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LAUNCH VEHICLE OPERATIONS SIMULATOR 

JOHN W. BLACKLEDGE 

IBM Corporation, Kennedy Space Center, Florida 

Abstract 

The Saturn Launch Vehicle Operations Simulator (LVOS) 
simulates the hardware operations of the Saturn 
vehicle and ground equipment. The LVOS math model 
contains approximately 10,000 equations written by 
NASA and contractor engineers. The models, repre­
senting the Saturn stages an~ ground support equip­
ment, are compiled by a Boolean equation compiler 
(using three dimensional logic) and a modified 
FORTRAN IV compiler. This higher level language 
enables engineers to code models directly without 
baving to rely on programmers to translate models to 
assembly language. 

The simulator executive system responds to almost 
1400 switch actions and computer commands origi­
nating in the firing room at Launch Complex 39 at 
Kennedy Space Center, The model responses include 
3000 discrete and 1200 analog functions. A fast, 
compact matrix execution algorithm is used for 
Boolean logic equ;:ttions. Continuous model equations 
are grouped into FORTRAN subroutines and executed 
as independent subroutines. 

Introduction 

The Saturn Launch Vehicle Operations Simulator 
(LVOS) was developed for NASA at the Kennedy Space 
Center. LVOS simulates the Saturn launch vehicle 
and its ground support equipment. The simulator 
was intended to be used primarily as a launch crew 
trainerj but is is also being used for test procedures 
and software validation. A NASAl contractor team of 
engineers' and programmers implemented the simulator 
after the Apollo XI lunar landing during the low activity 
periods between launches. 

The Saturn Launch Control Complex (SLCC) 

Complex 39 at the·Kennedy Space Center (KSC) consists 
of two launch pads, fuel farms, the Vertical Assembly 
Building (VAB), the Launch Control Center (LCC) and 
three mobile launchers. These facilities are used to 
erect, integrate, test, and launch Saturn rockets. One 
mobile launcher (ML) has been equipped with a pedestal 
to accommodate the shorter Saturn IB rocket. 

The LCC at Complex 39 is equipped with three complete 
firing rooms. Each firing room can interface with any 
of the three mobile launchers. A mobile launcher may 
be parked in any of the three high-bay areas of the VAB 
or on either launch pad, 

In each firing room there are over 100 control consoles 
and a three computer complex which are used to test and 
launch vehicles. Commands originating in the firing 
room from switch actions, or computerized test pro­
cedures, travel over 5 miles to the mobile launcher 
computer via a hardline data link. The mobile 
launcher computer stimulates the vehicle and ground 
support with these commands. System responses re­
turn to the firing room via the computer system and 
five 72 kilobit telemetry systems. In the firing room, 
responses are monitored on strip charts, console lights 
and meters, printer outputs, and on computer controlled 
CRTs. Figure 1 is a block diagram of the Saturn 
launch vehicle checkout system. 

Testing and launch operations are performed by NASAl 
contractors engineers and technicians from the LqC 
firing rooms, These operations are performed accord­
ing to predefined test procedures. In the early phases 
of the program most tests were a sequence of manual 
actions with a few automatic test programs. As the 
program matured, engineers began developing auto­
matic test procedures using ATOLL (Acceptance, Test, 
Or Launch Language). The Apollo XVII launch opera­
tions were controlled by almost 150 automatlcally linked 
ATOLL test procedures, These procedures perform 
a variety of functions such as stage power up, engine 
testing, propellant monitoring, and emergency detec­
tion system testing. 

LVOS -System Description 

The LVOS system replaces the mobile launcher, launch 
vehicle, and ground support equipment with the capa­
bility of responding to commands and test procedures 
executed in the LCC firing rooms. A laboratory com­
puter is used in place of the mobile launcher computer 
to provide easier operation and avoid modifying opera­
tional hardware. 
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Figure 1. Saturn Launch Vehicle Checkout System 

Two XDS 930 computers connected by a high speed 
coupler host the simulator system software and 
models. One computer has special purpose interface 
equipment to generate the five 72 kilobit telemetry 
data, interface with the laboratory computer discrete 
I/o system and flight computer interface unit. This 
computer supports all continuous model execution. The 
other computer supports discrete model execution, 
procedure activity and the instructor control console. 
A 2 milHon character flxed head disk is attached to 
this computer. The launch vehicle operations simula­
tor is graphically shown in Figure 2. 

The Apollo-Soyuz Test Project (ASTP) mission will be 
flown with a Saturn IB launch vehicle. Training for 
this mission has been in progress since May of 1974. 
All but five of the 108 firing room consoles for the 
mission are fully operational with the simulator. The 
LVOS math model for the ASTP launch contains 
approximately 10, 000 equations written in the high 
level language by NASA and contractor system engi­
neers. The model responds to 1400 switch actions and 
computer commands originating in the firing room. 

The model responses include 3000 discrete funcUons 
and 1200 analog measurements. The Launch Vehicle 
Digital Computer (LVDC) functions are simulated to 
respond in the same manner as the preflight software. 
No attempt was made to simulate plus time (after 
liftoff). 

LVOS Software 

The LVOS software system is composed of six pro­
grams. Each of the programs contains its own utility 
and I/O support routines and can be loaded and 
executed independently. The programs are: 

1. LVOS Math Model Compiler 

2. SCALE/FORTRAN 

3. Procedure Generator 

4. System Generator (SYSGEN) 

5. Discrete Model Executive (DEXEC) 

6. Continuous Model Executive (CEXEC). 

In addition to these programs which are used to com­
pile and execute the system models, a program was 
developed to post process the SYSGEN output tape and 
provide an overall map of the vehicle model. A de­
scription of these programs follows. 

LVOS Math Model Compiler - The LVOS compiler 
translates Boolean equations into a three level logic 
matrix and associated tables. Continuous model 
equations are preprocessed and formatted for the 
Fortran compiler. Linkages between continuous and 
discrete models are established and analog output 
channel assignments are stripped out and formatted 
for the executive system. The compiler can compile 
up to 10,000 input cards with 1250 discrete equations 
and 23 continuous model segments. (Continuous model 
segments are groups of continuous model equations 
which are compiled as independent FORTRAN sub­
routines. ) 

SCALE/FORTRAN - The SCALE program converts 
numeric constants to scaled integers and passes the 
continuous model card images to the FORTRAN com­
piler. The FORTRAN IV compiler has been modified 
to treat all constant data as single precision integers. 
The output of the SCALE/FORTRAN system is a 
relocatable binary tape of continuous model sub­
routines. 

Procedure Generator - The procedure generator pro­
gram compiles automatic procedures for real-time 
execution. Procedures are used to initialize models 
to specific configurations, control model execution, 
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Figure 2. Launch Vehicle Opi,ratlons Simulator 

and to insert faults for training exercises. Subroutines 
in the dIscrete model executlve are used to execute 
procedures in the real-Hme system. 

system Generator - The SYSGEN routtnes accept the 
compiler output and the Fortran output tape for multlple 
models and merge these models Into one system tape. 
Up to 14 discrete models and 120 continuous model 
segments can be linked into one system model. 

Continuous models are converted from a relocatable 
format to load modules which are automatically re­
locatable by setting a base register. Cross reference 
tables are established for CModel to CModel com­
munication. This feature allows the CModel executive 
to determine when one CModel segment bas modified a 
variable parameter which is used in another CModel. 
Hardware I/O assign,ments are also resolved. 

Discrete models are merged and formatted for the 
executive system. A name directory is constructed 

from the variable names in all of the models and 'tested 
for conflicts in name types and uses. 

Discrete Model Executlve - The discrete model execu­
tlve controls the execution of all discrete models and 
procedures. All model data Is loaded by the DEXEC 
and written to the disk. The models are all initialized 
to an all OFF state and control is turned over to the 
instructor console. Normally an automatic procedure 
is started to bring the model to a specific configuratlpn. 

Continuous Model Executlve - The continuous model 
executive schedules and executes CModel segments and. 
supports the real time I/O Interfaces with the ML 
computer and. the telemetry system. Executlon of 
continuous models is caused by a change in a Logic 
Function switch in a discrete niodel or by a cross 
reference variable change in another CModel. A time 
integral, once initiated, will sustain a CModel execu­
tion untll the integral changE7 rate goes to zero. 

SYSGEN Post Processor - The SYSGEN post processor 
program processes a merged model tape and produces 
a printed output of the .model with the following Informa­
tion: 

1. A numeric Hst of all discrete Inputs by 
name and model 

2. A numeric !lst of all discrete outputs hy 
name and model 

3. A list of all analog varlahles by position In 
COMMON 

4. An alphabetic !lst of all names, variable 
types, ,and models that use names. 

Mode!lng Language 

The LVOS modeHng language Is oriented toward the 
engineer-user. He must learn basIcally three types 
of statements before he can write models; continuous 
model,statements, discrete model statements, and 
complier directives. Each type of statement wl\l be 
described hrlefly below. All statements are written In 
free form adhering to the FORTRAN card format. 
Comments may be Included within the model text by 
starting a card with an asterisk (O) In card column 1 
or on the same card with a statement within quote 
marks. 

Compiler Directlve - A compiler directive is a com­
mand to the LVOS compHer to change its mode, format 
the output ilstlng, or make a hardware Input/output 
aSSignment. CompHer directives begin with an 
asterlsk (*) in card. column one followed by a keyword.. 
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MODE CONTROL 
*!NIT 

*CMODEL 
cmodelname 

*DMODEL 

FORMAT CONTROL 

The followlng cards are 
to be included in the 
CModel segment named 
INIT 
The following cards are 
to be Included In the 
e Model segment named 
on the control card 
The following cards are 
to be complied as 
DModel equations 

*TITLE Title information to 
appear at the top of 
each page 

*PAGE . Begin a new page 

HARDWARE I/O ASSIGNMENTS 
*ANALOG INPUT varlablename 
*ANALOG OUTPUT variablename 
*DISCRETE INPUT varlablename (nnnn) 
*DISCRETE OUTPUT varlablename (nnnn) 
*INTERFACE DISCRETE IN variablename 
*INTERFACE DISCRETE OUT varlablename 

(nnon) specifies the actual discrete 
number 

Discrete Model Syntax - Discrete model equations are 
written in the following format; 

FUNCTION ~ EXPRESSION 

Expressions are made up of arguments connected by 
the logical operators AND (&) and OR (+) •• Arguments 
may be negated with the logical NOT prefix (-) and also 
may be grouped logically with parentheses. 

A function may be defined only once in a model, however 
it may be use~ as an argument in many other equations. 
Arguments may be discrete inputs, functions or just a 
variable name. 

A discrete function may be delayed by an increment to 
time by writing the equation as 

FUNCTION (nn. n) ~ EXPRESSION 

where nn. n is the delay time is seconds. 

Functions and arguments may have symbolic names up 
to 16 characters in length. The alphabet and the num­
bers 0 through 9 are allowable characters. With these 
basic syntax rules and an understanding of the discrete 
model execution algorithm, an engineer is ready to 
write discrete models. 

Continuous Model Syntax - The continuous modeling 
language uses a subset of FORTRAN IV and some 
special operators which are invoked as FORTRAN 
function or subroutines. The FORTRAN subscripting 
am array operations are prohtbited and all input and 
output to peripheral devices is processed by the CEXEC. 
DO loops and backward GOTO statements are also 
prohibited. 

The followIng special purpose operators are available 
for communication with discrete models and to provide 
functlons for real time applications; 

Logic FuNction 
SWitch 

Discrete LIM[T 
Test 

INTeGRaL 

CLAMP 

(LFCNSW) allows a 
continuous model 
decision to be made 
depending on the cur­
rent status of a discrete 
function. 
(DLIMlT) provides a 
method of setting a 
discrete argument 
based on the value of a 
continuous variable. 
(INTGHL) time integra­
tion of continuous 
functions. A bas ic 
Euler integration tech­
nique is used. 
Limit a continuous 
variable to upper and 
lower bounds. 

The continuous model special operators are similar to 
those used In DSL/90 and CSMP. 

Continuous model variable names may be up to 16 
characters in length and use the same character set 
as the discrete model variables. Continuous model 
variables must start with an alphabetic character. 

Continuous model variables and constants are written 
in engineering units; scaling is automatically provided 
by the CEXEC. 

Procedure Language Syntax - The procedure compiler 
processes input statements from card images. The 
basic format of procedure statements is 

I#LABELI OPERATOR OPERAND! 

IOPERAND21 I OPERAND3 I 

statement labels are optional. All operators require 
at least one operand; some operators can have two or 
three operands. 
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There are three types of procedure operators 

SYSTEM CONTROL OPERATORS 

START MODEL DINH PULSE CREL 

STOP MODEL DREL CINH 

PROCEDURE CONTROL OPERATORS 

CALL START PROC END PROC PROC 

BASIC OPERATORS 

SET STAT FAIL GOTO 

WAIT RESET IF 

A complete description of these operators is not 
appropriate at this point. The functlon of most of the 
operators is obvious from the operator name, however 
the function of some will be discussed here briefly. 

The DREL and DINH operators are used to·prevent 
lengthy tlme delays In the discrete medel execution 
when Inltlallzlng medels. The CINH and CREL opera­
tors are used to Illhlblt and release CModels when the 
results of the particular models Is neit required. The 
PULSE operator causes a one-time execution of a 
CModel. 

Model Execution 

Discrete models are executed on a demand basis. 
Commands from the firing room (switch actions or 
automatic procedure commands) will cause a discrete 
model (or models) to be queued for execution. other 
actions may also. cause models to be executed; expired 
tlme delays, discrete limit changes from CModels, 
interface discrete changes from other models, or 
procedure SET commands. 

ContinuouS models are executed whenever a discrete 
model sends a logic function switch change. For ex­
ample, a switch action may command a valve to open 
resulting in a pressure change in a system. A dis­
crete function change indicating the valve opening will 
be sent to the corr~sponding CModel activating the 
equations for the pressures that change. Once a con­
tinuous model begIns executing, it may queue itself for 
future executlon if a time integration function within the 
the model is active. CModels will otherwise remain 
dormant until queued by an outside stLmulus. 

One CModel may queue another CModel for execution 
by changing a cross reference variable which the other 
CModel uses. The CModel executive traps any changes 
in the Cross Reference (XREF) area of common 
storage. A change in an XREF variable will cause 
the CEXEC to queue all models associated with that 
XREF variable. 

The ASTP (Saturn IB) System Model 

LVOS Is currently being used to train the launch crew 
for the ASTP mission scheduled for July 1975. To 
accompilsh this training, the model integration team 
at KSC brought together stage models generated by 
system engineers from the SIB, BlVB, SID stages and 
the GSE (or LSE). The IV. IVB. and LSE models had 
been previously generated for a Saturn V system and 
later modified for the Saturn IB system. Each model 
was compiled and debugged independently and the linked 
together and tested in Firing Room 3. 

Currently there are six Individual models for the ASTP 
launch vehicle. They are: 

1. SIB stage Part I 

2. SIB stage Part II 

3. SIVE stage 

4. SIV stage 

5. Integration model 

6. LSE. 

Each stage has a stage model coordinator for the 
integrated model. His responsibility is to assure that 
his model is compatible with the models of the other 
stages. 

In the integrated model there are six discrete models 
as listed ~bove, and 98 continuous model segments. 
Of the 98 continuous model segments seven are used 
to simulate the flight computer and are written in 
assembler language. 

Procedures have been generated to initialize models 
for various test. configurations and to start at pre­
defined break points in the launch countdown. Some of 
the test configurations are Countdown Demonstration 
Test, Malfunctlon Overall Test, Flight Readiness 
Test, and Launch Countdown. The breakpoints in the 
countdown are at T minus 9 hours, T minus 4 hours, 
and T minus 1 hour 15 minutes. 

Conclusion 

The LVOS system has proven the feasibility of using 
a high level language for large scale real-time simula­
tion. Use of the simulation langi.tage described In this 
paper has demonstrated that a high level language can 
result in a very low cost simulation system for train­
ing, and procedure validation. The favorable results 
of this project convinced NASA/KSC to select tbe 
language and techniques for the Shuttle Ground Opera­
tions Simulator (SooS). SOOS will be used to validate 
ground applications programs for the Space Shuttle 
written in GOAL (Ground Operations Aerospace 
Language), as well as being used to train the Shuttle 
launch crews. 
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