
IBM No. 74Z000434

LAUNCH VElflCLE OPERATIONS SIMULATOR

John w. Blackledge
IBM Corporation, Federal Systems Division

Kennedy Space Center, Florida 32920

i~~~{

Prepared for Presentation
to the

1974 Automatic Support Systems
Symposium for Advanced

Maintainability, October 29-31,
San Diego, California

Federal Systems Division, Owego, New York 13827

i

LIST OF ABBREVIATIONS

ASTP • ••• · . • ••• • •
ATOLL •• • • · ...
CEXEC · • • • ••

COMMON ••••• • ••• • •
CRT •••

DDAS ..

DEXEC •

DI
DO . .

• •• • •••

• •• • •••

• •• • •••

• • •

• • · .

· .
•

FORTRAN • • • • · .
GOAL • • • • • •
GSE • • • ••

I/O • • • • • · . · .
IU • • • •

!VB • •• • • · .
KSC • •• • · .
LCC • • . . • •
LSE · . • • · . • •

LVDC · . · .
LVOS • · .
ML • • · . • •
NASA · . · . • ••

SCALE/FORTRAN • • •

SGOS. • • · . · . • •

SIB • •
SIU

SIVB · . • • •• •
SLCC • • • ••
SYSGEN. · .
VAB • • • •

XREF • • · .

Apollo-Soyuz Test Project

Acceptance, Test, or Launch Language

Continuous Model Executive

Cathode Ray Tube

Discrete Model Executive

Ground Operations Aerospace Language

Ground Support Equipment

Input/Output

Instrument Unit

IV B

Kennedy Space Center

Launch Control Center

Launch Vehicle Digital Computer

Launch Vehicle Operations Simulator

MobUe' Launcher

National Aeronautics and Space Administration

Shuttle Ground Operations Simulator

Saturn I B

Saturn Instrument Unit

Saturn IV B

Saturn Launch Control Complex

System Generator

Vertical Assembly Building

Cross Reference

ii

TABLE OF CONTENTS

Page

Abstract ••••..••••••.•.•.••.••.•.••.•••.••• 1

Introduction ••••..• . • . • • . • . • • • • • . • . • • . • . • 1

The Saturn Launch Control Complex (SLCC) • • • • • . • • • • • . . 1

LVOS System Description • . • • • • • • . • • • • . • . • • • • 1

LVOS Software • . • • • . . . • • • • • • • • • • . • • • 2

Modeling Language •••.••.•••••...••.•••••.•••• 3

Model Execution .•.••.•.••••.•••...•••••••.••• 5

The ASTP (Saturn IB) System Model • • . • • • • • • • . • • • • • • 5

Conclusion . 5

References . 6

Figure

1

2

LIST OF ILLUSTRATIONS

Saturn Launch Vehicle Checkout System ..••••.•
Launch Vehicle Operations Simulation •••.••••.•

iii

Page

2

3

LAUNCH VEHICLE OPERATIONS SIMULATOR

JOHN W. BLACKLEDGE

IBM Corporation, Kennedy Space Center, Florida

Abstract

The Saturn Launch Vehicle Operations Simulator (LVOS)
simulates the hardware operations of the Saturn
vehicle and ground equipment. The LVOS math model
contains approximately 10,000 equations written by
NASA and contractor engineers. The models, repre­
senting the Saturn stages an~ ground support equip­
ment, are compiled by a Boolean equation compiler
(using three dimensional logic) and a modified
FORTRAN IV compiler. This higher level language
enables engineers to code models directly without
baving to rely on programmers to translate models to
assembly language.

The simulator executive system responds to almost
1400 switch actions and computer commands origi­
nating in the firing room at Launch Complex 39 at
Kennedy Space Center, The model responses include
3000 discrete and 1200 analog functions. A fast,
compact matrix execution algorithm is used for
Boolean logic equ;:ttions. Continuous model equations
are grouped into FORTRAN subroutines and executed
as independent subroutines.

Introduction

The Saturn Launch Vehicle Operations Simulator
(LVOS) was developed for NASA at the Kennedy Space
Center. LVOS simulates the Saturn launch vehicle
and its ground support equipment. The simulator
was intended to be used primarily as a launch crew
trainerj but is is also being used for test procedures
and software validation. A NASAl contractor team of
engineers' and programmers implemented the simulator
after the Apollo XI lunar landing during the low activity
periods between launches.

The Saturn Launch Control Complex (SLCC)

Complex 39 at the·Kennedy Space Center (KSC) consists
of two launch pads, fuel farms, the Vertical Assembly
Building (VAB), the Launch Control Center (LCC) and
three mobile launchers. These facilities are used to
erect, integrate, test, and launch Saturn rockets. One
mobile launcher (ML) has been equipped with a pedestal
to accommodate the shorter Saturn IB rocket.

The LCC at Complex 39 is equipped with three complete
firing rooms. Each firing room can interface with any
of the three mobile launchers. A mobile launcher may
be parked in any of the three high-bay areas of the VAB
or on either launch pad,

In each firing room there are over 100 control consoles
and a three computer complex which are used to test and
launch vehicles. Commands originating in the firing
room from switch actions, or computerized test pro­
cedures, travel over 5 miles to the mobile launcher
computer via a hardline data link. The mobile
launcher computer stimulates the vehicle and ground
support with these commands. System responses re­
turn to the firing room via the computer system and
five 72 kilobit telemetry systems. In the firing room,
responses are monitored on strip charts, console lights
and meters, printer outputs, and on computer controlled
CRTs. Figure 1 is a block diagram of the Saturn
launch vehicle checkout system.

Testing and launch operations are performed by NASAl
contractors engineers and technicians from the LqC
firing rooms, These operations are performed accord­
ing to predefined test procedures. In the early phases
of the program most tests were a sequence of manual
actions with a few automatic test programs. As the
program matured, engineers began developing auto­
matic test procedures using ATOLL (Acceptance, Test,
Or Launch Language). The Apollo XVII launch opera­
tions were controlled by almost 150 automatlcally linked
ATOLL test procedures, These procedures perform
a variety of functions such as stage power up, engine
testing, propellant monitoring, and emergency detec­
tion system testing.

LVOS -System Description

The LVOS system replaces the mobile launcher, launch
vehicle, and ground support equipment with the capa­
bility of responding to commands and test procedures
executed in the LCC firing rooms. A laboratory com­
puter is used in place of the mobile launcher computer
to provide easier operation and avoid modifying opera­
tional hardware.

1

Hardline
Distributors

Display
Control
Computer

Firing Room
Consoles and
Displays

Data
Link

01 DO

LCC
Computer

ML
Computer

DI

DDAS
Telemetry
System

Figure 1. Saturn Launch Vehicle Checkout System

Two XDS 930 computers connected by a high speed
coupler host the simulator system software and
models. One computer has special purpose interface
equipment to generate the five 72 kilobit telemetry
data, interface with the laboratory computer discrete
I/o system and flight computer interface unit. This
computer supports all continuous model execution. The
other computer supports discrete model execution,
procedure activity and the instructor control console.
A 2 milHon character flxed head disk is attached to
this computer. The launch vehicle operations simula­
tor is graphically shown in Figure 2.

The Apollo-Soyuz Test Project (ASTP) mission will be
flown with a Saturn IB launch vehicle. Training for
this mission has been in progress since May of 1974.
All but five of the 108 firing room consoles for the
mission are fully operational with the simulator. The
LVOS math model for the ASTP launch contains
approximately 10, 000 equations written in the high
level language by NASA and contractor system engi­
neers. The model responds to 1400 switch actions and
computer commands originating in the firing room.

The model responses include 3000 discrete funcUons
and 1200 analog measurements. The Launch Vehicle
Digital Computer (LVDC) functions are simulated to
respond in the same manner as the preflight software.
No attempt was made to simulate plus time (after
liftoff).

LVOS Software

The LVOS software system is composed of six pro­
grams. Each of the programs contains its own utility
and I/O support routines and can be loaded and
executed independently. The programs are:

1. LVOS Math Model Compiler

2. SCALE/FORTRAN

3. Procedure Generator

4. System Generator (SYSGEN)

5. Discrete Model Executive (DEXEC)

6. Continuous Model Executive (CEXEC).

In addition to these programs which are used to com­
pile and execute the system models, a program was
developed to post process the SYSGEN output tape and
provide an overall map of the vehicle model. A de­
scription of these programs follows.

LVOS Math Model Compiler - The LVOS compiler
translates Boolean equations into a three level logic
matrix and associated tables. Continuous model
equations are preprocessed and formatted for the
Fortran compiler. Linkages between continuous and
discrete models are established and analog output
channel assignments are stripped out and formatted
for the executive system. The compiler can compile
up to 10,000 input cards with 1250 discrete equations
and 23 continuous model segments. (Continuous model
segments are groups of continuous model equations
which are compiled as independent FORTRAN sub­
routines.)

SCALE/FORTRAN - The SCALE program converts
numeric constants to scaled integers and passes the
continuous model card images to the FORTRAN com­
piler. The FORTRAN IV compiler has been modified
to treat all constant data as single precision integers.
The output of the SCALE/FORTRAN system is a
relocatable binary tape of continuous model sub­
routines.

Procedure Generator - The procedure generator pro­
gram compiles automatic procedures for real-time
execution. Procedures are used to initialize models
to specific configurations, control model execution,

2

Hardline
Distributors

Display
Control
Computer

Firing Room
Consoles and
Displays

Data
Link

01 DO

LCC
Computer

Laborator
Computer

DO 01

Simulator
Computers
Two
XDS
930

DDAS
Telemetry
System

Figure 2. Launch Vehicle Opi,ratlons Simulator

and to insert faults for training exercises. Subroutines
in the dIscrete model executlve are used to execute
procedures in the real-Hme system.

system Generator - The SYSGEN routtnes accept the
compiler output and the Fortran output tape for multlple
models and merge these models Into one system tape.
Up to 14 discrete models and 120 continuous model
segments can be linked into one system model.

Continuous models are converted from a relocatable
format to load modules which are automatically re­
locatable by setting a base register. Cross reference
tables are established for CModel to CModel com­
munication. This feature allows the CModel executive
to determine when one CModel segment bas modified a
variable parameter which is used in another CModel.
Hardware I/O assign,ments are also resolved.

Discrete models are merged and formatted for the
executive system. A name directory is constructed

from the variable names in all of the models and 'tested
for conflicts in name types and uses.

Discrete Model Executlve - The discrete model execu­
tlve controls the execution of all discrete models and
procedures. All model data Is loaded by the DEXEC
and written to the disk. The models are all initialized
to an all OFF state and control is turned over to the
instructor console. Normally an automatic procedure
is started to bring the model to a specific configuratlpn.

Continuous Model Executlve - The continuous model
executive schedules and executes CModel segments and.
supports the real time I/O Interfaces with the ML
computer and. the telemetry system. Executlon of
continuous models is caused by a change in a Logic
Function switch in a discrete niodel or by a cross
reference variable change in another CModel. A time
integral, once initiated, will sustain a CModel execu­
tion untll the integral changE7 rate goes to zero.

SYSGEN Post Processor - The SYSGEN post processor
program processes a merged model tape and produces
a printed output of the .model with the following Informa­
tion:

1. A numeric Hst of all discrete Inputs by
name and model

2. A numeric !lst of all discrete outputs hy
name and model

3. A list of all analog varlahles by position In
COMMON

4. An alphabetic !lst of all names, variable
types, ,and models that use names.

Mode!lng Language

The LVOS modeHng language Is oriented toward the
engineer-user. He must learn basIcally three types
of statements before he can write models; continuous
model,statements, discrete model statements, and
complier directives. Each type of statement wl\l be
described hrlefly below. All statements are written In
free form adhering to the FORTRAN card format.
Comments may be Included within the model text by
starting a card with an asterisk (O) In card column 1
or on the same card with a statement within quote
marks.

Compiler Directlve - A compiler directive is a com­
mand to the LVOS compHer to change its mode, format
the output ilstlng, or make a hardware Input/output
aSSignment. CompHer directives begin with an
asterlsk (*) in card. column one followed by a keyword..

3

MODE CONTROL
*!NIT

*CMODEL
cmodelname

*DMODEL

FORMAT CONTROL

The followlng cards are
to be included in the
CModel segment named
INIT
The following cards are
to be Included In the
e Model segment named
on the control card
The following cards are
to be complied as
DModel equations

*TITLE Title information to
appear at the top of
each page

*PAGE . Begin a new page

HARDWARE I/O ASSIGNMENTS
*ANALOG INPUT varlablename
*ANALOG OUTPUT variablename
*DISCRETE INPUT varlablename (nnnn)
*DISCRETE OUTPUT varlablename (nnnn)
*INTERFACE DISCRETE IN variablename
*INTERFACE DISCRETE OUT varlablename

(nnon) specifies the actual discrete
number

Discrete Model Syntax - Discrete model equations are
written in the following format;

FUNCTION ~ EXPRESSION

Expressions are made up of arguments connected by
the logical operators AND (&) and OR (+) •• Arguments
may be negated with the logical NOT prefix (-) and also
may be grouped logically with parentheses.

A function may be defined only once in a model, however
it may be use~ as an argument in many other equations.
Arguments may be discrete inputs, functions or just a
variable name.

A discrete function may be delayed by an increment to
time by writing the equation as

FUNCTION (nn. n) ~ EXPRESSION

where nn. n is the delay time is seconds.

Functions and arguments may have symbolic names up
to 16 characters in length. The alphabet and the num­
bers 0 through 9 are allowable characters. With these
basic syntax rules and an understanding of the discrete
model execution algorithm, an engineer is ready to
write discrete models.

Continuous Model Syntax - The continuous modeling
language uses a subset of FORTRAN IV and some
special operators which are invoked as FORTRAN
function or subroutines. The FORTRAN subscripting
am array operations are prohtbited and all input and
output to peripheral devices is processed by the CEXEC.
DO loops and backward GOTO statements are also
prohibited.

The followIng special purpose operators are available
for communication with discrete models and to provide
functlons for real time applications;

Logic FuNction
SWitch

Discrete LIM[T
Test

INTeGRaL

CLAMP

(LFCNSW) allows a
continuous model
decision to be made
depending on the cur­
rent status of a discrete
function.
(DLIMlT) provides a
method of setting a
discrete argument
based on the value of a
continuous variable.
(INTGHL) time integra­
tion of continuous
functions. A bas ic
Euler integration tech­
nique is used.
Limit a continuous
variable to upper and
lower bounds.

The continuous model special operators are similar to
those used In DSL/90 and CSMP.

Continuous model variable names may be up to 16
characters in length and use the same character set
as the discrete model variables. Continuous model
variables must start with an alphabetic character.

Continuous model variables and constants are written
in engineering units; scaling is automatically provided
by the CEXEC.

Procedure Language Syntax - The procedure compiler
processes input statements from card images. The
basic format of procedure statements is

I#LABELI OPERATOR OPERAND!

IOPERAND21 I OPERAND3 I

statement labels are optional. All operators require
at least one operand; some operators can have two or
three operands.

4

There are three types of procedure operators

SYSTEM CONTROL OPERATORS

START MODEL DINH PULSE CREL

STOP MODEL DREL CINH

PROCEDURE CONTROL OPERATORS

CALL START PROC END PROC PROC

BASIC OPERATORS

SET STAT FAIL GOTO

WAIT RESET IF

A complete description of these operators is not
appropriate at this point. The functlon of most of the
operators is obvious from the operator name, however
the function of some will be discussed here briefly.

The DREL and DINH operators are used to·prevent
lengthy tlme delays In the discrete medel execution
when Inltlallzlng medels. The CINH and CREL opera­
tors are used to Illhlblt and release CModels when the
results of the particular models Is neit required. The
PULSE operator causes a one-time execution of a
CModel.

Model Execution

Discrete models are executed on a demand basis.
Commands from the firing room (switch actions or
automatic procedure commands) will cause a discrete
model (or models) to be queued for execution. other
actions may also. cause models to be executed; expired
tlme delays, discrete limit changes from CModels,
interface discrete changes from other models, or
procedure SET commands.

ContinuouS models are executed whenever a discrete
model sends a logic function switch change. For ex­
ample, a switch action may command a valve to open
resulting in a pressure change in a system. A dis­
crete function change indicating the valve opening will
be sent to the corr~sponding CModel activating the
equations for the pressures that change. Once a con­
tinuous model begIns executing, it may queue itself for
future executlon if a time integration function within the
the model is active. CModels will otherwise remain
dormant until queued by an outside stLmulus.

One CModel may queue another CModel for execution
by changing a cross reference variable which the other
CModel uses. The CModel executive traps any changes
in the Cross Reference (XREF) area of common
storage. A change in an XREF variable will cause
the CEXEC to queue all models associated with that
XREF variable.

The ASTP (Saturn IB) System Model

LVOS Is currently being used to train the launch crew
for the ASTP mission scheduled for July 1975. To
accompilsh this training, the model integration team
at KSC brought together stage models generated by
system engineers from the SIB, BlVB, SID stages and
the GSE (or LSE). The IV. IVB. and LSE models had
been previously generated for a Saturn V system and
later modified for the Saturn IB system. Each model
was compiled and debugged independently and the linked
together and tested in Firing Room 3.

Currently there are six Individual models for the ASTP
launch vehicle. They are:

1. SIB stage Part I

2. SIB stage Part II

3. SIVE stage

4. SIV stage

5. Integration model

6. LSE.

Each stage has a stage model coordinator for the
integrated model. His responsibility is to assure that
his model is compatible with the models of the other
stages.

In the integrated model there are six discrete models
as listed ~bove, and 98 continuous model segments.
Of the 98 continuous model segments seven are used
to simulate the flight computer and are written in
assembler language.

Procedures have been generated to initialize models
for various test. configurations and to start at pre­
defined break points in the launch countdown. Some of
the test configurations are Countdown Demonstration
Test, Malfunctlon Overall Test, Flight Readiness
Test, and Launch Countdown. The breakpoints in the
countdown are at T minus 9 hours, T minus 4 hours,
and T minus 1 hour 15 minutes.

Conclusion

The LVOS system has proven the feasibility of using
a high level language for large scale real-time simula­
tion. Use of the simulation langi.tage described In this
paper has demonstrated that a high level language can
result in a very low cost simulation system for train­
ing, and procedure validation. The favorable results
of this project convinced NASA/KSC to select tbe
language and techniques for the Shuttle Ground Opera­
tions Simulator (SooS). SOOS will be used to validate
ground applications programs for the Space Shuttle
written in GOAL (Ground Operations Aerospace
Language), as well as being used to train the Shuttle
launch crews.

5

References

K. V. Branch and John Wllldnson, "Launch Vehicle
Operations Simulator Modeling Language Manual",
Kennedy Space Center, Florida.

R. Bruce Hoskins, "Saturn Simulator Procedure
Language Manual", Kennedy Space Center, Florida.

Mark Greenberg, "Launch Vehicle Operatlons
Simulator - 930 Compiler", Kennedy Space Center,
Florida.

J. W. Blackledge and W. T. Woolbright, "Launch
Vehicle Operations Simulator - SYSGEN Program",
Kennedy Space Center, Florida.

W. T. Woolbright, "Launch Vehicle Operations
Simulator - Continuous Model Executive", Kennedy
Space Center, Florida.

J. W. Blackledge, "Launch Vehicle Operations
Simulator - Discrete Model Executive", Kennedy
Space Center, Florida.

William Enders, "Launch Vehicle Operations
Simulator User's Handbook", Kennedy Space Center,
Florlda.

W.T. Woolbright and J. W. Blackledge, "Launch
Vehicle Operations Simulator - An Overview",
Kennedy Space Center, Florida.

6

