case  
o f  t h e  axial. gradient  element, high p u r i t y  alumina was melted a t  2020°C. The 
t e n p e r a t u r s  demonstrated do ilot r e f l e c t  Lpper bounds of t 3e  furnace elements, 
ra ther  they a r e  l i m i t s  r e l a t i v e  t o  instrumentation used i n  t h e  var ious  experi-  
merltai mils made. None of t he  hea t e r  elements t e s t e d  were damaged o r  destroyed. 

I h e  axi.:l gradient  furnace had a two-zone main hea t e r  configu-ation com- 
p r i s ed  of a p l a t i m - 1 0 %  rhodium hea ter  r a t ed  f o r  1 . 5 0 0 ~ ~  and a conducting c e r h i c  
hea t e r  r a t e d  f a r  2 2 0 0 ~ ~ .  An a x i a l  temperat t re  gradient  of 2 5 0 " ~  per  cent imeter  
was G-onstrated based on hea ter  element wall temperatures. 

Therrrocouple scnsed 'czvi ty  temperatures ind ica ted  con t ro l  e r r o r  w i t n  a s o l i a  
s t a t e  type  ii:dustrial c c n t r o l l e r  t o  be l e s s  than +l°C. This accuracy was 
demonstrated using bqth currefit feedback and temperature feedback modes of  con- 
t r o l .  Transtent  response of t h e  conducting ceramic hea t e r s  was fcund t o  be 
exce l len t ;  f o r  example, the isothermal hea t e r  commanded t o  a 1 0 0 ' ~  lower tempera- 
t u r e  r-ached a 99% r e s p m s e  condit ion i n  25 seconds. 

The conducting ceramic, being an i o n i c  conductor, must b e  powered with 
a l t e r n a t i n g  cur ren t .  Di rec t  cur ren t  causes chznges i n  the  ceramic oxide 
stoichiometry ( p a r t i c u l a r l y  i n  a reducing enviranment) adversely a f f ec t ing  i ts 
performance r e l a t i v e  t~ l i f e t i m e  and uniformity of temperature. 
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