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SUMMARY

Investigations have been made in the Langley 8-foot transonic pressure

tunnel and the Langley Unitary Plan wind tunnel over a Mach number range from

0.50 to 4.63 to determine the aerodynamic characteristics of three cruciform

winged missile configurations with different control arrangements - a canard

control, an aft tail control, and an all-movable wing control. The results

for each configuration indicated a slight forward movement of the aerodynamic

center with increasing supersonic Mach number so that a compatible relation-

ship between the aerodynamic center and the center of gravity might be main-

tained. For each arrangement, the pitch-control effectiveness, which, in gen-

eral, decreased with increasing angle of attack at the lower Mach numbers,

indicated an increase with angle of attack at the higher Mach numbers. This

increase in control effectiveness at high Mach numbers, coupled with the

decrease in stability level, resulted in maneuvering limits, without the

onset of static instability, that are generally'well in excess of the limits

that might be expected for an aircraft target.

INTRODUCTION

Although a considerable amount of research has been done in the past on

the aerodynamics of winged missiles, this type of research has diminished

considerably over the last few years. Much of the past work (reported in
refs. 1 to 17) is limited, particularly in the range of Mach numbers inves-

tigated, and, to some extent, in the configuration variables that were

studied. Recently a renewed interest has been shown in the development

and improvement of various types of missile systems, and it is the puipose

of this paper to present a brief summary of some of the results recently

obtained on several representative wingedmaneuverable missiles suitable

primarily for surface-to-alr or air-to-alr use against aircraft.

The missiles considered in these investigations (fig. l) include three

cruciform configurations with different control arrangements, a flxedwing

with canard control, a fixed wingwith aft tail control, and a fixed tail

with all-movable wing control. The pitch control is in the horizontal plane

in each case _. Each of the fixed-wing arrangements is in line with the con-

trols, whereas the fixed-tail arrangement is rotated 45°with respect to the

wing control. (See lower right-hand sketchY) These configurations are not

a part of a systematic program but represent three completely different

control arrangements that might result from considerations other than aero-

dynamics alone. Investigations of these missile configurations have been

conducted over a Mach number range from 0.50 to 4.63 in both the Langley

8-foot transonic pressure tunnel and the Langley Unitary Plan windLtunnel.
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More complete results of these investigations and a more detailed description of

the configurations may be found in references 18 and 19.
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The aerodynamic-coefficient data are referred to the stability-axis system.

maximum cross-sectional area of body, feet 2

normal acceleration, feet/second 2

reference diameter (maximum cross section)

lift coefficient, Lif____tt
qA

pitching-moment coefficient, Pitching moment
qAd

pitching-moment coefficient per degree of control deflection

slope of lift curve measured near _ = 0

altitude, feet

body length, feet

Mach number

dynamic pressure, pounds/feet 2

weight, pounds

angle of attack, degrees

horizontal-canard deflection, positive when leading edge is up,

degrees

horizontal-tail deflection_ positive when leading-edge is up,

degrees

horizontal-wing deflection, positive when leading edge is up,

degrees

location of aerodynamic center from body apex, feet

location of center of gravity from body apex, feet
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DISCUSSION

The basic pitch-control results for the canard-control configuration at a
low and a high supersonic Machnumber- 1.50 and 4.63 - are shownin figure 2.
These results indicate a reasonable degree of linearity at each Machnumber.
The pitch-control effectiveness Cm5 decreases somewhatwith increasing angle
of attack at the lower Machnumber. This result is typical for such a condition
since the canard surface tends to lose lift effectiveness at the high combined
angle of attack and control deflection. At the higher Machnumber, however, the
pitch effectiveness tends to increase with increasing angle of attack primarily
because of an increase in the local dynamic pressure on the compression side of
the canard surface. The change in llft with control deflection is quite small
but, typical of canard arrangements, does result in a favorable increase.

The basic pitch-control results for the aft tail-control configuration at
M = 2.00 and 4.63 are shownin figure 3. A large decrease in stability occurs
at moderate angles of attack at the low Machnumber. This decrease is caused
primarily by the unstable momentof the body which, at low Machnumbers,
increases more rapidly with increasing angle of attack than does the stabilizing
momentof the wing and tail. At the higher Machnumber, the tail and wing
momentsare more dominant and the pitching-moment variation with angle of attack
is considerably improved. The effectiveness of the tail in producing pitching
moment _6 is essentially constant with angle of attack at M = 2.00, but
some increase in effectiveness with increasing angle of attack is indicated at
the higher Machnumberas a result of an increase in local dynamic pressure at
the tail. At either Machnumber, deflection of the tail for trimming in pitch
results in a loss in lift that is inherent with aft tail controls.

The basic pitch-control results for the wing-control configuration at
M = 1.47 and 4.63 are shownin figure 4. A distinct nonlinearity occurs in the
pitching momentfor the lower Machnumber at moderate angles of attack as a
result of the tall passing through the region of the wing wake. The nonline-
arity at M = 4.63 is much less critical.

The pitch control for this type of arrangement depends upon a relatively
large lift increment from the wing in conjunction with a short momentarm. The
resultant pitch-control effectiveness Cm6 at M = 1.47 decreases with
increasing angle of attack because of the decrease in wing lift at high combined
angles of attack and control deflection. At M = 4.63 the lift increment pro-
videdby the wing is sustained at high angles of attack, again because of an
increase in local _ynamic pressure, and the resultant pitch effectiveness Cm6
increases with increasing angle of attack.

The variation of someof the longitudinal parameters with Machnumber is
presented in figure 5- The coefficients are based on commonreference dimen-
sions and are thus directly comparable. The canard- and aft-tail-control con-
figurations, which have relatively large wings, provide relatively high values
of CL_ whereas the wing-control configuration, with its smaller lifting
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surface, provides relatively low values of CLm. The pltch-control effective-
ness _ (measuredat m = 0°) decreases progressively with increasing super-

sonic Machnumberfor each configuration, with the highest values of _6
occurring for the canard control and the lowest values occurring for the wlng
control.

aerodynamic-center positions in percent body length (x--_c) are on theThe

order of 60 to 70 percent and indicate a slight forward movementwlth increasing
supersonic Machnumberfor each configuration. This slight variation with Mach
number should ease the problem of obtaining a compatible relationship between
the center-of-gravityposition and the aerodynamlc-center position so that a
desirable margin of stability might be easily maintained throughout the super-
sonic speed range.

The results shownin figure 6 relate the basic aerodynamic characteristics
to the maneuvering capabilities of each configuration. The results showthe
variation of maximumtrimmed values of CL with Machnumber for various posi-
tions of the center of gravity for each configuration. The results reflect the
general increase in trim CL to be expected as the center of gravity is moved
rearward and the stability margin is decreased. These results are restricted to
conditions of positive static stability only and are terminated when a nonlinear
pitching-moment variation results In the occurrence of more than one trim polnt
for a given control deflection.

At low Machnumbersthe variation of trim CL with center-of-gravlty posi-
tion is relatively small and linear because of the generally higher levels of
static stability and the general decrease in _ with increasing angle of
attack. With increasing Machnumber the values of trim CL for a given center-
of-gravity position initially tend to decrease because of the decrease in Cm5.

With further increase in Machnumber, however, the values of trim CL tend to
increase for a given center-of-gravity position and to becomemore sensitive to
variations in the center of gravity. The tendency toward higher available
values of trim lift at higher Machnumbers results, in general, from a combina-
tion of the reduction in stability level and the increase in Cm8 at highangles of attack.

The boundaries indicated by the upper limits of these curves represent the
maximumvalues of trim llft available without the onset of static instability.
Boundaries so obtained are shownin figure 7with the lift coefficient based on
a commonreference area so that the results are directly comparable. These
results indicate that the maximumvalues of CL obtainable at the lower end of
the Machnumber regime are essentially the samefor all three configurations.
However, the variation of these lift boundaries with increasing Machnumber is
considerably different. In the Machnumberrange from about 2 to 3 the aft tail
control indicates a marked superiority whereas, for Machnumbersabove 3-5, the
canard control shows amarked superiority. The wing control indicates the least
variation with Machnumberand the lowest values of trim lift throughout the
Machnumberrange.
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The four lower lines designated 40 000, 60 000, 70 000, and 90 000 feet

represent the values of CL required to sustain level flight at these altitudes

for an arbitrary loading value W/A of 1000 pounds/foot 2 (based on body cross-

sectional area). These values are included in order to give an indication of

the excess lift available for maneuvering over and above that required for level

flight. It should be pointed out that such an indication m_7 be pessimistic

since a missile may often approach a target on a climbing flight path much
closer to zero llft.

However, on the basis of the conditions chosen for comparison, some obser-

vations can be made. For e_xample3 the results indicate t_hat for Mach n_-.mbers

below 2, level flight could not be achieved for any of these missiles for altl-

tudes above about 60 000 feet. For higher Mach numbers, however, level flight

is possible for altitudes greater than 90 000 feet.

The variation of normal acceleration an with Mach number was obtained

for each configuration for h = 60 000 feet and W/A = 1000 pounds/foot 2 by

ratioing the lift available to the lift required for level flight. The results

(fig. 7) indicate values of an in the Mach number range from 2 to 4.6 that

vary from about 1.5 for each configuration up to about 19 for the canard con-

trol, about lO for the aft tail contro!_ and about 9 for the wing control. These

results are, of course, only qualitative and would vary both upward and downward

for other assumed conditions. For an altitude of 90 000 feet, for example, the

canard configuration is still capable of about a 4g maneuver from level flight

at the highest Mach number. The maneuvering capabilities indicated are gener-

al/y in excess of the limits that might be expected for an aircraft target, and,

within the scope of these results, a variety of mission requirements might be
satisfied.

CONCLUDING R_WAREB

Investigations have recently been made in the Mach number range from 0.50

to 4.63 of three cruciform wingedmissile configurations with different control

arrangements - a canard control, an aft tail control, and an all-movable wing

control. The results for each configuration indicated a slight forward move-

ment of the aerodynamic center with increasing supersonic Mach number so that a

compatible relationship between the aerodynamic center and the center of gravity

might be maintained. For each arrangement, the pltch-control effectiveness,

which, in general, decreased with increasing angle of attack at the lower Mach

numbers, indicated an increase with angle of attack at the higher Mach numbers.

This increase in control effectiveness at high Mach numbers, coupled with the

decrease in stability level_ resulted in maneuvering limits, without the onset

of static instability, that were generally well in excess of the limits that

might be expected for an aircraft target.
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VARIATION OF LONGITUDINAL PARAMETERS WITH MACH NUMBER
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MAXIMUM TRIM C L BOUNDARIES
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