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PREFACE

This compilation consists of papers presented at a conference on Aerodynamic
Analyses Requiring Advanced Computers held at the NASA Langley Research Center on
March 4-6, 1975.

The purpose of the conference was to present results of recent theoretical research
on aerodynamic flow problems requiring the use of advanced computers. The conference
was divided into the following sessions: (1) Viscous Flows, (2) Internal Flows, (3) Two-
Dimensional Configurations, and (4) Three-Dimensional Configurations. Papers were
presented by members of NASA Centers, Universities, and Industry.
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INTRODUCTORY REMARKS

Attendees at the conference were welcomed by Edgar M. Cortright of the Langley
Research Center, J. Lloyd Jones of NASA Headquarters, and Dean R. Chapman of the
Ames Research Center. The welcoming speakers made observations on the advance-
ments in theoretical aerodynamics since the NASA conference in 1969 on "Analytical
Methods in Aircraft Aerodynamics" and on the changing role of theory and experiment
in fluid-flow research and aircraft design. In addition, their remarks provided a pre-
view of the accomplishments that were described in the conference and of the long-range
prospects for theoretical aerodynamics. In effect, the three speakers did an excellent
job of setting the stage for the detailed technical papers presented. It is appropriate
then that transcriptions of their talks be used to give, this same perspective to the con-
ference proceedings. The talks are.given in the order in which they were presented.

Edgar M. Cortright, Director, Langley Research Center: . . .

I'm Ed Cortright,-Director of Langley, and I'm delighted to welcome you ladies and
gentlemen to this Conference on "Aerodynamic Analyses Requiring Advanced Computers."
We debated that title an inordinately long time and that was the best thing we could come
up with to describe what you folks are doing these days. It's particularly pleasant for
me to have this group here at Langley. There was a day when I feltl knew something
about the flow'of air but now I'm relegated to the flow of paper. Perhaps during the next
three days I'll be able to spend enough time here to learn a little and see many things that
I probably will have trouble understanding. This is the first conference of this type that's
been held since 1969 when we had one at Ames on "Analytical Methods in Aircraft Aero-
dynamics." Since that time a tremendous amount of water seems to have flowed under
the bridge. For example, there has been extensive progress in the calculation of viscous
flows including separation and in our ability to model turbulence. We can now calculate
flows over two-dimensional sections in all speed ranges, as well as the inverse problem
of calculating the shapes to give us the pressures we want. This extends to three-
dimensional configurations these days. So we've come a long way and there's still a long
way to go. .

It appeared to us that the time was now right to get you folks together and have an
exchange such as this. I hope this meeting proves that to be a good judgement. The
progress that has been made, and which we will be dealing with the next three days,
relates to the use of very high speed digital computers; the CDC 6000 series, the



CDC 7600, and the IBM 360/85 are typical of machines which are fairly widely available
and these computers are indispensable to the problem solving that we're talking about.7

However, what's become very apparent as the state of the art progresses is that we run
out of computer capacity even with machines as fast as the 7600. Hence we're now look-
ing to super machines, such as the ILLIAC and the CDC STAR, and even beyond to
machines that someday will perhaps be several orders of magnitude faster. It may be of
course, and probably will be, that many companies will not be able to afford machines of
the super computer size immediately, although that's not clear. _But certainly.the-smaller-
companies, general aviation companies for example, will not. In that regard it seems
reasonable for these types of number crunching problems that remote terminals will be
quite appropriate, and during the course of this conference there will be a demonstration
of the use of the ILLIAC at Ames accessed from a remote terminal here at Langley.

Now the papers that you're going to see and hear sort of run the gamut. Many are
all theoretical, maybe at least half of them, but others are a combination of theory and
experiment which has sort of been the NASA hallmark over the years. Since we're
endowed with so many fine facilities, we've made a special point to attempt to check the-
oretical solutions with experimental data. In this regard, an example of how the theoret-
ical developments are influencing the experimental trends might be made with the two-
dimensional section work that is going on today. In the "good old days," as we sometimes
say, we'd run a whole family of airfoils, like the old NACA four digit series, in order that
the aircraft designers could pick by interpolation, if they couldn't find exactly the airfoil
they wanted. Today in the transonic airfoil area, as well as in the subsonic range for
general aviation application, we're going to test just a few selected sections which will be
designed theoretically and count on the computer to do the interpolation and the design in
between these experimental check points.

I do want to say a word, however, about what I believe to be the continuing role of
the wind tunnel. There are quite a few people today with a lot of vision who are beginning
to see the day when the computer will replace the wind tunnel, and I believe that's feasi-
ble. Although I had been a doubter, I'm beginning to come around to think maybe that's
going to happen someday. It's a way off though; I think even you will concede that, and
in the interim there's going to be a continuing role to check the more intricate flow fields,
particularly where separation is present. We are continuing to work in the NASA to
improve our windTtunnel capability, particularly, at the moment, in the direction of high
Reynolds number. I would like to comment on a cryogenic wind tunnel that we've been
working on using nitrogen gas at several hundred degrees F below zero. We're aspiring
to Reynolds numbers over a hundred million on full configurations based on mean chord.
This looks very feasible, and we already, with a small cryo test tunnel, are reaching fifty
million with two-dimensional models. These tunnels, I believe, will be used to check
your more advanced calculations and will play a major role in helping you define theoret-



ical models, in detecting the defects in the theoretical solutions, and in developing the
improvements required to really hit these predictions on the head. I believe that role
will continue for a considerable period of time.

Now another aspect of this conference, I'd like to point out, is that it's far from a
NASA show. While there is a predominance of NASA papers, at least 25 to 35 percent
are from industry and universities; there's no monopoly at NASA on brains or ideas.
What's really happening around the country is a joint effort with participation by every-
one - universities, industry, and government - to make this rather fantastic capability
come true.

J. Lloyd Jones, Deputy Associate Administrator (Aeronautics Technology), Office of
Aeronautics and Space Technology, NASA Headquarters:

It is indeed a pleasure for me to be here this morning, to welcome you to this con-
ference, and to express NASA Headquarters support of the computational aerodynamics
program that you'll be hearing about at this conference. A long personal involvement
with both experimental and analytic aerodynamics leads to my recognizing and welcoming
the present capabilities and the exciting future promise of this computational aerodynam-
ics effort.

The last NASA conference on this subject, as Dr. Cortright,indicated, was in
October of 1969 at the Ames Research Center. In fact, I was organizer and chairman of
that conference. I was interested in reviewing the conference to note what progress
we've made in the past five and a half years. A major difference, arising from the recent
availability of the very high-speed computers, is that we now have direct solutions to the
governing flow equations with much less use of approximate methods. We can now, as
compared to that time, calculate transonic mixed flows with embedded shock waves.
Before, we couldn't calculate even a single 2D case; now, we're calculating wing-body
mixed flows. The emphasis then was on simple shapes such as conical bodies, and now
we have entire sessions on flows about complex configurations, for example, the shuttle.
Another major difference is our capability of attacking viscous flows in a more realistic
manner. In 1969, for example, there was one review paper on a crude Navier-Stokes
solution, one review paper on turbulent boundary layers using simple mixing length func-
tions, and one paper on laminar separation using first-order integral schemes, and that
was the extent. Today, we have sessions on higher order turbulence modeling and are
tackling laminar and turbulent separated flows in a very serious way. So, in summary,
it looks like we've come to the point where we're facing realistic problems in a head-on
manner by trying to solve the complete flow field about complex shapes. In 1969 we were
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still idealizing the physics of the flow in order to gex tractable equations which we could
solve.

Although we've made a great deal of progress and we're applying this capability to
many practical problems, there are still many potential flow problems that require the
use of advanced computers which do not appear to be getting the attention I think they
deserve; for example, the calculation of interacting systems of vortex wakes behind
aircraft. An expanded capability to calculate such wake systems might very well lead
to a near-term solution to the wake vortex hazard problem through innovative changes in
the design of the lift and propulsive systems of large transport aircraft. Examples of
other problems that deserve attention include calculation of helicopter wakes and V/STOL
aerodynamics. I'm sure that there are those of you in industry who are tackling these
problems now, but from what I've seen available in the literature there's a great field
there that requires attention.

In NASA we're now in the process of going through our budget hearings for our
Fiscal 1976 program. In aeronautics we're discussing our program with emphasis
placed on various program elements. Our testimony addresses, for example, technology
for short-haul aircraft where the emphasis is on powered lift, long-haul aircraft
where the emphasis is on -fuel conservation, supersonic cruise aircraft, military aircraft
with emphasis on high maneuverabilityj rotofcraft, and general aviation. In planning our
program we have long and protracted discussions about the emphasis and the priorities
which should be placed on these various systems concepts. However, we-strongly feel
that the heart of the NASA program is the discipline-oriented research. I'm sure I don't
have to explain that concern to the members in this audience. I think the aerodynamic
capability that we're leading to with the efforts being reported here will have great impact
in all of these aircraft systems areas. It is clear that you recognize this point also.
This capability has the potential for ensuring us that we have a closer approach to opti-
mum design and that we will be able to develop greater confidence in our ability to
achieve the performance which we set out to achieve in. an aircraft design. And more •-
important is the potential for reduced cost in the design and development process. So
that's what we're about. .

I sincerely hope that you find this conference to be a valuable experience, and I'm
sure that you see the same potentials that I do in this aerodynamic capability that is
forthcoming here or you wouldn't be present. Thank you very much.

Dean R. Chapman, Director of Astronautics, Ames Research Center:

I'm Dean Chapman from the Ames Research Center and in my introductory com-
ments I'd like to sketch for you the perspective which we at Ames see regarding the



motivations and the objectives for advancing the technology of computerized flow simula-
tions. Many of you are aware, I believe, that computational fluid dynamics is one of the
areas that we have selected to emphasize at Ames primarily because of its tremendous
potential for revolutionizing the way our profession has been doing business during the
last seventy years; that is, since the time of Stanton and the Wright Brothers when wind"
tunnels were first used as a vital part of the aerodynamic design process. We see three-
major objectives in this work. I want to go over them quickly, not in the order of their •'
importance as we judge them, but in the order they are now being accomplished and will
be accomplished.

The first major objective is to provide those flow simulations which are either
impossible or impractical to obtain in ground-based facilities. One example is flow
very near Mach number of 1, for which wind-tunnel wall interference and support inter-
ference restrict the usefulness of the experimental data. Another example, covered in
one of the papers in this Conference, is that of simulating the chemically reacting flow
over the shuttle orbiter as it enters the atmosphere. This is a flow field simulation
which is not possible to obtain in any existing ground-based facility.

The second major objective that we see is one already mentioned by Lloyd Jones in
his introductory remarks. That is to use the computer to lower the time and the cost
that will be required to obtain those flow simulations which are necessary in the design
of new aerospace vehicles. We already have one example of this. It happens to pertain
to the flow over a defense interceptor missile as it flies through the blast wave of one of
its brethren missiles. It's a rather complicated flow field and in this case the cost of
the computer simulations to do essentially the same job, in fact a more complete job
than the experimental simulations, was less than 10 percent of the experiment cost.

The third major objective, and the one I personally believe will turn out to be the
most important in the long run, is to provide more accurate simulations of flight condi-
tions than wind tunnels can provide. There are some compelling reasons for being opti-
mistic that this third objective will be achieved. One is that the inherent limitations on
the accuracy of wind tunnels are more severe than the inherent limitations in computer
simulations. All wind tunnels, as you are well aware, are limited in the.size of model
that can be put in them and the density that they can be pumped up to; hence, they are
limited in Reynolds number. Subsonic and transonic tunnels are limited by wall interfer-
ence and all tunnels are limited to some extent by model interference. Very high
Reynolds number transonic tunnels will be limited by the artificial aeroelastic distortions
that the high dynamic pressures will bring about. Finally, wind tunnels are limited by
the atmospheres that can be put in them and by the degree of uniformity of the stream
that they can produce. The computers are not limited in any of these ways, and the
inherent limitation on the accuracy by which the governing differential equations of
motion, the Navier-Stokes equations, represent reality is much less severe. Of course
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the-complication is that these full governing differential equations are simply too compli-
cated, too intricate, to be. solved in a practical amount of time and at a practical cost ..„_.
right now by any of the currently available computers. Another reason that we are opti-
mistic that this third and most important objective will be accomplished stems from.past
experience, and experience in pther fields of computational physics. In ballistics, for
example, .which is governed by Newton's equations of motion with air forces thrown in,
the computer has long ago displaced ballistic ranges as the principal source of the data
that are needed to construct artillery tables. Also in the field of neutronics, which is

~gove~rned.by thei Bbltzmahn integro-differential-equation, computers of the 1960!s began
to displace^ and by now have largely displaced, the experimental critical test facilities as
the principal source of design information ,for nuclear reactors. When future computers
obtain the. capability of solving the complete Navier-Stokes equations with dispatch, then,
if history is a guide, the wind tunnels can be expected to play a secondary role to the com-
puters in aerodynamics just as the neutronics critical test facilities now perform a sec-
ondary role to the computers in neutron transports mechanics and just as ballistic ranges
now perform secondary roles to computers in trajectory mechanics.

I've attempted to make a rough estimate of the time that it will take before compu-
ters attain this capability, and that's illustrated on the only slide that I have to show you.

10 7

10 5
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I 103
O
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SKT'
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"This is a graph of the'relative speed of computers plotted as a function of the year that -
each new computer became available. We estimate that solving the full time-dependent
Navier-Stokes equations for a configuration such as an aircraft, say a wing-body-tail
combination, will require the use of the order of 10^ grid points or flow elements in the
field To solve a problem of this magnitude in a reasonable amount of time will require
a computer having a relative speed on this graph of about 1()6. The figure shows that if
the past trends continue, such a computational capability will be available in the mid or
latter part of the 1980's. I'd like to note in concluding that there is no fundamental rea-
son for limiting computers to this capacity; that is, the fundamental limitations like speed
of light, circuitry, and so forth only limit the capability of computers for speeds well
beyond the limits of the figure. So, we believe that it's not a question of whether this
capability will be achieved, or whether computers will be able to simulate flight condi-

\ tions more accurately than wind tunnels, but it's just a question of when.



Page Intentionally Left Blank



REMOTE ACCESS OF THE ILLIAC IV

By K. G. Stevens, Jr.

NASA Ames Research Center

SUMMARY

Until a few years ago, most computational aerodynamic flow simulations
were made on general-purpose computers physically located near the researcher
wishing the flow simulation. In recent years alternate computer resources
have become available. These particular resources are very attractive because
they are larger and faster than older computers. This paper wiil^discuss the
use of one of these alternate^ computer resources, namely, the ILLIAG^IV.

This discussion will have two major sections. The first section will
describe the hardware, that is, the ILLIAC IV, the Illiac system, The
Advanced Research Projects Agency (ARPA) computer network, and the IMLAC
PDS-1. The second section will trace the execution of the Space Shuttle flow
simulation on this hardware. An actual demonstration of this flow simulation
will be presented at this conference.

ILLIAC IV

To understand the ILLIAC IV hardware we will look at its four functional
parts. Those parts are the control unit, the 64 processing elements, the
processing element memories, and the Illiac main memory. (See figure 1 for ,
a diagram of the hardware described below.)

The Control Unit (CU) contains the instruction stack which interprets all
instructions, some of which may be completely executed within the CU.
Instructions are partially executed and then broadcast to the 64 processing
elements; there, the execution is completed by all the processing elements in
lock-step. Thus the Illiac operates on up to 64 sets of operands simulta-
neously. If each operand is viewed as a component of a vector, one may think
of the Illiac as a Vector or Array Processor. In addition to managing the
Instruction stack, the CU may be thought of as a small self-contained computer.
It has four accumulators which are capable of a full set of shifting, bit-
setting, and Boolean operations, as well as addition and subtraction. Further-
more, these accumulators may be used as index registers for fetching and
storing in the processing elements.

A Processing Element (PE) has six programmable registers, called RGA, RGB,
RGS, RGR, RGX, and RGD. The RGA is the accumulator and RGB is its extension;
RGS is a scratch register. The remaining registers are somewhat peculiar to
the Illiac architecture. RGR is used for inter-PE communications of data.
Data may be rotated end-around (data from PE 1 going to PE 64) within the



64* RGRs. RGX acts as an index for intra-PE fetching. This register allows
independent fetching depths in each of the PE memories. The RGD contains
fault bits',and test result bits for that PEr. It also contains the bits,
called mode bits, which, when set, allow the PE to take patt in instructions
and, when reset, protect the PE memory as well as RGA, RGS, and RGX from ' '
change. The speed of a_PE is approximately equal to that of a CDC 6600.

The Processing Element Memories (PEMs) may be thought of in two ways:
(1) collectively as 131,072 64-bit words of memory from the CU's point of
view, and (2) a^ a 64_x 2048 matrix__pj__64-j3it.words from the^point of-view—
of the PEs. In the latter case, each PE is able to access its own column of
2048 words. (Note that the RGX indexing permits the PEs to fetch indepen-
dently any word within their own column.)

The main memory of the Illiac is logically a 16-million word drum.
The drum is divided into 52 bands (tracks) each of which contains 300 Illiac
pages (an Illiac page is 1024 64-bit words). The drum may be mapped, that
is, data may be stored upon it in predetermined locations, and accessed
asynchrbnously. This enables the programmer to ensure that the data he
wishes to fetch are coming under the read/write heads when he needs them.
This allows the full billion-bit-pef-second<transfer rate to be realized
during execution. (A detailed description of the Illiac hardware may be
found in reference 1.)

THE ILLIAC SYSTEM

" The.Illiac system includes the ILLIAC IV; the central system, and a
B6700. (See figure 2 for a diagram of the hardware described below.) The
central system consists of various processors, memories, and devices that
interface the Illiac, B6700 and the outside world. The main processor in , ••-•
the central system is currently a PDP-10 running under the TENEX operating r
system. ' " ' : !

' File storage is provided by a hierarchy of devices from central memory •-•
(PDP-10 memory) to the Unicon laser memory. Files are moved through*the ";•'
storage hierarchy depending on their activity and space availability. The ".;
permanent mass storage device is the:;laser memory which has an on-line
capacity of 700 billion bits.

The Burroughs B6700 computer performs utility functions such as
assemblies and compilation's of GLYPNIR programs. (For a detailed description
of this system see reference ,2.)

' • ARPA NETWORK ' - -
' . '•' " ' • . ' * ' • ' .

' The ARPA network now has about 50 nodes connected by 50 kilobit lines.
(See figure 3 for typical geographical locations.) These nodes fall into one
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of two categories, either a Terminal.Interface Message Processor (TIP) or an
Interface Message Processor (IMP). An DIP can connect up to four computers
to the ARPA network. Their basic function is to send to and receive from"'
other IMPs and TIPs-strings of bits (either character data or bit'data)". " ,
Figure 4 shows the wide range of computers currently on the network.

A TIP in addition to .performing the same functions as an IMP may support
dial-up terminals. Almost any terminal is compatible with the TIP. (A com-
plete description of how to use the TIP may be found in reference 3.)

IMLAC PDS-1

IMLACfs PDS-1 consists of a. dynamic cathode ray tube (CRT) and a solid-
state keyboard controlled by a sixteen-bit 4096-word miniprocessor. This
device is capable of emulating a teletype and an IBM 2250 Display Unit.

An acoustic coupler will be used to dial up a TIP. The TIP will then
allow the user to access the Illiac system through its IMP. This original
connection will be made as a teletype. When graphics data are being trans-
mitted, the PDS-1 will emulate the 2250 Display Unit and display the
graphics data on the CRT. When the system stops transmitting graphics data,
the PDS-1 will again emulate a teletype so that further instructions may be
Issued.

THE SHUTTLE CODE

. The demonstration problem has been coded by Davy and Reinhardt and
resides in the central system,memory. This problem consists of computing
the inviscid, frozen flow over the first ten meters of a Shuttle Orbiter-
like vehicle (based on design version 147). The free-stream conditions
correspond to a Mach number of 10 at an altitude of 20 km. The flow field
is computed with an angle of attack of 5 degrees to accentuate the relation-
ship between the body shape and the shock shape. A detailed description..
Of the code may be found in reference 4.

THE DEMONSTRATION

The demonstration will make use of most of the hardware and software .
described above. (See figure 5 for a diagram of the hardware configuration.)
The IMLAC PDS-1 will be connected to the MITER TIP via an acoustic coupler
and the conventional telephone system. The TIP will connect the IMLAC, via
the ARPA network, to the Illiac system's IMP. At this point the IMLAC is
logged into the Illiac's PDP-10. To run this version of the shuttle code two
parameters'are needed. After supplying these two parameters, Illiac execution
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may be requested. This jrequest is usually made by submitting a batch job.
However., for this demonstration the shuttle'code will be run interactively.

The demonstration program will compute two flow fields. The first
computation is without canopy, and the fuselage has simply been faired
smoothly through the canopy region. The body profile is shown on the screen
in solid-line-plot mode. (See figure 6 for a sample CRT picture.) Also
displayed on the screen by solid lines are the bow shock locations and the ..
computed body pressure at the leeward symmetry plane as a function of Z, the
integration direction.

For the second computation of the flow field, a canopy shape described
by a two-parameter (the input parameters) analytical function is added to the
fuselage. Results of the flow field as well as the canopy shape are now
displayed on the CRT screen in point-plot mode so that they may be contrasted
with the previous computation. . . ; ' - ' , •

.While the ILLIAC IV,is calculating these two flow fields, the resulting
graphics data are stored -in Illiac main memory. When the calculations are
completed the graphics data are transferred from the Illiac main memory to
the central memory. At this point a simple PDP-10 routine is used to trans-
mit, the graphics data to the IMLAC where it may be viewed. . ' •••

This demonstration is intended to show the feasibility of using an
advanced computer from a remote location. It also is meant to demonstrate
the practicality of using computer flow-field simulations and their graphical
representations in solving aerodynamics problems.

REFERENCES

1. Burroughs Corporation:- ILLIAC IV Systems Characteristics and Programming
-Manual. NASA Contractor Report 2159, 1972.

2. Institute for Advanced Computation: Systems. Guide for the ILLIAC IV User.
IAC Doc. No. SG-I10000-0000-D, Moffett Field, CA, March 197*.

3. Bolt, Beranek and Newman Inc.: User's Guide to the Terminal IMP.
Report .No. 2183, December 1974. . .

4. Davy, W. C,; and Reinhardt, W. A.: Computation of Shuttle Nonequilibrium
..Flow Fields on a Parallel Processor. Aerodynamic Analyses Requiring

/, Advanced Computers, Part II, NASA SP-347, 1975, pp. 1351-1376.

12



PROCESSING
ELEMENT

MEMORIES

Figure 1.- ILLIAC IV.

•".;• FILEvrSTORAGE-;./
INCLUDING .UNICON'.

•CENTRAL'.SYSTEM

Figure 2.- Illiac system.

13



ARPA-NASA

NASA/AMES

STANFORD

50 KILOBIT LEASED TELEPHONE CHANNELS

Figure 3.- ARPA computing network.

RADC

BBN-10X

BBN

H316

- J>DP-10

PDP-10 | ; \ pDP-1

BELVOmV HASKINS

PDP-10;

FNWC

360/75

SCRLIPDP-1\

UCSB

Figure 4.- ARPA network logical map, November 1974.

14



MITER NETWORK
TIP

PHONE LINE

-11 L 1 c-- /

%?T^

ILLIAC
IMP

1

POP 10

1
1

( ILLIAC
DISK

...„-_

|

r\(j ILLIAC IV

Figure 5.- Demonstration hardware.

Z (CM) = 500.
STEP No. ='283

P (SURFACE)
LEE SYM PLN

.SHUTTLE WITHOUT. CANOPY

SHUTTLE WITH CANOPY

Figure 6.- Demonstration frame.

15



Page Intentionally Left Blank



CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE LAMINAR

AND TURBULENT BOUNDARY LAYERS

PREFACE

By Julius E. Harris
NASA Langley Research Center

The complexity and cost of designing aerospace vehicles together with the availa-
bility of large-storage high-speed computer systems have resulted in focused research
in the area of developing numerical solution techniques and user-oriented computer
codes for the compressible three-dimensional laminar and turbulent boundary-layer
equations. The numerical program for three-dimensional boundary-layer flows at the
NASA Langley Research Center can be divided into the three following categories:
(1) in-house development of an implicit finite-difference technique for general problem
definition and turbulence modeling studies, (2) contract development of a perfect-gas
computer code for arbitrary wing planforms, such as the supercritical wing (NASA Con-
tract No. NAS 1-12821 with Douglas Aircraft Company; paper by Tuncer Cebeci and
others), and (3) contract development of a real-gas (equilibrium/frozen) computer code
for complete configurations, such as the Space Shuttle (NASA Contract No. NAS 1-12424.
with Aerotherm Division of Acurex Corporation; paper by Robert M. Kendall and others).

The in-house research has been directed toward (1) development of efficient and
accurate finite-difference procedures for solving the governing nonlinear three-
dimensional boundary-layer equations, (2) studies of optimum transformations to reduce
the number of mesh points required for high Reynolds number turbulent flows, and
(3) calibration and verification of turbulence models for the Reynolds .stress terms. The
initial stage of the in-house research program was concerned with problem definitions
common to general three-dimensional boundary-layer flows for aeronautical and aero-
space vehicles; these areas included the following: (1) optimum coordinate system for
general configurations, (2) characteristics of various numerical procedures including
computer storage and processing time as a function of vehicle scale and aerothermal
environment (perfect-gas or real-gas flows), and (3) requirements and/or availability of
three-dimensional inviscid flow-field solutions (computer code availability and range of
application).

The outgrowth of the in-house research program resulted in the initiation of two
contract efforts which, in principle, cover the broad requirements of the aerospace
industry. The Aerotherm Division of Acurex Corporation was given the task of develop-

17



Ing a user-oriented computer program in which the numerical procedure and coordinate
system were optimized for complete configurations for which the aerothermal environ-
ment (real-gas flows) is important. The Douglas Aircraft Company was given the task
of developing a user-oriented computer program in which the numerical procedure and
coordinate system were optimized for wing geometry. Two independent contract efforts
were initiated as a result of in-house and contract studies of computer storage and pro-
cessing times required for these two classes of flows.
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CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE LAMINAR

, - - - ! - . AND TURBULENT BOUNDARY LAYERS . ' ...
f • . ' j

AN IMPLICIT FINITE-DIFFERENCE PROCEDURE FOR SOLVING THE

THREE-DIMENSIONAL COMPRESSIBLE LAMINAR, TRANSITIONAL,

AND TURBULENT BOUNDARY-LAYER EQUATIONS

By Julius E. Harris
NASA Langley Research Center

SUMMARY

An implicit finite-difference procedure is presented for solving the compressible
three-dimensional boundary-layer equations. The method is second-order accurate,
unconditionally stable (conditional stability for reverse cross flow), and efficient from the
viewpoint of computer storage and processing time (60000s storage and 0.002 second per
nodal point on the CDC 6600 computer). The Reynolds stress terms are modeled by (1) a
single-layer mixing length model and (2) a two-layer eddy viscosity model. These
models, although simple in concept, accurately predicted the equilibrium turbulent flow
for the conditions considered. Numerical results are compared with experimental wall
and profile data for a cone at an angle of attack larger than the cone semiapex angle.
These comparisons clearly indicate that the numerical procedure and turbulence models
accurately predict the experimental data with as few as 21 nodal points in the plane nor-
mal to the wall boundary. Research continues in the areas of convergence accelerator
techniques (reduction of computer processing time), turbulence modeling, and extension
of the computer code to general configurations (general geometry package development).

INTRODUCTION

A current design and analysis requirement of the aerospace industry is develop-
ment of accurate and efficient numerical techniques and corresponding user-oriented
computer codes for solving the compressible three-dimensional laminar, transitional,
and turbulent boundary-layer equations for flows over general configurations. These
codes would substantially reduce the cost and time currently required for the develop-
ment of advanced aircraft through the substitution of numerical simulation for time-
consuming and expensive experimental simulation and testing. The research focused on
three-dimensional boundary-layer flows can be attributed to (1) experience gained over
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the past decade in developing user-oriented codes for two-dimensional and axisymmetric
flows, including the development of numerical procedures and simple but accurate mean-
field turbulence models and (2) the increased availability of large-storage high-speed
digital computer systems.

Experience gained in two-dimensional and axisymmetric boundary-layer flows
indicates that computer codes for three-dimensional turbulent flows, if they are to be
accepted as design/analysis tools by the aerospace industry, will require efficient and
accurate mimerical_methods with_suitable-turbulence-models for the Reynolds stresses. ~~~~
Numerical experimentation and detailed experimental turbulent boundary-layer research
has resulted in the development and verification of mean-field turbulence models (eddy
viscosity/mixing length) for two-dimensional boundary-layer flows which are. sufficiently
accurate for application to a broad range of flow and boundary conditions. (See refs. 1
to 4.) The numerical techniques developed for this class of flow can be directly applied,
with minor modifications, to three-dimensional flows; however, zones of dependence and
independence must be carefully treated for three-dimensional flows (see refs. 5 and 6).
Although the extension of two-dimensional mean-field turbulence models to three-
dimensional flows appears to be straightforward, numerical experimentation in which
numerical results are compared with accurate three-dimensional profile and wall data is
required before any evidence can be produced to prove or disprove this assumption' - -•>
(refs. 7 to 9).

', . - , ' • " - *

If one assumes that accurate and efficient numerical procedures together with suf-
ficiently realistic turbulence models can be developed on the basis of experience with
two-dimensional flows, a number of problem areas still remain to be solved for general
three-dimensional boundary-layer flows; these include: (1) selection and development of
an optimum boundary-layer coordinate system; (2) development of general transforma-
tions which will remove numerical problems associated with the generation of initial data
planes, reduce the growth of the boundary layer in the computational region, and reduce
the sensitivity of the numerical procedure to mesh-point distributions in the two spatial
surface coordinates; and (3) availability and/or use of accurate three-dimensional invis-
cid flow-fie Id solutions which are required for edge boundary condition specification.
(See ref. 10.) Problems associated with (1) and (3) make it manditory that the boundary-
layer codes be coupled with the three-dimensional inviscid flow-field codes to avoid
excessive and time-consuming,data manipulation as well as to provide the possibility of
accounting for displacement surface effects on numerical results. For general aerospace
configurations the problem associated with obtaining accurate three-dimensional inviscid
flow-field data may well be the most difficult. However, substantial progress has been
made in this particular area of research. Progress has also been made in the area of
three-dimensional boundary-layer flows over the past few years (refs. 11 to 15), A crit-
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ical review of computational techniques for boundary -layer flows (two- and three- *
dimensional) is presented in reference 16.

In this paper a technique under development at the NASA Langley Research Center
for solving the compressible three-dimensional laminar, transitional, and turbulent
boundary-layer equations is presented. The advantages and disadvantages of the impli-
cit finite-difference procedure and Crocco transformation are discussed. The Reynolds
stress terms are modeled by two mean-field (scalar invariant) models. Numerical -*
results are presented and compared with experimental data to determine the validity of
the simple turbulence models and the accuracy of the numerical procedure.

SYMBOLS

A damping term in turbulence model (eq. (12))

aj,a2 coefficients in boundary condition on shear equation (see eq. (25b))

C coefficient of geometric progression for mesh-point distribution,

Cf e skin-friction coefficient

CD specific heat at constant pressure -
' • • -

D Van Driest damping factor (eq. (11)) ,: •

ds incremental arc length . • -

F =u/ue

G =v/ve

H =w/ue

hj,h2,h3 metric coefficients (eq. (5))
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kj,k2,. . .,&6 coefficients in turbulence models (eqs. (9) to (17))

effective thermal conductivity (eq. (8))

L reference length

jfj^g mixing lengths (eqs. (10) and (17))

MOO free-stream Mach number

N number of mesh points in the plane normal to the wall boundary

Npr Prandtl number

Npr f static turbulent Prandtl number

pressure

Reynolds number based on reference length

T temperature

Vao free -stream velocity

Ue t total velocity at edge of boundary layer

u,v,w velocity component in the £-, rj-, and £ -direction, respectively

X},X2>X3 physical coordinates

Y1»Y2>- • '»Y6 coefficients for derivative relations (eqs. (33) to (38))

a angle of attack

al»a2»- • -'"S coefficients in standard equation (eq. (24))

*
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01,/32»03»04 coefficients in equation (40)

y ratio of specific heats

y normal intermittency function (eq. (13)) :

F streamwise intermittency function

A£,A??,A£ incremental mesh-point spacing in the |,77,£ coordinates

6* incompressible displacement thickness (eq. (19))

e eddy viscosity

£ transformed normal coordinate

77 transformed cross-flow coordinate

e =T/Te

Kl>*2 geodesic curvatures (eq. (6))

ji molecular viscosity

effective viscosity (eq. (7))

| transformed streamwise coordinate

£ similarity parameter

p density

T total shear stress

$ shear parameter (eq. (23))

<(> circumferential angle
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u> dummy variable

o>s surface streamline angle

Subscripts:

e boundary-layer edge quantity

i,j,k grid point indices

p,q,r dummy indices

w wall value (C = 1)

4,?7 direction of quantity

A bar over a symbol designates a dimensional quantity.

GOVERNING EQUATIONS

The governing equations are written in general form as follows (see fig. 1 for coor-
dinate system; bar over a symbol designates a dimensional quantity):

Continuity

= 0 (1)

-momentum

9 u 8 u w 9 u — 2 P l
H! a| H2 a7? E3 aC - ~p^ 9| pH3

77 -momentum .

hj a? h2 a?7 h3 aC ph2

Energy

h2 w h3 ac pcp Mhi a^ fi2
 a7?/ Tjo2

• «* *? \\ a / j
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where hj, h2, and 113 represent the metric coefficients for the incremental arc length
ds; that is

+ (h2d77)2+(h3dC)2 (5)ds2 =

The parameters KJ and K2
 are ^e geodesic curvatures of the curves £ = Constant

and 77 = Constant, respectively; namely

(6)

The governing system is completed with the perfect gas equation of state and Sutherland's
molecular viscosity law.

Closure of equations (1) to (4) requires that the effective viscosity jleff and ther-
mal conductivity keff be expressed in.terms of the dependent variables. These rela-
tions are formulated as follows:

(7)

and

(8)

where M, e, Npr, and Npr t represent the molecular viscosity, eddy viscosity,
Prandtl number, and static turbulent Prandtl number, respectively. The streamwise
intermittency function T (ref. 17) models the transitional region of flow and is a func-
tion of 4 and 77; 0 £ F £ 1. In the present analysis the initiation and completion of the
transitional flow process are empirically specified; however, correlation relations could
be directly incorporated into the computer code. The eddy viscosity is assumed to be a
scalar function independent of coordinate direction (refs. 8 and 18). The following sim-
ple scalar invariant turbulence models are considered:

Single-layer mixing length model:

e = /9u\2
 + /9v\2

\W W }
1/2

(9)
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where

A- = k2 tanhfe ^-} D
X3,e \k2 X3,e/

D - l - e x p f - S
\ A

,p/w\pyw

(10)

(11)

(12)

y =

T =

1 - erf kg ̂  - kj
V X3,e /

1/2

Two-layer eddy viscosity model:

Inner law

Outer law
eouter =

where

Ue,t = e

3,e
1 -

ue,t

1/2

dx

(X3,c<x3=x3,e)

(13)

(14)

(0 S x3 i x3>c) (15)

(16)

(17)

(18)

(19)

The point where the inner and outer laws are matched x3 c is obtained from the conti-
nuity of eddy viscosity. For the results presented in this paper, ki, k2, k3> k4, ks,
kg, and Npr t were assigned values of 0.435, 0.09, 26, 0.0168, 5, 0.78, and 0.95, respec-
tively. These represent the classical values generally accepted for equilibrium two-
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dimensional boundary-layer flows (see refs. 3 and 4); however, note that although the"
assigned values are sufficient over a broad range of flow and wall boundary conditions,
modifications are required for certain classes of flow. (See refs. 4 and 10, for example.)

TRANSFORMATION

The use of physical coordinates introduces a number of problems for three-
dimensional boundary-layer flows which can be circumvented by the introduction of a
suitable transformation. K physical coordinates are used, three main problems are
encountered as follows: (1) the numerical procedure and resultant solution are sensitive
to the mesh-point distribution in the two surface spatial coordinates (Ax^ and Ax"2);
(2) the growth of the boundary layer in the streamwise (xj) and cross-flow (x^) directions
requires the addition of nodal points in the ^-direction as the solution progresses (these
two factors result in excessive computer processing time and/or computer code logic);
and (3) initial data planes cannot be generated where the initial boundary-layer thickness
is zero (for example, at the tip of a sharp body). Consequently, in the present procedure
a transformation is introduced which avoids these problems and, in addition, minimizes
the computer processing time and storage requirements.

Equations (1) to (19) are first nondimensionalized (see ref. 11 for definition of non-
dimensional variables), and a similarity-type transformation is introduced for the normal
coordinate and velocity as follows:

(20)

(21)

where u«> is the reference velocity and for a sharp cone I = \/l. The metric coeffi-
cients h2 and 113 are arbitrary functions of the coordinates. In order to cast the
equations into Crocco-type form, the following function is defined:

(22)

where F = u/ug. The continuity and £ -momentum equations are combined to form the
shear equation, where the shear parameter $ is defined by

' ' . V (23)- -h3 TV M

Consequently; F is replaced by <£ as a new dependent variable, and H = W/UQ is
uncoupled from the system. The governing system of equations reduces to three coupled
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nonlinear partial differential equations in 0, G, and $ together with an explicit alge-
braic relationship for H. The system assumes the following form:

(24,

where u represents 0, G, and $, and a1, a^, <x%, a±, and a 5 are nonlinear
coefficients. ,

_ _ ._The boundary-conditions on equation (24) are as follows: - ------------- r -------

when C = 0

0 = 1 G=l $ = 0 (25a)

when £ = 1

0 = 0W or (MY = ffe.
V9C/W

G = 0

(S*\ - -fa,H + a2 1^ + *
V 1 2 *

> (25b)

where aj and a2 are functions of geometry and the inviscid edge conditions.

The primary advantage of the Crocco-type transformation is that the solution
domain is bounded between the definite limits 0 i ? ? 1. The only disadvantage of the
transformation is that velocity overshoot in F is not allowed; that is, F, must increase
monotonically from the specified wall value (slip at the surface can be specified) to unity
at the edge boundary. Edge vorticity and streamline swallowing are not considered in
this paper. '

SOLUTION TECHNIQUE

Equation (24) is solved in an iterative mode with a marching implicit finite-
difference technique suggested by Dwyer (ref. 19) and modified by Krause (ref. 20). The
method is second-order accurate and unconditionally stable (conditional stability for
reverse cross flow; see ref. 20). For turbulent flows a minimum of two mesh points in
the C -plane must be located in the viscous sublayer; consequently, a variable mesh-point
distribution is used. In the present study a geometric progression is assumed; that is;
A£k+1/A£k = C for K = 2, 3, . . ., N - 1 (ref. 3). Variable mesh-point distributions
are also used in the £- and 77 -planes to minimize the computer processing time and stor-
age requirements. A schematic of the difference molecule is presented in figure 2.
Equation (24) is written at the point (i-l/2,j,k) and solved for the values of the dependent
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variables 0, - G, $, and H at the point (i,j,k). Consequently, the partial derivatives of
equation (24) at the point (i-l/2,j,k) are expressed as follows:

"i-lj+l.k - "i-lj^ t

(*<&} • + (*<£}
(M) _W'i-i,i,k Wy,k (27)

\8Wi-l/2,j,k 2

(28)

= - - s - L_ • (29)
k z •

h > i t i I r + d ) s • ; i f • • ' • • - '

= > 3 >
2
 1>3> (30)

The derivative quantities in equations (26) and (27) are obtained from

!- (31)
p,q,r .

(f) =Y4a»p,q,r+l-Y5a,p>q>r-Y6a,p)q)r.1 (32)
X WP,q,r

where .

Yi = - - ^ - - (33)
+ AC^J) . . . . . .

(34)

Y3 = - - ? - (35)

AJf ,
Y4 = - 11^ - (36)
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L - • - - . - • (38)

For equally spaced mesh-point distributions in the C -plane, equations (33) to (38) assume
the values

_ ._ ~v
1 -\r O"V '—=—• Yo = /sii

A^2

(39)

When a converged solution cannot be obtained at the most leeward plane, 0 = 180° (for
example, for separation on leeward surface), a cubic Crank-Nicolson differencing scheme
is used at the maximum 77 -station (ref. 14). If this procedure were not incorporated into
the program logic, one ?7-station would be lost for each incremental A£ because of the
Krause differencing scheme; that is, equation (29) assumes the existence of a converged
solution at the point (i-l,j+l,k) for K = 2, 3, . . ., N - 1.

The marching procedure cannot be initiated without the existence of two orthogonal
initial data planes. For a sharp right circular cone these planes of initial data are gen-
erated directly from the governing equations by using a second-order Crank-Nicolson
scheme for the two planes £ = 0, 0 i 77 = ̂ max and 0 = £ = £max» ^ = ^ where simi-
larity 'exists. A discussion of problems associated with obtaining initial data planes for
general configurations is presented in reference 10.

Substitution of equations (26) to (30) into equation (24) results in a system of coupled
algebraic equations whose coefficient matrix is of tridiagonal form which can be effi-

ciently solved for the dependent variables (Thomas' algorithm). The primary problem
associated with equation (24) is that the coefficients (aj, #2, etc.) are hignly nonlinear.
The shear equation controls the convergence rate 'of the numerical procedure (iterations
required) as the system is' sequentially iterated. Equation (24) can be written for $ as

* + + + = 0 <40>a?

where /3jy- #2, 133, and £4 are functions of geometry, inviscid edge conditions, and
previous iterate values of the dependent variables F and 9 and their derivatives. The
problem is further complicated by the inclusion of the turbulence models (eqs. (9) to (19)),
since in the transformed plane * appears explicitly in the transformed relationships.
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Consequently, the coefficients (fti, #2, etc.) also depend on $ for turbulent flows (for
laminar flows this dependence is removed). The system of equations will not converge if
the shear equation is written as shown in equation (40) because of the . *-* - term. Con-
vergence can be achieved by using a Taylor's series expansion of $~* about the previ-
ous iterate value *Q; that is

(41)

Substitution of equation (41) into equation (40) yields

Q (42)

Equation (42) converges in an average of five to seven iterations for high Reynolds num-
ber turbulent flow. The wall boundary condition on $ (see eq. (25b)) also presents a
problem since $w is unknown; however, the wall derivative relationship can be directly
incorporated in the iterative solution procedure. In principle, it should be possible to
reduce the average number of iterations substantially to a maximum of three. Research
continues in the areas of (1) restructuring equation (42), (2) treatment of the $ wall
boundary conditions, and (3) the problem associated with $ in the transformed turbu-
lence models. Note however that the present procedure requires essentially the same
processing time per mesh point (0.002 sec) as the Cebeci -Keller Box method (ref. 10) and
that this time may be substantially reduced through convergence accelerator procedures
and/or the inclusion of Newton -Rap hson iteration.

i

RESULTS AND DISCUSSION

. The numerical procedure and turbulence models have been applied to a number of
flows (current geometry limited to sharp right circular and elliptic cones). In this paper,
numerical results are compared with experimental wall and profile data for a cone with a
12.5° semiapex angle at an angle of attack of 15.75°. The free-stream Mach number,
total pressure, and total temperature were 1.8, 172.4 kN/m^, and 294 K, respectively.
Transition was assumed to be initiated and completed in the region 0.03 i xj/L i 0.08
(L = 105.6 cm). The adiabatic wall boundary condition was imposed on the energy equa-
tion (see eq. (25b)); that is, (^} = 0. No experimental data were input into the viscous

\8C/W
flow solution. The inviscid pressure distribution pe = pe(|,7?) was obtained from a
numerical solution of the three-dimensional inviscid flow equations. Experimental data
for verification of the accuracy of the numerical procedure and turbulence models were
obtained from reference 21.
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The numerical results for F, G, and 9 are compared with experimental data in
figure 3 for circumferential locations of <f> = 0°, 45°, 90°, and 135°. In order to eval-
uate the effect of nodal -point spacing in the £ -plane, a parametric study was made for
N = 301, 201, 101, 61, and 21 with A£k+1/A£k = 1.02. The results for N = 301 and 201
were essentially identical, and those for N = 101 were within 0.5 percent of the N;= 301
results. The agreement between the experimental and numerical results is very good for
301 points and, in general, good for 21 points. The two turbulence models (eqs. (9) to (19))
produced essentially identical results. The two-layer_model^results presented in Jigure .JL
are for N = 301; however, the two-layer results for N = 21 were essentially identical
to the N = 21 results of the single -layer model. A comparison of the numerical results
for Cf e presented in figure 4(a) indicates that the difference between the results for
61 points and 301 points is approximately 1 percent and between 21 points and 301 points
is approximately 3 percent. In figure 4 (b), Cf e is presented as a function of <t>. Fig-
ures 3 and 4 indicate that as few as 21 points normal to the wall boundary can be used to
obtain results to within 3-percent accuracy (compared with N = 301 results). Numeri-
cal results for surface streamline direction ws = t a n - / obtained for N = 301

and 21 are compared with experimental data in figure 5. The agreement is good consi-
dering that the inviscid pressure distribution was obtained from the inviscid equations
and not from experimental data; that is, displacement surface effects are not included in
the viscous/inviscid calculations.

The major points which should be noted in these comparisons are (1) that the numer-
ical procedure is efficient and accurate and (2) that the turbulence models are satisfac-
tory for high Reynolds number equilibrium turbulent boundary-layer flows. The Crocco-
type transformation and the numerical procedure allow the generation of accurate solutions
for a minimum of 21 points normal to the wall boundary. The computer code requires
600063 storage (the i-l,j,k data plane is stored on disk) and approximately 0.002 sec-
ond per grid point processing time on a CDC 6600 computer system. Current studies
indicate that it may be possible to substantially reduce the processing time through con-
vergence accelerators for the shear equation (eq. (42)) and/or the inclusion of a Newton-
Raphson iteration procedure. The current program is comparable in both storage and
processing time with the Cebeci-Keller Box method (ref. 10).

CONCLUDING REMARKS

Solutions of the compressible three-dimensional turbulent boundary -layer equations
have been obtained and compared with experimental data. The agreement between the
numerical results and experimental data indicates that accurate results can be obtained
with a minimum of 21 nodal points in the plane normal to the wall boundary layer for high
Reynolds number equilibrium turbulent flows. The turbulence models, although simple in
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concept, were adequate for the class of flow considered; however, previous experience
indicates that caution should be exercised in extending these models to more demanding
boundary-layer flows. The numerical procedure is second-order'accurate and uncondi-
tionally stable (conditional stability for reverse cross flow). The computer code requires
60000s storage and approximately 0.002 second per grid point processing time (CDC 6600
computer system). Studies indicate that the processing time may be further reduced
through convergence accelerator and Newton-Raphson iteration procedures; however, the
current computer requirements of storage and speed compare favorably with other pro-
cedures under development.
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CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE LAMINAR

AND TURBULENT BOUNDARY LAYERS

CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE

BOUNDARY LAYERS ON ARBITRARY WINGS

By Tuncer Cebeci, Kalle Kaups, Judy Ramsey, and Alfred Moser
Douglas Aircraft Company

SUMMARY
••..

A very general method for calculating compressible three-dimensional laminar and
turbulent boundary layers on arbitrary wings is described. The method utilizes a non-
orthogbnal coordinate system for the boundary-layer calculations and includes a geometry
package that represents the wing analytically. In the calculations all the geometric
parameters of the coordinate system are accounted for. The Reynolds shear-stress
terms are modeled by an eddy-viscosity formulation developed by Cebeci. The govern-
ing equations are solved by a very efficient two-point finite-difference method used ear-
lier by Keller and Cebeci. for two-dimensional flows and later by Cebeci for three-
dimensional flows.

Preliminary results for a swept wing look very encouraging. A typical computation
time (CPU) for one surface of the wing which roughly consists of 30 z-stations and 20 x-
stations with 30 77-points across the boundary layer is a little over 30 sec on an
IBM 370/165 computer.

INTRODUCTION

The development of an efficient and accurate method to compute three-dimensional
boundary layers on wings of arbitrary shape requires:

(1) The velocity distribution at the boundary-layer edge

(2) A convenient coordinate system

(3) A model for the Reynolds stresses

(4) A numerical method to solve the governing equations

The velocity distribution must be obtained from the pressure distribution. In gen-
eral, the pressure distribution can be obtained either theoretically or experimentally.
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When obtained theoretically, the velocity components in the streamwise and spanwise
directions can be"calculated without too much difficulty and thus satisfy the first require-
ment. When the pressure distribution is obtained experimentally, the calculation of .the ;
velocity components is rather difficult; Certain approximations must be made to get the
velocity distribution from the experimental pressure distribution. In the section 'VGovr .
erning Equations,!' the difficulties and the procedure used to calculate the velocity.com-
ponents from the experimental pressure distribution are discussed.

In selecting a coordinate system for the boundary -layer^calculations, an important
point to consider is thatjthe coordinate system should be calculated only once for.each
geometrical configuration. This rules out the streamline coordinate system since for .
each angle of attack the streamlines must be calculated repeatedly. Another important
point to consider is dictated by utility. The measured or calculated external velocity
distributions are usually given in planes containing the local chord line. Hence it is
natural to select one surface coordinate in planes parallel to the defining sections. The
other surface coordinate may be lines either orthogonal or nonorthqgonal to that coordi-
nate line. However, the selection of an orthogonal system causes a number of inconve-
niences together with lengthy interpolation procedures. As a result, a nonorthogonal
coordinate system appears to be the most convenient systenvwith which to perform the
boundary-layer calculations as discussed in detail in. the section "Coordinate System."

For turbulent flows the governing boundary-layer equations contain the Reynolds
stress terms which require closure assumptions such as mixing-length, eddy-viscosity
concepts or "higher order turbulence" models. Although the latter have the potential to
compute more complicated turbulent flows, mixing-length, eddy-viscosity approaches
have proven to yield quite satisfactory results for boundary-layer flows. (See refs. 1 to 4.)
The use of higher order turbulence models also increases the complexity of already com-
plex equations leading to high computation times. Furthermore, for compressible flows
their accuracy may not be as good as the simple mixing-length, eddy-viscosity methods.
For this reason, in our study the Reynolds stresses are modeled by using an accurate ,v
eddy-viscosity formulation (see the section "Turbulence Model") developed by Cebeci.
(See refs. 3 and 4.) ,

. When physical coordinates are used, the solutions of the governing boundary-layer
equations are quite sensitive to the spacings in the streamwise direction (x) and to the
spanwise direction (z) and require a large number of x- and z-stations. In calculations
such as the ones considered here where the computation time and storage become impor-
tant, it is necessary to remove the sensitivity to Ax- and A z-spacings. This can be done
by expressing and solving the governing equations in transformed coordinates. There-,
fore, in the section "Transformation of the Governing Equations," a convenient transfor-
mation to express the boundary-layer equations in terms of transformed variables is ..,-
considered.
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In the section "Numerical Method," the solution of the governing equations by the
Cebeci -Keller Box method is discussed. This is a very efficient two-point finite-
difference method developed by H. B. Keller and applied to the boundary-layer equations
by Keller and Cebeci. (See, for example, refs. 5 and 6.) .

In the section "Results and Discussion," results for a planar turbulent boundary-
layer flow approaching a three-dimensional obstacle and results for a swept wing are
presented. Finally in the section "Future Work," additional work that needs to be done
in order to develop a complete design tool for computing. the flow field past an arbitrary
wing is discussed. .

• : • • • ' . . SYMBOLS

A Van Driest damping length, 26(f/uT)(p/pw) '

Cp pressure coefficient, 2(p - P

c the ratio pe/p; local chord

Cf skin -friction coefficient

E total enthalpy ratio, H/He

f transformed vector potential for

g transformed vector potential for

g1 :• =w/we

H total enthalpy
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h,h},h2 metric coefficients

T,T,ic unit vectors in x-, y-, and z-directlons of Cartesian coordinate system in
which wing is defined .

2 curvature vector of coordinate line

geodesic curvatures

geometric parameters

L modified mixing length '

Moo free-stream Mach number

Npr Prandtl number

if unit vector normal to the surf ace' r • . . - . . . > •

P parameter denoting either coordinate, <£ or y; point

Pl»^2»' • •»**!() parameters in transformed differential equations

p static pressure

Pt total pressure

Re = UeSi/i/e, Reynolds number

r see figure 7

F position vector for point on surface, (x,y,z)

S ' stagnation point

s distance along a streamline
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Sj curve length along x-coordinate line T • . .

t • ;- - "time . - . • : . - . . . - . ' •••• ' . ' ' • • . .'-'.. *- - ' •• ' ; • ; ,".''

T unit tangent vector along coordinate line ,

u,v,w,t dependent variables in first-order, transformed differential equations, f,
f', g', and g" ;

u see figure 7
•*- • * ' ' * ' • * ., , . • _ • - ' ',

us total velocity (ut evaluated at the edge)

ut total or resultant velocity

ur friction velocity,

v velocity normal to surface in physical differential equations

x,z,y independent coordinates in boundary-layer equations .

x,y,z Cartesian coordinate system used for wing definition
' ' -. * * * • " * •

a local geometric angle of attack of wing section chord lines

y ratio of specific heats, y = 1.4 *

e(or em),€H eddy viscosity and eddy conductivity, respectively

77 transformed coordinate normal to surface

0, angle in tangent plane between x- and z -coordinate lines

local sweep angle, measured between plane normal to free-stream velocity
vector and z -coordinate line

45



/i molecular viscosity

Ml»M2»M3 parameters in transformed energy equation

v kinematic viscosity

p density

rt w resultant wall shear stress

Tx»Tz shear stresses

0 stretching variable defined in figure 3

4,^ two-component vector potentials, equation (56)

Subscripts:

e outer edge

g geodesic

1 input stations

i,J,n indices ..

in,out inner and outer regions for eddy viscosity

le leading edge

p pivotal points, i.e., stations at which boundary layer is computed

t wing tip

te trailing edge

w wall

\
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free-stream conditions

Primes denote differentiation with respect to rj. ~ " ' : - .'

GOVERNING EQUATIONS : :

The governing boundary-layer equations for a non orthogonal coordinate system are.
given in references 7 and 8. With a slight change of notation for compressible laminar
and turbulent flows, they are given by • • ; . ,

Continuity equation:

—(puho sin 0) + -^-(pwhi sin 0) +
Qv » " ' f\ *7 V -^ 'C7A \J L»

sin 0) = 0

x-momentum equation:

ax h2 9z
.

ay
. pKlU

2 cot 0 + pKoW2 esc 0 + pK12uwx * ' L£

.^t^ cotj^csc^l 9P ̂ Q _ f , , 8u
37

z-momentum equation:

cot csc 9

(1)

_ COt 0 CSC 0
9x

Energy equation:

9x h2
-

9y 9y
JL. m
Npr9y

, 8 /„ aw
9y \T 9y "

JUL&

where pv = pv + p'v1 and hj. and
tions of x and z, that is,

hj = hj(x,z) hj

(3)

(4)

are metric coefficients. -The latter .are func-

= h2(x,z) (5)'

Also, 0 represents the angle between the coordinate lines x and z. Fpr an orthog- .
onal system 8 = if/2. The parameters Kj and K2 are known as the geodesic curva-
tures of the curves z = Constant and x = Constant, respectively. They are-given by .,
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Kl =

K2 =

hjh2 sin 0I&NC0i

. A(hj cos 0) -

The parameters Kj2 and K2j are defined by

~ sin"0 - h2

(6)

(7a)-

The total velocity within the boundary layer u^ is given by

= (u2 + w2 + 2uw cos 0)
1/2

(7b)

(8)

One obvious procedure to calculate the velocity components ue and we from the
given pressure distribution is to evaluate equations (2) and (3) at the edge of the boundary
layer. This gives

ug aue we aue _ K 2 ^ fl K 2 csc e + K12uewe = . CBC' 0 JE-+ cot 0 csc 0
hj ax h2 az i e 2 e 12 e e

and

^+?^-'W!cot9 +

(9)

csc 0 + K21uewe = cot 0 csc gap . csc2 0 JP21 e e h dx h dz

Equations (9) and (10), which may be expressed in the form

ue 3ue we 3ue _,— —S + _E—E = F(ue,we,x,z)
hi 9x h2 8z ^' e' '

(10)

(11).

and

aw
(12)

constitute a system of first-order, quasi-linear partial differential equations in ue and
we. The differential relationships for these variables are
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due = edx + ed2 (13)e ax az

, awe , 3we _• . ,, .vdwe = — 2 dx + — H dz (14)e ax az

If we let s denote the distance along a streamline, and us the total velocity (ut eval-
uated at the edge), that is,

us = (v^2 + we
2 + 2uewe cos 0) (15)

equations (13) and (14) can be expressed in the form

=
s ds h! 3x h2

and

u. § . + fi (17)
ds hx ax h2 3z

by noting that

Comparison of equations (11) and (12) with equations (16) and (17) gives

ds us ds us

In addition, we have the following relationships

dx _ ue dz _ we /
ds hjus ds h£US

The system of four first -order differential equations (eqs. (19) and (20)) allows one to
calculate the variation of ue, We, x, and z along a streamline. In principle, these
equations can be solved as an initial-value problem. However, it can be shown that the
system of differential equations (11) and (12) has characteristics which are identical to the
inviscid streamlines. As a result, the initial-value problem cannot be started from lines
which are streamlines. Thus, with initial points on the stagnation line or in the plane of
symmetry, the solution is quite difficult except for the initial lines themselves. To obtain
the solutions over the entire surface, the initial values of Ug and we must be known
along a line which is not a streamline itself. However, this information is not available
in general. A satisfactory solution requires considerable study. In this study approxi-
mate methods are used. The simple sweep theory is known to give reasonable answers
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when applied to regions of high-aspect-ratio wings that are outside the influence of root--.-•
and tip effects. In the absence of spanwise pressure gradients, this approximation is ,
almost exact. Thus, for weak spanwise pressure gradients, we can obtain the velocity, •
components on'the midportion of a swept wing with reasonable accuracy by using the- ;,..,
sweep theory. In regions of root and tip influence, the simple sweep theory with a cor-
rection to the sweep angle is applied. The procedure is explained below.

Consider the velocity vector in the tangent plane at a point P on the wing. (See
fig.. 1.)- The basic assumption for the simple sweep theory is that the velocity component
tip in the z -direction is given by:

Up = UOQ sin X (21)

The sweep angle \ represents the angle between the spanwise direction and the z-
coordinate line through the point P. The parallelogram addition of vector components
yields

Uo7 ~ u^ sin 9

< Wg _ Us_ sin ft sin 9 - cos 9 cos ft .

where sin/3 = u°° *iri \
' ' ' ' ' " ' • . ' S : ' ' - ' • ' • • • ' •

Elimination of /3 from equations (22) and (23) yields

- sin2 \ .
• • - - }sine _ . : . . . „ : . . . . . , . . . . e- - - - - - - ' - • • - - ..... .-•••

= s inX -^g-cose . (25)
'Uoo

The total velocity ratio US/UOQ is calculated from

(y-D/y
HA 1 / .. «,\

1 -
(26)

with pt j and p^ g denoting the values of total pressure before and after the shock,
respectively, and 'cp is the pressure coefficient, Cp = (p - p00)/(l/2pu002). Equa-
tion (26) is valid for an adiabatic flow through a shock wave, but since the total pressure
ratio across the shock is seldom known, its effect will be neglected. This approximation
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introduces only an error of a few percent into the velocity calculations because the total
pressure jump across a swept shock is small even for free-stream Mach numbers
approaching unity. The total pressure ratio must also remain close to one for the first -
order boundary-layer theory to be valid in'front of arid behind the shock wave. •: ' , ' " • •

Equations (24) to (26) are approximately valid for the root and tip regions if the
local sweep angle X is replaced by an effective sweep angle \eff

(27)

where Xr and \t denote the root and tip sweep angle for the given z -coordinate line
and Fr and F^ are the spanwise interpolation factors for the root and tip, respectively.
These parameters are shown schematically in reference 9 as a function of nondimenslonal
spanwise distance in terms of root or tip chord.

COORDINATE SYSTEM

The wing is defined in the x,y,z coordinate system. Here, the x-axis is in the
direction of the airplane's longitudinal axis and the y-axis is in the spanwise direction.
It is assumed that the wing is defined by a number of airfoil sections in the planes
y = Constant, which involve the specification of z^ and Xj for constant values of J{.
It is also assumed that the pivotal points along the chordwise direction (x/c)p where c
denotes local chord are given, as are the spanwise stations y_ where the boundary-
layer calculations are to be made. These parameters are shown schematically in
figure 2.

The defining airfoils are usually given by n pairs of values of xj and z\. But
because all aerodynamic data related to airfoils are customarily given in terms of frac-
tion of the total chord c, the input data are converted to an xz-coordinate system (see
fig. 3) based on the local chord (maximum length line). The relationships between x,
x, z, and z" are .

| = lf(x - xle) cos a - (z - zle) sin al (28)

I = Ij(x - xle) sin a + (z - zle) cos aj (29)

where

172 - ' (30)
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le
(31)

The subscripts le and te refer to the points at the leading and trailing edges. They
must be specified.

The curves y* = Constant and the curves connecting the points x/c = Constant
on all the defining airfoils form a convenient coordinate system. However, the movement
of the stagnation point S with .angle of attack gives, rise to- ambiguity. — For -example;
the same x/c value may correspond to two z/c values on a given section. To avoid
this problem, another variable 0 defined by

f = i(l -cos0) (32)
. . " ' • - • ' ~ • • ' •. : ' " ' • • -, • ;.

is 'introduced. Here, 0 = 0 corresponds to the leading edge, 0 = n corresponds to the
trailing edge. The value of 0 is positive for the upper surface. On the lower surface
0 is negative.

. Other Possible Coordinate Systems

In this section, other possible coordinate systems are discussed. Because of -
impracticalities with these systems, the nonorthogonal coordinate system is the most
convenient to perform the boundary -layer calculations for wing surfaces.

As pointed out in the Introduction, one surface coordinate must be chosen in planes
parallel to the defining sections. Consider an orthogonal system in which the orthogonals
are constructed between the intersections of planes parallel to the defining sections and
the wing surface. Trial calculations showed that orthogonals started from the wing -root
.congregate. at the leading edge, leaving large portions of the wing uncovered. (See' fig. 4.)
This is especially true for a wing with a sharp trailing edge. A rounded trailing edge -•
rectifies the situation somewhat but there is still a large area of the wing where the
orthogonals are sparse. . , :

The orthogonal coordinate system in figure 4 was constructed with the polar angle
0 = X2 at the root section as the other surface coordinate. As is seen from this figure,
there are' computational difficulties at the trailing edge. To show this, consider figure 5,
in which the surface coordinates xj and X2 are obtained by extending the surface cov-
erage with the dashed lines. Here, AA" is the stagnation line, AB is the root section,
and D is a point on the trailing edge. Starting from the initial lines, the boundary layer
can be calculated along the line BC" including the root chord. However, the point D
cannot be obtained in a straightforward manner. This is also true for the rest of the
trailing -edge points D', 0', and D'". Because of the difficulty in calculating these
trailing-edge points, the orthogonal coordinate system is not practical.
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Another possible coordinate system can be obtained by representing the wing by one
. • ' * • u '

or more separate conical surfaces. Figure 6 shows such a representation. Here, the
wing panels ABDC and CDFE form two conical surfaces with apexes at P and Q,
respectively. The shape of the panel ABDC and the coordinate system in the developed
plane are shown in figure 7. The initial lines are AC and AB. Line AC is the stag-
nation line and AB is the wing -fuselage junction. Calculations can be started at corner
A. A linear coordinate transformation can be used to avoid marching into the negative r
direction. Such a coordinate system without taking the thickness into account (this
amounts to representing wing sections by flat plates) was used by Nash and Scruggs
(ref. 10). The disadvantage of this coordinate system is the difficulty of doing calcula-
tions in the overlap- region.

" . . • . • < - . , . '

Present Coordinate System

The most convenient coordinate system on the wing surface and the one used in this
study is a nonorthogonal coordinate system given by the lines y = Constant and
<(> = Constant. The new independent variables 0 and y are selected to correspond to .
the independent boundary -layer parameters x and z, respectively, in equations (1) to
(4). Before the boundary -layer calculations are performed, it is necessary to decide on
the surface locations for which the boundary -layer solutions will be output. The best
method is a chordwise point distribution in terms of percent chord. The information can
then be converted to give the 0n -values for the pivotal points. As is likely to happen, thev • . * , •
points on the wing defining sections will not correspond to the pivotal points for the '
boundary -layer calculations. Thus interpolation is necessary. At each spanwise defining
station, the <£j corresponding to the input data can be found by using equations (28) to
(32). Next, Xj versus 0j and Zj versus 0j are curve fitted with cubic spline func-
tions and Xpj and zpj are interpolated for at each spanwise station. Then the vxpj -
and Zpj are spline fitted versus yi for each 0p and are interpolated for xp and
Zp at yp.

Calculation of the Geometric Parameters of the Coordinate System

Once the coordinate system is selected, it is necessary to calculate its geometric
parameters, namely, the metric coefficients hj and h2 and Kj and K2 which
appear in the governing boundary -layer equations. These are calculated by the procedure
described below. • ..

The metric coefficient along one curve in space is given by ; •2 2 ' '
>2-(§Nl)+(i)



with P denoting a parameter. For P = 0 along the curves y = Constant, equation (33)
can be written for hj as

(34)

Similarly, for P = y along the curves 0 = Constant

- (35)

The derivatives in equations (34) and (35), namely (ax/80)^, (az/80)=, (dx/dy)^, and
(9sJ/9y)0, can be obtained as byproducts of spline-fitting the points along the chordwise
and spanwise directions at the pivotal points.

The unit tangent vector t along a curve is given by

r _ dr _ dF 1 _ 1 dr
ds dP ds/dP h dP

The unit tangent vector t j along the curve y = Constant is

fc£A T + (&L\ k

(36)

(37)

where T, J, and k are unit vectors in the coordinate directions x, y, and z,
respectively. The unit tangent vector. T2 along the curve 0 = Constant is

(38)

The angle between the coordinate lines is then

/8X_\/9X\+ /9z\/8z

cos 6 = Tj • ~^2 =
(39)

h hl 2

The curvature of a curve in space is given by

g _ d7 _ dt 1 _ 1 dt
ds dP ds/dP h dP (40)

The geodesic or tangential curvature Kg of a curve on the surface can be obtained from

K g = ( T x n ) - K (41)
I • • . • • -

Here, n is the vector normal to the surface which by definition is

if sin 6 - Tj x ?2 (42)
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or

n =
h]h2 sin 0 d(f)J \d(f> 3y

(43)

With the use of equation (36), equation (40) can be written as

d2! _ J _ d f d h =J_/d%T+^lT+^l.kl -L/k 1 + ** T + dz k9 . o JT> ^T> .0 9 * T _ 9 J ̂  9 *H ~ /i UT> l * ^rT •> ^ ^ri *h2 dP2

d2y dy

2 dP dP2 dP dP

The geodesic curvature Kg. for a curve y = Constant is
1 • ' .

Kg = -ft! X n) • KI . (45)

The minus sign on the right-hand side of equation (45) is introduced to obtain
Kg = - (l/hjh2) (3hj/3z) in the case of an orthogonal coordinate system. With 0 as
the parameter, the expression for Kj is

(
•

(46)
.

Substituting equations (37), (43), and (46) into equation (45) gives, after simplifications

i — — — —\ I 9— _ ?_ _\.'v ' 1 /3x 3Z 3X 3z\/3TC 3z 3TC 3x\ (47)
sin

The geodesic curvature Kg. for a curve 4> = Constant is given by
2

Kg2 = (T2 X n) • K2

With y as the parameter, the expression for K2 is

(48)

9 =2 T + 7 + 91] (49)

The expression for the geodesic curvature Kg_ is obtained by substitution of equa-
tions (38), (43), and (49) into equation (48):

^2 = sin 9
f&K 3Z. _ 9X 3Z_\/2~X 3Z _ 3% 3z\ + fd^X 3X_ + 8 Z 3z| (50)
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The second-order partial derivatives appearing in equations (47) and (50) are also
obtained as a byproduct of the spline-fitting technique. In terms of parameters appear-
ing in boundary-layer equations, we set Kj = :Kg and K2 = .Kg . In addition to 6,
hi, h2» KI} and K%, the boundary-layer equations contain K^ and K2j which are
functions of the previously mentioned parameters. Also, the partial derivatives, 30/90
and 90/3y, are contained in the boundary-layer equations and obtained by spline-fitting
8 versus <f> and y.

TURBULENCE MODEL

The solution of the system of equations (1) to (4) requires closure assumptions for
the Reynolds stresses, ' -puV, -pwV, and -pv'H1. This can be done by a number of
approaches. One approach is to use simple eddy-viscosity and mixing-length formulas
for the Reynolds stresses. This method, also called the mean-field method, has been
used by Cebeci and Smith (ref. 11), Bushnell and Beckwith (ref. 1), and Harris (ref. 2) as
well as several others. Another approach is to use expressions that consider the rate of
change of the Reynolds stresses in the governing equations. This method, called
transport-equation method, has been used by Bradshaw (ref. 12), Donaldson and Sullivan
(ref. 13), Hanjalic and Launder (ref. 14), and several others. In reference 15, Bradshaw
presents an excellent discussion of both these methods.

For low-speed flows, both approaches work equally well. For high-speed flows,
however, the mean-field method seems to be slightly better than the transport-equation
method, chiefly because of the inadequate closure assumption accounting for the mean
compression or dilatation effect. However, a recent report by Bradshaw (ref. 16) seems
to improve substantially the predictions of his method for compressible flows. In either
case, equations (1) to (4) are already quite difficult to solve, and there is no need to
increase the computation time by using higher order turbulence models. For this reason,
an eddy-viscosity formulation developed by Cebeci (refs. 3 and 4) is used in this study.
According to this formulation, the boundary layer is divided into two regions, called inner
and outer regions, and eddy-viscosity formulas are defined separately in each region.

For a nonorthogonal system (assuming no mass transfer), the inner eddy viscosity
is defined by

of s2 2 wo 1V2
em,in = L (f1) + (f2) +2 cos ^(pXI2) <51)

where

L = 0.4y[l - exp (-y/A)] (52)
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The total shear stress evaluated at the wall is

Tt,w = V- au + (fw\ +

w Ww

1/2

The outer eddy viscosity is defined by the formula

em,out = « £ («t,e -
 u

where

ut,e = (ue2 + we2 + 2uewe cos 0)

ut = (u2 + w2 + 2uw cos 0)

and a = 0.0168.

TRANSFORMATION OF THE GOVERNING EQUATIONS

Boundary-Layer Equations

Two-component vector potentials i// and 0 are defined such that

puho sin 9 = —£ 3y

pwhj sin 0 = |2 >

The following transformations are also defined

x = x

z = z

u. \V2 ,

f(x,z,?/) sin 0

—- hj g(x,z,77) sin 0

(53)

(54)

(55a)

(55b)

(56)

(57a)

(57b)

(57c)

(57d).

(57e)
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where

s1 = J hj dx (58)

Substituting equations (56) and (57) into equations (2) to (4), after considerable algebra,
gives the following:

x-momentum equation:
r --^i- I _. _.- ._|- - ---

(bf)' + P^f" + P2[c - (f')2| + P5(c - f'g') + P6f"g + P8[c - (g')2J = xP10 f ^- f |i

(bg")' + Pifg" + P4(c -. f'g') + P3[c - (g')2] + P6gg" + P9[c _ (f

9x

58

. (59)

z -momentum equation:

» . (60)

Energy equation:

' - E ' (61)

Here, primes denote differentiation with respect to rj and

cot 9 (62b)



and

-srfa*1! 3Z

weh2 3z

f
K2cot

8(p ,, ) , J^ asl
9z e

cos

sin20

PQ = S. Kl Si CSC 0a we
 L L

NiPr
NprJNpr

f' + ̂ % g'g" + cos 6. Sfe'f" +.f'g»)

E = --

(62e)

(62f)

(62g)

(62h)

(621)

(62j)

(63a)

(63b)

(63c)

(63d)

(63e)

(63f)

(63g)
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In the preceding equations, eddy-viscosity and eddy-conductivity concepts have been used
in order to satisfy the closure conditions for the Reynolds stresses. .They are defined by

-puV = pem JH -pwV = pem |2 (64)

The turbulent Prandtl number Npr j and the dimensionless transport coefficients are
defined by

eH
e|~ -(65) —

Equations (59) to (61) are subject to the following boundary conditions:

.. . rj = 0 f = g = 0 f' = g' = 0 E' - 0 (adiabatic wall))

, ) ? -»«• f ' - l g ' - l E- l .
>(66)

Eddy-Viscosity Equations

The eddy-viscosity formulas given by equations (51) to (55) can also be transformed
and expressed as

1/2

(67)e+ . -fifiem,m ^r
L

where

1/2

ue

J'(2fg'2f cos 9 + § g'

^r>

1/2.

g ' a f cos e +
1/4

(68)

(69)

NUMERICAL METHOD

The Cebeci-Keller Box method is used to solve the governing boundary-layer equa-
tions given by equations (59) to (61). This is a two-point finite-difference method devel-
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oped by H. B. Keller (ref. 17) and applied to the boundary-layer equations by Keller and
Cebeci (re'fs. 5 and 6). The method is discussed in detail in references 6 and 11. For
this reason only a brief description will be given here.

One of the basic ideas of this method is to write the governing system of equations
in the form of a first-order system. Thus, derivatives of some quantities with respect
to the "normal" variable must be introduced as new unknown functions. Derivatives with
respect to all other variables occur only to first order as a consequence of the boundary-
layer approximations. With the resulting first-order system and an arbitrary rectangular
net, centered difference quotients and averages at the midpoints;of net rectangles and net
segments are used, as required, to get O(h2) accurate finite-difference equations.

This method is unconditionally stable; however, the equations are highly implicit
and nonlinear. Newton's method is employed to solve them. In order to do this with an
efficient and stable computational scheme, a block-tridiagonal factorization scheme is
used.

Numerical Formulation of the Momentum Equations

New dependent variables u(x,z,?7), V(X,Z,T/), w(x,z,7/), and t(x,z,7j) are intro-
duced, so that equations (59) and (60) can be written as

(bv)' + Pxfv + P2(c - u2) + P5(c - uw) + P6gv + P8(c - w2) = xP10[u g - v |1

(70a)

(bt)' + Pjft + P4(c - uw) + P3(c - w2) + P6gt + P9(c - u2) = xP10 u |f - t •

9Z -.„, (70b)

f' = u . . (70c)

u1 = v (70d)

g' = w . (70e)

w' = t (70f)

For the net cube shown in figure 8, the net points are

x0 = 0 xn = xn_i + kn (n = 1, 2, . . ., N) (71a)

61



z0 = 0 Zi = zul + TI , (i = 1, 2, . . ., I)

7 7 = 7 7 _ 1 + h (j = 1, 2, . . ., J)

(71b)

(71c)

where kn, r^, and hj are defined in figure 8. . .

The difference equations which are to approximate equations (70c) to (70f) are
obtained by averaging about the midpoint/x j,z. 1,77. j\

\ n"2 l~2 ]"2~J • , •.

(72a)

LI! -.vM: (72b)

_n, ,,n.
i g1 -1 „ iL_—LJ: = wn,i

J-;
(72c)

^
where, for example,

(72d)

The difference equations used to approximate equations (70a) and (7Ob) are rather
lengthy. To illustrate the difference equations, an example equation similar to equa-
tions (70a) and (70b) is chosen as follows:

(73)Vf + PifV = X/U ̂  + P7W-^
;. \ 9X ' az/

The difference equations for this equation are

i n-i rVi -

.i-rvj2 >•

/u - u^ -\ . n--~ u. - u
u. J-0 !LdLJ + (P7) 2^ JJL-.. i-ll (74)

where, for example,

v. = Ifv?'1 + vn>ul + vP-1'1'1 + v?'1'
J 4\J J J J
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un * u' + u'- + u +

. 1 , 1 + B . 1 . 1 + l +

The boundary conditions for equations (70) evaluated at x = xn and at z = z^ are

- (75)

K

ri,i-l n,i-l)tn,i-l\ and /{n-l,i)Un-l,i)Vn-l,i)gn-l,L wn-l,i>tn-l,iyare assumed to be

known for 0 ^ j ^ J, then the difference equations (70a), (70b), (72), and (75) yield an
implicit nonlinear algebraic system of 6 J + 6 equations in as many unknowns
(fP.uPjVJj^gjj^wl^tPV This nonlinear system is solved by means of Newton's method. The

resulting linearized system is then solved very efficiently by using the block elimination
method discussed by Isaacson and Keller (ref. 18).

Numerical Formulation of the Energy Equation

A new dependent variable G(X,Z,T?) is defined as

G = E'

and equation (61) is written as

f + P7(w|f-G||)] (76b)

The difference equation for (76a) is written again by averaging about the midpoint
/xn,Zi,7; A and is similar to those given by equation (72). The difference equation
I J'2J • . " ' • • • . . ' • .
for equation (76b) is written similar to equation (74). The boundary conditions for an
adiabatic wall are

G'1 = 0 E'1 =1 (77)
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The resulting algebraic system of 2J + 2 equations in as many unknowns

which is linear, is directly solved by the block elimination method.

RESULTS AND DISCUSSION

One obvious difficulty in evaluating the accuracy of the three-dimensional turbulent
boundary-layer calculations on wings is the lack of complete, reliable data. Fortunately,

.however, there are_a_few good data available for flows.with simple geometries. Calcula-
tions for these flows serve the useful purpose of evaluating the turbulence models used
for the Reynolds stresses. .References 3 and 4 present several comparisons of calcula-
tions with experimental data. Although these comparisons are for flows over simple
geometries and the calculations are for a coordinate system different than the one consi-
dered here, the generally good agreement observed in those calculations gives some con-
fidence in the accuracy of the turbulence model used in this study. Figure 9, taken from
reference 19, shows the flow geometry and comparisons of calculated and experimental
results for a planar turbulent boundary-layer flow approaching a three-dimensional
obstacle. The results shown are for velocity profiles in a gradually steepening adverse
pressure gradient flow off the plane of symmetry. The calculations were made for a
Cartesian coordinate system which can be obtained from the present equations by setting
h! = h2 = 1, K! = K2 = K12 = K2i = 0, and 0 = ir/2.

Skin-friction coefficients are presented in figure 10 for the upper surface of a swept
wing whose planform is given in reference 10. The calculations were made by obtaining
the velocity components from the experimental pressure distribution by the procedure
discussed earlier. To simulate the actual geometry, a reasonable thickness distribution
was added to the planar wing considered in reference 10. As in reference 10, the calcu-
lations were made for a unit Reynolds number of 4.92 x 10^ per meter and for a free-
stream Mach number Moo of 0.5. In the figure z = 1.778 m represents an inboard
station on the wing and z = 4.572 m represents a station in the middle of the outboard
panel of the wing. The skin-friction coefficients are defined as surface shear-stress
components normalized with free-stream dynamic pressure. Here, Cf x represents
the shear-stress component in the x-coordinate direction and Cf z represents the shear-
stress component normal to the x-coordinate in the tangent plane. In physical and trans-
formed coordinates, they are defined by the following formulas:

Tx + Tz cos ^ 2CW

O l~oo~00 . » -~c • • Uoo*>X = 1 Poo"*'

_ 2Cw/Pe\uewe

-1WJ \u_/

2 cose (78)

((79)
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Although the present results and those of reference 10 are qualitatively similar,
there are several quantitative differences between the two predictions. One possible
reason for the differences could be the starting procedure used to compute the initial
conditions along the spanwise direction. Our calculations were made for a turbulent flow
starting at approximately 3-percent chord whereas the calculations of reference 10 were
made with transition to turbulent flow occurring at 10-percent chord.' Another possible
reason for the differences could be the procedure used to get the velocity components
from the experimental pressure distribution.

The method described in the previous section resulted in the three computer pro-
grams which are used separately from each other. One computer program deals with
the calculation of the velocity components from the experimental pressure distribution by
using the sweep theory. Obviously if the velocity components are known from the invis-
cid flow theory, then this program is not needed. The second computer program deals
with the calculation of the nonorthogonal coordinate system and its geometric parameters,

1 namely, the metric coefficients hj, h2, Kj, and K2 appearing in the governing-
boundary-layer equations. Through the use of this program, the coordinate system and
its geometric parameters are calculated once and for. all for a given wing. The data is
punched out on cards to be stored. If no changes are made in the airfoil cross sections,
then this data can be used for any number of boundary-layer calculations without using
the second computer program again. The third computer program deals with the solu-
tion of the governing boundary-layer equations for a nonorthogonal system using the very
efficient and accurate Cebeci-Keller Box method. This program assumes that initial
conditions on two intersecting lines are given. In the present program, the two intersect-
ing lines correspond to the wing-fuselage junction and to a line along the span a small
fraction of the chord length away from the leading edge. This computer program solves
the boundary-layer equations in a surprisingly small amount of time for a given external
velocity distribution (either experimental or theoretical) and for a given wing coordinate
system for both incompressible and compressible flows. The results in figure 10, for
example, were obtained for a wing consisting of 29 z-stations and 19 x-stations with
30 Tj-points across the boundary layer. The.total central-processing-unit (CPU) time for
all stations is approximately 30 sec oh an IBM 370/165 computer.

FUTURE WORK

The method described here has been tested for only one flow condition. It lacks
certain important features and capabilities that may become very useful at different flow
conditions, particularly for the third computer program which solves the boundary-layer
equations. These features and capabilities conveniently can be divided into three separate
tasks.
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1. It is desirable and useful to include the cana.hility of starting the calculations at
the stagnation line rather than some small distance aft of the stagnation line as in the
present procedure. This task involves the solution of a special set of equations, called
attachment-line equations. With this capability, the solution of one of the initial lines
(stagnation line) becomes exact but remains approximate (though a'good approximation)
on the other initial line (wing-fuselage juncture) as before.

2. In the present method, the dimensionless cross-flow velocity is defined by
g' = w/we. However, this definition is not very convenient. In some problems where
the outer velocity component we changes sign," certain ambiguities arise. For exam- """
pie, if the cross flow at the outer edge of the boundary layer becomes slightly negative
but remains positive in the rest of the boundary layer, the value of g' will suddenly
change sign from one station to the next. This introduces some discontinuity in the flow
field since as we goes through zero, the value of g' becomes infinite at some net
point between the two calculation stations. To avoid this problem, the transformation
needs to be changed slightly and the cross-flow velocity w normalized by some refer-
ence-velocity which does not change sign.

3. A very important study that needs to be conducted involves the procedure with
which the calculations are advanced in the spanwise direction. In the present program,
a special solution at the root station is obtained prior to calculating the boundary layers
on consecutive spanwise stations. At each spanwise station the solution starts with an
initial profile and proceeds along the chord until we becomes negative. At that point, •
the program proceeds to the next spanwise station and initiates the calculation at the
leading edge and so on. With this procedure the wing is covered from the root to the tip.
It should be noted that region I is defined to be the region where we is positive. The
calculations in region II (this corresponds to the region where We is negative) start
from the-wing tip.. .The same approximate boundary-layer equations are solved as for
the wing-root section to generate the initial conditions along the chord at the wing tip.
The rest of the calculation procedure is identical to region I except that now marching is
in the inboard direction as the boundary layer is calculated in consecutive spanwise sta-
tions all the way to the wing root.

This procedure of marching back and forth requires further study. If there is
another region where the cross-flow velocity we changes sign, proper logic must be
incorporated in the computer program.

An alternative procedure to define separate regions can be utilized by the appear-
ance of negative cross-flow velocity. In such cases, a procedure similar to the present
marching procedure can be used. The proper marching procedure requires an extensive
and careful study since the locus of streamlines is unknown a priori on complex geome-
tries. An efficient method can only be found by making the actual calculations, and chang-
ing and testing the logic as required. . ,. . \

\
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Figure 1.- Velocity vector in the tangent plane
at a point P on the wing.

69



defining ai_rfojj cross
^ections Zi, x. for 'a-g iven
yj

leading edge

tip

trailing
edge

Figure 2.- Schematic of typical wing.
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Figure 3.- Notation for the airfoil section for a given y..

Figure 4.- An orthogonal system for the wing.
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Figure 5.- Wing in the xj_ and x2 plane.

Figure 6.- Representation of the wing by conical sections.
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Figure 7.- Notation for conical section ABDC and
the coordinate system in the developed plane.
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Figure 8.-'Net cube for the difference equations
for three-dimensional flows.
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(a) Schematic drawing of test setup.

Figure 9.- Comparisons of numerical results with experimental data.
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Figure 10.- Calculated skin-friction coefficients for upper surface
of a swept wing. Schematic of planform illustrates notation and
does not represent calculated wing. '
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CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE LAMINAR

AND TURBULENT BOUNDARY FLOWS ,. . ;;

THREE-DIMENSIONAL COMPRESSIBLE BOUNDARY LAYERS - .

OF REACTING GASES OVER REALISTIC CONFIGURATIONS ' ^. :,

By Robert M. Kendall, William S. Bonnett, Charles T. Nardo,
and MichaelJ. Abbett ''

Aerotherm Division, Acurex Corporation .

\ ' . .' SUMMARY " ; 4l

A three-dimensional boundary-layer code has been developed for particular appli-
cation to realistic hypersonic aircraft, but it is very general and can be applied to a wide
variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows "of com-
pressible, reacting gases can be efficiently calculated by use of the code. A body-
oriented orthogonal coordinate system is used for the calculation and the user has com- '
plete freedom in specifying the coordinate system within the restrictions that one, '*
coordinate must be normal to the surface and the three coordinates must be mutually •/-; ..<.:
orthogonal.

The boundary-layer equations are discretized and integrated step by step. The
integration is fully implicit in the streamwise direction, a condition that is especially
important for realistic configurations since it enables one to calculate flows having
cross-flow attachment and detachment lines off the pitch plane. The code is restricted
to those flows which are adequately represented by the boundary-layer equations; the
analysis must be extended to adequately describe flows in which cross-flow diffusion
effects are important near cross-flow attachment lines. The numerical algorithm,
includes splined functions for dependent variables between nodes to minimize the number
of nodes normal to the surface. This condition results in an extremely efficient solution
procedure for reacting boundary layers. Finally, the code includes the capability to
account.for surface normal entropy gradient effects.

INTRODUCTION

The design of aircraft and aerospace vehicles requires consideration of the , ; "
invlscid/viscous flow field over the vehicle. Historically, the aerothermal environment •
of such aircraft in realistic flight conditions has been predicted by synthesizing empirical
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data from ground-level test facilities with simplified analyses to correlate the test results
with the anticipated flight environment. This approach depends on the development of
scaling laws between ground .and flight conditions. As flight regimes are further extended
in altitude and speed to those appropriate to space shuttle and hypersonic research air-
craft, the range of applicability of scaling laws and correlations relating results from
existing test facilities to flight conditions becomes more uncertain. The cost of con-
structing test facilities which will yield data of sufficient quality and range to duplicate
realistic vehicles and trajectories is prohibitive.

Parallel with the increased flight range typified by spacecraft, space shuttle, and
hypersonic research aircraft has been a rapid increase in the ability to obtain numerically
exact solutions to the complete gas dynamic equations for the inviscid/viscous flow field
about such configurations. Currently, under contract NAS 1-11525 (ref. 1), The National
Aeronautics and .Space Administration is supporting the development of a computer code
which will obtain the inviscid flow field solution. To predict adequately the viscous drag
and heat flux distributions, one must obtain the solution of the three-dimensional boundary-
layer, equations describing the viscous layer adjacent to the vehicle surface. In this paper
recent efforts which have culminated in the development of a computer code for solving
general three-dimensional laminar and turbulent chemically reacting boundary layers are
summarized. .

The numerical approach used is based on the results of two pilot codes for calcu-
lating three-dimensional boundary layers on pointed cones at angle of attack as well as
broad experience in developing and applying boundary-layer codes in two dimensions.
Key elements in the approach are:

(a) Splined functions to minimize nodes through the boundary-layer thickness

(b) Finite differences used for cross-flow derivatives-~ - •• -~ - — -- -

(c) Physical variables, simplifying analyses, and changes in turbulent transport
properties model ^

(d) Fully implicit solution procedure; thereby the convenient calculation of flows
"• • • • having off-pitch-plane attachment and detachment lines is permitted

(e) Relative ease in incorporating a wide variety of turbulence models and boundary
conditions, including entropy layer, specified surface temperature or heat flux,
surface catalysis, mass addition, coupling with surface ablation calculations,
etc.

(f) Very reasonable computing time

The result is a code which can accurately describe laminar boundary-layer profiles with
7 to 10 nodes and turbulent profiles with 12 to 15 nodes through the boundary layer. The
number of nodes through the boundary layer is important for reacting boundary layers

78



1 , t "• • 1 - •*
because the time required to evaluate the chemical state dominates the time spent in "''
matrix inversion for macroscopic quantities u, v, w, and T where T is the tem-
perature. Hence, the time implication of the number of nodes is more serious than it '
would be for homogeneous boundary layers. ' Conventional implicit finite-difference
approaches are less complicated analytically but require significantly more nodes' in the
plane"normal to the wall boundary than do splined function procedures, simply because'
the latter relate not only the dependent variables but also their derivatives with the nodal
variation of the independent variables. . - * .

Three-dimensional boundary layers exhibit certain physical and mathematical
characteristics which have important implications on the selection of a numerical solu-
tion technique. Particularly important to this effort are physical and mathematical' ! '
modeling in the vicinity of outflow and inflow lines, lines where the surface streamlines
diverge or converge. The windward side pitch plane line of a pointed cone at incidence1 *
is an example of an outflow line, whereas the leeward side pitch plane meridian at small
incidence typifies an inflow line. These lines are often found off the pitch plane on both •
the windward and leeward sides of configurations such as the space shuttle. They are •'•
important physically because they are often regions of local maximum or minimum heat
flux rates. Mathematically, they are extremely important because of a numerical " '•
approach often taken in solving three-dimensional boundary-layer flows, namely, integrat-
i n g with cross flow. . . . . • • • '

Consider the pointed cone at incidence. Because the flow direction is strictly ' ?

away from the windward pitch plane (except right on the pitch plane), one expects arid
finds that by assuming small circumferential derivatives, the solution of the boundary
layer in the pitch plane can be determined completely independent of the boundary-layer
solution off the pitch plane.1 Assume for the moment that one has the entire flow field
solution (inviscid and boundary layer) at some axial station xo and wishes to advance
to xj = xo + Ax where the inviscid solution is known (Ax is the mesh point spacing).
As noted above, the windward pitch plane solution can be obtained directly. Then, by
recalling that the initial value problem is hyperbolic-like with respect to the circumfer-
ential coordinate and parabolic with respect to the surface normal, the-boundary-layer
solution can be obtained by marching around the cone from the windward to the leeward
side. . . .

In contradistinction is the class of fully implicit solution procedures in which the
solution at Xj = xo + Ax is obtained simultaneously at all points. In the fully implicit
procedure each point at Xj is influenced by and influences every other point. The influ-

course, one needs information about the behavior of the edge inviscid flow in the
vicinity of the pitch plane and of the pressure, temperature, velocity components, etc.
(that isJ,'hot only pe, Te, ue, etc., but also 8pe/90, etc.). '
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ence will be large or negligibly small according to the actual physical influences, pro-
vided that the numerical scheme is accurate.

The circumferential marching methods require that one integrate the system in the
direction of positive cross-flow velocity in order to obey the laws of propagation of sig-
nals. Marching against the cross flow results in instability. On a cone at very small
incidence this is no problem, for the cross flow,is always from windward to leeward. At
higher incidence the cross-flow inflow line moves off the leeward meridian, and it is
necessary to march from both the windward and the leeward meridians toward the. cross-
flow inflow line. Furthermore, the marching methods can have stability limits on the
streamwise integration step size, and the allowable step size decreases linearly with the
meridional spacing. Fully implicit schemes usually have no such integration step size
limit, the only limit being one of accuracy.

Having used the pointed cone problem to clarify the situation, consider now a real-
istic configuration such as the space shuttle. Typical outflow and inflow lines on the
windward side are shown in sketch (a). Obviously, the solution along the pitch plane out-

Outflow Line.
Inflow Line

Sketch (a).-Schematic of inflow and outflow lines.

flow line can be obtained independently of the rest of the boundary layer by assuming small
cross-flow derivatives. This is not the case~for the wing leading edge because there are
no symmetry conditions there which could be used to simplify the three-dimensional
boundary-layer equations. In fact, without solving the complete problem, one does not
know the locus of the outflow line there.- Swept cylinder theory could be used to obtain
an approximate solution along the wing leading edge, but this would be inconsistent with
the spirit of an exact boundary-layer calculation. This is particularly important since
the wing leading edge is a region of locally very high heat fluxes. The advantage of the
fully implicit approach is apparent, for the exact solution including the wing leading-edge
region can be obtained without resort to approximations.

~!l There is another very important inflow line consideration. It is well known that
there appear to be no physically meaningful similar solutions to the full three-dimensional
boundary-layer equations on the leeside of a pointed cone at angle of attack a for values
of <x/dc in certain ranges. (See refs. 2 and 3.) (Oc is the half-core angle.) One
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expects Qomparable results to hold for inflow lines on realistic configurations. Lin and
Rubin (ref. 3) suggest extending the three-dimensional boundary-layer equations to
account for cross-flow diffusion, and they report results that show excellent agreement
with experiment for values of a/9c for which they could not obtain numerical solutions
on the leeside by using the standard three-dimensional boundary-layer equations. At
even higher values of a/6c, however, they could obtain solutions with the three-
dimensional boundary-layer equations (without cross-flow diffusion), but these solutions
were in poor agreement with the experimental heat flux. Calculations using the extended
equations agreed well with the experimental data. . ,

ANALYSIS . ,

Geometry and Coordinate Considerations

The selection of a coordinate system to describe the development of a boundary
layer over a three-dimensional surface is of major importance and can significantly
affect the eventual usefulness and applicability of the final computer code. The numeri-
cal algorithm utilized herein required the use of Taylor series spline functions (in the
normal direction) and a Newton-Raphs on iteration technique to obtain the final solution
vectors. Both of these concepts are discussed in more detail later; however, it is useful
to emphasize that such a solution procedure requires one to generate many correction
coefficients for each individual term in the equation set. As a result, it becomes
extremely desirable to keep the number of terms in the equation set to a minimum. Con-
sequently, and because the flows to be computed will be generally highly nonsimilar, it
was elected to retain both dependent and independent variables in their primitive forms
(except for nodal-point stretching in the direction normal to the wall). Utilization of..,
stream functions and similarity variables would result in significant increases in the
number of terms in the equation set. In addition, such transformations can result in
major difficulties as far as future code modifications and/or changes are concerned,
especially in updating turbulence models.

The boundary-layer approximation is impractical to implement in any other than
surf ace-oriented coordinate systems. Once this is recognized, the only remaining ques-
tion is one of orthogonal compared with nonorthogonal coordinate systems. Regardless
of which system is chosen, one constraint should be recognized, namely, that one coor-
dinate direction must always be normal to the surface at all times. As a result, if one
selects an orthogonal coordinate system^ only one other coordinate direction is indepen-
dent, as the third will automatically be determined from the orthogonality condition. For
example, if the streamwise coordinate is selected (for example, to be coincident to the
body cross sections) j the nodal-point distribution in the circumferential direction is auto-
matically determined. However, if the nodal point distribution in the circumferential
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direction is specified, then constant streamwise coordinate stations will be, in .general,
skewed surfaces and will not lie along the body cross-section planes. On the other hand,-,
if a nonorthogonal coordinate system is chosen, one may select both streamwise and cir-
cumferential nodal point distributions. To decide whether to stay orthogonal or nonor-
thogonal requires one to investigate the form of the equations in both instances. Consi-
der the metric tensor gy in both coordinates:

For orthogonal systems: . ;

0 h22

0 0

For nonorthogonal systems:

, 2
1

ho cos 9

— - -,

cos 0.

, 0 0 . ,,

where hj and h2 are the scale factors.

The nonorthogonal metric tensor results in only two additional terms in the conti-
nuity equation beyond its: orthogonal counterpart. In the momentum and energy equations,
however, there is a threefold increase in the number of terms. By assuming that each
term generates, on the average, three correction coefficients, one can easily assess that
the nonorthogonal coordinate system results in a nominal tenfold increase in the number: . « * ' *_

-of correction coefficients. -- - ~- ; •-- ~ ~ :~

Although the desirability of choosing both surface coordinate point distributions is
enticing, the additional complexity added to the analysis is not felt to be warranted. As a
result, an< orthogonal coordinate system was chosen; It was elected to have the flexibil-
ity of choosing a circumferential nodal-point distribution since it is necessary to be able .
to concentrate nodal points in regions of large cross-flow gradients (for example, wing,
leading edges). Since the other coordinate direction is normal to the wall, the third
(streamwise) coordinate direction is automatically determined from the cross product.
As a result, constant streamwise surfaces will not lie along body cross sections. This

result is only true if one considers cross-flow diffusion terms within the
equation set. For no cross-flow diffusion, the increase is minimal. Although the equa-
tions presented herein do not include these additional terms, it is expected that their
inclusiqn in the near future will be necessary in order to handle the cross-flow separa-
tion problem and for this reason the argument has been presented. :. .
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condition is inconvenient in that more handling and interpolation of edge conditions will ;
be required to obtain a consistent set of edge boundary conditions.

It should be emphasized that the particular orthogonal system described is used in
automatically coupling the boundary-layer code to the three-dimensional inviscid super-
sonic flow field code developed by Marconi et al. (ref. 1) for application to space shuttle
problems. The boundary-layer code is written in general orthogonal surface coordinates,
and one has the freedom to select any coordinate system within that class (for example,
streamline coordinates), provided one can provide the inviscid edge data to the boundary-
layer code.

Dependent and Independent Variable Selection

The governing equations are solved in primitive variables, but with stretching the
independent variable normal to the surface for computational convenience. Transforma-
tions to similarity variables are useful in analytically studying similarity solutions. For
the numerical solution of nonsimilar solutions their usefulness is of questionable value,
provided nodal points are sensibly selected and streamwise derivatives are accurately
represented. Cebeci et al. report (ref. 4) that fewer nodes were necessary for calculat-
ing turbulent boundary layers when they used a similarity transformation of the dependent
variables, nodal spacing increasing geometrically from the wall. They would have had
better results had they varied the nodal spacing logarithmically near the wall as the solu-
tion varies. Their experience simply indicates that geometrically spaced nodal distribu-
tions coupled with transformed dependent variables resulted in a nodal spacing which was
closer to logarithmic in physical space than a straight geometric progression in physical
space. To illustrate this condition, results of the 3-D code using physical variables and
8 nodes agrees very well with the BLIMP code (ref. 5) predictions using similarity varia-
bles and 7 nodes, as shown in figure 1. To minimize the number of points required, it is
necessary to identify the edge of the boundary layer. This is done by scaling the lengths
normal to the surface by the local boundary-layer thickness, an unknown quantity, which
is obtained by introducing the auxiliary condition that the total enthalpy fy at the sec-
ond (or third) nodal point from the edge is a fixed ratio of the local edge enthalpy (for
example, Ht/Ht>e = 0.9 at x3/x3e = 0.5 where e denotes edge).

Governing Equations • .

The three-dimensional boundary-layer equations are written in general, orthogonalj
body surface coordinates. One coordinate is normal to the local tangent plane, one is in
the tangent plane in the general direction of the edge velocity, 3 and the third is in the tan-
gent plane normal to the other two. As noted, coordinate stretching is performed normal
to the surface. Within this context, the three-dimensional boundary-layer equations are

is necessary if the problem is to be solved as an initial value problem.

83



(subscript 1 indicates the general streamwise coordinate; subscript 2, the cross-flow
coordinate; and subscript 3, the surface normal coordinate):

Continuity: ,

=0

Axial momentum:

h£ 8X2 ax3

Cross-flow momentum:

.nl 8xl n2 8X2 9X2 hlh2\axl/ hlh2\9x

Normal momentum: '

8x2 P 9x3

P8x3

Energy:

axl
9H . • 9H
9x2

. •
3

1 9"
Re 9x3

B/e - 1( . 2
J2^J^aJ|
NPr,t NSCft&.8h 1J

fl
Cpf +

N"Pr,t iNSc,1

where p.1 is the pressure, ju is the molecular viscosity, and

•Y 9T

9h

^•m/

Mref

-. (1)

(2)

(4).-

9T

and: e is the eddy viscosity. These equations are nondimensionalized, all dimensional
quantities being divided by appropriate constant reference quantities. Important nondi-
mensional groups are listed in table I.
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TABLE I.- IMPORTANT NONDIMENSIONAL GROUPS

Group
symbol

Re "
R
RN

'Roo

Re,?L

*-''M •::'

~ h~

Cpe

N,,- t = — 1_
kCj1 pDj2

Elements

p reference density
u reference velocity
£ reference length

M reference viscosity

u reference velocity
h reference enthalpy

Cp specific heat

e eddy viscosity
\ thermal conductivity

e eddy viscosity
p density
Dj2 binary diffusion coefficient

Common name

Reference Reynolds number

Reynolds number based on nose
radius

"*

Free -stream Reynolds number

Reference free-stream Reynolds
number

' -. ' . . • - . -

Turbulent Prandtl number

Turbulent Schmidt number

Numerical Procedures

To simplify the discussion, consider a three-dimensional Cartesian coordinate sys-
tem x,y,z with velocity components u, v, and w. The x-coordinate corresponds to
the direction of integration, y is locally normal to the surface, and z designates the
cross-flow direction. The solution domain is covered by a nodal network as schematized
in figure 2. It is assumed that the entire flow is known at some value x = xj and is to
be determined at Xj+j = xj + Ax. For a solution at xi+j to be obtained, which satisfies
the governing partial differential equations (PDEs) and the imposed boundary conditions,
the functional form of the x, y, and z derivatives is specified and is substituted into
the PDEs along with the boundary conditions. The result is a system of algebraic rela-
tions between unknown dependent variables at the nodal points at station x = Xj+j. -
Essentially all numerical solutions to the PDEs reduce to this same process. What dis-
tinguishes one procedure from another is the functional form chosen to relate nodal values
of dependent.variables and their derivatives, one to another., :
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Normal to the wall boundary, the dependent variables are represented by a splined
Taylor series between each node. Letting j denote a nodal index running from 1 at the
wall to JMAX at the outer edge of the boundary layer results in

(6)

In addition, the PDEs are integrated with respect to y between each node which insures
that the conservation laws are satisfied exactly between nodes and greatly simplifies the
calculation of diffusion terms by eliminating second derivatives.

In the cross -flow direction where variations are generally much less severe than
in .the normal direction, second-order-accurate centered finite differences are used to
represent the cross -flow derivatives; for example, dU/dz for equal spacing is repre-
sented as

TT -"

where k is the index associated with the z coordinate.

Axial derivatives dU/dx are represented by simple backward difference quotients
of the form

->k (8)xi

where i is the index associated with the x coordinate.

The solution is obtained fully implicitly. Thus, equations (6) and (7) are evaluated
* , • " • ' . • • ' . -

at station Xj+j. Upon introduction of the boundary conditions (f or example,
Ui+i JMAX k = ue(x>y>z)> etc.), the result is a system of nonlinear algebraic equations
for primary (u, p, etc.) and secondary (u', p', etc.) variables at each nodal point.* This
system is solved by Newton -Rap hson iteration as outlined in the following paragraph.

Consider the system of nonlinear equations to be represented by . . .

Fm(Un)=0 (9)

where m is an equation index and Un is one of the dependent primary or secondary
variables (Ui+i,j(io etc.). Assume a value of Un » Ug and expand Fm (see eq. (9)) in
a Taylor series about Ug

^ Actually, obtaining the solution is usually enhanced if the derivative terms (u', p',
etc.) are treated as the primary variables and the primitive variables (u, p, etc.) as the
secondary variables. .".



n) = Fm(U*) + 17£ - U|_ J3 - = 0 . - - - - - (10)

This equation can be written in matrix form as A

A(U - U*) + F = 0 (11)

or .

; . ; . . . . U =.U* - A-1F . - - . - . . '.(12)

where

9F,m
-1

(13)

Thus, the solution basically reduces to the problem of inverting a large matrix, and
thereby solving a system of linear algebraic equations for the unknown U.

The matrix A is composed of a number of submatrices, illustrated in figure 3 for
the case of five meridional (cross-flow) planes. It is block tridiagonal because cross -
flow derivatives are represented with centered finite differences (if splined polynomials
were used in the cross-flow direction as well, A would be dense matrix). The subma-
trices along the diagonal are relatively dense because they include information which is
transmitted through the boundary layer as well as that which is transmitted in the cross-
flow direction. The off-diagonal submatrices are relatively sparse because they only
contain cross-flow derivative information.

A schematic of a typical diagonal submatrix for one meridional plane is shown in
figure 4. Denote the submatrices by AJJ and decompose the unknown vector U into
subvectors Ui. For a given value of U denote the error in the equation by E, which is
a vector which can be similarly decomposed into subvectors E[. Then the elements of the
submatrix A», which are denoted by amn, represent the rate of change of the mth equa-
• ' • ' • ' ' . > ' * ' • , • ' ' •

tion at.that node with respect to the nth dependent variable. The equations being consi-
dered are the Taylor series equations used in the spline fits of dependent variables, the
governing PDEs, and certain constraint equations used in imposing boundary conditions.
Since the form of the Taylor series is invariant from node to node and station to station,
the corresponding elements are constant. By taking advantage of this constancy, the sub-
matrix can be further reduced as follows.^

example, H/H^g = 0.9 at y/ye = 0.5. Additional constraints are appropri-
ate for calculations involving vortical -layer effects.

^Do not confuse the sub submatrix A above with the complete matrix A of fig-
ure 3 and equation (11).
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Submatrix reduction
1

Taylor
series

A B"

C D
Ul

Uo
- -

"o"
Eo
- -

(14)

or

and

U2 = D -

= -1

-1
E

= A-BU 2

(15)

(16)

Return now to the complete system equations (9). Since A is block tridiagonal,
it can be reduced by Gaussian reduction. In this reduction, it is necessary to invert a
number of submatrices. Because of the properties of the submatrices (see discussion
of eqs. (14) to (16)), it is only necessary to invert matrices whose size is

4

Equations
per node

x (Number of nodes) +

Constraint
equations

(17)

Thus, even though the complete matrix A is very large, the maximum matrix size
which must be inverted is quite manageable, being typically about 35 x 35 for laminar
flow and 63 x 63 for turbulent flow.

Stagnation-Point Solution

It is assumed that the flow is similar at the stagnation point. By placing the coor-
dinate system origin at the stagnation point and orienting it near the stagnation point, the_
edge velocities can be expressed in the form7

, (18)

where U and W are constants supplied by the inviscid solution. In the vicinity of the
stagnation point

(19)

dXj Xj

dw _ w
dxj xj

7These expressions are for Cartesian coordinates.
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and it is noted that ".. * .

^-=0 (20)
dxj

where g is the static enthalpy. In polar coordinates,

Ue = U cos2 0 + W sin2 <f> ̂  (21)

We = (W - U)cos 0 sin 0 ^i . . (22)

Since the cross-flow derivatives are well behaved at the stagnation point, the stagnation -
point solution can be numerically generated by representing the streamwise derivatives
as

-d2U£_i (23)

where

By taking

di
(25)

for -S"- and ~- and di = do = 0 for ——, the solution can be numerically generatedd x j d x j i t dXl'
very near the stagnation point. The predicted velocity profiles for the stagnation-point
flow on a 4:1 prolate spheroid are compared with Howarth's analytical solution (ref. 6) in
figure 5.

Entropy-Layer Effects

It is usually relatively simple to account for entropy-layer effects in two-
dimensional or axisymmetric hypersonic flow over a blunt body. The usual procedure is
to relate the mass flux in the boundary layer with the position on the bow shock wave
encompassing the same amount of mass flux, as illustrated in sketch (b). That is, ys

is determined so that the mass flux between AAf equals that across the boundary layer
BB'. The local edge conditions at B are then determined by isentropically expanding
the streamline from behind the shock at A to the local surface pressure at B'. It is
relatively easy to account for the effects of normal entropy gradient as well. Naturally,
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the solution at BB' must be obtained iteratively in order to simultaneously satisfy the
mass balance as indicated.

Bow Shock

iimdary Layer

Sketch (b).- Schematic of 2-D or axisymmetric mass flux balance used
in accounting for entropy layer effects.

In three dimensions the problem is somewhat more complicated, but not tremen-
dously so. Again, for ease of exposition, revert to simple Cartesian coordinates. The
idea is to match the viscous and inviscid solutions in some common region of overlap.
To this end, define a stream surface S in the inviscid region, where the boundary-
layer equations are still valid. Conservation of mass gives

ax 8Z

.= o
(26)

where

1 = r (pu)idy
. 0

= r (Pu)dy (27)

Define

AF

z -
(28)
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then . . : - - :

3AFX 9AF, /i>nv
(29)

Note that F - F* = Constant outside the boundary layer (that is, in the overlap region).
Thus AFX and AFZ are independent of the location of S and are functions of x
and z only so long as S is chosen to be in the overlap region. Equation (29) and one
of equations (28) are the relations necessary to account for entropy -layer effects in three
dimensions. They are implemented in the. code as follows.

From the inviscid solution the values of the AFX . and AFZ functions at each
(x,z) location are determined; next, the edge conditions are determined as functions of
AFX and AFZ, namely

Ue = fifx^Fx1 = Fx + AFX) (30)

i = f2(x,z,F/=Fx+AFx) ' (31)

etc. The two new equations at each meridional plane are introduced

9AFX 3AF,, , . • • • -'

AFZ = Fz - Fz
l = Fz - f2(x,z,Fx,AFx) (33)

where Fx and Fz are available within the existing B/L solution logic. Equa-
tions (27) and (30) are the two constraint equations associated with entropy -layer effects
previously discussed.

Turbulence Modeling

Mean field turbulence models are utilized in the present paper. The turbulent eddy
viscosity model currently implemented in the code is the Bushnell-Beckwith model (ref. 7)
as extended to three-dimensional flows by Harris. The eddy viscosity is given by

(34)

where

/> ' tV~ _\

(35)
-"- =0.995ue



and

D wall damping function . ; . . . . . . .

y y-direction intermittency fxinction

In the transition region, e is multiplied by a streamwise intermittency function. The
turbulent Lewis and Prandtl numbers are taken to be constant.

. - ..- Introduction of different-turbulent eddy viscosity models is a straightforward task,
but it does require the derivation of certain terms needed in the Newton-Raphson itera-
tion (for example, 3e/8p, ae/3u, etc.).

Thermochemistry -

The code has ideal gas and chemical equilibrium options. In the latter case, the
state relation is obtained by solving exactly for the species equilibrium relations in a
special, optimized air equilibrium routine. Details are given in reference 5. It is a
straightforward matter to replace the air equilibrium routine with a Mollier fit, if
desired.

PRELIMINARY RESULTS

A number of test cases are currently in progress. In this section the results of
predictions are compared with experimental heat-transfer data for two three-dimensional
flows. . . . .

The first is for a laminar boundary layer on a 10° half-angle cone at an angle of
attack-of _49. The-experimental data were obtained by Tracy (ref. 8) at Moo = 7.95^ and—
Re oo = 1.25 x 1()6 per foot. The inviscid edge data for the boundary-layer calculation
were obtained from Jones' tables (ref. 9). The predicted circumferential distribution of
heat-transfer coefficient is compared with the experimental data in figure 6, where it is
seen that the agreement is excellent.

The second sample problem is for laminar flow over a 2.79-cm (1.1-in.) RJJ
sphere/15° cone at an angle of attack of 10°. The tests were conducted at free-stream
Mach and Reynolds numbers of 10.6 and 4.1 x 106 per meter (1.2 x 106 per foot) (Cleary,
ref. 10). Theoretical heat-transfer distributions are compared with experimental data
in figures 7 and 8. Axial distributions along different meridional rays are given in fig-
ure 7 and the circumferential distribution at one fixed axial station is given in figure 8.
The theoretical calculations were generated by using normal-shock entropy. In general,
the agreement between theory and experiment is very good. Slightly higher predictions
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on the windward side at x/Rjjr< 2 probably result from a. father large axial step size
and the resulting inaccuracies in numerically calculating the local edge pressure
gradient.. - .;•':"',. ';,";-•.Vv.;-" •." ;'/' ,.

CONCLUDING REMARKS

The three-dimensional boundary-layer code reported herein has been developed
for particular application to realistic hypersonic aircraft, but it is very general and can
be applied to a wide variety of boundary-layer flows of interest. Laminar, transitional,
and fully, turbulent flows of compressible, reacting gases can be efficiently calculated by
use of the code. The calculation is performed in a general body-oriented orthogonal
coordinate system. The user has complete freedom in specifying the coordinate system
within the restrictions that one coordinate must be normal to the surface and the three
coordinates must be mutually orthogonal.

The boundary-layer equations are discretized and integrated step by step. The
integration is fully implicit in the streamwise direction. This is especially important
for realistic configurations since it enables one to calculate flows having cross-flow
attachment and detachment lines off the pitch plane. The code is restricted to those
flows which are adequately represented by the boundary-layer equations; the analysis
must be extended to describe adequately flows in which cross-flow diffusion effects are
important near cross-flow attachment lines. The numerical algorithm includes splined
functions for dependent variables between nodes to minimize the number of nodes normal
to the surface. This condition results in an extremely efficient solution procedure for
reacting boundary layers. Finally, the code includes the capability to account for sur-
face normal entropy gradient effects.

Currently, the code is being coupled to the supersonic, inviscid flow field code
which was developed by Marconi et. al., Grumman Aerospace Corporation, under con-
tract to the National Aeronautics and Space Administration. Upon completion of the
invlscid/viscid code coupling, extensive comparisons for more complex configurations
will be made.
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Figure 1.- Illustration that physical variables require no more nodes
than transformed variables. Laminar flow; M^ = 8; y = 1.4;
ROO = 8.5 x 106; Bc = 100; a = 0°; y, ratio of specific heat; TW,
shear stress at wall; 6*, displacement thickness; and q, heat
transfer.
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Figure 2.- Schematic of discretization. Boundary layer is covered by a nodal network.
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Figure 5.- Comparison of exact and approximate general
3-D stagnation-point solution, v is kinematic viscosity.
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Figure 6.- Comparison of 3-D boundary-layer solution to experimental data.
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—'• NUMERICAL RESULTS (NORMAL SHOCK ENTROPY)
o EXPERIMENTAL DATA

NASA TN D-5450

Figure 7.- Comparison of numerical results with experimental data.
Axial heat-transfer distributions for 15° cone; M*, = 10.6;

= 1.2 x 106; and a = 10°.
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O EXPERIMENTAL DATA
NASA TN D-5450

Figure 8. - Comparison of numerical results with experimental data.
Circumferential heat-transfer distribution. M*, = 10.6;
Roo = 1.2X106; a = 10°; and x/rn = 2.23.
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A NUMERICAL METHOD FOR THE PREDICTION OF HIGH-SPEED

BOUNDARY-LAYER TRANSITION USING LINEAR THEORY*

By Leslie M. Mack

Jet Propulsion Laboratory

SUMMARY

This paper describes a method of estimating the location of transition
in an arbitrary laminar boundary layer on the basis of linear stability
theory. After an examination of experimental evidence for the relation
between linear stability theory and transition, a discussion is given of
the three essential elements of a transition calculation: (1) the inter-
action of the external disturbances with the boundary layer; (2) the growth
of the disturbances in the .boundary layer; and (3) a transition criterion.
A brief discussion is given of the computer program which carries out these
three calculations. The program is first tested by calculating the effect
of free-stream turbulence on .the transition of the Blasius boundary layer,,
and is then applied to the problem of transition in a supersonic wind tunnel
The effects, of unit Reynolds number and Mach number on the transition of an
insulated flat-plate boundary.layer are calculated on the basis of experi-
mental data on the intensity and spectrum of free-stream disturbances.
Reasonable agreement with experiment is obtained in the Mach number range
from 2 to 4.5.

INTRODUCTION

One of the most difficult problems in theoretical aerodynamics is the
prediction of transition from laminar to turbulent flow, a problem that is'
especially severe for supersonic and hypersonic boundary layers. Examples
ranging from high-velocity reentry vehicles to the wind-tunnel testing of
transonic airfoil sections can be put forward to illustrate the dramatic
effects on flow characteristics which result from differences in the loca-
tion of transition. The search for some method of estimating whether the
boundary layer will be laminar or turbulent for a particular external flow
has mostly focussed on empirical correlations of some type. These methods
are limited in scope and should be replaced by a more fundamental approach
which involves the calculation of the development of the perturbed boundary
layer as it responds to its disturbance environment. The direct solution
of the three-dimensional time-dependent Navier-Stokes equation of compres-
sible flow, which could be of great benefit, still lies in the future. The
use of turbulence model equations is a promising approach although it re-
mains to be demonstrated if enough of the complexity of the transition

*Research supported by NASA under Contract No. NAS 7 - 1 0 0 . ~ ~
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process is retained in these time-averaged equations, which were primarily
intended for fully developed turbulent flow, to make them useful as a pre-
diction technique. A third possibility is the use of linear stability
theory. This approach might at first appear to be of little value because
of the evident nonlinearity of the final breakdown of laminar flow. However,
it does have the considerable advantage that within the restrictions of line-
arity and locally parallel flow one is dealing with solutions of the unsteady
Navier-Stokes equations. Furthermore, in many disturbance environments most
of the region preceding transition will involve a disturbance of small ampli-
tude. In these cases, the process by which the dominant external disturb-
ances form an organized wave structure in the_boundary layer, and the sub- .
sequent growth of the internal boundary-layer disturbances both lie within
the scope of a linear theory. Nonlinearity occurs only in a small region
immediately preceding transition. Consequently, it should follow that at
least the change in the transition Reynolds number as the mean boundary layer
or the disturbance environment changes can be calculated from linear theory.

In reference 1, a detailed investigation was carried out to determine
whether in a supersonic wind tunnel the change in the transition Reynolds
number of a flat-plate boundary layer with Mach number and surface cooling
can indeed be accounted for by linear theory. The results reported there
are sufficiently promising to encourage taking the next step, which is to
use linear theory to make a quantitative estimate of the transition Reynolds
number. It is the purpose of this paper to describe a numerical method and
computer program which combine information about the external disturbances
with stability theory and a transition criterion to provide estimates of
transition location in a wide variety of cases. As examples, the effect on
transition of free-stream turbulence in low-speed flow, and of Mach number
and unit Reynolds number in a supersonic wind tunnel are given.

SYMBOLS

A disturbance amplitude

Aj free-stream disturbance amplitude

A0 initial disturbance amplitude

A amplitude transition criterion

c phase velocity, ou/a

E(oo) energy density of normalized power "spectrum

f frequency
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dimensionless frequency, c»

L .' length scale

* /„ *2

integral length scale of turbulence
*"

M . '.•:•• -.Mach number

p' . pressure fluctuation

Re .free-stream x-Reynolds number

RL Reynolds number based on LX̂ . •

R.A displacement-thickness Reynolds number

u', v' velocity fluctuations • •

U . mean longitudinal velocity ;; •

U average source velocity
s

x,y,z longitudinal, transverse and lateral coordinates

a complex wave number in x-direction, ot + ia.

P complex wave number in z-direction^ 3 + ip.

Y ratio of specific heats

(j, viscosity coefficient

V kinematic viscosity coefficient

T Reynolds stress ratio
Jx

(T ) Reynolds stress transition criterion
R t -

i|t wave angle, tan"x(P /ot )

GO circular frequency

Superscripts:

( ) dimensional quantity

( )' .fluctuation quantity

103



( ) average quantity "

Subscripts:

t transition

i free-stream condition

o neutral-stability condition

LINEAR STABILITY THEORY AND TRANSITION

The idea of calculating boundary-layer transition by means of linear
stability theory would be on much more solid ground if it were possible to
point to experimental evidence that there is indeed a direct quantitative
relation between linear instability and transition. Schubauer and Skramstad
(ref. 2) demonstrated the correctness of the theory of Tollmien and Schlichtihg
as a description of the behavior of small disturbances in the laminar boundary
layer preceding transition. They also showed that the location of transition
could be changed by varying either the frequency or amplitude of an artificial
disturbance, but no quantitative results were given.

Apparently the only published" experiment that does offer quantitative'
results in this regard is the one described in reference 3 by Jackson and
Heckl. An axisymmetric model of circular cross section on which a Blasius
boundary layer formed was mounted in a wind tunnel of moderate turbulence
level (0.2 - 0.4%). A loudspeaker was placed inside the model and the sound
introduced into the boundary layer through a circumferential slit located
12 in. from the effective start of the boundary layer. Transition was fixed

-at &- point 15-in. downstream~of the slit for a range of frequencies by ad-
justing the amplitude of the loudspeaker. The amplitude of the disturbance
created in the boundary layer was monitored with a hot-wire anemometer located
in the boundary layer above the slit. Transition was measured by a hot wire
located at the downstream (15 in.) station and was judged to have "occurred
when the disturbance spectrum changed to a turbulent form. Thus the end
rather than the start of transition was being measured.

For a given free-stream velocity Uj (asterisks refer to dimensional
quantities) the frequency and amplitude were varied to find the frequency
which resulted in transition at the downstream station with the smallest
initial amplitude. These frequencies are called the critical frequencies
and are shown on a typical stability diagram in figure 1 where the dimen-
sionless frequency F = a^V^/U^* is plotted against Re, the free-stream
x-Reynolds number, and RK*> the displacement-thickness Reynolds number.
In, terms of linear stability theory, the experimental procedure was equiva-
lent to finding the frequency with maximum total amplification at a given
Reynolds number. Consequently, if the location of transition is determined
by the linear instability of the undisturbed laminar boundary layer, the
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critical-frequency data points should lie along the theoretical line of maxi-
mum amplification. Figure 1 shows that this condition is satisfied. Further-
more, this close relation between transition and linear instability is not
restricted to what are commonly thought of as small disturbances. The transi-
tion Reynolds numbers of figure 1 are between 0.3 X 106 and 1.2 x 106 which
would correspond to free-stream turbulence levels of 0.4 to 1.67o if transition
were caused solely by free-stream turbulence.

Finally, it must be remarked that stability and transition experiments
with artificially produced sound as the disturbance source are notoriously
difficult to carry out, a situation already noted and discussed at some length
in reference 2. It would be highly desirable to repeat the same type of ex-
periment as in reference 3 with a different method of producing the artificial
disturbances .

With some experimental support available for the idea of using linear
theory for transition prediction, it only remains to decide on how to apply
the theory. Any naturally occurring disturbance, will have its energy dis-
tributed over a range of frequencies, and in the most general case its develop-
ment in a boundary layer can only be calculated by considering the separate
development of all frequencies with a significant portion of the total energy.
However, amplification in a boundary layer is selective, and for small initial
disturbance levels the selectivity, or tuning, is sufficiently sharp so that
by the time transition is approached most of the disturbance energy is concen-
trated in a narrow band about the most-amplified frequency. This phenomenon
suggests simplifying ,the application of stability theory by considering only
disturbances of a single frequency. Such a procedure is possible because the
amplification is linear and there is no transfer of energy from one frequency
to another. Therefore, transition will be predicted in this paper on the
basis of the single-frequency disturbance of maximum amplitude at each Reynolds
number. Since the amplitude of a disturbance at any Reynolds number depends
on its initial amplitude as well as on the amplification it has undergone, it
is necessary to consider the initial energy spectrum of the complete wide-band
disturbance to arrive at the single-frequency disturbance of maximum amplitude.

A comparison of the growth of the theoretical single-frequency disturb-
ance of maximum amplitude at transition with the measured growth of the same
frequency component is shown in figure 2 for an insulated flat-plate boundary
layer in a supersonic wind tunnel at Mx = 4.5 and Re/in. = 1.8 x 10

5. The
dimensionless frequency of the two growth curves, F = 0.3 X 10~4, is the theo-
retical frequency of the disturbance of maximum amplitude only if the initial
energy distribution of all single-frequency disturbances is identical to the
power spectrum of the free-stream disturbances as measured by Laufer (ref. 4).
The experimental narrow-band disturbance growth is taken from Kendall's mea-
surements (ref. 5) in the JPL 20-in. wind tunnel, the same.tunnel as used by
Laufer. Because of the interaction of the irradiated sound from the turbulent
boundary layers on the tunnel walls with the laminar boundary layer near the
leading edge of the flat plate, there is. no experimentally discernible neutral-
stability .point . The theoretical and experimental disturbance amplitudes are
matched at the theoretical neutral point.
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•'• The theoretical disturbance of maximum amplitude has a wave angle i|t
equal to 60°, while the experimental narrow-band disturbance includes all J
wave angles. Unfortunately, the distribution of energy with respect to
wave angle in the experiment is unknown. Even so, the growths of the two
disturbances are seen to be closely related. By coincidence, the two growth
curves cross at almost exactly the start-of-trans ition Reynolds number
measured by Coles (ref. 6), also in the JPL 20-in. wind tunnel. The fact
that transition occurs where the theoretical disturbance is growing rapidly
means that a transition criterion based on amplitude has a good chance of
predicting the start of transition provided only that the region of maximum
growth-does vary, as assumed, with the mean-flow parameters" in "the same way
as the transition Reynolds number.

REQUIREMENTS OF TRANSITION CALCULATION

In addition to the calculation of.the velocity and temperature profiles
of the mean.boundary layer, the transition calculation can be divided into,
three distinct parts: (1) the interaction of the external disturbances which
lead to transition with the boundary layer to form the internal boundary-layer
disturbances of Tollmien-Schlichting type; (2) the growth of the internal
disturbances; and (3) a transition criterion, based on some property of the
growing disturbances. In this section each of these three aspects will be
discussed separately starting with the second for reasons of clarity in the
exposition.

Spatial Stability Theory v

The calculation of the disturbance growth in the boundary layer is the
-element-which brings- in1 the -traditional" linear "stability'"theory r""A"detailed •
account of compressible stability theory may be found in reference 7. What
is required of the theory are the eigenvalues of the stability equations for
a spatially growing disturbance. For the parallel-flow form of the' stability
equations," a Fourier component of a typical three-dimensional fluctuation --
quantity is given by

q'(x,y,z,t) = Q(y) exp [i(ox + 3y - cot) ] (1)

where q' is a small quantity; x,y,z are the longitudinal, transverse arid
lateral coordinates'; Q(y) is a complex amplitude function; cu sis the real
circular frequency; and a and 3 are the complex wave numbers

(3 3 +r (2) .

j
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All quantities have been made dimensionless with respect to a length scale
L and a velocity scale V . The disturbance wave angle is

" . . ' • • * - tan~Mp lo t ) (3)r r . . .

and P /or is assumed equal to p /a . The phase velocity is ...

: - c =• ui/a (4)
P r

and the imaginary part of cv is the amplification rate

(l/A)(dA/dx) = - a, (5)

The notation A has been introduced as the amplitude in equation (5) to
emphasize that in the parallel-flow theory all flow variables grow at
the same rate and independently of y. The amplitude is given as a func-
tion of Reynolds number by

Re

<YdRe)
A(Re) Mo '- exp ( - ct. dRe ) (6)

The subscript o refers to the lower-branch neutral point, i.e., where the
disturbance has its minimum amplitude and first starts to amplify. The
initial amplitude A0 is obviously of as much importance in determining
the amplitude A as the amplification, and is the quantity that must be
obtained from the external disturbance and an interaction relation.

The eigenvalues a. and c are obtained from repeated numerical
integrations of the stability equations. For a three-dimensional com-
pressible disturbance, the equations form an eighth-order system of complex
linear ordinary differential equations (ref. 7). The four solutions which
satisfy the boundary conditions as y -» °° provide the initial conditions
for the numerical integration which proceeds from the free stream to the
wall at y = 0. There are a total of 64 real equations to integrate. At
y * 0, a linear combination of the four solutions satisfies three of the
four homogeneous boundary conditions. With Re and the dimensionless fre-
quency F fixed, an iterative linear search procedure finds the eigenvalues
or and c which satisfy the remaining boundary condition.
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Interaction of External Disturbances

, . Quantities computed directly from the linear stability theory such
as the minimum critical Reynolds number and amplification rate are inherent
properties of the mean boundary layer on the same basis as the displacement
thickness or skin-friction coefficient. On the other hand, the transition.
Reynolds number is not at all an inherent property as it depends not only
on the instability of the boundary layer, but also on external disturbances
which interact with the boundary layer to form the internal disturbances
which lead"ultimately to transition. With no disturbances, transition can
not occur no matter how unstable the boundary layer is. The external.dis-
turbances can arise from any one of several sources of unsteadiness such
as free-stream turbulence, sound or vibration. Ideally, one would like to
have a theory to give the initial amplitude of each Fourier component of
the internal disturbance from the known external disturbance, but no such
theory exists. A forced response of the boundary layer can be computed in
certain instances, and the initial amplitude of the free internal disturbance
assumed to be related in some way to the forced internal disturbance. An
example.of such a procedure is given in reference 1, where the effect of •
irradiated sound on the stable region of a laminar boundary layer is cal-''r~'
culated from a simple forcing theory. ' '

Yet a third procedure for determining the initial amplitude is to ,
adopt an empirical relation. The simplest of these assumes that the square
of the amplitude of each frequency component of the internal disturbance is
directly proportional to the energy density of the same frequency of the
external disturbance, and that the constant of- proportionality is the same
for. all frequencies. That is, the initial amplitude A0 of the single-
frequency internal disturbance of frequency cu is related to Aa , the amplitude
of the external disturbance, by

! "••*• -"4 -(7)
=*

where- E(u>) is the normalized (unit area) energy density of the one- t ' •' "
dimensional power spectrum of A.^ . The constant A can be regarded as an
interaction or. coupling coefficient which "couples" the external'to' the '
internal disturbance. It is determined by adjusting the calculated tran-
sition Reynolds number to a measured value. Once A is determined in
conjunction with .a specific transition criterion ana for a specific dis-
turbance' source, there are no more free constants in the entire calculation.
More generally, A is a function of ou and is so given when calculated from
a forcing theory. . '

\
Equation (7) is in accord with the stated procedure of applying
lity theory in the form of sing]
a. equation (7) would be an enerj

bance amplitude A^ would be given by

stability theory in the form of single-frequency disturbances. Otherwise,
A0 in equation (7) would be an energy density, and the internal distur-
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(A/A0)
3 A0

3(u>) dio (8)

where A/Ag is the frequency-dependent amplification ratio given by equation.
(6). There is one circumstance under which A^ differs from the A of the^
most amplified frequency only by a constant, and that is when A/AQ has the
character of a delta function. For transition in a low-disturbance en- . • :/,
vironment where large amplifications take place, A/Ag does resemble a delta
function-near transition, but in many cases it does not. ;It must be kept
in mind that the'development of a disturbance composed of a whole .spectrum -;
of frequencies is being represented by a fictitious disturbance of only a -.^
single frequency. Such a representation can not always be adequate, and
it is most "likely to be seriously in error when the amplification is small...

• • ' - ' ' »t

A potentially serious problem for which there is no solution at the
present time' is that the available disturbance spectra both in the free
stream and the boundary layer are one-dimensional. As can be seen from - .,.,•
equation (!•) the elementary disturbance of stability theory is an oblique
wave in the x-z plane. For supersonic flow, the most unstable first-mode
disturbance is oblique with a wave angle \|; of .between 50° and 60° over a,
wide range of Mach numbers (ref. 7). What is needed, therefore, is the
energy distribution with respect to if as well as - frequency. In the absence
of any measurements, it will be assumed that the frequency power spectra
are the same for all wave angles.

Transition Criterion

The final step in the transition calculation is to apply a transition
criterion, the simplest of which is an amplitude criterion based on a value
of A, say A . The theoretical disturbance growth curve of figure 2 shows
that the choice of Afc is not critical, as a. rather large change in Afc makes
only a small difference in the corresponding Reynolds number Ret which is
to be identified with the transition Reynolds number. The use of A itself
as the transition criterion avoids the troublesome problem in the application
of the parallel-flow theory of having to identify A with a particular fluc-
tuation quantity. In a growing boundary layer, the eigenfunctions are func-
tions of Re and as a result the different flow variables do not all grow in
the same manner. Even within the scope of an amplitude criterion, one could
identify A with, say, the mass-flow fluctuation and use the pressure fluc-
tuation as the transition criterion with somewhat different results than if
the mass-flow fluctuation were the transition criterion. ' " ' "''''

Some SO.years^ago Liepmann (ref. 8), in an exceptionally clear p re sen--'?"
tation of the requirements of a transition calculation based on linear theory,
proposed that transition starts when the Reynolds stress equals the mean
viscous stress, i.e.., when . . * " - - • ' •
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TR - P U V / I A ou/dy - i (9) •

The basis of this idea is that when the Reynolds stress reaches such a
value the mean velocity profile must change in an important way.
Liepmann's criterion can be modified somewhat by selecting a value (TB)
different from unity as the criterion.

In order to calculate T_, it is necessary to first calculate the
eigenf unctions. --Since the "amplitude ~ "in "linear" stability theory is arbi- -
trary, A must be identified with the peak value of a particular fluctua-
tion to set the amplitude, and only then can T_ be calculated. Thus, as
mentioned above, the transition Reynolds number obtained will depend to
some extent on which fluctuation is chosen.

.At present it is not clear how to use Liepmann's criterion in com- '
pressible flow. There are other momentum transfer terms besides ~p u *v ',
and even if this single term can properly represent the distortion of the
mean velocity profile there are still fluctuation heat-flux terms which
perhaps should be included as a measure of the distortion of the mean
temperature profile. For these reasons, only the amplitude criterion will
be used in this paper for compressible flow.

A third criterion which also involves the Reynolds stress has recently
been proposed by R. Kaplan of the University of Southern California. This
criterion is based on an argument concerning the total stress tensor. Transi-
tion is considered to start when the transverse principal stress vanishes, a
condition that is satisfied when I

oU/oy = (u' -v' )* . (10)

Again this .criterion will only be used for incompressible flow.

COMPUTER PROGRAM

The computer program developed for the transition calculation is based
on the author's stability program (ref. 9) which has been used for several
years to work on a variety of incompressible and compressible boundary-layer
stability problems. The stability program was first simplified and put in
single-precision arithmetic except for the independent variable of the
differential equations. The first new feature to be added was the auto-
mation of the eigenvalue computations so that a large number of eigenvalues
can be obtained in a single computer run. Up to 12 dimensionless frequencies
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F may be calculated at a given initial Reynolds number at either equal
increments in F or at unequally spaced specified values of F. Then for
each F in turn, up to 14 eigenvalues are computed over a range of Reynolds
numbers which may also be unequally spaced. . -x

The eigenvalue search procedure is set up to do a minimum of two
iterations. Only one perturbation integration is required per.iteration •
because with F and Re fixed, the secular determinant is an analytic func-
tion of the complex variable a for a spatial disturbance. Thus two itera-
tions require four integrations of the 64 equations (16 for incompressible v

flow). Convergence is usually achieved after the two mandatory iterations,
but if not., and the search has started to converge, up to two more iterations
are allowed. .If there is still no convergence, or the search did not give
adequate signs of converging after the first two iterations, the increment
in F or Re is halved, and if necessary, halved a second time. If nonsimilar
boundary-layer profiles are being used, the Re increment can not be halved
as the program.is set up to use precomputed profiles which are read in from
mass storage as needed. . ' •

After the.eigenvalues have been obtained over a sufficient Reynolds
number range for a given frequency, the next step is to compute the Reynolds ;
numbers of the neutral-stability points. Up to four neutral points can'be
computed to allow for the possibility of two separate unstable regions. The
neutral points are found by interpolation,, and if desired the interpolated
neutral points can be further refined by applying an eigenvalue search pro-
cedure which requires a minimum of six additional integrations per neutral
point. When the lower-branch neutral point ReQ has been found, A/AQ is
calculated from equation (6).

The next step is the calculation of the initial amplitude A0 from
equation (7). For an empirical interaction relation, A1 and A are both
input quantities and E(u>) is calculated from one or several formulas which
are specific to a particular problem. If the sound-forcing theory is used
to calculate A , then two integrations of 80 equations each are needed for
this purpose. With both A/A0 and AQ known, A(Re) can be calculated and the

 :

amplitude transition criterion applied. When A exceeds A , the corresponding
Ret is computed by inverse interpolation. When this series of calculations
has been carried out for all of the frequencies of importance, the minimum
Re is the predicted transition Reynolds number.

The evaluation of the Reynolds stress criteria requires the computation
of the.eigenfunctions at each Reynolds number. Two integrations are needed
for this purpose.. The peak value of-the mass-flow fluctuation is identified .
with. A* to assign a magnitude to the eigenfunctions and thus to the-.Reynolds ~
stress. The Liepinann and Kaplan criteria are evaluated, and when either -.
criteria is exceeded the.equivalent transition Reynolds number is found by..- .-.
inverse interpolation. . . . {
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Storage and Time.Requirements

The program requires a total of 49,000 single-precision words (36 bits)
of storage, or 31,200 words with segmentation (overlays). On the UNIVAC 1108
time-sharing system, the basic integration time is 7.4 X 10~* sec to integrate
one equation across one step. For incompressible flow, where 80 steps are
adequate and there are 16 equations for a two-dimensional disturbance, it
.requires 0.95 sec for each integration, and a total of 3.8 sec for each
eigenvalue provided there is convergence--in two iterations . -- For" compressible
flow with 100 steps and 64 equations, the respective times are 4.7 and 19 sec.

A minimum requirement for a transition calculation is about four fre-
quencies with eight Reynolds numbers for each frequency. Consequently, to
find the eigenvalues requires 122 sec for incompressible flow and 608 "sec
for compressible flow if all eigenvalue searches converge in two iterations.
The time required to obtain the neutral-stability points by interpolation,
evaluate the integral of a., calculate Ao and determine Re on the basis of
the amplitude criterion is negligible. For example, the results to be pre-
sented at Mx = 4.5 were obtained with five frequencies and a total of 45
Reynolds numbers. The time to compute the eigenvalues was 855 sec, but to
do all of the other calculations took only 1.5 sec.

The Reynolds stress transition criteria require two integrations per
Reynolds number, and thus 50% as much time as the computation of the eigen-
values if the transition criteria are to be evaluated at all Reynolds numbers.
However, if an Re is obtained first from the amplitude criterion, then the
eigenfunction calculation need not start until one or two stations before
this Reynolds number. In practice, the two Reynolds stress criteria required
about 25% more time than for the eigenvalue calculation alone.

Since the transition Reynolds number is often computed as a function
of_ sQme_jnean-:flow_parameter-such as-Mach-number or altitude,-a great "many "
different boundary layers have to be evaluated. At 10-15 minutes per
boundary layer, a large amount of computer time can be involved and a faster
computer than the UNIVAC 1108 would be an advantage. It is estimated that
the program would run about ten times faster on a CDC 7600. On a parallel-
processor computer such as the ILLIAC, a further time advantage could be
realized by integrating the independent solutions simultaneously instead of
consecutively as at present, and by calculating the eigenvalues and eigen-
functions of different frequencies simultaneously.

EFFECT OF FREE-STREAM TURBULENCE

In order to debug the final program as economically as possible, but
still work on an important problem, a calculation was made of the effect of
free-stream turbulence on the transition of the Blasius boundary layer.
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Figure 3 shows the published measurements as taken from reference 10. The
ordinate is the start-of-transition Reynolds number, and the abscissa is
the rms intensity of free-stream turbulence which is identified here with
the amplitude AJ . The curve is from the present calculation and is dis-
cussed below. Unfortunately, none of the experimenters measured either the
turbulence spectrum or the scale. In the absence of this essential infor-
mation, the spectrum was assumed to be the Dryden spectrum (ref. 11) of
isotropic turbulence,

U1*E*(«,*)/L * = 4/[l -*- (cu*L */U1*)
3] (11)

X X

where Lx is the integral length scale of turbulence. Although it is not nec-
essary to set'individual values of Ul and LX in the present calculation at
a single turbulent Reynolds number (R^ = U1*Lx*/v*), the spectrum is entered
in the program as given by equation (Tl) in order to be able to calculate
the separate effects of Ua* and LX*. Therefore, u\* and LX* had to be
assigned and the values chosen were

Ux* = 44 ft/sec , Lx* = 2.18 in. (12)

With E (to ) known, the next step is to set the interaction constant
A . ; For this purpose, the start-of-transition Reynolds number Re =

2.8 x 10s measured by Schubauer and Skramstad (ref. 2) for Ax = 0.1% was
used. Although the lowest measured-disturbance level in their tunnel
(0.02 - 0.03%) was mostly sound, particularly for the unstable frequencies,
it will be assumed that disturbances of 0.1% and greater are primarily
'turbulence. Since the Kaplan transition criterion is the only one that
does not require a numerical value to be chosen, it was used to calculate
Az. With A identified as the peak value of u', the rms longitudinal ve-
locity fluctuation referenced to the free-stream mean velocity, it was
found that AZ = 0.086 gives Refc = 2.8 x 10

s. With this AZ, the same Re
is obtained with the amplitude criterion set at Afc = 0.04, or with the
Liepmann criterion set at (Tĵ )t = 0.14 instead of Liepmann's suggested
value of 1.0..

• At this point everything should be in readiness to calculate the
effect of Aj on Ret. However, the change of AQ with AX as given by
equation (7) and the Dryde'n spectrum, together with the frequency depen-
dence of A/AQ for a two-dimensional instability wave in the Blasius bound-
ary layer, does not begin to give a large enough effect on Ret to account
for figure 3. There is no experimental information on the relation between
the turbulence intensity in the free stream and the amplitude of the insta-
bility wave, so only conjectures are possible. One possibility is that
the interaction is not linear as assumed by equation (7). A second pos-
sibility is that there is indeed a linear interaction, but that the initial
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disturbance forms in the damped region rather than at the neutral point.
As a result, AQ would vary with F.along the neutral curve just from the
different damping ratios between the.initial point and the neutral point.
Since,the frequency of the disturbance of maximum growth also changes with "
A1, the second possibility is in a certain sense equivalent to the first. '"*"
Consequently, it will be assumed without further inquiry into its meaning "
that

A = 0.043 [1:__t_(Ai/0.001)S'_3] .._.'.. . (13)..

where the multiplicative constant is just one-half the.previous value of
AZ in order to give the same Ret as bef9re when A.l = 0.1%. The exponent
2.3 was chosen to fit the experimental curve at Ax = 0.4%. As a note of
caution, equation (13) is not intended to relate the entire free-stream
spectrum to the internal spectrum, but only to give the A0, and hence
the amplification ratio, that is required to account for the initial rapid
decrease of Ret with increasing Aj. ,

, Ret was computed with equations (7), (13) and the amplitude criterion
of 4% up to A! « 2%, and the result is the curve shown,in figure 3. It
is surprising that agreement with the experimental results is obtained
all the way to At = 2% where transition is not far from the minimum criti-
cal, Reynolds number.

.The curve shown in figure 3 is not much more than an empirical fit
to the data. Unfortunately, until the amplitudes of Tollmien-Schlichting
waves can be related in a fundamental way, either theoretically or experi-
mentally, to the free-stream turbulence, nothing better can be done at the
present time. The advantage of the present procedure over a direct curve
fit of Re to the data is that the effects of turbulence scale, spectrum
and free-stream velocity on Ret, as well as the_jLnfluence_of turbulence-on-
the transition of arbitrary boundary layers, can all be calculated with no
further assumptions. Furthermore, it is possible to use the method to
compare results obtained with the three transition criteria, and some of
these calculations have been carried out. Simply stated, the computed
transition Reynolds numbers appear to depend very little on the particular
criterion used. For Ax < 0.5%, there is virtually no difference between
the criteria; for At = 1%, the results for the amplitude, Liepmann and
Kaplan.criteria are, respectively, 0.567 x 106, 0.600 x 10s and 0.609 X 106,
a maximum difference of 7%. '

TRANSITION IN SUPERSONIC WIND TUNNELS

s • Determination of Input Quantities . -

,/ ' • • • . • . .
Transition in a supersonic wind tunnel above MX = 2-3'is dominated by

the sound radiated from the turbulent boundary layers on the tunnel walls.
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In reference 1, linear stability theory was used together with an amplitude
criterion to calculate the variation of Ret with Mx for an insulated flat-
plate boundary layer. The external disturbances were included by the simple
expedient of taking AQ ~ Mj , as suggested by Laufer's finding in referenced
that the free-stream rms pressure fluctuation pj varies essentially as Mj .
The calculated variation of Ret with Mx bore a striking resemblance to the
experimental measurements, although the unit Reynolds number dependence of
pl was not sufficient to explain the measured dependence of Ret on unit
Reynolds number. The spectrum of pf plays an essential role in this depen-
dence and must be included in the calculation.

With the interaction in the form of equation (7), E*(u)*) was obtained
from the measurements of Laufer (ref. 4). The faired experimental spectra
are shown in figure 4. The spectrum at Mx = 4.5, Re/in. = 3.4 X 10

5 is
approximated in the computer program by curve fits accurate to about 57,,
A. unit Reynolds number correction as given by the spectrum at Mx = 4.5,
Re/in. » 1.8 x 105 , and a Mach number correction as given by the spectrum
at M! = 2.0, Re/in. = 3.4 X 10e are both included in the program. The
energy density and frequency f*(= (ju*/2rr) were made dimensionless by Laufer
with LX*, the integral length scale of the wall pressure fluctuations ; and
U8*, the average velocity of the sound sources. Both of these quantities
are entered in the program as curve fits to the measured values .

Laufer measured p^ at two Re/in, from Mj = 1.6 to 5.0. Other measure-
ments (ref. 12) have shown that p^ varies with Re/in, as (Re/in. )n. The
power that agrees best with Laufer's two values over the Mach number range
is n = -0.2. Consequently, the value of Aj entered in the program is

Ax = 0.00045 YM
2 [(Re/in.)/(3.4 X 105)]"°'2 (14)

where y = 1.4.

The remaining quantity in equation (7) is the coupling coefficient A .
• Z . 4

The program provides for AZ to be computed by the sound-forcing theory pre-
sented in reference 1. This theory requires a value of the sound source
velocity which in turn defines ijrc, the cut-off value of the wave angle ty
beyond which there is no sound radiation. The angle \|fc is usually less
than the angle of the disturbance of maximum amplification and can result
in a marked reduction in the amplification ratio A/A0 . In addition, the
source velocity is a strong function of frequency and this dependence has
been measured only at 1^ =4.5 (ref. 13). Even though with an average value
of the source velocity the theory gives the result that AZ is inversely
proportional to F and increases slowly with Mx in agreement with the mea-
surements of Kendall (ref. 5), it was decided that the uncertainties involved
in using the sound-forcing theory in the present calculations are greater
than just assuming AZ to be constant.
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With an amplitude transition criterion of 17», the constant AZ was
adjusted to give Ret = 1.45 x 10

6 at Mj^ = 4.5, Re/in. = 3 x 105, the start-
of-transition Reynolds number measured by Coles (ref. 6). It must be pointed
out that the amplitude criterion is here completely arbitrary. A different
value of At would merely change Az' in proportion. What is really being set
is the amplification A/AO needed for transition at the specified Reynolds
number. The coefficient Az would acquire a physical meaning only if the
entire spectrum were being used to compute the amplitude rather than
a single frequency. However, it is helpful to use constants'whose magni-
tudes make-physical-sense-,- and 17o~was chosen on "the"" i'de~a"~th"a~t" it "represents
the pressure fluctuation. The mass-flow and pressure fluctuation both
become large in the free stream as Mj^ increases. In the boundary layer,
the "mass-flow fluctuation, which is mostly a density fluctuation at high
Mach numbers, is larger than in the free stream. On the other hand, p
is smaller than in the free stream and declines relative to the mass-flow
fluctuation as M1 increases. Since it is known that a boundary.layer at
hypersonic Mach numbers can support large mass-flow fluctuations without ' •••
becoming turbulent, it may be that p .is the more suitable quantity to
relate t o transition. ' • . . - . - •

Results of Calculations

' -' '; With the constant AZ set once and for all, a series of calculations
were carried out for MX = 2.2, 3.0 and 4.5, and 1 < Re/ini X- 10~

B <4.
These Mach numbers were chosen because most of the eigenvalues .needed
were already available. The results are shown in figures 5'and 6 where
they are compared with Coles' measurements at four Mach numbers, only one
of which is the same as the Mach numbers of the calculations. Figure 6
is cross plotted from figure 5, and there is one additional point shown
at Mj.- 1.6 that does not appear in figure 5.

There is seen to be reasonable agreement between the calculated and
experimental values, with a maximum difference of about 157o. The unit
Reynolds number effect has been a particularly difficult one"to account
for in anything resembling a fundamental manner (ref. 14), and it is en-
couraging to see some features of the measured effect appear in"the cal-
culated results. Many measurements of the unit Reynolds number effect
can be fitted by the relation . . ,

•i • ' ,',

Ret ~" (Re/in.)
m . (.15)

A common value of m is.0.4, although a wide range of values have been t:
encountered, and there are measurements which do not fit this relation
at all. The measurements for MX = 2.57 in figure 5 fall into this latter,
category when the entire Re/in, range is included. However, for Re/in.- >
1 x 105 a power law is a reasonable fit to the data with ra = 0.28, 0.36,
0.63, 0.47 at Mt = 2.0, 2.57, 3.7, 4.5, respectively. The calculated
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slope at M! = 2.2 is m = 0.35 which is close to the experimental value at
Mx = 2.57. Although the calculated curves at the other two Mach numbers
are not straight lines, they are in agreement with experiment to the extent,
that their slopes increase with Mach numbers.

The increased slope calculated at the lower Re/in, may possibly be
a reflection of this same tendency in the experimental results for Mt = 2.57, ...
but it more likely comes from an inadequacy in the method. The^ best agree^ .. .<•
ment is found at. Mj^ = 2.2, and this agreement would be even better as to the
magnitude of Ret if the actual measured value of p^/yM^ at Mx = 2.2, 0.00055,
were used instead of.the average value 0.00045. At Mx = 2.2, the total ampli--
fication at Re/in. = 1.5 X 10s is 11.1, and the representation of the dis-
turbance growth by a single frequency should be valid. In contrast, at
Mj = 4.5 the amplification at the same Re/in, is only-3.5, and it is possible
that the single-frequency.approximation at this and lower Re/in, is not valid
because of the small overall amplifications involved. .

In support of this conjecture, a calculation made by the author a .
number of years ago (ref. 7, fig. 13-46) is helpful. In this calculation,
growth curves were obtained at Mx = 4.5 with the complete frequency spectrum
taken into account, but with still only a single wave angle of 60° (there is
a similar calculation with energy distributed uniformly with respect to ty) .
In this calculation the spectrum and p^ were assumed to be independent of
Re/in.,.and a^ was computed approximately from the temporal stability theory.
Of these simplifications, the most serious is believed to be the-one concern-
ing PJ . A unit Reynolds number effect smaller than in the present calculation;
was found. With an amplitude criterion set to yield Ret = 1.45 X 10

s at
Re/in. = 3 X 105 as here, the Ret at Re/in. = 1 X 10

5 can be determined from
reference 7 to be 1.15 X 10s. This value can be compared with Ret =. 0.66 x 105

of the present calculation with n = -0.20 in equation (14). If n is set equal
to zero, then Ret increases to 0.83 X 10s. If the influence of n on the result
with the complete spectrum is in the same ratio as with a single frequency-, .•
then with.n = -0.20, Ret would decrease from 1,15 x 10$ to 0.91 x 1Q6. it '
can be seen from figure 5 that this value fits the measurements quite well,
and the value of m in equation (15) is 0.43 as compared to the experimental
value of. 0.47.

;• Figure 6 requires little comment except to point out that computations;.,
are needed at more Mach numbers to better define the curves drawn in the . ...
figure. In order to extend the calculations to higher Mach numbers, addi-
tional px and spectrum measurements are needed. For Mj <2, there is a dif-
ferent sort of problem. With decreasing Mach number, the influence of the
irradiated sound decreases and that of free-stream .vorticity increases. Con-
sequently, the nature of.the interaction changes and Az can not be expected
to remain constant. The present indications are that the sound is more ef-
fective in creating instability waves than is vorticity, so that AZ should
decrease below Mx = 2 with resulting larger values of Ret. In support of this
reasoning, Ret = 3".4 X 10

s at Mx = 1.6, Re/in. = 3 X 10
5 in figure 6, while

an experiment by Kendall in the JPL 20-in. tunnel showed no transition on a
flat plate at Re =4.3 x 106 with Re/in. = 3.4 x 105.
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CONCLUDING REMARKS

The origin of transition has been viewed here as the result of specific
external disturbances with well-defined characteristics interacting' with the
boundary layer and being amplified according to linear stability theory until
a critical state is reached. The example of the effect of free-stream tur-
bulence on transition could not be carried to a conclusion because not enough
is known of the all important interaction process,. It is .in the supersonic - —
"wind tunnel that the most complete information exists. The free-stream dis-
turbances have been measured in the necessary detail, transition data are
available, and the interaction appears to be linear and of such a nature that
it can be represented by a simple relation. In these favorable circumstances,
linear stability theory has been shown capable of providing reasonable esti-
mates of the start of transition as a function of unit Reynolds number and
Mach number for the simplest possible boundary layer, the boundary layer on
a smooth, insulated, flat plate. However, there appears no reason to doubt
that the method, perhaps modified to include the complete spectrum, will work
for more complicated boundary layers and in different disturbance environments
if the interaction can be properly accounted for.

Further progress would seem to require more study of each of the three
parts of the transition calculation. The stability theory must be extended
beyond flat-plate boundary layers; the spectral characteristics of the dis-
turbances which occur in different flow environments must be measured; and
the interaction of these disturbances with the boundary layer to create in-
stability waves must be understood. Some factors which influence transition
and are commonly thought of as causes of transition, such as surface roughness
and waviness, are not true sources of instability waves in the absence of an
unsteady local separation, but act to influence existing disturbances which
have arisen from other sources. This influence is exerted through a modifi-
cation of the mean boundary layer which sharply_ increases__the._ instability am--—
"pllflcation (ref. 15).. The requirement in these instances is the capability
of computing the modified mean boundary layer.

To the objection that it is very difficult to obtain the necessary
information about the external disturbances, it can be replied that otherwise
the prospects for real progress in the ability to predict transition are indeed
bleak. Repeated experimentation in similar disturbance and flight environments
can result in some definite conclusions, but once the environment is changed
the whole procedure must start all over again. Even when it becomes possible,
as it will one day, to replace the linear stability theory with the three-
dimensional time-dependent Navier-Stokes equations, this part of the problem
will not change. The interaction can then be solved directly, but the neces-
sity of defining the external .disturbances will remain exactly what it is
today. Without quantitative knowledge of the disturbances, transition pre-
diction, difficult enough in any case, is likely to remain forever just out
of reach.
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SOLUTIONS FOR INCOMPRESSIBLE SEPARATED BOUNDARY LAYERS

INCLUDING VISCOUS-INVISCID INTERACTION

By James E. Carter and Stephen F. Wornom
NASA Langley Research Center

SUMMARY

Numerical solutions are presented for the laminar and turbulent boundary-layer
equations for incompressible flows with separation and reattachment. The separation
singularity is avoided by using an inverse technique in which the displacement thickness
is prescribed and the pressure is deduced from the resulting solution. The turbulent
results appear qualitatively-correct despite the use of a two-layer eddy-viscosity model
which is generally assumed appropriate only for mild-pressure-gradient flows. A new
viscous-inviscid interaction technique is presented in which the inviscid flow is solved
inversely by prescribing the pressure from the boundary-layer solution and deducing the
new displacement thickness from the solution of a Cauchy integral. Calculations are
presented using this interaction procedure for a laminar flow in which separation and
reattachment occur on a solid surface.

INTRODUCTION

The development of theoretical prediction techniques for flows involving boundary-
layer separation is of fundamental importance since separation is a common occurrence
on most aerodynamic surfaces. Significant progress has been made in recent years for
laminar supersonic flows which contain large viscous-inviscid interactions, such as those
which occur at the point of incidence of a shock wave on a flat plate or in the vicinity of-a
compression corner. Werle and Vatsa (ref. 1) and Dwoyer (ref. 2), as well as others,
have demonstrated that the boundary-layer equations including interaction with the invis-
cid flow provide an accurate model which gives results that agree with experiment and
solutions of the Navier-Stokes equations (ref. 3). In addition these techniques are cur-
rently being extended to turbulent flows (ref. 4).

In supersonic flows the interaction between the viscous and inviscid flow can be
computed locally since the inviscid flow is hyperbolic. As a result the singularity which
occurs in solutions of the boundary-layer equations when the pressure is prescribed is
removed by allowing the boundary layer to modify the pressure to give a regular solution
at the-separation point. This technique cannot be used for subsonic flows since the invis-
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cid flow is elliptic and hence, the pressure at any given point depends on the entire dis-
placement body distribution.

Alternate procedures which are appropriate for subsonic flows and do not rely on
interaction to eliminate the separation singularity are the inverse boundary-layer solu-
tion techniques which have been recently developed. Catherall and Mangier (ref. 5), and
later Carter (ref. 6), have demonstrated that regular solutions can be obtained if the dis-
placement thickness is prescribed and the pressure is deduced from the resulting solu-
tion. Similarly, regular solutions at separation can be obtained by prescribing the skin
friction as shown by Kuhn and Nielsen (ref. 7), Klineberg and Steger (ref. 8), and Carter,
(ref. 6). Another inverse procedure, which was developed earlier by Klineberg and
Steger (ref. 9). and later used by Tai (ref. 10), is to use the transverse component of
velocity at the boundary-layer edge as the prescribed condition.

In contrast with these inverse techniques, Briley and McDonald (ref. 11) have made
calculations for subsonic flow using a direct procedure in which the unsteady boundary-
layer equations are repeatedly solved until a steady-state solution is obtained. After
each time step the prescribed pressure is updated from thin airfoil theory, thereby
accounting, for the displacement thickness interaction. Although this technique seems
feasible, it needs further examination since Briley and McDonald obtained a regular solu-
tion at a laminar separation point for a case with no interaction. The absence of the
singularity in this case is probably due to numerical inaccuracy since a first-order
scheme was used with a coarse grid. Hence, it is not clear in those cases in which
interaction was included whether the solution at separation would be regular if a second-
order scheme were used.

In using the inverse boundary-layer procedures discussed above, it is necessary to
incorporate a description of the inviscid flow to completely describe a viscous-inviscid
interaction" F6r~example, Kuhn and Nielsen (ref. 7) developed an iterative procedure in
which Murman's inviscid transonic flow program (ref. 12) is solved iteratively with their
inverse boundary-layer technique. Kuhn and Nielsen made "calculations for the turbulent
separated flow behind a bump placed on a wind-tunnel wall. The skin friction was updated
for each new boundary-layer calculation based on the difference between the pressure
computed from the boundary-layer solution and that obtained from the inviscid flow cal-
culation for the displacement body. This procedure is not straightforward as it is not
clear how to update the skin friction based on this pressure mismatch. A simpler pro-
cedure, which was recommended by Kuhn and Nielsen and is .the subject of the present
paper, is to combine the displacement-thickness-prescribed, inverse boundary-layer
procedure with a suitable representation of the inviscid flow. In the present study of
incompressible flow, the inviscid calculations are made by using an inverse Cauchy inte-
gral from thin airfoil theory.
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The Cauchy integral relating pressure and body slope is used in an inverse manner
so that a new displacement body can be found from the pressure obtained in the inverse
boundary-layer calculation. The displacement thickness is then updated by subtracting
the prescribed body from the displacement body and the iteration is continued to con-
vergence. This procedure is similar to that used by Jobe and Burggraf (ref. 13) and by
Melnik and Chow (ref. 14) in solving the asymptotic equations developed by Stewartson
(ref.' 15) governing the flow at the trailing edge of a flat plate. An important feature of
this inverse procedure is that the results require no smoothing, as has been typically
found necessary in direct calculations of inviscid-.viscous interaction (refs. 16 and 17).
This result is not surprising since the inverse procedure primarily uses numerical inte-
gration, which is inherently a smoothing process, in contrast to the numerical differenti-
ation used in the direct procedure.

A second purpose of this paper is to present some calculations which have been
made for turbulent flows involving separation and reattachment. These calculations,
which do not include interaction, have been made by incorporating a two-layer eddy-
viscosity model in the displacement-thickness-prescribed procedure used in the laminar
analyses. The variable grid scheme analyzed by Blottner (ref. 18) is incorporated in
these calculations to reduce the number of grid points across the boundary layer and
simultaneously maintain second-order accuracy.

SYMBOLS

> coefficients in tridiagonal system of equations

coefficients in Thomas algorithm

Cf skin-friction coefficient

Cp pressure coefficient

L reference length

S. coefficient in vorticity-transport equation (see eqs. (1) and (8))

m,n' indices for |- and Tj-directions, respectively

N computational coordinate
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AN increment in computational coordinate

R^ L free-stream Reynolds number, f £2i
' * *^

R reattachment point

5 separation point

t thickness (see fig. 3)

Uoo free-stream velocity

u velocity component parallel to surface

ue velocity component parallel to surface at edge of boundary layer

u'v' Reynolds stress component

x coordinate along surface

Ax increment in coordinate along surface

;

xo upstream interaction boundary

xj downstream interaction boundary

x' integration variable

y coordinate normal to surface

a . coefficient of artificial time term

A increment in displacement thickness

6 boundary-layer thickness

6* displacement thickness

** *6 =6
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e eddy-viscosity coefficient

77 transformed y- coordinate

ATJ grid spacing in Tj-direction

\i molecular viscosity coefficient

v kinematic coefficient of viscosity

| transformed x-coordinate

A£ grid spacing in | -direction

p density

i/> stream function

transformed stream function
/

vorticity

Subscripts:

B body

DB displacement body

FP flat plate

max maximum

o denotes value at upstream boundary

tr transition
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viscous FLOV;

. Governing Equations . . .

The governing equations for an incompressible boundary -layer flow for a prescribed
displacement thickness can be given in terms of the following vorticity-transport and
stream-function equations:

These equations are solved subject to the boundary conditions

••••-• ; u($,0) = £(£,0) = 0 (3)

CO(£,T}) and i//(|,77) T 0 as 77-09 , . , (4)

The independent variables are | = x and 77 ^ y/6 where 6* is the displacement
thickness which is defined in the usual manner. Equations (1) and (2) are nondimensional
and the dependent variables which are barred have been scaled in the usual manner by

\|R 7 which is appropriate for laminar boundary layers. The transformed stream
I °OjAj _ . • ^^ ^_^ _ jf

function ij} is related to the usual stream function - ty by ^ = 4> - u6 (77 - 1) where u
is the x-component of velocity. The vorticity is denoted by uJ and after it is obtained
from equation (1), u is given by

(5)

After equations (1), (2), and (5) are solved, the unknown edge velocity ue is obtained
from the x- momentum equation which is evaluated at the surface to give

ue
5*

(6)
77=0

This value should agree with the value obtained from equation (5) and thus ..serves as a •
check on the calculation. Equation (6) is integrated from the .upstream boundary to give.
Ue(£) and ^e corresponding pressure coefficient is given by
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= i - (7)

Further details of the preceding formulation for laminar flow are presented by Carter
(ref. 6).

For laminar flows the quantity S. appearing in equation (1) is set equal to unity,
whereas for turbulent flow

e = i +± (8)

where e//i is the ratio of the eddy viscosity to the molecular viscosity coefficient. The
eddy-viscosity coefficient is used to relate the Reynolds stress to the velocity gradient
in the usual manner

puV = -e — (9)

In the present calculations a two-layer eddy-viscosity formulation has been used which is
similar to that used by Harris (ref. 19), Cebeci and Keller (ref. 20), and others. In the
inner region a combination of Prandtl's mixing length model along with the Van Driest
damping factor is used and is given as follows in dimensional quantities:

(I
(0.4yD)2

8u
inner

where the damping factor D has been modified for separated flows and is given by

(10)

D = 1 - exp 8u

max
(11)

In the outer region Clauser's velocity defect model is used along with the JQebanoff inter-
mittency factor :

(12)
A 0.0168ue6*

^/outer

1

1 + 5.5(y/6)6_

where 6 is the boundary-layer thickness defined as the point where u = 0.995ue. The
boundary between the inner and outer regions is the point at which
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anner V^'outer

Equations (10) to (13) relate the Reynolds stress to the mean flow and thereby complete the
formulation for turbulent flows. This two-layer eddy-viscosity model has been widely
used for attached flows with mild pressure gradients; its applicability to separated tur-
bulent flows is unknown at the present time. Nonetheless, the purpose of the present
paper is to develop a numerical scheme for separated turbulent flows; in the future,
refinements of the turbulent empiricism will be made to assess the quantitative results
in comparison with experiment.

Numerical Procedure

Figure 1 gives a schematic diagram of the computational schemes and boundary
conditions used for the boundary-layer calculations. In an earlier paper Carter (ref. 6)
presented a global iteration procedure in which the finite-difference scheme is switched
in the reversed-flow region to properly account for the reversed-flow direction. The
"global iteration technique requires repeated streamwise iterations until convergence is
obtained. More recently, Carter and Wornom (ref. 21) have shown that a separated bound-
ary layer can be computed much more rapidly with the usual forward-marching procedure
used for attached boundary layers provided that the tridiagonal equations are diagonally
dominant and that the streamwise convection of vorticity is neglected in the reversed-flow
region; that is, if u < 0, then set

u6*2^f = 0 • (14)
9? ' - v . • . -. - ' • • , . - . . , ; .

This approximation is somewhat similar to that used by Reyhner and Fliigge-Lotz (ref. 22)
for neglecting the streamwise convection of momentum in the reversed-flow region. Use
of this approximation eliminates the well-known instability of marching in a direction
opposite to that of the flow; in addition, the accuracy is essentially unaffected if the mag-
nitude of the reversed-flow velocity is less than O.lUoo, as shown by Carter and Wornom
(ref. 21).

The streamwise gradients which are typically encountered as a boundary layer
approaches separation are quite large, and thus, from numerical experimentation it has
been found necessary to use a fully second-order-accurate scheme for u > 0. The
Crank-Nicolson scheme, including the reversed-flow approximation discussed previously,
is used in the laminar calculations and has been previously discussed in references 6
and 21. The turbulent for ward-marching procedure, which is presented subsequently, is
quite similar although the computational molecule shown in figure 1 is used since the
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Crank-Nicolson scheme resulted in oscillatory solutions for some of the turbulent cal-
culations. In this case the streamwise derivatives are represented by the second-order
difference expression -

9? m,n
i-l,n + wm-2,nj (15)

The bars, which were used previously to denote Reynolds number scaling, are deleted for
convenience in the presentation of the numerical procedure. The computational molecule
for u < 0 in the global turbulent calculation is the same as that reported for laminar
flow by Carter (ref. 3). A constant grid spacing is used in the stream direction and
hence £ = m A|. In the normal direction a variable grid is used, second-order accuracy
being maintained by using the difference expressions developed by Blottner (ref. 18) which
are given as , .

8q>
87;

_ "m.n+l

m,n -Vi
(16)

2

Vi " Vi
'*w'm,n+l " '*w'm,n ' 'm,n " '^w'm,n-l

n+1 'n s n 'n-1
0(AN2) (17)

Blottner showed that a variable grid scheme is equivalent to a coordinate stretching -
method if the coordinate rj .can be related to a computational coordinate N in which
the grid is evenly spaced. In the present calculations the grid is varied at a constant,
rate; that is, A7jn = K ATjn_j, which can be written in terms of a computational coordi-

nate N as follows

'max
K1/AN . 1

(18)

where Nn = (n - 1)AN and 0 = N ^ 1. In the present calculations K, the ratio of adja-
cent grid spacings, equals 1.09, rjmax = 31, and 93 grid points are used across the bound-

ary layer. This grid point distribution insures a minimum of 15 points in the viscous sub-
layer. However, no numerical study was made to determine the optimum value of K or
the minimum number of grid points. By using equations (15) to (17) the vorticity trans-
port equation can be written in the following form where q denotes the column iteration
level:
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(19)

where

m,n

= 2C
r?

K ,n-l

(20)

In the reversed-flow region the streamwise convection of vorticity is neglected; as a
result C| = 0. ,

Repeated application of equation (19) from the wall to the outer boundary results in
a tridiagonal system of linear equations for the vorticity. These equations are solved by
the Thomas algorithm which can be written as

(21)

where

In equation (19) a timelike term

unconditional diagonal dominance

n i r* r* *Bn + ̂ n^n
(22)

-> )m,n/ has been introduced to provide the
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n| >'-r--. ' - • • • ' . ' <23>

and thereby prevent error growth in the back substitution procedure given in equation (21).
Introduction of this term is a modification of the usual implicit technique used to solve
the boundary-layer equations and is the subject of a recent paper by Carter and Wornom
(ref. 21).

The quantities D^ and C'n are computed, beginning at the outer boundary where
the boundary condition a>(|,°°) = 0 is imposed and proceeding to the wall. Equation (21)

is then used to obtain a)*1 once the value at the wall o)^\ is known. The wall vor-m,n m,l
ticity is found by simultaneously solving for the stream function from equation (2) across
the boundary layer and imposing the surface boundary condition given in equation (3).
Details of this procedure are the same as those used for laminar flow which are pre-
sented by Carter (ref. 6). After the back substitution in equation (21) is completed, the
coefficients in equation (19) are updated and the process continued until convergence is
obtained. Convergence is assumed when the maximum change in all the dependent vari-
ables between two successive column iterations is less than 10"5. In.most of the calcu-
lations it was necessary to use underrelaxation for the iterative column solution, as was
discussed by Carter (ref. 6). The relaxation factor typically used in both the laminar and
turbulent calculations was 0.6. . *

INVISCID FLOW AND INTERACTION PROCEDURE

In this section the inviscid flow, which is approximated by small-disturbance theory,
and the interaction procedure shown in figure 2 are discussed. This procedure is applied
to the laminar flow over the surface shown schematically in figure 3 in which flow sepa-
ration and reattachment occur. The strong viscous-inviscid interaction region is
assumed to be limited to the region shown in figure 3 in order to replace the infinite
limits in the Cauchy integral, which is used to compute the inviscid flow, with finite val-
ues. Thus, it is assumed that the region of strong interaction is located a large distance
from the leading edge and the Blasius flat-plate displacement thickness at this location
results in a negligible pressure gradient. These assumptions are discussed in further.
detail later.

. :r The calculation is begun with an assumed displacement thickness distribution for
XQ = x = xj, which is input to the boundary-layer equations. The resulting solution yields
the surface pressure C_ j}B from equation (7) which results from the inviscid flow over
the .displacement body. The displacement body coordinate, y^g is given by .

(24)
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where yB is the prescribed body surface. The displacement thickness can be written
as

1.7208^
6*(x)= A(x) (25)

where the first part is the Blasius flat-plate solution and the second part A(x) is the
result of the nonzero pressure gradient. Since the inviscid flow is linear, the pressure
on the displacement body can be written as

Cp,E>B - Cp>B + Cp>A + (26)

where Cp^g is the pressure on the prescribed surface when no viscous effects are pres-

ent and is found from the direct Cauchy integral

-P>I X -X'
(27)

where the usual small-disturbance approximations have been made. It is necessary, of
course, to compute CPJB only once. In equation (26) CpjA is the pressure coefficient

due to A, the deviation of the displacement thickness from that generated by a flat plate.
Also, in equation (26) Cp>FP denotes the pressure coefficient induced by ajlat-plate
displacement thickness, which in the present study will be approximated as

-p,FP = 0 (28),

This approximation, which is discussed by Van Dyke (ref. 23), is the result of second-,
order boundary-layer theory for the flow over a semi-infinite flat plate. Furthermore,
it should be noted that the pressure gradient induced by a flat-plate displacement thick-
ness increases as the leading edge is approached and thus, if Cp Fp * 0, then there is no

logical point at which a downstream, relatively local interaction calculation can be initi-
ated other than at xo = 0.

Since'the boundary-layer solution is computed inversely, the iteration procedure is
simplified by also solving the inviscid flow with an inverse technique. The inverse.
Cauchy integral relating the pressure on the displacement body to the rate of growth of
the displacement body is given by
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f)dx'
(29)

o x - x'

Similarly, the inverse relation for the prescribed surface is given by

.*BM .± r P,B
dX 27T J-»o X - X'

(30)

If equation (30) is subtracted from equation (29), then from the previous discussion it fol-
lows that

^

dx 2rr J-<» x - x'

The end points on this integral pose a problem since the boundary-layer solution
which gives Cp A ^s computed only in the range XQ = x = x j. In the present study the
lower limit on the integral in equation (31) has been replaced with xo and thus, the inter-
action is assumed negligible upstream of XQ; that is, Cp>A = 0 for x=x0 \ Downstream

of the interaction at x = xj, it is expected that CP>A will be small but not zero, partic-
ularly in the early stages of iteration. It is noted that since the prescribed surface
returns to a flat plate as x — °°, then Cp £ = Cp>A = 0 is the required downstream
boundary condition. This boundary condition is imposed in the inviscid calculation since
the boundary -layer problem is parabolic and is solved independently of a downstream
boundary condition. To avoid the discontinuity which would be encountered by setting
Cp,A = 0 at x = xi, the following extrapolation is used for x = xj:

(32)

where Cp^A denotes the extrapolated value of CPJA and the coefficients aj_, a2, and
ag are computed by matching equation (32) with Cp>A obtained in the boundary-layer

solution at x = xj. Numerical tests on the approximate treatment of the limits in equa-
tion (31) will be discussed later.
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On the basis of the preceding discussion, equation (31) is rewritten as

'°° CD^(x')dx'
3&W..i
dx 27T

r*i cp>A(x')dx' + r°
^x0 x - x' Jx X - X'

(33)

The first integral is evaluated numerically with a third-order-accurate quadrature formula
in which the singularity at x' = x is isolated in the same manner as was done .by Jobe and
Burggraf (ref. 13). The second integration is performed analytically with equation (32).
In solving equation (33) dA/dx is obtained at the midpoints between the grid nodes of the
boundary-layer solution. Thus, A at the boundary-layer points x = £ = m A£ .is then
obtained to second-order accuracy from . . . - . ,

Ax + 0(Ax2) (34)

beginning at x = XQ where A = Ao which is found by solving the boundary-layer equa-
tions in Gortler variables from the leading edge with Cp 3 prescribed. Note that Ao

must be small since the interaction is assumed negligible upstream of x = xo. As shown
in-figure 2 the new displacement thickness is computed from equation (25), and the result-
ing value is multiplied by \/R^L to give . 6 = l/R^L^* in order to conform to the

usual boundary-layer scaling. At this point in the iteration cycle a check on convergence
is made which is defined in the present study as.. . , . • • • • • . : . , ,

• max.
m m - 6m < 10 -4 (35)

where i denotes the iteration cycle. Generally, it is found that when equation (35) is
c

satisfied, the corresponding maximum change in Cp is about 10~ . Underrelaxation.was
used in the present calculations at the indicated points in figure" 2. A relaxation factor
of 0.2 was used in the calculations; several attempts were made to increase this value,
but these calculations diverged. .

RESULTS AND DISCUSSION• - ' . ' • '.-•* • ' r , , • • • • • " . • . . ' . '

Turbulent Boundary-Layer Calculations

Calculations with the inverse boundary-layer procedure are first discussed for the
turbulent flow over a flat plate in which the input displacement thickness is.computed from
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a direct solution of the boundary-layer equations in Gortler variables. A comparison of
the Skin-friction distribution obtained from the direct and' inverse calculations is shown in
figure 4 along with the experimental measurements of Wieghardt and Tillman (flow num-
ber 1400 in the 1968 Stanford Conference,, ref. 24). The excellent agreement between the
direct and inverse boundary-layer calculations is expected since the same eddy-viscosity
model is used in both of these calculations. In the inverse calculations it is found that
with Ax = 0.025 the deduced edge velocity deviates from unity by 5 percent, whereas with
Ax = 0.0125 this error is less than 2 percent. These boundary-layer solutions are also
shown in figure 4 to be in good agreement with the experimental data. The direct solution
starts at the leading edge with a laminar boundary layer and transition is assumed to occur
at x = 0.001m. The inverse calculation begins at x = 0.087m, the direct solution at that
station being used for the upstream boundary condition. Better agreement with the data
could be obtained either by using a more detailed modeling of the transition region or by
using the experimental data for the starting conditions, as was done by most of the inves-
tigators in the Stanford Conference.

Further calculations were made by using the displacement thickness distributions
shown in figure 5 as input conditions to the present inverse boundary-layer procedure.
The resulting solutions for the skin friction and edge velocity are shown in figures 6 to 8.
Figure 6 shows the large separated region computed for laminar flow with the 6* dis-
tribution designated as case 1 in figure 5. Note that the edge velocity, and hence the pres-
sure, shows a plateau region between separation and reattachment which is characteristic
of separated flows.. This laminar calculation is the same as that designated as case B in
reference 21 where additional details are presented. The turbulent boundary-layer solu-
tion corresponding to this same 6* distribution is shown in figure 7. where it is seen that
separation did not occur despite the 30-percent decrease in the edge velocity; .The quali-
tative trend here is correct since it is well known that a turbulent boundary layer requires
a larger pressure rise than a laminar boundary layer before separation occurs. As a
check on the solution shown in figure 7, the deduced velocity ue was used as an input to
the boundary-layer equations expressed in Gortler variables. The resulting skin-friction
distribution is seen in figure 7 to be in good agreement with that obtained in the inverse
solution. There is some difference in the two solutions near the point of maximum ,
boundary-layer thickness and is probably due to a lack of resolution across the boundary
layer in the direct solution.

A more severe case was computed by using the displacement thickness distribution
designated as case 2 in figure 5 as the prescribed condition. The resulting skin-friction
distribution is shown in figure 8 and it indicates that separation and reattachment occur
for this case. It is seen that there is no difference between the solution obtained with the
approximate forward-marching procedure and that found by the global iteration technique,
in which the finite-difference scheme is switched in the reversed-flow region to properly
account for the reversed-flow direction. In this case the magnitude of the reversed-flow
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velocity is only about 0.02Uoo, which at least for laminar flows is quite accurately com-
puted by the approximate forward-marching procedure, as shown in reference 21.

An attempt was made to compute the same case as a direct calculation with ue

prescribed to see whether or not a singularity exists at the separation point as in laminar
flow. The preliminary results indicate that the direct solution has a much steeper skin-
friction gradient near separation, although further grid refinements as well as analysis
are needed to determine the precise behavior in this region. -Furthermore, the signifi-
cance of this study is unclear since the solution behavior near separation will depend on
the turbulent formulation, which is quite approximate in the present paper.

Laminar Viscous-Inviscid Interaction

The prescribed surface, for which interaction calculations are presented, is given
by

yB = t sech 4(x - 2.5) ; (36)

where t = -0.03 in figure 9 and t = -0.015 in figure 12. For these results xo = 1.0,
Xi = 4.0, and Ax = 0.025 which results in 121 grid points in the x-direction. The
Reynolds number based on free-stream conditions and the distance from the leading edge"
to the assumed start of the interaction is R^ L = 8 x 10 .̂ In the boundary-layer calcula-
tion 87 points were used across the viscous layer; thus, a total of 10 527 grid points were
used which were found to require approximately 25 sec on the CDC 6600 computer to com-
plete one iteration cycle shown in figure 2. The results shown in figure 9 were obtained
with a relatively crude initial guess on 6 as seen in figure 10 and were found to require
64 iterations to meet the convergence criterion given in equation (35). No attempt was
made to optimize the convergence rate of these calculations.

In the lower part of figure 9 the deduced displacement body is shown in comparison
with the prescribed body. The points S and R refer to the separation and reattach-
ment points, respectively, and are connected by the dividing streamline which separates
the inner recirculating flow from the outer, forward flow. The displacement thickness
distribution is better seen in figure 10 where the initial and final distributions are com-
pared with the Blasius flat-plate solution. A comparison of the pressure distributions on
the displacement and prescribed body shapes is shown in the upper part of figure 9. The
difference in these two curves is Cp,A> which is about half of the uninteracted pressure
level at the bottom of the trough; this shows the large influence the boundary layer exhibits
in this flow field. It is observed that Cp A approaches zero as both the upstream and
downstream boundaries are approached, which indicates that the interaction is adequately
contained in this region. Additional calculations were made to insure that the results are
independent of xo, xj, and the extrapolation given in equation (32), provided that these
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boundaries are placed sufficiently far from the bottom of the trough. As a further numer-
ical test the grid spacing in the x-direction was reduced from 0.025 to 0.0125; the results
of these two calculations differ only slightly. From previous studies (ref. 6) the grid
spacing across the boundary layer is considered sufficiently small and thus, the results
shown.in figures 9 and 10 are considered an accurate solution of the governing partial
differential equations.

The skin-friction distribution for this case is shown in figure 11 along with the
Blasius flat-plate distribution and that obtained by a direct calculation of the boundary-
layer equations with the inviscid pressure distribution prescribed. This latter calcula-
tion demonstrates the usual singularity at separation where the slope of the skin-friction
curve is infinite, whereas the solution obtained including interaction has a large but finite
gradient at separation. The column iterative procedure used in the direct calculation no
longer converges downstream of the separation point. As expected, the point of separa-
tion is predicted further downstream when the effects of interaction are included since the
boundary layer reduces the adverse pressure gradient and thus delays separation. It is
observed that the gradient is even larger near reattachment and is followed by an over-
shoot of the flat-plate result which is characteristic of the usual neck region downstream
of a separated flow. Comparison of figures 10 and 11 shows that the maximum in skin
friction corresponds to the minimum in displacement thickness in the neck region.

The results of an additional calculation in which t = -0.015 in equation (36) are
presented in figures 12 and 13. Comparison of these results with those discussed pre-
viously for t = -0.03 show that the shallower trough results in a smaller but not negli-
gible viscous-inviscid interaction. In figure 13 it is seen that for this case the inclusion
of the viscous-inviscid interaction relieves the adverse pressure gradient such that the
flow remains attached, despite the prediction of separation from a first-order boundary-
layer calculation using the inviscid pressure distribution which is given in figure 12.

CONCLUDING REMARKS

In the present paper a technique is demonstrated for solving laminar and turbulent
separated boundary layers. The turbulent separation results appear qualitatively correct;
however, the quantitative accuracy of this solution technique must be evaluated by making
comparisons with experimental data. It is anticipated that modifications of the eddy-
viscosity model used in the present study will be required.

A new viscous-inviscid interaction procedure for separated flows is discussed and
several calculations using this technique are presented. This iterative procedure requires
none of the smoothing techniques usually required in numerically matching a boundary-
layer and inviscid flow solution. Further studies are needed to optimize the efficiency of
this interaction procedure.
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Figure 1.- Boundary-layer computational schemes and boundary conditions.
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ON HIE CALCULATION OF SUPERSONIC SEPARATING AND REATTACHING FLOWS

By John D. Murphy, Leroy L. Presley, and William C. Rose

NASA Ames Research Center

SUMMARY

A method is developed for solving the laminar and turbulent compressible
boundary-layer equations for separating and reattaching flows. Results of
this method are compared with experimental data for two laminar and three tur-
bulent boundary-layer, shock-wave interactions. Several Navier-Stokes solu-
tions were obtained for each of the laminar boundary-layer, shock-wave inter-
actions considered. Comparison of these solutions indicates a first-order
sensitivity in Cf to the computational mesh selected in both the viscous .and
inviscid portions of the flow. '

Three turbulent, boundary-layer, shock-wave interactions were considered,
one unseparated interaction at M = 3 and two separated interactions at
M = 1.47 and 3. Boundary-layer theory appeared to be adequate to describe the
first two of these interacting flows. However, for the separated interaction
at M = 3, .'boundary-layer theory failed.

Comparison of the present boundary-layer solutions with the Navier-Stokes
solutions and with data for a given Mach number indicates, that as long as
|ve/ue| is small, the boundary-layer approximation yields solutions whose
accuracy is comparable to the Navier-Stokes solutions. A more general param-
eter might indicate boundary-layer theory to be valid if some function of Mach
number times |ve/ue| is small.

Since the present boundary-layer solution is an inverse method, that is,
Cf(x) is specified rather than P(x), a criterion for selecting the correct
Cf distribution is required. It was originally anticipated that this cri-
terion would be supplied by coupling the boundary-layer solutions to a shock-
capturing, finite-difference solution to the inviscid-flow equations.
Although several modes of coupling have been attempted, only slight success
has been obtained to date because the shock-capturing scheme imposes a rela-
tively thick shock wave on the viscous flow, which in turn requires an almost
discontinuous change in flow angle at the boundary-layer edge. The inconsis-
tency of this behavior in the two solutions has thus far obstructed attempts
to obtain meaningful coupled solutions. Therefore, a truncated Navier-Stokes
system of equations was examined and. it appears that this technique circum-
vents these difficulties.

INTRODUCTION

It is generally agreed that the problem of separating and reattaching
flows is one of the more challenging and technologically relevant problems in
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computational fluid mechanics. In recent, years, the computational attack has
taken place on two fronts - the engineering approach by way of boundary-layer
theory and the pure numerical approach by way of the Navier-Stokes equations.
Reasonably complete summations of the status of these two approaches up to
about 1970 are contained in references 1 to 3. During the past two or three
years, substantial additional progress has been made in the boundary-layer
theory approach by Klineberg and Steger (ref. 4) and Carter (ref. 5), and in
the Navier-Stokes equation approach as represented by references 6 through 11.
The basic position taken by each of these schools of thought can be summarized
as follows: the Navier-Stokes equations are undoubtedly the correct equations
for describing the flow fields in question and, since we can solve them, why
settle for an approximation? The boundary-layer contingent would concur with
the above but they would add that the cost of Navier-Stokes solutions both now
and in the foreseeable future is far too high to permit their use as design
tools.

The present study examines these positions in some detail. In particular,
we are concerned with establishing, at least qualitatively, the limits of
applicability of the boundary-layer approximation for both laminar and turbu-
lent separating and reattaching flows. Secondly, we are concerned with the
development of an economical and reasonably accurate engineering calculation
scheme for such flows.

SYMBOLS

C Chapman-Rubesin constant

C,. skin-friction coefficient, C.. = T /(l/2)p u2
t i w o o

DC difference coefficient multiplying quantities at x

DM difference coefficient multiplying quantities at x-Ax

DP difference coefficient multiplying quantities at x+Ax

E Eckert number, u2/2H ' ' ,
e e

F defined in equation (12)

f dimensionless stream function

H total enthalpy h + (u2/2)

h static enthalpy .

$• mixing length

M initial Mach number
o
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M number of nodes In x direction
1 . . . . . . . .

N number of nodes in y direction

p pressure .

Pr Prandtl number

Pr turbulent Prandtl number

R ' gas constant

r body 'radius

S entropy

T ' temperature

U defined in equation (12)

u velocity component in x direction

v velocity component in y direction

x streamwise variable

y cross stream variable

. ct weighting factor in type dependent differencing

B boundary-layer pressure gradient parameter

Y ratio of specific heats

A difference in quantities

5 boundary- layer thickness or stream angle

6* displacement thickness

e residual error

p density

a defined in equation (18)

y viscosity or Mach angle (y

T shear stress

2£ due
= — - --—
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£ transformed 'x variable -

r\ ' transformejd ' y yariable ' ' . ' " ' ! •

( )' differentiation with respect to n

Subscripts

e evaluated at boundary-layer edge '

f evaluated at final conditions downstream of interaction

i evaluated at ith x point

j evaluated at jth y point

i . lower boundary : - . - . • ' • •

o . evaluated on initial line . .

t evaluated at stagnation conditions

u • upper boundary

w evaluated at wall conditions

"' -ANALYSIS" ' '• /

Viscous-Flow Calculations

The procedure used to solve the viscous-flow portion of the calculation
is a generalized Galerkin method (refs. 12 and 13) applied to the-boundary-
layer equations. The equations considered are

3H . 3H
PU + PV

3upu —

3
3y

.JiUl +
Pr 3y

3 pur 3pvr '
3x 3y

. 3u dP . 3 / 3u . \+ pv -r— = — r- + — (u h PT)3y dx 3y V 3y /

U A 1\ 3u2

2V ~ Pr/ 3y •*.f4'ay|
1 3H/

PrT^I7

pRT

PT = pfc2
3y 3y

1
Prn

(1)

(2)

(3)

(4)

(5)
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Only adiabatic flows with Pr = Pr^ = 1 are treated here; hence equation (3)
is replaced by h + (u2/2) = const. To suppress the streamwise growth of the
boundary layer and to facilitate initialization, equations (1) and (2) are com-
bined under the Levy-Lees-Dorodnitsyn transformation (x,y) -»• (C»n) where

o po

/2T

pI pu dy
u

which re sults in

(Cf")' + ff"
/p* \
I—- f'2)
'p • /

KlPt - 25 f fi-- f» •£ - 0 (6)

kwhere Kj = v2£/vier and the primes indicate differentiation with respect to
H. The following analysis closely parallels that of Kendall and Bartlett
(ref. 13). The present method extends that of reference 13 to treat separated
flow and is restricted to calorically and thermally perfect gases.

y-dependent differencing—To apply the generalized Galerkin method, the
approximations for the stream functions, velocity, and shear between adjacent
nodes are chosen as

f + f'*„ + fj

f ' + f 'An + f ' ' ' 3— + f " ' n
j j n j 3 rj+l 6

f l i t ^
J+l 24

f« _ fit + ft i
J+l , J 4

f , j,

(7)

(8)

(9)

These relations are obtained by a Taylor series expansion to terms including
TV TV
f and substitution of f" = (f"| - f'")/An. Equations (7) to (9) are

substituted in equation (6) and the results integrated with, respect to a unit
square-wave weighting function from n.i to n.. to yield:

Cf" + ff
M+l

f
-2C

J

f • |il dn + 2C f" (10)
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where

and

m-Anlfj + fjfUf»'£ij-+f';j^

XP3 =
llAn
15

f 1f 66An2
~315~

f , i f 5Anf J+l 463)

T f k x P K = f'XPl + f''XP2 + f!"XP3 + f!" .XP4 = f f '2dn ' • • ' ' ) .
f ^ j - j j j j + l J ' • ' • ' • -
k-i - • ' ' . •

The two terms remaining to be integrated are discussed under x -Dependent Dif-
ferencing. This procedure, yields a consistent differencing method that is
fourth-order accurate in n and equations (7) to (9) ensure that the stream
function, velocity, and shear are defined everywhere (not only at nodal points)
and are continuous, everywhere. Equations (7) .to (10) provide a sequence of
4XN-1) equations in 4N unknowns, where- N is the number of nodes, normal, to
the wall. Note that 3(N-1) of these equations are linear algebraic equations
while (N-l) equations are nonlinear ordinary differential equations. The
remaining four equations are imposed as boundary conditions:

= f = 0 at n = 0

1,- f".= 0 " at ..n -

The complete system is solved by use of a Newton-Raphson iteration scheme by
differentiating with resi

rated flows 3, to yield

differentiating with respect to , f., f
J

, . . . , ; £ ' " , - f j ; j f _ and for sepa-

T/£\AJT" "•j(f)Af = -e
J J

•
Jacobian, . e is the residual error, and Af. is

•
where J(f) is the (4N

the incremental change in the solution parameters per iteration.

To speed up the iteration process, the equations are ordered so that "the
3 (N-l) linear algebraic equations plus the boundary condition f'(0).= 0 .•
occupy the first 3N-2 matrix rows. The matrix .has the partitioned form (see
ref. 14):

Ll L2 Af,
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The submatrix LI is a function of the nodal configuration only and can be
inverted just once and used in all subsequent calculations. Formal manipula-
tion and back substitution yield . -

The matrix I NL2 - Nl̂ l,. L2j must be inverted every iteration, but it is only

of order (W-2). -

K-dependent differencing— The streamwise differencing is carried out in a
manner similar to that of reference 4. The term

-25 | f' - dn

is decomposed and integrated by parts as

(
nj+l _.

•' ' 'f ' lpPfJ^ + DCq-+ DMf|_Jdn +1 j - .

.. • - ' '
r

-[DP £ f*+1 jXPK - + D C ' ' - f .XPK

- '

where, for-attached flow, •

DP = 0 , DC = 2/ln e'j/C-̂ j » DM = -DC"

and for separated flow

DP = (l-a)/£n £.,,/£. ; a = 1 for f > 0.01

DM = -(l-hx)/£n Si/S^j ; a = lOOf , -0.01 if < 0.01

DC = -(DP + DM) ; a - -1 , f' < -0.01 '

This procedure incorporates backward differencing when the flow is in the.
mainstream direction, forward differencing when the.; flow is reversed, and .a
central difference on and near the zero velocity streamline. The remaining
term is decomposed as above, integrated by parts, and expanded In Taylor
series to yield:
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•i: f-44 DC
'3+1

+ DP

. n

+ DM

j

'3+1

where, for attached flow, excluding the points of separation and reattachment
yields

DC = 2/2,n , DP = 0 , DM = -DC

and for separated flow,

DC DP -DP

As shown, a straightforward marching routine is used in the attached flow
while, for separated flow, the entire separation region must be relaxed
simultaneously.

The present method requires no under relaxation and a typical well-
separated flow with 20 n points and 10 £ points can be relaxed to a maximum
residual OCIO"1*) in about 22 iterations compared to 800 for the method of
reference 4 and 100 to 200 iterations for the method of reference 5. Although
the present method may require more operations per iteration, it is at least
competitive with other methods cited. The speed of the present method
primarily results from the splined Taylor series used as approximating func-
tions. First, they provide an effective fourth-order-accurate, finite-
difference representation in the y direction which permits a relatively
sparse nodal array to yield high accuracy and, second, the spline character
enhances the stability markedly.

Inviscid-Flow Equations and Coupling Schemes .,

In this section, the technique used to solve for the inviscid flow field
and to obtain the effects due to the boundary layer on'that flow is described.
A technique for obtaining fully coupled interactive solutions of the inviscid
and viscous flows is being developed, but is not sufficiently advanced to '
discuss here. Rather, at this point, boundary-layer solutions for a pressure
and skin-friction distribution, appropriate to the data of reference 13, have
been obtained and then various schemes for. matching this solution with the •
inviscid flow have been investigated. The inviscid flow is for supersonic
flow between a shock-wave generator and some matching line given by the
boundary-layer solution. . . .

Inviscid-flow equations—The basic equation used in the inviscid flow-
field analysis is similar to that of reference 15. The key features, however,
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are described here for completeness. - In a .Cartesian coordinate system, the1

steady, Inviscld, two-dimensional fluid'dynamic equations (continuity, x and y
momentum) are written in conservative form as

U + F
x --

0 (ID

The three components of the vectors U and F, which represent the conservative
variables, are defined as

pu

kp-fpu2

puv

-pv

. puv

kp+pv2
(12)

where k = (Y-l)/2y. The units of these equations were normalized by dividing
both pressure and density by their respective stagnation conditions, while the
velocities were divided by .the maximum adiabatic velocity. With this normaliz-
ation and the further restriction that the flow be adiabatic, the energy equa-
tion can be written:

U2 + V2' (13)

To calculate two-dimensional flow between ;two nonparallel walls, in this
case the shock-wave generator and the lower coupling boundary, it is most con-
venient to normalize the coordinate system so that the upper and lower bound-
aries become parallel. The transformed coordinates are

- I 4 (.14)

where yu:= yu(x) and
(11) results in

where U = £U arid F = F +
differentiation with respect to

i. Applying :this transformation to. equation

U + F = 0

-,
) - yu I. (In
.) -̂

(15)

i
this section, the primes denote

The above.differential equation is,integrated using MacCormack's second-
order-accurate differencing scheme (see ref. 15). For flow-field points, that
is, points on neither the upper nor lower boundary, the predictor and corrector
equations are -

.u.n+l
j

(predictor) (16)

Subscript j identifies particular points on a data line as follows: 1,
lower body point; 2, 3, N , flow-field points; and

point. . ,The data lines are identified by the superscripts
bars indicate a predicted value.

N , upper body

n and n+1. The
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(17)

The above equations are applied to the three'vector components of U.

The step size in the x direction is found by determining the maximum
slope of the characteristic surface, inclined at the local Mach angle y rela-
tive to the local stream angle 6, for each point as follows:

*(±) = |tan(±u + 5)*1 (18)

where the ± denote positive and negative directions of the Mach angle from
each point. The entire data line n is surveyed to determine |an(±)|

J nl3X

Depending on the sign associated with the maximum slope, Ax is found from

or

Ax(+) - K

Ax(-)

n+1 n+1 n+

n n

max

_n+l n+1 n+1 n

n

(19)

(20)

where K is a constant that controls the step size. If K = 1, the CFL con-
dition is satisfied identically.

Application of the finite-difference equations (16) and (17) yields pre-
dicted and corrected values of the three components of the conservative-
variable vector U on the new data line. These must be decoded after the
predictor step and corrector step in turn. This decoding into physical vari-
ables is accomplished by solving the following:

U,,

n+1

u

P =

U2 + /Ug - 4U2k(l-k)(l-v2)

n+1

n+1

J

; p = p(l-u2-v2)

(21)

Constructing a technique that will give a physically realistic solution
of the conditions on a solid boundary is difficult in a predictor-corrector
sequence since strict application requires an imaginary point inside the body.
Abbett (ref. 16) developed a technique that satisfies the surface tangency
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condition and relies on information provided by the finite-difference equa-
tions. For the upper and lower surfaces, respectively, the predictor equations
are written as

_ n /Ax\ n n
~ UN , VAC'' N FN -i

and - 5

n+l Tn. Axul = ul ~ Jg

Modified corrector equations that maintain second-order accuracy at the
upper and lower surfaces, respectively, are given by

n+1 11 n+1 M
A? NC Nc-l AC

and

Tin+1Ul " ! l ~ A

After the corrector equations are decoded at the boundaries, the flow
variables will not necessarily satisfy the boundary conditions at the wall.
The technique for satisfying the boundary conditions depends on a scheme for
matching the boundary-layer solution.

The coordinates of the upper boundary are determined from

y = y + x tan 6 (26)Ju Ju uo

where 6U is the deflection angle of the upper wall. When matching to the
output of the boundary-layer solution, the lower boundary is specified by a
table of coordinates. These coordinates are used to fit a parabola of the
form

y = ax2 + bx -I- c (27)

between each set of three consecutive points. The three points used to deter-
mine the coefficients in the above equation were chosen so that two of the
points should have x > xn+1 . The slope of the boundary is found from the
derivative of equation (27) .

Matching scheme — Two techniques for matching the inviscid and viscous
solutions were investigated: (1)' requiring tangency along the matching con-
tour and (2) forcing the inviscid solution to agree with the u and v veloc-
ity components from the viscous solutions along the matching line. For the
first matching scheme, the flow angle from the decoded corrector equations on
the boundary is found from

6 = tan"1 (28)

161



This flow angle is compared with the slope of the boundary at x . If the
two angles disagree, then a Prandtl-Meyer turning is applied at the new body
point using . . . . . . . . .

(A/2) - 1JA62 (29)
J • • . ,

where AS is the difference in the two angles and •

. (30)

Note that the sign of A6 will result in either "an expansion (A6 > 0) or an
isentropic compression (A6 < 0) and the pressure, resulting from equation (19) ,
is taken as the predicted pressure on the body at data line N+l. The density
is found from . .

-S-Sr/cv
 : . . - . . -

where C = e and Sr is some reference entropy. Once p and p are
known at the boundaries, the total velocity is obtained from

. • q -VI -. (p/p) " ; - (32)

The velocity components then result from the tangency condition at the.bound-?
aries. This technique was applied on the upper boundary throughout both
matching schemes investigated. With this matching scheme, two different
matching boundaries were considered - 6* and an arbitrary streamline where the
Mach number remained supersonic throughout"the interaction. Results are pre-
sented only for the latter case since similar results were obtained for both
matching contours.

The second matching scheme, forced the inviscid solution to .match values
of u and v given by the viscous solution along the matching contour, here
taken as the boundary-layer edge. This technique does not impose the tangency
condition along the matching boundary, but rather allows for mass exchange
from the inviscid to viscous portions of the flow, a physically realistic
situation. .Since u and-v along the,matching contour are now taken to be .
known, these values are used in the decode-equations (21) to solve for " pn+l
and' pn+1 . • - , - ' ' - . - • •

Navier-Stokes Solutions

Solutions to the Navier-Stokes equations presented here were obtained
from several sources. Solutions of MacCormack (ref. 3), MacCormack and Baldwin
(ref. 11), Messina (unpublished), and Skoglund and Gay (ref. 6) were obtained
from the sources cited, while additional solutions .were obtained in the.pres-
ent study using the computer codes of MacCormack and Baldwin (ref. 11) and
Carter (ref. 10).'
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Space does not permit a detailed description of the differences and simi-
larities of the several codes considered. There are, however, some striking
differences and similarities in the several solutions presented which warrant
discussion in some detail. Figure 1 shows the envelope of four Navier-Stokes
solutions obtained from references 3 and 10 to 12, together with the data of
Hakkinen et al. (ref. 17), for an unseparated, laminar-boundary-laver, shock-
wave interaction at M = 2. Two points immediately come to mind: first, the
large discrepancy in skin friction and the relatively small discrepancy in sur-
face pressure. . At first glance, this implies a low sensitivity of the pressure
distribution to the skin-friction distribution and a lack of uniqueness in the
Navier-Stokes solutions. However,-a sequence of solutions obtained here using
MacCormack and Baldwin's (ref. 11) code, with successive mesh refinement in
the outer inviscid flow, shows differences in Cf of the same order as those
shown in figure 1. This arises from the fact that for the coarsest mesh con-
sidered, the externally generated shock wave takes on a thickness that, when
projected onto the boundary layer, is of the same order as the length of inter-
action. The viscous flow is then responding to a continuous compression
rather than an imposed shock wave. As the nodal structure was refined, the
skin-friction distribution approached a single curve.

Figure 2 shows a similar envelope of Navier-Stokes solutions obtained
from references 6, 8, 10, and 11, together with experimental data for a well-
separated, laminar-boundary-layer, shock-wave interaction (ref. 17). The
results here are similar to those discussed above and the same conclusions can
be drawn.

The point of the foregoing presentation is not to show how poorly Navier-
Stokes solutions perform but rather to induce the user of Navier-Stokes codes
to examine his results critically and, in particular, to examine the computa-
tional mesh dimensions in the light of the smallest relevant physical scale in
the problem under consideration.

In subsequent sections, the boundary-layer calculation scheme developed
is compared to the Navier-Stokes solutions of MacCormack (ref. 3).

' . " . . . . ' - i
RESULTS • ,

The results of the inverse boundary-layer method are compared with
Navier-Stokes solutions and with experimental data. The flows considered all
occur on a flat plate and the pressure rise is caused by an externally gen-
erated shock wave. The specific flow parameters and experiments considered
are listed in table 1. .

Table 1
Reference

17*
17*
18
19
19*

M
OO

2
2
1.47
2.93
2.93

Re

1.84xlO:>

1.96xl05

4xl06/ft
5.7xl07/m .
5.7xl07/m

pf/po
1.2
1.4
2.25
2.5
5.0

Remarks

Laminar
Laminar
Turbulent
Turbulent
Turbulent

*Navier-Stokes solutions available.
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Finally, we will describe the progress made, to date, in coupling the inverse
boundary-layer method to the inviscid calculation scheme to provide a complete
flow-field prediction method.

. . Laminar-Boundary-Layer, Shock-Wave Interaction

Two laminar-boundary-layer, shock-wave interactions are considered: an
unseparated interaction at M =2.0 having an overall pressure rise Pf/Po .of
1.2 and a well-separated interaction at M = 2.0 having an overall pressure
rise Pf/Po of 1.4. These two interactions correspond to the experiments of
Hakkinen et al. (ref. 17), as shown in figures 6a and 6b, respectively, of
that report. For convenience, these interactions will be called Hakkinen 6a .
and 6b.

Note that in this and all subsequent comparisons with Navier-Stokes solu-
tions, the skin-friction distribution obtained from the Navier-Stokes solution
was input to the inverse-.boundary-layer method. .This procedure ensures that a
comparison of other parameters, that is, velocity and pressure distributions,
provides a true measure of the validity of the boundary-layer assumption,
without the peripheral considerations of downstream boundary conditions or
matching conditions-between viscous and inviscid flow. However, some differ-
ences can arise even in this case because of the order of the difference
approximation used. The present inverse method is third-order accurate in
wall shear as opposed to first-order accuracy imposed by assuming a linear
variation of velocity with distance away from the wall in the Navier-Stokes
solutions. An examination of the differences attributable to this assumption

• indicates:.that Cf. can vary ±10 percent for the same velocity profile, depend-
ing, on the order of curve fit used to deduce the derivative at the wall.

. Figure 3 compares the pressure distribution obtained from present
methods with a refined mesh Navier-Stokes calculation using Hung and
MacCormack's code (ref. 9.) for Hakkinen 6a. The two solutions are nearly
indistinguishable everywhere and they.are in reasonable agreement with the
data. In figure 4, the velocity distributions at the x location correspond-
ing to the minimum value of Cf (fig. 3) are compared. The differences
between the present method and MacCormack's solution are not large and are
largely attributable to differences in transport properties, that is, Pr = 1
and y/y0 = T/T0 in the present method and Pr = 0.72 and y from the
Sutherland'law-in MacCormack's code.

Figure 5 shows the streamwise pressure distribution for- Hakkinen 6a, for
y = 0, 6/2", <5, as computed by MacCormack (ref. 3). These curves are essen-
tially indistinguishable and hence, within the boundary layer, 3p/3y ~ 0.
This, in turn, implies a trivial solution to the y momentum equation which, ,
from the usual boundary order-of-magnitude arguments, indicates that the
boundary-layer equations are adequate for this flow.

Figure 6 compares the pressure distribution obtained from the present
method with that of MacCormack's solution for Hakkinen 6b. For this case, a
slight difference in surface pressure distribution is obtained near x/L = 0.15.
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Figure 7 compares the velocity profiles obtained from the present method and ..
from MacCormack's method for Hakkinen 6b. Differences between the profiles,
are explicable in terms of differences in transport properties discussed
previously. Figure 8 shows the streamwise pressure distributions for Hakkinen
6b, as computed by MacCormack (ref. 3). This figure shows the normal pressure
gradient developing in about the same region noted in figure 6 (x/L =0.15
corresponds to x/Ax = 20). This normal pressure gradient appears to be an
inertial effect associated with strong streamline curvature in the outer por-
tion of the boundary layer where M(y) -»• Me. For this case, the boundary-
layer method predicts a relatively large value of |ve/ue| (not shown), which
indicates the beginning of a breakdown of the boundary-layer approximation.

Turbulent Boundary-Layer, Shock-Wave Interaction

The question of the validity of boundary-layer theory in turbulent
boundary-layer,' shock-wave interactions is somewhat less clear than for lami-
nar interactions. This is true for three reasons. First, few Navier-Stokes
solutions with simple turbulence models are available for comparison (ref. 18).
Second, the current turbulence models are demonstrably inadequate for flows
with rapidly changing boundary conditions and, third, only a few experiments "
are available in supersonic turbulent flow which are sufficiently detailed to
permit a useful comparison. Because of these facts, only a cursory comparison
of results of the present method with both Navier-Stokes solutions and experi-
mental data-can be made.

Figure 9 compares the present method with the data of Seddon (ref. 19), .
for a normal shock-wave, turbulent-boundary-layer interaction with an initial
Mach number of 1.47. For this case, the experimentally determined value of
Cf(x) was input to the inverse, boundary-layer method in the attached-flow
regime. For the reversed-flow region, where no data were available, three
estimates of C^ were made (defined by the solid, dashed, and dot-dashed
lines in the upper half of figure 9). The corresponding pressure distributions
are shown in the lower half of figure 9. Two conclusions can be drawn from
this figure: first, the boundary-layer equations are capable of reproducing
the observed behavior and, second, the pressure distribution is sufficiently
sensitive to variations in Cf to permit a coupled solution to distinguish
between similar distributions of skin-friction coefficient.

Figure 10 shows a comparison of a direct calculation using the present
method.with the data of reference 20. The experimental skin-friction distribu-
tion shown was deduced from the measured mean velocity profiles using the
method of reference 21. These data were taken at a free-stream Mach number of
2.93 and a unit Reynolds number of 5.7*107 m"1. The pressure rise was effected
by a shock generator set at 7° incidence to the oncoming flow. As noted above,
the predicted results were obtained for this case by calculation in the direct
mode, that is, P(x) was specified and Cf computed. The two predicted skin-
friction distributions shown in the upper portion of figure 10 result from two
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turbulence models used for this calculation. The equilibrium model is that
described above while the exponential lag model is that suggested by Rose and' ^
Johnson (ref. 22) and subsequently used with some success in the Navier-Stokes *
calculations of reference 23 (see also ref., 18). One may conclude then that,*'""
given the appropriate turbulence model, the boundary-layer equations are ade-^ '
quate to describe flows of this type.

The last case considered was also taken from references 20 and 21. The
initial flow properties were the same as those discussed in figure 10 but the
shock generator angle was set at 13° to the oncoming flow. As shown in the
upper.portion of figure 11, the flow has an extensive region of separation
(x - x ) ~ 46. For this case, the inverse boundary-layer method
reatt sep ' . ' J -

failed. The predicted pressure distribution shown in figure 11 indicated . -
nearly twice the pressure rise observed experimentally. Direct solutions
employing the experimentally observed pressure distribution failed to predict •• *
any separation. This might be attributed to three-dimensional effects in the
experiment except that the Navier-Stokes solutions of Baldwin and Rose (see
ref. 18), using a similar turbulence'1 model, did a plausible job of predicting
the flow. An examination of this solution shows extensive regions of signif-
icant normal pressure gradient.

Coupled Solutions . : ;

Figure 12 compares the pressure distributions resulting from the two ';
coupling schemes for the Hakkinen 6b case with that given by the Navier^ • ., -••...7
Stokes program of reference 3. Neither coupling scheme appears to~be ade- - /
quate when applied in a noniterative manner. The tendency of shock-capturing .
techniques to smear the shock wave over several grid points and to overshoot
the pressure rise through the shock-wave reflection is evident. Perhaps the -
best overall qualitative agreement with the Navier-Stokes results is provided .
by the u-v coupling scheme; however, as noted earlier, the discontinuity in.'.-
v that results from the boundary-layer calculations will strongly affect this
scheme. ' ••• ' , .

Truncated Navier-Stokes Equations • -

To circumvent the difficulties encountered in coupling viscous and
inviscid flows, an alternative procedure was considered. Rather than solve
coupled viscous and inviscid equations in an iterative mode, we proposed to
solve the following system of equations:

• ... 3p 3pu 3pv _—t- + —£-— + —&— = 0 • ; • • . s.
•• 3t 3x 3y . ..

3pu , 3u . 3u . 3p
-^— + pu — + pv -r— + -T*- -
3t H 3x p 3y 3x

8pV I pu 3v I Mv
 8v I 8p ~ 0
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together with an equation of state and a consistent energy conservation rela-
tion. This was accomplished by simply removing the appropriate terms from the
computer code of MacCormack and Baldwin (ref. 11). These equations converged
everywhere within 1 percent pf full Navier-Stokes solution for the Hakkinen
cases 6a and 6b using the same mesh configuration (results not shown). The
above method was slightly more efficient than the solution of the full Navier-
Stokes equations because fewer operations need to be performed in the computer
code. . ' . ' .

One can deduce, however, that these equations can be solved and since
they are parabolic in the streamwise variable, they can be solved by a forward-
marching procedure. This latter fact would allow a first-order improvement in
computational efficiency. Unfortunately, these conclusions were reached very
late in the present study and time did not permit significant exploitation of,
the properties of these equations.

CONCLUDING REMARKS

We have demonstrated the validity of the boundary-layer equations applied
to certain shock-wave, boundary-layer interactions. As has been suggested
(e.g., ref. 2), solutions to the boundary-layer equations begin to depart sig-
nificantly from those of the Navier-Stokes equations under the same conditions
for which nontrivial normal pressure gradients are first observed in the
Navier-Stokes solutions. Based on the physical argument that high-velocity
flow, turning through a large angle, requires the action of a large force over
a short distance, one may deduce that the normal pressure gradient arises pri-
marily from the inviscid characteristics of the flow field. From this one may
conclude that when some parameter involving both Mach number and turning angle,
for example, Me|ve/u |, exceeds a critical value, boundary-layer theory will
fall. • ' . ' . ' . _ .

Despite the fact that boundary-layer theory can be shown to fail at high
supersonic Mach numbers when extensive separations occur, it would appear
that, for many technological problems, boundary-layer theory is quite satis-
factory. This should be particularly true in the design of transonic airfoils
and for engine inlets to be used on transonic and low supersonic flight
vehicles when high angle-of-attack trajectories are not required.

Note that a typical solution presented here required about 3 min of CPU
time on the IBM 360/67. Our experience indicates a factor of about 25 reduc-
tion in CPU time when the CDC 7600 is used. While the present inverse method
is not yet a complete predictive method, it shows substantial promise if the
coupling problems can be solved. Alternatively, if these problems defy solu-
tion, the truncated Navier-Stokes system described earlier appears to be
potentially useful.
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ASYMPTOTIC THEORY OF TWO-DIMENSIONAL TRAILING-EDGE FLOWS*

By R. E. Melnik and R. Chow
Grumman Aerospace Corportation

SUMMARY

In this investigation, problems of laminar and turbulent viscous interaction near
trailing edges of streamlined bodies are considered. The laminar study is based on the
triple-deck formulation of Stewartson, Messiter, and Brown. This theory is developed
from asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds
numbers. The expansions describe the local solutipn near the trailing edge of cusped or
nearly cusped airfoils at small angles of attack in compressible flow. A complicated
inverse iterative procedure, involving finite-difference solutions of the triple-deck equa-
tions coupled with asymptotic solutions of the boundary values, is used to accurately solve
the viscous interaction problem. Results are given for the correction to the boundary-
layer solution for drag of a finite flat plate at zero angle of attack. A solution is also
presented for the viscous correction to the lift of an airfoil at incidence. A comparison of
the present results with triple-deck solutions recently obtained by other investigators for
the symmetric problem is presented. Also presented are some comparisons of the pres-
ent solution with low Reynolds number (R s 200) solutions of the Navier-Stokes equations
and with experimental data. These comparisons indicate that the asymptotic triple-deck
theories are accurate over a surprisingly wide range of Reynolds numbers down to
Reynolds numbers as low as 10 or less.

In the second part of this investigation, the problem of turbulent interactions at air-
foil trailing edges is considered. It is demonstrated that second-order boundary-layer
theory fails at airfoil trailing edges and that the concept of the flow over an equivalent
body formed from the displacement thickness is not appropriate for turbulent flows near
trailing edges. A rational asymptotic theory is developed for treating turbulent interac-
tions near trailing edges and is shown to lead to a multilayer structure of turbulent bound-
ary layers. The flow over most of the boundary layer is described by a Lighthill model
of inviscid rotational flow. The main features of the model are discussed and a sample
solution for the skin friction is obtained and compared with the data of Schubauer and
Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

"Thisresearch was performed under NASA Langley Contract No. NAS 1-12426.
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INTRODUCTION

The problem of trailing-edge flows is of considerable importance in aerodynamics.'
Most streamlined, bodies end in a sharp trailing edge that is cusped or nearly cusped in '
order to provide a smooth transition of the flow into the wake. The flow near the trailing
edge is important in establishing the lift and drag forces on the body.

At high Reynolds numbers the solution of the Navier-Stokes equations can be
expanded in descending powers (and logarithms) of the Reynolds number. The leading
term is governed by inviscid flow equations over most of the domain and by boundary-
layer equations in a thin layer near the surface and in the wake. To lowest order, the lift
is determined by solutions of the inviscid-flow equations, subject to the Kutta condition.
Skin-friction drag is determined by solutions of the boundary-layer equations with the
pressure distribution obtained from the inviscid solution. Within this approximation,
form drag is computed from the surface pressures induced by the effect of the boundary
layer on the external inviscid flow and is, therefore, a second-order effect in the theory.

Although the inviscid and boundary-layer solutions provide the leading approxima-
tion for the flow over streamlined bodies, higher order corrections are important in many
problems. A major impediment in the determination of the correction is due to the fact,
that the underlying asymptotic expansions are not uniformly valid at trailing edges. The
nonuniformity is caused by the appearance of singularities in solutions of both the laminar
and turbulent boundary-layer equations at trailing edges. The nature of the singularity
differs in the laminar and turbulent cases, but in both cases, the major effect is the pro-
duction of a displacement thickness that is singular at the trailing edge. This in turn
leads to singularities in the induced pressures at the trailing edge. As a result, the ,
second-order Kutta condition cannot be satisfied and the viscous correction to lift cannot
be determined.. In addition, corrections to the boundary-layer solutions for skin friction
and form drag are not correctly determined by standard second-order boundary-layer :

theory. Most existing engineering methods for predicting viscous effects on lift are based
on iterative solutions of the second-order boundary-layer equations. These methods expe-
rience difficulties at trailing edges which are circumvented by an ad hoc smoothing of the
displacement surface determined from the solution of the boundary-layer equations.

In spite of its importance and the continuing interest of many investigators, it is only
recently that a comparatively complete theory of trailing-edge flows has been developed
and this only for laminar flows. The recent advances in laminar trailing-edge problems
are based on the triple-deck formulation of Stewartson (ref. 1) and Messiter (ref. 2) devel-
oped originally for a symmetric flat plate at zero angle of attack.. These theories were
then extended the following year by Brown and Stewartson (ref. 3) to the lifting flat plate.
The triple-deck theories are applicable to general airfoils with a cusped or nearly cusped
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trailing edge in compressible flow. For Mach numbers not near one, compressibility
enters,into the theory only through a scaling of dependent and independent variables.
However, even though a number of properties of the solution were determined and the
singular behavior was explained, accurate numerical solutions were not obtained in these
early works.

The first part of this paper deals with the laminar-viscous interaction near airfoil
trailing edges in the limit of large Reynolds numbers. The approach used is to develop
the appropriate numerical procedures to solve the boundary-value problem formulated by
Stewartson, Messiter, and Brown. A general discussion of the laminar-flow problem
along with a summary of the triple-deck formulation and the resulting boundary-value
problem is presented in the section "The Laminar-Flow Problem." The following sec-
tion, entitled "The Numerical Method," deals with all aspects of the numerical methods
used to solve this problem. First, an inverse iterative scheme to solve the coupling
between the various layers of the triple deck is discussed. Then finite-difference meth-
ods based on the Keller "box" scheme (refs. 4 and 5) are formulated to solve the triple-
deck equations. Methods are also discussed for the evaluation of the Hilbert integrals
'arising from the analysis. Also presented in the section on numerical methods is a
description of the accuracy and convergence properties of the numerical methods. A
discussion of the results for both zero and nonzero incidence follows in the Results.' Solu-
tions to the symmetric problem have also been recently obtained by Jobe and Burggraf
(ref. 6) and by Veldman and Van De Vooren (ref. 7). Detailed comparisons between the
present solution and those of references 6 and 7 are provided. Also the solution for the
drag of a finite flat plate at zero incidence is compared with the experimental data of
Janour (ref. 8) and with finite-difference solutions of the complete Navier-Stokes equa-
tions recently obtained by S. C. R. Dennis, who provided numerical data from his unpub-
lished results; The solution for the velocity profile in the wake of the symmetric solution
is compared with experimental data of Sato and Kuriki (ref. 9).

Currently, understanding of turbulent interactions at trailing edges is rather less
complete. Recent attempts to develop a rational theory of turbulent trailing-edge flows
include the investigations of Spence (ref. 10) and Kvichman (ref. 11). In reference 10, the
main correction to boundary-layer theory is assumed to arise from the pressure change

'across the wake generated by the singular curvature of the inviscid trailing streamline.
This leads to a jet-flap model of trailing-edge flows. Spence's model is.inconsistent and
leads to unacceptable oscillatory solutions downstream. The failure of Spence's theory
is caused by the neglect of convective acceleration terms in the normal momentum equa-
tions. It is interesting that a scaling analysis of Spence's interaction equation indicates
the need to retain these terms in the lowest order theory. The investigation of Kuchmari
in reference 11 is based on a Lighthill model of turbulent boundary layers near the trailing
edge, which is treated as an inviscid rotational flow. Some examples of rotational flow in
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a wedge-shaped compression corner are presented. Although these results are of inter-
est, there is no attempt to develop a complete, rational theory and no consideration is - ;
given to the trailing-edge region on a lifting airfoil. .

A more promising approach for a rational theory of turbulent flows follows from
asymptotic expansions of the time-averaged Navier-Stokes equations in the limit of large
Reynolds numbers. Similar asymptotic techniques have been applied to noninteracting
turbulent boundary layers by Mellor (ref. 12), Yajnik (ref. 13), and Bush and Fendell
(refs. 14 and 15) and to transonic shock-wave—boundary-layer interactions by Melnik
and Grossman (ref. 16) and by Adamson and Feo (ref. 17).

In the second part of the present investigation (Turbulent Trailing-Edge Flows) it is
shown that asymptotic analysis leads to a three-layer description of turbulent interaction
near trailing edges with a streamwise length scale that is on the order of a boundary-layer
thickness. The flow in the outermost layer is governed by inviscid, linearized rotational-
flow equations. The description near the wall requires two layers, involving just Reynolds
stresses in the middle layer and both Reynolds and laminar stresses in the innermost wall
layer. The solution in the outer layer is unaffected to lowest order by the two inner layers
and can, therefore, be completely determined independently of the details of the inner lay-
ers. This leads to a Lighthill model for the outer problem that must be solved to deter- .
mine the pressure distribution and lift forces. Here, only the incompressible problem .-•
will be considered and a brief description of the essential features of the .interaction model,
together with a formulation of a boundary-value problem governing the outer inviscid flow
will be provided. Also a sample solution for the skin friction determined from matching
the inner and outer solutions is given and the results are compared with the low-speed >
data of Schubauer and Klebanoff (ref. 18). .;

SYMBOLS i .

al»a2 parameters related to lift coefficient and constant defined by equation (19b)

A ... displacement function in triple-deck theory

constants related to behavior of A near the origin

bj . constant in asymptotic solution for |X| — °°

Bp constant defining y-grid distribution

Ba constant related to second-order boundary-layer solution for displacement
thickness (turbulent)
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Cf skin-friction coefficient, •

Cf o skin-friction coefficient of noninteracting boundary-layer solution at trailing
edge (turbulent)

Cy constant appearing in asymptotic solutions of triple-deck equations, where
i and j = 1, 2, 3, ...

CL lift coefficient

Co coefficient of singular pressure gradient in wake

Ca constant related to singularity of inviscid solution near trailing.edge

d normalized shear stress gradient in computation plane, dr/dy

d^ constant in asymptotic solution for |x| — «°

d2 constant in triple-deck solution for drag coefficient .

D shear stress gradient in Z-direction, 8r/9Z

f Blasius function

Fj similarity function related to symmetric triple-deck solution for |x| - -°°

G0 Hakkinen-Rott similarity function related to triple-deck solution for X - 0

hj,h2,h3 functions appearing in differential equations for Hj, H2> and 1^3,
respectively

H shape factor,

H1,H2,H3 similarity functions related to triple-deck solutions for X - -°°

I integer, running index for X-mesh

Ip integer related to X-mesh
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I1»I2»I3 integers defining X-mesh

J integer, running index for y-mesh

Dinner number of points in inner mesh in wake

Jp number of mesh points in y-mesh on plate
• .'"• . '

Jw number of mesh points in y-mesh in wake

KI parameter defining mesh distribution, where i = 1, 2, . . .

£(y+) mixing length, turbulent flow

L length of plate or chord, dimensional

Lo,L},Lmax parameters related to X-mesh •

p pressure

p free-stream pressure, dimensional ' " ' . . '
OO

P normalized pressure appearing in triple-deck theory

Pj,P2>P3 constants related to behavior of P near origin

R Reynolds number, U^L /v '-.

Ry functions related to asymptotic behavior of U as Z - °°, where
iand j = 1, 2

Ti integrals defined by equations (45), where i = 1, 2, 3

u velocity in streamwise direction

UT friction velocity, i/rw/p

U normalized velocity in streamwise direction in triple-deck theory

Uoo free-stream velocity, dimensional
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• • " • ' : f l • • " ' - . '
v velocity in direction normal to plate

V normalized velocity in direction normal to plate in triple-deck theory

W Coles wake function (turbulent flow)

x Cartesian coordinate along plate

X normalized coordinate along plate in triple-deck theory

Xp end point of boundary-layer calculation

y computational coordinate normal to plate for laminar flow and physical

coordinate for turbulent flow

yM coordinate defining outer boundaries of y-mesh

Z physical coordinate normal to plate for laminar flow

a normalized angle of attack in triple-deck theory

or* angle of attack in radians

y constant appearing in behavior of triple-deck solution near origin
for a * 0

T() Gamma function

6 boundary-layer thickness

fij displacement thickness

62 momentum thickness * .

6C boundary-layer camber, i/fe^, - 6B)

fc
€ small parameter, R~*'** for laminar flow and \|—x1^ for turbulent flow

e small parameter related to wall-layer thickness, (e^R/ in turbulent flow

183



vorticity (turbulent flow); also variable defined by equations (38) and (39)

independent variable in similarity solutions of triple-deck equations,
|Z|/2|2X|1/3

parameter used to scale wake location, related to wake centerline

Karman constant, approximately equal to 0.41

constant, equal to 0.33206, appearing in Blasius solution, f"(0)

normalized skin friction at trailing edge in triple-deck solution

integrals defined by equations (46)

v coefficient of kinematic viscosity, dimensional

| variable used in definition of X-grid distribution

if Coles wake parameter

p density, dimensional

a parameter used to scale wake location, related to wake thickness

T normalized skin friction in laminar study; also Reynolds stress in turbulent
problem

TO, skin friction
Wf .. • ' '

\l/ normalized stream function in computational plane

ty . stream function .

(i) relaxation parameter

Superscripts:

* dimensional quantity
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+ denotes wall-layer variable in turbulent analysis '1

denotes blending-layer variable in turbulent analysis

1 denotes differentiation with respect to indicated variable and perturbation
quantity in turbulent flow

Subscripts:

B bottom surface of airfoil

BL perturbation quantity arising from upstream boundary layer in turbulent
analysis

e local quantity evaluated at edge of boundary layer

inv perturbation quantity arising from outer inviscid flow in turbulent analysis

T top surface of airfoil

TE quantity evaluated at trailing edge, X = 0

THE LAMINAR-FLOW PROBLEM

Problems of laminar flow at large Reynolds numbers are usually analyzed by a
combination of inviscid-flow and boundary-layer techniques. This approach is based on
asymptotic expansions of the complete Navier-Stokes equations in the limit of Reynolds
numbers approaching infinity. The inviscid and boundary-layer equations arise as the
basic equations governing the leading approximation in the outer and inner regions,
respectively. This approach leads to accurate and useful solutions of viscous-flow prob-
lems in many instances and has tended to dominate the history of fluid mechanics. How-
ever, in spite of its central role in fluid flovte, the underlying structure of the asymptotic
expansions are only relatively well understood for flows that are not separated and for
geometries that are smooth.

It is well known that the inviscid and boundary-layer descriptions break down near
separation points or near singular points of the geometry, such as sharp leading edges,
corners, and trailing edges. A comprehensive review of these matters, including a
discussion of higher order approximations, has been given by Van Dyke (ref. 19) and
Stewartson (ref. 20).
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In the trailing-edge problem, the nonuniformity of the basic expansions, is caused
jointly by a discontinuity cin the surface boundary, conditions at the trailing edge and by a j
singularity in the inviscid solution at the trailing edge of a lifting airfoil. The disconti- o
nuity in boundary conditions leads to a singularity in the boundary-layer solution at the j.-t
trailing edge that is described by Goldstein's near wake solution (ref. 21). Goldstein's -....
solution shows that the displacement surface develops a sharp corner with a .vertical tan-:-,
gent on the downstream side of the trailing edge, as illustrated in figure 1. Goldberg and
Cheng (ref. 22) have examined the second-order inviscid solution over a finite-length flat'-
plate at zero incidence and have demonstrated that the inviscid flow over this displace-, ...
ment surface is singular, with the induced pressures approaching plus (minus) infinity
on.the,downstream (upstream) side of the trailing edge.

The inviscid solution for subsonic flow near the trailing edge of a:cusped airfoil at v
angle of attack exhibits a square-root singularity in the surface pressure distribution,,as.:

sketched in figure 1. The surface pressure is bounded but the pressure gradients are:.-. •"•
unbounded as the trailing edge is approached. The singular pressure.gradients lead to ,.;
singularities in the boundary-layer solution and to breakdown of the basic asymptotic v

expansions.' J • ' . . - • - . - . . : ,

There have been numerous attempts to correct these defects and to develop an
asymptotic theory that is uniformly valid at trailing edges, but for the most part, these1 w

were completely unsuccessful. It was only in the recent work of Stewartson (ref. 1) and,
independently, Messiter (ref. 2) that a correct and rational treatment of the flow near
trailing edges was given. In. these works it was shown that the flow develops a character-
istic multilayer structure near trailing edges that also arises in many other laminar
interaction problems and which is referred to by Stewartson as a triple-deck model. A
general discussion of viscous problems involving triple-deck structure is found in the '
recent review by Stewartson in reference 20. >

The Triple-Deck Formulation o

Stewartson and Messiter presented a rational treatment for the flow near a trailing
edge. By using the method of matched asymptotic expansions, these investigators have
shown that solutions of the Navier-Stokes equations near the trailing edge can be developed
in asymptotic series in the limit of large Reynolds numbers. The solutions are cast in
terms of a fundamental small parameter e given in terms of the Reynolds number

- . • • - . . . , -(1)

where R ' is the Reynolds number based on the length of the plate and the constant flow
velocity far from the plate. Stewartson and Messiter considered the idealized case of
incompressible flow over a finite flat plate at zero incidence. The theory was extended

o
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to angle of attack by Brown and Stewartson in reference 3 for angles of attack a* on the
order of e1/•. Although-the theory of references 1 to 3 was developed for Incompressi-' :
ble flow over finite flat plates, the basic theory is applicable to more general airfoils - •
provided the airfoil is closely approximated by a flat plate near the trailing edge. For
example, this requires the trailing-edge angle of an airfoil with thickness to be less
than o(e?j. The equations for the leading approximation are also applicable to compress-
ible flows provided the Mach number of the inviscid solution is not near one in the trailing-
edge region. In these cases compressibility effects enter only through a scale transfor-
mation of dependent and independent variables as given in references 3 and 20.

The structure of the triple-deck region is sketched in figure 2. The flow upstream
and downstream of the triple-deck region is governed by standard inviscid and boundary-
layer equations. The leading term in the outer inviscid region is given by constant uni-
form flow, while the solution in the upstream boundary layer is given by the Blasius solu-
tion and in the downstream wake by a modified Goldstein near wake solution, as described
in reference 3. In the intermediate region between the Blasius and Goldstein region, the
flow develops the multilayer structure sketched in figure 2. The ratio of the length scale
of each region to the length of the plate L is also indicated in the figure. The stream-
wise length scale is o(c^), which is an order of magnitude larger than a boundary-layer
thickness. Viscous effects are important only in the lower deck where the solution is
governed by classical (incompressible) boundary-layer equations. Both pressure and
viscous forces are negligible in the main deck to lowest order. The main role of the
essentially passive main deck is to transmit flow deflections generated by the sublayer to
the outer edge of the boundary layer. These flow deflections provide an inner boundary
condition for the solution in the upper deck which is governed by inviscid small-disturbance
equations. The solution in the inviscid upper deck is governed by elliptic partial differ-
ential equations which provide for the long upstream influence that was missed in many
previous theories.

" From the preceding discussion, it can be.seen that the triple-deck formulation leads
to a description of the flow as an interaction between the outer inviscid stream and the
displacement thickness generated by the sublayer. The solution in the inviscid upper
deck can be reduced to an integral relationship between the surface pressure and the flow
deflection generated by the sublayer.

Solution of the triple-deck problem is thus reduced to that of determining solutions
to the boundary-layer equations valid in the sublayer. These solutions must match the
rotational flow in the main deck and must result in a displacement thickness and pressure
distribution that satisfies the linear integral relationship arising from the outer solution.

The notation employed in references 1 to 3 and 20 varies. Here the notation
employed by Stewartson in reference 1 will be followed with some exceptions. Physical
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quantities are denoted by an asterisk, free-stream quantities by the subscript °°, and the
plate length by L. The quantities x* and y* are Cartesian coordinates parallel and
transverse, respectively, to the plate with origin at the trailing edge, u* and v* are
velocity components in the x*- and y*-directions, respectively, p* is the pressure,
p the density, a* the angle of attack, and \ is a constant, equal to 0.33206, associated
with the Blasius solution for the wall shear stress. Nondimensional variables for the
lower deck are given by

X = \5/4x*/e3L Z = \3/4y*/e5L

U = u*/^1/4UBO . V = v*/e3\V4Uoo

P = (P* - pJ/eV/2pU* a = a*/el/V/8 J

(2)

(These scalings are for incompressible flow; for compressible flow, see refs. 3 , .
and 20.) The Reynolds number R is given by U^L/i/, where v is the kinematic vis-
cosity coefficient. • . - ' ••

For future reference, the solution for incompressible, inviscid flow over a flat plate
of length L at incidence a* is given by (for y* = 0) "

•<' - - * ' • .

v* = 0 u* = U^ - U^a* . x* + ° sgn y* (-L < x* < 0) " ' (3a)
. . . . . . [(-x*)pL + x*)]1/2 . ; . . .

u* = U^ •v* = U00a*-—x* + B
 /0 . . . . . ( 0 < x *) . : . (3b)

,-.- : • ... X^L + X*)1/2 .' • . . , . :,

The lift coefficient CL corresponding to the solution is given by

. CL =

where B ' is a constant to be determined. The value of the constant B, determined "'"
by the Kvitta condition applied to the trailing edge, would be zero. Here, however, the'
trailing-edge interaction leads to a nonzero value which gives a viscous correction to the
lift coefficient. In reference 3 it was shown that this constant is o(e3j_J which leads to
a viscous correction to the lift that is O(e3). A nondimensional circulation constant a^
is introduced according to the definition • . :

,5/4 • ' ' ' : ' • - "v- 5i

t-r . • , r (5)€ 3 L • . . . . . . > - - \
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The boundary-layer equations governing the flow in the lower deck are written in
the form

TliU + V .W--^ . . 32U
u ax 9Z dX aZ2 (7)

where the pressure P is a function of X alone.

Equations (6) and (7) are to be solved subject to the following boundary conditions:

U - |z| + . . . (X '--«) (8a)

U = V = 0 (Z = 0; X < 0) (8b)

PT(X)=PB(X) ( X ^ Q ) (8c)

.-' (Z - -f-ob) (8d)

(Z - -co) (8e)

where PT(X) and Pj}(X) are the pressures on the top and bottom of the X-axis,
respectively, and Arj.(X) and AB(X) are perturbations of the displacement thickness
from the undisturbed Blasius value at the trailing edge.

Finally, the pressure distribution must satisfy the following asymptotic condition in
. order to match the upstream inviscid solution

PT,B ~ -a]/1* sen z (X - -«) . (9)

where the subscript T,B is introduced for convenience to represent either the top of :
the bottom and sgn Z should be taken as plus for Z>0 and minus for Z < 0 . The .
pressure should decay to zero for Z — +°° in order to match the Goldstein solution
downstream .

- Equation (8a) is a requirement that the velocity profile match to the inner portion
of the Blasius solution far upstream. Equation (8c) follows from the requirement that the
pressure be continuous across the wake. The application of this condition at the trailing
edge (X = 0) is equivalent to the Kutta condition and serves to determine the constant aj
defined by equation (5) and, therefore, the viscous correction to the lift coefficient.
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Solution of the inviscid flow equations in the upper deck leads to the following inte-
gral relationship between the functions ATjjj(X) and PT>B(X):

dX

where the double slash on the integral sign means that Hadamard "finite part" of the
divergent integral is to be taken. The integrals in equations (10) do not converge in the. .
ordinary, sense because of the behavior of the pressure for large negative X indicated
in equation (9)., A form more suitable for computation is given in the numerical methods
section. Equations (10) are an inversion of the relationships given in reference 3 and
are in a form that is most suitable for the numerical procedures used in the present
investigation.

The preceding formulation indicates that to solve the triple-deck problem, the
boundary-layer equations must be integrated subject to the vortical outer boundary con-
ditions given by equations (8d) and (8e). The vorticity arises from the boundary-layer
solution valid in the upstream flow. The upstream vorticity leads to additional algebra-
ically growing terms in equations (8d) and (8e), as will be discussed later.

The pressure and displacement functions appearing in the boundary-layer equations,
and boundary conditions are unknown and must be determined as part of the solution of
the boundary-layer equations such that the linear relation given in equations (10) is sat-
isfied. The form of the pressure for large negative X is given by

PT,B = (-a^-X + a&il\pOi + . . .) sgn Z (11)

where aj is related to the lift coefficient by equations (4) and (5). The lift coefficient
can be obtained by solving the boundary-layer equations and extracting the constant aj
from the expansion given in equation (11). v

Asymptotic Properties of the Triple Deck

Equations (4) to (11) provide a complete formulation of the triple-deck problem.
Useful asymptotic results were provided in references 1 to 3 and are extended and sum-
marized in the following. (Corrections to a number of the signs are incorporated; see
also ref. 6.)
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For X — -°°, the solutipn must approach the perturbed Blasius solution and have
the form

(12a)
and

V = i /o (12b)
3|2X|1/<J .

- • " * • • . , - • •

where primes denote differentiation with respect to 77. The similarity functions Fj-fa); '
H^(f7), 112(77), and 113(77) satisfy ordinary differential equations given in references 1
and 3. The differential equations, boundary conditions, and asymptotic behavior required
in the present work are listed in the appendix.

Other results for X — -°° are

P(X) = - 0 . 3 4 3 3 | X | ~ - 0.6867b1|X|~5/3 - 0.0816X'2 ln|X| + -^ + . . .

+ 'o.2368|xi~5/6 + . . .)sgnZ + . . . ' (13a)

A(X) = 0.3265IXI"1 + aC12|x|1//6 sgn Z -a^^filnlxl + In K] + a2(C21 + C22) '

5 + . . . . . . . (13b)

,-4/3
9 Z Z = 0

0.3106|X|~ - o(2.1539)|x sgn Z + ... ; (13c)

where K and the G^'s are known constants listed in the appendix. .. _ T

For X — +« the velocity profile approaches the inner solution of Goldstein's near
wake solution. The behavior of P(X), AT)B(X), and U(X,0) are given by

P(X) = 0.1717X"2/3 + 0.3433b1X"5/3,- 0.0816X"2 In X + dtx"2 + . . . . , (14a)

AT B(X) = 1.416/i x) sgn Z + 1.416(|) b^'2/3 sgn Z - a | X3/2 + 2aiX
1/2

(14b)
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U(X,0) = 1.611X1/3 + l.GllbjX'2/3 + 0.052X'1 -»• . . . . (14c)

The solution of the triple- deck equations develops a singularity at the trailing edge
that is described by the Goldstein solution (ref. 21) for a = 0 and by the Hakkinen-Rott
near wake solution (ref. 23) for a * 0. In both cases the velocity profile has the follow-
ing form for X and Z - 0

1/3

GO(T,) (15)

where T\ is given by equation (12b) and Go satisfies an ordinary differential equation
studied in reference 23 and listed in the appendix.

For zero incidence, the local solution for X — 0 is given as follows:

For X < 0 ,

P = PTE + PTEX + (P2 ln|X| + P3)X
2 + . . . (16a)

A = ATE + ATEX - (33/2/5JC0|x|5^3 + 1 AjX2 + . . . (16b)

z=0-V
 (16C)

and for X > 0, .

P= PTE +|CoX2/3 + PtX + . . . (17a)

A = ATE -f ATEX + (33/2/lo)coX
5/3 + 1 Aj-X2 + . . . ; (17b)

U = l^OeicJ^1/3 + . . . ? (17c)

C0 = 0.4089\f/3 (17d)

The local solution for X — 0 when a\ * 0 is slightly more complicated for X < 0.
Equation (16a) now takes the form
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•1 )D L Cj \ L EJ/ L ,1^ |\ A/ X ,JD \ O/ x ,-D^ I ' '

Equation (16b) has different expressions for AT and Ag

AT = (ATE)T + (ATE)TX - (33/2/5)c0|x|5/3'+ |(Ai)Tx2 + . . . (i8b)

AB = (ATE)B + (ATE)BX + (33/2/5)c0|x|5/3
 + i(Aj)Bx2 + . . . (isc)

and

= X, m *Vaz z=o+pc=o

For X > 0, equation (17a) has the same form. Equation (17b) becomes

AT = (ATE)T + (ATEJTX •*

» AB = (ATE)B + (ATE]BX "

and equations (17c) and (17d) assume the forms, respectively,

U « yC0
/2X1/3 + . . . (18g)

GO = CO(M,TAI,B)

where y and Co are now functions of \j T an^ ^-1 B a^d are determined by solving
the merging asymmetrical shear flow problems of Hakkinen and Rott.

The two sets of constants (aj,b1(,dj) and (PTE» PTE» P2' P3' ATE» ^E'
Aj, Aj , and A.j)T B appearing in the preceding expansions are not determined by the
local solution. The first set relates to the far-field solution while the second set relates
to the local solution near the trailing edge. Values for all but dj have been estimated
for a = 0 by fitting the asymptotic forms to the numerical solutions obtained in the
present study.

For future reference the behavior of the velocity profile for large Z and fixed X
is given as
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+(a.Cu/K
1/2)|z| / sgnZ + «2C21 ln|z

z .+ {(«cii/2Kl/2)AT,B + («

U =

.. -i- AT>B

—i ' "\ ' J /O Q

• f , ,+ KC3JsgnZJ|z| -a2|z| +. . .

The constants C{1 and K are listed in the appendix and

~
ln|z|) sgnZ

- c22)

a2 = 1.784

'ij

r(4/3)

•25/6H)<
(19b)

: . The preceding expansion was obtained by expanding the solution of the boundary-
layer equations for large Z and matching to the asymptotic expansion of the initial pro-
file defined by equations (12). (See results in appendix.) This matching enabled the set of
arbitrary constants appearing in equations (10) to be identified with the constants given
in the appendix. Equations (19) are used to set the far-field boundary conditions in
a finite difference procedure described in the following section. • . i

. , THE NUMERICAL METHOD

•. The boundary-value problem to be solved for the trailing-edge solution is illustrated
in figure 3. The boundary-layer equations must be solved such that the solution matches
the Blasius solution far upstream and the Goldstein solution far downstream. No-slip
conditions must be satisfied on both sides of the flat plate and asymptotic boundary condi-
tions must be satisfied on each side of .the boundary layer and wake for |z| — °°. The
pressure gradient appearing in the momentum equation and the displacement functions
Aij.(X) and Ag(X) appearing in the outer boundary condition must be determined such
that they satisfy the linear integral relationship imposed by the outer inviscid solution.
In addition, the condition that the pressure decays to zero as X — +°° must be imposed
in order to match the Goldstein solution. In the present approach, a fixed point iteration
between the inviscid and boundary-layer equations is employed. The principal difficulties
in the numerical solution of the boundary-layer equations are due to a singularity at the
trailing edge arid to a slow algebraic decay of the solution for |x| and |z| — «». These •'.
problems are treated by using asymptotic solutions' to set the far-field boundary conditions
at finite distances and to describe the singular solution near the trailing edge. A highly
nonuhiform mesh distribution is also employed to obtain proper resolution near the trailing
edge and to allow for the slow decay of the solution in the far field.
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: The boundary-layer equations are solved by the Keller-Cebeci (refs. 4 and 5) finite-
difference scheme for parabolic partial differential equations. This method is well suited
to the present problem since it is second-order:accurate, unconditionally stable, and per- .
mits highly nonuniform mesh distributions. The Hilbert transformations in equations (10),
which provide the inviscid solution, are evaluated by special quadrature formula on the
same mesh distribution employed in the boundary-layer calculation. This avoids the need
to interpolate between the inviscid and viscous solutions. The resulting computation has
uniform second-order accuracy, including the far field and the singular point at the trail-
ing edge.

The Iteration Scheme -

The iteration procedure is indicated in figure 3. The path of the iteration is in a
direction inverse to that usually employed in similar viscous interaction problems. Here,
the displacement functions AT g(X) are obtained from solutions of the inviscid equations
(i.e., eqs. (10)) with the pressure distribution prescribed. The pressure distributions
Pip g(X) are determined from solutions of the boundary-layer equations. Since the
unknown pressure gradient appears in these equations, an additional relation is needed to
complete their solution. This is supplied by the previous evaluation of the displacement
function Aip jj(X) which provides an outer boundary condition for the solution of the vis-
cous equations. This indirect iteration sequence is followed because it provides a con-
venient and simple treatment of the trailing-edge singularity. In a conventional iteration,
the solution of the boundary-layer equations for a prescribed pressure distribution results
in a discontinuity in the slope of the displacement function at the trailing edge. This, in
turn, leads to unbounded pressures in the inviscid solution and to divergence of the itera-
tion sequence.

The iteration starts with estimated pressure distributions PT(X) and Pg(X)
which appear in the integrands of the Hilbert integrals. The integrals are evaluated by
a second-order-accurate quadrature scheme to yield expressions for dA-p/dX and
dAn/dX. The displacement functions Aip and Ag are then obtained by integration
using a trapezoidal rule with initial values determined from the upstream asymptotic
expansions given in equation (13b). This half-cycle yields an intermediate solution for
the displacement functions A-p g(X).

In the next half-cycle the boundary-layer equations are integrated. A minor diffi-
culty arises because of the presence of the unknown pressure gradient in the differential
equations. To deal with this problem the momentum.equation is differentiated with respect
to .Z... This eliminates the pressure but increases the order of the equations from a third-
to a.fourth-order system of partial differential equations. An additional boundary condi- ,
tion is required to close the system. This is supplied by using the known functions
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g(X) in the asymptotic expansion given in equations (19) to yield a condition on the
streamwise velocity component as |z| — °°. This condition and the conditions that the
shear stress approach one for |z| — °° and that both velocity components vanish on the
plate result in a well-posed problem. A finite-difference scheme, described in the next
subsection, is employed to integrate the boundary-layer equations starting from an initial
station far upstream of the trailing edge. Profiles at the initial station are determined
from the first five terms of the asymptotic solution given in equations (12). The boundary-
layer equations are solved by marching downstream to the trailing edge on the top and
bottom of the plate independently. A local solution describing the singular behavior at
the trailing edge is obtained by numerically solving the similarity equations, first consid-
ered by Hakkinen and Rott in reference 23. The similarity solution is used to construct
a "composite" profile across the sublayer at a station just downstream of the trailing
edge. The solution is then marched downstream, employing two boundary conditions on
each side of the wake, as indicated in figure 3. After completion of the sweep, the pres-'
sure gradient is determined from the momentum equation evaluated on the X-axis at
Z = 0. The pressure is then computed from a trapezoidal integration of the gradient
Two arbitrary constants of integration, the trailing-edge pressure and the circulation
constant aj (see eq. (11)) are evaluated by matching the pressure to the upstream data
and by requiring the pressure difference to vanish at the trailing edge.

.The boundary-layer solution cannot be continued downstream to .very large distances
because of the appearance of a growing solution P = PQX^/^ for X — +°°. The solution
is.induced by a wake thickness distribution i(A«j- + Ag) ~ AQX*' which appears in the
outer boundary conditions. The constant PQ vanishes and the unwanted solution is
excluded if the constant AQ is exactly equal to the Goldstein value (AQ = 0.892.. . .).
However, because of the finite arithmetic carried in the computer, this solution cannot be
excluded from the numerical solution and it eventually dominates the far-field behavior.
Consequently, the boundary-layer solution must be terminated at a station X = Xp that
is taken to be upstream of the region where the spurious growing solution starts to dom-
inate. This raises a minor problem, since a solution for the pressure distribution P(X)
along the entire X-axis must be supplied for the evaluation of the Hilbert integral. This
is easily remedied by using an analytic expression to represent the pressure distribution
downstream of the terminal point X = Xp. In the computer program an expression is -
employed that matches both the pressure and pressure gradient at X = Xp and has the
correct asymptotic behavior for X — +°°. Numerical experiments, to be discussed at
the end of'the section, have indicated that this procedure provides a smooth continuation
of the solution downstream of X = Xp and has a negligible effect on the upstream
solution. .

This half-cycle results in a complete solution for the pressure distribution which
can be substituted into the Hilbert integral to obtain new estimates for the displacement
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functions. The" integration is continued until the solution converges to a required toler-
ance. As usually required in this type of problem, the solution must be underrelaxed in
order to obtain convergence.

The value of P(X) is relaxed according to the formula

P(X) = wP(X)new + (1 - u>)P(X)old

where P0\d is the pressure at the start of the boundary-layer computation, Pnew is
the pressure computed at the most recent sweep, and w is a relaxation parameter (u> < 1)
that is adjusted to obtain convergence. In the present scheme it is found that the value
of o> must be reduced as the extent of the streamwise interval is increased in the down-
stream direction. Accordingly, the following strategy is employed. The calculation
starts with a given relaxation parameter small enough to obtain convergence with an ini-
tial choice of Xp = 3. The solution is converged with these choices, the terminal point
is moved further downstream, o> is reduced, and the calculations repeated. Converged
results have been obtained starting with values of w = 0.15 and Xp = 3 and ending
with w = 0.02 and Xp = 20.791. ; .

: Solution of the Boundary- Layer Equations

The boundary-layer equations are solved by the Keller-Cebeci "box" scheme (refs. 4
and 5); The unknown pressure gradient is eliminated from the boundary-layer equations
by application of a Z- derivative to the momentum equations. A stream function * is ;
introduced and the boundary-layer equations are written as a system of four first- order
partial differential equations. The wake thickness and centerline position become
unbounded as X — °°. To control the wake growth the Z- coordinate is scaled such that
wake position is bounded in the computational plane. A scale transformation is defined
in terms of two parameters cr(X) and 0(X) by the following relation:

where y is a scaled coordinate in the direction normal to the plate and the functions
cr(X) and 0(X) are given in terms of A-j-gCX) by

<21a>
(Mb)

(X g LA) (22)
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where o is a constant scale parameter and Lj is a small positive number that identi-
fies the streamwise station where the wake solution is initialized. The functions oi(X)
and 0(X) control the wake thickness and position, respectively. The choice of 0(X) *
was previously discussed in reference 3. This scaling minimizes the variations of wake
location in the far field and as a result, the computations can be carried out with fixed
outer boundaries in the y-plane. In addition the coordinates approach similarity variables
appropriate to the Goldstein solution for X — +•». Scaled dependent variables are also
introduced according to the relations

, '. , *= o(X)2<KX,y) . , (23a)

U = <y(X)u(X,y) (23b)

T = r(X,y) (23c)

D = <Kxr1d(X,y) (23d)

where *£, U, T, and D are, respectively, the stream function, streamwise velocity
component, shear stress, and derivative of shear stress with respect to Z (i.e., D = -|£-j
and where fy, u, T, and d are, respectively, scaled versions of the stream function,
streamwise velocity component, shear stress, and derivative of shear stress with respect
to Z. With these transformations and with the elimination of the pressure gradient, the
governing equations can be written in the form

(Mb)

(Me)

. ••" (Md)

In this formulation the boundary condition on V given in equation (8b) is replaced by the
equivalent condition on the stream function

tf/=0 (y = 0 ; X < 0 ) (25)

A general, nonuniform rectangular mesh is introduced and equations (24) are dif-
ferenced according to the box scheme along the lines indicated in figure 4. The X- columns
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are labeled by an index I and the horizontal rows by an index J starting from J = 1
on the lower boundary and continuing to J = Jp on the upper boundary, where Jp is

u • • '•
the number of points in the y-mesh on the top of the plate. The first three equations do
not involve X- derivatives. These are central differenced about a midpoint of a y- interval
on the most forward marching column. Equation (24d), which is nonlinear and involves
derivatives in both directions, is central differenced about the midpoint of the box, as
indicated in figure 4. The nonlinear coefficients are evaluated as four point averages at
the midpoint of the box. This difference approximation leads to a nonlinear set of differ-
ence equations for the vector unknowns (^/,u,r,d)j along the column I + 1. The differ-
ence approximation is second-order accurate and implicit since it couples all the unknowns
along the I + 1 column.

The boundary conditions along the plate involve the specification of the two compo-
nents Vfcj o) anc* U(XI Q) for x < °' Out61" boundary conditions are imposed on the
vector components u and d. The conditions are given in the form of a ratio at the outer
two points of the mesh Jp and Jp_j. The ratios for the conditions on top of the plate
are computed from the asymptotic far-field expansion given in equations (19) as follows:

% 7 Rll(ZVX) - AT<X> R12(ZJp>
X)** \ F J • _ \ f I

d MX) + R21(ZJp,X\ R22(Zj X\
V \ \ V 1 _ \ V ! (26b)

where

+ Z + -rii Z1/2 + a2C91 In Z'+ a3 -|i K1/^"1/2 In Z (27a)
K ' "

- C22) + KC34I
In Z (28a)

'5/2CnC21 Z ' , - 12a2Z- (28b)
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where Z is related to the computational coordinate y by

Z = 0(X) + a(X)y ' • - (29)

This procedure for satisfying the far-field boundary conditions was motivated by the
work of Ackerberg and Phillips (ref. 24). Similar expressions are applied to the bottom
boundary of the mesh. For the wake computations (x ^ LI), only the outer boundary
conditions are to be satisfied and the expressions are identical to those of equations (26),
(27), and (28).

The difference equations are solved by a Newton-Raphson technique. The nonlinear
equations are linearized about a previous estimate to form a linear system of algebraic
equations for the perturbation quantities (61 ,̂ 6u, 5r, 6d)j . The differential equations
and boundary conditions result in a linear system that has a block tridiagonal form. In
the present problem the main blocks are 4 x 4 square matrices. The equations are solved
by. an efficient Gaussian elimination technique as described in reference 5. The form of
the outer boundary conditions given in equations (26) automatically falls into this block
structure.

Solutions at the most recently computed station (e.g., station I in fig. 4) are employed
as initial estimates. Quadratic convergence was observed to occur with these starting
values. The iteration was continued until a convergence criterion based on the relative
error was satisfied at all mesh points. The criterion

(30)
!

is employed, where f stands for any one of the dependent variables. .

The calculation proceeds by marching in the X-direction starting from an initial
station X = Lo. Initial profiles are determined from the asymptotic solution given in
equations (12). The similarity functions FJ(TJ), Hj(?]), I^fa), and K^(r]) appearing in
the asymptotic solutions are determined from a numerical integration of the two-point
boundary-value problems formulated in the appendix. These solutions are obtained with
the same subroutine employed in the marching calculation.

When the trailing edge (X = 0) is reached, a composite solution is formed to describe
the initial wake profile a short distance (AX = LI) downstream of the trailing edge. The
composite profile is obtained from a coordinate expansion for X and Z - 0. It is written
as the sum of an outer and inner solution less the "common part." The structure of the
local solution is similar to Goldstein's near wake solution except for the presence of a
singular, self-induced pressure gradient in the similarity equation. Solutions were first
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obtained by Hakkinen and Rott in reference 23 and are further discussed in references 1
to 3 and 20. The wake initial profile is given by

1/3
U(L!,Z) = UT(O,Z) + J(l L!J GO(T?) - \1>Tz (z > o)

xl/3 .
U(Lt,z) = UB(0,Z) + iI Lt Gofo) - X1)BZ (Z < 0) (32)

where UT and UB are the velocity profiles at the trailing edge on the top and bottom
of the plate, respectively, GQ is the similarity function describing the "inner" Hakkinen-
Rott solution, ?] is a similarity variable defined by equation (12b), and A.J FJI and \j B

are the skin- friction coefficients at the trailing edge. (See eq. (18d).) Profiles for the
variables \l/, r, and d can be formed in a similar manner. The function GO(TJ) is
determined as part of the solution by integrating the two- point boundary- value problem
formulated in the appendix. The solution in the wake is then continued downstream, start-
ing from the initial wake station (X = Lj) and terminating at a station (X = Xp) chosen at
the start of the calculations, as discussed in the beginning of this section.

The pressure distribution is determined after completion of the forward sweep by
integrating the streamwise momentum equation

dp _ d(X,0) jy^Ly m 9*KX,0) , } 3u(X,0)"[ U
2(X.O)

- ~ ° ^ ) ~ ~ ~ " " " "
, }

dX - X » 2 dX

All quantities on the right side of equation (33) are known from the most recent sweep.
Separate equations hold on the top and bottom of the plate. The pressure is determined
by a simple trapezoidal integration

^/dP™ D\

where the pressure gradient is evaluated by averaging equation (33) over the stations
X(I + 1) and X(I). Two constants of integration are required to complete the solutions
given in equation (34). These are determined from the asymptotic solutions given in equa-
tion (13a), which give

0.3433 '0.2368a /35aj

0.3433 . 0.23680 /3&bv

tf3
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Note that these relations involve the unknown circulation constant aj which must be
determined before the solution can be completed. The circulation constant aj is deter-
mined from a generalized Kutta condition as follows. By definition

/d

(36)

PB(0) = PB(X = L0) + f
•"o

dP

If equations (35) are substituted into equations (36) and the Kutta condition that the pres-:
sure is continuous at the trailing edge (i.e., PT(0) = PB(0)) is imposed, the following-
relations are obtained:

PT<0) = PB(0) = -

lLo|

n
- - (37b)

L O \OA OA/ , , .

Equations (37) should be interpreted as asymptotic relations valid for LQ — -°°. The
present results indicate that the solution is not overly sensitive to the magnitude of Lo

and that a^ can be evaluated to two decimal places for Lo = -17. Equation (37a) has
been employed in conjunction with equation (34) to determine the surface pressure by
sweeping equation (34) from the trailing edge.

: The differential equations are differenced in Cartesian coordinates on a nonuniform
mesh. The grid-point distribution is determined from simple transformations that map
a uniform grid to a nonuniform grid.. The parameters of the .mapping are adjusted to con-
centrate'mesh points in regions of large gradients that occur on the axis (y = Q) and at the
trailing edge (X = 0). The distribution of y-grid points is given as follows, for the upper
half-plane; The mesh points in the lower half-plane are obtained by reflection.about the ,
X-axis. . -.. . - , • : . . - . ' • • ; • • • ,- • : . . / • . ; , ..-. . - --..

On the plate side (X < 0) the y(J) distribution is defined by the relations ,
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(38b)

and

(1 s J < Jp) (38c)

where yM is the upper boundary of the computational domain, J is a running index,
and KI is a parameter employed to control the relative spacing of the increments.
Equations (38) reduce to a uniform mesh for Kj = 1 and to a nonunif orm mesh with a
concentration of mesh points near the wall for Kj < 1. . .

On the wake side of the field, a two-piece grid consisting of a fine uniform grid was
employed near the axis, and a stretched grid was used in the outer part of the wake. The
grid for X > 0 is defined by the following relations. For the inner region

• Dinner

and for the outer region

* J * Jinner; 0 i y < (39a)

y(J) = Dinner ; yinner) K2(l - 0 + K3(l> (39b)

where-

Dinner /inner < 7 <39c>

where y^^ej. is the upper boundary of uniform mesh region, J is a running index,
Dinner is ^e number of mesh points in the inner region, Jw is the total number of mesh
points employed in the wake, and K2 and K3 are parameters that control the mesh dis-
tribution in the outer region. They are chosen such that (1) the mesh increment is contin-
uous across the boundary between the inner and outer regions and (2) the outermost incre-
ment y(j\v) ~ y(JW ~ l) is eq.ua! to the corresponding increment on the plate. The mesh
distribution in the marching or X- direction is chosen to provide for a concentration of
mesh points on the wake side of the trailing edge and for a gradual stretching in the far
field for X - ±«.

203



On the plate side (X < 0) the following transformation is employed: :

. . (40a)

where

£ I i Ip; L0 5 X < 0) (40b)

Lo is the value of X at the initial station, I is a running index, Ip is the number of
X-mesh points used on the plate, and K^ is a parameter that controls the relative spacing
of the mesh points on the plate. Equations (40) generate a uniform mesh for K4 = 0 and
a nonuniform mesh for K4 > 0. A relation between K4 and the minimum mesh incre-
ment Aj is given by

. . ' • • ' = " r " " " . ; -,1/3 - v • v • • • . - •
. „ ( ip- i)+(ip-i)LA i ( ip-v

(IP - 1) -
(41)

With equations (40) and (41), a mesh distribution can be generated with a specified mini-
mum increment AI at the trailing edge that smoothly expands to the initial point x = L' ' o,

The streamwise mesh distribution in the wake is given in three parts: a nonuniform
region near the trailing edge that concentrates points near the. origin, an intermediate
region with a uniform mesh, and a nonuniform region with an expanding grid in the down-
stream direction. " A good distribution is. generated by the following relations:

(42a)

'
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and

(43)

where A£ is a parameter that controls the first mesh increment.in the wake,-, I*, Io, -
and 13 are the values of the running index I that separate the three mesh regions,
and Lmax is the coordinate of the downstream boundary of the mesh. Note that Ig is
also equal to the total number of points used in the streamwise direction. Attention is
called to the fact that Lmax need not be equal to the terminal point of,the boundary-layer
calculation, X = Xp.

Evaluation of the Hilbert Integral

The most recent sweep of the boundary-layer equations provides updated solutions
for the pressure distributions required for the evaluation of the Hilbert.integrals given
in equations (10). The main difficulties in the numerical evaluation.of these integrals are
associated with the infinite range of integration, the algebraic singularity in the integrand
for X — -°°, the pole singularity at X = Xj, and the infinite pressure gradient for
X-0+ . :

The first two problems are treated by dividing the integration interval into a number
of segments. The outer two segments contain the unbounded intervals X — +°° and
X - -co. in these regions, the pressure distribution is approximated by the asymptotic
expressions given in equations (13aj, (13b), and (14a), and the integrals are evaluated in
closed form. This reduces the numerical problem to one involving an integration over
a finite range and also provides for a correct evaluation of the singular "finite part"
integral for X — -«. The remaining integrals are over a finite range and are evaluated'
by numerical quadrature using the mesh distribution employed in the boundary-layer cal-
culation. Difficulties with the pole singularity are avoided by evaluating the integrals
only at the midpoints of the integration intervals used in the quadrature. Excessive trun-
cation error due to the singular pressure gradients near the trailing edge is avoided by
using a special quadrature formula that accounts for this behavior. On the plate, the inte-
gration interval is split into two segments,' -°° < X s Lo and Lo < X < 0, while in the
wake, 0 < X < Lj, LI < X < L£ and L2 < X < +°°. Note that segment boundaries Lj,
L2, and L3 need not line up with the boundaries of the mesh defined by equations (42).
With this division, the integrals can be expressed as the following summation

f Tj - sgn Z(T2 + T3 -f A1Q + AQ2 + A23) (44)
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where the far- field expressions have been used to evaluate the integrands of the inte
grals Tj, T2, and Tg as follows:

(-1/3)1 L0

T •••
3

fu ^T B\A»W - ̂  -tr (46a)

<46b)

The integrals in equations (45) are evaluated in closed form and those in equations (46)
are evaluated by numerical quadrature.

The range of integrations of the integrals in equations (46) is segmented by using
the mesh distribution X(I) employed in the boundary-layer calculation, and .the integrals
in equations (46a) and (46c) are expressed as a finite sum of integrals over the mesh incre-
ments X(I + 1) - X(I). The individual integrals over these increments are then evaluated
in closed form by using a piecewise linear approximation for the pressure distribution
PT i»(X) and/or P(X) over the mesh increment. The integral in equation (46b) is

' .o o/q_ %/*
evaluated with a piecewise linear approximation for the function P(X) - * C^TC ' ,
where Co is the constant appearing in the Hakkinen-Rott similarity solution (eqs. (18)).
With this procedure all integrations are second- order accurate. .The displacement func-
tions can be evaluated from a trapezoidal integration as follows: :

AT>B(I + 1) = AT)B(I) + |X(I + 1) - X(I)]AT>B(l + ^) (47)
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with A^Br + 2) evaluated from equations (44) to (46)., Two constants of integration
appear. These are evaluated from the asymptotic solutions given in equation (13b) at
the initial station X(l) = L0, which yields -

AT)B(I = 1) = 0.3265|L0|~ H- aC12|L0| sgn Z - a2C2Jiln|Lo + In

• " ' » - ' ' -1/6 ' •
+ <*2(C21 +C22)+a3C33|L0| sgn Z ... . . (48)

... This procedure results in a convenient method for determining the values of
at the mesh points X(I) given the pressure at the same points. A number of numerical
experiments have been carried out for sequences of mesh distributions and for pressure
distributions that could be integrated in closed form. These results clearly indicated that
the quadrature errors reduced quadratically with mesh size and that the preceding eval-
uations of AT>B(X) were second-order accurate at all points of the mesh including
those near the trailing edge. The results of this study will be presented in a separate
publication.

Accuracy and Convergence Considerations

A number of numerical experiments were carried out to checlc the accuracy of the
complete program. These tests were carried out for the symmetric problem (i.e., at = 0)
by using a version of the program that was modified to allow for the symmetry of the solu-
tion. The angle- of- attack terms were deleted and a symmetry condition was -imposed on
the wake axis. With the modified program it was necessary to compute the solution only
in the upper half -plane; thus the number of mesh.poinfcsL required was reduced by one-half.

' : . Calculations were performed to determine-the effect of varying the locations of the
upstream (X = L0) and downstream (x '= Xp) .boundaries of the mesh and the position of
the upper. boundaryr yM. The number of mesh points employed in the horizontal and verr
tical directions were also varied, as were the parameters controlling the relative spacing.
of the-grid. Computations were carried out using up to 99 points -normal to the plate and ,
300 points in the streamwise direction. These results indicated that. a good distribution
of mesh points is generated with the following choices.- 5. . ...

For the y- mesh ' J • ' v- •

yM = 8.0 K! = 2/5 (49)

and 25 points are employed on the plate side (Jp = 25) and 44 points on the wake side
j = 44) of the trailing edge. Of the 44 points in the wake, 12 (Jjnner = ^} are &8~
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tributed uniformly in the region 0 s y 5 0.5555. With these choices the minimum incre-
ment occurs on the axis and is equal to

= °-1333 ( X < 0 ) (50a)

(Ay)min= 0.0427 (X > 0) (50b)

The mesh spacing smoothly increases to a maximum at the upper boundary where it is
equal to (for all X)

(51)

For the X-mesh the upstream Lo and downstream Lmax boundaries are chosen
as

L0 = -17 Lmax =30 (52)

Fifty-one points are employed on the plate and 124 points in the wake. The boundaries of
the various segments in the wake are taken at

Ij = 81 I2 = 151 I3 = 175 (53)

and, therefore, a total of 175 grid points are employed in the streamwise direction.

The initial station in the wake is taken at I = 57 which occurs at

X(57) = 0.004136 (54)

The minimum mesh increment on the plate occurs at the trailing edge and is equal to

= °-05 (X < 0) (55)

In the wake the minimum increment occurs at the wake initial station X(57) and is equal
to

(AX)min = 0.002432 (X > 0) (56)

These choices lead to very high concentrations of mesh points in the initial parts of the
wake. About 10 points of the y-grid fall in the inner region of the wake initial profile
where the solution is described by the Hakkinen-Rott similarity solution. Numerical
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experiments have indicated that solutions on'this mesh are accurate to about one part in
the third decimal place.

Convergence criteria were set on both iterative loops employed in the program to
achieve three-place accuracy. The error tolerance e^ used in the Newton-Raphson solu-
tion of the difference equation (see eq. (30)) was set at 10"^. This resulted in solutions

8to the difference equations that are accurate to 10 or better in two cycles per stream-
wise step at most stations. A third cycle is occasionally required near the trailing edge.

The overall interaction between the boundary-layer and inviscid programs is con-
tinued until the solution has converged to the third decimal place. Twelve iterations were
required to converge the main loop with u> = 0.15 and Xp « 3. Each cycle consists of
a sweep through the boundary layer and the evaluation of the Hilbert integral. Most of the
computer time is taken in the boundary-layer routine. The computations were performed
on an IBM 370/165 digital computer and required about 20 seconds per cycle, or about
4 minutes to complete the first 12 iterations. A total of 28 additional cycles were
employed to move the terminal point Xp downstream to Xp = 20.791. The influence of
the value of Xp on the upstream solution was investigated and was found to amount to an
increment of no more than 0.002 in the solution at X = Xp, which decreased rapidly
upstream. Similar conclusions hold for the angle-of-attack problem except that the com-
puter times were about doubled because of additional mesh points on the lower side of the
flow field. ;

The present program used significantly fewer iterations and less computer time
than that required by similar methods developed by Jobe and Burggraf (ref. 6) to treat the
zero angle-of-attack problem. This is apparently due to their.use of a fixed point itera-
tion scheme to solve the finite-difference equations and to the use of a separate iterative
scheme to compute the pressure at each streamwise station. Jobe and Burggraf were
able to use larger values of u> in the outer loop and, as a result, obtained solutions with
somewhat fewer outer cycles. However, this advantage did not nearly overcome the
longer cycle times required in their program. It should be pointed out, however, that the
symmetric problem does not involve free parameters and, hence, needs to be solved just
once. Therefore, computing efficiency is not a real issue in this problem. It was, how-
ever, important to develop an efficient code for the full problem since there are twice the
number of mesh points and since solutions must be obtained for various values of the nor-
malized incidence a.

RESULTS

The triple-deck formulation reduces the trailing-edge problem to one involving a
single parameter a, a normalized angle of attack defined in equations (2). The computer

209



program described in the previous section has been employed to obtain solution for two
values of a equal to 0 and 0.10. Initial estimates to start the iteration were obtained
from the approximate solution of Messiter (ref. 2) for a = 0 and the linear solution of
Brown and Stewartson (ref. 3) for nonzero angles of attack. Numerical experiments car-
ried out in the study indicates that the present solution for the symmetric case is accurate
to three decimal places. The symmetric solution was obtained by using a special version
of the code in which the angle-of-attack terms appearing in the boundary and initial coridi-

. : - . * - • v .

tions were set to zero. In addition, a symmetry condition was imposed on the axis (i.e.,
» / / = T = 0 at y = 0) and the solution was computed only in the upper half-plane. The
solution for a = 0.10 was obtained with an early version of the code that employed a ;

somewhat coarser mesh and, hence, is likely accurate to just two decimal places.

The results obtained for the symmetric problem are compared with solutions of the
triple-deck equations recently obtained by Jobe and Burggraf (ref. 6) and Veldman and
Van De Vooren (ref. 7). The computations in these studies were based on finite-difference
techniques that differed in a number of respects from the method employed here. The
main difference being that a second-order Crank-Nicplson scheme was employed in refer-
ences 6 and 7, while a Keller-Cebeci box scheme was employed in the present study. The
computations in reference 6 were carried out on a nonuniform mesh using up to 180 points
in the vertical direction and 480 points in the streamwise direction. In reference 7 a non-
uniform mesh was employed with a maximum of 40 points in each direction. These are to
be compared with the 24 x 175 point nonuniform mesh used in the present computation.
The inviscid solution was obtained in reference 6 and in the present study from a numer-
ical quadrature of the Hilbert integral. In reference 7 the inviscid solution was deter-
mined from a finite-difference solution of Laplace's equation in the outer deck by using a
40 x 40 point mesh distribution. The iterative techniques used in the present scheme
appear to be more effective and require significantly less computer time than the methods
employed in references 6 and 7. Comparisons given in this section indicate that the over-
all agreement between the three sets of solutions is quite good, with differences amounting
to a few parts in third decimal places at most points of the flow field. However, the solu-
tions of reference 6 are somewhat less accurate near the trailing edge due to the poor
resolution of the trailing-edge singularity obtained with the uniform mesh distribution used
in that study. The computation in reference 7 loses some accuracy in the far field due to
the large mesh spacing used in that region.

Solutions to the symmetric problem are presented in figures 5 to 17. The pressure
distribution on the axis is given in figures 5 to 7. The effect of the wake in generating a
significant favorable pressure gradient on the plate is clearly shown in figure 5. The
pressure starts from the free-stream level far upstream and falls to a value of
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= -0.394 , (57)

at the trailing edge. This should be compared with the values of PTE of -0.388 and
-0.392 obtained in references 6 and 7, respectively. The pressure then rises steeply
from this trailing-edge value to a small positive maximum and then approaches the free-
stream value slowly from above. These results clearly show a large adverse pressure
gradient in the wake just downstream of the trailing edge. The pressure gradient is
bounded on the upstream side and is unbounded on the downstream side of the trailing
edge. The numerical solution is seen to blend smoothly into the asymptotic far-field
solution for X — ±°° and match smoothly with the singular solution at the trailing edge
for X - 0+. The coefficient of the third term of the trailing-edge solution (eq. (17a))
has been extracted from the present numerical results as

Pi = -0.52 (58)

The agreement between the present solution and the solutions of references 6 and 7 is
quite favorable, with the differences between the results being indiscernible on the scale
of figure 5.

The pressure distribution near the trailing edge is shown on a greatly expanded
scale in figure 6. Differences between the three sets of results are apparent on this
scale. The present results and those of Veldman and Van De Vooren are virtually identical
with the three term expansion given in equation (17a) with the constant PI given by equa-
tion (58). The use of a nonuniform mesh with a fine grid near the trailing edge provides
excellent resolution of the singular trailing-edge behavior in the present calculations and
in those of Veldman and Van De Vooren. The results of Jobe and Burggraf, which were
obtained on a uniform mesh, definitely appear to have a higher truncation error and to '
lose some resolution as the origin on the wake side of the trailing edge is approached.
Their results, however, appear to improve as the mesh size is reduced.

On the basis of analytical considerations, Stewartson in reference 1 has indicated . ,
that the pressure gradient is finite on the plate side of the trailing edge and that loga-
rithmic terms must arise in the expansion of the pressure distribution as X — 0". (See
eq. (16a).) The present results plotted in figure 7 seem to confirm Stewartson's conjec-
ture. In figure 7, the numerical solution for the pressure gradient is compared with the
analytic expression given in equation (16a). The numerical constants P^E, po' and P3
were extracted from the numerical solution and were found to have the following values:

= -0.301 P2 = 0.12 P3 = -0.14 (59)
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This is to be compared with the value Pfjig = -0.278 given in reference 6. The numer-
ical solution clearly indicates a vertical tangent at the origin and shows creditable agree-
ment with the analytical solution using the constants given previously. Four mesh points
in the region X < -0.5 fall on the analytical curve given in figure 7.

The solution for the skin friction is given in figure 8. The solution is seen to match
smoothly to the weak interaction solution given in equation (13c). The results clearly show
the strong effect of the wake-induced pressure gradient on the skin friction. The skin
friction at the trailing edge is increased by a factor of \i over the Blasius value, where

! » '• -

\1 = 1.351 . (60)
" - * • . • * " • . >

This is to be compared with the values of rw(0) = 1.343 and rw(0) = 1.352 predicted
in references 6 and 7, respectively. Comparisons of the triple-deck solution with the
second-order boundary-layer solution of Schneider and Denny (ref. 25) are given in
reference 6. . .

The solution for the centerline velocity in the wake is given in figure 9, together with
a comparison of the Goldstein solution for X — +°° and with the Hakkinen-Rott solution
for X — 0~. Both analytic solutions exhibit an X^ behavior and appear as linear dis-
tributions in the scale used in the figure. Also included is a comparison with two terms
of the Goldstein solution. The second term, involving the constant bj, corresponds to a

.shift in the origin of the asymptotic solution. The value of the constant bj has been
extracted from the present numerical solution, as will be discussed later in this section.
It can be seen that the triple-deck solution provides a smooth blending between the trailing-
edge and far-field solutions. The effect of the shift is clearly evident in the results^ ,

In figure 10, this solution for the centerlirie velocity is compared with the results of
references 6 and 7 on an expanded scale near the origin. The present results show good
agreement with the solution of Veldman and Van De Vooren and with the singular solution
of Hakkinen and Rott right to the trailing edge. The honuniform mesh employed here and
in reference 7 permits a very high resolution of the singular trailing-edge behavior. The
results of Jobe and Burggraf (ref. 6) again show higher; truncation errors and somewhat ••
poorer resolution near the trailing edge owing to the larger mesh intervals employed in
their uniform mesh solutions. . -

The solution of Veldman and Van De Vooren employs a highly stretched mesh with
relatively large mesh increments in the region away from the trailing edge. The results
in figure 10 indicate that this leads to somewhat larger truncation errors in the down-
stream region than those that arise in the present solution. ' , ' ' ' '

The present solution for the displacement function A(X) is compared with the far-
field asymptotic expansions in figure 11. Again the numerical solution blends smoothly
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'into the asymptotic solutions for X — ±°°. The effect of the origin shift in the down-
stream solution is again evident in the comparison. The inclusions of the bj term in
the asymptotic solution is seen to extend the region of agreement well into the near field.
The results are seen to be in good agreement with the solutions given in references 6
and 7, with no apparent differences on the scale employed in figure 11. |

Comparison of the present results for the slope of the displacement surface with
the solutions of Jobe and Burggraf shows some discrepancy as indicated in figure 121 , .
The dashed line in figure 12,'representing the solution of reference 6, was obtained from
a graphical reading of a figure in reference 6 using an automatic digitizer. Some of the
differences are surely due to errors in reading the graphical data. However, the main
differences are in the trailing-edge region, and these are likely caused by the larger grid
spacing used in reference 6. The present results clearly show the vertical tangent at the
origin implied by the singular solution given in equation (17b). This is seen more clearly
on the expanded scale used in figure 13. \tn figure 13,; the present numerical solution for
A'(X) is compared with the singular expansion given in equation (17b) and with the solu-
tion of reference 6 as tabulated in the thesis of Jobe (ref. 26). The present solution is
seen to blend very smoothly with three terms of the singular solutions. The constants in
equation (17b) were evaluated by fitting equation (17b) to the present numerical solutions
and were found to have the following values:

ATJ, =0.338 A^gs 0.402 Aj = -1.3 Aj =-2.1 (61)

These are to be compared with the values ATE = 0.335, ATE = 0.335, and Aj" = 0.56 "
given in reference 6. The results agree relatively well with the solution of reference 6
except for the grid point nearest the trailing edge and the values of the constant Aj[.

The constant bj appearing in the second term of the far-field solution has been
evaluated by fitting equations (14b) and (14c) to the present numerical solutions for A(X)
and U(X,0). The results are denoted by b^(X) and byCX) and are displayed as func-
tions of X in figure 14. The results seem to approach a limiting value that is given by

bj = -0.285 ± 0.005 (62)

which is to be compared with the value bj = -0.27 ± 0.03 quoted in reference 6. Also
shown for comparison is a similar plot taken from reference 26. The difference between
the two sets of results is likely caused by somewhat higher truncation error and by the
abrupt termination procedure employed in the calculation of references 6 and 26.

The drag coefficient for the finite flat plate can be evaluated from an integration of
the skin-friction distribution on the plate as follows:
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CD = 1.328R'1/2 + d2R'7/8 + oU'1 (63a)

where the constant d2 is given by

d2 = 2A."1/4 j* [r(X,0)-l]dX • (63b)
j '

Use of the present solution for the skin friction and a trapezoidal integration of the pre-
ceding integral leads to the following evaluation:

d2 = 2.660 1 (63c)

In figure 15 the drag coefficients predicted by equations (63) are compared with experi-
mental data obtained in 1935 by Janour (ref. 8) for flow of oil over a finite flat plate.
Also included is a comparison with solutions of the full Navier-Stokes equations recently'
obtained by Dennis in 1973 (as mentioned in the Introduction) for Reynolds numbers in the
range 1: s R < 200. The results in the figure show that the correction to the Blasius
result is large in this range and that it is accurately predicted by equations (63) to within
a few percent for Reynolds numbers as low as R = 10.

Dennis later extracted the value of d% by fitting an equation of the form of equa-
tion (63a) to his numerical solutions. His results for d2 are plotted in figure 16 together
with the limiting values (i.e., for R —. +°°) predicted by the triple-deck solutions as
obtained in the present study and in references 6 and 7. The agreement of all three triple-
deck solutions with Dennis* results is quite good with the present solution yielding the
best agreement

The preceding results indicate that the triple-deck solution is accurate over a sur-
prisingly wide range of Reynolds numbers. Indeed the maximum difference with the
Dennis solution for the drag coefficient is about 8 percent at a Reynolds number R of 1.
The close agreement with the Navier-Stokes solutions implies that the next term in the
asymptotic solution, which is formally on the order of O(R~*) must be very small. Fur-
ther comparisons and discussions of the drag coefficient are given in references 6, 20,
and 26.

Sato and Kuriki (ref. 9) carried out wind-tunnel experiments on the flow in the wake
of a thin plate. The flow was determined to be two-dimensional. The plate was 300 milli-
meters long and the flow velocity was 10 meters/second. The investigators were primarily
interested in exploring the transition of the wake from laminar to turbulent flow. They

1A value of d2 = 2.644 attributed to the present'authors in references 6 and 7 was
obtained on a coarser mesh than the one employed in the present computations and is, con-
sequently, less accurate than the above value.
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measured mean as well as fluctuating velocity profiles in the wake. The Reynolds num- ..
ber of the test was 2.1 x 10^ (e = 0.216). The mean velocity profile given in figure 17
was measured at a station 30 millimeters behind the trailing edge where the flow was
fully laminar (the nonlinear transition region started about 40 to 60 millimeters behind
the plate). At this Reynolds number the pressure peak predicted by the triple-deck theory
occurs at 40 millimeters behind the plate. Thus, the measuring station for the profiles
in figure 17 was in a region where the theory predicted a strong adverse pressure gradient.

The triple-deck solution was used to construct a composite velocity profile at
X = 30 millimeters. The solution was represented as the sum of an "outer and inner
solution" minus the "common part," as follows:

. . -^2E = f 'fo) + o.4945A(X)[f"fo) - f"(0)| + 0.1642(uinner - z) (64a)

where . - - . , . - .

TJ = 0.4941Z . (64b)

and the physical distance normal to the wake axis is given by

vmin = °-325z (64c)

The function f(n) is the Blasius function for the semi-infinite flat plate solution and
Uinner(Z) is the triple-deck solution for the wake profile at X = 2.49. The displace-
ment function at this station is given by i

A(2.49) = 1.052 (64d)

The profile given by equations (64) is compared with the measured profile of Sato
and Kuriki in figure 17. The theoretical and experimental profiles are seen to be in good
agreement across the entire wake. The main differences occur in the outer region where
viscous and pressure gradient terms have been neglected in the theoretical solutions.
Also indicated is the centerline velocity predicted by the one-term Goldstein solution.
The effect of the interaction in reducing the centerline velocity is significant and readily
discernible in this experiment. It is also of some interest to call attention to the fact that
transition was observed to start at a station 40 millimeters behind the plate, which coin-
cided with the location of the theoretical pressure peak in the wake. This result suggests
that self-induced pressures may play an important role in the transition of a wake from
laminar to turbulent flow. As a corollary it also indicates that the effect of wake-induced
pressure gradients may have to be accounted for in theoretical transition calculations.
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The numerical methods developed in the present investigation have been found to
provide an effective means for solving the triple-deck equations. Because of the overall ;
efficiency of the differencing and iterative techniques employed, it is practical to use these
methods to solve the angle-of-attack problem. An early version of the code described in.
previous sections was used to obtain solutions for a (normalized angle of attack) equal .
to 0.10. This solution was obtained without the terms of 0(aty or greater that appear
in the outer boundary condition given in equations (26) to (27) and in the initial condition
given by equations (12). These terms are quite small and are believed to have a small '
influence on the solution at the value a = 0.10 for which the computations are carried
out.2

In figure 18 the solution for the pressure distributions on the top and bottom of the
plate and on the wake axis is compared with an approximate solution developed in refer-
ence 3. The approximate solution was based on a simple linearization of the triple equa-
tions about a linear streamwise velocity profile. As was noted in reference 3, the linear-
ization is clearly not valid in the wake, where the velocity gradient dU/dy must vanish
on the axis. However, the errors in the wake are not expected to have a strong influence
on the solution upstream of the trailing edge. If this holds true, the linearized solution
should provide a reasonably good approximation to the angle-of-attack solution. The
results in figure 18 bear this out. The agreement between the present numerical solu-
tion of the full triple-deck equations and the linearized solution given in reference 3 is
seen to be quite good. The effect of incidence on the pressure distribution in the wake is
barely noticeable on the scale used in figure 18. The circulation constant aj appearing
in the formula for the viscous correction to the lift coefficient in equations (4) and (5) is
determined as part of the present solution and is given as

• a'j = 0.55 (65)

This is to be compared with the value determined from the linearized solution of Brown
and Stewartson, namely

ax = 0.79 (66)

The agreement for a^ is not nearly as good as for the pressure distribution but is prob-
ably as good as one should expect from such a simple approximation.

In figure 19, the numerical solution for the pressure distribution is compared with
the inviscid solution on the plate and with asymptotic solution valid for upstream. The
numerical solution is seen to blend smoothly into the upstream asymptotic solution. Com-
parison with the zero angle-of-attack solution given in figure 5 indicates that the approach
to the far-field solution is much slower in the angle-of-attack case. The difference

^Computations including all terms appearing in equations (26) to (29) have been
carried out since this paper was written and the results confirm this conclusion.
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between the numerical and inviscid solutions in the far field is due mainly to the circu-
lation term aj. This term can be interpreted as a shift of the origin in the far-field
asymptotic solution for X — -°°. The effect of the shift is clearly evident in the compar-
ison in figure 19. The results in figure 19 clearly show the large changes in the inviscid
pressure distribution induced by the wake. These changes take two main forms: one is
the shift in the pressure distribution in the far field mentioned previously, and the other
is the complete change in the shape of the pressure distribution near the trailing edge.

The effect of the induced pressures on the solution for the skin friction is indicated
in figure 20. In this figure, the numerical solution for the skin friction on the top and
bottom of the plate is compared with the asymptotic solution valid far upstream. The
numerical solution is seen to,join smoothly to the asymptotic solution. The far-field
solution plotted in figure 20 contains three terms: the basic Blasius value, the second
due to inviscid pressure gradients induced by incidence, and the third term due to the
favorable pressure gradient induced by the wake interaction. These terms combine to
yield a skin-friction variation that is quite small except very close to the trailing edge.
The effect of incidence is seen to have a fairly large effect on the value of skin friction at
the trailing edge, which was equal to Cf(0) =1.349 for a = 0. Clearly, a much larger
value of incidence will be required to drive the skin friction to zero on the upper service.
The present result seems to indicate that the point of vanishing skin friction should first
arise at a station upstream of the trailing edge.

The solution for the displacement functions Arj(X) and Ag(X) is given in fig-
ure 21 where it is compared with the far-field asymptotic solutions. The strong effect
of incidence in displacing the wake centerline is clearly evident in this result. Again,
attention is called to the smooth blending of the numerical and asymptotic solutions in the
far field.

TURBULENT TRAILING-EDGE FLOWS

The numerical solutions obtained in this study and in references 6 and 7 have com-
pletely confirmed the triple-deck model and the local asymptotic solutions developed in
references 1 to 3. These works provide a sound theoretical framework for analyzing
laminar interactions at trailing edges of streamlined bodies. Unfortunately, the boundary
layer on an airfoil usually undergoes transition to turbulent flow at the Reynolds numbers
of interest. Most theoretical methods for predicting the effect of boundary layers on air-
foil characteristics are based on classical second-order boundary-layer theory. Although
not generally recognized, second-order boundary-layer theory for turbulent flows breaks
down at airfoil trailing edges. Consequently, the theory does not provide a satisfactory
basis for computing boundary-layer corrections to inviscid airfoil solutions. It is, there-
fore, important to develop a systematic theory for treating turbulent interactions in airfoil
problems.
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In the present study, a formal asymptotic theory has been developed for turbulent
interacting flows, following broadly along the lines of the laminar triple-deck theories. '^
Of course, turbulent boundary layers differ greatly from laminar flows and are controlled "
by quite dissimilar physical mechanisms. Particularly significant is the fact that turbu-
lent boundary layers tend to retain high velocities much closer to the wall than in a lam-
inar flow. This effect is one of the main reasons for the small upstream influence
observed in turbulent interactions. However, the general idea of the triple-deck approach
in seeking formal asymptotic solutions of the Navier-Stokes equations in the limit of large
Reynolds numbers is also useful for the turbulent,problem.

Accordingly, solutions of the turbulent airfoil problem will be developed as formal
asymptotic expansions of the full Navier-Stokes equations in the limit R - °°. The tur-
bulent analysis is carried out by using the basic framework developed in references 1 to 3
for laminar trailing-edge problems. Incompressible flow over a thin airfoil with a cusped
or nearly cusped trailing edge at angle of attack is considered. The airfoil is assumed
sufficiently thin so that the inviscid flow is described to lowest order by the flat plate
solution given, for example, by equations (3) and (4) of this paper. Here, however, the
angle of attack a* is assumed to be 0(1) and not necessarily small. Transition is
assumed to occur upstream of the trailing edge and the boundary layers are assumed to
be fully developed turbulent flows in the trailing-edge region. More specifically, the
velocity profiles in the noninteracting region are assumed to have a small defect form in
the main part of the boundary layer and the usual logarithmic behavior near the wall.

In this section, the main features of a turbulent interaction theory that can be devel-
oped under these general conditions are outlined. First the behavior of boundary-layer
theory near trailing edges is examined. It is shown that a singularity arises in the solu-
tion'which causes!a breakdown of the second-order theory near trailing edges. This anal-
ysis will show that'a Kutta condition for the second-order solution cannot be satisfied and
that the lift correction cannot be determined. ., !

The failure of second-order theory is resolved by the introduction of a local solution
that correctly describes the flow near trailing edges. The local solution is shown to have
a three-layer structure that superficially resembles the triple-deck structure of the lam-
inar problem. However, in the turbulent problem the physical mechanisms leading to this
structure and the basic equations holding in each region are very different from those
arising in the laminar flows.

In the present discussion, only a very brief description of the turbulent interaction
theory is presented. The asymptotic structure of the local solutions governing the flow
near the trailing edge will be described and the boundary-value problem that must be
solved to complete the solution in the trailing-edge region will be outlined. Also a simple
solution for the skin friction in the trailing-edge region that follows from the theory is
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presented. The skin-friction solution is compared with experimental data of Schubauer
and Klebanoff (ref. 18) and with numerical solutions of the boundary-layer equations.

Second- Order Solution

The second- order solution for viscous flow over an airfoil is determined in the fol- ;

lowing steps:

(1) Determine the inviscid solution for flow over the prescribed airfoil shape and
compute the pressure distribution on the surface

(2) Solve the boundary-layer equations with the pressure distribution obtained from
the inviscid solution and compute the displacement thickness

(3) Use the displacement surface to compute the equivalent source /sink distribution
on the airfoil and wake surface and solve the inviscid equations with the source distribu-
tion as a surface boundary condition. Alternatively, the displacement thickness can be
used to form an equivalent airfoil shape that serves as a new geometry in the inviscid
solution.

This well-known procedure can be embedded in a formal asymptotic expansion for
large Reynolds numbers. However, because of the presence of a singularity in the inviscid
solution, this expansion is not uniformly valid at trailing edges. Consequently, the second-
order solution cannot be completed and the boundary-layer corrections to the lift coeffi-
cient cannot be determined. Previous airfoil calculations based on second-order boundary-
layer concepts relied on numerical smearing of the trailing-edge singularity to obtain

">
solutions.

A singularity appears at the trailing edge in the inviscid solution for all lifting air-
foils with a sharp trailing edge. For an airfoil with a cusped trailing edge, the pressure
distribution on the surface exhibits a square- root behavior. This is illustrated in figure 22
where the steps leading to the nonuniformity of the second-order theory are outlined. Near
the trailing edge, the pressure distribution is given by

P* = P*E - PUT
2

E(ca\/-xVL sgn y + . . .) . (67a)

where L is the airfoil chord and Ca is a constant that depends on the incidence a*
and the shape of airfoil. For a flat plate (or a sufficiently thin airfoil) C« can be deter-
mined from the solution given in equations (3), namely - ' - . • •

C a = a * : . . - . . ^ - . . ; . , - . _ (67b)

a n d p = P a n d
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The behavior of the displacement thickness near the trailing edge can be determined
from the momentum integral equation

d6%6dx*(H + 2 ) _ c (68)

where 6« is the momentum thickness, H is the shape factor, Ug is the streamwise
velocity external to the boundary layer, and Cf is the skin-friction coefficient. The
displacement thickness 6? is given by

• • t

6j = H6£ (69)

Withlthe external velocity evaluated from the inviscid solution (eqs. (67)), the second term
in equation (68) is. unbounded at the trailing edge. Since the variation of skin friction due
to pressure variations can be shown to be equal to the order of the pressure, change,,the
singular acceleration term in equation (68) can only be balanced by the gradient of
momentum thickness. Thus, equations (67) to (69) lead to the following expansion for.
the displacement thickness as x* - 0:

-^ - . *•••• ••"'• i .

(x*<0) (70a)

(x*<0) (70b)

where the subscripts T and B refer to the top and bottom of the airfoil, respectively.
The boundary layer thickens on the top and thins on the bottom of the airfoil due to the
imposed pressure distribution. This leads to an equivalent camber distribution 6^ given

:,T-5l,B) = 6S(0) + Ba\/-xVL.+ . . .

where

S(°) = ̂ 1,T(0) * 51,B(0] ;

(71c)
x*=0 • -.. . '

The slope of the equivalent camber distribution given in equations (71) is singular at the
trailing edge. The antisymmetric part of the second-order outer solution is determined
by computing the inviscid flow over this camber distribution. It follows from potential
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flow considerations that the second-order solution for the surface velocity must have the
following behavior for x* — 0~:

-*;TE

~ -^ (Ba/;r)ln(xVL)
— ^— — ̂ — —

L
sgny (72)

where Ca and Ba are the constants defined previously and Ar is an arbitrary
constant.

The first two terms in equation (72) arise from the inviscid solution and the last
two are induced by the interaction. Notice that both interaction terms are singular. The
logarithmic term is induced by the singularity in the camber distribution, while the Ar ,
term is an arbitrary homogeneous solution that satisfies Laplace's equations and the
boundary conditions. Ordinarily this term would be excluded by the Kutta condition, which
requires the solution to be bounded at the trailing edge. It is clear from equation (72) that
this condition cannot be satisfied for any value of the constant Ar. Thus, the second-
order solution cannot be completed and the boundary-layer correction to lift cannot be
determined. It is curious that this conclusion, which follows from the simple analysis
given previously in this paper, has gone unrecognized in previous viscous airfoil analyses.

Interaction Theory

The results given previously clearly demonstrate that the standard second-order
boundary-layer theory is not uniformly valid at trailing edges. To develop complete solu-
tions of viscous airfoil problems, the basic theory must be corrected to better account for
the flow near the trailing edge. In the present investigations, the method of matched
asymptotic expansions was used to develop formal solutions for the trailing-edge region.
This approach is based on the time-averaged Navier-Stokes equations with a turbulence
closure employing a turbulent kinetic equation and an algebraic length-scale relation. ..
Solutions were developed in terms of a small parameter e which here is related to the
friction velocity u* in the noninteracting region upstream of the trailing edge. That is,

(73)

where Cf o is the skin-friction coefficient at the trailing edge, as determined from solu-
tion of the noninteracting boundary-layer equations on the top of the airfoil. Asymptotic
solutions are developed for R — «° or equivalently for e — 0. The analysis follows very
closely a similar theory developed for interactions between turbulent boundary layers and
normal shock waves in reference 16.

_'
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. In the brief discussion of the theory given here, only a general description of the
main results of the analysis will be provided. In addition, the present discussion will be
limited to incompressible flows. A more complete discussion of the analysis leading to
these results along with a simple extension to compressible trailing-edge flows will be
provided in future publications.

From the present analysis, it has been determined that the stream wise extent of
the interaction region at the trailing edge is on the order of a boundary-layer thickness;
that is, Ay* w 6* = eL. The flow near the trailing edge was found to develop a multilay-
ered structure, as illustrated in figure 23. The solution upstream of the interaction is
divided into standard potential flow and boundary-layer regions over a streamwise length
scale 0(L). The solution in the boundary layer has a two-layer structure typical of tur-
bulent flows; an outer wake-like region and an inner wall layer. The velocity profile in
the outer region has a small defect form, which on the top of the plate can be written in
the form

Jf- = 1 + €f(y*/6* pc*) - ' (74)

where U*. is the velocity at the edge of the boundary layer and 6ip is the local
boundary-layer thickness. The velocity profile in the inner layer is expressed in a law
of the wall form

= eF(y+,x*) (75a)
u Te,i

where y+ is a wall variable defined by

where v is the kinematic coefficient of viscosity. Similar expressions hold for the
boundary- layer profiles on the lower surface. The solution for noninteracting turbulent
boundary layers has been embedded in a formal asymptotic structure by Mellor (ref. 12),
Yajnik (ref. 13), and Bush and Fendell (refs. 14 and 15). These authors have shown that
the law of the wall and velocity defect profiles appear as the leading terms of an asymp-
totic expansion for R — °°. Thus, fully developed turbulent boundary- layer flows can be
viewed as limiting solutions valid in this limit. The present analysis should be considered
as an extension of these works to the trailing-edge interaction problem.

The solution in, the interaction region develops the three -layer structure illustrated
in figure 23.
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The three layers required in the solution are

•(1) An outer, basically inviscid rotational stream. This regipn includes most of the
boundary layer and a part of the irrotational flow outside the boundary layer that is on; .,
the order of a boundary-layer thickness. , ...

(2) An inner wall layer that is a continuation of the wall layer from upstream.

(3) An intermediate, or blending layer that occurs between the outer and wall layersV
The blending layer is thinner than the outer layer but thicker than the wall layer.

. The wall-layer thickness is defined in terms of the parameter e introduced by
Mellor in reference 12

' _ A y * »eeL (76a);

where .

r- -1-1 .

e = |e2Rj _ . (76b)

In the outer layer both the Reynolds and viscous stresses are small compared to the
inertia terms in the momentum equation. Vorticity is generated in the upstream boundary
layers and is convected, unchanged, along streamlines in the trailing-edge region. This
leads to a description of the flow as an inviscid rotational stream. A similar model was
first proposed by Lighthill in 1953 (ref. 28) for treating interactions of oblique shock waves
with turbulent boundary layers at supersonic speeds.

The flow in the inner layer is a local equilibrium flow in the sense of Townsend
(ref. 29). To lowest order, the total stress (viscous plus Reynolds stresses) is constant
across the layer and the solution is completely determined by the local skin friction.

An intermediate region is required because of a mismatch that develops between the
Reynolds stresses in the inner and outer layers. In the outer layer, the Reynolds stresses
are. frozen at their upstream values. In the inner layer, the Reynolds stresses are in a
local equilibrium determined by the wall friction because of thessmall-scale structure of
the turbulence in this region. As a result, a discontinuity in Reynolds stresses develops ,
between the inner and outer regions. This discontinuity is resolved by the blending layer.
Solutions in the blending layer are governed by linearized boundary-layer equations that
involve Reynolds stresses, but not viscous stresses. Turbulent closure models are
required to complete the lowest order solutions in the wall and blending layer regions but
not in the outer region. Displacement effects generated by the two inner layers are small
and do not affect the first few terms of the solution in the inviscid outer region. Thus, the
leading terms of the outer solution can be determined without consideration of the flow
near the wall.
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Next the form of the expansions in each region is considered. The expansion param
eter e defined in equation (73) is equal to the friction velocity of the upstream flow on
the top of the airfoil. It should not be confused with the previous definition of e used in-
the laminar study (i.e.,

Outer Layer

The coordinate stretchings for the outer region are given by

X = (x*/L)e-l y = (y*/L)e-l (77)

where the coordinate system employed in the laminar study is used. There will be some
minor differences from the notation used for the laminar analysis but the changes will be
clear and should not cause confusion.

The solution in the outer layer is dominated by contributions from the irrotational
airfoil solution. The first terms in the expansion are obtained by expressing the airfoil
solution in the inner variables defined in equations (77) and expanding the result in powers
of e. The next term comes from the upstream boundary layer and is determined by sim-
ply adding the defect part of the upstream profile to the irrotational contribution.

Physically, this approximation is based on the idea that velocity variation across
the boundary layer is small in the limit of large Reynolds numbers. (See eq. (74).) Thus,
the physical picture is one of a basically irrotational flow that is slightly perturbed by
small shear flow disturbances near the wall. The resulting linear superposition of the
boundary -layer and inviscid solutions leaves the pressure distribution in the field and the
lift coefficient of the airfoil unchanged. The nonlinear interaction of these terms produces
perturbations in the pressure distribution and lift coefficient. Thus, the expansion in the
outer region is written in the form

UrTE

f e1/2uinv(X,y) + euBL(y) + e3/2u'(X,y) + . , . (78b)S u =
UTE

where fy and u are the nondimensional stream function and the streamwise velocity
component, respectively, ui.g is the velocity at the trailing edge predicted by the irro-
tational outer solution, and * denotes the corresponding dimensional quantities. The
velocity components u and v are related to the stream function by the usual relations

u = d\j//dy v = -31///9X (79)
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The first two terms in equations (78) arise from the airfoil solution written in inner var-
iables and then expanded in powers of e. For a general airfoil with a cusped trailing edge
this yields the result '

0 (80a)

uinv = Car sin 9 (80b)

where r and 9 are polar coordinates, with Q measured from the positive X-axis,
given by

r = ̂ X2 + y (8la)

6= tan-ifr/X) . (81b)

Substitution of the assumed expansion into the time-averaged Navier-Stokes equations
leads to the following equation for the perturbation stream function:

t TjT (y)
= -C (X,y) = -- ^- fcnvCX,y) (82)

dy2 mv

where ^ is the Laplacian operator and if is the perturbation vorticity. This is a
simple Poisson equation that relates the disturbance stream function to the perturbation
,in vorticity £*. The vorticity perturbation arises from the convection of the vorticity in
the upstream boundary layer along the curved streamline of the irrotational airfoil solu-
tion, as illustrated in figure 24.

The Poisson equation must be solved subject to the boundary conditions

^'(X,y)-0 ( r -«>) (83a)

v« = - 4J- = 0 . (y = 0; x s 0) (83b)
ox.

where v* is the perturbation velocity normal to the surface. The perturbations in
streamwise velocity and static pressure are given by the relations

u' = f . (84a)

P' = -U' = -^ . (84b)
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These boundary conditions lead to well-posed boundary- value problems for the outer
solution. The outer solution leads to a "slip" velocity on the surface that is resolved by
the inner layers.

The solution of the boundary-value problem can be represented as the sum of a
particular solution plus a complementary solution. The particular solution satisfies
equation (82) but not the boundary conditions. This solution leads to a downwash on the
surface that violates the boundary condition on v* (eq. (83a)). The complementary solu-
tion is a solution of Laplace's equation that cancels this downwash. The solution for the
particular integral depends on the form of the initial velocity profile uBL(y) and on the
expression for the irrotational stream function ^nv- For general profiles, the partic-
ular and homogeneous solutions must be found by numerical means. However, if the ini-
tial profile is represented by a Coles law of the wall/law of the wake correlation, a closed-
form expression for the particular integral can be found by analytic function theory. Coles
form for the defect profile on the upper surface can be written in the form

- W(y/8T)
(85)

where 6rp is a nondimensional boundary-layer thickness defined by the relation

. 6T = eL6T (86)

K >is the. Karman. constant, .3™ is the Coles wake parameter, and W(y/6rj.) is the wake
function which can be represented by a simple polynomial approximation to the cosine

.function usually employed in this description. Similar expressions hold for the profile on
the lower surface.

The particular integral evaluated in this fashion leads to closed-form expressions
for the downwash velocity on the top and bottom of the plate. The homogeneous solution
which cancels this downwash can be found in the usual way from thin airfoil theory. This
leads to a representation of the homogeneous solution in terms of a Hilbert integral that
must, in general, be evaluated by numerical quadrature. A Kutta condition, requiring the
solution to be finite at the trailing edge, is imposed as part of the solution of the homo-
geneous problem. This condition determines the value of an arbitrary constant appearing
in the trailing-edge solution that is directly , related to the circulation constant Ar
appearing in the second-order boundary- layer solution (eq. (72)). Matching the trailing-
edge solution to the second-order solution valid outside the trailing-edge region leads to
an expression for the lift coefficient in the form
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CL = 2TO!*/1 + aje2 In e + a2e
2 + . . .) (87)

where aj is a known constant and a2 is a constant to be determined from a com-
plete solution of the trailing-edge problem. The constant aj as determined by match-
ing to the upstream solution (eq. (72)) is given by

al = V^l/lK"* 2) - 61,B(HB + 2)1 (88)
L JX=0

where 6jrp g and Hrp B are the (nondimensional) displacement thicknesses and shape
factors at the trailing edge, respectively, as determined from the noninteraction boundary-
layer solution. The nondimensional displacement thicknesses SIT B are defined by the
relation

(89)

where 6 t> a^e the dimensional displacement thicknesses. Notice that the leading
* ' / O \correction to the lift coefficient, as given in equation (87) is 0^ In e). This term is

completely missed in standard second-order theory which leads to a correction that
is O(e2).

Equations (87) and (88) indicate that the lift correction is due primarily to the differ-
ence in boundary-layer thicknesses on the top and bottom of the airfoil. In the usual situ-
ation, 6j T > 6j B, and the effect of the log term is to reduce the lift coefficient. The
effect of this term is most important on rear-loaded airfoils where the rear loading tends
to dramatically increase the difference in boundary- layer thickness on the top and bottom
of an airfoil. The effect of the shape of the boundary- layer profiles also influences the
lift correction through the values of HT and HB appearing in equation (88). Rear load-
ing tends to make the boundary layers less full on the top of the airfoil compared with the
bottom. This implies that Hrp > Hg and this, in turn, also leads to a reduction in lift
This effect is formally of higher order since

HT>B = 1 + 0(e) (R - °°) (90)

However, in practice, H is significantly different from one at Reynolds number of
interest (e.g., H « 1.4 for a flat plate at R » lO^j and this effect can be numerically
significant.

Inner Layers

Next briefly the form of the expansions in the two inner layers near the wall is con-
sidered. (See fig. 23.) Only the solution on the airfoil surface upstream of the trailing.
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edge is considered. The evolution of the inner layers into the wake leads to a similar
structure. However, solutions in the inner layers of the wake are much more complex
and have not yet been fully developed. A major uncertainty in the wake solution is con-
cerned with the choice of a closure hypothesis to properly deal with a change in the sign
of the Reynolds stress near the axis.

Only the solutions on the upper surface are dealt with explicitly. The expressions
to be presented also hold on the lower side with an obvious change of notation. In the
innermost layer the solutions for the streamwise velocity u* and Reynolds stress T*
are represented in the form of a law of the wall as

T*= T(X;e)T+(y+,X;e) (91b)

(91c)

where r^(X;e) is the skin friction and u+, T+, and y+ are nondimensional wall-layer
variables.

Substitution of these variables into the time-averaged Navier-Stokes equations with
e — 0 leads to the well-known condition that the total stress (laminar plus Reynolds
stresses) is constant across the wall layer to all orders in e. This conclusion follows
from the fact that the wall-layer thickness is transcendentally small in e. The wall-layer
formulation is completed by the choice of a closure condition relating Reynolds stress to
mean velocity. Analysis indicates that a balance of production and dissipation in the wall
layer is a rational result that follows from the turbulent energy equation in the limit e — 0.
With the usual model of dissipation this leads to a mixing length formula

T+ = £2(y+)(au+/ay+)2 . ' (92)

where £(y+) is the mixing length distribution. In this formulation the choice of £(y+)
is strictly empirical. Careful consideration of the magnitude of the pressure gradients
in the present problem indicates that the choices commonly used for moderate-pressure-
gradient flows are appropriate here. For example, the two-layer model of Cebeci and
Smith with a Van Driest damping factor is known to give very accurate solutions in incom-
pressible wall layers. It is known that the mixing length distribution is linear for large y+

and that this leads to the usual logarithmic velocity profile for y+ — °°. Thus, if

£ (y+)= *y+ (y+ - «) (93)
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where K is the Karman constant, it follows that

u* - ]jT^(X',e)/p(K-1 lny+ + Bf) (y+-«) (94a)

T* - r£(X;e) (y+ -«) (94b)

where B+ is a universal constant, independent of the local value of skin friction. With
r*(X;e) expanded in a series in e, the preceding result leads to an asymptotic solution
for e — 0 and y+ — °° that must be matched to the inner limit of the outer solution.

The solution for the velocity in the outer inviscid region has a similar behavior for
y — 0. However, because the Reynolds stresses are frozen in the outer region, the coef-
ficient of the logarithmic term in the outer solution remains constant, equal to the friction
velocity in the noninteracting boundary layer upstream. Thus the solution in the wall layer
does not match the outer solution. It follows that an intermediate or blending layer must
be inserted between the outer and wall layers in order to obtain a continuous solution for
the Reynolds stresses across the boundary layer.

The requirement that the Reynolds stress be continuous leads to the condition that
the shear stress term must be retained as a leading term in the streamwise momentum
equation in the limit e — 0. This condition determines the thickness of the blending layer
to be o(e2LJ. Thus a new stretched variable y is introduced to represent the solution
in the blending layer, where

y* = e2Ly (95)

Consideration of the form of the velocity profile in the upstream region and in the outer
and wall layers leads to an assumption for a solution in the blending layer of the form

u = 1 + el/2uinv(X,0) + e In e(l A) + euBL(y)

+ e3/2 In eu21(X) + e3/2u22(X,y) + . .,, (96a)

v = e3/2v0(X,y) + . . . (96b)

P = P
TE ^ 2

+ e3/2P(X) + . . . . (96c)

= e2fl y) + e3/2 In € T ( X ) + e3/2T(X,y) + . . . (96d)31
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where uinv(X,0) and viBL(y) are deduced from equations (80b) and (85) and are given
by ' ' " . •"' • ;".' . • •

sgn y - " (97a)

. ,(97b)

The In terms appearing in the preceding expansions are required in order to
match similar logarithmic terms in the inner expansions of the outer solution. These
terms enter the expansion from the logarithmic behavior of the initial profile for small y.
Consideration of the transverse momentum equation leads to the conclusion that the pres-
sure is constant across the blending layer to the order considered in equation (96c). Thus
the unknown function I^OO appearing in equation (96c) can be identified with the surface
value of the pressure distribution of the outer solution. The requirement that the blending
layer solution match the solution in the wall layer leads to the conclusion that the expan-
sion for the Reynolds stress must have the same form as the expansion for the streamwise
velocity component. It also follows that the relative change in skin friction in the trailing-
edge region is on the order of the pressure change; that is, Aj/e^ = o(e^/2) as indicated
in equation (96d) .

Substitution of the preceding expansions into the momentum equation leads to the
simple result

u21(X) = .-K-iutnvCM) (98)

The, solution for the vertical velocity component v^ is obtained from integration of the
continuity equation , .

. . '. ..! (09)

The solutions for Ug2 an<* T% are governed by two coupled first- order, linear,
partial differential equations. These equations are derived from the streamwise momen-
tum equation and, from a turbulent closure hypothesis relating Reynolds stress to mean
velocity. Since the pressure gradients on an airfoil can be relatively large, the closure
assumption is based on the turbulent energy equation. Since the solution of these equa-
tions is not being considered in this presentation, they will not be written out here. Note
simply that the momentum equation leads to a balance of linearized convective terms with
shear stress and pressure gradient terms. Only the Reynolds stresses contribute to the
shear stress gradients. The pressure gradient term is impressed from the outer inviscid
solution (dP2(X)//dx).

230



The turbulent energy equation leads to a balance of advection, production, and dis-
sipation of the Reynolds stress perturbation r~. The contribution from pressure diffu-
sion and other terms in the energy equation are formally smaller than these main terms.

The present formulation leads to a simple form for the skin friction that is inde-
pendent of the particular closure model assumed in the analysis. Matching of the blending
and wall-layer solutions for u* given in equations (94) and (96) leads to the following
expression for the skin-friction coefficient:

= 1 - Cp(X;e) + 2feln£)cp(X;e) + . . . (100)

where Cf)O = 2e and Cp(X;e) is a pressure coefficient based on reference conditions
from the .inviscid solution at the trailing edge. Equation (100) is a simple relation for the
skin-friction coefficient in terms of the pressure coefficient. It is a direct requirement
of matching and follows simply from the three-layer structure of turbulent boundary
layers near trailing edges. It involves only two turbulence parameters Cf 0 and K.
The parameter Cf o is the skin coefficient upstream of the trailing edge and K is the
Karman constant which enters from the logarithmic term in the initial profile.

Although the skin-friction result was derived here in the context of the trailing-edge
problem, it can be given a more general and useful interpretation. The three-layer struc-
ture of turbulent flows also appears to apply to situations with large imposed pressure
gradients. In this case equation (100) is valid with Cf o identified with the skin-friction
coefficient upstream of the large-pressure-gradient region. The pressure coefficient is
then defined with respect to reference quantities at the beginning of the pressure change.
To check these concepts the skin-friction coefficient predicted by equation (100) was com-
pared with data of Schubauer and Klebanoff (ref. 18). In reference 18 Schubauer and
Klebanoff measured the skin-friction and pressure distributions in turbulent boundary
layers approaching separation in a moderately large adverse pressure gradient. The
skin-friction coefficient was computed by using the experimentally determined pressure
coefficient in equation (100). The results are compared with the data in figure 25. Com-
parisons with the turbulent boundary computations of Bradshaw, Ferris, and Atwell
(ref. 30) obtained with a turbulent energy approach are also included.

; - - ' i

In this figure the combination 1 - Cp(X;ej is referred to as the first term. This
one-term solution is equivalent to the assumption of a constant local skin-friction coeffi-
cient (i.e., a skin-friction coefficient based on the local dynamic pressure at the edge of
the boundary layer). This result correctly indicates the main trend of the skin-friction
variation with pressure but is in relatively poor agreement with the data. The inclusion
of the logarithmic term in the solution greatly improves the agreement with the experi-
mental data.
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The numerical solutions given in figure'. 25 were obtained with and without a curva-
ture correction. The present results should be compared with the numerical solution
without the correction since it is not included7iri-'the present results. The agreement with
the uncorrected numerical solution is seen to be quite good throughout the pressure rise.
The better agreement with the experimental-data and with the corrected numerical'solu-
tion is probably fortuitous. However, the comparisons in figure 25 clearly indicate that

-the logarithmic interaction term is large and that very good results are obtained with its
inclusion. These results also suggest that equation (100) can be made the basis of a sep-
aration criteria. The comparisons given tend to confirm the multilayer structure of tur-
bulent flows proposed in the present study. ••••• ,

Concluding Remarks ;

In the present investigation a formal asymptotic description of turbulent interactions
at airfoil trailing edges was developed. The most important result of the present study
was the formulation of a boundary-value problem that governs the solutions for the inter-
action pressure distribution and lift coefficient on an airfoil. The interaction can be
described as an inviscid rotational flow governed by a linearized Poissbn equation. Work
is currently in progress to complete the solution of these equations. Also the analysis
has recently been extended to compressible flow and it has been demonstrated that the
basic formulation applies to the case with minor modification provided the Mach number
near-the trailing edge is less than one. Both of these developments will be described in
future publications on the subject.

The results discussed in this section are concerned with the lifting, basically anti-
symmetric problem. The effect of wake-induced displacement pressures, which was so
important in the laminar problem, is absent to the order of the small parameter e con-
sidered so far in the turbulent problem. The present solutions can be carried to higher
order in e. The next terms in the series are likely to the order of e2 in e and e2.
These terms involve the thickness effects of Jthe boundary layers on the airfoil and in the
wake. However, the resulting problem is symmetric and so the solution would not affect
the lift coefficient to this order. The major unsolved aspects of the problem concern the
structure of thei expansions1 in5 thie' inner layers of the wake. -Further analysis'is required
to clarify the nature of the solution of this complex problem.



' APPENDIX

THE SIMILARITY FUNCTIONS

The function F^(rj) arising in the symmetric problem for X large and negative
satisfies the differential equation and boundary conditions

Fj" - 187,2Fj - 36(7jFl - Ft) = - 2 ^ 1 2 (Ala)

F^O) = Fj(0) = 0 Fj(T))-0 fa-*) (Alb)

It follows that

. . . fa-*) (Ale)

The functions H^TJ) arising in the angle- of -attack problem for X large and nega-
tive satisfy the differential equations and boundary conditions

H(".- 18Tj2Hi' + 9(4 - O(TJH[ - Hi) = hi (A2a)

Hi(0) = H((0) = 0 Hj'fa) '- 0 (TJ » -o) (A2b)

where

h = 9/21/3 ' (A2c)

(A2d)

h3 = (3/21/3)(2Hi'H2 - HgHj + SHgHj) (A2e)

It can be shown that the H^'s have the following asymptotic behavior for

Hl = 3 cll^/2 + C12^ + C13 + . . . (A3a)

H2 = C2iTj In TJ + C227j + C^n1/2 + C^ +.. . . (A3b)

Hg = CgjTjl/2 In TJ + Cg2 In T) -f €3317 + Cg^Tjl/2 + €35 -f . . . (A3c)
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APPENDIX - Concluded

where the constants C« have been determined from analytical studies in references 1
to 3 and from numerical solutions obtained in the present investigation to be

f* • ^ (9\ • { 9 /^\ I/^1 /ft\ I ^ — A / ( 1 /^l\ I f* — 1
JLX • ' XA AO .

C21 = -3.255 C22 = 3.082 C23 = CnC22/K

' " > (A4)
C24 = C12/2K C31 = C11C21/K C32 = C12C21/K • ; . " " "

C33 = -17.408 C34 = 16.900 C35 = (C21 + C22)C12/K

where K = 3(2)1/3.

The function GO(TJ) governing the trailing-edge behavior satisfies the following
differential equations and boundary conditions:

G"* . '•>/-« /"'" o'« 4r7/Q\4/v~^ ' / A C — \
0 + 2G0G0 - G0 = 27(2) C0 (A5a)

G0(?7)- 18\1>T7j = DT-O (7,^00) (A5b)

GO(TJ) - 18\1>B7j = DB - 0 (T? - -oo) (A5c)

where A.J T and \j B are the values of the skin friction 8U/dZ| and dU/azL at
the trailing edge and Co is a constant to be determined as part of the solution. Further
details, together with typical solutions, are given in references 3 and 23.
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ANALYTICAL STUDY OF MIXING AND REACTING THREE-DIMENSIONAL

SUPERSONIC COMBUSTOR FLOW FIELDS*

By A. J. Baker,**
Bell Aerospace Division of Textron

R. Clayton Rogers,
NASA Langley Research Center

and S. W. Zelazny
Bell Aerospace Division of Textron

SUMMARY

An analytical investigation is presented of mixing and reacting hydrogen jets
injected from multiple orifices transverse and parallel to a supersonic airstream. The
COMOC computer program, based upon a finite-element solution algorithm, was devel-
oped to solve the governing equations for three-dimensional, turbulent, reacting,
boundary-region and confined flow fields. The computational results provide a three-
dimensional description of the velocity, temperature, and species-concentration fields
downstream of hydrogen injection. Detailed comparisons between cold-flow data and
results of the computational analysis have established validity of the turbulent-mixing
model based on the elementary mixing-length hypothesis. A method is established to
initiate computations for reacting flow fields based upon cold-flow correlations and the
appropriate experimental parameters of Mach number, injector spacing, and pressure
ratio. Key analytical observations on mixing and combustion efficiency for reacting
flows are presented and discussed.

INTRODUCTION

The hydrogen-fueled scramjet engine is a prominent candidate for propulsion of
advanced hypersonic cruise vehicles. (See, for example, Becker and Kirkham (ref. 1) and
Bushnell (ref. 2).) An airframe-integrated underbody engine configuration (figs. l(a)
and (b)) has been suggested (ref. 3), and design considerations are discussed by Henry
and Anderson (ref. 4), Many alternative scramjet designs have been proposed by the
U.S. Air Force, the U.S. Navy, and NASA. In all cases, however, fuel introduction typi-
cally consists of rows of circular, choked-flow fuel injector orifices mounted flush and

*This work was supported principally by NASA under Contracts NAS1-11214 and
NAS1-13165.

**Visiting Professor, Old Dominion University.
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normal to the combustor wall or in fins spanning the combustor inlet. (See fig. l(c).)
The various proposed component designs have largely emerged from laboratory experi-
mentation wherein empirical relations have established a preliminary configuration.
Detailed experimental parametric evaluations are then utilized to optimize design
configuration. • •; . .

The ability to analytically predict turbulent, mixing, and reacting three-dimensional
flows, and hence avoid the more costly exclusively experimental approach, has been the
long-range goal of rocket and ramjet designers for more than a decade. Three very dif-
ficult problems must yield to solution to attain this goal. First, a computational tech-
nique for solving the appropriate three-dimensional flow field with a predominant flow
direction is required. Second, proper turbulent diffusion models must be selected or
developed, since the accuracy of the predictive calculation is strictly dependent upon the
adequacy of these models for combined laminar and turbulent diffusion of mass, momen-
tum, and energy. Consequently, detailed baseline data characterizing the flow phenom-
ena over a reasonably wide range of flow parameters must be obtained to confirm the
validity of the theoretical modeling.

The objective of this investigation is to describe analytically the mixing and reac-
tion of hydrogen in a supersonic airstream simulating the combustion of a scramjet
engine. Current combustor design concepts (ref. 4) for scramjet engines employ fuel
injection both from transverse wall injectors and from internal struts containing both
parallel and transverse injection orifices. Therefore, the analytical characterization of
both fuel injection modes is sought. In particular, the problem areas considered are
illustrated in figure 2 for the mixing and reaction zones downstream of a row of trans-
verse injection orifices (fig. 2(a)) and the parallel strut injectors (fig. 2(b)). Details
of the mixing and reaction promoted by these distinct geometric configurations are
computed by using a considerable extension of the exploratory theoretical studies doc-
umented in references 5, 6, and 7.

Experimental data for comparison with these analyses are provided from refer-
ences 8, 9, 10, and 11. In references 8 and 9, detailed velocity and concentration mea-
surements were made in a nonreacting, three-dimensional, hydrogen-air mixing region
downstream of a row of laterally spaced circular orifices. The hydrogen was injected
from the orifices, at various pressures, transverse to a turbulent Mach 4 air boundary-
layer flow over a flat plate. In the experiments reported in reference 10, ambient-
temperature hydrogen was injected at nominal equivalence ratios of 0.5 and 1.0 trans-
verse to a hot supersonic test gas (vitiated air) from rows of circular orifices in opposite
walls of a two-dimensional duct. Data measurements included static pressure distribu-
tions at the duct wall and pitot pressure 'and gas composition surveys at the duct exit,
from which the reacted fraction of injected hydrogen was deduced. Additional reacting -
flow data are available from the experimental investigation reported in reference 11,
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where two distinct strut fuel injectors were tested in a hot supersonic duct flow. In the
transverse injection strut, hydrogen was injected from orifices just downstream of a
rearward-facing step. In the parallel configuration, hydrogen was injected parallel to
the main flow from conical nozzles drilled at the base of the strut wedge. Data mea-
surements were similar to those of the previously discussed hot-flow experimentation.
Generated predictions are compared with select data sets from each of these experimen-
tal investigations.

Long-term support has been given to finite-element research in computational
fluid mechanics by Bell Aerospace Division of Textron. Significant contributions were
provided by W. T. Rushmore and J. A. Orzechowski.

SYMBOLS

a boundary-condition coefficient

A species; area

b coefficient

B species

c coefficient

Cp specific heat

C species

Cf skin friction

d differential; orifice diameter

f function of known argument

g ' function of known argument

h static enthalpy; duct height

H stagnation enthalpy; hydrogen
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i index ,. ; . ,

f ,j ,k unit vectors, of rectangular..C.artesian coordinate system ,

k thermal conductivity; constant

K generalized diffusion coefficient; equilibrium constant , v

H differential operator; number; mixing length • ', ,

L characteristic length; differential,operator, . . . .

m number

M Mach number; number of finite elements

n unit normal vector; number; nodes per element; dimensionality

N nitrogen; composition matrix

Npr Prandtl number

^Re Reynolds number

Ngc Schmidt number

O oxygen

p pressure

q generalized dependent variable

q dynamic pressure ratio

Q generalized discretized dependent variable

R domain of elliptic operator; universal gas constant
j
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s injector spacing

5 mass source term; finite-element assembly operator

T temperature

u,U velocity

f • • . - - • . .'

W molecular weight

X[ rectangular Cartesian coordinate system

X species mole fraction

Y species mass fraction

/3 pressure gradient parameter

y ratio of specific heats

9R closure of elliptically coupled solution domain

6 boundary-layer thickness

A increment

e kinematic eddy viscosity

77 mixing efficiency

K coefficient

X multiplier; turbulence sublayer constant

/i viscosity

p density

a integral kernel
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integral kernel; wall shear

equivalence ratio, -

$ functional

X domain of initial-value operator

co turbulence damping factor

ft global solution domain

Superscripts:

e effective value

T matrix transpose

a species identification

unit vector

* approximate solution

Subscripts:

e local reference condition '
' • "

i,j ,k tensor indices

m mth siibdomain

o initial

t stagnation or total

T turbulent
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a species identification

0 elemental species

00 global reference condition

Notation:

/ V column matrix

[ ] square matrix

U union

n intersection

I summation

e belongs to

THEORETICAL DEVELOPMENT

Many researchers are now giving attention to numerical solution of three-
dimensional parabolic and/or boundary-region flow fields. Most procedures employ a
finite-difference solution algorithm for variously combined forms of the continuity,
momentum, and energy equations. Note that the three-dimensional boundary-layer equa-
tions result from this parabolic set for flow fields wherein diffusion in one direction only
is important and the corresponding pressure gradient is negligible. Several researchers
have obtained solutions for the three-dimensional boundary-region flow of single-species
fluids. Pal and Rubin (ref. 12) employ asymptotic expansions of the flow variables for
laminar incompressible flow after transformation to modified stream function and vortic-
ity. Results of extending the theory to a compressible perfect fluid in physical variables
are reported by Cresci et al. (ref. 13), who used an extension of the numerical technique
common to boundary-layer solutions. Extension to handle streamwise pressure gradients
and refinement of the overall method are reported by Rubin and Lin (ref. 14). Caretto
et al. (ref. 15) present a finite-difference algorithm for solution of three-dimensional
boundary-region flows with extension to the "parabolic" Navier-Stokes equations. The
results of computations for transitional internal flows in rectangular ducts are presented
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by Curr et al. (ref. 16). Refinement of the overall procedure with particular attention to
solution of the parabolic Navier-Stokes equations is given by'Patankar and Spalding
(ref. 17). The key feature of their theory is a procedure for splitting the pressure field
computation such that a two-dimensional boundary-value problem results for pressure
in the transverse plane coupled to an assumed uniform streamwise pressure gradient
computed from global continuity. The latter-step is similar to methods employed for
computations in two-dimensional hydrodynamics (ref. 18).

Characterization of an n-species, three-dimensional boundary-region or parabolic
flow field requires solution of (n - 1) species-continuity equations in addition to those
previously mentioned. Caretto (ref. 15) and Patankar and Spalding (ref. 17) include

(results of a finite-difference solution of heat, mass, and momentum transfer in three-
dimensional parabolic flows. Baker (ref. 19) presents a finite-element solution algorithm
for multiple-species diffusion in supersonic, three-dimensional boundary-region flow. .
However, no general three-dimensional solution algorithm has been published which con-
siders mixing and reacting three-dimensional confined flows.

The system of partial differential equations governing such three-dimensional, con-
fined unidirectional flows of a compressible, reacting fluid is obtained as an approxima-
tion to the full three-dimensional Navier-Stokes equations. This approximation, now .
known as the "parabolic Navier-Stokes equations," describes steady, confined three-
dimensional flows wherein (1) a predominant flow direction is uniformly discernible;
(2) in this direction (only), diffusion processes are negligible compared with convection;
arid (3) no disturbances are propagated upstream' antiparallel to this direction. The
three-dimensional boundary-region equations are obtained as a subset of the parabolic
Navier-Stokes equations with the single but significant.assumption that a known pressure
distribution is superimposed upon the flow field. The velocity vector lying on a three-
dimensional Euclidean space spanned by a rectangular Cartesian' coordinate system Xj
is identified as

1 ' -• = ' U| - '= Ujl + U«jj + Ugk - ' •" - . > • - • - . ' • (1)

• For development of the governing equation system, assume that i is parallel to the
predominant flow direction. Identify the two-dimensional vector differential operator

' ' v, , ' ( .) ,k = i(),2 + k(),3 :-.-/^ . : . . : . . " , ( 2 )

where the comma identifies the gradient operator. In Cartesian tensor notation, with
Summation over 2 and 3 for repeated Latin subscripts, the parabolic Navier-Stokes equa-
tion system for a multiple-species, compressible, reacting flow takes the form •

+ pu' . ' (3)
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(4)

i"= Uj , - Ui,lb - p..
' N ]'k "'k 'JRe

(5)

1 - N-Pr
NPP..

NSc - NPr

'k

(6)

The variables appearing in equations (3) to (6) are nondimensionalized with respect to
Poo» U<»> HOO* and a length constant L, and have their usual interpretation in fluid
mechanics. The Reynolds number Nj^g, Prandtl number Npr, and Schmidt number
Ngc are defined for a combination of laminar and turbulent contributions as, for
example,

NPr (Npr)r
(7)

In equation (7), p. is the laminar viscosity, e is the kinematic eddy viscosity, and the
subscript T denotes a turbulent reference parameter. The stagnation enthalpy is
"defined in terms of species static enthalpies as .

.(8)
a

The static enthalpy includes the heat of formation ho of the species in its definition as

(9)

An equation of state is required to close the system. Assuming perfect-gas behavior for
each species, from Dalton's law,

(10)
a

where R is the universal gas constant and Wa is the molecular weight of the ath
species.
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There are two approximate methods which may be effectively used to describe
reacting hydrogen-oxygen-air systems. In the first case, assume that prototype scram-
jet combustors are adequately described by equilibrium combustion. The following
reactions are operative:

2H + O = H2O

2H = H2

(ID20 = 02

H + O - OH

N2 + 2O - 2NO

The equilibrium composition of the combustion byproducts is determined by applying the
law of mass action (ref. 6) to each reaction defined in equations (11). This yields defi-
nition of a set of equilibrium constants K, which, for the simple reaction nA + mB ~ 1C,
are expressed in terms of species mole fraction Xa as

(12)

Solution of equation (11), coupled with equation (12) and conservation of total and elemen-
tal mass, yields an algebraic equation system for determination of the equilibrium com-
position of the system, of the form

[NO^ (xa) = {Constant} (13)

In equation (13), the elements of the matrix [N] account for the distribution of the particu-
lar species mole fraction \XaJ containing the /3th elemental material, for example, O,
H, and N.

Solution of the equilibrium temperature and species concentration requires an
iterative solution to a nonlinear algebraic equation system. A considerably less expen-
sive method (from the standpoint of computer time) may be employed to obtain an upper
limit on the effects of heat release on the flow field development. The mole fractions of
the dissociated species O and H are usually small compared with those of O«j and
H2. Equations (11) may then be considerably simplified by assuming that the complete
reaction

(14)
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is the only reaction that occurs. In this case all the H2 reacts with the available Oo to
form H2O. By describing the variation of specific heats with temperature through a
polynomial relationship of the form cp = a + bT + cT^, the temperature is solved explic-
itly in terms of the enthalpy and pressure without iteration.

For internal flows, characterized by boundary-layer thicknesses which are small
in comparison with the overall internal duct dimension, the pressure distribution can be
accurately approximated by inviscid flow solutions. However, in the alternate case
where the flow is confined in a duct whose lateral dimension is not large with respect to
the boundary -layer thickness, this approach is invalid. Here, boundary-layer develop-
ment directly influences the pressure distribution within the duct, and an axial pressure
gradient is induced by viscous effects. For these flows, a quasi -one -dimensional inte-
gral treatment of equations (3) and (5) has been suggested (ref s. 17 and 20), wherein for
steady flows, equations (3) and (5) are integrated across the duct transverse dimensions
to obtain an equivalent expression written on mass -averaged dependent variables defined

by

Q s -Jj. f pujq dr (15)
mA J

In equation (15), A(x^) is the duct area, which may be a function of axial location xj;
m is the mass flow rate

m = pujA (16)

and q represents a generalized dependent variable which may be selectively stream -
wise velocity uj, static temperature T, or density p. Taking the logarithmic differ-
ential of equation (16) gives

d A _ d m dul dp
A~ ~ "m" ~ ~uT ~ P~

The integral momentum equation (eq. (5)) implies

A dp + F dxj + uj dm + m duj = 0 (18)

where F is the retarding force per unit length of duct exerted by viscous interaction of
the confined flow with the wall. The equation of state for a perfect fluid of constant
molecular weight may be logarithmically differentiated to yield

*£ = dp _ dr (19)
P P T V ;
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Combining equations (15) to (19) yields an explicit relation for axial pressure gradient as

F 2uj mu mui

P, j = — (20)1 . T mul . .
~AP~ ,

If an initial pressure level and the detailed flow field at a given station are known,
equation (20) can be evaluated and integrated to yield downstream pressure levels. To
achieve this, the friction force per unit duct length is related to the wall shear stress r
as ' • . ' •

- • • • - • • F = 7 p . . : (21)

where p is the wetted perimeter of the duct. For the rectangular ,combustor geom-
etries considered herein as .bounded by symmetry planes,

X2
(22)

where T is evaluated as a function of the local velocity gradient at the wall (ref. 20) and
xw is the distance from the center plane of the duct to the wall.

u : . . - •

; Calculation of the change in mass flow rate with respect to axial distance requires
a computational distinction between the actual mass flow nir and the computed mass
flow m^ . The difference between mr and m* provides an estimate of the pressure
and pressure gradient required to maintain conservation of mass. The rate of change of
mass flow with respect to xj is defined as

where

Am = Amf - Amr (24)

and

Anir = m^xj + Axj) - nir(x1) . (25a)

Amf = mr(x1) - m^xj) , (25b)

Axj = (xi) - (Xl) (26)1 v iy ^ x/

In equation (25a), Amr represents the mass flow increment which results from the
mass addition, whereas Amf (eq. (25b)) represents the mass flow error obtained at the
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upstream station xj. Examination of equations (20) and (23) to (25) shows that use of
equation (23) will always provide a pressure gradient which tends to make the computed
and actual mass flow discrepancy decrease and hence models the physical flow.

For the analyses presented herein, flow -field turbulence has been modeled by
means of an eddy -coefficient hypothesis. It should be noted that more sophisticated
alternatives exist; their application to the problem class at hand will occur as the data
base expands, as.has occurred for modeling turbulence in two-dimensional and simple
three-dimensional flows (refs. 21 and 22). The computer code implementing the finite-
element algorithm for the equation system has been developed so that higher order tur-
bulence models may be directly incorporated into the governing equation set and solution
vectors. Elementary mixing -length theory (MLT) has proved very useful in characteriz-
ing the mixing of mass, momentum, and energy over a wide variety of flow conditions
(ref. 23). Bearing this in mind, as well as the essential boundary-layer character of
the considered flows, the baseline turbulent model was selected as the MLT and was
employed to compute the evolutionary (downstream) development of all dependent vari-
ables. The success of more sophisticated turbulence modeling may then be assessed on
a quantitative basis to evaluate explicitly any improvements at the expense of introducing
additional empirical relationships and/or constants.

The MLT model is employed to compute the eddy diffusivities of momentum e,
mass e(Ngc)~ , and thermal energy e(Npr) ~ . Each is expressed in terms of the mixing
length H, the mean longitudinal velocity uj_, and distance normal to the wall X2, accord-
ing to the equation

The. mixing length is defined as

(0 g x2 ?

(x2 >

where

k

\

6

= 0.435

sublayer constant

boundary-layer thickness

coordinate normal to wall
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The Van Driest damping coefficient is

. <* • 1 - exp(-|)

where • • - '

UXo
Xo = - £

« V

u friction velocity, \/r/p

T skin friction . . - , , . .

p density a t wall , - . . - . .

v kinematic viscosity " ' • ' • • ' -

A = 23.5

FINITE -ELEMENT SOLUTION ALGORITHM

The parabolic Navier-Stokes equation system and the three-dimensional boundary-
region equation system excepting global continuity (eq. (3)) are uniformly constituted as
initial boundary -value problems of mathematical physics. Each of the subject partial
differential equations (eqs. (4) to (6)j is a special case of the general, second-order, non-
linear partial differential equation

+ fq,q, ,x i +g(q,x) = 0 , (28)

where q is a generalized dependent variable identifiable with each computational depen-
dent variable. In equation (28), f and g are specified functions of their arguments,
X is identified with xj for parabolic flowsy and x^ are the coordinates for which
second-order derivatives exist in the lead term. The finite -element solution algorithm
is .based upon the. assumption that L(q) is uniformly parabolic within a bounded open
domain fl; that is, the. lead term in equation, (28) is uniformly elliptic within its domain
R, with closure 8R, where ;,

. :. (29)

and Xo = X- If equation (28) is uniformly parabolic, unique solutions for q are obtained
upon specification of functional constraints -on 9fi = 9R x fxo,x) and an initial-condition
specification on RU3R x xo. For constraints on 9J2, the general form relates the
function and its normal derivative everywhere on the closure aR as
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= a(1)q(xi,x) + a(2)Kq(xi,x),knk - a(3) ^ 0 (30)

In equation (30), the a'l'(xj[,x) are user-specified coefficients, the superscript bar
notation constrains x^ to aR, and nk is the local outward-pointing unit normal vec-
tor. For an initial distribution, assume that

is given throughout RuaR x x0.

The finite-element solution algorithm is established for the equation system (28)
to (31) by using the method of weighted residuals (MWR) formulated on a local basis.
Since equation (28) is valid throughout O, it is valid within disjoint interior subdomains
Om described by (Xi,x)eRm x [XO)X), called finite elements, wherein URm = R. An
approximate solution for q within Rm x [xo,x), called qm(xt,x), is formed by expan-
sion into a series solution of the form

! . (32)

In equation (32), the functionals *k(xj) are subsets of a function set that is complete on
Rm. The expansion coefficients Qk(x) represent the unknown x-dependent values of
qm(xi,x) at specific locations interior to Rm and on the closure aRm, called nodes of
the finite-element discretization of R.

To establish the values taken by the expansion coefficients in equation (32), require
that the local error in the approximate solution to both the differential equation Wqm)
and the boundary-condition statement #(qm), for aRmnaR* 0, be rendered orthogonal
to the space of the approximation functions. By employing an algebraic multiplier \, the
resultant equation sets can be combined as

sf {$(xi)}L(qm)dT-X f {*(xi)>£(qm)da = (O) (33)
IH v"D -S \ 11A/ ^AR —*""*

where S is the mapping function from the finite-element subspace Rm to the global
m

domain R, commonly termed the assembly operator. The number of equations (33)
prior to assembly is identical with the number of node points of the finite element Rm.

Equation (33) forms the basic operation of the finite-element solution algorithm and
of the COMOC computer program. The lead term can be rearranged, and \ determined
by means of a Green-Gauss theorem:

{*(xi)}K[Kqm,k], . . d T - i c f i {*(xi)> Kq^nk da - K f {$(Xi)} ,kKqm,
L J K "aR K

(34)
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For aRnaRm nonvanishing (eq. (34)), the corresponding segment of the closed-surf ace
integral will cancel the boundary-condition contribution (eq. (33)) by identifying \a^'
with K of equation (28). The contributions to the closed-surf ace integral (eq. (34)), ,
where 8RmnaR = 0, can be made to vanish (ref. 6). When equations (30) to (34) are
combined, the globally assembled finite-element solution algorithm for the representa-
tive partial differential equation system becomes .

S
m -*L

m
= {0} . (35)

The rank of the global equation system (eq. (35)) is identical with the total number of node
points on RuaR for which the dependent variable requires solution. Equation (35) is a
first-order, ordinary differential system, and the matrix structure is sparse and banded.
Solution of the ordinary differential equation system is obtained by using a predictor -
corrector finite-difference numerical integration algorithm (ref. 6).

A solution algorithm is required for the continuity equation, which is retained as
equation (3) for boundary-region flows. Since equation (3) is an initial-value problem on
pu2 as a function of X2> with xj and xj appearing as parameters, the approximation
function need span only the transverse coordinate direction as

= (36)

The matrix elements of {pV} are nodal values of puX; their functional dependence
requires solution of equation (3) along lines (xj^) equal a constant. .Since equation (3)
exists in standard form as an ordinary differential equation, direct numerical quadrature
yields the required solution at node points of the discretization.

COMOC COMPUTER PROGRAM

The COMOC computer program system is being developed to transmit the rapid
theoretical progress in finite-element solution methodology into a viable numerical solu-
tion capability. In the course of generating this general-purpose system, several vari-
ants of COMOC have been developed for specific problem classes, including transient
thermal analysis and the two-dimensional Navier-Stokes equations as well as the three-
dimensional boundary-region equations. The present operational variant of COMOC is
capable of solving each of these problem classes and has been extended to include the
parabolic Navier-Stokes equation system. An on-line restart feature allows the user to
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switch between boundary-region and parabolic Navier ̂ Stokes systems according to the-
requirements of the problem at hand. Generated solutions determine the three-
dimensional distribution of all dependent variables and solution parameters for flow of a
viscous, heat-conducting, multiple -species; compressible fluid including combustion..
The'flow may be external or confined, subsonic or supersonic, laminar and/or turbulent,
and can contain up to nine or more distinct' species in frozen composition or undergoing
equilibrium or complete chemical reaction for a hydrogen-oxygen-air system.

The finite-element solution algorithm is utilized to cast the original initial-valued,
elliptic boundary-value problems into large-order systems of purely initial-value prob-
lems. The program then integrates the discretized equivalent of the governing equation
system in the direction parallel to the predominant flow. Initial distributions of all
dependent variables may be arbitrarily specified, and boundary constraints for each can
be specified by the user on arbitrarily disjoint segments of the solution domain closure.
The solutions for each dependent variable, and all computed parameters, are established
at node points lying on a specifiably nonregular, computational lattice formed by plane
triangulation of the elliptic portion of the solution domain. Each of the computational
triangles is spanned by a linear approximation function used for all independent and
dependent variables as well as each solution parameter.

The COMOC system is built upon the macrostructure illustrated in figure 3. The
main executive routine allocates core by means of a variable dimensioning scheme based
upon the total degrees of freedom of the global problem. The size of the largest problem
that can be solved is thus limited only by the available core of the computer in use. .The
precise mix between number of dependent variables (and parameters) and fineness of the
discretization is user-specifiable and widely variable. The input module serves its
standard function for all arrays of dependent variables, parameters, and geometric coor-
dinates. The discretization module forms the finite-element discretization of the elliptic
solution domain and evaluates all required finite-element nonstandard matrices and
standard-matrix multipliers. The initialization module computes the remaining initial
parametric data required to start the solution. The integration module constitutes the
primary execution sequence of problem solution. It utilizes a highly stable, predictor-
corrector integration algorithm for the column vector of unknowns of the solution. Calls
to auxiliary routines for parameter evaluation (viscosity, Prandtl number, source terms,
combustion parameters, etc.) as specified functions of dependent and/or independent vari-
ables are governed by the integration module. The user has considerable latitude to
adapt COMOC to the specifics of his particular problem by directly inserting readily
written subroutines to compute special forms of these parameters. The output module
is similarly addressed from the integration sequence and serves its standard function
via a highly automated array display algorithm. COMOC can execute distinct problems
in sequence and contains an automatic restart capability to continue solutions.
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EXPERIMENTAL DATA

The presented theoretical model has been applied to the prediction of mixing and
reaction of hydrogen in a supersonic flow field simulating a scramjet combustor. Two
hydrogen injector arrangements were considered: (1) a row of circular orifices on the
wall that inject hydrogen transverse to the main flow and (2) strut injectors in both a
parallel and a transverse injection configuration. Before discussing the comparisons
between theory and experiment, it is appropriate to review the source and nature of the
experimental data.

Nonreacting Flow

In the experimental investigation reported in references 8 and 9, hydrogen was
injected from multiple, laterally disposed circular orifices transverse to a nominal
Mach 4 airstream over a flat plate. The turbulent boundary layer was approximately
3 injector diameters thick at the injector station (without injection). Tests were con-
ducted for ratios qr of jet dynamic pressure to main-stream dynamic pressure of 0.5,
1.0, and 1.5. Each of these conditions was sufficient to maintain the injectors in a choked
condition. For each value of qr, data were obtained at stations xj/d = 7, 30, 60,
and 120 downstream of the point of injection, and for individual injector spacings s/d of
00 (single jet), 12.5, and 6.25. At each test condition (qr and ' s/d) and at each station
xj/d, the hydrogen-air mixing region was mapped by making a vertical survey directly
downstream of the center jet and horizontal surveys at three elevations above the plate
surface. In each survey, the measurements consisted of a two-dimensional mapping of
local pitot and static pressures and the molar concentration of hydrogen. From these
data, profiles of velocity, mass flux, and hydrogen mass fraction were determined.
Details of the probe design, measurements, and data reduction may be found in refer--
ences 8 and 9.

Reacting Flow

An experimental investigation of the reaction of hydrogen in a hot supersonic test
gas flowing through a two-dimensional duct is reported in reference 10. The hydrogen
was injected at ambient temperature and transverse to the main flow from rows of cir-
cular orifices in opposite walls of the duct. The test gas, a simulation of supersonic air-
flow at altitude, was supplied by a burner in which hydrogen, oxygen, and air mixtures
were reacted in such proportions that the resulting oxygen concentration of the mixture
was 21 percent by volume (vitiated air). Nominal stagnation conditions of the test gas
were 2200 K and 2.7 MN/m2 at a Mach number of 2.7. Details of the burner operation
are given in references 24 and 25. Several injector configurations differing in the num-
ber, size, and spacing of the distinct injectors were tested at nominal equivalence ratios
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4> of 0.5 and 1.0. An equivalence ratio of unity signifies a stoichiometric mixture; less
than unity indicates fuel-lean operation. Data measurements consist of two-dimensional
distributions of wall static pressure, bulk heat transfer to the water-cooled wall, and
surveys of pitot pressure and gas composition across the horizontal center plane of the
duct exit.

Strut Injector Tests

Additional reacting-flow data have been obtained (ref. 11) for parallel and perpen-
dicular (to the main flow) injection of hydrogen from strut injectors spanning the combus-
tor. The objective of these tests was to determine the flow fields produced by simple
strut injectors and to compare these results with theory based on a one-dimensional
analysis and empirical mixing models. For these tests a hot-gas simulation of Mach 7
flight was made. The test gas was supplied by the hydrogen-oxygen-air burner men-
tioned in the previous section. For the perpendicular injection strut, the hydrogen was
injected from equally spaced, choked orifices drilled just downstream of a modest
rearward-facing step located at the maximum strut thickness. The parallel injection
strut employed five equally spaced conical nozzles in the base of strut. Aerodynamically,
both struts were simple 6° half-angle wedges that spanned the width of the duct. Data
acquisition consisted of distributions of duct-wall static pressure and surveys of pitot
pressure and gas composition on the horizontal center plane at the duct exit. Details on
the operation of the hydrogen-oxygen-air burner, the probe measurements, and data
reduction can be found in references 24 and 25.

NUMERICAL RESULTS

The objective of this study is to formulate and evaluate a theoretical model for
describing the complex three-dimensional phenomena associated with scramjet combus-
tion of hydrogen-air systems at supersonic speeds. It has been hypothesized that the
finite-element solution algorithm for the governing three-dimensional equation systems,
coupled with elementary mixing-length turbulence modeling and constant Schmidt and
Prandtl numbers, represents an adequate first step toward the desired goal. The numer-
ical results presented in this section verify this supposition and its limitations and are
presented in three categories. First, it is essential that the accuracy and convergence
character of the finite-element solution algorithm be numerically assessed and verified.
Results which provide this required information are presented for lower dimensional
problems involving laminar and turbulent flows. Second, it is necessary to validate the
hypothesized turbulence model by correlation of predictions with experimental test data
over a wide range of design parameters. Finally, for the theoretical model to be viable
as a design tool, it is necessary to establish a means for extending the initialization pro-
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cedures to hot flow and to obtain correlation with experimental.data for practical com- ;: •
bustor configurations. The numerical results of these three distinct phases are corre-
spondingly discussed in this section.

Accuracy and Convergence

As noted in the Introduction, the conventional two- and three-dimensional boundary-
layer equations represent a dimensionally degenerate subset of the equation systems
under study for application to supersonic combustion devices. With the boundary-
condition versatility that is intrinsic in the finite-element solution technique, it is possi-
ble to establish a two-dimensional solution within the three-dimensional solution domain
and solve the corresponding supersonic boundary-layer problem without alteration to the
code. The generated results may then be evaluated for accuracy and convergence by
comparison with solutions produced by finite-difference techniques and with a similarity •
solution for constant specific heat. -The check .case corresponds to a nominal Mach 5,
laminar, two-dimensional, air boundary-layer flow over an adiabatic wall in a favorable
pressure gradient. With the assumption of constant specific heat, the flow is isoenergetic
and.it is necessary only to solve the xj momentum equation and the continuity equation.
The initial distribution for longitudinal velocity uj is established from the similar solu-
tion for 0 = 0.5 and S=0 of reference 26. The initial distribution for U2 is
obtained iteratively, and Sutherland's law is employed to compute viscosity.

The test case is initialized at xj = 0.03 m downstream from the leading edge.
The boundary-layer thickness at this station 6O is 0.0039 m, the local Mach number
Me is 3.77, the Reynolds number NRG is 0.83 x lO^per meter, and the adiabatic wall
temperature * Tw is 1000 K. Shown in figure 4 are the COMOC computed distributions '
of skin friction, local free-stream Mach number, and boundary-layer thickness for the
case of constant specific heat. These were obtained with two uniform finite-element dis-
cretizations corresponding to four and eight elements spanning the initial boundary-layer
thickness. The input static pressure distribution Pe(xj) is also presented for reference.
The boundary-layer thickness has increased more than fourfold within the solution domain.
Only small differences, on the order of about 2 percent, exist between the two solutions,
the finer discretization producing a slightly larger skin friction and smaller local Mach '
number. Superimposed in figure 4 for comparison purposes are the results for the simi-
lar solution (ref. 26) and a 20-zone finite-difference solution obtained with the Von Mises
coordinate transformation. Agreement among the four, solutions is excellent (within
2 percent) for skin friction. .The similar solution for Me lies between the COMOC and
finite-difference solutions, and overall agreement is within ±3 percent.

' Shown in figure 5 are computed velocity profiles at xj/6o = 22.7, which is about
midway through the presented solution domain. Shown for reference is the initial longi-
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tudinal velocity profile with the node locations of the four-element discretization super-
imposed. Both COMOC solutions produce uj distributions that are slightly more con-
cave upward in the midregion in comparison with the similar or finite-difference solution.
The eight-element COMOC solution lies closer to the similar solution in the region where
the two finite-element solutions differ. The finite-difference solution lies appreciably
below both the COMOC and similar solutions near the free stream. The computed trans-
verse velocities, which are also plotted in figure 5, show only slight differences between
the two discretization solutions. The trends of the COMOC solutions are in excellent
agreement with the established procedures; unfortunately, since each method of solution
is distinctly numerical, no absolute accuracy assessment is established. However, for
an incompressible boundary-layer flow, absolute accuracy and convergence rates for the
finite-element solution have been established to be close to theoretically predicted values
(ref. 27). . .

This check case establishes an accuracy assessment of solution of three-
dimensional boundary-region equations. A similar evaluation of the parabolic Navier-
Stokes equation system has been obtained for three different channel flow configurations.
Figure 6 summarizes the results for a nonreacting subsonic flow to evaluate the ability
of the pressure solution algorithm (eq. (20)) to compute a constant streamwise gradient.
For the fully developed channel flow, streamwise velocity and the pressure gradient are
computationally maintained to within ±2.5 percent of their initial values. The computa-
tions for developing channel flow correctly predicted the downstream distance required
to attain fully developed flow; that is, COMOC predicted that the flow was fully developed
at xj/h = 33 (compared with xj/h = 30 reported in ref. 28). A similar evaluation was
performed to assess channel flow computations with heat addition. Conditions were
selected such that in the initial portion of the flow, reaction of hot air with cold hydrogen
induces a favorable pressure gradient (heat addition in subsonic flow). However, after
the available oxygen supply is exhausted, the continued mixing of the cold hydrogen with
the heated combustion products produces an overall temperature drop and, hence, an
adverse pressure gradient. The computational results are summarized in figure. 7; the -
trends are observed to have been correctly captured by COMOC while maintaining con-
servation of mass, to within ±1.0 percent. . .

Correlation With Cold-Flow Data ,

Early design studies of a prototype injection scheme for a supersonic combustor
(ref. 3) considered the transverse injection of hydrogen as the primary means of fuel •
introduction into the airstream. Consequently, as discussed in the previous section,
detailed concentration, velocity, and pressure measurements were made for an appropri-
ately scaled experimental configuration (shown in fig. 8). As a function of the dynamic
pressure ratio, the sonically injected hydrogen penetrates the turbulent supersonic air
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boundary layer to a certain distance and in the process turns downstream as illustrated.
This complex turning phenomenon exerts considerable influence on the initial mixing of
the injectant with the main flow. Furthermore, and of equal importance, the subsequent
hydrogen distributions (fig. 8) are convected downstream by the main flow while the
hydrogen diffuses in the plane transverse to this direction. For multiple-injector con-
figurations, the concentration patterns merge as illustrated; thus, a three-dimensional
effect in addition to mixing and reaction is imposed.

To verify a viable theoretical model, it is necessary to evaluate the appropriate-
ness of the hypothesized mixing-length turbulence model. The detailed experimental
results of Rogers (refs. 8 and 9) for the configuration illustrated in figure 8 provide the
necessary data base for comparison of predictions. Initial conditions for the predictions
were established from these data, and the downstream station at xj/d = 30 was selected
as the initialization station. The original raw data consist of a single vertical traverse .
and three lateral traverses on the transverse plane at several xj stations. The mea-
sured hydrogen mass fraction distributions appear of Gaussian shape; however, the sym-
metry plane of the data was variously displaced from the geometric symmetry plane.
Although the entire flow field could be computed numerically, the strong appearance of a
data symmetry plane suggested establishment of a corresponding computational solution
domain. Therefore, a cubic spline interpolation program was applied to the raw data
program to establish the xg/d location of the data symmetry plane via a minimization
criteria on the wings of the Gaussian-type distributions. The spline package then inter-
polated the raw data for hydrogen mass fraction and uj and output the evaluation of the
interpolation polynomials at node points of the finite-element discretization of the trans-
verse plane. A representative case of the spline-computed distributions of hydrogen
mass fraction is shown in figure 9 in comparison with the spread and context of the
experimental data.

Although plots of the form of figure 9 are geometrically aesthetic,, the transition
from the initial distributions and significant detail on solution accuracy and trends are
better obtained by plotting concentration profiles (x2/d against YH) along planes ' .
xg/d = Constant at each longitudinal station for which data measurements exist. The
parameters evaluated experimentally include dynamic pressure ratio qr and discrete
injector spacing s/d for a Mach 4 flow in an unconfined geometry:

Discrete injector
spacing, s/d

oo

12.5
6.25

Dynamic pressure ratio, qr

0.5

y

1.0

. ' '
1.5

^/

^/
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Computational evaluation of the influence of all conditions has been made with the three-
dimensional boundary-region variant of COMOC and a nonuniform discretization of the
transverse plane (R in eq. (29)) into 100 finite elements. As the study progressed, com-
putational evaluations were also made of the influence of a nonzero transverse velocity
component 113 as well as the magnitude of the sublayer constant X in the mixing -
length model. • . . < - • * • • - .

Presented in figures 10 and 11 are.the 'computed distributions of hydrogen mass
fraction on planes xg/d = Constant at downstream stations xj/d = 60 and 120 for the
test conditions qr = 1.0 and s/d = 12.5. In addition, the "universally" accepted value
\ = 0.09 of the mixing-length model (eq. (27))'was employed, and zero transverse veloc-
ity was assumed. In all cases, the symbols represent data or data spread corresponding
to "best symmetry" at the particular location. The solid curves denote the computed
distributions, and each dashed curve corresponds to the initial distribution faired through
the data at xj/d = 30, which is presented for reference. At the first downstream station
(fig. 10), agreement of the computational.predictions with data is generally acceptable
everywhere except near the plate surface for the first two profiles corresponding to the
plane of symmetry and the next adjacent plane, xj/d = 0 and 1.0. Agreement with data
is degraded somewhat at the far downstream station (fig. 11), with predictions missing
data points both near the wall and near the peak for the first two representations. Out of
the core region of the jet, agreement with data remains quite good, however.

The correlation between predictions and data for the test case shown in figures 10
and 11 is a significant improvement over previous attempts (ref. 5). For good agree-
ment in the centroidal region of the hydrogen jet, it is necessary that the maximum
hydrogen concentration remain off the wall. Therefore, either from three-dimensional
effects or a complex turbulence interaction between the jet and the wall, there is a
mechanism in play capable of resisting the unidirectional trend of maximum diffusion to
the wall. It has been hypothesized, as a result of the initial studies (ref. 5), that the
existence of a mass flux transverse to the main flow direction and along the plate surface
might account for the experimentally measured centroidal peak. Such a transverse mass
flux could be initiated by the displacement effect of the sonic hydrogen jet issuing trans-
verse to the main flow, since in such an interaction problem, the jet appears to the main--;
stream flow in many ways similar to an impervious body. Consequently, immediately
downstream of the transverse jet, there must exist an approximately spheroidal fixed
recirculation region near the wall, and a transverse mass flux would be required to alle-
viate a localized low-pressure area just downstream of this bubble.

This hypothesis was computationally evaluated for the test case just described by
imposition of a small negative, transverse velocity distribution beneath the measured
hydrogen concentration maximum at xj/d = 30. The magnitude and vertical extent of the
imposed transverse velocity on the symmetry center plane are shown in figure 12(a).
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Figure 12(b) illustrates the lateral spread of the imposed transverse velocity distribution.
For reference purposes, figure 12(a) also illustrates the longitudinal velocity distribution'
ui on the center plane at the initial station xj/d = 30 as well as the predicted distri-
butions at the remaining downstream data stations.

The influence of the imposed transverse velocity on the predicted distributions of
hydrogen mass fraction at the two downstream data stations is shown in figures 13 and 14.
The selected ug velocity distribution is observed not to alter significantly the mass
fraction distributions above the peak but does substantially promote the existence of a
local off-plate maximum in the centroidal region at xj/d = 60. However, by the time
the last data station is reached (fig. 14), the imposed transverse velocity distribution has
been essentially dissipated (see fig. 12), and the computed distributions of hydrogen mass
fraction in the centroidal region are noted to revert to the form of the maximum existing
at the plate surface. It can be concluded, therefore, that transverse mass flow is prob-
ably of influence in the near region downstream of the point of injection. However, there
is as yet some undetermined mechanism for maintaining the off-axis peak in the mass
fraction distribution at stations far downstream. This undoubtedly points to some defi-
ciency in the turbulent mixing model for this configuration and serves to emphasize the
need for a more comprehensive theoretical model for describing three-dimensional tur-
bulent mass mixing. For example, an approach based on turbulent kinetic energy and
dissipation function might prove valuable.

After some computational experimentation, it was determined that all data could be
correlated with superior accuracy by changing the value of "the mixing-model sublayer
coefficient \ to 0.07 and keeping (Npr)T = 0.7. fit should be noted that essentially the
same hydrogen distributions could be predicted using the combination of \ = 0.09 and •' •
(Npr)T = 0.90. The difference between solutions obtained using \ = 0.07 arid

(Nprj =0.7 would be primarily in the velocity field.\ Although this differs from the

universally accepted value, it is,certainly not unreasonable to expect this value to change
somewhat because of the three-dimensional character of the problem being studied. The
effect, of \ on predicted distributions of hydrogen mass fraction is shown in figures 15
and 16 for the test .case qr = 1.0 and s/d=12.5. The previous good agreement
obtained at station xj/d = 60 (fig. 3) has not been degraded and has actually been
improved away from the core region. More importantly, at xj/d = 120, a distinct
improvement in-agreement with the data for all profiles is indicated. Since the purpose
of the present study is not a detailed development of a mixing model per se but evalua-
tion of the analytical concept, the value of \ = 0.07 is used uniformly in all subsequent
data correlations for both cold- and hot-flow configurations. •

The influence of injectant dynamic pressure ratio qr on the validity of the hypoth-
esized mixing-length turbulence model has been evaluated for the test cases s/d = 12.5,
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\ = 0.07, and 113 = 0 at qr = 0.5, 1.0, and 1.5. . A summary of the results is presented
in figure 17, which shows the comparison between predictions and data on the symmetry
center plane X3/d = 0 and at the lateral plane X3/d = 2.0. By and large, agreement
with data is consistent except for the low-pressure case (qr = 0.5 on the symmetry
plane), where overdiffusion is predicted. The trend of these results might have been
anticipated in that the test case at the lowest dynamic pressure ratio corresponds to a
weak jet dominated by near-wall effects. Imposition of a transverse velocity field • U3
might enhance agreement. This has not been verified, however, since low dynamic pres-
sure ratios are of marginal practical interest.

The influence of spacing between discrete ej ectors s/d has been computationally
evaluated for qr = 1.0 and s/d =12.5 and °°. Although more data exist for qr = 0.5,
the results of this comparison are liable to be inconclusive on the basis of the relatively
poorer agreement seen in figure 17. Computed distributions of hydrogen mass fraction
are shown in figure 18 in comparison with data for the symmetry center plane X3/d = 0
and one other plane (x3/d = 2.0 for s/d = 12.5 and X3/d =2 .5 for s/d = °°). The
values \ = 0.07 and U3 = 0 were retained for this comparison, and agreement of the
predictions with data on the symmetry plane is observed to be consistent with previous
experience. Somewhat poorer agreement exists off the symmetry plane for the single
jet (s/d = °°). This result might be expected, as three-dimensional diffusion effects are
probably more dominant for the single jet, since it diffuses into a doubly unbounded
domain. All multiple-jet configurations are expanding into only a singly unbounded
domain downstream of merged interaction.

As with any multidimensional computations in compressible viscous fluid mechan-
ics, it is important to establish a quantitative accuracy assessment. For the cold-flow .
configuration studied and reported herein, an accuracy measure of the adequacy of the
employed discretization is possible by determining the conservation properties of the
solution. For the cold mixing case, the species-continuity equation for hydrogen mass
fraction can be written in explicit conservation form. Integrating this equation over a
three-dimensional control volume and using Gauss' theorem (ref. 5) determines that the
total hydrogen mass flow> that is, pujYH, would be rigorously conserved by an analytic
solution. COMOC evaluates this parameter at each output station by using* linear finite- "
element approximation functional^ for each variable and performing the integrations
analytically. (Thus, the order of accuracy of the evaluation is consistent with that of the
solution of the partial differential equations.)

For the test conditions qr = 1.0, s/d =12.5, and u3 = 0, with \ = 0.07 (see
figs. 15 and 16), a monotonically increasing loss of hydrogen mass flow with increasing,
distance downstream was computed; at x^/d = 120, the computed loss equaled 8.8 per-
cent of the mass flow computed at station x^/d = 30. The 100-element standard nonuni-
form discretization was refined by a factor of 2 in each coordinate direction to produce
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400 finite elements spanning R (see fig. 19, diagonals omitted), and the computation
was repeated on 30 ^ x^/d ^ 60. Over this interval, the coarse discretization yielded a
computed 5-percent loss in hydrogen mass flow. The fine discretization produced a
modest variation in computed hydrogen mass flow over the initial interval, with a 1—-
percent net loss computed by xj/d = 60. The resulting detailed differences in computed
distributions of hydrogen mass fraction are shown in figure 20. Above the peak and out-
side the core region, differences are undiscernible on the scale of the plots. Within the
core region, the maximum difference in computed hydrogen levels is less than 8 percent,
which compares favorably with the 10- to 20-percent spread of the "best symmetry" data.
The computational expense of these comparison solutions differed by over an order of
magnitude. On an IBM 360/65, using no out-of-core devices for either case, the CPU
time of the 100-element solution was about 250 seconds; on the same interval, the 400-
element solution required 2600 seconds! Two parts constitute this increase (see ref. 6):
a factor of about 4, due to the fact that the element DO loops in COMOC were 4 times
longer, and a multiplicative factor of about 2, due to increased solution stiffness resulting
from the refined grid itself. The ability of coarse finite-element discretizations, using
low-order functionals, to preserve adequate engineering solution accuracy appears a dis-
tinct feature of the algorithm.

From these extensive correlations with data and the comprehensive numerical
experimentation, it appears that the mixing-length turbulence model coupled with the
finite-element solution of the three-dimensional boundary-region equation system pro-
vides an adequately accurate diagnostic tool for three-dimensional mixing of cold hydro-
gen injected into a supersonic turbulent boundary layer for dynamic pressure ratios qr

greater than 0.5 and for multiple jet configurations. Hence, the results discussed in
these two sections give sufficient basis to pursue the computations detailed in the next
section.

Extension to Hot-Flow and Combustor Correlations

A distinct feature of the three-dimensional boundary-region and parabolic Navier-
Stokes equation systems is the capability to obtain a three-dimensional solution while
marching in one coordinate direction. Elimination of the requirement for a downstream
boundary condition is particularly important. For the subject mixing and combustion
studies, however, the corresponding penalty is that an accurate initial condition is
required to model adequately the complex near-injection flow field under study. In the
previous section, the computations took advantage of detailed experimental profiles for
the establishment of initial conditions. In the more general case, and in particular for
hot-flow cases with combustion, detailed distributions of initial conditions are specifically
unavailable, and a theoretical device for establishing the starting point of the solutions is
required. Flow fields involving the parallel injection of dissimilar fluids present no dif-
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ficulty, since smooth transitions occur and boundary-layer and shear-layer concepts are
appropriate. However, for transverse injection, this is not the case, and some alterna-
tive means is required.

In anticipation of this need, a task in the early phases of the study was to evaluate
the concept of a numerical "virtual source" as a means for eliminating the requirement
for detailed initial conditions (ref. 5). Injection of a jet from an orifice in a plate trans-
verse to a supersonic airstream has been the subject of a number of investigations. The
important correlating parameter appears to be dynamic pressure ratio qr. Most exper-
imental data are for large values of qr, for which the jet has sufficient momentum to
penetrate the boundary layer and produce a complicated separation region and bow shock
ahead of the jet. However, for the present cases, qr ranges between 0.5 and 1.5, and
a significant part of the jet remains within the turbulent boundary layer. Hence, mixing
is initiated immediately downstream of injection. From these considerations, a theo-
retical model was proposed for establishing a barrel-shock—Mach disk hypothesis for
turning of the transverse jet parallel to the main flow (see fig. 21). An analysis based on
one-dimensional considerations was developed to characterize the jet turning. The
important parameters in the model are dynamic pressure ratio qr and free-stream
Mach number M^, and the output is injectant momentum and flow area. Details of the
model are presented in reference 5.

The validation of the concept of the virtual source as an initial-condition generator
was accomplished by using the detailed cold-flow experimental data discussed in the pre-
vious section. Shown in figure 22 is the initial condition velocity surface, uj vs.
(X2,X3\, corresponding to a transverse cold hydrogen jet embedded (within the depression
in the velocity surface) within the turbulent boundary-layer profile at qr = 1.0. The
detailed predicted distribution of hydrogen mass fraction are shown in figures 23 and 24
for the virtual-source simulation of the standard test case (qr = 1.0 and s/d = 12.5)..
For these computations, transverse velocity us was assumed zero and X = 0.07 in the
turbulence model. Even after marching only 30 diameters downstream from the point of
injection, agreement between the predictions and the data (fig. 23) is admirable, espe-
cially in the centroidal region, where there is an excellent prediction of an off-plate peak.
At the final station x^/d = 120 (fig. 24), agreement between the virtual-source simula-
tion and data is excellent, being essentially identical with the results starting with data at
xj/d = 30 (fig. 11).

Shown in figure 25 is an alternative method for presenting these data which will be
extended to the hotrflow comparisons. This figure presents the peak hydrogen concen-
tration as a function of distance downstream. The agreement with data is excellent in
the range 30 ? xj/d ^ 120. The disagreement at Xj/d = 7 is not serious in light of the
further downstream agreement; the indicated data point may well be significantly in error.
Shown also in figure 25 are the trajectories of the peak hydrogen concentration above the ",
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plate X2/d and the lateral spread of the jet determined at the xg/d coordinate where
the local hydrogen concentration equals 10 percent of .the local maximum. Observe that .
the local peak of the elevation trajectory sinks to the plate surface downstream of
xj/d =* 60, as was observed for the multitudinous cold-flow data. The agreement of
lateral spreading rate with data is excellent.

At the lower right in figure 25 is a computation of mixing efficiency 77, defined as :.
the* fraction of hydrogen, integrated over the flow cross-sectional area at a given station, •;
that would react if complete reaction with the available oxygen were to occur. This :
parameter has been used for correlating cold-flow, data (ref. 9) and is readily computed ••.
by COMOC as an output parameter by means of the.integration techniques utilized for
measuring hydrogen mass flow. Hence, figures 23 to 25 demonstrate that the virtual-
source concept of transverse hydrogen injection for the cold-flow configuration effec-
tively simulates t h e injection phenomenon. . . . . . .

It is therefore hypothesized that the virtual-source concept is appropriate for com- .
bust ion studies as well, and the experimental verification of this hypothesis is sought.
As a first step, it is appropriate to measure the influence of combustion on.the virtualr --
source cold-flow configuration. Shown also in figure 25 are computations carried out to
Xj/d = 30 for the cold-flow simulation, but combustion of the hydrogen is now allowed to;

occur according to the complete-reaction hypothesis (eq. (14))-. Note that the trajectory
of maximum hydrogen mass fraction lies considerably above that for the cold-flow, non-
reacting configuration. However, on the basis of mixing efficiency 77,.there .is very lit-
tle difference in overall mixing between the cold reacting and nonreacting cases.

The cold-flow problem is of marginal interest, however, since the average equiva- •"
lence ratio of the cold-flow configuration (0 = 0.04) lies well below the design level for a-
practical combustor. Note that equivalence ratio is defined (ref. 11) strictly in terms of
the global mass flows of hydrogen and air. For stoichiometric combustion, 0 = 1; for ..,• .
fuel-lean operation, $ is less than 1. It is coincidental that the cold-flow, virtual- <
source .configuration can befthermodynamically altered (only) to correspond to conditions. ,.
similar to test point 4 of reference 10. To simulate the test configuration, the cold flow
was computationally vitiated by imposing an arbitrary uniform background hydrogen, con- :

centration (of 1 percent) and augmenting the oxygen level of the base flow such that the
corresponding composition of the computational test gas simulates the hot (wet) air used,
for the experiment. The total temperature of the computational simulation was approxi- •
mately 2000 K; the corresponding mass flow of cold hydrogen for the vitiated virtual
source yielded 0 = 0.4, in comparison with 0 = 0.5 for the experiment. Shown in fig- •
ure 25 are the trajectory of maximum hydrogen mass fraction the.elevation trajectory, .
and the lateral spreading rate for the vitiated virtual-source simulation of the test con-
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figuration. 'Note that the elevation trajectory of the hot-flow configuration follows very •' -
closely the cold-flow data, a result possibly of the cold-wall (tw = O.STt) boundary con'di- '
tion used for the computational simulation. It may also reflect the somewhat lessened
lateral spreading rate for the vitiated reacting case, as shown in figure 25. Mixing effi-
ciency was not computed for this vitiated combustion case. However, equivalence ratio,
as a node point parameter, can be computed at any point in the solution domain. At the
far right of the mixing-efficiency curve in figure 25, the experimentally determined range,
of equivalence ratio for test point 4 (ref. 10) is compared with the computed values. The j
presented computational values are in qualitative agreement with the experimental
extremums on the center plane at the duct exit. . . •;

Of greatest practical importance, recent thinking on design of scramjet combustors •
hypothesizes that, depending upon flight Mach number, two fuel injection'modes will be
required. For example, an experimental model of a strut injector system (fig. 26) is
currently under construction at Langley Research Center for evaluation of combustor
performance as a function of injection mode. Design of this device was augmented by an
earlier experimental program intended to evaluate the essential character of the two dis- ;

tinctly different injection modes proposed for this type of combustor (ref. 11). Sketches
of the perpendicular and parallel injection struts that are associated with current design ..
technology are shown in figure 27. In each case, given nearby is a virtual-source simu- . .
lation of the proposed injection mode showing the location of the discrete injectors as - .
well as. the orientation of the virtual source within the computational domain. In the lower
half of figure 27, an exploded view of the virtual-source simulation for the perpendicular
injection mode is shown. The parallel injector corresponds to coaxial injection; its com-
putational source domain is also shown in figure 27. , ,

Velocity surface distributions for longitudinal velocity uj calculated for the • .
virtual-source simulation of each injector configuration are shown in figures 28 and 29..
Note that for the perpendicular injection strut (fig. 28), the cold hydrogen is embedded in
a subsonic jet indicated by the severe depression in the velocity surface. This depres- ;.
sion rapidly vanishes, as shown in the surface plot at the downstream'station. Conr
versely, for the parallel injection mode (fig. 29), the simulation requires a supersonic .
hydrogen jet embedded within the air boundary-layer flow, hence the local velocity peak. ..
This peak, likewise, is completely dissipated by the time the flow has proceeded down-
stream. To model this combustor, which employed a combustion duct with a modestly ;
expanding cross-sectional area, the measured experimental pressure distribution was :
used for the computations, since COMOC is not yet operational with coordinate stretch- :
ing functions in three dimensions. . . ,

Shown in figure 30 is the trajectory of the maximum hydrogen concentration as a
function of injection mode for the experimental results reported in reference 11. Note
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indeed that the perpendicular injection mode promotes much stronger mixing and hence
produces a combustion process that proceeds considerably more rapidly than that corre-
sponding to the parallel injection mode. Also plotted in figure 30 are the pressure dis- ;

tributions used for the computations, as well as the computed distribution of equivalence
ratio on the center plane at xj/d = 150 across one-half of a jet. Note that for the par-
allel injection mode, the range of computed equivalence ratio is twice that of the perpen-
dicular case, in qualitative agreement with the data ranges from reference il.s Further-
more, the experimental evaluation of the differences in the flame shape for the two " '
injection modes (ref. 11) with respect to apparent "mixing rate is in agreement with the
maximum hydrogen trajectories computed by the virtual-source simulation.

Hence, the analytical predictions are certainly not contrary to the available experi-
mental information; more positively, they appear to be in essential agreement with the
experimentally determined trends. Refinement of the theoretical model is certainly
required, but the crucial confirmative results are at hand. The greatly detailed informa-
tion available from the computational solutions may encourage the experimentalist to
utilize the analytical capability to guide the design of future experiments. In this manner,
important and relevant experimental data crucial to the ultimate verification of the valid-
ity of the analytical approach can be obtained. The availability of a computational and
theoretical model that closely simulates the actual experimental configuration may thus
enhance the overall value of the combustor design program in terms of information
gained per unit expenditure of dollars and/or man hours. For example, when domain dis-
cretizations involving about 100 triangular finite elements were used, the parallel-strut
test required only 1000 seconds of CPU time on an IBM 360/65 to run to xj/d = 200.
The perpendicular-strut test, with its much stronger mixing (and hence a stiffer differ-
ential equation system), required only 1500 seconds of CPU time to run to xj/d = 150,
Operation of the COMOC program is highly automated, and the same error criterion was
used for both tests. An experienced user can prepare an entirely new data deck in about
an hour. Execution of each test case, requiring evaluation of about 15 parameters and
dependent variables at each node point of the discretization of R and at each downstream
computational station, required about 340 000 bytes of rapid-access core in the computer.
The next generation of computer hardware will significantly reduce present constraints
with regard to both core requirements and CPU time.

CONCLUDING REMARKS

An analytical investigation has been presented on the turbulent mixing and reaction
of hydrogen jets injected from multiple orifices transverse and parallel to a supersonic
air stream. The proposed three-dimensional differential equation systems were solved
by means of a finite-element algorithm in concert with a turbulent-mixing model based
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on the elementary mixing-length hypothesis. The computational results have provided
three-dimensional descriptions of the velocity, temperature, and species-concentration
fields downstream of injection for geometries appropriate in practical combustor
designs. Detailed comparisons between the predicted results and available experimental
data have verified the validity of the analytical model and its ability to computationally
simulate the experimental configuration with high fidelity. Thus, It appears that the
newly emerged computational "laboratory" may well both supplement and supplant the
experimental evaluation of prototype designs and, in particular, may facilitate detailed
parametric studies.
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(c) Combustor lerfgth with in-stream fuel injection.

Figure 1.- NASA hypersonic research airplane.
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Turbulent Boundary-Layer Edge

Free stream Stagnation •
Local Free stream
Jet Stagnation

)' Jet inlet '
Upstream of Mach Disk
Downstream of Mach disk

) Local boundary layer
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Figure 21.- Transverse injection into a turbulent boundary layer.
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Figure 22.- Initial uj velocity distribution for virtual-source simulation
of cold transverse hydrogen injection.
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X3

(a) X!/d=0.

Figure 28.- Longitudinal velocity distributions from virtual-source simulation
of perpendicular injector.
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(b) xj/d = 150.

Figure <28.- Concluded.
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X3

(a) Xl/d = 0.

Figure 29.- Longitudinal velocity distributions from virtual-source simulation
of parallel injector.
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(b) xj/d = 150.

Figure 29.- Concluded.
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SUBGRID- OR REYNOLDS STRESS-MODELING FOR
THREE-DIMENSIONAL TURBULENCE COMPUTATIONS

By Morris W. Rubesin ;

NASA Ames Research Center:

SUMMARY

A review is given of recent advances in two distinct computational
methods for evaluating turbulence fields, namely, statistical Reynolds stress
modeling and turbulence simulation, where large eddies are followed in time.
It is shown that evaluation of the mean Reynolds stresses, rather than use of
a scalar eddy viscosity, permits an explanation of streamline curvature
effects found in several experiments. Turbulence simulation, with a new vol-
ume averaging technique and third-order accurate finite-difference computing
is shown to predict the decay of isotropic turbulence in incompressible flow
with rather modest computer storage requirements, even at Reynolds numbers
of aerodynamic interest.

INTRODUCTION

It is generally accepted that the Navier-Stokes equations represent the
physics of Newtonian fluid flow fields at points in.space and time away from
sharp discontinuities such as shock waves. The intense shear layers present
in turbulence fields, for example, the superlayer, extend over a much larger
space than do shock waves, so that it can be expected that the Navier-Stokes
equations will apply uniformly over the turbulence fields. Mathematically,
turbulence can be considered, then, as the very complex solutions to these
equations reflecting their nonlinear character and random sets of initial
and boundary conditions. Because of the large set of possible solutions,
unique solutions in turbulent flow can be expressed only in terms of averaged
quantities over the time and/or space in the expectation that the turbulence
is a slowly varying or stationary random process.

The nonlinear character of the equations forces the use of numerical
computations, yet attainment of these solutions of the time-dependent Navier-
Stokes equations is not possible now or in the foreseeable future. The
reason for this is contained in certain features of turbulence that are
inimical to finite difference computations. At a point in space, turbulent
flow is irregular in time, random in character. In addition, it is three-
dimensional and composed of different structures having a large range of
length and time scales. To compute the irregularities, it is necessary to
employ computational methods that are accurately time dependent. Techniques
appropriate to asymptotic solutions that permit overshoots or employ arti-
ficial damping cannot be employed because they introduce errors in the
instantaneous flow-field development that are likely to grow. The
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small-scale dimensions, also, impose numerical stability or accuracy
restraints on the allowable advancing time steps in the time-dependent solu-
tions. For example,'in an aerodynamic boundary layer, the smallest signifi-
cant scale requires mesh spacing 10~5 of the boundary-layer thickness. The
three-dimensionality of the flow, together with the small scale, requires on
the order of IQl? mesh points to define the flow field of an entire aircraft.
The. corresponding allowable time step is 1 microsecond of real time.
Clearly, these requirements for storage capacity and computer speeds are
many orders of magnitude beyond the best of current computers or those con-
templated in the foreseeable future. To circumvent these difficulties it is
necessary to resort to "turbulence modeling."

The term "turbulence modeling" involves two distinct stages. The first
eliminates the small-scale structure of the dependent variable through an
averaging of some sort a(ensemble, space, or time) that can be carried out
with mathematical rigor*. The new averaged dependent variables are relatively
slow-varying so they can be resolved with finite difference methods utiliz-
ing mesh dimensions and time intervals compatible with current computers.
The nonlinear terms of the basic equations, however, introduce averages of
moments of the dependent variables that must be expressed in terms of the
averaged quantities retained to avoid a proliferation of dependent variables
in excess of the. numbers of equations available (the "closure" problem). The
manner of doing this is the second stage of the "turbulence modeling" process
and in this stage, considerable reliance is placed on comparisons with exper-
imental data to compensate for the "physics" lost in the earlier averaging
process.

The name "Statistical Theory of Inhomogenous Turbulence," references 1
and 2, has been applied to the process where averaging is performed at a
point in space over a period of time long compared to the time scales of the
largest eddies of the turbulence. The method is most suitable to steady-
state mean flow fields, although it can be applied as well to flow fields
that are slowly varying compared to the large eddy time scales. The result-
ing dependent variables represent the slowly varying, mean flow field and are
completely devoid of eddy structure. An alternative method, sometimes called
"turbulence simulation," depends on averaging the Navier-Stokes equations
over space volumes that are smaller than the largest eddies, but much larger
than the tiniest eddies. The new dependent variables (the volume averages)
retain their time dependence, but possess scales resolvable by current com-
puter techniques. • . . . . . .

The NASA Ames Research Center has been sponsoring research in both of
these areas. It is believed that in the short term most practical aerodyna-
mic computations will be based on the statistical theory of turbulence. The
aerodynamic1st is interested in the mean properties of the flow fields with
which he deals so that the behavior of individual eddies is more information
than he needs. On the other hand, the modeling hypotheses made in the sta-
tistical theory are largely intuitive and supported rather tenuously by a
meager supply of data. It hasn't been possible to provide experimental
information on all of the multitude of variables that appear in the modeling
equations. Turbulence simulation, once verified, will be able to be applied
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to a variety of simple flow fields that emphasize particular modeling
effects. For example,.simulation of homogeneous turbulence decay can shed ,
light on modeled turbulence dissipation in the statistical theory. Simple
shear flows can yield information on the diffusion of turbulence kinetic
energy, or of pressure fluctuations.. Thus, turbulence simulation will pro-:
vide an excellent basis for guiding statistical modeling. Ultimately, how-
ever, the technique of turbulence simulation may go beyond merely providing
modeling assistance to statistical theory and become the basis, for practical
turbulence computation. Inherent in turbulence simulation is its direct
evaluation of the large .eddies that are .characteristic of particular flow
fields and modeling of the small.scales that, are known to be universal in
character. These are certainly the elements of a practical prediction
scheme.

In this .paper, a review will be given of some recent progress in the
work sponsored by Ames. The recent contributions, to the statistical theory ;
of turbulence were performed at DCW Industries under Contract NAS2-8192. \
The work in turbulence simulation has been conducted at Stanford University
under Grant NCR 05-020-622. •

. .-SYMBOLS - -.

o • '• - • .• •' "
e,q^- specific kinetic energy of turbulence

E power spectral density •

f function • - - •• -

k wave.number - -

L ' dimension of flow volume . • .- :

M turbulence generation grid mesh spacing

P pressure ,-. ..

S.. rate of strain of mean motion

t,t* time, dummy variable of integration over time period

T period of integration > > turbulence scale .

u,v,w velocity components in. x,y,z directions

u. " component of.velocity in ith direction

u - friction velocity, /T /p ' : ~ "
T ' ' . - • ' W . .

U .channel mean velocity ' :
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x. coordinate in ith direction

y distance normal to surface

T irrotational strain

6 boundary-layer thickness ,

6.. Kronecker 6

A mesh spacing

A dimension for space averaging (see table 1)

e or v eddy diffusivity or eddy kinematic viscosity

V kinematic viscosity

K / Von Karman constant

p density

T turbulent shear in boundary layer

T..,u.u. turbulent shear stress in direction i on surface normal to j

T wall shearw

X parameter in dissipation term of equation (16)

0) Saffman's "pseudo vorticity" or dissipation rate

Superscripts:

( ),< > average quantity
? .

( ) instantaneous fluctuating quantity

Subscripts: .

e edge of boundary la'yer :

i,j,k,m,n tensor indices • .
' * • " ' . * . • r

STATISTICAL THEORY OF INHOMOGENOUS TURBULENCE

To place the Wilcox contribution (ref. 3) into the proper context of
current turbulence modeling it is necessary1 to review briefly the basis of
the statistical theory of turbulence. For simplicity, attention will be con-
fined to incompressible fluid flow. The Navier-Stokes equations are
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where the notation of repeated indices represents summation over all the
coordinate directions. The local velocity components, or pressure, are
written as

ui(Xj>t:*) = "i(XJjt) + U?(XJ't't

which allows for slow variation of the mean quantity u^ in time t and
expresses the fluctuating component within the integration period relative
to the mean over the period. The" averaging process is defined as

t+T/2

,t) - £ f f(Xj,t*j dt* (3)

t-T/2

With equation (2) , equation (3) becomes

t+T/2

T
t-T/2

which reduces to the requirement

t+T/2
i r / *\ *± J u'(Xj,t,t J dt = 0 (5)

t-T/2

When equation (1) is averaged according to equations (3) and (5), there
results •

3u

Before equation (6) can be solved it is necessary to express the moments ujuJ
(the Reynolds stresses) in terms of the mean flow Uj and the characteristics
of the turbulence. If equation (1) is manipulated to yield a differential
equation for uj[u.l , reference 1, -in addition to. terms containing u-[uj and

new quantities involving quadratures of uJ and p1 and u|ulû  appear.
An additional set of equations for ujulu^ leads to many new higher moments
In general, equations for higher moments lead to more new dependent variables
than new equations. The means of stopping this diverging process is achieved
through "closure" hypothesis.
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The most widely used closure method has been based on the concept of an
eddy viscosity; for example, where it is hypothesized that the turbulence
Reynolds stresses û uT are proportional to the rate of strain of the mean
flow, with the factor or proportionality, the eddy viscosity, being a scalar
quantity. The similarity to Stokes stress relations in laminar flow and the
.role of viscosity is evident. With the eddy viscosity, e,

,,. j -2/3 V <7)

where the mean rates of strain, S , are

- : , /9u, 9u.A .
- . . • o - „ I f _* a: -iJ. ) •'-. f8^&jj o \ -N̂ . ^ aY / ^°^ij 2 y3x.. 9xi /

" ' " ' • • • ' i * " • " * . *" •

for ah incompressible ̂ fluid. Turbulence kinetic energy, e, is

e = \ uTu| (9)

The earliest theories, due to Prandtl, expressed

e =

through an algebraic expression with K an empirical constant. Since this
"closed" the problem at the level of equation (6), it has been termed "first-
order closure." The method was quite successful for pipe flows and boundary
.layers where changes occurred gradually. In fact, extensions of this method
to compressibility has provided several decades, of usefulness through accu-
rate prediction of skin friction at high Mach numbers for two-dimensional
.aerodynamic configurations, evaluations of aerodynamic heating phenomena,
and the assessment of concepts such as-transpiration cooling or ablation for
alleviating the effects of aerodynamic heating. The method is most accurate
when restricted to simple shapes. Its cost effectiveness in numerical com-
putations, however, has made its use attractive in heuristic investigations
even for conditions where.it cannot be expected to be accurate, namely, the
zones of interaction between a shock wave and a turbulent boundary layer
that is the topic of several of the papers in this conference.

; - - For. more general body shapes, especially those, having rapidly varying
boundary-layer edge conditions, the introduction of rate processes in the .
development in the.turbulence is necessary. Here the eddy viscosity is
expressed as a function of two turbulence quantities equivalent to velocity
and time or length scales. As an example, the Saf-fman model (ref. 4) sets

_ e_ _ turbulent specific kinetic energy ni\
e ~ a) ~ "pseudo vorticity" or "dissipation rate" ( '
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- fzfe.co.S..) (13)

where

" • » • • • " : ' * £ £ •

•"and -

Da2

Dt

The functions f, and f_ are not the exact terms that can be derived from
equation (1), but are "modeled" to express the physical quantities actually
present, rates of turbulence production, dissipation, and diffusion, in func-
tional forms containing a closed set of dependent variables. These funcr
tional forms are dimensionally consistent and contain.empirical constants
that are expected to be insensitive to the character of individual flow
fields. A review of a large number of such two-equation models, where the
modeling takes place in the equations for the turbulence quantities and is
called "second-order closure," is given in reference 5.
i

There are flow conditions, especially cases of three-dimensional flows,
where the concept of the scalar eddy viscosity fails. For these conditions
it is necessary to evaluate the,Reynolds stresses u!u! directly. Several

investigators have devised models of the direct Reynolds stress equations,
references 6 through 8. The method described in this paper possesses .
desirable features. It is relatively simple, reducing to the simple Saffman
eddy viscosity model when flow conditions permit, and it is easily extendable
to compressible flows through the use of mass averaged dependent variables,
reference 9. Furthermore, as is shown later, it has proved to be quite suc-
cessful in explaining the streamline curvature effects documented in Bradshaw's
monograph, reference 10.

. ' ' • ' ' • • . ' " ' ' • ' i
The equation representing the Reynolds stresses of equation (6) can be

written exactly as ...
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(Convection) . (Production) (Dissipation)

(Tendency to Isotropy)

p 9x . 9x .

(Turbulent Diffusion of Pressure)

3xkL 3xk
where

(Molecular and Turbulent Diffusion of Stress)

+ ̂ ~ l~v ~^- + uXu' 1 (14)9x, L 8x, k i j J

T±J - - «i«j (15)

I

The terms on the left represent the convection of the Reynolds stresses. The
first two terms on the right are the production terms; for example, where the
mean flow strain interacts with the Reynolds stresses. The third term on the
right is the dissipation term. It depends on quadratures of the instantaneous
velocity gradients and therefore is largely dependent on the small scales of
the turbulence. The next term, involving correlations of pressure and
velocity gradient correlations, permits exchange between the individual
Reynolds stresses and is termed the "tendency toward isotropy." This term
vanishes for incompressible flow when equation (14) is contracted to yield
an equation for the turbulent kinetic energy. The next term is the diffusion
of pressure fluctuations by turbulence. Finally, the last term on the right,
a divergence form, represents the diffusion of the Reynolds stresses by
molecular and turbulent mechanisms. Dave Wilcox of DOT Industries models the
Reynolds stress equation as
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(Convection) (Production) (Dissipation)

where

!!i- T, i •̂ ->L - T , ~ X + X
-I

]

(Tendency to isotropy) (Production redistribution)

- X*co [T . . + T e6. .1 + 4 - |"s. S . - ~ S S 6 . . 1
L ij 3 ijj u) L im mj 3 mn ran ijj

(Molecular and turbulent diffusion)

(16)

/2S Sran ran

The turbulent dissipation rate, w, is given by

,2 .2

"k

/3u

«V^
3u. 3u. 2* 3 . e\0

(17)

after Saffman, reference 4. The turbulent kinetic energy, e, obtained as

the contraction of equation (16) , is

|e
3t K 3 mn mn

where

- B*JJ - 2 S

g = 0.18

a = 0.50

a = 0.2638 B* = a*2 = 8/81 = .0988

a* = 0.5 A* = (9/2) 6*

(18)
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These constants are consistent with the Saf f man , formulation. Wilcox intro-
duced an additional constant A*, which he evaluated by requiring the normal

stresses in a flat plate boundary layer to have the ratio u'2 : v'2 : w'2

equal to 4:2:3 to conform to experiment.

A comparison of the exact equation (14) and the modeled equation (16)
indicates that modeling has been applied to all the terms other than turbu-
lence production. The form of the modeled terms are expressed in a limited
invariant tensor form, as compared to reference 7. Consistent with the
Saf f man model, the dissipation term does not represent the energy dissipated
by molecular processes at the smallest scales, but rather accounts for the
energy cascaded to the .smallest eddies by the larger eddies. Saffman.
assumed that the scales of the smallest eddies adjust to accommodate the
turbulence passed to them, and thereby avoids the need for two length
scales. The quantity 1 - x + X2 in equation (16) is always greater than
zero, giving dissipation its proper sign. One can consider that the terms
labeled "tendency to isotropy" and "production redistribution" together
model the "tendency to isotropy" term of equation (14) as the contraction of
all these te'rms is zero. The current Wilcox model neglects the "turbulent
.diffusion of pressure." Finally, the "turbulent diffusion of stress," the
; third .order correlation, is modeled through an eddy viscosity assumption
supplemented by an effective turbulent Prandtl number, a*. _. :. '

One of the first problems to which this model was applied was .the
effect of streamline curvature in "attached turbulent boundary layers. Con-
sidered, was a constant pressure flow over a curved surface having a radius
of curvature R in the plane of the two-dimensional mean flow. / From a
perturbation solution of equations (6) and (16) to (18) corresponding to the
wall region of the boundary layer, Wilcox found that mean velocity could be
expressed in the usual wall layer dimensionless quantities as . .

Constant ' ;. • ,(19)

with : ' • • " • • ' - • • • ' • . • . '-'• • • • • : • • ' • ' • . . • , • • •
1 - - > ' • . . .

• '0 = 15.4 ..... (20)

The corresponding turbulence quantities were found to be

u r '•••- '. . ' u y -,
;f- 1 + 2.4 £ log -^-+ . . .

L . • • ? : • • • v - I .
. . . , : (22)

a . < y • • v

326



2
u r ' - u-

a
(23)

2
2 4 UT r v u

T
y i '

' """ " 10 l o g ~ + • ' - - (24)

<25>
In addition, the local shear turned out to be expressible in terms of an
eddy' viscosity ' '

T - _i_Zl_ lii
- T " -.-*,. 01 9y . • -

.A • .

These results are very significant in. several ways. First, the law of,the
wall expression, equation (19), has the same form found to correlate experi-
mental data measured over a curved.,wall. The value of <|» found experiment-
ally by R. N. Meroney, was <|> = 12, which is in reasonable agreement:with the
modeled value of equation (20). Furthermore, the specific kinetic energy of
the turbulence, equation (21), is shown to be relatively unaffected by the
streamline.curvature. Again, this is in agreement with experimental data
for corresponding flow conditions where So and Mellor, reference 11, found
emax/ UT unaffected by curvature for convex walls. A comparison of

equations (23) through (25) shows that streamline curvature affects the
individual normal stresses differently. The normal stresses along and
across the surface increase, while the normal stress perpendicular to the
surface decreases and in an amount larger than the others. The difference
in sign of the behavior of the normal stresses demonstrates why the specific
kinetic energy remains essentially constant. It is interesting that the
•expression equation (26) for the shear stress, T, shows an eddy viscosity
form, but where the characteristic turbulence velocity scale is not the
specific kinetic_energy, e, reference 4, but the normal stress v1*. The
sensitivity of v77 to the effects of streamline curvature and its direct
effect on the shear explains much of the streamline curvature effect dis-
cussed by Bradshaw, reference 10. •

Another comparison of the Uilcox Reynolds stress computations with
experimental data is shown in figure 1. These data were obtained by
•Bradshaw, reference 12, in.a turbulent boundary layer on a flat plate on
which an adverse pressure was suddenly applied. The data include profiles
of the three individual normal Reynolds stresses, the shear stress, the
specific kinetic energy, and the. mean velocity at a station 1.52 m after the
adverse pressure gradient was applied. To initiate the computations,
extensive use was made of the Bradshaw mean flow and hot-wire data at the
start of the adverse pressure gradient. The initial mean velocity and
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specific kinetic energy profiles were directly obtained from the data. The
to profile was deduced from the measured' turbulent shear .stress and mean
velocity profiles by utilizing the eddy viscosity relationship . :

e 9u ._' .
. T=P u 3? <27>

Because the shear T and 3u/8y both approach zero near the boundary-layer
edge, the determination of u there becomes uncertain and is a source of
error. The value of -01 found at the bo'undary layer edge and used_at all
stations as a boundary condition on equation (17) was ue = 10~** u|/v.

The Reynolds stress theory, shown in figure 1 as the solid lines,-does,
a good job in predicting the.maximum levels of the normal stresses, however,
the shapes of the profiles for u'2 and w'2 are missed badly. In.contrast,
the v1^, the normal stress perpendicular to the surface, is predicted quite
well everywhere in the boundary layer; -It should be noted that after exper-
iencing the adverse pressure gradient* the ratio u'̂ ax : v'gax : w'̂ ax is
9:5:7, which the theory seems to predict without modification of the con-
stant A . The comparisons with the data for the shear stress, turbulent
energy, and mean velocity also contain the predictions by the eddy viscosity
model of Saffman indicated by the dashed lines. Because the Wilcox model
relies so heavily on the Saffman model, it is not surprising that the two
theories,give such similar results;, especially at a station where the turbu-
lence is nearly in equilibrium. For these quantities, the predictions,
while encouraging, yield results that can stand improvement.-

From this brief comparison with data, it can be concluded that the
Wilcox Reynolds stress model with second-order closure predicts the effects
of streamline curvature rather accurately in the wall region of a boundary •
layer. Of the normal stresses, the v'2. is most strongly affected. This, in
turn, affects the shear stress since in this region T == l/X*(v'2/u)(3u/3y).
The latter is a most important practical., result in that it shows that-current
eddy viscosity-models with v'2 replacing the turbulence energy as the charac-
teristic turbulence velocity still may apply in regions of streamline curva-
ture.' Despite the success of the model near the surface, modeling improvements
are required to increase the accuracy of predictions away from the surface.
Perhaps the diffusion of pressure fluctuations by turbulence cannot be neg-
lected. Further, it may be necessary to/modify the constants of the Saffman
theory:for particular flow fields to enhance accuracy at the sacrifice of
generality.' , . , .

' ' • . . • - ' '.

.: TURBULENCE SIMULATION . '

The turbulence simulation calculations -to be described here are being
conducted at. Stanford University, with ..Profs. William Reynolds and Joel
Ferziger as the principal investigators. The primary goal of the Stanford
activity is to derive turbulence simulation techniques ultimately suitable
for use with compressible fluids and complex aerodynamic configurations. The
initial stages of the program, however, have been confined to very simple
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flow fields and to incompressible fluids so-that comparisons of the tech-
niques employed could be made with the results.of other workers in turbu-
lence simulation and with certain fundamental experiments based on hot-wire
measurements.

The program began with a careful reconsideration of the volume averag-
ing process by Leonard, reference 13. The new averaged equations contained
second-order terms that required finite difference methods with truncation
errors ..fourth order in space and second order in time. These .equations have
been used to study the decay of incompressible, isotropic flow with differ-
ent numerical techniques and alternative models for subgrid closure. The .
work is being extended, currently, to flows with irrotational plane strain,
simple shear, and a jet into-an axial stream. .

.Table 1 and figure 2 compare the ,;bases of the averaging technique
devised by Leonard with those of the ,-more-conventional approach. The
averaged Navier-Stokes equation shown at the top of table 1 is common to *.
both methods. The dependent variables, however, have different^ meaning.
The conventional average quantity is .a:uniformly weighted average over a...
volume of dimension A^ around.the point Xj . The volume dimension AJ .- is
customarily set equal to the finite difference mesh dimension.. The Leonard
average is weighted toward the center of the averaging volume Xj as •
G(X-J-XJ') is required to decay to a. zero value with increasing distance
xj-Xj.1. Specifically, in most of the numerical work a Gaussian weighting
function has been adopted with Aavg, .not necessarily set equal to the mesh
spacing, as a parameter. In either averaging method, the gradient of an
average equals the average of a gradient. Key to the difference in the

averaging techniques is the manner in which the local velocity vector is
divided into the resolvable and irresolvable eddy contributions. This is
shown mathematically in table 1 and diagramatically in the figure 2. In the
conventional case, the resolvable velocity is identified with the mean velo-
city in the box so that the irresolvable component, then, averages to zero.
With this definition the averaged nonlinear moment can be expressed as the
product of the individual average velocity components plus the Reynolds
stress. It is emphasized that this Reynolds stress is time dependent, just
as are the averaged velocities related to the large eddies. In Leonard
averaging, the resolvable component of velocity u^ is treated as a con-
tinuously varying quantity across the averaging volume, and the irresolvable
fluctuations are defined relative to the local u-j_. The averaged nonlinear
moment is much more complex containing- a .term representing the divergence of
the quadrature of the mean velocities as well as a series of quantities that
are identified in the aggregate as a Reynolds stress. The modeling of the
Reynolds stresses, although they are inherently "different quantities, is the
same functionally in either method. The Reynolds stress of the unresolved
components, RIJ, for either averaging method is expressed in terms of an
eddy viscosity and the instantaneous strain of the resolved eddies. The
definition of the eddy viscosity follows -Smagorinsky, reference 14, where the
length scale is set equal to the mesh=spacing and the frequency scale is
related to the root of the sum of the "squares of all the strain elements.
An alternative eddy viscosity has been utilized by the Stanford group where-
in the frequency scale depends on the .vorticity of the resolved eddies,
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having the advantage of going to zero where the flow is irrotational. The
latter approach may aid in defining the boundaries between turbulent and
nonturbulent , irrotational flow regions. „.

The main contribution resulting from the Leonard averaging process is
the addition of the term Ajvg/24(8*/9x?) (û u.) to the expression for the
averaged moment. Since this term is contained within an operator 9/9x| it
is of third order when expressed in finite difference form. To retain the
significance of this term, the Stanford group was forced to adopt finite dif-
ference methods with fourth-order truncation errors in space,, reference .15. .
The usual second-order finite differencing in time was retained .

The results of some. of the Stanford computations of the decay of homo-
geneous, iso tropic turbulence are shown in figures 3 through 6. The data used
for comparison were measured by Compte-Bellot and Corrsin, reference -16, in a
uniform flow behind a turbulence generating grid at a Reynolds number per
foot of- about 200,000. The experimental three-dimensional turbulent energy
spectrum at a fixed position in the channel downstream of the grid, shown in
figure 3, was adopted as the initial conditions for, the calculations. .
Because the mean flow rate is uniform, ,:the distance along the channel serves
as the independent variable of the problem and can be expressed in time as : •
tUo/M, where M is the mesh spacing of the turbulence generation grid. At
the higher wave numbers, the spectrum possesses the k~5/3 distribution
expected of homogeneous, isotropic turbulence according to the theory of
Kolmogoroff, reference 17. The vertical lines in figure 3 define the range
of wave numers, k, resolved in the calculations by mesh spacings where each.
side of the calculational volume is divided into 16 or 32 parts. The lower,

bound results from the imposition of periodic boundary conditions on opposite
faces of the cubic volume, so that . . . . . .

'

where L is the length of the side of the cube. For the cube divided in
parts, L" is taken to be 24 cm. For the cube divided in 323 parts, L is
32 cm. The corresponding kniin, from equation (28), are 0.26 cm"1 and 0.2
cm-1, respectively . The upper value of the resolved k is dependent on the
computational mesh dimension, being smaller for the 323 mesh division.
Within these bounds, the 323 mesh division can resolve eddies that account
for 80% of ..the total turbulence energy, whereas the 16 mesh division only
accounts for about 71% of the energy. - .

The next three figures (4 to 6) show the evolution of the turbulence
spectra. at times, .or distances beyond the turbulence generating grid, after
the initial value set at the farthest upstream test station.. All of the fig-
ures represent the case of the cube divided into 16^ parts and with computa-
tional mesh spacings of 1.5 cm. The results found from the 32^ case showed no
marked improvements in the calculations.. The computation was initiated by
express ing., the turbulence in a 3-dimensional Fourier series. The Fourier
transform of this,] velocity series to wave-number space then was matched
directly to the experimental energy spectrum to give the magnitude of tlie
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coefficients corresponding to each wave-number vector-. These vectors were
then randomly oriented with a random number generator. Finally, an inverse
Fourier transform was applied to Achieve, the initial turbulence field compat-
ible with the measured energy in physical space. The decay of the turbulence
field was then computed using the time-dependent methods described .earlier..

Figure 4 shows the effect of setting Aayg = 0 and utilizing ..the
Smagorinsky subgrid eddy viscosity model (see table 1) in the. computations.
The dashed.lines represent the data at the initial time, .tUo/M = 42, and a
subsequent time, tUo/M = 98. The computed spectra are represented with the
solid lines. Initially the computations are made to agree with the •.-
tUo/M = 42 data line as described earlier. The development of the spectra
after this time is the test of the method and the subgrid model. From table
1, it is noted that with -Aavg = 0, the weighting function in the Leonard ..
averaging is a Dirac function and the averaged Navier-Stokes equation is
formally the same as in conventional-averaging, although the meaning .of the
dependent variable u± is different. For Aavg = 0^ as time progresses, a
piling up of energy occurs at the high wave-number end that becomes prpgresr
sively worse.

Figure 5 shows the evolution of the energy spectrum if the averaging
volume dimension is increased to equal to the computational mesh dimensions,
Aavg = A. Again, the Smagorinsky eddy viscosity model is used for the sub-
grit Reynolds stresses. Note that the dashed lines representing the data
are different from those in the previous figure because the data have been .
averaged according to the.Leonard formula with Aavg,= A. in order to

express the data in the same dependent variables as in the computations.
The unusually high energy at the high wave numbers evident in the previous
figure for A = 0 at tU0/M = 98 is reduced here for Aavg = A.
Finally, in figure 6, the results of using Aavg = 2A- are shown. Again the
data have been averaged to make the data and computation dependent variables
correspond. The dashed line at tUQ/M = 98 is the averaged data. The
points in symbols show the computed spectrum at tUo/M = 98 for both the
Smagorinsky and vorticity models of the subscale eddy viscosity (see" table *
1). There is little to choose between the different models for this
example. Both show excellent agreement with the data, and the piling-up of
the calculations at high wave number is no longer evident.' It appears that
the use of ^ = 2A is most appropriate for this type of .problem and that
the additional term in the Leonard averaging process acts to redistribute
the energy within the spectrum in an appropriate manner.

.s

The last figure, figure 7, shows some early results of computations of
the distortion of homogeneous turbulence by irrotational plane strain. A
field of homogeneous isotropic, turbulence is passed through the transition
section shown schematically in the upper left of the figure. ,The cross-
| sectional area is constant so thaf w, the mean velocity in'the z direction)
remains constant. In the center portion, the walls perpendicular to the y-
axis move in to just balance the outward movement of the walls perpendicular
.to the x-axis, resulting in a constant irrotational plane strain of the mean
flow. .Downstream of the transition region, the walls again become parallel.
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The development of the mean normal stresses with distance along the channel
as computed by turbulence simulation is shown in the lower portion of the
figure. Again, a cubic volume of 16^ mesh points was employed. At station
0 the turbulence, initiated as described earlier for the decay problem, is
nearly isentropic u'2 = v'2 = w'2. In the region of constant irrotational
strain, the normal stress in the expanding direction, u'2, diminishes,
whereas, v*2, in the contracting direction increases. The axial normal
stress remains relatively unchanged. In the downstream parallel section, the
turbulence appears to be returning to isotropy as expected, but very slowly.

The results of turbulence simulation calculations described here are
most encouraging. Through adjustment of the volume-averaging process.and
the use of higher order finite differencing, it has been possible to accu-
rately predict the decay rate and spectral content of the large eddies of
homogeneous, isotropic turbulence in incompressible flow. No difficulties,
have, been encountered for the decaying type'of flow with the standard sub-
grid modeling techniques. In addition, early attempts at handling more com-
plex flows are yielding reasonable results with relatively little extra
effort. Perhaps the most important result to date is the attainment of
accurate turbulence prediction at Reynolds numbers of aerodynamic interest
with the rather small number of mesh points employed.

CONCLUDING REMARKS

The success of the Reynolds stress modeling in the statistical theory
of turbulence within a boundary layer in the immediate vicinity of the wall
is most encouraging. Although improvements in modeling are still required
for the wake region of the boundary layer, a way of doing this other than by
reasoned intuition seems to be close at hand through turbulence simulation.
In the near future, significant advances can be expected through the inter-
section of these seemingly disparate approaches to the evaluation of turbu-
lence flows. Solutions to simple problems at aerodynamic Reynolds numbers
appear to be possible currently as computer storage requirements and subgrid
modeling do not seem to be as critical as was anticipated earlier.
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TABLE 1. COMPARISON OF CONVENTIONAL AND LEONARD AVERAGING

3ui a ._. 1 3P . 3 f 3ui
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Xj+Aj/2

LEONARD

ffxldx

Xj-Aj/2

at
dx

G{XJ-XJ) f(xj)dxj

6~ 1 1 2 f 6(xj-xj)2

i — !- I ex - . ' 'exp . 2
¥g

Uj(xj) + uj(xj,xj) ' '

ui = 0

uj(xj)

u! ^ 0
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Figure 1. Comparison of Reynolds stress computations with experimental
data of Bradshaw (adverse pressure).
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CONVENTIONAL AVERAGING LEONARD AVERAGING

Figure 2. Volume-averaging dependent variables.
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Figure 3. Initial energy spectrum. Data from reference 16.
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16X16X16 MESH: SMAGORINSKY MODEL: ^ = 1.5cm
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Figure 4. Evolution of energy spectra, A = 0.
avg
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16X16X16 MESH: SMAGORINSKY MODEL: 3 = 1.5cm
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Figure 5. Evolution of energy spectra, A = A.
avg
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Figure 6. Evolution of energy spectra, Aavg
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Figure 7. Distortion of homogeneous turbulence by irrotational plane strain.
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INFLUENCE OF EXTERNAL DISTURBANCES AND COMPRESSIBILITY

ON FREE TURBULENT MIXING

By Youn H. Oh* and Dennis M. Bushnell
NASA Langley Research Center

SUMMARY

It has been shown that disturbances in external flow can significantly affect, by as
much as an order of magnitude, the turbulent mixing rate in free shear layers. A partic-
ularly important finding is the fact that the length scale of the external flow disturbances
is as important as the amplitude. Also a single parameter correlates the change in
entrainment rate remarkably well. The difference between the effect of wide-band and
narrow-band disturbances is stressed. The inclusion of the model for pressure fluctua-
tion term in the kinetic energy equation in a two-equation model predicts the reduced
spreading rate in high Mach number, high Reynolds number, adiabatic, free turbulent
shear layers.

INTRODUCTION
I

The free turbulent shear layer is a relatively simple flow which is useful for veri-
fication of turbulence modeling and has many practical applications such as design of jet
engine combustors, slot injection, and gas-dynamic lasers. The requirements of these
devices generally vary. The combustor and gas laser require fast mixing and slot
flows need slow mixing to be effective as thermal shields or to provide drag reduction.

Of importance in engineering design of such devices is the determination of the
relative importance of various parameters upon mixing rate, and whether one can "con-
trol" the entrainment. The rate of free turbulent mixing primarily depends on the level
and scale of turbulence in the shear layer. There are many things that can affect the
structure of free turbulence; for example, large rates of strain and impinging shocks, etc.
The purpose of the present investigation is to determine the effect of free-stream distur-
bances when both free-stream turbulence intensity and scale are varied, and also to
determine the influence of Mach number on the entrainment rate of free shear layers.
The influence of free-stream disturbances may be particularly important in ground sim-
ulation of combustor flows, especially scramjets, where the free-stream flow is heated

*NASA-ODU Research Associate.
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by a variety of devices such as arc or vitiated burners which probably produce fairly ' "<
large disturbance "levels and scales. (See fig. 1.) • . • . - • - . .

Experimentalists often fail to measure the intensity of such free-stream'distur-
bances,and very rarely measure the dominant or characteristic scale. High Mach number
is also found to be a very important factor that affects turbulent free mixing structure.
The 1972 Langley Conference on Free Turbulent Shear Flows (ref. 1) indicated that the
data on spreading rate for turbulent free shear layers contain disagreement between data
and "theory" of up to a factor of 3 or more for supersonic Mach numbers, the larger dis-
agreement occurring at the higher Mach numbers (M ~ 3 to 5).

External or free-stream disturbances can be roughly divided into two important
classes. The first class is generally referred to as acoustic disturbances. These are
isentropic pressure waves having the following characteristics: The magnitudes of pres-
sure, density, and velocity fluctuations are related to each other isentropically (up to mod-
erate amplitude). These disturbances are highly directional, propagate with the speed of
sound, and can be transmitted and reflected by the shear layer. This type of disturbance
is known to affect laminar shear layer and combustion stability. ,

Extensive reviews of existing literature on acoustic disturbances can be found in
Rockwell (ref. 2) and Borisov and Rozenfel'd (ref. 3). Important experimental data
(ref. 4) showing the effect of narrow-band acoustic mode disturbances on fully turbulent
shear layers are shown in figure 2 and are discussed in detail in the main body of the
paper, particularly in reference to turbulence control.

The second important class of external disturbances is usually referred to as
free-stream vorticity or "turbulence." Both of these classes of disturbances can be
either wide band or narrow band. Wide-band disturbances generally have typical turbu-
lence spectra. Vinogradov et al. (ref. 5) found the core length of two-dimensional co-
flowing jets to be strongly affected (factor of 4 difference in spreading rate) by the type of
screen applied upstream of the external flow. Rodi (ref. 6) also reports similar findings
(Vagt (1970) and Patel (1970)). The present paper describes a study of the effect of wide-
band disturbances, employing an equation for the scale of turbulence since disturbances in
the "free-stream" (on either or both sides of the mixing layer) would generally have disT

tinct scales which are not related to the local scale of the shear layer; A parametric
study of the effect of scale and intensity of free -stream disturbances is presented so that,
for example, one can assess the influence of tunnel disturbances on free-flight simulation
of scramjet engines. (See fig. 1.)

The present numerical solution of the free turbulent shear layer employs a "two-
equation" turbulence model, a turbulent kinetic energy equation for the intensity, and a
dissipation equation for the length scale of turbulence. A model for the pressure-velocity'
correlation term, representing a "compressibility" effect, which was developed by Oh
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(ref. 7), based on an eddy-shock-wave concept is included in the turbulent kinetic energy :
model equation for predictions of the influence of high Mach number upon entrainment in
free shear layers.

SYMBOLS

i •
a mass fraction of species

Cp specific heat

•V ' . •

e . turbulent kinetic energy, -i(u"2 + v"^ + w"2)z

f frequency

n

H total enthalpy, /. cp iaiT + \ u2

i=l

i

L . reference length . , f

I length scale • .

lm integral length scale

M Mach number; also grid size ,

n total number of species; also exponent of isotropic turbulence energy initial
decay law

Npr e ratio of turbulent diffusivity in turbulent kinematic energy equation to that of .
mean momentum ••

Npr t turbulent Prandtl number

Npr e ratio of turbulent diffusivity in dissipation equation to that of mean momentum

p . static pressure

R gas constant; also Reynolds number
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Ngc { turbulent Schmidt number

j '
T static temperature

u velocity component in x -direction

i
us local sonic speed

v velocity component in y-direction

w velocity component normal to u and v

Xo virtual origin of velocity similarity profiles
i,
i

x coordinate parallel to outside flows (fig. 1)

xc core length of jet
i

xo initial x where initial conditions are specified

y coordinate normal to x (fig. 3)

\' ' ' . •
y 5 y where (u - u2)/(ui - U2) = 0.5

ft = (M2 - l) /M

y ratio of specific heat

6 shear layer width parameter, y%=Q j - yg_Q

60 = 6 at x = x0

e dissipation rate of turbulent kinetic energy

computed shear layer width referred to that implied by linear spreading law

with computed a and XQ, |y5=v/o3 - ya=\/bT9|/[1-32(x -
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\ = 0.87560

fie eddy viscosity

p density

a similarity parameter used as a measure of spreading rate
i

<JQ a for low-speed constant-density flows

cr* s lim a
- 0

.
uj - 22 - a2x=0UJx=0

Subscripts and superscripts:

1 conditions on high-velocity side external flow

2 conditions on low-velocity side external flow

i species i

i,j tensor indices

max maximum value

00 ' conditions outside of shear layer

(~~) conventional temporal mean

( )' (instantaneous) - 0~)

(~) mass -averaged temporal mean

( )" (instantaneous) - (*")
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GOVERNING EQUATIONS AND ASSUMPTIONS

The physical problem is depicted schematically in figure 3. The shear layer is
formed between two parallel uniform flows of different velocities. The higher velocity
is called uj and the slower stream velocity is denoted by U2- The X-axis is alined
with the external uniform flows and the Y^axis is the direction normal to the uniform
flow. (The flow properties vary most rapidly in the y-direction.) In the subsequent
^analysis, mass-averaged dependent variables, proposed by Fayre (ref. 8), are used for
most flow properties. Mass-averaged values are represented by a superscript tilde '
(~). The following relationships hold:

; ~ _ pv ' • ' ' ' " , . " • ' = •' ; : ;
u = u + _

p

so that pu = pu. Both independent and dependent variables are used in their primitive
Lform. The governing equations employed cover both multispecies and high-speed
mixing. ^ . .,. -

Simplifying Assumptions .

The following assumptions are made:

(1) The flow is steady on the average

(2) The Reynolds number is sufficiently high so that the mixing layer is fully tur-
bulent and molecular diffusion can be neglected compared with turbulent
diffusion ;

(3) The axial pressure gradient is zero ,

(4) No chemical reactions occur

Basic Equations

The typical free shear layer with no extraneous strain has an, order of magnitude
difference in the derivatives of the flow properties in the x- and y-direction and allows the
usual boundary-layer-type (quasi-parallel) approximations; The conservation equations
describing the problem for the mean flow quantities may be written in the following form
(ref. 8): '; - • • • *

Continuity:

9(pu)
9x . 8y
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V mean momentum:

*y" mean momentum:

. .
By By • W

Mean energy: ,

Species:

pu —i + pv —i + y-J -i—--i—/ = 0 (i = 1, 2, . . ., n) (5)

Equation of state:

(6)'n \

i=l /

In these equations all the variables are rendered dimensionless by referring all lengths
to L, velocities to uj, pressure to PjUj , density to p^, temperature to uj

• - 2 • / v \total enthalpy to MI", specific heat to cp j Cp i = ) °p 1 ial i > and S28 constant to
V ' 1=1 " I

I ^ \Rl IR1 = / Rl ial i • Tne exponent J » 0 for two-dimensional and J = 1 for
\ i=l ' I -

axisymmetric shear layers.

Closure Assumptions

The preceding set of equations are not closed because the turbulent correlations
are unknown. Boussinesq's eddy viscosity model is assumed to describe the turbulent
shear stress; that is, pu"v" = -/zeau/3y along with Prandtl's energy model for the eddy
viscosity, fze = C^Zpe, where C^ is a modeling constant and e is the turbulence

kinetic energy e = p(u"2 + v"2 + w"2)/p. Also pH"v"/(afl/8y) and psC '̂

are assumed to be proportional to the eddy viscosity (by constant factors); that is,
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where

Ngc t and Npr t are the turbulent Schmidt and Prandtl number, respectively.

Turbulence Model

Prandtl's energy model for the eddy viscosity requires the turbulence kinetic
energy and length scale. Often the length scale is algebraically related to the width of
shear layer itself and yields a reasonable result for the free shear layer. But, in order
to study the effect of external disturbances which have their own scale (which is not
related to the shear layer), use of an equation governing evolution of .the scale of turbu-
lence is essential. Thus a "two-equation" model approach is the minimum necessary to
describe the turbulence field in the present problem. The equation for the turbulence
dissipation rate is used to compute the turbulence scale. There are other equations
which would serve the same purpose, such as a vorticity equation (ref. 9) or an equation
for the quantity, energy-times-length scale (ref. 10). Actually, these equations are all
very similar (ref. 11).

Equations derived from the Navier-Stokes equations to describe turbulence energy
and dissipation include a number of unknown correlations. Modeling of these unknowns
requires a delicate balance between mathematical rigor and physical intuition since elab-
orate mathematical manipulation can be meaningless if not supported by experimental
measurement. In general, the higher order correlations in the turbulent kinetic equation
are better known than those in the equations for the length scale (ref. 12). Most notori-
ously difficult to measure, and hence least known of the turbulent fluctuating properties,
are the pressure fluctuation terms. A model for the pressure-velocity correlation
hypothesized by Oh (ref. 7) is included in the kinetic energy equation. No attempt was
made to model pressure fluctuation terms in the dissipation equation. The model used
by Spalding's group with their constants (ref. 1) was used herein for the dissipation equa-
tion. The final model equations are as follows:

Turbulent kinetic energy:

pu jte + p^ 8e _ y^"-^-
ax 8y. a"

-Ce,2H(M-l)^[pDtsign(^)us^-^^|»0 (7)

Turbulent dissipation equation:

= 0 (8)
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where J = 0 for two-dimensional and J = 1 for axisymmetric shear layers, H is the
Heaviside unit function H(£) = 0 when £ < 0 and H(£) = 1 when . £ ^ 0. " Also, the
following definitions are used: D s 9fl/8x + 9v/9y; us = Local sonic speed;

/3 = (M2 - l) /M; e = e3/2/Z so that Me = C^pe2/e. The constants used are
Cpt = 0.09, NSC)t * 0.7, NPr>t » 0.9, NPl>je = 1.0, NPrf €. = 1.3, Ce, l » 0,
Cej2»0.14, Ce>1 - 1.43, and Ce>2 = 1.92.

Initial and Boundary Conditions

Initial conditions. - Initial profiles of all dependable variables are required to start
the solution procedure. All the results reported in this paper are computed with a set of
initial profiles which were "guessed at" based upon the physics of the flow. The scarcity
of experimental data, especially measured profiles for the turbulence energy and length
scale, is the reason for using "arbitrary" (but physically reasonable) initial profiles.
The quasi-similarity (all the computed results show linear shear layer growth, see fig. 5)
of the results is a posteriori justification, that is, the calculations proceeded far enough
downstream for the influence of the starting profiles to be "washed out." The initial pro-
files are generated as follows: First axial velocity u profiles are generated for a

IV— ~ V I

given width parameter 6O = ' U=(U g=0-9lx=0

u(0,y) = iftuj + u2) + (uj - u2)erf(d • (9)

where £ = 2 x 0.90621514y/6o. Then

(f 1 ^1
.e(0,y) = !!(§! + e2) + 1^ - e2|erf(d +i/ emax>sh - ^(ej + e^) exp(-2£2)> (10)

v J i ^- -?_j* * ^~~^~- •̂ lî  * *. ^~~^~ --1̂ -̂ • —

efr 5sh

where the first term 6fr is the contribution of free-stream disturbances and the sec-

ond term egn is chosen as the contribution of mean shear: [from the assumed relation

~ 2 \
g oc /fjuj when 5j » e2 » OJ. The term emaX)Sh is another input which is chosen as

0.12 for most incompressible cases and as 0.08 for supersonic cases. The term egn

was neglected when ej + e2 > 2emax sn. Note that these equations are in nondimensional
form. In order to estimate dissipation, the distribution of length scale is computed as

349



_ _ . Xemax,sh - g i

Smax,sh -

where A. s 0.8756O and Jsh = 0 when emaX)Sh <^(ei + eg). Then e is computed as
c = e3/2/Z. Total enthalpy is assumed to be initially uniform

H(0,y) = 1 .

The static temperature is obtained from the expression

f(0,y) = fl.1 B f l . 211 M (12)

For static pressure, normal velocity and density, the Initial assumptions include:

p(o,y) = Poo

v(0,y) (13)
2p(0,y) = Mj -

TR

Boundary conditions. - The external free stream usually contains some type of dis-
turbance. The major disturbances can be divided into two broad groups, acoustic and
vortical. The effect of narrow-band acoustic disturbances is fundamentally different than
that of free-stream vorticity (turbulence). The present research effort is concerned with
the effect of wide-band-type free-stream turbulence only.

The free-stream turbulence could be the result of upstream agitation, diffusion
from an adjoining shear layer (wall boundary layer in enclosed flow or free shear layer
in case of coaxial jet, etc.), or distributed sources such as chemical reaction or distrib-
uted fine obstacles, etc. (that is, dust flows). The most well documented data are for
decaying isotropic turbulence. (A good example is grid-generated turbulence.) There-
fore, the boundary conditions for the kinetic energy and dissipation equation are limited
to isotropic decaying turbulence in the present study.

Batchelor and Townsend (ref. 13) found grid-generated isotropic turbulence decays
in the early stage as

M - w
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M-"-: \M M

where A, B, and C are constants, and Zm, Xg, and M are the integral length scale,
grid location, and grid size, respectively. , .

In order to study the variation of boundary conditions for the turbulence model
equations with x, the turbulence energy is assumed to vary as : -: "

Lg
M." M

In the absence of mean shear, the model "equation for the turbulent kinetic energy equa-
tion becomes , ": . : . . . .

S-%=-e
dx

Substituting the expression for §» results in

/ x \n-l
6 = "U°° M \M " M7

From the relation I =_53/2

; = MA1/2fx • i
n \M M

Initial boundary conditions are therefore

x \n

M7

(14)

(15)

(16)

(17)

n \M M^

From equations (14), (15), (17), and (18),

X - 2 yx=0

uj

n/2

.(18)

(19)
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(SE/2).
600 = x=0 X -X0

n-1
MS (20)

The recent measurements made by Comte-Bellot and Corrisin (ref. 14) show that
n * -1.25.

Symmetric boundary conditions are imposed on the X-axis in the axisymmetric and
two-dimensional jet cases. (Center velocity is allowed to decrease.)

.Numerical solution procedure.- The numerical method used to solve the governing
equation is the implicit finite-difference method of Crank-Nicholson with the dependent
variables in conservation form. Linearization is accomplished by initially lagging the
nonlinear coefficient a step and then integrating until convergence.

• Variable grid spacing is used in the y-direction. The spacing was increased by a
geometrical progression on each side of the shear layer center line. In order to prevent
the shear region from outgrowing the computing net, the computing net was continuously
expanded in the y-direction by doubling the grid spacing whenever the converged solution
for u changes by a predetermined margin at both edges for the pure shear layer case
and at the outer edge for the jet case. A typical run, 250 cross-node points and
170 marching steps in x (=100 times the initial thickness 6O distance), for the incom-
pressible binary mixing case takes approximately 200 seconds of CPU. time on the
CDC 6600 computer system. Sixty percent of this time is actually spent in solving the
finite-difference equations and the rest of the machine time is spent in data management
and plotting routines. A solution for the supersonic shear layer takes approximately
three times longer than for an incompressible case. Convergence was tested on u, v,
and e with a convergence criterion 0.1 percent relative (or combined with an equivalent
absolute criterion for v).

RESULTS AND DISCUSSION '

Comparison With Data

Experimental data which can be used to check the validity of the present prediction
are extremely scarce. Most often, data are incomplete, that is, the intensity of free-
stream disturbances is measured but not the characteristic scale. Also, the core length
of the jet may be measured but not the initial boundary-layer thickness (ref. 5), etc.

Thus the comparison with incomplete data,.becomes no more than finding the missing
data which would yield agreement, in the results. Nevertheless Rodi (ref. 6) demonstrated,
by using a prediction method similar to the present one, that the measured effect of free-
stream disturbances (Patel (1970) and Vagt (1970)) on free turbulent mixing could be qual-
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itatively simulated. In this vein, a comparison will be made with the Vinogradov et al.
(ref. 5) experiment. The experimental setup (see fig. 4) consisted of an enclosed two-
dimensional channel with two separating plates which initially divided the channel into
three equal size ducts. The ratio of center duct velocity to the velocity of two outer
ducts was varied along with the "agitating grids" in the outlet sections of the ducts. The
experiment determined the variation of core length of the center jet with velocity ratio
.and initial.intensity of turbulence for incompressible isothermal flow. From the present
authors' viewpoint, the data have the following defects: (1) The wall shear layers on eithei
side of the splitter plate were not measured. (The core length depends not only on the
spreading rate but also on the virtual origin, that is, initial shear layer thickness.)
(2) The core length was measured from schlieren photographs, with smoke in the center
jet.. However, the end of the core was not defined clearly, that is, whether the concen-
tration was aj = 0.99 or 0.9, etc. The analytical determination of xc depends greatly
on such a criterion. (3) The location where the grids are placed is not certain. If the
grids were placed at the exit of the jet as the article (ref. 5) implies, then the results
would have been considerably affected by the immediate wake of the grid. (4) The outer
uniform flow carries not only decaying grid-generated turbulence but also turbulence
diffused from the outer wall boundary layer. (The nature of such turbulence is much
less well known than grid turbulence.) (5) The initial free-stream turbulence energy
was measured but the scales were not. However, because of the lack of more complete
data, comparisons will be shown for this case by using plausible assumptions.

* . ' - ' » . " ' . . - - " °

A number of predictions were made with arbitrary but reasonable initial shear
layer widths for the no grid case. (See circle symbol in fig. 4.) The prediction and
experimental data are compared in figure 4. The flow quantities assumed in predictions
of all cases are uj = 30 m/sec, 6O = 0.5875 x 2 cm, definition for the core length
aj = 0.98, length scale for the no grid case Zoo/X = 1.0, and AZ^ is assumed to be pro-
portional to the grid spacing (or rod diameter). The implication of this comparison is
the slope of the no grid case data with velocity ratio is used to define the end of core as
aj = 0:98, the xc at iWui = 0.3 for the no grid case is used to calibrate the initial
shear layer width 6O = 0.5875 x 2, and the grids with 2-mm rod and 4-mm rod are used
to fix A(2oo/\y(2-mm rod diam) = 0.15. Therefore, the results for the 8-mm grid can be
looked upon as the real comparison, which is certainly very reasonable and tends to vin-
dicate t h e present approach. • - . • - > •

Parametric Study of Effect of Free-Stream Disturbances

Because of the lack of complete data, the comparison of the present results with
experiment is quantitatively inconclusive (but qualitatively satisfactory) as the attempt
in the previous section demonstrates. '"
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In this section a parametric study is made of the effect of the intensity and length
scale of wide -band -type free -stream disturbances on 2-D incompressible, free, turbulent
air -air mixing. A number of computer runs were made with identical flow conditions
except for variations in velocity ratio U2/uj, turbulent intensity V/e^/Uoo, and length

'scale "Zoo A- All computed cases are summarized in table I with the results a and

To show the effects of 600 and Zoo on profiles of shear layer properties,
samples of the similarity profiles u, e, and l/X as functions of <ry/(x - XQ) and
Umax> emax, and uvmax, and A as a function of x (which represent large disturb-
ances, very small disturbances, and effects of disturbance on both sides of the shear
layer and on just one side alone) are shown in figure 5. The spreading parameter a
which is used as the measure for the spreading (see fig. 3) is defined herein by the rela-
tion (ref. 15) or » 1.32/ATj where Arj is the angular distance between two rays when
(u - U2)/(ui - ^2) * (O.l)1/^ and (u - U2)/(ui - 112) = (0.9)1/2. The accompanying virtual
origin is Xo. The quantities a and Xo are evaluated from the last u profile com-
puted and a profile at about x * 0.8 of the total distance computed. A single parameter
which can be used to compare the rate of spreading of all properties in all flow conditions
is not yet known. The parameter a and other parameters (ref. 16) have their lim-
itations. The quantity a rcan be used to compare the growth rate of velocity width (also
momentum thickness and entrainment rate for constant -density shear layers) only when the
velocity profiles are similar. But the presence of a high level of turbulence in the external
flow distorts the profiles; however, they are "self -similar." The self -similar velocity pro-
file for the quiet boundary condition case (fig. 5(a)) is similar to that of Liepmann and
Laufer (ref. 17). (A comparison can be found in ref. 7.) The presence .of high ej makes
the self -similar velocity profile smoother near the high-velocity side because of the
increased shear stress. (See fig. 5(e).) The presence of high free-stream disturbances on
both sides stretches the profile at both ends so that the self-similar profile becomes nearly
similar again. (Compare figs. 5(a) and 5(i).) The a .values used in table I, figure 6,
and figure 7 can be regarded as comparing approximately 80 percent of the momentum
thickness because of the way it is defined. :

' * 'In the course of this study, the following qualitative observations were made:
(1) The effects on turbulence intensity is approximately proportional to v^/v^l - U2)>
that is, for a given \fo!0/^00, the effects of disturbances in the high-velocity side became

more prominent and the effects of external turbulence on the low -velocity side diminishes
as U2/uj decreases. The higher uVui, the more sensitive the flow is to external dis-
turbances. (2) As Zoo — 0 and \fe^ — 0, a and Xo approach an asymptotic value.
(3) The overall profiles are quasi-similar (i.e., though turbulence properties are still
changing the mean velocity profiles are similar) in most of the cases computed even
though the boundary conditions imposed are strongly nonsimilar. Note the constancy of
A a: |yu=>yo7l - yfl=\/079|/[1-32(x - xo)/<*l as a function of X (linear spreading) in fig-

354



ures 5(d), 5(h), 5(1), and 5(p). (4) Very small \/eZ causes numerical instability near the
• • ' • • • • . -3/2 • -

edge due to the definition I = e . (5) The ratios of diffusivities in e and e equations

have to have a certain value, that is, 1.3 (as Spalding's group used). Otherwise the length
scale profile would exhibit an anomalous dip or peak near the edge of the shear layer.
(6) Disturbances on the low-velocity side of the external flow can further increase mixing
rate up to 10 percent over the correlated results shown in figure 6.

Surprisingly, a single parameter

. . 5 r+02 /

correlates the variation of CT/CT^ with "one side" external disturbances as shown in
figure 6 . . . . . . .

Here a+ is the limiting value of a for small 0. (Actual a* values used are
marked in the table.) It should be noted that the present calculations, as correlated in
figure 6, indicate potentially large effects of free-stream disturbance on spreading rate
for simple shear layers (factor of up to 10 change in spreading rate possible). .

- " I i/ii *i\ '&~ In figure 7, predictions made with [^—^—-) = 1.7 and 0 are plotted with
\Ui - Uo \l n:'.. • . \ i * / x=0

experimental data collected by Birch and Eggers (ref. 1) in the format suggested by Kline
.,. for a as a function of U2/uj. This comparison suggests that the disturbances in the

facility free stream were responsible for at least some of the data scatter which is more
than 100 percent at the high velocity ratios (uWui - 1J.

'"" '• The effect of harrow-band acoustic disturbances could be markedly different from
the effects of the wide-band vorticity type so far considered. The difference is very well
demonstrated in the experiment conducted by Vlasov and Ginevsky (ref. 4). The experi-
mental setup and the results were shown in figure 2. Narrow-band acoustic disturbances
generated by a loud speaker were injected into a fully turbulent free subsonic jet. The
center-line velocity decay with x is plotted for the no-sound case and two different dis-
turbance frequencies. The data show that the external disturbances not only accelerate,
mixing (low-frequency disturbance), but could also attenuate mixing (high-frequency input).
This is a very significant result and indicates that the mixing rate can be controlled by
artificially inputting narrow-band disturbances. It is currently planned to study this
phenomenon with a spectral plane analysis.

Note that the slow rate of development to a "pure shear layer" is also conjectured
(ref. 16) for the large scatter of data as uWui — 1.
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Influence of Mach Number

Oh (ref. 7) modeled the pressure-velocity correlation iterm p' ^ in the kinetic
ax3

energy equation based on an eddy shock-wave concept. The prediction (ref. 7) made by a
one-equation model was reasonably good. The same cases were computed again with the
dissipation equation included. (Note that the p' terms are not yet included in the dissi-
pation equation.)

A prediction with Ce 2 = 0.14 (equivalent to CgCg = 0.07 of ref. 7) are shown in
figure 8.: The plots of a against Mj are qualitatively similar to the results of the
one-equation method (ref. 7). Detailed profile comparisons indicate the need for slightly
higher diffusivity in the dissipation equation which is a possible indication of the need for
a model of the p' term in that equation.

To be noted is that all the data shown in figure 9 are from relatively "clean" con-
figurations. The data that have some sort of wall proximity, which may allow reflec-
tion of large noise levels back into the shear layer or allow self generation of low-
frequency narrow-band noise such as cavity flows, are excluded. These "noisy flows"
generally spread faster. (See fig. 9.)

CONCLUDING REMARKS

It has been shown that disturbances in external flow can significantly affect, by as
much as an order of magnitude, the free turbulent mixing rate in shear layers. A parti-
cularly important finding is the fact that the length scale of the external flow disturbances
is as important as the amplitude.

Also, a single parameter correlates the change in entrainment rate remarkably well.
The difference between the effect of wide-band and narrow-band disturbances is stressed.
The inclusion of the model for the velocity-pressure correlation term in the kinetic energy
equation in a two-equation model predicts the reduced spreading rate in high Mach num-
ber, high Reynolds number, adiabatic, free turbulent shear layers.
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TABLE I.- COMPUTED RESULTS OF SPREADING RATE AS A FUNCTION

OF FREE-STREAM DISTURBANCES

Flow conditions for data given in table,

uj = 30 cm/sec

Ttotal = 318 K .

Ptotal=latm
-. ' •

MI = 0.084 '

R/cm= 17296.5802

6o = °-3 cm * |ya=1 - y^o.

All cases computed from xo = 0 to x = 30 cm (1006oj

Varied conditions, at x = xo '

^2 =0.5, 0.3, 0.6, 0.9 '
ul

= 0.005 to \/oT03

0.1 to 10 = 0.87560)

.,; • ux u2 :* 1 ••

—£-

'• 1 .

4

6

10

Value

0.06

13.83
-12.99

13.69
-12.84

13.54
-12.69

X i /Goo i
n f V » *•

Ul *

0.086

-13.41 ,

•:; ;..

o.i /

• ' • • / .
13.72

-15/01

13.. 10
-l&.OO

12.73
-/15.73

of -

(/O03

I ;;

12.83
-23.47

12.24
-24.23

aUsed as in figure 6.
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TABLE I.- COMPUTED RESULTS OF SPREADING RATE AS A FUNCTION

OF FREE-STREAM DISTURBANCES - Continued

(b) 2 = 0.3;
2 I** 2

if = 0.005; _1± = 0.01

Si
X

1

4

6

10

Value of a and ̂  for " _ ' of -
X \Ji

0.0377

23.13
-20.76

\

0.06

21.92
-21.90

21.92
-21.37

21.07
-21.03

0.1

23.26
-26.59

20.86
-27.50

20.05
-27.31

19.01
-26.10

«

19.39
-38.55

18.06
-39.73

16.26
-38.36

(c)
uj U2

'-,1
X

0.1

1

2

4

6

10

X 1/600 1
Value of CT and -2 for v, ' of -

' . ' • • * • u l

0.06

r

i

21.86
-21.98

21.44 '
-21,52

21.01
-21.26

0.1

."- .' " '

• - - :
 : -

- . • • '•"

21.89 "
-26.10"

20.74
-27.73

19.92
-27.62

18.88
-26.63

VO2

19.78
-34.40

17.10
-34.13

VOff
^23.36

-9.79 .

22.22
-26.78

21.05
-33.75

19.21
-39.70

17.85
-41.03

15.99 ';

-39.62 .
a.Used as ff* In figure 6.
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TABLE I.- COMPUTED RESULTS OF SPREADING RATE AS A FUNCTION

OF FREE-STREAM DISTURBANCES - Continued

(d) 2 * 06. o.OOS; = 0.1

X

0-1 ...

1

4

6 •;.,

10

• • - ' ' ' • F~, —
Value of CT and 5a for lf±il of -

X uj

0:05

46.88
. -46.06

0.06

40.57
-46.48

38.73
-45.33

0.1

^9.58
. ,'-25.83 .

46.05
-53.56

36.05
-55.85

32.90
-53.56

v/OT03

30.86
-77.98

,;26.58
-79.12
b21.36
-95.12

aUsed as a* In figure 6.

"Similarity profiles are included in figure 5.

W'.3'.0.6; SI, Si- ^1 =
ul U2

'•M
X

.,
0.1

1

4

10

Value of a and -j2 for , ' of -
Ul

0.005
a49i35
-43.81

.-

42.20
-43.92

0.6

-; , .

•

39.44
-45.60

0.1

j ' J

•

; 34.00

-54.59

vfoToTs

43.86
-54.36

vC02

a22.79
-63.58

\/oT03

28.52
-87.43
a!9.71 ...
-98.48

aSlmtlarity profiles are included in figure 5.
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TABLE I.- COMPUTED RESULTS OF.SPREADING RATE AS A FUNCTION
' » *•'

OF FREE-STREAM DISTURBANCES - Continued

ul
,.2^
ri -

U2

' '
°°;1

4

6

10

.Value of a and -^ lor '" „ * . of -
. X Uj

; 0.06

-40.27
-46.74

38.22
-45.03

36.03
-42.97

0.1 .

35.56
-55.96

• : 32.22
-54.74

1 28.56
-50.59

s05

29.99
, -76.08

26.18
-75.24

20i42
-101.98

(g) h ..0.,.. \^2 = O.oo5; l-

*
0.1

1

4

6

10

Xn 1/600 i
Value of <r and -^ for v . '— of -

. -A ui

0.00526
a209.47
-179.09

0.05

145.61
-153.14

-0.06

. . V( •

. . . . .
; ..

65.71
-122.25

53.07

-117.45

40.41
••': -111.35

0.1

f

, •

50:31-
-117.14

40.17

-112.38

30.55
-108.84

\/O3

38.91
-116.34

r 31.17

-113.33

-: 23.67
-110.55

aUsed as a* in figure 6.
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TABLE I.- COMPUTED RESULTS OF SPREADING RATE AS A FUNCTION

OF FREE-STREAM DISTURBANCES - Concluded

(h)
ul U2

Si
\

0.1

1

10

x v/sTT :
Value of a and -~ for -^ * . of -

*

0.005

209.37
-179.20

199.09
-168.19

vra

23.87
-112.38
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Figure 1. - Schematic of Ramjet/Scramjet engine ground simulation.
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Figure 2.- Effect of narrow-band disturbances.
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Figure 3.- Sketch of problem.

», <*>,
CORE LENGTH
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20

xc.cm :

10

SYMB.; EXP. (VINOGRADOV et al. 1974 )
: PREDICTION

rGIVEN BY EXP.

l GRID
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X mm
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.070 1.3

.0867 1.45

.0935 1.75

NO GRID
2 4
4 - 8
8 16

.1 .2 .3 .4 .5
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AN EXPERIMENTAL AND NUMERICAL INVESTIGATION OF SHOCK-WAVE INDUCED

TURBULENT BOUNDARY-LAYER SEPARATION AT HYPERSONIC SPEEDSf

.1 By J. G. Marvin, C. C. Horstman, M. W. Rubesin,
T. J. Coakley, and M. I. Kussoy

NASA Ames Research Center

SUMMARY

This paper describes a thoroughly documented experiment that was specif-
ically designed to test and guide computations of the interaction-of an im-
pinging shock wave with a turbulent boundary layer. Detailed mean flow-field
and surface data are presented for two shock strengths which resulted in at-
tached and separated flows, respectively. Numerical computations, employing
the complete time-averaged Navier-Stokes equations along with algebraic eddy-
viscosity and turbulent Prandtl number models to describe shear stress and
heat flux, are used to illustrate the dependence of the computations on the
particulars of the turbulence models. Models appropriate for zero-pressure-
gradient flows predicted the overall features of the flow fields, but were
deficient in predicting many of the details of the interaction regions. Im-
provements to the turbulence model parameters were sought through a combina-
tion of detailed data analysis and computer simulations which tested the sen-
sitivity of the solutions to model parameter changes. Computer simulations
using these improvements are presented and discussed.

INTRODUCTION

The availability of larger, faster computers, the need to reduce wind-
tunnel testing, which is time consuming and costly, and the need to provide
alternate simulation capability for test conditions beyond the reach of prac-
tical wind-tunnel design have resulted in increased emphasis on computational
fluid mechanics. Computations that were not feasible several years ago are

Paper to be presented at the Symposium On Flow Separation sponsored by
the AGARD Fluid Dynamics Panel at Gottingen, Germany, 27-30 Hay, 1975,
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now being performed routinely. For example: inviscid three-dimensional com-
putations for speeds ranging from transonic to hypersonic are possible (refs.
1 and 2); even flows where dominant viscous interactions occur, such as the
interaction of a shock with a boundary .layer, are being computed (refs. 3
and 4). These interacting flows present the greatest challenge, however,
because most of the practical applications occur at high Reynolds numbers
where the flow is turbulent and little is known about turbulence modeling.

Until recently, most of the techniques for predicting the flow behavior
in the vicinity of shock boundary-layer interactions were based on experimen-
tal correlations or approximate solutions to 'the boundary-layer equations.
But advances in numerical methods and increased computer speed and capacity
have resulted in successful attempts to obtain steady-state •solutions of the -..
complete time-dependent Navier-Stokes equations. Computations of laminar in-
teractions have been used to illustrate -the utility and accuracy of these
techniques (refs. 3 and 4). Very recent examples for turbulent flows (refs.
5-7)- illustrate that such computations using the time-dependent, time-averaged
Navier-Stokes equations* are also feasible and that they describe the qualita-
tive features of-the flow interactions. In 'these examples, closure of the
conservation equations was accomplished by describing the turbulent shear
stress and heat flux by eddy-viscosity models and turbulent Prandtl numbers.
However, a lack of sufficient detailed experimental data precluded verifica-
tion of these models and efforts to modify them so that the quantitative flow
features could be more aptly described. . .

The present study was undertaken to provide a formidable first step to- ,
ward understanding the mechanisms that must be modeled before successful nu-. .
merical calculations of these complicated flows can be made. It combines ex-
perimental and numerical methods to guide and verify turbulence modeling for .
two shock boundary-layer interaction flows, one,with and one.without separa-
tion. An axisymmetric experimental arrangement was chosen to.assure purely
two-dimensional flow (ref..8). Shocks of two different strengths were im-
pinged on an established turbulent boundary layer to set up both unseparated
and separated flows in the interaction zone. Detailed measurements, consist-
ing of surface-pressure., skin-friction, heat-transfer, and boundary-layer pro-
files of velocity, static pressure, and temperature were obtained at finely
spaced intervals along the surface. Analysis of these data was undertaken to
define the detailed behavior of the turbulence parameters used to describe the
"shear stresses throughout the interaction regions. Computations were made
using the time-dependent, time-averaged Navier-Stokes equations employing the
exact .experimental boundary conditions 'arid'" algebraic eddy^viscosity descrip-
tions for the turbulent shear stress. The authors reported preliminary prog-
ress on the separated case in reference 9.

rTime averaging in these equations is over periods long compared to tur-
bulence time scales, but short compared.to the time variations of the flow
field as a whole.
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. NOTATION

A, A 'Van Driest damping parameter, Eqs. (5) and (6)

c specific heat at constant pressure

c specific heat at constant volume, . -

S local .skin friction coefficient, T /(l/2)p u2 ... .. ....- • - .- W co oo • ' . • -

C.. • local Stanton number, q/p u c (T - T )
H T/ K«> » pv t w *

e total specific energy per unit volume, p[c T+(y2 + u2)/2] .

F,G,.H mass-averaged fluxes, Eqs. (1) and (2) r

I intermittency factor, Eq. (9.) .

k thermal conductivity • .

£ mixing length, Eqs. (4) and (20) . v

p time-averaged pressure

Pr molecular Prandtl number, yc /k
P

Pr turbulent Prandtl number

a axial heat flux, -c (y/Pr + pe/Pr )3T/3x

q , q ,radial heat flux, -c (p/Pr + pe/Pr )3T/3r

r radial coordinate, distance from model centerline

t t*me

T temperature

u mass-averaged .velocity component in axial direction

U mass-averaged conservation variables,. Eqs. (1) and (2) ' .

v mass-averaged velocity component in radial direction

x axial coordinate, distance from leading edge of shock-wave generator

y distance normal to model surface

a shock-wave generator leading-edge angle -
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6 boundary-layer thickness

6 boundary-layer thickness at the upstream location of the first measured
0 profile station

<5* kinematic displacement thickness, Eq. (8)

6* compressible displacement thickness, Eq; (11)

e eddy viscosity, Eqs. (4) and (20)

K ' -Von Karman constant, Eq. (5) '. • . , - • . '

y viscosity

p time-averaged density

3v 2a radial normal stress, p - 2y — + -5-

o axial normal stress, p - 2y_ -^- + -5- ym 1— + -^- + -^-
v • ^ ^v> + ^ ' *" ^** ^'v

ae

-. - - ^

azimuthal normal stress, p - 2yT ~ + -j PT r""1"̂ "4""9̂

T, T total shear stress, Eq. (3)
, Xi

Subscripts

f final axial grid location

i initial axial grid location

max maximum

o ' location of incident shock impingement on cylinder surface in the ab-
sence of a boundary layer

r radial direction

t stagnation conditions

T total .

x axial direction

w wall

»•• local free stream ahead, of interaction •
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APPARATUS AND PROCEDURES

Facility

The experiment was conducted in the NASA Ames Research Center 3.5-Foot
Hypersonic Wind Tunnel. This facility operates in a blowdown mode and uti-
lizes contoured axisymmetric nozzles to achieve a uniform Mach number, and an
open-jet type test core approximately 0.7 m in diameter and 4 m in length.
The present tests were all performed at a.nominal free-stream Mach number of
7.2 and with nominal values of total temperature and pressure of 695 K .and
34 atmospheres, respectively. The corresponding nominal value of free-stream
unit Reynolds number was 10.9 *106 m"1 and the useful test time was about 3
min.

Model .

A cone-ogive cylinder, 330 cm in length and 20.3 cm in diameter was used
as the test surface (see fig. 1). An annular Shockwave generator, 51 cm in
diameter, mounted concentric with the cylinder axis was used to generate shock
waves of two different strengths by beveling the sharp leading edge at either
7.5° or 15°. The generator could be translated in a direction parallel to the
cylinder axis so that the entire interaction region could be passed over se-
lected survey stations.

Interchangeable instrumentation ports, 12 cm in diameter and specifically
contoured to match the cylindrical surface, were located at 25 cm intervals
along the cylinder in a single line, and every 50 cm in another line 180°
around the body. One port was instrumented with a floating element skin-
friction balance. Another was used to accommodate either pitot and static
pressure probes or total temperature probes. The probes were positioned by a
mechanism contained inside the cylinder and automatically actuated from out-
side the tunnel test section. The remaining ports were instrumented with
thermocouples spot-welded to the inner surface every 1.25 cm and with static
pressure taps. Static pressure taps were also located every 5 cm along the
entire cylinder between ports.

Test Procedure

Data were collected from a series of tests with the tunnel operating at
the nominal conditions described above. In separate tests without the gener-
ator it was determined that a fully developed turbulent boundary layer with
negligible axial pressure gradient was established over the cylinder surface
between 100 and 300 cm from the model tip (ref. 10). With the generator in
place, the nominal measured boundary-layer parameters ahead of the interaction
for the 7.5° and 15° generator angles, respectively, were: edge Mach number,
6.7 and 6.9; boundary-layer thickness, 3.2 cm and 2.7 cm; and Reynolds number
based on boundary-layer thickness, 0.23* 106 and 0.2* 10 . The model wall
temperature was essentially constant at a value of 300 K.
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Surface pressure, skin friction, and heat transfer were obtained at small
Intervals by moving the shock-wave generator in an axial direction during the
tests. The boundary-layer thickness increased about 10% over the distance of
25 cm which corresponded to the difference'between the farthest upstream and
downstream positions of the generator. The difference in boundary-layer
thickness had little influence on the results, provided they were compared at
equivalent distances from the leading edge of the generator.

' Skin friction was measured with a contoured floating-element balance
whose sensible element was 0.95 cm in diameter. Calibrations of the gage be-
fore and after each test run were repeatable to within 5%. The skin-friction
data were corrected for buoyancy effects resulting from the axial pressure
gradient. Corrections were less than 10% of the measured values, except in
the regions of minimum skin friction for .the 7.5° generator tests and near
separation and reattachment for the 15° generator tests, where they were as
high as 50% of the measured upstream zero pressure gradient values. The heat-
transfer rate was measured using the thin-wall transient technique. Longitu-
dinal conduction errors were computed and found to be less than 5% of the
measured rates and so no corrections were applied to these data.

Velocity, density, and pressure profiles were obtained from pitot and
static pressure and total temperature surveys. Each survey was taken during
a single test run, and its axial location was established prior to the run by
prepositioning the shock generator. In the interaction region, surveys were
obtained every 2 cm for the 7.5° generator tests and every 2.5 cm for the 15°
generator tests. Downstream of the interaction the corresponding distances
between survey stations were increased to 4 cm and 5 cm, respectively, for the
two generator angles. In the reversed flow region established with the 15°
generator, pitot measurements were obtained in upstream and downstream direc-
tions to help establish the extent of separation. When traversing the bound-
ary layer, the probes were stopped at each location for a few seconds to avoid
time, lags in the measurements, and static pressures at the model surface were
monitored continuously to verify interference-free data.

To verify that the model was aligned with the free-stream flow direction,
surface-pressure measurements at selected axial positions were obtained at 90°
intervals around the model, and skin-friction measurements at selected axial
positions 180° apart. .Comparisons of these data around the model showed vari-
ations that were within the experimental accuracy of the measurements. For
the 15° generator tests, separation and reattachment lines around the model
were also measured using a surface oil film technique. The results, verified
an axisymmetric separation zone.

A more complete description of the test procedure and data accuracy along
with tabulations of all the test data are given in reference 11.

GOVERNING EQUATIONS AND NUMERICAL PROCEDURES
• ' ' i t . , - * , ' ' • . , '

The equations and numerical procedures were first presented by the au-
thors in reference 9. For completeness, some of that information is presented
again in this section.
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Equations and Boundary Conditions . .

-The mass-averaged Navierr-Stokes equations for compressible f low, ̂ ex-.; .. 4.
pressed in cylindrical coordinates with axial symmetry assumed, were used to
predict the flow throughout the interaction region. The equations and.the. '.
concept.of mass averaging are discussed in reference 12. The turbulent Rey- «
nolds stress and heat-flux terms in these > equations are related to. the mean ...
flow gradients of velocity and temperature by eddy-transport coefficients that
are added to the molecular-transport coefficients. Additional, restrictions on
the equation system include the perf.ect gas assumption, constant .specif ic ...
heats, the Sutherland viscosity law,, and zero bulk viscosity., The,resulting :
equations a r e . . . . . . . . , . , . , . . . . . . .

9U +-9G _
+: 9r ~ • ":"'.-'•': .(i)

U = r

.P

pu

pv

e

F = r

pu

pu2 + a

puv + Txr
(e + a )u + T vs+ qx xr . Mx

•''.,• (2)

H = G = r.

pv

PUV '+ T .
xr

pv2 + ar

(e + o )v + T u + qr xr ^i

Figure 2 shows the computational domain; The coriditipns on the upstream
boundary, were prescribed by a combination of an inviscid, method of character-
istics program (ref. 13), and.a boundary-layer program (ref. 14) modified for
turbulent flows by Marvin and Sheaffer. At the upstream boundary position,
ithe experimental arid computed iriciderit shock waves were aligned and the '
boundary-layer program was run for "an x distance that ensured a match of
experimentally and numerically determined displacement thicknesses'. Along the
cylinder surface, r = rw or y = 0, the boundary conditipns used were the
viscous, no-slip conditions, u = v = 9p/3r = 0, T = Tw, while along the outer
boundary they were the inviscid, "free-slip conditions, v = 9p/9r = 9u/9r
= 9T/9r =0. At the downstream boundary the derivatives of all variables
were set to zero, e.g., 3u/8x = 0. The initial conditions within the com- .
putatiorial domain used to start the solutions were 'obtained by setting^ the
values of all variables equal to their inflow boundary values at the same
vertical station, that is, f(x, r, 0) = fCx^ r, 0), x± < x ̂  xf. To
restart solutions or make modifications-to turbulence parameters, initial val-
ues of the variables were set equal to their computed values obtained during
the last time step of the previous solution.' . . • . =. , . .
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Numerical Procedures

The finite difference scheme used to solve equation (1) is the same .as
that developed originally by MacCormack (ref. 3) and applied more recently to
two-dimensional turbulent shock boundary-layer .interactions by Baldwin and
MacCormack (ref. 15). The numerical techniques employed in the present study,,,
along with all the pertinent difference equations, and some special proce-
dures are reported in reference 9. The computational domain was subdivided
into four .subgrids with each subgrid divided into a number of uniform grid
•cells with spacing Ay. Finer spacing was employed near the wall. A total of
78 cells.in the y direction, was used; uniformly spaced grid with 48 cells in
the , x direction was used with spacing ..Ax = 0.80 or 0.635 cm for the 7.5° and
15° cases, respectively. Some of the solutions presented later coyer axial
distances greater than those obtained with the 48 cells in the x direction.
Those solutions were achieved by redefining the upstream boundary to coincide
with a position about 3 cm ahead of the downstream boundary from converged
solutions and then continuing the solutions on. downstream for another 48
cell points in the x direction.

The solutions were advanced in time following the procedure described in.
reference 9. Steady-state convergence was assumed when solutions from at
least 20 successive time steps showed little or no change. Computation times .'
to achieve these fully converged solutions on a CDC 7600 were 3-4 hrs for the
15° generator cases and about 1 hr for the 7.5° cases.

RESULTS AND. DISCUSSION

Experimentally Determined Flow-Field Features

Figure 2 depicts the major features .of the shock-wave,'boundary-layer
interaction zone. The sketch is based on boundary-layer survey measurements
and shadowgraphs taken during the experiments using both the 7.5° and 15°
shock-wave generators. The incident Shockwave, weakened and curved somewhat
by the expansion fan emanating from the corner formed by the leading edge and
the body of the shock-wave generator, impinges on the incoming boundary layer.
The subsequent increases in surface pressure cause the boundary layer to
thicken, or even separate in the case of the strongest incident shock wave,
and induce a shock wave. Thereafter rapid flow turning and boundary-layer
thinning occur and a recompression .shock is formed.

Figure 3 shows the surface measurements obtained for the two shock-wave
generator angles. Surface-pressure, skin-friction, and heat-transfer coeffi-
cients are shown as functions of a normalized interaction distance centered
about XQ, the location of the intersection of the inviscid incident shock
wave with the body surface in the absence of a boundary layer. With the 7.5°
generator, the pressure rises continually through the interaction; the skin
friction decreases initially in the presence of the adverse pressure gradient
and rises thereafter in the recompression region where the boundary layer
thins. The heat transfer follows a behavior similar to that of the pressure.
No separation was observed in this case, either from the skin-friction mea-
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surements or from oil-flow patterns that were established and photographed
during some special tests. In contrast, with the 15° generator the initial
increase in pressure levels off in a plateau, and negative values of skin
friction were measured, both characteristics typically associated with separa-
tion. Rapid increases in pressure and skin friction occur downstream of re-
attachment. The heat transfer rises continually.through the interaction until
the surface pressure decreases. For both generator angles, the decay in pres-
sure, skin friction, and heat transfer downstream of the interaction is a di-
rect result of the expansion fan emanating from the corner of the generator.

Figures 4 and 5 present constant static pressure and velocity contours
and illustrate further the details of the two interaction cases under investi-
gation. The contours were constructed from the profiles of velocity and stat-
ic pressure across the boundary layer obtained from pit.ot and static pressure
and total temperature measurements taken at small Ax and Ay intervals. Com-
plete tabulations of these profile data can be found in reference 11. Loca-
tions of the incident, induced, and recompression shocks are easily recognized
in the pressure contours. Note that for the 15° generator the pressures are
higher than the wall-peak pressure in the compression region downstream of the
intersection of the incident and induced shocks. The velocity contours illus-
trate more dramatically the differences between the two ff low cases. For the
larger generator angle the flow velocity near the wall in the vicinity of. the
interaction is highly retarded and achieves negative values associated" with
the reversed flow in the separated zone.

A precise determination of separation and reattachment points for the
separated case was made difficult because of the unsteady nature of the separ-
ated flow and the relatively large diameter of the skin friction element. A
detailed discussion of this unsteady phenomenon is given in reference 9. A
best estimate of the extent of the time-averaged separation region was obtain-
ed from data obtained with forward and backward facing pitot tubes. These
data, obtained at fixed values of y with x varied by moving the shock gener-
ator, indicated a separated region extending from (x-xo)/50 = -3.15 to -1.68.
This region is somewhat larger than the skin-friction measurements indicated.
Locations of the separation and reattachement points from the pitot measure-
ments are shown on the abscissa of the skin-friction plot.

Numerically Simulated Flow-Field Features

As previously mentioned, the turbulent Reynolds stress and heat-flux
terms in equation (2) were assumed to be related to the mean flow gradients of
velocity and temperature by algebraic eddy-transport coefficients that were
simply added to the molecular-transport coefficients. Mainly, this choice was
dictated by considerations of economy in the computer program. Although such
a model may be restrictive in its application to other new flow situations, it
suits our current objectives of (1) defining the eddy viscosity field that re-
sults when a shock impinges on a turbulent boundary layer, and (2) determining
whether improvements in the eddy viscosity description used in the numerical
simulations can be made by a close examination of the experimental data.

385



Results using a baseline turbulence model=—The first numerical simula-
tions were obtained with a modified, two-layer, Cebeci-Smith (ref. 16) eddy
viscosity model. Modifications suggested by'. Cebeci to account for pressure
gradient effects were not used. The shear was expressed as

3u.3v- + - (3)

In the inner layer the following mixing length description for the eddy vis-
cosity was used:

inner

where

£ = <y 1 - exp •m
A = Aw

T |p
W W.

(6)

with the Von Karman constant K = 0.4 and the Van Driest constant A = 26. :

wIn the outer layer, the eddy viscosity was given, following Clauser, by

outer

6*
(7)

where
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w
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I -.1+5.5 (9)

6 = 1.7356*c (10)
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0
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r +yw J

w
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The above definitions of the displacement thicknesses differ somewhat from the
conventional ones. The present choice was dictated by the fact that, in the
first stages of developing the Navier-Stokes code for the shock interaction
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problem, overshoots in the velocity profiles during early time steps made it
difficult to select the edge of the viscous layer. Therefore, the value of
ymax was simply taken as the boundary-layer thickness ahead•of the interac-
tion, and umax and (pu)max were taken as the local maximum values between
the wall and ymax- The boundary between the two layers was determined by the
value of y where einner = eouter.

The heat flux was expressed in terms of the eddy viscosity by

q = qr = - P

where Pr = 0.9.

Results of the computations using this baseline turbulence model are com-
pared with the experimental data in figures 6, 7, and 8. Overall, the compu-
tations predict the qualitative features of the two flows remarkably well con-
sidering the simplicity of the turbulence model, but a closer examination of
the comparisons points out the major limitations of the computations.

j

The overall surface pressure .rise for the flow with the 7.5° shock-wave
generator (fig. 6a) is predicted reasonably well, except for the location of
the initial rise in pressure. The corresponding predicted rises in both skin
friction and heat transfer lag the. data in the interaction region, reflecting
the inability of the simple turbulence model to predict any upstream influ-
ence, but the final predicted levels downstream agree reasonably well with the
data. The skin friction prediction shows separation at the surface but the
measurements do not. The pressure contour comparisons (fig. 7a) show that
the computation predicts only the incident and reflected shocks whereas the
experimental data show the presence of an induced shock. The comparison of
the streamline contours (fig. 8a) shows the prediction of a zero velocity
line just off the surface accompanied by a small region of reversed flow which
is not present in the experimental data.

Similar conclusions can be made from comparisons of the numerical compu-
tations and the data for the flow with the 15° shock-wave generator (figs. 6b,
7b, and 8b). With the baseline turbulence model, no upstream influence is
.predicted and in this separated flow case no plateau pressure is predicted.
The induced shock wave caused by the large separation in the experiment is not
predicted because the computation predicts such a small separation height.
For this separated flow case, the baseline turbulence model results in good
prediction of the overall pressure and skin friction rises and their subse-
quent decay; but the heat transfer is substantially underpredicted (see fig.
6b).

Baseline model modifications.—Attempts were made to guide changes in the
turbulence model by combining data analysis and trial and error solutions in
the actual Navier-Stokes code. Ideally, these changes could have been guided
entirely from data if absolutely reliable shear-stress measurements had been
available. But, since attempts to directly measure the shear"stress through
these interactions have so far produced unsatisfactory results, the boundary-

387



layer profile data were used. A significant degree of uncertainty is intro-
duced in this procedure, however, because the inertial forces dominate the
momentum balance, especially in the outer portions of the flow. Conversely,
relying solely on trial and error solutions to the code itself to guide model-
ing changes would be time consuming and perhaps unsuccessful if attention was
not confined to physically meaningful changes.

The shear-stress and heat-flux distributions through the boundary layer
were evaluated by the use of experimental profile data to solve the following
equations based on the boundary-layer approximation:

1

w
r T +•£- (r 'W W dX W

pu2) dy

u-9ir I < r
w

+ y>p u d y (13)

and

q - UT (rw
r q+c Tq
w T? f[Vt 9x J v w

y)pudy

- i f c r .
OX J W

(14)

By performing integration with respect to y before differentiation with re-
spect to x and by employing the conservative form of the variables, for ex-
ample (p + pu2), it was expected that errors in the momentum and energy bal-
ances could be minimized. Despite these precautions, not all»the shear pro-
files approached zero at large distances from the wall where they should have.
In some of these cases it was possible to adjust the inertial balance across
the boundary layer so that zero shear was achieved at the edge of the thermal
boundary layer. These adjustments were usually small for the 7.5° shock wave
generator profiles, but somewhat larger for the 15° generator profiles.

Figure 9 shows the shear profiles resulting from these momentum and ener-
gy balances for axial locations ahead, within, and downstream of the two in-
teraction regions. For the flow with the 7.5° generator the maximum shear
stress within the boundary layer builds up rapidly within the interaction re-
gion as the adverse pressure gradient increases; after peak pressure is
reached this maximum shear relaxes toward its initial level but at a very slow
rate. At the farthest downstream location where the pressure gradient is
favorable the shear near the wall decreases and subsequently increases, indi-
cating that the shear in the outer extremes of the boundary layer is adjusting
to the local flow gradients more slowly than the shear near the wall. Similar
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conclusions can be reached for the separated case using the 15° generator. In
this case, data were available for a larger downstream interaction distance,
and the shear appears to have adjusted to the local flow gradients. Also, for
this separated case, the maximum shear in the boundary layer continues to in-
crease downstream of reattachment and slightly beyond the location of peak
pressure.

A maximum mixing length was determined at each of the profile survey sta-
tions by dividing the experimentally deduced shear distributions by the mea-
sured velocity gradients, plotting the results, and choosing the maximum value
of mixing length. For those cases where the mixing length continuously in-
creased with distance from the wall, the value of maximum mixing length was
chosen at the point where the first significant departure from a linear mixing
length distribution occurred. These maximum values are shown in figure 10 as
a function of the interaction length parameter. The extremes on the bars rep-
resent the uncertainty introduced by using shear profiles evaluated either
directly from the momentum balances or from momentum balances modified by ad-
justing the inertial terms to insure zero shear at the edge of the thermal
boundary layer. The uncertainty was largest in the region downstream of reat-'
tachment for the 15° generator case. In both cases the maximum mixing lengths
tend to decrease in regions of adverse pressure gradient, where the boundary
layer thickens, and to increase in regions of favorable pressure gradient.

Near the surface where the importance of the inertia and convection terms
in the momentum and energy balances diminished, attempts were made to evaluate
K and A^. The shear profiles at each survey station were analyzed by inte- .
grating the following system of equations to obtain values of velocity and
temperature as a function of y out to distances where the estimated errors
in the inertial balance became significant compared to the magnitude of the
local shear (usually this consisted of about 9 measured points away from the
wall) :

£ = Ky l - e x p - (16)

A (17)w|pw w

„ fjL+£ii (18)( *

Best fits to the velocity and temperature profile data near the wall were
achieved by repeated integration of these equations until the sum of the root
mean square of the differences between the predicted and measured velocities
and temperatures was minimized. The procedure was automated for solution on
a CDC 7600 and initiated by inputting shear and temperature profiles from the
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momentum and energy balances along with the measured values of wall shear. An
optimization routine (described in ref. ,16) was initiated and values of K; and

A and q were sought to satisfy the minimization criteria, (This optimiza-

tion routine was developed by Garret N. Vanderplaats, of NASA Aines, who helped
to' implement it for the present application.) The root mean square of the
residuals never exceeded 5% and in most cases was less. Exceptions to this
residual band occurred for the 15° generator case in the separated) region.., ;} -
However, it was still possible to achieve this band at these profile stations,
provided the input wall shear was:also, considered part of the optimization
routine along with the other parameters. This was not surprising, however,
since accurate skin-friction measurements were difficult to make in this sep-
arated region. Examples of the best fits to the velocity and temperature
data hear the upstream edge of the separated region are shown as the solid
lines in figure 11. Two important .aspects of this example are noteworthy.
First, at this station, the wall shear needed to achieve a best fit was
-5.28 N/m2 whereas the direct measurement was 12.1 N/m2. Considering*-that* v: .-;."
the station is near the separation point where experimental accuracy is poor
and 'that the separation point is unsteady.i this disparity is not unreasonable.

Second, at this station, values of K and A are significantly lower thanw
their corresponding undisturbed values,. .;0.4 and 26- -" • i. '. , ±r :{•:•.: ti.tf, .

Figure 12 presents the values of < arid A^ 'required to achieve these' '
best fit velpcity and temperature profiles for both of the^interaction cases
being'studied. The error bands on the"symbols again represent the uncertainty-
introduced by using shear profiles evaluated either directly from'the momentum •
balances or from momentum balances modified by adjusting the inertial terms to
insure zero shear at the edge of the" thermal boundary layer. The results for
the 7.5° generator show that A^ decreases'in the vicinity of the interaction •
while ic increases. ' These results 'are interpreted as indicating a higher '
eddy viscosity throughout the region" than that predicted by the baseline tur-
bulence model. This could explain why the numerical simulations using the
baseline turbulence model predicted 'separation. For the 15° generator case
where separation was present; similar trends in K and A* are apparent. How-
ever, the uncertainties within the separated region precluded any precise de-
termination of the parameters. Apparently," both K and A^J decrease ahead of
and in the upstream portions of the separated region. At the downstream edge '
of the separated region near reattachment; K, has increased considerably 'and •'"•-'
A+ is also increasing. The physical interpretation of these,results'suggests"
that .ahead .of separation/thecsublayer or̂ ;'inner region has a somewhat higher
eddy• "viscosity" tlian' the"baseline model would predict," but in the logarithmicu' '
region the viscosity is somewhat lower than the baseline model would predict.
In the separated region, an interpretation is more difficult to arrive at, but
apparently, .at least near the reattachment point, the eddy viscosity is higher
across the sublayer,'and logarithmic regions than would be predicted by the
baseline model, ' r. .', . ' ' • . , .

.The turbulence model mixing length formulation suggested by the fbr.egping
data analysis was introduced into the Navier-Stokes computer code in the fol-
lowing way: '
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Employing ^max in this model formulation eliminated the need for. arbitrarily
defining compressible and incompressible displacement .thickness as was. the • .
case with . the baseline model. The boundary between the two regions is deter-.
mined ( by cthe value of y where SL = &max. The heat flux equation remained
the .same as for the baseline model (see eq. 12).

" • « • • • • • ' • ' ' - ••• . • ,, . (.. ' -. • . ; • t. • •

.. Computer simulations were next obtained using the experimental data anal-
ysis as a guide for evaluating the parameters ^̂ (x), K(X), and; Â (x) . .
First, values directly from the data analysis were used. Examination of the
resulting , computer simulations made it apparent that adjustments to the param-
eters would be needed before the simulations would predict the experimentally
determined features of the flow fields in the interaction region. Therefore,
a trial and error procedure was initiated to arrive at more appropriate dis-
tributions of the turbulence parameters. . The procedure is still underway at
this. time. Before discussing the results of this procedure to date, some in- '
teresting observations can be pointed out. The simulations were all more ;
sensitive .to modifications of the inner region model parameters than the outer. '
maximum mixing length pafame'ter. In th'e inner region itself, Â (x) modifica-
tions tended to affect the solutions' more than those for K(X), especially in
the separated -case. However, best results have been achieved .with modifica- . c""
tion to both A+(x) and K(X).

Results using a modified turbulence model. — The turbulence parameter var-
iations used in the latest computer simulations employing thfe complete Navier-
Stokes equations are shown as the solid and dashed lines in figures 10 and .12.
The maximum mixing length variation (fig. 10), employed in all simulations,
corresponded to the mean variation exhibited by the data .analysis. In the in-r
ner layer region (fig. 12), values of Alt and K had to be altered to obtain
better predictions of the experimental surface and flow-field data. For the
7.5° generator case these variations in A^ and K follow the trends exhibited
by the data analysis. The largest disparity between the values used in the
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simulations and those-deduced from data'analysis is in • A^ at the beginning
of the interaction region. As noted before, decreasing A^ and increasing K
both result in a larger eddy viscosity si'n the inner layer region. .For the 15°
generator case the variations in the "'inner layer turbulence parameters'follow
the same trends as the data analysis except near reattachment; Part of the
reason for this disparity is that the-;data. analysis in this .region was com-
pleted''only recently arid,there was -insufficient. time to..obtain, converged .-simu-
lations before preparing this manuscript. >;.-i ;•;•.-!'> EK-?

The results of the computer simulations using the turbulence parameter
variations'described above are presented in figures 6, 7, and 8. For "the 7.5°
jgeherator case 'there^ is "obvious! improvement;-over/-.the; baseline .-predictions.-, of

" rsWin fricti6h;and; heat "transfer inltheTintefaction.':regionr.!(s.e.e3fig.0'6a).> i ;Sep-
"aration' is'not predicted and 'the' upstreamt influence..of the interactipnocoin-r

" '-cides 'with- thatvobserved -from"the 'd'atâ 'Downstream of„the peak pressurej.lpca-
" tiori the'he^t-transfer predictibh-isHriot:as rgood as the*baseline 'model3predic-
tions, "but this could be explained>by"an incorrect chpiee .of :'a-.constant-turbu-
lent sPrandt-l number:' "At'this stage of-"model development, this disparity: in--
heating: prediction is hot considered'crucial.'because the solutions of the mo-
mentum and'energy equations are loosely coupled.. The turbulence model.changes
had little effect on the surface pressure prediction. -.The pressure and veloc-
ity contours (figs. 7 and 8) are not changed significantly from those for the
baseline model, except that no reversed flow region is predicted with the mod-
ified model. The reflected shock observed in the data is still not predicted.
The main reason for this is that the numerical simulations fail to show a sig-
nificant thickening of the boundary layer at the start of the interaction re-
gion. • ' • • • ' . • ' '•'•• ••••-'-.> •.• "' - •••;•>' .>. ,• • •• >t ,•:.:. . , . ,....:.-

Results using the turbulence model modifications for the 15° generator
case are also shown in figures .6, 7, and 8. The;predicted separation bubble
size* increased considerably with a'.corresponding prediction of upstream influ-
ence and a plateau in the surface pressure. The pressure contours show the
presence of an induced shock wave similar to that observed in the experiment.
Obviously-, substantial deficiencies still exist in the predictipn using the
modified model. The separated bubblei.size: .is still smaller in height than the
experiment indicates; the plateau pressure;is only about half the measured
value; and all three surface quantities show substantial differences with the
measurements in the interaction region. It is felt, however, that a signifi-
cant improvement' in .the surface predictions can be made by including .the lat-
est data analysis values of A^ and K near reattachment. This should
shorten the extent of predicted separation and shift the rise in skin-friction
and heat-transfer upstream. - :•/-.; •

••" •' • " :. .; CONCLUDING. REMARKS

A detailed experimental investigation of the mean flow throughout two
shock-wave boundary-layer interaction' regions, one with separation and one
without, has been presented. Although the'interactions were very complex, the
mean data were of sufficient detail and quality to assess the validity of nu-
merical simulations and to guide turbulence model changes.
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• Numerical solutions, employing the full time-averaged Navier-Stokes
equations along with algebraic eddy-viscosity models appropriate for zero-
pfressure-gradient flows, predicted, the'Overall features of the flow fields,
but -they were seriously deficient in predicting the details of the interaction
regions. Through a combination of data analysis and trial and error computer
simulations, which tested the sensitivity of the solutions to turbulence model
parameter changes, the agreement between numerical.predictions and experiment
was improved. . . ; , . . :. _ .. • . ••>-..

Although the improvements fell short of identifying an optimum model,
several important trends regarding the two-layer, algebraic eddy-viscosity
model'can be noted. The inner layer model parameters had substantially more
"influence on the numerical simulations•than the outer layer parameter. Where
the-boundary layer was unseparated, theieddy viscosity in the inner layer re-

•gion-had-;to be increased substantially over that predicted by a zero-pressure-
• gradient, two-layer'model; otherwise separation was predicted. Therefore~'>the
•simple" zero-pressure-gradient model cannot-be used to predict locations, of
separation. Where separation did occur, the results.were less clear, but the
eddy viscosity in the sublayer region had to be increased while in the logar-
ithmic region it had to be reduced somewhat; otherwise the separation bubble
'Size was substantially underpredicted..
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Figure 4.- Static pressure contours
obtained from flow-field measurements.

Figure 5.- Velocity contours obtained
from flow-field measurements.
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(a) a - 7.5°. (b) o - 15".

Comparisons of computations and measurements along the model surface.
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(a) a - 7.5°. (b) o - 15°.

Figure 7.- Comparisons of static pressure contours from computations and
experiment.
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Figure 8.- Comparisons of velocity contours from computations and experiment*
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CALCULATION OF SHOCK-SEPARATED TURBULENT BOUNDARY LAYERS

By B. S. Baldwin and W. C. Rose
NASA Ames Research Center

SUMMARY

Numerical solutions of the complete, time-averaged conservation equations using
several eddy-viscosity models for the Reynolds shear stress to close the equations are
compared with experimental measurements in a compressible, turbulent separated flow.
An efficient time-splitting, explicit difference scheme was used to solve the two-
dimensional conservation equations. The experiment used for comparison was a turbu-
lent boundary layer that was separated by an incident shock wave in a Mach 2.93 flow
with a unit Reynolds number of 5.7 x 10^/m. Comparisons of predicted and experimental
values of surface pressure, shear stress along the wall, and velocity profiles are shown.
One of the tested eddy-viscosity models which allows the shear stress to be out of equi-
librium with the mean flow produces substantially better agreement with the experimen-
tal measurements than the simpler models. A tool is thereby provided for inferring
additional information about the flow, such as static pressures in the stream, which
might not be directly obtainable from experiments.

INTRODUCTION

Development of turbulence models capable of adequately predicting separated com-
pressible flows requires extensive comparisons of calculations with a variety of experi-
ments. At present, the proper role of the calculations is perhaps to aid in the design,
interpretation, and documentation of the experiments. For those purposes, it is expedi-
ent to seek simple empirical relationships that can be used in the calculations to corre-
late the experiments. Only after a reliable body of experimental data has been accumu-
lated will definitive verification of the advanced turbulence models be possible.

The adequacy of the numerical method for solving the conservation equations has
been established by comparison of calculations with experimental measurements in
laminar separated flows (refs. 1 to 3). Methods and procedures for incorporating turbu-
lence models efficiently in the numerical methods are still in a stage of development.
Thus, while experience is being gained with these methods and procedures, it is expedi-
ent to utilize simple empirical relationships in most of the calculations rather than add
the complication of advanced turbulence models.
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Several solutions to the conservation equations for compressible turbulent sepa-
rated flows have been obtained to date (refs. 4 to 8). The present investigation was
motivated and guided by interaction with experiments conducted by the authors of ref-
erences 9 to 11. The class of experiments considered in this study (i.e., non -hypersonic,
near-adiabatic wall condition) was chosen for examination to minimize uncertainty with
the body of data to be used for comparison with the calculations. In addition, the effects
of pressure fluctuations which might influence the turbulence modeling are minimized in
such flows. An attempt has been made in the present study to find modifications of a 3

simple algebraic turbulence model that will adequately represent the turbulent shear
stress throughout a shock -separated turbulent boundary layer. '

SYMBOLS ; ' : > ' i.v.:.-.--

Cf skin-friction coefficient

Cp pressure coefficient

S. mixing length

M Mach number

p pressure

Pr Prandtl number (0.72)

Pr-j- turbulent Prandtl number (0.9)

Re Reynolds number

T temperature

u streamwise velocity

umax maximum velocity in boundary layer

UT friction velocity

v velocity in y-direction
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x . streamwise coordinate

. " • • • ' • * »/"•
xi., . . inviscid impingement location

y . . , cross-stream coordinate .,

6 ._ •_ ...t..r(boundary-layer thickness, .

e eddy viscosity

einner eddy viscosity near wall , .,,

eouter e^dy viscosity in outer part of boundary layer

M absolute viscosity

p density

TXy shear stress fluxes in Navier-Stokes equations

r total shear stress, -7"Xy

Subscripts:

e edge of boundary layer

o upstream conditions

t total conditions

w wall conditions

00 free-stream conditions

Superscript:

+ indicates dimensionless boundary-layer quantity
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PRELIMINARY CONSIDERATIONS
t

Description of the Flow

The flow field considered in this study is shown schematically in figure 1. (See
ref. 10 for complete detail.) The free-stream Mach number is 2.93 and the unit Reynolds
number is 5.7 x 107/m. A shock wave, generated by a plate set at 13° to the free stream,
impinges on the turbulent boundary layer at the upper nozzle wall. This incident and
reflected shock system produces a large pressure rise (Pfinal/Pinitial ~ 5) and causes the
boundary layer to separate. The pressure rise feeds upstream in the subsonic part of .
the boundary layer and forms a separation bubble containing reversed flow; hence, sepa-
ration occurs well upstream of the inviscid shock impingement point. An induced shock
wave results from the upstream separation and a reflected shock wave also forms.
Although care was taken in the experiment to minimize three-dimensional effects, the
flow may still contain these effects as noted in reference 10. This is important to con-
sider since the present numerical method applies strictly to two-dimensional flows.

The Numerical Method

The time-averaged Navier-Stokes equations to be solved are listed in reference 5.
The numerical method and special numerical procedures used in the calculations pre-
sented herein are described in detail in references 2 and 5. The grid used in the present
study had 40 nodes in the streamwise direction with Ax = 5.1 x 10-3 m an(j 32 nodes in
the cross-stream direction with four different Ay ranging from 2.5 x 10~5 m near the
wall to 4.8 x 10-^ m beyond the boundary-layer edge. - .

A simplified turbulence model used previously (refs. 5 to 7) to gain experience in
the numerical solutions while conserving computer time expresses the shear stress as

M

The eddy viscosity e is modeled in two regions within the boundary layer, the inner
region comprising essentially the logarithmic region near the wall and the outer region
that'consist's-of'the'wake"'or approximately the remaining 75 to 80 percent of the boundary
layer. In the inner region, a mixing length formulation for the eddy viscosity is used

cDinner

where

- 02-*
3u . 9V (2)

(3)
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with

A=< Mw . (4)
\/|Tw|PW

k = 0.4, and A^ = 26. In the outer region the eddy viscosity is represented by

; *uteP - 0.0168 5252 '(5)

where

and

I=1 + (£f (7>
In the calculations, qnner is used in the boundary layer until y is large enough that
einner > eouter> at which point and beyond eOuter is used. The heat flux vector is
approximated by

(8)

with Pr = 0.72 and PrT = 0.9. The model described in equations (2) to (8) is denoted
in the remainder of this paper as the "baseline model."

In addition to the baseline model, various other models or variations of the base-
line model were investigated. Calculations using these various models will be described
in the "Results and Discussion" section.

The calculations were started at a stream wise station (x - Xi)/60 = -5.47 using
the experimental turbulent boundary-layer velocity profiles and other information, such .
as shock-wave location, that is consistent with the experiment. To indicate-the resolu-
tion of the near-wall region of the boundary layer achieved in the numerical solution, a
law of the wall velocity profile is shown in figure 2. The symbols are at the computa-
tional mesh points and, as can be seen, at least one point is in the laminar sublayer
where u+ = y+. The flow-field quantities at the mesh points were found by interpolating
experimental data. Below the region where experimental data were available (y* less
than about 500), the quantities were found by setting r = TW, neglecting streamwise
derivatives in the numerical solution using the baseline turbulence model, and constrain-
ing the velocity profile to pass through the experimental data beyond y+ = 500. The skin-
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friction coefficient Cf = 1.30 x 10"^ calculated in this manner is in close agreement
with the experimentally determined value obtained using a Preston tube (ref . 10) and
with that obtained from examination of the velocity prof ile (ref. 12).

RESULTS AND DISCUSSION

a -:- Comparison of Baseline Model With Experimental Results • . .,...,

The experimental results of reference 10 are compared with calculations using the
baseline model' in figures 3 to 6. Figure 3 contains a comparison of. experimental and.
calculated wall pressures as a function. of the streamwise coordinate employed in ref- :
ererice 10, namely (x -'Xi)/6o. Agreement between experiment and .theory using the •'*•-.
baseline model is poor: >In figure 4 the computed skin -friction coefficient is compared.
with that obtained from velocity profiles fronr.reference 10 analyzed by. the method of . .
-reference 12. - The separation and reattachment points deduced- from:, surface oil -flow -'
observations (ref. 10) are also indicated. Not only is the. forward extent of the separa-
tion underestimated by the baseline -model: calculation but the. rearward extent is over ri

"estimated. As a result of the' apparent inability of the baseline model to describe the ,
observed variation of pressure and skin-friction coefficient, various modifications to s
that model were made. . ' .

Pressure. Gradient. Modification ;• . .

To allow for effects of pressure gradients, Cebeci (ref. 13) recommends (in effect)
replacement of Aw = 26 in equation (4) with

A + -26 ( l + 118 P w - . . . ... . , . . . ,Aw- 26^1 +11.8 ^5— — -J—J- (9)

•where in the present study r = TW + y(ap/9x) (ref. 13) while the eddy viscosity in the
outer flow remains 'unchanged) According to Cebeci, the above correction 'factor is ' '••
applicable in the presence of favorable as well as unfavorable pressure gradients. In
the present application the modification increases the eddy viscosity in regions ahead; ,
of the separation as well as aft of reattachment.

The effect of the Cebeci modification on skin friction is shown in figure 5. The
separation bubble is moved slightly forward in the direction of the experiment, but the
bubble is also extended farther rearward worsening tne agreement with the measure-
ments. Clearly some modification other than that of Cebeci (or in addition to) is needed
for the class of separated flows considered here.
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Escudier Formulation ' •

An alternative to equation. (5) of the baseline model that has been used for attached
flows (ref. 14) is

eouter ~
3u 9v
ay • ax

with £max = 0.096. Results of using the Escudier model are showh also in figure 5.
The model, however, is difficult to apply in the present calculation since the local width
of the boundary layer 6 cannot be defined accurately enough in the numerical calcula-
tion because of velocity gradients introduced by curvature of .the incident, induced,, and
reflected shock waves. Slight changes in .the definition of 6 . can change its value by..,
more than a-factor of 2. However, as observed in the experiment,: the values of ; 6. do
not change significantly from the upstream value ahead of the separation. Accordingly,
£max based on the upstream boundary-layer thickness (£max = 0.096O) has been used in
several calculations to be described. Figure 6 shows calculated profiles of. pe in the
separated region according to the baseline model and the Escudier formula. Although,
as is well known, the two formulations produce similar variations for attached flows with
small pressure gradients, they appear to produce greatly different variations for the
present separated flow.

Applying the Escudier formulation in the present calculations greatly reduced the
extent of the separation along the wall. As evident in figure 5, the prediction of upstream
influence was substantially worse than that of the baseline model, although the rearward
extent of the bubble agreed better with indications from oil flow in the experiment.
Despite the poor overall agreement shown, the Escudier model can be used as a guide in
modifying the turbulence model. The better agreement with reattachment location indi-
cates one type of modification to the turbulence model needed to obtain better agreement
with the experimental data. Namely, relative to the baseline model, larger values of
eddy viscosity are needed near reattachment to confine the rearward extent of the bubble.
However, smaller values are probably needed near separation to promote the proper
upstream influence. A model is now discussed that, in fact, does possess these
characteristics. - --^->-%-r, ,- . . -»- , - - ; j

Modification to Account for Nonequilibrium Effects

For separated supersonic flow over a compression corner Shang and Hankey (ref. 8)
have obtained remarkably good agreement with experiment by use of a simple modifica-
tion of an algebraic turbulence model of the form (in the present notation)

•>1
-or(x - x0)

pe = (pe)0 + Rpe)equilibrium - (Pe)ol S1 - exP
60 -u
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with a = 1/10. This type of modification (with a = 1/10) has been proposed by many
authors arid has been shown by Rose and Johnson (ref. 11) to agree generally with the
values of £max deduced from direct measurements of the Reynolds shear stress. A
value of a between 1/5 and 1/15 is consistent with experimental observations, as noted
in reference 11.

Application of equatipn (10) in the present problem with a = 1/10 led to results
(not shown) similar to those obtained from the Cebeci viscous sublayer modification.

'" ' • • • • - ' • • -- •' ' •*• ' . " . " . • • . • .• ;> '.. ;;• • • . . '•/ ; - •; :;• "• ; :»:.-. i. •'•/ • • - • • ,''::> • '
Namely (relative to the baseline model), the upstream influence was improved, but the
bubble was also extended far downstream in gross disagreement with the experiment..

The observed effects of various turbulence models on the calculations described . ,
so far led to the following attempt) to model the turbulent -shear stress. A formula like ;

equation '(10) should apply only to" the flow, outside the separation .bubble since there probr ..-.
ably should be no upstream history passing through the front of the bubble (i.e., the tur-, ,
bulence within the bubble is in local equilibrium). In the present study, equilibrium
within the bubble was insured by applying equation (10) only if (/^equilibrium exceeded
(pe)0 which does, in fact, allow a local equilibrium condition to prevail in the separation
bubble. Since the Escudier formula produces the large values of eddy viscosity needed
to limit the rearward extent of the bubble, . (pe) equilibrium is determined from that
formulation. For the same reason in the present case, a value of at = 1/5. was found to
be better than a = 1/10. In other words the baseline model is modified by the use of . .
equation (10) with - : . ;

(11)
otherwise

where (pe) equilibrium is determined from

(Peouter)equilibrium = '

= 0.0960

8u . _3_v

(Dinner) equilibrium from ê 10118 (2) to (4) of the baseline model if £ < £max.
Profiles of pe produced by these modifications are compared with those from the base-
line model in figure 7. The desired variation in the values of pe is obtained; that is,
upstream near separation pe is lower than the baseline model and downstream near
reattachment pe is higher.

In figure 8, calculated wall pressure distributions are compared to the experimental
measurements. The upstream influence predicted by the relaxation model is in better
agreement with the measurements than the prediction from the baseline or Escudier
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models. However, the wall shear stresses shown in figure 9 indicate that prediction of
the reattachment point is still poor. Velocity profiles near the front of the bubble pre-
dicted by the baseline, relaxation, and Escudier models are compared with measure-
ments in figure 10. Again, the results using the relaxation model are in much better
agreement with the data than the simpler models.

Finally, locations of the experimental shock waves and expansion from a tracing
of a schlieren photograph of the flow field are compared in figure 11 with the locations
of the shocks and expansion predicted using the relaxation model. The good agree-
ment shown for the relaxation model would'not be obtained by any other turbulence
models'investigated in .the present study since none of the other models predict the-.' :
proper'-upstream influence. One can thus conclude that the flow-field properties, such .
as regions'of shock waves and'expansions, can be adequately predicted when a: valid,
turbulence model is used. . : - . ' . .• ; . .

CONCLUDING REMARKS • . - . - - , .
>'V,V' '."!' . ' ' _ , ' ' • •

The complete, time-averaged conservation equations have been numerically solved
using several algebraic turbulence models. Information has been gained on the effects
of the various turbulence models applied to a separating and reattaching compressible
turbulent boundary layer. The information has led to the formulation of a relaxation
model for the Reynolds shear stress that produces reasonable agreement with a set of ,. •
experimental data.
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Figure 1.- Schematic drawing of flow field to be calculated.
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SIMULATION OF TURBULENT TRANSONIC SEPARATED FLOW

OVER AN AIRFOIL

By George S. Deiwert, John B. McDevitt, and Lionel L. Levy, Jr.

NASA Ames Research Center

SUMMARY

A code has been developed for simulating high Reynolds number transonic
flow fields of arbitrary configuration. This code, in conjunction with labo-
ratory experiments, is being used to devise and test turbulence transport
models which may be suitable in the prediction of such flow fields, with par-
ticular emphasis on regions of flow separation. The solutions describe the
flow field, including both the shock-induced and trailing-edge separation
regions, in sufficient detail to provide the profile and friction drag.

INTRODUCTION

Transonic flow fields over airfoil configurations are characterized by
regions of subsonic flow and regions of supersonic flow. These regions are
often separated by standing shock waves. If these shocks are strong enough,
flow separation will occur where the shock impinges on the airfoil surface.
In addition, separation is likely to occur near the airfoil trailing edge.
If the Reynolds number is large, the flow will be turbulent near the airfoil
surface and, in all cases, will be turbulent in the far wake.

To simulate such flow fields numerically, it is necessary to use a set of
equations capable of supporting a description of all the above phenomena. In
the present study the two-dimensional time-averaged Navier-Stokes equations
for compressible flow are used. The Reynolds stresses are described by an
algebraic eddy-viscosity model and the resulting system is solved by the
second-order-accurate explicit difference method developed by MacCormack
(refs. 1 and 2).

This paper describes the progress made to date in the development of such
a code, the procedure used to validate the code, and the adaptation of the
code to advanced computers. Solutions are shown and compared with experiments
for the flow field over an 18-percent-thick,.biconvex, circular-arc airfoil
at zero angle of attack for several values of free-stream Mach number and
chord Reynolds number.
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SYMBOLS

c chord length

Cf skin-friction coefficient

Cp pressure coefficient

e internal energy per unit volume

k thermal conductivity coefficient

i mixing length

Ho free-stream Mach number

p pressure

Pr Prandtl number

Prt turbulent Prandtl number

Rec chord Reynolds number

s scalar area

S integrated surface area

t time

T temperature

u,v velocity vector components in x- and y-direction, respectively

vol integrated volume element

p coefficient of molecular viscosity

p mass density,

a normal stress

T shear stress

Subscript:

w wall surface
(

Superscript:

+ denotes nondimensionalized boundary-layer quantity
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SIMULATION METHOD

Governing Equations

The flow field is described by the two-dimensional compressible equations
of motion for turbulent flow. Written in time-dependent integral form, they
are:

where

-j^ J U d vol + t H • n ds

vol

U =

p
pu

pv

e_

_fr

H =

pq :
^ ± --:

puq + T • e
-̂  ± ->•

pvq + T • e
-»• -dt -̂_ eq + T • q - kAT.

(1)

q

-X-

ve

a e e + T e e + T e e + o e ex x x xyxy yxyx y y y

and e , e are unit vectors, and n is a unit normal vector. These equa-
x y .

tions can be solved in the orthogonal x,y coordinate system for an arbitrary
quadrilateral volume element (sketch (a)) by application of the split Ly and
Lx operators in the manner described by MacCormack (ref. 2).

Ly operator:

predictor 1

corrector U

Lx operator:

corrector i,J 2

S3 *

-.

^
/J

»

At tfl

;!,2 ' 82)
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J, V

• Sketch (a) —Quadrilateral volume element.'

The Ly and Lx operators are.applied so that equation (1) is satisfied at
each time step for each .cell of the nonorthogonal nonunifprm computational
mesh. To evaluate the viscous derivatives for the nonorthogonal mesh, the
following transformation is appropriate (ref. 3):

li = li li + li In li _ li li + li la
3x = 3£ 3x 3n 3x 3y 3£ 3y 3n 3y

where <J> is a dummy dependent variable, and (C,n) are the local coordinates
of the nonorthogonal mesh. In terms of the notation in sketch (b),

3x 3y

" ' r.•: 5 . • ••> r • > -,;c.:' t

Sketch (b) — Nonorthogonal mesh notation.
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For evaluation on surfaces S3 and 84, the differences are defined as

J " *i».JJ* .A<t>n =

j " Xim,jj Axn =

and

for Lx(i
(i-1

=

for Ly . {i+l for Lx corrector

(J'1 for Lx --4 =
jj ;•• ;for ;.(Ly • , . • ? .. .U+l. jfor Ly corrector

This treatment 'of the viscous "derivatives "always results iii -centered differ- l "
ences, maintains" second-order accuracy',' "and 'provides consistent treatment 6f-: ;?

discontinuous' boundary conditions (such -as at the leading arid trailing edges1' ^
of the airfoil). ' • • • " • • ' ; : • ' . --• ... ! ••.;•• •• '< • i! ;.;• ': ; : .' . !

Control Volume, Mesh, and Boundary Conditions

the airfoil, initially at rest, is impulsively started at" time zero at'•'"•;•'
the desired free-stream Mach number and'pressure. Figure 1 shows a "typicalf '
control volume for which the flow-field development is followed in time. At
a sufficient distance upstream of the leading edge (in this case six chord
lengths), the flow is assumed uniform at the;free-stream conditions (U = Û ,)
as it is along the far transverse boundary (again, six chord lengths away).
The downstream boundary is positioned far enough downstream of the trailing
edge (nine chord lengths) so that all gradients in the flow direction may be
assumed negligible (9u/3x = 0). The surface of the airfoil is impermeable,
and "no slip" boundary conditions are assumed (u = v = 0). The airfoil is
assumed adiabatic (VT • n = 0), and the normal surface pressure gradient is
zero (3p/9n = 0). Ahead of and behind the airfoil, the flow is symmetric. If
the airfoil is thick, and the flow field is transonic, significant boundary-
layer separation is likely. To simulate this phenomenon reliably for turbu-
lent flow it is necessary to resolve the boundary layer to the sublayer scale.
This sublayer scale is nearly proportional to l//Rec so that, for the high
Reynolds number flows of interest, the mesh resolution near the surface must
be extremely fine. As a rule of thumb, a first mesh spacing of
Aymin = 2/3(c//Rec) is adequate.

The mesh used in the studies to-date is a 50><38 mesh. In the x-direction,
the mesh is uniformly distributed over the surface of the airfoil (20 points)
and is exponentially stretched ahead of (10 points) and behind the airfoil
(20 points). In the y-direction, a coarse mesh of 26 points is exponentially
stretched away from the airfoil. The innermost region is further subdivided
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into a medium mesh of 10 exponentially stretched points and a -fine mesh of
4 uniformly spaced points.

•" • i

, - - . - ' . , . Turbulence Model

The,turbulence modelingr,is,incorpdrated in the shear stress term T^
and tyx înj.the .form of an eddyTviscbsity^cpefficientr e" as'/,̂  'Ju.l'. ̂  .

/3u 3v\ '
T " Txy = Tyx = ^y £H"3y "3xj

Two different algebraic models, ihaye"been considered» each expected to perform
adequately ahead of the shock-wave—boundary-layer interaction regions but to
exhibit different behavior when the flow separates.

The first model considered (model' 1) is a van Driest formulation (ref. 4)
for the wall region and a plane mixing formulation for the outer region. No
special consideration is given to separated regions and the airfoil wake is
described by a Clauser (ref. 5) wake formulation.

Wall Region:

9u .. 3v
3y -3x

0.4y. fl - exp(-y/A)J

Outer Region: ' ,jj

e - p£2 3u 3v
3y 3x

A = 0.07(6 - yQ)

where 6 is the boundary-layer thickness and yo is the furthest point
across the boundary layer where the velocity is zero. (For attached boundary
layers y o - 0 . ) . . .

Airfoil Wake: ' ; .""

, , e = O..001176p(6 - yo)|ufi - u^l

where u.. is the velocity at the edge of the wake and Uo is the velocity at
the center line.
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Prandtl Number:

Pr = Pr = 0.90

The second model (model'2) uses a van Driest formulation for the wall
region and a Clauser formulation with an intermittency factor in the outer
region. A limiting minimum^ value; is;' imposed' on "velocity gradient used in the
separation-bubble description and'thecairfoil wake is drescrib!ed!by the ^'*
boundary-layer-wake formulation.

/ ••
Wall Region:

i - - f » -'
- . '-? J- !-• . t - *. . '•

."• *t I" . • , ; *

I = 0.41y[l - exp(-y/A)]

Outer Region:
0.0168U.6*

o 1e =
1 + [(y-

Separation Bubble: Same as wall region except that
• (

1/2

)2 + (£)*]'̂
Airfoil Wake: Same as outer region

Prandtl Number:

Pr = 0.72 , Prt = 0.90

The validity of. each of these models in the interaction and separated
flow regions is highly suspect and requires verification by experiment. While
it may be necessary to resort to more rigorous turbulent models in these
regions, the simple models used here should permit some insight into the
influence of viscosity on such flow fields and are adequate for the early
development stages of the computer codes.
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Computational Time Step

Six different computational time steps are used in the calculation; one
for the Lx operator and one for the Ly operator in each of the three mesh
regions. Each time step is determined by the CFL (Courant-Friedrichs-Lewy)
and viscous stability requirements from the following relation:

u^+ e)/p f' • rv/';/

where h is the appropriate mesh spacing, V is the appropriate velocity
component, a is the local speed of sound, and a is a function of the mesh
aspect ratio. In the fine mesh in the wake behind the airfoil, the eddy vis-
cosity ,e is quite large, and the viscous stability criterion may govern the
time step for, the Ly operator. To avoid, this undesirable restriction-and'
unneeded resolution of the wake, the entire fine mesh region downstream of the"*'
airfoil is averaged and treated as part of. the medium mesh. ' •":" '•

VALIDATION : ' •' • • : - • • » • -

Because computations of this complexity have not previously been per-
formed, the "validity of the present code has been determined by comparison
with established computations for certain specific regions of the flow field
and. with experimental results obtained in the Ames High Reynolds Number
Channel. . •

, Inviscid Flow Field

The viscous terms were neglected and the inviscid flow was computed over
a 6-percent circular-arc airfoil at a free-stream Mach number of 0.90. ..The
surface pressure distribution is compared in figure 2 with a computation using
the small-disturbance-theory program of E. M. Murman of Flow Research, Inc.
(refs. 6 to 8 and unpublished information) and an Euler equation computation
by'R. W. MacCormack of Ames Research Center. Both of these computations
employed special considerations at the shock which have not been incorporated:
in the present code. The agreement between the three computations (all of
which solve the conservative form of the equations) is excellent,

'' •• ' " ' • ' • * ' •"' * ' "• -">•• >'•'•<'*.'̂ y >'i)i'Jc. .,'.?.:tI7 Sf! L

Attached Boundary Layer • .

The flow over an 18-percent-thick circular-arc airfoil at a free-stream
Mach number of 0.775 and a chord Reynolds number of 2xl06 was computed using
eddy-viscosity model 1. 'The computed surface pressure distribution was input
to the turbulent boundary-layer code of Marvin and Sheaffer of Ames Research
Center (ref. 9 and additional information supplied by Marvin); which uses an
implicit Crank-Nicholson method and a Cebeci-Smith eddy-viscosity model
(ref.;10). Computed values of local skin friction from this boundary-layer.
code are compared with the present calculation in figure 3. Ahead of the
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separated-flow region the agreement.is excellent except for a small region
near the leading edge where the Marvin-Sheaffer code assumes a laminar to tur-
bulent transition region.

In addition to skin friction, boundary-layer velocity profiles computed
by the present code are compared in figure 4 with the compressible form of the
universal "law of the wall." Here the symbols represent the'numerical solu-
tion and are plotted at y+ values corresponding to the mesh centers. All
profiles are seen to have one point in;the sublayer and adequately describe
the log-law and wake-flow regions of the boundary layer.

Experimental'.Comparisons ' . J .r. .v--.. j-. • .
• - - - • • • - • ' ' ...•••• • - • • . .; : vr: ;,.,.. • ; • - , < • ,., (-.«.- ••: >S ?;.-:.

Surface-pressure measurements, oil-flow studies, and shadowgraph studies '
were made, using an 18-percent-thick. circular-arc airfoil in the Ames High •"'*•>
Reynolds Number Channel. Chord Reynolds" numbers were varied between' 1 and 13' •'
million for free-stream Mach numbers between 0.711 and 0.788. In these exper-'-
iments, flow-field streamlines, determined from the present computer code,
were used to design contoured tunnel walls, in an attempt to minimize tunnel
interference effects.

Figure 5 shows a comparison between experimental and computed surface
pressure distributions over the 18-percent-thick circular-arc airfoil at
MO, = Q.775 and Rec = 2*10̂ . Three.computed distributions are shown in this
figure as determined by the present code. One of these is an inviscid calcu- "
lation, and the other two were determined using" eddy-viscosity models 1 and' 2'/'
All comparisons are in excellent agreement ahead of the interaction regidri."' "
Both viscous computations show a marked improvement over the inviscid results
in the interaction region. The solution with model, 2 shows the best agreement
with experiment with respect to shock location and shock strength. Both vis-
cous solutions indicate a shock-induced separation with the separation bubble
extending int.o the wake. This is denoted in figure 5 by the pressure plateau
downstream of the 80-percent-chord point. The experimental pressure distri-
bution does not indicate this extensive separation region, and herein con-
stitutes the greatest disagreement between computation and.experiment. As
will be shown later, at this particular choice of free-stream Mach number the
experimental flow field can be highly unsteady, and,.direct comparisons in the.
separated flow region may be invalid. •

The first study performed using the code was to assess the influence of "
Reynolds number on the transonic flow field. Using the 18-percent circular
arc at M^ = 0.775, the chord Reynolds number was parametrically varied from
1*106 to 6.67xl06 and the flow.field computed using eddy-viscosity model 1.
The results of this study are shown in figure 6 for the surface .pressure dis-
tribution. Included for reference is the inviscid solution. Three features
are apparent in this figure. First the influence of Reynolds number on this
flow field is small while the effect of viscosity is .large. Second, ,as the
Reynolds number is decreased, the shock strength decreases and the shock moves
forward on the airfoil. And third, as the Reynolds number is decreased, the
displacement effects in the separation region increase^resulting in less pres-
sure recovery near the trailing edge. The displacement effect ahead of the . ,
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interaction region is nearly the same for the entire Reynolds number range
considered. . . . .

A similar study was performed experimentally. Figure 7 shows the mea-
sured surface pressure distributions over an 18-percent circular-arc airfoil
at MOO = 0.750. Except for boundary-layer-transition effects at the lower
Reynolds number, the experimental study bears out the same conclusions deter- .
mined from the numerical results. In addition to Reynolds number effect, the
influence of free-stream Mach number was also experimentally studied. Fig-
ure 8 shows measured surface pressure distribution over an 18-percent circular-
arc airfoil at Rec = 10

X106. Results for four free-stream Mach numbers are
included: M*, = 0.74, 0.76,-0.77, and 0.79. At M^ = 0.74 -the flow is nearly
subcritical and the shock is very weak. For Ma, = 0.76 the shock is much
stronger but there is still a large pressure recovery at the trailing edge,....
indicating small separation effects. For MO, = 0.77 there is a dramatic - •
shift in pressure distribution over the aft portion of the airfoil. This -
sudden jump is associated with the shock-induced separation merging with exis-
tent trailing-edge separation, resulting in a large reverse flow region and .
large boundary-layer displacement effects. . This phenomenon persists at-the
higher free-stream Mach numbers. This Mach number dependence of onset of mas-
sive separation is also a function of Reynolds number, which .is discussed in
reference 11.

To understand this discontinuous dependence on Mach number, shadowgraph
movies were made of the flow over the aft portion of the airfoil as the Mach
number was varied through the critical range. Photographs of selected frames
of one such film are shown in figure 9 for an 18-percent circular-arc airfoil
at Rec = 7*10

6. The Mach number variation is from 0.76 to 0.79 and results
are shown for values of 0.76, 0.77, and 0.79. At M^ =0.76 the flow is
steady and there is some separation at the trailing edge. As the "Mach number
is increased, the flow becomes unsteady, switching alternately.from massive
separation to fully attached or small trailing-edge separation. This
unsteadiness is most probably an asymmetric phenomenon; hence it is not rea-
sonable to expect to simulate this phenomenon with a symmetric, free boundary,
code. When the Mach number reaches 0.79, the flow is again steady with mas-
sive shock-induced separation. Note that at the lower Mach number the shock
is fairly weak and nearly normal to the airfoil surface. At the higher Mach
number the shock is stronger and is definitely oblique — probably .a -lambda
shock. • .

To avoid comparisons in the unsteady flow regimes, subsequent computations
were performed only for the lower and higher Mach numbers where the experi-
mental flow is known to be steady. In addition, because of the superior per-
formance indicated in figure 5 of eddy-viscosity model 2 versus eddy-viscosity
model 1 in the interaction regime, model 1 has been dropped from further
consideration.

Oil-flow photographs of both the low and high Mach number experimental .
steady-flow regimes are shown in figure 10. At Ma, = 0.76 the line at the
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onset of trailing-edge separation is clearly indicated by the oil flow. The
symmetry of the separation bubble is indicated in the right-hand photograph
of the junction of the airfoil trailing edge and the tunnel side wall. At
MO, = 0.79 the onset of shock-induced separation is indicated. The right-hand
photograph of the junction of the airfoil trailing edge and the tunnel side
wall clearly indicates the magnitude of the separation bubble. The photo-
graphs in figure 10 also serve to indicate the two-dimensional and symmetric
character of the flow. . . .

For a chord Reynolds number of 4X106 the flow field over the 18-percent
circular-arc airfoil was simulated using eddy-viscosity model 2 for M^ = 0.742
and MO, = 0.788, corresponding to the two extremes, of the experimental steady. .
flows.•-'Figure 11 shows a comparison with experimental data of the surface
pressure distributions for the two cases. In figure 11(a) the viscous solu-
tion is an .improvement over the inviscid result but does not agree with the
experiment in the shock—boundary-layer interaction region. The experiment
indicates a stronger influence of viscosity than does the calculation, result-
ing in a weaker, more smeared out shock. Near the trailing edge, however, the
agreement is better, both distributions supporting the fact that there is only
trailing-edge separation and both indicating the same level of pressure recov-
ery. The reason for the substantial disparity in the interaction region is
hot yet clear. It may be related to the fact that the shock is near the mid-
chord and, for a chord Reynolds number of only 4*10 , the boundary layer may
actually be transitional in that region. This could lead to the stronger
viscous-inviscid interaction effect indicated by the experiment.

In figure 11(b) the viscous solution again is an improvement over the
inviscid result. Here the agreement between experiment and viscous calcula-
tion is good in the interaction region but is poor over the separation bubble.
Unfortunately, there was no experimental data for Rec = 4><10

6 at M^ = 0.788
so data are shown for Rec = 2*10

6 and 7*106. It is expected that data for
4><106 will fall within the envelope defined by these two limits. Note that
both the experimental and calculated pressures tend to plateau over the sepa-
ration bubble and indicate a similar extent over the aft portion of the airfoil.
The computed pressures indicate larger recovery in this region and, as will be
seen in the next figure, this is associated with the fact that the shock wave
in the experiment is" oblique while that simulated is nearly normal. The fun-
damental reason for this disparity is not yet clear but it is likely attribut-
able to the inability of the simple eddy-viscosity model to support this com-
plicated flow.
,.rl;l '- . > . - - : , . -, .. :.-.

Figure 12 shows the flow field detail over the aft portion of the airfoil
for the two Mach numbers considered above. The top photographs are shadow-
graphs of the experiment. For M^ = 0.742 the shock is weak and normal to
the surface. Separation occurs only at the trailing edge and is small in
extent. For MOO = 0.788 the shock is strong and oblique. Separation is
shock induced and extends into the wake. Immediately beneath the photographs
are computed Mach number contours. For MO, = 0.742 the flow features are
quite similar to the shadowgraph above. For M^ = 0.788 the shock is seen
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to be nearly normal to the surface as opposed to being oblique In the shadow-,
graph, but the magnitude of the separated flow region is similar to that shown
in the shadowgraph. The bottom part of.this figure contains computed velocity
vector plots .showing the details of the separation bubbles and the effect.-.of
the shock in retarding the flow. Subsequent experiments using a laser veloci-
meter are planned to provide similar experimental data in this region.

COMPUTER 'REQUIREMENTS

.The present code was originally written in FORTRAN and debugged on an
IBM 360/67. using the interactive,features ,of the time sharing .system. Sub-
sequently, it was run on the CDC 7600, requiring 2 to 10 hours per converged
solution, depending on chord Reynolds number. Because of the long run times,
the-code was completely restructured and-written in the vector-oriented Ames-
developed CFD language.! .This code, was translated to assembly language for
the ILLIAC IV and to FORTRAN for the CDC 7600. The resulting FORTRAN code
was further optimized, using COMPASS coded subroutines for all vector arith-
metic operations. Resultant run times are .now 0.8 to 4.2 hours per converged
solution on the CDC 7600, and 0.6 to 3.0.hours on the ILLIAC IV. There is
substantial room for speed increase on the ILLIAC IV in that (1) the quoted
run times were for the ILLIAC operating at 11.5 MHz instead of the design
speed of 15-16 MHz, (2) the ILLIAC was operated in non-overlap mode, and
(3) each iteration was performed twice and the solutions compared before
continuing with the computation. Each of these areas represents potential
speed reductions of 0.72, 0.40, and 0.48, respectively, leading .to an.overall
potential speed reduction of 0.14. In this case, the present code would
require from 0.08 to 0.42 hour.,per conyerged solution — an order of magnitude
faster than the vector-coded CDC,7600.

,' ". .''... . CONCLUDING,'REMARKS "

In conclusion, .a code has been written to simulate transonic turbulent
flow fields over two-dimensional bodies of arbitrary configuration. At pres-
ent, only algebraic eddy-viscosity models have been considered to achieve
turbulence closure. v 'With..these.models the code yields valid solutions in the
inviscid flow field.and in..the attached boundary layer ahead of interaction
regions. The validity of the numerical simulations in the shock—boundary-
layer interaction region and in reverse flow regions is directly related to
the,turbulence model. For the models .considered thus far, comparisons with
experiment have been less than good. This is to be expected since the models
are developed from flat-plate incompressible boundary-layer data. Nevertheless,
the viscous solutions represent a considerable improvement over inviscid solu-
tions and da predict the proper features of the flow.

-"-Computational Fluid Dynamics (A FORTRAN-Based Language for the ILLIAC IV
developed at Ames Research Center in 1973).
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The code has been optimized for the CDC 7600 computer and requires from
0.8 to 4.2 hours to simulate the transonic flow field over an 18-percent
circular-arc airfoil. The code has also been written for the ILLIAC IV and
presently requires from 0.6 to 3.0 hours to simulate these transonic flows.
These ILLIAC run .times have a potential reduction to 0.08 to 0.42 hour, if
total'advantage is taken of certain design features of the ILLIAC.
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\
(a) Steady flow, trailing-edge separation, Mm-0.76

O.OIZ 0.026

(b) Unsteady f/ow, oscillatory separation, M^ » 0. 77

lc) Steady flow, shock-induced separation, M,* 0. 79

Figure 9.— Photographs of boundary-layer separation from a shadowgraph movie;
t/c = 0.18, Rec = 7xl06.
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Figure 10.— Oil-flow patterns of separation regions; t/c = 0.18, Re « 10*106,
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Figure 12.- Flow-field details over the aft portion of an 18-percent circular-
arc airfoil.
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AN INVESTIGATION OF SEVERAL NUMERICAL PROCEDURES

FOR TIME-ASYMPTOTIC COMPRESSIBLE

NAVIER-STOKES SOLUTIONS , . „ , - • '

By David H. Rudy, Dana J. Morris, Doris K. Blanchard,
NASA Langley Research Center

, Charlie H.. Cooke, -;. ^,—
'•'"' - Old Dominion University: "v?

and Stanley G. Rubin . . .
Polytechnic Institute of New York

SUMMARY

The status of an investigation of four numerical techniques for the time-dependent
compressible Navier-Stokes equations is presented. Results for free shear layer calcu-
lations in the Reynolds number range from 10^ to 8.1 x 104 indicate that a sequential
alterating-direction implicit (ADI) finite-difference procedure requires longer computing
times to reach steady state than a low-storage hopscotch finite-difference procedure. A
finite-element method with cubic approximating functions was found to require excessive
computer storage and computation times. A fourth method, an alternating-direction cubic
spline technique which is still being tested, is also described.

INTRODUCTION

The quasi-parallel assumption successfully used in boundary-layer-type calculations
is not applicable for many free mixing flows. The complete Navier-Stokes equations must
usually be solved for flows which have no single dominant flow direction. This paper pre-
sents the current status of a detailed investigation of several numerical procedures for
obtaining steady-state solutions for two-dimensional, high Reynolds number, compressible
free shear flows using the time-asymptotic approach. In particular, the research has
been directed toward the solution of mixed subsonic-supersonic flow problems.

Most published numerical solutions of the compressible viscous time-dependent
Navier-Stokes equations have been for flows with Reynolds numbers much less than 10 .
Peyret and Viviand (ref. 1) have summarized these solutions through mid-1973. Taylor
(ref. 2) also analyzed the literature at that time. Most methods up to the time of these
surveys used explicit difference schemes. Later, Briley and McDonald (ref. 3) and Baum
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and Ndefo (ref. 4) published alternating-direction implicit (ADI) calculations. The high
Reynolds number solutions (Victoria and Steiger (ref. 5), Carter (ref. 6), and MacCormack
(ref. 7)) were all computed with explicit difference schemes. Recently, additional high
Reynolds number solutions have appeared, e.g., Hoist and Tannehill (ref. 8) and Baldwin
and MacCormack (ref. 9). These solutions were also computed with explicit methods.

Although conceptually simpler and more easily coded than implicit methods, explicit
methods are restricted to small time steps relative to .the spatial grid size for numerical
stability. Consequently, such methods require long computation;times to reach a steady^
state, especially for flows in which a fine mesh has been used such as in regions of high
shear. For example, the calculation of a shear layer impinging on a blunt body for a >.
Reynolds number of 10^ by Hoist, Tannehill, and Rakich (ref. 10) using the MacCormack
method requires up to 80 min on a CDC 7600 computer. '

The methods under investigation are the following: (1) hopscotch (explicit) finite
difference, (2) alternating-direction implicit (ADI) finite difference, (3) finite element,
and (4) implicit cubic spline integration. In addition, some calculations have been made
with the Du Fort-Frankel procedure. The goal of this study is the development of an effi-
cient numerical tool to be used in testing fully two-dimensional turbulence models for a
wide range of free shear flow applications such as interference heating (shock/shear layer
impingement), separated flows, jet exhaust noise reduction, combustor design, and tangen-
tial slot injection. This paper summarizes results of calculations for sample mixing

o 4
problems with Reynolds numbers ranging from 10° to 8.1 x 10 . The procedures are
compared with respect to their accuracy, computer storage requirements, ease of imple-
mentation, and total time to steady state for computation of sample problems.

SYMBOLS

c speed of sound -

DJ diameter of jet ' • • • • ; - • • " ' . ; ' • •; - •-•

f ,g general functions

H enthalpy

L differential operator

M Mach number

Mi second derivative of
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mj first derivative of S(xi)

N integer

Nr-n Courant number,
Ax/(u

. -.- ' pUu •
Reynolds number, s re

' Hs

p -;.- , • pressure • • : ^ . . - , • . • •
' ; • • „ . ' • - " . . ; . .'.: , . - . . • : : • • " . ' : .---: ' ' ' • < • : . . . : ' " " . 5- . • .

R gas constant ., : ,j?

S(x) cubic spline function

T . temperature

t • time

u streamwise velocity
'• ' • • ' .

uref reference velocity, \/2Hs

V vector of unknowns

v normal velocity

x,y streamwise and normal directions, respectively

a artificial diffusion coefficient

Y ratio of specific heats

A incremental change

ju molecular viscosity

v kinematic viscosity

p density
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<£j B-spline function in equation (14)

Subscripts:

i,j index denoting grid point spatial location

J . nodal, index in finite-element mesh, .

s stagnation condition

t,x,y derivative with respect to time, x-direction, and y-direction

Superscripts: ' ' l" '' " "

n,* index denoting time level

A bar over a symbol denotes a dimensional quantity. An arrow over a symbol
denotes a vector quantity.

PROBLEM DEFINITION

To provide a basis for comparison of the numerical procedures, a set of standard
test problems was selected.

Sample Problems

Figure l(a) shows the mixing problem (case 1) originally chosen for use as the
standard sample problem. This flow is the mixing of a two-dimensional laminar super-
sonic (Mach 3) jet and a laminar subsonic flow normal to the jet axis. The peripheral
velocity vp is higher in magnitude than the normal velocity component arising from
natural entrainment of the resultant free shear layer for the same jet issuing into quies-
cent surroundings. As shown in figure l(a), the solution domain does not extend to infin-
ity in either the positive stream wise or normal directions. The peripheral flow'is applied
one or more jet diameters above the corner of the wall, and the calculation is truncated
one jet diameter downstream from the jet exit plane. This problem thus embodies some
complicating factors which are often unavoidable in computations of flow fields for real
vehicles, e.g., a sharp corner and the artificial downstream boundary with a significant
portion of subsonic outflow. Since the individual effects of these factors are difficult to
isolate in the computation of such a flow field, calculations were also made for the related
problem, mixing of two parallel streams, shown in figure l(b). The computational region
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begins downstream of the base of the infinitely thin splitter plates. Such a calculation
obviously does not require the full Navier-Stokes equations, since solutions can be
obtained with the usual quasi-parallel approach (boundary-layer equations with free shear
flow boundary conditions). However, since steady-state calculations could be made with
another method, solutions were obtained for comparison with computed Navier-Stokes
results. The mixing of a subsonic stream and a supersonic stream (case 2) shown in
figure l(b) was chosen for the study of subsonic boundary conditions. Calculations were
also made for the mixing of two supersonic (Mach 3 and Mach 1.68) streams (case 3), a
flow free from subsonic boundary problems.

Governing Equations '

The governing equations can be written in nonconservative forms as follows:

Continuity

Pt + pvy +.pux + vpy + upx=,0 . . (1)

j . . ,

x-momentum

• pvuy + puux = -px + £-|— (MUX) - gj|— (MVy) + ̂ —Lfuy + vxj (2)

y -momentum

pvt + pvvy + puvx = -py

These equations are nondimensionalized with respect to the jet diameter and stagnation
flow conditions, i.e., . .

_ P
=

I^HS" uref

^ref M MS , .
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The pressure was evaluated by means of the perfect gas equation of state
• - . • .' -.Tt

p = pRT (4)

where R = ̂  " . Air was the test gas. Only laminar (molecular) viscous effects werei t i . . . . .
considered, the Sutherland law being used to express the viscosity as a function of temper
ature . .

/- ' ' • • • • / ''"''
•j/2 1 + 198. 6/T,

= TS/t / s-T + 198.6/TS .- -\ i

To simplify the system of governing equations, and' to reduce required machine storage,
a constant total temperature of 530° R (294 K) was assumed. Calculations for a Mach 3
jet into still air with the quasi -parallel code of Oh (ref. 11), which included the energy
equation, "showed that the total enthalpy varied less than- 5 percent throughout the mixing?
region from the constant value assumed in other .^calculations. This small variation' had *
a negligible effect on the other flow parameters. As a result of this assumption, the tem-
perature could be evaluated by the algebraic relationship , . , , - . K

T- = 1 - u2 - v2 . .. . . • '(6)

" " ' ' , ' • . * . / ' . j<

which eliminated the need for solving the complete energy equation. Constant static. ,, -^
pressure was assumed in all calculations to generate initial values of density using .,
equations (4) and (6) along with the given initial velocities. The linearized version of .. <
equations (1) to (6) with the viscous terms neglected has been shown by Gottlieb and
Gustafsson (ref. 12) to be well-posed for the initial value problem.

DESCRIPTION OF NUMERICAL PROCEDURES

Hopscotch

The hopscotch method is a two-step explicit procedure which was shown to be uncon-
ditionally stable for the diffusion equation by Gourlay (ref. 13). It'was used by Scala
and Gordon (ref. 14) for compressible viscous calculations of low Reynolds number flow'

. ' • ' • ' .>.«, ,-><•' ' - r , -.-.•..,, ' _ - " r J f ^J'(

around a circular cylinder, and it has been applied to hyperbolic systems with shocks by
Gourlay and Morris (ref. 15).

. , Figure 2 shows the pattern of the two sweeps. Consider, for example, the equation
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n+1With forward time and centered space differencing, u. T is computed at each time step
•at the nodes for which i + j + n is even (marked with circles in fig. 2) during the first
sweep through the mesh with the equation

'
n n

(Ax)'
+ At

,-n

(Ay)'
(8)

This sweep is fully explicit. In the second sweep at this time step,

n+1 2 n+12ui,i
n+1

(Ax)'
+ At

n+1 - 2U
n+1+un+1;

_j *•,] •• ijj-i (9)

at the nodes :(marked with squares in fig. 2) for .which i:+ ] +-n ,is odd. ..This sweep is
implicit in the sense that the values in the computation of the spatial derivatives are at \
the new time level n + 1: However, this implicitness does not require the reduction of
a matrix, since these values were computed during the.first sweep. Differencing which
does not fit into this pattern, such as a five-point difference for u^ using values of

i an(* ui 2 i' re(luires special consideration. The conventional nine-point differ-
ence analog for cross-derivative terms must receive treatment which usually requires
the reduction of a matrix. The computational efficiency of the hopscotch procedure is •"'
thus reduced. For the full Navier-Stokes equations, hopscotch has ho cell Reynolds hum-

• ' Axber limitation, but the maximum time step is limited by the condition, At =

For the present application, a.sufficient condition for stability is At =
u + v + 2c
Ax

U + V + \/2c

The hopscotch version derived for the present investigation is a low-storage pro-
cedure (one array per dependent variable). The equations were linearized by lagging the
nonlinear coefficients. On the second sweep, values at time n + 1 are used only where
available. This lagging eliminates the need for matrix reductions and thereby simplifies
the coding, maintains the low storage, and minimizes CPU time per nodal point. Gottlieb
and Gustafsson (ref. 12), considering the convective terms only, have analyzed the stability
of this version of hopscotch with the lagging of some values and have found its stability to
be identical to that of the original hopscotch method. The method is different, however,
when the diffusion terms are included. The stability limit which was derived from the
advection terms is not changed for the range of Reynolds number considered in the present
investigation. The lagging of values used to compute the viscous terms introduces slightly
more second-order dissipation than in the original hopscotch method. The new procedure
is formally not consistent with the time-dependent problem; however, the extra error term
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introduced is very small for large Reynolds numbers (such as lO^). In the present appli-
cation the interest is not in the transient but in the steady-state solution; therefore, this
error term, which goes to zero at steady state, has no detrimental effect.

During each sweep the x-momentum, y-momentum, and continuity equations are
solved sequentially at each nodal point with the boundary values then being updated at the
end of each time step. To illustrate the present version of hopscotch, the differencing of

* * " . • • . '
the x-momentum equation is as follows:

First sweep

-iM-l - n ' n /9u\n
 T,n /3u\ 1

ui,i fei j " U W i fj " Pj

n

n
Du1J+1WM+i

n

(10)

where A, B, C, D, E, and F are coefficients arising from'the differencing.

Second sweep

u u? '*»
n+1

(Equation continued on next page)
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n+1

\n+l

n+1

,n+l
(ID

Alternating-Direction Implicit Method

The alternating-direction implicit (ADI) technique developed by Peaceman and
Rachford (ref. 16) is a two-step procedure requiring reduction of tridiagonal matrices for
which an efficient solution algorithm, the Thomas algorithm (ref. 17), exists. The method
was originally applied to the two-dimensional heat conduction equation in reference 16 and
later to a system of hyperbolic equations by Gourlay and Mitchell (ref. 18). For both of
these model problems, it was shown to possess unconditional stability. The method, how-
ever, has not been extensively applied to the compressible Navier-Stokes equations. In
1966, Polezhaev (ref. 19) obtained solutions for a natural convection problem. His ADI
method removed the diffusion time-step limitation; however, he found experimentally that
the time step was still limited to the usual maximum explicit value. In 1973, Baum and
Ndefo (ref. 4) published a two-dimensional implicit method based on the Peaceman-
Rachford procedure. The Baum-Ndefo method iteratively solves nonlinear difference
equations as a sequence of linear equations using a quasi-linearization technique. In a
one-dimensional calculation of shock structure, the method was found to be stable for
Courant numbers as large as 10. However, reference 4 does not consider the full Navier-
Stokes equations. Later in 1973, Briley and McDonald (ref. 3) presented a method based
on a fully implicit backward time difference scheme in which nonlinearities at the implicit
time level are linearized by a Taylor's series expansion about the known time level. The
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resulting system of multidimensional coupled linear difference equations is solved with a
noniterative Douglas-Gunn ADI approach. The method was shown to be stable for very
large Courant numbers in'calculation of three-dimensional subsonic flow in a straight
duct with rectangular cross section. For a flow with Mach number of 0.044 and a Reynolds
number of 60, stable solutions were obtained for Courant numbers up to 1250. For a Mach
number of 0.5 and a Reynolds number of 600, the time step was gradually increased as the
solutibh progressed, resulting in an average Courant number of 73l";Thus,: the actual
Courant number decreases with increasing Reynolds number, perhaps because of diagonal
dominance problems as discussed in reference 3. The computational effort per time step
was reported to be .-twice that of; most explicit; methods.- . ' . • ,, .. ; '••••

In the ADI procedure used in the present investigation, a sequential solution of the'! '-
difference equations is obtained for, each row during the first one-half time step (horizon-
tal sweep) and for each column during the second one-half time step (vertical sweep). All
spatial derivatives were approximated by centered finite differences; time derivatives, by
backward differences. The nonlinear coefficients in the convective terms were lagged one-
half time step. In addition, the pressure terms and cross-derivative terms were treated
explicitly in each sweep. The temperature.and viscosity were updated.for the entire field
after each sweep. The order of solution for each row and column is (1) x-momentum equa-
tion, (2) y-momentum equation, and (3) continuity equation. The solution is then marched
to steady state without iteration. This ADI formulation requires two storage arrays for
u, v, p, and p. and one for T.

To illustrate the ADI method, the finite-difference form of the x-momentum equation
is shown. For the horizontal sweep, from time level n to an intermediate time denoted
bv *»

NRe Ay

- vn >
• n I i+l,j+l i-l.j+1

2 Ax j

.n
2 Ax 3NRe Ax 2 ' l\ Ax

(Equation continued on next page)
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Ax 3NReAx
n 'i+l,j-l

2 Ay

n
2'Ay: . (12)

The unknowns are u*^ ., u* ., and u* j :.'j'Similarly, for the vertical sweep, from •
* to n+1,- . ' , . .

n+l * +l

2 Ax

^ V - j . -jj +p* v* ,j+l r J-l , .. u* i+ l . j-
v=Pi,j\ .At/2 /. %J i,JV 2 Ay : / + Pi,J i,i 2 Ax

NReAy Ay

NReAy 2 Ax

2 Ax 3NRe Ax |\ 2 Ax

AX 3NReAx 2 Ay

* 2 Ay (13)

Finite -Element Method

The finite-element method has been used extensively for the numerical solution of
structural mechanics problems for a number of years; however, the procedure has only
recently been applied to fluid mechanics problems. (See pp. 240-257 of ref. 20.) Using a

447



stream -function — vorticity approach with linear elements, Baker (ref. 21) has developed
an algorithm for steady viscous compressible flows. Solutions have been obtained for
Reynolds numbers up to 7750. The present method appears to be the first finite -element
procedure for the compressible Navier -Stokes equations in primitive variables.

The solution algorithm uses a Galerkin method with leapfrog time integration. The
.solution domain is discretized with triangular elements with bicubic trial functions. Fig-

.• •. t. . ' • - . . i i i ••• .- i • • - °i 1 . 1 / r - •'.- i . .i. i i - i j - ;;;/ _v ; i .: -,; °
ure 3 shows a finite -element mesh for case 1. As an example of a trial function, the den-
sity is of the form . ' *.

10

.
where . J. is:the nodal index:and the. .0j .are the so-called B-spline basis functions which
are piecewise cubic over the problem domain. . . . - . , ,

• '• - The unknown parameters in each trial function are the flow variable function .values
(p, u, and v) and their first partial derivatives. (px, py, v^, uy, .vx, and vy^at the
triangle vertices and the function values alone at the triangle centroid. In the Galerkin
approach, the weighted residuals formed by using the weights 0j are set equal to zero.
This yields a set of algebraic equations for the nodal values. Thus, if the governing equa-
tions are of the form

L(u) = o ;

where u> is a general function, the Galerkin approach yields a set of equations

£jM = 0 (15)
Solution
domain

The time discretization scheme is similar to the Crank-Nicolson Galerkin method •
described by Douglas and Dupont (ref. 22). Centered time differences over two time
steps, n - 1 to n . - f - l , and the averaging of space derivatives over times4 h - 1 and
n + 1 yield second-order time truncation error. This spatial averaging also elimin-
ates nonlinear!ties in the resulting implicit system of difference equations. The system
of determining equations has the following form:

Continuity

Dn pn+1 = FD11'11'1 (16)
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Momentum equations

ZZ ZR

RZ RR
(17)

"- where J"p" is the unknown density Vector/ "{?•'"• and ! v" are vectors of unknowns from the
x-and y-momentum equations, ZZ, ZR, RZ, RR, and D are nonsymmetric matrices
with varying bandwidth, and FD, FU, and FV are vectors of known quantity.

/,-: The matrices in these equations are assembled at,each time step. The continuity
equation is solved with a standard triangular decomposition method which takes advantage
of matrix sparseness. The momentum equations are solved with a unique block iterative

• ' . . ' • ! ' . . : ' • •" , •' (•' •. « ;. • ' • • • i • }..• I ,

LU solver developed during the present investigation. Despite large matrices and the
accompanying problem of efficient data management; the use of cubic elements yields

'•"--fourth-order spatial discretization error. Cubic elements also,allow exact incorporation
:bf first-derivative boundary conditions, unlike finite-difference methods which require a
discretization. In addition, the triangular mesh allows the method to be easily adapted to

• honrectangular solution domains.

Cubic Spline Integration Method

The potential of a cubic spline collocation procedure for the numerical solution of
partial differential equations has been demonstrated by Rubin and Graves (ref. 23) for
several model problems. This use of a cubic spline approximation for the evaluation of
spatial gradients provides a highly efficient and accurate procedure for computation with
a nonuniform mesh (which is necessary for high Reynolds number calculations in the phys-
ical plane) and/or curvilinear boundaries. The basic spline approximation leads to a
second-order accurate expression for second derivatives, e.g., the diffusion terms in the
momentum equations, for both a uniform mesh and an arbitrarily nonuniform mesh. First
derivatives, i.e., the convective terms, are third-order accurate with a nonuniform mesh
and fourth-order accurate with a uniform mesh. With a three-point finite-difference
approximation, the order of the truncation error is significantly decreased with even a
moderate variation in the mesh spacing (ref. 24). Thus, the spline procedure is more
accurate than the usual finite-difference procedures for nonuniform grids. The spline
method also allows accurate interpolation if grid realinement becomes necessary.

In addition, first- and second-derivative boundary conditions can be applied more
accurately and more easily than with conventional finite-difference methods, since dis-
cretization is unnecessary. Unlike the finite-element or other Galerkin procedures, the
evaluation of quadratures, which are generally not tridiagonal, is unnecessary.

449



In reference 23, Rubin and Graves present a detailed discussion of the general spline
formulation and methodology for solving second-order quasi-linear partial differential
equations. Therefore, only a brief description of the general cubic spline procedure is
presented in this paper.

A cubic spline S(x) is a continuous function which has continuous first and second
derivatives •' on ah:intefval ;a <;x < b !(a ; and' b; are two arbitrary points) and corresponds
to a cubic polynomial in each subinterval x^j £ x ^ xy. 'The 'mesh 'spacing r hv • is defined-
by h^x^x^.

; • The following tridiagonal formulas are obtained by enforcing the continuity require-
ments at the collocation points x.:

(18)

., - u.

where at x = Xj, S^x^ = u4, S'faj = nij, and S"^] = Mj. The following useful relation
ships also exist between thie first and second derivatives:

- m. = (20)

hi hi
mi = TM i+ f

m, = -*i 3 1¥ii 6 J

For a governing partial differential equation of the form

«t = ^'"x^xx) (23)

the approximate solution is found by considering the solution of

(24)
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where the time derivative is discretized in the usual finite-difference manner, i.e.,;

< ' • ' • • • • - ' • - ' " '
1 <25'

Aj5;an. example,, consider-an implicit, solution of <the linearized Burgers',equation, which......
has the general form of .the momentum: equations - . , ivp • ( -. .• • ,' i •„ ? .;

where

u = u(x,t) V = ^(X,t) T::: •"• ' • " =
The approximation for this equation becomes

un+1 = u f - A t r n * At* M i (27)

. - • • ' , ' t * i , . " . ,

With the spline relations (18) and (19), : a system of 3N equations is generated for
3(N + 2) unknowns. This system can be written as

- r ~|T ' • •
where Vj = hi^m^MJ and A, B, C, and D are 3 x 3 coefficient matrices. Initial
conditions are prescribed so that u(x,0) = g(x). Equations (20) to (22) can be used, if
necessary, to relate information at the boundaries and provide a closed system which can
then be solved by the standard tridiagonal algorithm.

An alternate procedure can be derived by substituting u. and m, as functions
of M. . The resulting tridiagonal system for A/L has the form

= di (i = 1, -. . ., N) (29)

This procedure is being used in the present application for the two momentum equations.
If the partial differential equation to be solved has no second-derivative terms, (e.g., the
continuity equation), a tridiagonal system of equations in terms of mj can also be found.
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For the two-dimensional Navier-Stokes equations, a spline ADI procedure has been
used. This two-step method applies the spline procedure to each of the one-half step ADI
equations. The cross derivatives are found by using equation (19) with the cross deriva-
tives being m. and the appropriate first derivatives replacing u^ The three governing
equations are solved sequentially at each row and column during the horizontal and verti-
cal sweeps, respectively.

; ' The boundary conditions'for u^, Uyy,' v^, VyV, p^, and Py are found by eval-
uating the appropriate governing equation at the boundary with the time derivative set equal
to zero, to give in effect steady-state boundary conditions. The initial values of the second
derivatives of u and v and first derivatives of p are obtained by fitting cubic splines r
to the given initial function values.

COMPUTATIONAL RESULTS

Subsonic Boundary Conditions

One of the major difficulties associated with the computation of case 1 is proper i
specification of boundary conditions for the region of subsonic flow, i.e., for the subsonic
portion of the inflow jet profile, the peripheral inflow, and the subsonic portion of the down-
stream boundary. This boundary-condition problem was therefore studied for case 2 with
NRe = 8.1 x 10 using hopscotch as well as a second-order Du Fort-Frankel procedure
described by Gottlieb and Gustafsson in reference 25.

The mathematical analysis of boundary-condition specification by Gottlieb and
Gustafsson (ref. 12) formed the basis for this study. At the left subsonic inflow boundary
(see fig. 4), the analysis indicated that two of the three dependent variables (u, v, and p)
must be specified. Since v was itself a characteristic variable in the x-direction, it had
to be one of the two specified functions; u was the logical choice for the second. The
density boundary condition was chosen to be px = 0. No difficulties were encountered in
any of the calculations with this set of inflow boundary conditions. At the upper inflow
boundary, u is a characteristic variable in the y-direction; therefore, again u and v -
were specified and p = 0 was selected as the third boundary condition. This combina-
tion created no numerical difficulties in any calculations. However,-the combination of*,*>•>*-
p and u specified with vy = 0 usually led to erroneous values for v, especially in the
region near the upper boundary where positive values of v, indicating outflow, occurred.

At the subsonic outflow boundary the one -dimensional analysis indicated that one
function value, either p or u, must be specified. Of course such a boundary condition
is not convenient for most applications since downstream function values are generally
not known a priori, Figure 5 shows the results of calculations using hopscotch with three
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different subsonic downstream boundary conditions. The boundary conditions used in the
subsonic region are indicated in figure 4.

The initial flow field was obtained by setting the downstream (outflow) boundary
values for u and v equal to one -half of their steady -state values (obtained from the
parabolic code described in ref. 11) and linearly interpolating to obtain values at interior
nodes. Computed steady-state profiles of the streamwise and normal velocity components
u and v, respectively, at the downstream boundary are compared with results obtained
with the parabolic technique. The streamwise component is accurately predicted for all
three boundary conditions; however, only the specification of 'p ''gives a smooth and accu-
rate v,. profile. Specifying u produces large oscillations in the v: profile in the vis-
cous region. These oscillations may be critical in turbulent flows when the turbulence
model is locally a function of dv/dy. The least accurate results are obtained for linear
extrapolation of all three function values.

The results of calculations with the Du Fort-Frankel procedure (see ref . 12) were
identical to the hopscotch results with the exception that the linear extrapolation had to be
altered to obtain converged solutions. Extrapolation of values at time level n + 1 to
obtain boundary values does not work for any degree of extrapolation (linear, quadratic,
etc.). Linear extrapolation of the form

" 2f

for p, u, and v, where imax is the outflow boundary, gave results which converged to
the correct steady state. The boundary condition

i = -nmax" max x"

which has been shown to be stable for scalar hyperbolic equations for the pure leapfrog
scheme in reference 26, also gave good results. Using both values at n + 1 in equa-
tion (31) results in an unstable condition. ;

Parallel Mixing Calculations

Calculations of case 3 were made with the hopscotch and ADI methods for NRg = 103

and 5 x 103. The supersonic inflow, supersonic outflow, and upper inflow boundary condi-
tions shown in figure 4 were used. The computed steady state u and v velocity pro-
files and pressure profiles at x = 0.15 for NRe = 103 are compared in figure 6 with the
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corresponding calculation using a parabolic method. The ADI and hopscotch results are
virtually identical , with both procedures accurately predicting u and v. For this grid '
spacing (Ax = Ay = 0.025), the pressure shows high-frequency oscillations in the viscous '
mixing, region, although the maximum oscillation is only about 2 percent of the correct
value. For the initial flow field the y = 0 inflow profiles were also specified at all other
Xrstatipns dp.wnstream. The time^tep in the hopscotch calculation was 0.9 of the maxi-
mum allowed for stability, i.e., the Courant number Nrr. was 0.9. IdenticaVsolutions

•" ' ' " • • • - ' - ! . . t - t - v - ! . . , - •;,.:>.!••• i - ->t . . : . - , . \*o. . . : ; , , ;.•;, > ! - ; , « T d ( - , Htoc -'V- 'V
were also obtained with ADI for NQQ = 6 but with no decrease in the total number bf'steps
to steady state. The solution diverged for NQQ =12.

="* r' • • . • ' ' •<
"" At both N£Q = 6 and 12, the large time step.. was used for the entire solution. The

probable cause of divergence at N^,Q =12 is roundoff error from the tridiagonal matrix
inversion occurring when the coefficient matrix did not possess, diagonal dominance, a

• ' • > ; ; : • • - : . . Y ' . • • ? : ; . . - : i i i t , ; • . : i - ' - - : , i < •;.• • • • - . ; _ : , . : < . ; . - -Pj i - i . « ' . - ; / ' ^.r ; i - • > • • • • • • - > \ - '
sufficient..but not, necessary. condition for convergence of the matrix reduction. In this 'J ' • < . . • : ! . i . . • • : . ? • . - • ; . , . . - • : r > : s _ • _ • • • . . , • • • r ; { • : - i . > • • • . . . - • .
instance the continuity equation was. not diagonally dominant for any row in the horizontal'

' •' - -.- '1 ' ' • ' . • ' . . ( • • - • , - • - . • , ; ; ,; , . . • • ! • • - , , ic : ; • ,
sweep, and in addition, the two momentum equations lacked diagonal dominance for many

• ' • < ' • • • ' - • • • * • • • ' • • • •• • • • •• ; . ' • ' • . . j o • . . . . » '-• . ' ! • • . ; : •"; ; , - • > • - ;• .- _ -. . , , . , i f$' ' ' '

Figure 7. 'contains the steady-state results at ;x= 0.15 for Nj^ei= 5.0 x lO. -,Fig-
shows that again the hopscotch and ADI results are virtually. identical for .u . and;

v. With the same grid spacing as in the^previous calculation, u is accurately predicted,?
whereas the * v profile exhibits an oscillation in. the viscous region. Halving the grid so,
that Ax = Ay - 0.0125 :eliminated this oscillationi The pressure profile shown in fig- ....
ure 7(b) has very small oscillations for both grids with the hopscotch pressure varying less
from the constant value given by the parabolic code than the ADI pressure. For NC =0.8,
with either grid, the ADI method required approximately 5 times as many steps for conver-
gence ,to steady state as hopscotch. The solution was considered to be converged when

fn
,(32),

. . . . . . . . . . . . . .

for f =-p, u, and v at every, point in the field and g = p, u, and u, respectively!
Converged ADI solutions were obtained for N^Q = 6, but the solution again diverged for
Nr = 12. Hopscotch solutions were not attempted with Courant numbers significantly
greater than one. v ; .•

> Figure 8 shows results of hopscotch calculations for case 3 with NR = 8.1 x 10*.
Profiles of v and p are shown at the downstream boundary x = 0.45. The .boundary
conditions shown in figure 4 were used with function values obtained from the parabolic
procedure providing the necessary specifications of y at the .upper boundary and p at
the downstream .boundary. The initial field was obtained by using steady-state values of
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all functions (obtained from parabolic code) at the downstream boundary and calculating
the interior values by linear interpolation. This gives an initial flow field which is a good
approximation of the steady-state field. For a grid spacing of Ax = Ay = 0.025, the hop-
scotch solution converged in 1637 time steps. The u velocity component was accurately
predicted, and figure 8 (a = 0 curve) shows that v also agreed with the parabolic results;
however, small oscillations occurred in the pressure. It was found that the*pressure could

. S C i i - T ' j ^ { » ) ' ' • ! • ? ' ' ! I f • ' !•>«" ,< ' • ; " • • ; • - t r f • • • ' " - • . ' • • t • • • * • - • - , , ,
be smoothed by explicitly adding artificial diffusion to the; continuity equation, that is; SJ !

..*•! I" - !Pt'+ (pu)x>+ (pv)y = q(AxX

! = " . '=. - . ' , , - ; . ' . :.-; '

Victoria and Widhopf (refl"27) also found'it' necessary to add'artificial diffusion to the "'
continuity equation/ For this case, a = 0.1' 'smpothed the pressure without altering; 'u ! H

or v; moreover, the solution converged in 1150 time steps. (The coefficient of p^J 'is '
then approximately 5 to lo times as large as the average coefficients of the viscous terms
in the two momentum equations.) Although the solution converged in 1837 time steps for
a = 1.0, both p and :_v show oscillations.'-'For? a = 0, a significantly different initial
flow field was generated by halving u and; v'j. at the downstream edge and then linearly
interpolating for interior values.! Steady state was reached in 3050 steps with u, v,
and p found to be identical to the previous results. • For this grid; no converged ADI -
results were obtained with or without artificial diffusion. Oscillations in v in the mixing
region grew with time, and the solution diverged.

The Du Fort-Frankel procedure with the downstream boundary condition given by
equation (31) for u and v was compared with hopscotch which used linear extrapolation
when the initial flow field was obtained by setting the outflow values of u and v to one-
half of their steady-state values and linearly interpolating for interior values. Both solu-
tions converged to steady state at approximately the same nondimensional time, although
slightly different time steps were used in each method. The ..maximum difference in the
u profiles was approximately 3 percent and occurred in the viscous region. This slight
difference is attributed to the difference in explicit artificial diffusion in the two methods.
Second-order diffusion with a = 0.1 was used in hopscotch, and fourth-order diffusion
was added to the Du Fort-Frankel procedure.

Results for Case 1

Computations were attempted for the original test problem, case 1, with a Reynolds
number of 8.1 x 104 with the two finite-difference methods and with the finite-element
method. A nonuniform grid was used for the finite-difference methods. From the sharp
corner, Ay was increased by a factor of 1.05 for each successive spacing in the positive
and negative y-directions from the smallest value, Ay = 0.005. Thus, grid points were
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concentrated in the viscous mixing region. The grid also increased in the x-direction by
a factor of 1.05 (Axj/Axj_j = 1.05) for each .successive spacing.

Computations with hopscotch were made with the boundary conditions of figure 4
along with a no-slip wall condition and constant density assumption near the wall. The
upper boundary .was approximately six jet diameters above the center line. Figure 9
shows steady-state hopscotch results for an interior x-location using linear extrapolation

. t. '#• i-'i'-j •: it> •-..;• tt>--x\.'
for density in the subsonic portion of the outflow boundary (extrapolation used since p
is unknown). The magnitude of the peripheral velocity,at the upper boundary was 0.07,
which is several times greater than the natural entrainment for the same jet issuing into
still,air.. Since, the.upper b9undar,y effectively models a porous wall with nonuniform mass
injestion.into the boundary layer, it was necessary to modify the upper boundary conditions
'-> -• * !••• '.•• '•' ' '-• •-:• • • - ' . / ? - • . i •.")'•. ,-j . '-• .'• ,'.': i (.: : " • : • . ' , • * >.• .j . • ',• -r '•'•'' ^-. . - ' • ' : • •
by,setting uv = 0. The results shown in figure.9 were obtained with a = 10 after 3 hr
.'• ••?. v , ° . . - y t.i , fi. .' ?-.., .• > . . • , „ > !.).;:•>.: •_> -»"j .•< .>•!; . * i- '•; : . V ^l > : . . > • • •• •"! • '•(• ff-' -.;. . ;
of computing time on a CDC 6600 computer. As expected from the parallel mixing results,

' i. /. ; > . ' ' * { ' T ' • ' ., .' . , } i \ •• * V, S •. ' ' i 'f ' t. J i „'• • r t ' * V r "' V : "-. > | - /*'

the u component is smooth and appears to be qualitatively correct. (There are no known
experimental'data for such a flow with which to compare the computed results.)" The v
profile shows the oscillation characteristic of using linear extrapolation for the subsonic
outflow density. For some engineering applications, however, these results may be suffic-
ient. The local increase in the pressure profile indicates the presence of a weak shock. ,

Fully converged ADI results were not obtained for case 1. With linear density
extrapolation and the same nonuniform'grid; the solutions appeared to be nearly converged
after approximately 3 hr'of'CPU time on the CDC 6600, but the computations were not
continued further since the re'sults did not appear-to be better than hopscotch". As with
hopscotch, the u profiles were smooth and apparently qualitatively correct, although v
again exhibited spatial oscillations.

At the present time, converged results have not been obtained with the finite-element
method for this problem. The major difficulties appear to be the lack of sufficient spatial
resolution in the viscous region and incorporation of the second-derivative downstream
continuation boundary conditions. The 103-triangle mesh currently in use (shown in fig. 3)
requires excessive machine storage and prohibits a significant increase in resolution.''

The cubic spline algorithm has been coded, but presently no steady-state results
have been obtained. .

CODE COMPARISON

For case 1 the hopscotch code requires machine storage of approximately SOOOOg
for 3045 node points, whereas the ADI method requires approximately 1 SOOOOg for the
same grid. The 103-triangle finite-element mesh which has 301 nodes requires 330000g.
The cubic spline algorithm will presumably require fewer grid points for accuracy com-
parable to the finite-difference results.
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For each At step the CPU time on the CDC 6600 for hopscotch is 1.08 x 10~3

sec/node and for the ADI method, 3.74 x 10^ sec/node. The finite-element code requires
1.93 x 10~1 sec/node to assemble the matrices and even with the fast block iterative
solver, requires 4.25 x 10~^ sec/node for equation solution at each time step. No data
are available for the spline code. (The Du Fort-Frankel code requires 1.28 x 10"^
sec^nbde for each time step.) - • - • - . . - . « ^ .-. ;• . . .<• - -,-, ~. (••-,

,; •_-•; : ' •• ' • ;}>•}.?;• .{ ^ - • - . _ , • ; • _ , , . . ;-. .; >•; ,-.-. . * . - • • . , o - . - • _ . , , _, ,» ; •. .. i .-.a;--'..; lit, r. •;

CONCLUDING REMARKS
' • ' ' • ' . • • • • . . . ' • • ; • ' - . ' . . . , - • . . . . . . . . ..,,,,•

"A study of mixed supersonic-subsonic free shear flows has shown that correct cal-
culation of the normal velocity component required specification of the density iirthe sub-
sonic portion of the outflow Boundary. The streamwise velocity Was, however, -correctly
computed even'when linear density extrapolatio'n'was used for this boundary.- ' ' ^

For high Reynolds number flows (flows with small viscous terms in the momentum
' • . . • • • * . . . ; , • . . • )

equations), it was necessary to add artificial diffusion in the continuity equation to elimin-
ate oscillations in the static pressure. The,addition of too much artificial viscosity had
adverse effects on both the pressure and the. normal component of velocity.

For the problems considered, the maximum allowable time step for the sequential
V. alternating-direction implicit (ADI) procedure, was less than 10 times the maximum

explicit time step. This increase in time step, however, did not significantly improve
the convergence rate. .The hopscotch procedure, with a time step no greater than the
maximum explicit time step, still converged faster than any of the ADI solutions. A fully
coupled ADI procedure may allow larger time steps; however, the effect of large steps on
convergence rate must be investigated.

The finite -element method with cubic elements appears to have excessive storage
requirements and computing times. Therefore, as currently formulated, it does not appear
to be a competitive procedure for high Reynolds number calculations in aerospace vehicle
analysis.
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Peripheral flow, v (M < 1)

'omputational
downstream

boundary

Jet
M = 3 _

Case 1
(a) Mixing of laminar supersonic jet with imposed peripheral flow

normal to jet center line axis.

M

/-c
* _ /_

Computational
domain

t>

~~3 Mi = 0.11

= 3.0

=T
*j

1
M

= 1.68

2 = 3.0

Case 2

Case 3

(b) Mixing of two parallel flows.

Figure 1.- Standard sample problems.
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y, • t

X, 1

At time level n

U i + j + n even

• i + j + n odd

Figure 2.- Hopscotch grid.

Inflow BC

Wall
BC

Downstream
continuation

BC

Inflow
BC

Symmetry BC

Figure 3.- Solution domain showing finite-element mesh for case 1 with 103 triangles
with boundary conditions (BC) indicated.
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Subsonic inflow

jr:u, v ;;..
specified

P x = 0 <

Supersonic inflow

P» u> v
specified

Subsonic inflow

p = 0; u, v specified

M< 1

M> 1

Center line symmetry

v = 0 , u = p = 0

Subsonic outflow

p specified

Supersonic outflow

(linear extrapolation)

Figure 4.- Schematic of computational domain with best boundary conditions for case 2.

462



eoOi-tXo

1 
1

*
"
••. 

• 
.v

 
• 

.. 
. 

t

N
^

'- 
• 

•• 
' 

. '••• 
.' .' 

T '." 
.; 

*••'

, 
- 

1
 

, 
1
 

. 
1

 •
•

•
•

!
• 

1
 

- 
''i"

O1*
in inooOooo

IT
S

^
t

OII

(M

gy1CO

1&s3n§1y•8Imo>t-,3>•r*

fe

O
O

463



n

OT
-l

XoC
J

oo
oo

noOin

0
0

«M

c>II

:: 
1

5
1

8 
8

W
 

O

Q
 

rt
<J 

ft

1 
1 

I
I 

1
•

CM0 CQOCO

C
Oou1CQ|COu1cotco<D

C
D

464



ITS

8.co

•<

OOw

O0n

C
O

o>OIIOOOII

sO

—
 c- 

g

465



.8r~

.6

y -4

.2

Ax = Ay = 0.0125
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I

3.8 3.9 4.0x10
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(b) Pressiire profiles.

Figure 7.- Concluded.

466



pt + (pu)x + (pv)y = (Ax)2 a P^ + (Ay)2 <* Pyy

.8

.6

y .4

.2

O Parabolic
solution

a = 0, 0.1

-.02 0
v

I I
.02

Figure 8.- Effect of artificial diffusion in continuity equation.
NRe = 8-1 xiO4; x= 0.45.
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Figure 9.- Steady-state hopscotch results for case 1 with peripheral velocity of -0.07.
NRe = 8.1 X 104; x = 0.367; a = 10. .
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NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

FOR ARBITRARY TWO-DIMENSIONAL AIRFOILS*

By Frank C. Thames, Joe F. Thompson, and C. Wayne Mastin
Mississippi State University

C
SUMMARY r-

A method of numerical solution of the Navier-Stokes equations for the flow about
arbitrary airfoils or other bodies is presented. This method untilizes a numerically
generated curvilinear coordinate system having a coordinate line coincident with the
body contour. Streamlines, velocity profiles, and pressure and force coefficients for
several airfoils and an arbitrary rock are given. Potential flow solutions are also pre-
sented. The procedure is also capable of treating multiple-element airfoils, and poten-
tial flow results are presented therefor.

INTRODUCTION

It is imperative in numerical solution of the Navier-Stokes equations that the
boundary conditions be represented accurately in the finite-difference formulation, for
the region in the immediate vicinity of solid surfaces is generally dominant in determin-
ing the character of the flow. The pressure and forces on solid bodies are directly
dependent on the large gradients that prevail in this region near the surface, and accurate
pressure and force coefficients require that these large gradients be represented accu-
rately. This problem is accentuated at higher Reynolds numbers as the gradients become
more severe.

Therefore, almost all numerical solutions of the Navier -Stokes equations generated
to date have treated bodies for which a natural coordinate system is available - circles,
ellipses, spheres, Joukowski airfoils, and so forth. (Natural coordinate systems as
defined here are those for which the body contour under consideration coincides with a
constant coordinate line.) The paper by Mehta and Lavan (ref. 1) has given a solution
about a modified Joukowski airfoil accomplished by generating a natural coordinate
system with a conformal Joukowski transformation and solving the Navier-Stokes equa-
tions on this system. The basic Joukowski transformation was modified somewhat by
rounding the trailing edge and contracting the coordinates near the body. Only one case

*Research sponsored by NASA Langley Research Center under Grant
NGR 25-001-055.
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was run - a stalled flow at a 15° angle of attack and a Reynolds number of 1000. The
method is limited to those bodies which can be generated by the Joukowski transformation
(symmetric and cambered Joukowski airfoils, flat plates, and circular and elliptic cylin-
ders) and does not have general applicability. Arbitrary two-dimensional bodies have
not been successfully attacked as yet, primarily because of the difficulty of accurate rep-
resentation of the boundary conditions and the large gradients near solid surfaces when
no coordinate line is coincident with the body contour. Some solutions-have been r~ • "'
attempted with'interpolation between grid-points for boundaries not coincident with coor-
dinate lines, but this neces'sarily introduces irregularity into an otherwise smooth bound-
ary arid places the most inaccurate difference representation in precisely the region of
greatest sensitivity. Dawson (ref. 2) attempted to create a method for general bodies by
the use of two uniform rectangular grids: -a fine, inner grid surrounding the.body and
extending for perhaps >one characteristic body dimension, and a coarse outer.grid sur^.j.
rounding the inner grid and extending outward for perhaps 10 to 12 body, diameters. The
twOigrids overlap to allow for accurate transition between the,two mesh systems.. Only .
a circular cylinder solution was attempted, and this .solution was restricted to small - ...
Reynolds numbers (R i 1000) because of boundary instabilities. .; • •

A method of automatic numerical generation of a general curvilinear coordinate
system with coordinate lines coincident with all boundaries of a generarmultico'nnected
region containing any number of arbitrarily shaped bodies has, however, been developed
which should alleviate this problem with arbitrary bodies (ref. 3). The curvilinear coor-
dinates are generated as the solution of two elliptic partial differential equations with
Dirichlet boundary conditions, one coordinate being specified to be constant oh each of
the boundaries, and a distribution of the other being specified along;the boundaries.
These equations are solved in finite-difference approximation by successive over-
relaxation (SOR) iteration. No restrictions are placed on the shape of the boundaries,
which may even be time dependent, and the method is not restricted to two dimensions or
single bodies. Coordinate lines may be concentrated as desired along the boundaries.
Spacing of the coordinate lines encircling the body may be controlled by adjusting param-
eters in the partial differential equations for the coordinates.

Regardless of the shape and number of the bodies and regardless of the spacing of
the curvilinear coordinate lines, all numerical computations, both to generate the coor-
dinate system and subsequently to solve the Navier-Stokes equations on the coordinate
system, are done on a rectangular grid with a square mesh, that is, in the transformed
plane. It is also possible to cause the natural coordinate system to change in time as
desired and still have all computation done on the fixed rectangular grid with square
mesh. This allows the curvilinear coordinate system in the physical plane to deform
with a deforming body, blast front, shock, free surface, or any other boundary, keeping a
coordinate line always coincident with the boundary at all times. The physical coordinate
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system has been, in effect, eliminated from the problem, at the expense of adding two
elliptic equations to the original system.

Since the curvilinear coordinate, system has coordinate lines coincident with the
.surface contours of all bodies present, all boundary conditions may be expressed at grid
points. Also, normal derivatives on the bodies may be represented by using only finite
differences, between grid points on coordinate lines, without need of.any interpolation,
even though the coordinate system is not orthogonal at the boundary. Numerical solu- ..
tions for the lifting and nonlifting potential flow about Karmari-Trefftz airfoils obtained
with this coordinate-system generation show excellent comparison with the analytic, , r

solutions. . . - .- . - . . . ...,.

This method of automatic body-fitted curvilinear coordinate generation1 has beent .
used to construct a finite-difference solution of the-fully .incompressible, time-dependent;
Navier-Stokes equations for the laminar viscous flow about arbitrary two-dimensional'- -
airfoils or any other two-dimensional body (ref. 4). The Navier-Stokes equations are- -1:
written in the vorticity—stream-function formulation, with the vorticity on the body being
determined by a type of false-position iteration so that the no-slip boundary condition is
satisfied. The solution is implicit in time, the vorticity, and the stream-function equa-
tions being solved simultaneously at each time step by SOR iteration. A method of con-
trolling the spacing of the coordinate lines encircling the body has been developed in
order to treat high Reynolds number flow, since the coordinate lines must concentrate
near the surface to a greater degree as the Reynolds number increases. The solution is
designed to provide the velocity field, the surf ace-pressure distribution, and the lift,
drag, and moment coefficients. Results are given for separated flow over two airfoils
and an arbitrary rock. Initial application to multiple airfoils has also been made.

SYMBOLS

a,b,c,d coefficients in equations (5)

axial-force coefficient

drag coefficient

j>p friction-drag coefficient

, pressure-drag coefficient

CL lift coefficient
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Cjj normal-force coefficient

Cp pressure coefficient

Cp pressure coefficient referenced to trailing-edge pressure

D differential operator; two-dimensional region (fig. 1)

D* rectangular region (fig. 1)

ds increment of arc length along body surface

E maximum norm .... . » ' . . . -

F force on body

f function

i,j computational grid points; i = 1 . . . I; j = 1 . . . J

i,,̂  unit vectors

J Jacobian

k iteration counter

M,N summation limits (eqs. (5))

m,n indices

n unit vector normal to body surface

P,Q amplitude factors (eqs. (5))

p pressure

R Reynolds number

S body surface
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Tn stress vector on body surface

t time

tn current time

V velocity . " • • ' " : * 'rc :*v '

Vt tangential velocity component

x,y physical coordinates (nondimensionalized by'airfoil chord)

«,/3,y coefficients of natural coordinate transformation (eqs. (3))

rl» r2» • • •> rs curves in physical plane

ri' ^2' ' •' r8 curves in transformed plane

e convergence factor

6 relaxation factor

9 free-stream angle of attack

\ coefficient in stream-function equation

£,T? transformed coordinates

a,r coefficients in equation (9a)

4> stream function

?//b value of \j/ at body

u> vorticity

o^b value of u> at body
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Superscripts:
" - . . ,' , !<.''• • '

L lower surface • - • • • • /
• ' ' ': • • : • ' . • ; a% ' • .

U upper surface •' ' ' • ' • ' ' '

*r,X'i transformation

Subscripts:

L •'- "-' " lower'surface l •'- : '• " •'-•"• v ~ : ' • * ;' • '• '-•" '•-* ' "' •<."•&••; ^-,- " ' • : : • . - . - ,M .<»;

o '- •''- trailing edge (fig.]4)—^ • •-' •>'• .r " - • • • • . - - "" -•> •-• •& -J- • L- 'v.^J.,

' :i.f

: trailing edge

U K "''"''" "upper surface - .-.•>->••• •-. s;:-«-. •-.-v ....,, ;« ,; -' ?*..•-.,'...; -vi
-. • . > • - • .- .• . , ; • • • ! • . - : 1 -. - , .v" :' . . - • t .

- • • • • • • • . ' • • • • • / • ! . . • ' ,-,' , . , ,0-., -

x,y • ... differentiation with respect to. ;x -or "y . . •, .. . '• • _, . -,

^,77 differentiation with respect to | or 77 . . ' : • :" • • ' ' :.

00 free stream

BODY-FITTED CURVILINEAR COORDINATE SYSTEM

Mathematical Development

Let it be desired to transform the two-dimensional, doubly connected region D
bounded by two closed contours of arbitrary shape into a rectangular region D*, as
shown in figure 1. The general transformation from the physical plane [x,y] to the
.transformed plane [£,77] is given by £ = £(x,y), 77 = 77(x,y). Similarly, the inverse

' ' - . • " - • ' ' l

transformation is given by x = X(£,TJ), y = y(£,7i). Derivatives are transformed as
follows: . .

x - 9(x,y)/9(|,r,)

_ 8(~
?) J , ,

where J is the Jacobian of the transformation J
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Since the basic idea of the transformation is to generate transformation functions
such that all boundaries are coincident with coordinate lines, the natural coordinates
[|,ijj are taken as solutions of some suitable elliptic boundary value problem with one
of these coordinates constant on the boundaries. Using Laplace's .equation as the gener-
ating elliptic system gives

< n + « y y - ° ' ' ' <2a)

0 (2b)

with Dirichlet boundary conditions: 77 = Constant = 77 j on Fj, 77 = Constant = 7j2 on
P2, and £(x,y) a multiple -valued solution with a branch of £(x,y) specified (but not
constant) on Fj and 1^. The curve F^ on the physical plane transforms to the
lower boundary Fj of the transformed plane. Similarly, ^ transforms to Fl", and
so forth. The right and left boundaries of the rectangular transformed plane Fj and
Ft are coincident in the physical plane. The curve which transforms to these bound-
aries connects Fj and F2 and determines a branch cut for the multiple -valued func-
tion |(x,y). Thus the functions and all derivatives are continuous across this cut.

Now since it is desirable to do all numerical computation in the rectangular trans-
formed plane, it is necessary to interchange the dependent and independent variables in
equations (2). Thus • ,

= 0 (3a)

m - 0 (3b)

where

a = xrj2 + jjf (3c)

. . (3d)

y = x4
2 + y£2 ' (3e)

with the transformed boundary conditions: x = f I(£,T/J) on F^, y = gi(^,J7j) on F?,.

x = f2(£»f?2) on ^2' an(* v = S2^»^2^ on r2* ^ tlie Present application, x and y
are nondimensionalized with respect to the airfoil chord.)

The natural coordinate system so generated has a constant 77 -line coincident with
each boundary in the physical plane. The £ -lines may be spaced in any manner desired
around the boundaries by specification of [x,yj at the equispaced 4 -points on the TI\- and
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7/2-lines of the transformed plane. Control of the spacing of the rj-lines may be exer-
cised by varying the elliptic system of which £ and 77 are solutions.

Extension to Multiple Bodies

The same procedure for natural coordinate generation may be extended to regions
that are more than doubly connected, that is, have more than two closed boundaries or,
equivalently, more than one body or hole within a single outer boundary. The transfor-
mation to the rectangular field is illustrated in figure 2.

The method requires that the 77-coordinate be equal to the same constant on all the
interior boundaries, that is, on all bodies in the field. Let all the bodies be connected
by arbitrary cuts and, similarly, one body be connected to the outer boundary by an arbi-
trary cut. Since the ^-coordinate is equal to the same constant on all the bodies, it is,
of course, equal to that constant on the cuts between the bodies also. By contrast, the
£-coordinate is taken constant on the cut between the body and the outer boundary. Since
the locations of these cuts in the physical plane are not specified, the specification of 77
or | as constant on a cut does not overspecify the elliptic problem^

Note that all bodies except one are split into two segments. Each cut appears
twice on the transformed field boundary, the two segments, of course, corresponding to
the two "sides" of the cut in the physical plane and thus being reentrant boundaries with
the functions and all derivatives continuous thereon. Thus x and y have been speci-
fied on the portions of the lower boundary of the transformed field that correspond to the
bodies - F* and r£ for the right body and T* for the left body - and also on the
entire upper boundary, corresponding to the outer boundary in the physical field. The
remaining portions of the lower boundary and the entire side boundaries are reentrant
boundaries and, thus, neither require nor allow specification of fx,yl thereon.

Again an elliptic Dirichlet problem is solved to generate the natural coordinates
[x,y], as in the previously considered case with only a single body. All computations,
both to generate the coordinates and subsequently to solve the partial differential system
of interest, are again done on the rectangular field with square mesh in the transformed
plane.

Numerical Solution

The relation between the transformed and physical fields for a single airfoil is
shown in figure 3(a). The physical coordinates of I points describing the body surface
fx,yj provide the boundary conditions along the j = 1 line; those of I points on the
physical remote boundary, usually a circle with radius 10 or more chords, supply the
boundary conditions along the j = J line of the transformed field. Since the side bound-
aries of the transformed field are reentrant, corresponding to the cut in the physical
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plane, then fT . = f i . and fui i = f? i for all j. Note that the values of x and y
i>l *•>! J-Ti»J ">J

are not specified on these side boundaries. All derivatives in equations (3) are approx-
imated by second -order, central -difference expressions (A£ and A?/ are both unity by
construction, the actual values of £ and rj being immaterial):

(4a)

fi-l,J-l) ' (4e)

The resulting set of 2I(J - 1) nonlinear difference equations, two for each point fi,jl
for i = 1, 2, . . . ,1-1 and j = 2, 3, . . ., J - 1, were solved by accelerated Gauss -
Seidel (SOR) iteration. The iteration was considered to have converged when the maxi-
mum absolute change on the field between iterations was less than 10 ~5. A range of
acceleration parameters was examined, and a value of 1.85 was nearly optimum for the
bodies considered.

The relation between the transformed and physical fields for two airfoils is shown
in figure 3(b). The physical coordinates of body 2 at points i = 1 . . .11, those of
body 1 at points i = 12 . . .13, and finally the remaining points i = 14 ... I on body 2
are input as boundary conditions on the j = 1 line in the transformed plane. The
remaining points i = (II + 1) ... (12 - 1) and i = (13 + 1) ... (14 - 1) on the j = 1
line are reentrant points corresponding to the cut between the bodies in the physical
plane. Therefore values at these points are not specified, but rather the relations
fll+k,l = f14-k,l a*"1 fll+k,0 = f14-k,2 for k = i : •• (12-11 -1) hold. The rest of
the procedure is unchanged from the case of a single airfoil, except that two difference
equations at each of the points [i,l] for i = (II + 1) . . . (12 - 1) are added t'o the sys-
tem, so that the total number of equations is now 2I(J - 1) + 2(12 - II - 1).

Control of Coordinate System

Several procedures for controlling the spacing of the coordinate lines in the field
are available and the general philosophy of such control is discussed in reference 3.
One particularly effective procedure is to add exponential inhomogeneous terms to the
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Laplace equations for the curvilinear coordinates, so that the coordinates are generated
as the solutions of

Ixx
m=l

5 P

M

N

n=l i '

where the amplitudes and decay factors are not necessarily the same in the two equa-
tions. Here the first terms have the effect of attracting £ -lines to the £m -lines in the
4-equation, and attracting 77-lines to the rjm-lines in the T]-equation. The second terms
cause | -lines to be attracted to the points [^n^n] m tne £ -equation, with a similar
effect on r\ -lines in the r\ -equation.

In the transformed plane these equations become

(6a)

- _.T2flJ,, t j_ C\n.\ /QJj\

POTENTIAL-FLOW SOLUTION

Laplace Equation and Boundary Conditions

, The two-dimensional irrotational flow about any number of bodies may be described
by the .Laplace equation for the stream function «//: .

^x + V 'yy -O (7)

with boundary conditions:

On the body surface, .

r^(x,y) = ̂ 0 ; , (8a)
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At infinity,

<Mx,y) = y cos 0 - x sin 0 (8b)

where 9 is the angle of attack of the free stream relative to the positive x-axis. Here
the stream function is nondimensionalized relative to the airfoil chord and the free-
stream velocity. When transformed to the curvilinear coordinate system, this equation
becomes . .,, -,„..-.,. ; : ; -':-

.= 0 (9a)

where a, /3, and y are defined by equations (3c) to (3e) and a and T are given by

_ y^(Dx) - x^(Dy) ;. , ; „ , , . - ; • . < . > . ' " . , "'".--A.
a= j — -.. .- •- . .^

^^i.:..:.-::r-- .-. . ,. >'' <-,
with

' :> Dx s

. . . . - .... _ . . , . ; . • , , ; ; . . . _ > . , / . , r(9e),

Note that Dx and Dy, and hence a and r, vanish when no coordinate contraction is
used, that is, when the generating system is simply equations (3). The transformed
boundary conditions are

77 = ?7j (i.e., on

On ?? = % (i.e., on T*V
*\ A/ ••/;(_ >,-r •'•

cos 0 - x7? s in

The uniqueness is implied by insisting that the solution be periodic in -°° < £ < °°,
r]-^ = rj = 7/2. The coefficients or, /3, y, cr, and r are -calculated during the generation
of the natural coordinate system. For the approximation of equations (9), second-order,"
central differences are used for all derivatives, and the resulting difference equation is
solved by accelerated Gauss -Seidel (SOR) iteration on the rectangular transformed field.

The solution of equations (9) on the transformed field is constructed in the same
manner that has been previously described for the solution of equations (3). The single
equation (9a) replaces the two equations (3a) and (3b), and the boundary .conditions are
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given by equations (10). The total number of difference equations thus is .I(J .- 1) for a
single airfoil and I(J - 1) + (12 - II - 1) .forjtwp airfoils.

. . . ' : • • v ' * * '

Kutta Condition

The boundary value of t// on the body, i/^, is determined by imposing the Kutta
condition. The Kutta condition arises from physical considerations and basically asserts
that the flow must leave the sharp trailing edge of. an airfoil section in a smooth fashion.
In a mathematical sense this smoothness condition is guaranteed by insisting that the
velocity on the surface of the airfoil be continuous. The continuity implies that the limit

• ; > ; < . ! > • • • • • ' • ' .- - ' - r ! . i - '• i •• ?;• ; .< • j'.i ' • • • . ' '.,- _ ,.}. ,1 . , -(,v. ... - ,,-... vi ,
of the velocity at any 'point oh the surface-exists a'nd: is the same regardless of the path
along which' this point is approached. "In particular,' the velocity at the trailing' edge of
the airfoil must be the same when approached from the upstream 'direction along 'tHe
upper and lower surfaces. It is easily shown that the above ideas imply that the trailing
edge is a stagnation point for airfoils having an included trailing -edge 'angle greater than
zero, but only a common (possibly nonzero) upper and lower surface velocity limit is
required for cusped trailing edges. - The common -limit condition has also been applied
by Giesing (ref. 5) in a solution utilizing superposition of singularities.

Since the normal velocity component vanishes identically on the airfoil surface,
only the tangential velocity component need be considered. If. • V^' • is the component
of V tangent to a constant 77 -line; then • • . - - . ' . . - , ' ' • : ; ; . • '

' : ' ' ~ ' '" ' '" ' f ;"" ' •" ' " :

• • : - • • • : , • , t . , . . (11)

On the surface the £ -derivatives are approximated by the second-order, central-
difference expressions of equation (4a), as in the interior of the field, at all points except
those on the cut i = 1 and i = I, where second-order, one-sided expressions are used.
Thus

<12a>

(12b)

The 77-derivatives on the surface are approximated at all points by similar one-sided
expressions:

• • • (12c)

To implement the condition of a common velocity limit numerically, the tangential veloc^
ity component at the airfoil trailing edge is approximated by a three-point, quadratic
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extrapolation in which the three points on the airfoil surface immediately adjacent to the
trailing-edge point on both upper and lower surfaces are utilized. This procedure is
illustrated in figure 4. The extrapolated values are

(13b)
'~£LitL- • \ ~'dL,l

'- ' • ' • < • * ' • - . • • ; : - : .< . • : Ci ' • • ; . > • , . • - . - . . - - . - ' ; - V : - , i T .« . . >..« • . - • • . . . i - - . :
where,the subscripts, o, . 1U, 2U,,.,3U,. 1L, .,2L,,and 3L refer to the ^-field posi-
tion as indicated in figure^. ;All ,77-field position Indices are of course unity. .The
common.-limit condition is then . , _ . r , f ( . - r ( .> (i . , ... • ••

' • • • - . : . . : • Superposition o f Solutions r

Since the system to be solved is linear in «//, the solution for a single airfoil at
any angle of attack may be obtained by superposing three component solutions: (1) a
solution at 0° angle of attack with no circulation, (2) a solution at 90° angle of attack
with no circulation, and (3) a solution with circulation but zero free-stream velocity.
These three component solutions, written <//(k) (£,??), where k = 1, 2, 3, each satisfy
equations (9), with the respective boundary conditions

dl\ = 0 . (i = 1 . . . I) (15a)1,1

^i,j"yi,J ( i = l . . .1) (15b)

[̂2} = 0 ( i = l . . .1) (16a)

^ifj=-xi,J (i = l. . .1) (16b)

^{fl = 1 (I = 1 ... I) (17a)

/o\
*ij = 0 (1=1. . . . I) (17b)
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The complete solution with arbitrary circulation then is

iM = </>(1)M) cos 9 + <//(2)U,77) sin 0 + \<//(3)(|,77) (18)

The Kutta condition is then satisfied by choosing the coefficient \ such that equation (14)
is satisfied. Thus it is only necessary to solve the system of difference equations three
times, for a given airfoil. The solution at any angle of attack may then be obtained with-
out re -solving the difference system. '

Surface Pressure and Force Coefficients

The pressure coefficient at1 any point'in the field: may be obtained from the^veloc
ities via' the: Bernoulli equation, which in'the present nondimensional variables is c~ .<

• • » I li 1: ; • > ! : > ! ! ! : j : 7 " : v ; , - , . . i : i . . Jf . . (• -,i ; ^ ., • , ', <>'

• • I . ' * . > ' «

On the body surface this becomes, through use of equation (11),

C p = 1 ^.^2 ' - . • • • . . . , . . , . : . : , - • ' , : . • ' • ' . / / . (20)

with the derivative evaluated by a second-order, one-sided difference expression. The
nondimensional force on the body is' given by .

F = - Cpn ds (21)

where n is the unit outward normal to the surface, and ds is an increment of arc
length along the. surface. The lift and drag coefficients are

CL = § cp(-x| cos 6 ~ v£ sin 6) d^ (22a)

D = y cos 9 + x sin

These integrals were evaluated with numerical quadrature by means of the trapezoidal
rule.

Multiple Airfoils

With two airfoils, the boundary condition of equation (8a) is replaced by the two
boundary conditions:

On -the surface of body 1,

<Mx,y) = !// (23a)
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On the surface of body 2,

<Mx,y) = i//2 • (23b)

With reference to figure 3 and the discussion in the previous section of the coordinate
system solution, these boundary conditions become, in the transformed field,

& i = tf'o (i = 1 ... II and i = 14 ... I) (24b)1>A ^ . ' • • • :~ • - • i-- • .

As in? the, case of the coordinate system;solution,jthe. remaining portions of the J = 1
line are reentrant, boundaries, so;that points thereon are; treated as field points .rather -t ,
than boundary points. The | -derivatives at the surface points II, 12, 13, and 14 on
the cuts between the bodies are also evaluated by using the one-sided expressions of
equations (12) in the calculation of the velocity on the surface.

• • • » ' " - • • ; - • - . • • • • • - - , . . : . . . . - • • • • ;'.;
The Kutta condition must be applied on each body. Therefore, a fourth component

solution is added, and the four component solutions each satisfy equation (9a), with the
boundary conditions

^1 = 0 (i = 1 . . . II, 12 . ... .13, 14..-. . , . I) . . . (25a) .

"• • ^ ' *

^=.y l fj (i = !.:.!) (25b)

( 2 \ ' • • • - . - . .
I//.- i = 0 (i = 1 ... II, 12 ... 13, 14 ... I) (26a)1> i

^(f] = -*if j (i = 1 . . . I) (26b)

^f3j = 0 (i = 1 ... II, 14 ... I) (27a)
• - » . •

^f3] = l (i = I 2 . . . I 3 ) (27b)1>J-

V/[3] = 0 • ( i = l . . .1) (27c)

(i = 1 ... II, 14 ... I) (28a)
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^{ = 0 (i = 12 ... 13) (28b)

i//^] = 0 (i = 1 . . . I) (28c)

The complete solution with arbitrary circulation about each body is

^W cos 9 + ̂ (2)(|,77) sin 6 + Xi<//(3)(|,7;) + \2^\^) (29)

The Kutta condition is then satisfied by choosing the coefficients \\ and \2 such that; .
' equation (14) is satisfied on each-body. This requires only the simultaneous, solution of ,; ,

two linear algebraic equations. • Generalizing to N bodies, it is necessary to solve the
difference equation system N'+'2 times for a given multiple airfoil system. The solu-- , ,
tion at any 'orientation of the free stream may then be obtained without re -solving the , ., . .
difference system.

Results and Comparisons

The coordinate 'system for a Karman-Trefftz airfoil having an integral flap is
shown in figure 5, and the streamlines and pressure distribution for this airfoil are com- .
pared with the analytic solution (ref. 6) in figure 6. Similar excellent comparisons have
been obtained with other Karman-Trefftz airfoils. Figure 7 shows the coordinate sys-
tem for a Liebeck laminar airfoil, the solution for which is compared with experimen-
tal results (ref. 7) for the pressure distribution and lift curve in figure 8. Finally, the
coordinate system for a multiple -element airfoil is shown in figure 9, with the stream-
lines and pressure distributions shown in figure 10. Here coordinate system control
was employed as discussed above to attract the coordinate lines into the concave region
formed by the intersections of the cut between the airfoils.

APPLICATION TO THE NAVIER-STOKES EQUATIONS

Basic Equations

The stream -funct ion — vorticity formulation of the two-dimensional, incompressible,
viscous -flow equations is given by

(30)R
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where i/> is the nondimensional stream function, u> the nondimensional vorticity, and
R the Reynolds number based on the characteristic velocity and length used to nondi-
mensionalize the basic equations. The transformed equations are

J2R

= -J2w (33)

where the coordinate system parameters a, j3, y, J, a, and r have already been
given. Recall that these coordinate system parameters are fixed and need be calculated
only once.

* . - . . ' ' ' -

Boundary Conditions

• The boundary .conditions are given by

Oh the body surface,

)//(x,y,t) = i//b = Constant (34a)

||(x,y,t) = 0 ®4b) -

At infinity,

i//(x,y,t) = y cos 9 - x sin 9 (35a)

u>(x,y,t)=0 (35b)

where n is the unit vector normal to the body surface. The function describing the
variation of the vorticity on the body u>b(x,y,t) is unknown and must be calculated as part
of the solution. Initial conditions at t = 0 are .those resulting from an impulsive start.
Equations (34) and (35) may be transformed to yield boundary conditions for equations (32)
and (33) in the transformed plane. This procedure yields the following relations:

On 77 = 77! (i.e., on Tj), .- ,

Constant (36a)

On 77 = 77? i.e., on

cos 9 - x sln 6
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0 (37b)
: • '

where 77 ̂  and r/g are the values of the rj -coordinate for contours r* and rt,
respectively, in the transformed plane (fig..l). The condition specified' ty equation, (36b)
guarantees that the velocity component tangent to the transformed body surface vanishes
on the body surface. Since the component normal to the body surface vanishes identically,
the satisfaction of equation (36b) implies that the viscous no-slip condition is satisfied
on the body surface (i.e., along r*, or equivalehtly

;;.-; Most solutions in the computational fluids field have relied oji a modified evaluation
of equation (33) on the boundary to determine the vorticity on the body surface ^(l^jft).
The modification is introduced in an attempt to insure that equation (36b) holds - that is,
to satisfy the no-slip condition. A variety of numerical procedures along these lines are
documented in reference 8. The principal problem encountered with such an approach is
that the vanishing of the tangential velocity component is implied only Indirectly rather
than directly. . Israeli (ref. 9) has shown that these procedures are not only unreliable in
producing a, zero tangential component, but may, in fact, even be numerically divergent.
Israeli suggests that fc>£»?'>t be calculated with an iterative algorithm of the form

(38)

for all i ^ i = I - 1, where ^ refers to the £ -position along the body, 77^ denotes the
T]- value for contour P* tn is the current time, k denotes the iteration counter at
step tn, and 6 is a relaxation factor (possibly variable). Obviously, such a procedure
can only be employed with implicit methods which require Iteration of the parabolic vor-
ticity equation at each time increment. Note that convergence of the vector sequence

jtn) implies convergence of |^(4i,^i,tn) to that function which inherently

satisfies the no-slip boundary condition. ...

Pressure Coefficients

If the primitive variable formulation of the Navier -Stokes equations (velocity-
pressure) is evaluated on the body surface, the time derivative and inertia terms vanish
to yield

yp = Iv 2 V (39)
Jtv "̂

,' i" . • 'i -• •> • . " • • • ,•

where p is the nondimensional pressure, V the. nondimensional velocity, and R the
Reynolds number based on the characteristic flow parameters. Utilizing a^vector iden-
tity to eliminate v2 Y gives
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(40)

The pressure differential in the transformed plane then is : ;.

Integration of equation (41) along Fj starting at the trailing-edge position yields

1 P* 1
•cg(*)ap(«)-PT.E. "si j(0w£-yc^)d|f (42)

where IT g is the £ -value corresponding to the body trailing edge. The symbol Cp
Is used Instead of the more conventional Cp to indicate that the reference pressure Is
the trailing-edge value PX.E. ratner than the free-stream value p^. Note that all
quantities in equation (42) must be evaluated on the body surface (i.e., along i\ » jjA
Central-difference approximations were used for all |-derivatives appearing in equa-
tion (42), while second-order one-sided expressions were used for the 77-derivatives.
The numerical quadrature was performed by the trapezoidal rule.

Force Coefficients

, The force coefficients associated with the stress vector are obtained by integrating
the stress vector over the body surface. Let, F = iC^ + j Cj^ be the total force acting
on the body and let Tn = i, (Tn) + j (Tn^ be the stress vector on the body surface having

outward unit normal n. Then, ;

TndS . (43)
S ~ ' :• ' . . ' ' ' '

where S is the body surface. The stress vector components (Tn^ and (Tn)2
 : may

be expressed in terms of the primitive variables as

a (Mb,

where nj and 112 are the x- and y-components of the normal to the body surface n.
The lift and drag coefficients may then be calculated by means of the conventional wind-
axis transformation as follows: ' ' - '
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f^max > ' P^max 7* sin 0 - xt cos 9
CD.= 2 J (y^ cos 9 - X| sin 0) C* d| + 2 J -S ^ w d£ (45a)

^min *min

r _ ? «
 >max

T — j
'min

cos0(x^C*-^-) + sin0(y^C*-^Jd^ . (45b)
*»- /I '.

The two integrals in equations (45) are referred to as the pressure and friction drag
coefficients and are denoted CD- and CDF, respectively. These integrals were eval-
uated numerically by use of the trapezoidal rule. The 4 -derivatives were approximated
with second-order central -difference expressions.

Difference Equations

A first -order backward difference is used to approximate the time derivative,
while second-order central differences are used for the space derivatives in equa-
tions (32) arid (33): The resulting coupled difference equations, two for each point in the
field, were solved simultaneously by point SOR iteration at each time step.

Implementation of the Boundary Conditions

As indicated earlier, the basic idea used to calculate the vorticity on the body sur-
face ^b^'^l't) is to select this function so that the no -slip condition is satisfied. An
approach suggested by Israeli (fef. 9) has already been cited in equation (38). This is
basically the parallel-chord method (see ref. 10) and has only a linear convergence rate.
Another method similar to false -position iteration was used to accelerate the conver-
gence. The iterative sequence is generated by the algorithm

»• (46)

where 6 is again an acceleration parameter. The derivatives in this equation were
approximated with second-order one-sided differences for the rj -derivatives and central
differences for :the £ -derivatives. Another method was used when numerical overflow .
problems were encountered with the quotient in equation (46). This consisted of modi-
fying the second term on the right side of equation (38) with the algebraic sign of the dif-
ference quotient. ./.Several other approaches documented in Roache (ref. 8) w,ere also
tried. None of these were as successful as the methods discussed above.
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Calculation Procedure

The vorticity and stream -function fields are converged by means of the point SOR
technique. New boundary values of the vorticity are calculated as discussed in a previ-
ous section. Three conditions must be met before the time step is considered to be
converged: .

(1) E(t//,k) i eO//)

(2) E(o),k) i £(W)

where the terms E(i//,k), E(u>,k), and E(-|^,kj are the maximum norms of the change
E(i//,k) sJ|i//W _ ̂ (k-1) | The terms involving e are simply the required convergence

criteria. (Nominal values for e(i//), e(w), and e(-|^j are 10~^, 10"°, and 10 , respec-\ Aon/ • ......
tively.J This procedure is repeated until convergence. Once a time step has converged,
time is incremented and the process begins again.

NAVIER -STOKES RESULTS

Solutions About Various Bodies

To illustrate the versatility of the natural coordinate system. approach, viscous
flows about three different bodies are presented. The bodies and associated flow condi-
tions are

(1) Flapped Karman-Trefftz airfoil: 0 = 15°; R = 200

(2) GSttingen 625 airfoil:' 0 = 5°; R = 2000

(3) Cambered rock: 0 = 5°; R = 500

The coordinates of these bodies are given in reference 4..

Several problems arose with the body vorticity calculations. At times the iterative
method used to calculate the body vorticity produced mildly oscillating values along the
body boundary. The principal cause of this result was that the method was applied point
by point along the boundary. Thus, the only "communication" between the body points
was through the field iterations. This tendency was overcome in two ways: First, only
small surface vorticity changes were allowed at each body station at each iteration.
Second, after the new vorticity values had been calculated, a three -point weighted aver-
age was used to smooth the new surface vorticity distribution.
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A second problem developed with those bodies having a sharp trailing edge. To
preserve continuity of the vorticity, the vorticity at the trailing edge was held at zero. '
Since the vorticity gradients are extremely large in the neighborhood of the trailing edge,'
the numerical solution had a tendency to oscillate near this point. This phenomenon is
generally known as "wiggles" and, as shown in Roache (ref. 8), is actually the solution of
the difference equations. In reality the wiggles are caused by the inability of the net
function to resolve large gradients near boundaries.' • - . " • • - • •

v Flapped Karman-Trefftz Airfoil . . .

The coordinate system for the flapped Karman-Trefftz airfoil profile, which pos-
sesses a camber of 22 percent at the 0.55-chord point, is shown in figure 5. The free-
stream Reynolds number was taken as 200, and the flow angle of attack was 15°. Other
data concerning the solution are given in table 1.

Stream-function contours are given for two time steps in figure 11. The contours
at the earlier time indicate clearly the large flow velocities over the upper surface of
the airfoil and the consequent large difference in overall boundary-layer thickness'
between the upper and lower surfaces. The manner in which the zero streamline leaves
the trailing edge indicates that flow separation on the upper surface is imminent. The
contours for t = 1.06 illustrate a fully developed laminar separation. The boundary-
layer thickness over the aft half of the upper surface has increased approximately
300 percent.

. In order to gain some insight into the development of laminar separation, a series
of four,velocity profiles are shown in figure 12. The profiles for t = 0.08 illustrate
the upper-surface flow shortly after the impulsive start. The boundary layer is very
thin at this time. Separation has already begun at t = 0.22, as evidenced by the profiles
on the flap portion of the airfoil. Figures 12(c) and 12(d) indicate that the upper-surface
separation, point has moved rapidly upstream to approximately the 70-per cent-chord
point. Reverse flow has been well established at t = 0.54. Note that the upper-surface
boundary-layer thickness has increased substantially over the time span shown.

Gottingen 625 Airfoil

The flow Reynolds number was 2000 at an angle of attack of 5°. . Additional sum -
mary data of the solution for the G'dttingen 625 airfoil appear in table 1. The coordinate
system shown in figure 13 was used in this solution. The high density of constant 77-lines
near the airfoil surface is the result of contraction to the first 15 77-lines. In particular,
the amplitude factor appearing in equation (5b) ranged from 20 000 at 77 = 1 to 13 000 at

** ' • • '%

77 = 15 (increments of 500/line), while the decay factors were held constant at 1.0 for
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rj = 1 to 14 and were 0.4 for the 15th 77-line. The function P(x,y) defined by equa-
tion (5a) was set to zero as were the point-attraction parameters of equation (5b).

. This solution developed wiggles near-the sharp trailing edge. The effect of the
wiggles is dramatically illustrated in figure 14, which shows t//.. and co contours at
several times after the impulsive start. Note the distortion of the vorticity contours
near the trailing edge. The oscillatory effects are carried upstream along the lower
surface of the airfoil and are proceeding downward, away from the trailing edge. The
disturbance proceeds away from the airfoil without much damping but has little effect
on the flow in the vicinity of the airfoil after the start, as can be seen in figures 15(a)
and (b), which show t// contours at later times. A feature of interest in figures 14(a)
and (b) is the starting vortex which is formed and shed at the trailing edge. This vortex
appears just above the disturbance due to the'wiggles.

Figure 14(c) indicates that flow separation has been initiated on the trailing-edge
portion of the airfoil upper surface. The separation point moves rapidly upstream to .
approximately the half-chord point at t = 1.012. At this time the upstream movement
of the separation point slows down considerably. The thickness of the separated region,
however, begins to increase, as illustrated in figures 15 and 16. The remainder of the
stream-function contours in figures 15(a) and (b) illustrate the growing thickness of the
separated region, the increasing back flow, and the separation of flow eddies. At
t = 2.23 a bubble begins to form on the trailing edge. This bubble continues to grow and
is followed by the formation of another bubble at t = 2.53. The extent of both bubbles
continues to increase until a single bubble is formed at t = 3.13. The final ^ contours
given indicate that the single bubble has become much larger. The thickness of the sep-
aration region is roughly 1.25 times the airfoil thickness at this time, with the,forward"
separation point at approximately 31 percent of the chord;

The separation process may also be examined by viewing the series of upper-
surface velocity profiles given in figure 16. The profiles given in figure 16(a) illustrate
attached upper-surf ace flows shortly after the impulsive start. There is a noticeable
increase in the boundary-layer thickness at t = 0.336. The remaining parts of figure'18
track the growing thickness of the separated region and the upstream movement of the
separation point.

Pressure and force coefficients at an early time are illustrated in figure 17(a).
The friction drag constitutes more than 65 percent of the total drag at this time. As the
boundary layer becomes thicker, the friction drag decreases rapidly and causes a cor-
responding decrease in the total drag. The effects of the laminar flow separation are
shown in figure 17(b). The peculiar variation in the Cp distribution at the trailing
edge is again due to inaccuracies in the body vorticity distribution.
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, , Cambered Rock

To show that the natural coordinate method could be used with arbitrary shaped
bodies, the viscous flow about the cambered rock at a Reynolds number of 500 was
developed. The contracted natural coordinate system used in the solution is given in
figure 18. The same amplitude and decay factors given for the Gbttingen 625 airfoil :
were used to create this system. Other summary data are presented in table 1.

With a body such as the cambered rock, reliance must be placed on one's physical
* . - „ • . . ' . i '

intuition in evaluating the resulting flow. For this reason an extended discussion of the
flow past the cambered rock will not be given. Instead a significant number of t// and
(i) contours will be given. These are shown in figure 19. However, it is felt that some"
remarks are appropriate. A glance at figure 18 indicates that the rock possesses sev-
eral concave areas, Intuition would imply that flow stagnation areas should develop quite
rapidly in these regions. This, in fact, does occur, as figure 19 indicates. In addition
one would expect laminar flow separation and the consequent shedding of vorticity from"''-
the body. These events are also borne put by the contours. The ever-increasing size of.
the region of significant vorticity is quite apparent from the figures. Finally, velocity
profiles and surface pressure distributions are shown in figures 20 and 21. . . -

'-'• > . " " ' • Computer Time Requirements

Numerical solutions to parabolic partial differential equations require extensive
amounts of digital computer time. The total CPU times (UNTVAC 1106) used to generate
the three solutions discussed in this study are documented in table 1. The average time
required to converge each time step is also shown. (No attempt was made to quantify the
effects of time-step size on the average times given.) ..'•*.

CONCLUSIONS

The objective of this study was to develop methods to obtain numerical solutions of
the two-dimensional, incompressible, time-dependent Navier-Stokes equations about „
arbitrary.,bodies. The solutions followed the development of a general numerical curvi-
linear. cpordinat<?:transformation which produces a natural coordinate system having a
constant, coordinate line coincident with each boundary contour in the physical plane.
Once the natural coordinates are developed for a given physical domain, the set of partial
differential equations of interest may be transformed to the natural system and solved ,
numerically in the transformed plane without regard to the geometry of the physical
region. In effect the natural coordinate method eliminates all geometrical considera-
tions from a given solution, as all physical regions have the same appearance in the
transformed plane. The computer software utilized to generate the natural coordinates
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is independent of the set of partial differential equations whose solution is to be carried
out on the transformed plane. The partial differential equations governing potential and
viscous flow differ drastically. However, for a given body geometry, the same natural
system was used herein for both solutions. The second major advantage of using natu-
ral coordinates is that the computer software generated to approximate the solution of a
given set of partial differential equations is completely independent of the physical geom-
etry of the problem. The same computer program was utilized to develop all the solu-
tions for the wide variety of bodies discussed herein. Only the input varies with the
body. Such a procedure obviously has significant ramifications in numerical mathemat-
ics and all areas of physical science.

Significant viscous-flow results were obtained for three different bodies. These
included two general airfoil sections and one completely arbitrary body. The airfoil
solutions developed computational wiggles near the sharp trailing edge at the start of the
impulsive flow. The wiggles were generated as a result of large vorticity gradients
which appeared in this region at the start. This disturbance was converted away from
the body essentially undamped, but produced no significant disturbance near the body at
later times. The solutions show the formation and development of the boundary layer,
laminar separation bubbles, and completely separated flow. Present results extend to a
Reynolds number of 2000. Although the magnitude of the calculated force coefficients
cannot be compared with experimental data, as none exist at this low Reynolds number,
the time variation of these parameters agreed quite well with the flow pattern develop-
ment. The .cambered-rock solution proved that the natural coordinate methods could be
applied to very general bodies. The manner of this flow development also agreed with
intuitive physical reasoning.

There appears to be no basic barrier to higher Reynolds number solutions, since
the means are at hand to contract the coordinate system about the body as much as
desired. Preliminary runs at a Reynolds number of'10'000 have already been made.
Work is also in progress on the solution for multiple airfoils with viscous flow. J ' ' ."
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Physical Plane

Region D*

Transformed Plane
(Natural Coordinates)

Figure 1.- Field transformation - single body,
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Figure 2.- Field transformation - multiple bodies.

497



j=J

k— 1

, *

, 1

rH 1— 4 ^-r-4 k— i

1 1
1 I

>-4

(a) Single-body region.

J-l ^

=1 ,]

(C
1

[1

'x /p '
»

1 /

, t

I

1 (

1 /

2

> 1

1

> /

. >

12

. /

1

k t

1 1

I

'

> t

\ f

k

L— A

|

1

' I
, I
' 1

1

1

L L

I

(b) Two-body region.

Figure 3.- Computational grids - single and two-body regions.

498



Figure 4.- Velocity extrapolation at airfoil trailing edge.

499



Figure 5.- Coordinate system for flapped Karman-Trefftz airfoil.
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(a) Pressure distribution.
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Figure 6.- Analytic and numerical potential-flow results for flapped
Karman-Trefftz airfoil.
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Figure 7.- Coordinate system for Liebeck laminar airfoil.
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(a) Pressure distribution.

Figure 8.- Experimental and numerical potential-flow results
for Liebeck laminar airfoil.
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Figure 8.- Concluded.
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(a) t 4 0.118'. 

r e  4 .  - str.am-function and vorticity contours for Gb.ttin$en 625 air fo i l*  



(b) t = 0.336.

Figure 14.- Continued.
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(c) t = 0.658.

Figure 14.-' Concluded.

.516



t=1.53

t=1.83
(a) t = 1.53 and 1.83.

Figure 15.- Stream-function contours for Gottingen 625 airfoil.
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(b) t = 3.13 and 3.33.

Figure 15.- 'Concluded.
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(a) t = 0.118, 0.336, and 0.658.

Figure 16.- Upper-surface velocity profiles for Gottingen 625 airfoil.
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(b) t = 1.012, 1.53, and 1.83.

Figure 16.- Concluded.
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(a) t - 0.118.

Figure 17.- Pressure distribution for Gottingen 625 airfoil.
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Figure 17.- Concluded.
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(a) t = 0.15.

Figure 19.- Stream-function and vorticity contours for cambered rock.
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(c) t = 1.0.

Figure 19. -.Concluded.
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PRESSURE-- DISTRIBUTION
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(a) t = 0.1.

Figure 21.- Pressure distribution for cambered rock.
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NUMERICAL COMPUTATION OF VISCOUS FLOWS ON THE LEE SIDE OF

BLUNT SHAPES FLYING AT SUPERSONIC SPEEDS

By John V. Rakich

NASA Ames Research Center

and

Stephen C, Lubard

RDA Inc.

SUMMARY

A numerical method for solving the parabolic approximation to the steady-
state compressible Navier-Stokes equations is critically examined. The
approximation neglects only the streamwise gradients of shear stress. An
implicit finite difference method is used which advances the solution down-
stream from an initial data surface and determines the complete viscous-
inviscid flow between the body and bow shock wave. It is necessary that the
inviscid portion of the flow field be supersonic. Crossflow separation is
also determined as part of the solution.

The method is applied to a 15° sphere-cone at 15° angle of attack, and
the results are compared with available experiment and with an inviscid
method-of-characteristics calculation.' Excellent agreement between viscous
and inviscid theories is obtained in the inviscid regions of the flow. The
viscous calculations agree well with experimental surface and pitot pressures
and with surface heating rates.

INTRODUCTION

The flow field on the leeward side of bodies has received considerable
attention for many years. The flow is inherently viscous and develops into a
vortex at moderate angles of attack. At high speeds, lee-side flows are
important because the local heating is difficult to correlate and because the
shed vortices can interact with aircraft components such as a canopy, a verti-
cal tail, etc. Recently, for example, .lee-side flows have become a factor in
the design of the space shuttle orbiter thermal protection system.
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Lee-side flows are difficult to calculate because thin-boundary-layer
theory is not applicable and the concept of matching inviscid and viscous flow
becomes highly questionable. Early attempts to predict lee-side flows were
based on vortex tracing methods. However, for such methods the separation
point must be specified, a priori, and that point is unknown. Therefore vor-
tex tracing methods are inherently empirical. Recently, two new approaches
have been proposed to study the lee-side flow for a pointed cone. One
approach utilizes boundary-layer type equations (Lin and Rubin, ref. 1) and
requires that the pressure distribution be specified. The second approach
(Lubard and Helliwell, ref. 2) makes use of the parabolic approximation to
the compressible Navier-Stokes equations and solves for the complete inviscid
arid viscous regions of flow, including the pressure.

It is the application of the method of Lubard and Helliwell to blunt-
nosed bodies that is the topic of the present paper. To use this method it is
necessary to first determine an initial data solution in a region where the
inviscid portion of the flow is supersonic. The starting solution for the
present paper was obtained with the inviscid blunt body and method-of-
characteristics codes of references 3 and 4, together with a boundary-layer
program, reference 5. The results obtained for a 15° sphere-cone at 15°
angle of attack are compared with experiment and with inviscid theory.

ANALYSIS

The so-called "parabolic Navier-Stokes" equations, and the numerical
methods employed to solve them, have been described previously in references
2 and 6. Only the main features will be discussed here in order to illus-
trate the capabilities and limitations of the method.

The parabolic approximation results from the assumption that the stress
'derivatives in the streamwise direction are small in comparison with deriva- •'
tives in the normal and circumferential directions. This assumption permits
the calculation of the flow to proceed,downstream from an initial data surface,
provided the inviscid region of flow is supersonic. The equations have a-
parabolic character with respect to the downstream direction, and are elliptic
with respect to the surface normal and circumferential directions. Separation
and reverse flow is permitted in the crossflow plane, provided the component
of velocity in the marching direction is positive. This crossflow separation
causes a spiral flow pattern and is the initial stage of formation of the
vortices which trail a lifting body.

To start the solution, it is necessary to determine an initial data
surface in the supersonic part of the inviscid flow. For the present appli-
cation to a'sphere cone, the flow at the sphere-cone juncture is not sepa-
rated and boundary-layer theory is applicable there. Also, the flow on the
sphere is axisymmetric with respect to wind axes, which simplifies the
boundary-layer solution. Therefore, an axisymmetric boundary-layer code
(ref. 5) was applied along streamlines from the stagnation point to the
sphere-cone juncture. The edge conditions and the inviscid part of the shock
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layer were calculated with a blunt-body technique (ref. 3) coupled with a
three-dimensional characteristics program (ref. 4). An approximate starting
solution was then obtained by simply patching the inviscid flow to the outer
edge of the boundary layer (see fig. 1). This displaces the inviscid flow a
little too much but it proved to be an adequate approximation for the present
example.

The numerical method is the same one used by Lubard and Helliwell
(ref. 2) for pointed cones, and is similar to the technique developed by
Rubin and Lin (ref. 7). It is an implicit finite difference scheme which
employs an iterative matrix inversion scheme. The circumferential deriva-
tives are evaluated in terms of known quantities from the previous iteration,
and the matrix is inverted sequentially, one ray at a time. The radial and
circumferential derivatives are iterated such that the converged value is
obtained at the solution point. For example, the second derivative of veloc-
ity, u, is approximated by

n-1 ? n n-1
uj,k.JM-l ~ "j.k.l, "*• Uj,k,£-l

where j,k,£ are mesh indices for the x,n»$ directions (fig. 2), respec
tively, and n is the iteration index. A backward difference is used for
the streamwise derivatives. For example, the streamwise derivative of
momentum, pu, is approximated by

"(pu ) ^ kJ IK! a -
Ax

(pu)
n
.1-1 ,k £

\9x/.

The finite difference grid had 19 equally spaced planes circumferentially,
and 50 unequally spaced points radially. About half the radial points were
positioned in the boundary layer. Figure 2 shows the grid and computing time
for .the sample case, and. compares with those for an inviscid solution. Only ••
87 marching steps were taken in the implicit viscous calculation as compared '
with 508 steps in the inviscid characteristics calculation, which is con-
strained by the Courant-Friedrichs-Lewey (CFL) condition. The viscous calcu-
lation required 23 minutes of computing time for 950 points per marching
plane, and the inviscid calculation required 6 minutes for 399 points per
plane. Note, however, that neither code was run at the 'absolute maximum step :

size. Also, the characteristics code is not the most efficient method from
the computational point of view. Therefore the comparison in figure 2 should
only be considered qualitative. On this basis, and considering the finer
resolution, the computer time required by the viscous code is not excessive. ;

Because of a peculiarity of the parabolic Navier-Stokes approximation,
the finite difference method has a lower bound on the marching-step size. If
too small a step size is attempted, nonphysical branching solutions can be *
generated (see ref. 2). The reason for this behavior is discussed by Rubin
and Lin in reference 7 where it is pointed out that the equations have a
singularity at the sonic line in the boundary layer, and at that point some
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upstream influence is allowed. The singularity did not cause any difficulty
in the present example.

RESULTS

In order to adequately establish the validity of the described numerical .
technique, it is essential to compare both with experiment and with other
numerical methods. Since other viscous flow methods are not available, com-
parison, is made with an inviscid solution obtained with the method of char-
acteristics (ref. 4). The viscous and inviscid results should agree outside
the boundary layer in regions where the boundary layer is thin.

The configuration selected for comparison was a 15° half-angle cone with
a sphere nose and at 15° angle of attack. This blunt cone model was tested
by Cleary in the Ames 3.5-foot hypersonic wind tunnel at M = 10.6 (refs.
8-10). Surface pressures and heating rates, as well as shock-layer pitot-
pressure distributions were measured in the experiments. The angle of
attack selected was the largest value for which complete test data were . .
available, and was large enough to cause crossfiow separation. Complete test
conditions are shown in figure 3.

Figure 4 shows the surface-pressure coefficient for three meridional
planes. There is reasonably good agreement between both numerical.methods
(viscous and inviscid) on the windward side $ = 0, as is expected. Note,
however, that on the leeward side the inviscid theory breaks away from the
viscous theory at about x/% = 5. This is approximately the region where a .'
crossfiow separation first appears in the viscous flow calculation.

Figures 5 and 6 show the pitot-pressure distributions between the shock
and body. Here, n is the distance along the outward normal from the body
surface, x is the axial distance from the nose, and RN is the nose radius. ,
At x/RN = 3.4 the inviscid result seems to agree best with experiment•.
This is attributed to the way in which the inviscid solution was patched to
the boundary layer to obtain an approximate starting solution. The displace-
ment effect is too large, especially on the leeward side. At both stations,
x/Rjj = 3..4 and 14.7, the agreement between inviscid and viscous computations
is very good on the windward side. Significant deviations between the two.
theories occur.only near the body where the well-known blunt-body entropy
layer and the boundary layer tend to merge.

It should be noted that the model used for the pitot-pressure experiment
had a relatively hot wall. It is estimated that the ratio of wall to total
temperature could have reached 0.6 for the pressure test as compared to a
value of 0.26 for the heating test and for the viscous computations. The
higher wall temperature would cause a thicker boundary layer and might
explain the difference between the viscous theory and experiment for $ = 0
and 30° in figure 6(a). For $ = 60° and 90°, the experimental pitot pres-
sures are lower than both numerical solutions in the region where viscous
effects should be small. This difference is attributed to misalinement of
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the pitot probe and flow direction in the experiment. .

On the leeward side at x/% = 14.7, there is excellent agreement
between the viscous calculations and experiment, while inviscid calculations
overpredict the pressure for the entire shock layer.,

The heating rates are compared in figure 7 and the agreement is excel-
lent. . ' - • • •

Finally, in figure 8 the crossflow velocity field is shown in the
vicinity of• the leeward side at x/RN = 14.7.. Crossflow separation is indi-
cated at about 22° off the leeward plane of symmetry." Experimental data were
not available on the separation-point location for the present test case.

CONCLUDING REMARKS

A marching method for calculating the complete viscous/inviscid flow
over blunt bodies at angle of attack has been described and tested for a
sphere-cone at moderate angle of attack. It is found to give fairly good
agreement with available experiments and is iri agreement with inviscid theory
where viscous effects are small. The lee-side flow field, including cross-
flow separation, is predicted without the need for any assumptions about the
pressure distribution or the separation point. The present method should be
capable of following the vortex initiated by crossflow separation as it sheds
and moves away from the body surface. Additional tests of the method are
needed to establish this capability. In this -regard•, '• it may be necessary to
allow lateral asymmetry for- the calculation to correctly model vortex
shedding.

The computation time for-the test case was 23 minutes on a CDC 7600
computer. This is only about four times longer than an inviscid calculation
with half as many points. The time per step is an order of magnitude longer
than for the inviscid calculation but the implicit finite difference scheme
allowed larger marching steps. ...

The methods described can also be applied to bodies with more general • .
cross-sectional shape, and work is currently progressing along these lines.
However, the approximate technique used for the starting solution may not
work as well for a general nose shape. For general nose shapes a time-
dependent method of solution, such as that described.in reference 11, would
give a better starting solution.
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Figure 1.- Laminar viscous vortex flow over a blunt cone.
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Figure 2.- Computational mesh and computer run time.
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Figure 3.- Conditions for the test case.
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Figure 4.- Surface-pressure coefficient, Cp, for 15° sphere-cone. Angle
of attack, 15°; Mach number, 10..6.

538



o EXPERIMENT
VISCOUS!
INVISCIDf THEORY

60*

30*

0
WINDWARD

2 4 6 8 1 0
CPp

(a) * - 0° - 90°.

LEEWARD.

o EXPERIMENT
VISCOUS |
INVISCIDI THEORY

(b) * - 120° - 180°,

oefficient, Cp , ac

sphere-cone. Angle of attack, 15°; Mach number, 10.6; x/RH • 3.4,

Figure 5.- Pitot-pressure coefficient, Cp , across shock layer for 15°
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Figure 6.- Pitot-pressure coefficient, Cp , across shock layer for 15°
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CALCULATION OF SUPERSONIC THREE-DIMENSIONAL

FREE-MIXING FLOWS USING THE PARABOLIC-ELLIPTIC

NAVIER-STOKES EQUATIONS

By Richard S. Hirsh
NASA Langley Research Center

SUMMARY

A numerical method is presented which is valid for integration of the parabolic -
elliptic Navier-Stokes equations. The solution procedure is applied to the three-
dimensional supersonic flow of a jet issuing into a supersonic free stream. Difficulties
associated with the imposition of free-stream boundary conditions are noted, and a coor-
dinate transformation, which maps the "point at infinity" onto a finite value, is introduced
to alleviate these difficulties.

Results are presented for calculations of a square jet and varying-aspect-ratio rec-
tangular jets. The solution behavior varies from axisymmetry for the square jet to
nearly two-dimensional for the high-aspect-ratio rectangle, although the computation
always calculates the flow as though it were truly three-dimensional.

INTRODUCTION

The calculation of free-mixing flows has^ in the past, been accomplished through
use of the boundary-layer assumptions in the two-dimensional or axisymmetric Navier-
Stokes equations. The accuracy and validity of-these procedures iiave been ,welldocu- .,
mented in the literature (refs. 1 and 2). However, there are numerous situations where
the flow cannot be considered either two-dimensional or axisymmetric. Jets issuing
from rectangular orifices (see fig. 1), wakes behind any but the simplest bodies, and the
flow downstream of a wingtip are examples of three-dimensional free-mixing flows where
boundary-layer assumptions are invalid. The characteristic feature of these flows is the
importance of diffusion in two spatial coordinates.

These flows have certain characteristics which are common to boundary-layer
flows; e.g., the velocities in the planes normal to the main-stream direction are usually
much smaller than the main-flow velocity. Consequently, one expects gradients that
exist in the cross directions to be larger than the gradients in the main-flow direction.
Also, these are usually constant-pressure flows. Therefore, it might be reasonable to
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use a boundary-layer scaling on the Navier -Stokes equations to effect some simplifica-
tion; however, this yields an inconsistent set of equations. To lowest order, the cross-
stream momentum equations reduce to statements that the pressure is constant, and the
resulting number of equations is not sufficient to determine the remaining unknown
quantities. . . .. . ..

This paper presents the results of a method which overcomes this difficulty and
allows numerical solutions of the parabolized Navier-Stokes equations. The method is
applied to a three-dimensional, supersonic, rectangular jet problem in which the aspect
ratio is varied from one (square jet) to large values representative of slits. The range
of applicability of the procedure is demonstrated from the near axisymmetry of the
square, through a true three-dimensional region of moderate aspect ratios, to a quasi-
two-dimensional flow in the high-aspect-ratio limit which approximates a two-
dimensional jet.

SYMBOLS

A,B transformation constants

matrices defined by equation (15)

D vector defined by equation (15) •:->• '•

•Q convective derivative
Dt

h half-width of unit jet (reference length)

M Mach number

Npr Prandtl number '

p pressure

R Reynolds number

S = S*/Tr

S* Sutherland's constant
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T - temperature "-'" • :

U ' • velocity :

u,v,w component velocities in x-, y-, and z-directions, respectively

x,y,z -coordinate directions . ,

Ax,Ay,Az grid spacings in x-, y-, and z-directions, respectively

W vector of dependent variables (see eq. (16))

Y ratio of specific heats

A dilatation

6 central difference operator

T},£ transformed y- and z-coordinates

H viscosity

p density

* dissipation

Subscripts:

j,k discretized y- and z-positions, respectively

r reference quantity ' , "

00 free stream

+, - upper and lower grid spacings used with nonunlform grid

Superscripts:

1 dlscretlzed x-position
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intermediate step of alternating-direction implicit method

GOVERNING EQUATIONS

Derivation of Equations

The full three-dimensional Navier-Stokes equations are elliptic in character. The
core storage available on present computers is insufficient to practicably handle any but
the coarsest computational grids. Thus, methods to reduce the equations to a form more
tractable for computation must be employed. A true boundary-layer scaling cannot be
used since it yields an inconsistent set of equations; however, some of the concepts from
boundary-layer theory indicate the means to simplify the equations.

The only assumption which can be made is the predominance of the convection in
one main-flow direction. This leads to the (Reynolds number dependent) conclusion that
diffusion can be neglected in this direction when compared with convection. Assuming
the x-direction to be the convective direction, the Navier-Stokes equations become

for x-momentum:

* • *
for y-momentum:

= -3> + M* (3
H V

(2)ay

for z-momentum: • .> . .

• - c i
< p Dt ~ "9z + ^Hriax"jJ?+ayr'(ayJj + az^i az " JJ ^-'

where the terms in braces are the streamwise x-direction diffusion terms to be neglected.
In addition, since the expression

- ax 9y 9z ':• • . .
' ' . * - • J

also introduces x-diffusion terms in the y- and z-crossflow momentum equations, these
derivatives are also neglected here. .The x-momentum equation is the same as would
have been produced by a true boundary-layer scaling, but since no quantitative assump-
tions have been made concerning the relative sizes of the x-, y-, or z-gradients, the
y- and z-momentum equations are retained, although in somewhat simpler form.
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The energy equation becomes

.where the term in braces is to be neglected,

$ = /lu\2 + /M2
 + 4[/8v\2 _ /ay\/aw\ + /gw\2l + /aw\2 . 2(SSL}(»s\ + /§i\

, (dy) +(dz) + 3 \ayj (dy)(dz) + (dz) + (dy) *(dy )(dz) +\dz)

and the convective derivative ^ is given by

£ = u-j- + v-j- + w-|LDt ax ay az

All x -gradients in the dissipation have also been neglected. Finally, the continuity equa-
tion remains unchanged: .

= 0 (5)

;When these equations are supplemented by an equation of state and a viscosity relation,

(6a)

3/2

where R is the universal gas constant, a system of five equations for five unknowns is
obtained after elimination of the density by the perfect gas equation of state.

The elliptic nature of the Navier -Stokes equations in the x-direction has thus been
eliminated; consequently, the equations are parabolic in x and marching integration
may be used in the streamwise direction. This is significant computationally since it
eliminates the need to store all the field quantities at each x-location which results in a
substantial reduction in computer storage. Thus, the name parabolic -elliptic Navier-
Stokes equations, since the assumptions allow a march in x away from an-initial data
plane, yet retain the elliptic character of the crossflow planes (Y-Z planes) due to the
inclusion of all second derivatives in , y. and z. Flows with swirl or possible cross-
flow recirculation (vortices) in the Y-Z planes can be computed, and only reverse flow
in the main -stream direction is eliminated due to the omission of x-diffusion.

It should be noted that the continuity equation is hyperbolic; however, a march in
the streamwise direction is still possible since the x -derivative can be expanded as
follows:
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.and the px term can be used to advance to the next station. There is no explicit diffu-
sion term present and discontinuities which may be present can be expected to persist
for large x-distances; hence, smooth initial profiles are desirable.

Equations similar to these have recently been used for supersonic flow past a sharp
cone at incidence (ref. 3) and for hypersonic leading-edge flows, where a more formal
analysis and scaling can be invoked (ref. 4). To date, no detailed work has been published
on three-dimensional free-mixing flows.

Validity for Supersonic Jet Flows

Free jet and wake flows are common aerodynamic phenomena. These flows are
generally turbulent, and the calculation of two-dimensional or axisymmetric turbulent
free jets or wakes is difficult (ref. 2) because of problems associated with turbulence
modeling; higher order modeling (two-equation models) is necessary in many cases. For
three-dimensional flows with two essential cross-plane velocities, very few calculations
have been made. To assess the modeling procedures for a three-dimensional flow, a cal-
culation procedure valid for laminar flows, preferably in primitive variables to allow
ease of incorporation of the turbulence models, is required. The parabolic-elliptic equa-
tions (eqs. (1) to (6)) need to be verified for laminar jet calculations prior to their appli-
cation to turbulent flows.

If the equations are cast in nondimensional form by using free-stream values of
Uoo, Poo> and TOO and some suitable reference length which characterizes the problem,
the equations become

-for x-momentum: - ' • . ., .

for y-momentum:

l 9P i /af T af a 1\
Dt yj^ 2 3y R|3y \ 9y 3 )\ 8zr \dz) /

oo ^ L J J

for z-momentum: . - .

PW=--^^ + -< -W->l + ^ i 2 ^-* A ) l> (9)
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for energy:

2u<Y*m2 + /is'2™ \ I - I • I _

^(10)

, f o r continuity: . . .

: 0 . . (11)
OA ay oft

and for Sutherland's law:

M = g |̂)T3/2 . - (12)

Rubin and Lin (ref. 5) have shown that equations of this type are singular at M = 1
if the px term is treated exactly and singular at M = 0 if the px term is calculated
in an explicit manner during the numerical calculation. If the px term is neglected
entirely or specified from a boundary-layer approximation, then the parabolic march in
x can proceed without difficulty. Thus, it was felt that since the px term should be
included if necessary, the problem chosen to test the overall method should avoid any of
these obvious integration difficulties. The M = 0 behavior takes place near boundaries
(where u = 0), and therefore, the free jet problem avoids this singular behavior. How-
ever, the jet cannot exhaust into an ambient atmosphere since here too u = 0. Thus a
jet issuing into a moving free stream is suitable. To avoid any difficulties at M = 1
both streams were chosen to be supersonic. Thus, equations (7) to (12) will be solved
for a supersonic jet issuing into a supersonic free stream.

NUMERICAL PROCEDURE

Integration Technique

An implicit numerical procedure was chosen to solve the governing equations for a
number of reasons. The success of implicit methods on the two- and three-dimensional
boundary-layer equations implies that they should be efficient for the boundary-layer -
like parabolic-elliptic Navier-Stokes equations (eqs. (7) to (12)). It is expected that solu-
tions will be required at large distances downstream from the initial data plane; conse-
quently, large x-steps are desirable. The need to eliminate the step size restrictions of
explicit methods leads to a consideration of unconditionally stable methods which are con-
sistent in their marching variation. The particular implicit method used in this study is
the alternating-direction Implicit (ADI) method of Peaceman and Rachford (ref. 6). The
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ADI method is ideally suited for the solution of equations (7) to (12): There is no stabil-
ity restriction on the step size, and hence, large x-steps are permitted. The method has
second-order truncation error in its marching variation,-which is also a requirement for
the type of flow envisioned, since the x-history of the flow must be traced accurately at
each step. Finally, the method does not require the inversion of a sparse-banded matrix,
as a fully implicit or Crank-Nicolson method would. Simple tridiagonal coefficient
matrices are generated at each step which require much less storage and time for their
inversion in relation to sparse-banded matrices. The method has previously been shown
to be effective for a set of equations similar to those used in the present approach (ref. 7).

The ADI procedure is used to difference in x, with the y- and z-derivatives
expressed as central differences, with the option of a nonuniform grid included; that is, :

3U _
-

- [(A**)2 -

(Az+)(Az_)[(Az+) + (Az.)]

(Az.)]u}>

(Az+)(Az_)[(Az+)

An example of the complete differencing scheme is shown for the x-momentum equation;
as follows: .,

+
l,k

Mk+^.VLk j,k

(13a)
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y j'

1+
(13b)

The only difficulty arises from the cross derivatives of velocity present in the y-
and z -momentum equations. These cannot be differenced implicitly since the tridiagonal
structure of the resulting matrices would be destroyed. These are treated in the same
manner as all the nonlinear coefficients present in the differenced equations.

Linearization Scheme

The ADI procedure, which is second-order accurate, centers the x-derivatives about
the point (i + ̂ V (See fig. 2.) This point is not equivalent to the intermediate step of the

\ */
ADI procedure. Hence, a method must be developed to compute all the nonlinear coeffi-
cients (and the cross derivatives) at the i + point. This can be accomplished by a

quadratic extrapolation from the two previous x -stations (i) and (i - 1) (ref. 7) or by use
of the predictor -corrector procedure of Douglas and Jones (ref. 8). Both of these require
additional storage. The procedure used in the present work handles the nonlinear terms
by an iterative technique similar to that used for boundary -layer calculations in which a
Crank -Nlcolson Integration Is used (ref. 9). Any coefficient Q Is calculated at the mid-
point (l + i) by the simple formula

<; (i4)
The value at (I + 1) is not known on the first Iteration and so the Q* value Is used. After
the Integration to (i + 1) has been completed, new values of Qi+1 are computed, and the
Integration step to (I + 1) is repeated to either a specified convergence or a specified
number of iterations. At convergence this yields second-order-accurate coefficients
which match the accuracy of the Integration. The cross derivatives are also treated this
way.
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Solution of Matrix .Equation

The resulting linear difference equations are a set of five equations in five unknowns.
Rather thanj make the quite arbitrary choice of the order of solution if a sequential tech"1-~
nique of solving each equation in turn were elected, the five equations are solved simul- •
taneously. The resulting matrix equation has a block tridiagonal structure which can be
represented as ' .

" ~~?1-1 = 5," ;: (15)

where the unknown vector Wj contains all the five unknowns

Tj = (uj.Vj.Wj.Tj.pj)1 (16)

the coefficients [A], [B], and [c] are simply the matrix coefficients of each particular
unknown; that is,

a!2j a!5j\

a21j

V: a55j/

(17)

and the vector D is a source term in each equation. The components amnj represent
the coefficient of the nth unknown from the mth equation at point j.

:^v • ' _

The inversion of this block matrix is particularly simple. It consists of rewriting
the usual tridiagonal algorithm with all multiplications replaced by matrix multiples, and
all divisions replaced by matrix inversions. This simultaneous solution procedure was
used previously by Krause, Hirschel, and Bqthmann (ref. 9) where the pressure,- of course,
was not one of the unknown variables due to the boundary-laye?; assumptions. The proce-
dure is quite advantageous because, in addition to eliminating the previously mentioned
choice of solution order, it models the physics more precisely by allowing changes in any
variable to be instantaneously sensed by all the others. It is also believed that this pro-
cedure aids in the convergence of the iteration since it eliminates the use of lagged infor-
mation previously calculated in a sequential solution. Thus it is fully implicit in the
sense that a sequential solution is much like a Gauss-Seidel iteration which is explicit.

b1'1' ' - •, .
The number of grid points used for the calculation was governed by conflicting

requirements. !£ or. acceptable resolution, many points were desirable in the shear layer
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between the jet and free stream and in the-jet itself. Also, reasonable distances away
from the high shear region were necessary to allow boundary conditions in the free
stream to be applied without distorting the results interior to the computational domain.
However, excessive mesh points result in unacceptable machine storage requirements,
increase computational time extravagantly, and impair job turnaround time. An initial
compromise was to use a 41 x 41 grid to compute the quarter-plane of the jet flow, using
the symmetry axes of the jet as boundaries. An equally spaced grid of Ay = Az = 0.1
was first utilized, thereby placing a jet half-width at five grid spacings away from the
axis and the outer edge of the domain seven times beyond this (40 grid spacings away
from the axis). The required computer storage was 130 OOOg on the CDC 6600 system.

Initial Conditions

The initial conditions at the data plane representing the orifice location x = 0
were chosen in a very rudimentary manner. Since too many points would be necessary
to describe the merging of the free stream and duct flows just past a jet exit, and storage
limitations were severe enough before this consideration, the initial velocity profiles
were chosen as shown in figure 3. The jet and free stream are represented by two dis-
tinct in vise id flows separated by a sharp boundary. Computationally this yields a one-
grid-point discontinuity between Ujet and U«>. This initial condition is probably the
most severe that can be imposed while still generating an eventually realistic flow
description. The initial conditions on the crossflow velocities were also modeled simply
and were set equal to zero.

The pressure distribution was chosen to be uniform at the free-stream level since
an unmatched static pressure would undoubtedly produce shocks. These were not con-
sciously sought as part of the problem, and the initial conditions were set to try to avoid
their generation. The streamwise velocity and temperature levels were computed by
assuming constant total temperature in the jet and free stream and specifying the jet and
free-stream Mach numbers.

The free jet problem was expected to encounter few boundary condition troubles due
to the avoidance of all u = 0 boundary conditions. The conditions placed on the variables
were symmetry with no crossflow on the axes of-the jet and consistent free-stream con-
ditions. Difficulties encountered with the application of these conditions are discussed in
the next section.

RESULTS AND DISCUSSION

A standard test case was chosen to check the numerical procedure: the free-
stream Mach number was set equal to 5.0; the jet Mach number at the initial station was
7.5. The reference length was set equal to the minimum initial orifice'width of a
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1 x 1 square jet. . The Reynolds number based on this reference length was set equal to
1()3, and the Prandtl number was set equal to 1.

Effect of Initial Conditions -.:,-

The initial behavior (small x) for all cases computed regardless of the grid config-
uration or boundary conditions applied was essentially the same. The discontinuous
velocity and temperature profiles were smoothed out by the diffusive terms, but the con-
tinuity equation reacted to these discontinuities differently. The initial and subsequent
u, T, and p profiles are shown qualitatively in figure 4. Referring to the figure, in
the region below the initial discontinuity, ux < 0 and Tx > 0, and above, ux > 0 arid
Tx < 0. The x-gradients in the continuity equation appear as follows:

fS-^U^y and Z gradients)--* fE (18)

Above the original discontinuity then, px < 0, and below, px > 0, neglecting the y- and
z-gradients which are smaller here than the x-gradients. Hence, the pressure develops
a blip around the initial discontinuity (see fig. 4) which persists for some distance before
the profiles lose the influence of the initial conditions. This high-pressure-gradient pro-
file causes divergence of the normal velocities about the initial breakpoint until the
entrainment-induced boundary-layer-like velocities away from the jet axis are established.
Eventually the pressure profiles smooth out to the expected constant case, but since the
continuity equation is hyperbolic and contains no damping, ripples in the pressure profile
of 0.2 percent of the free stream are commonplace. However, this initial behavior is of
no concern, except in its influence on the downstream results, since the parabolic approx-
imation .is not valid in this region of very high x-gradients.

Since the pressure is expected to be approximately constant in the developed jet, an
attempt to artificially drive the pressure to its constant value more quickly was made.
An artificial diffusion term was introduced into the continuity equation in the hope of
quickly smoothing the pressure profile. However, it was found that any introduction of
these terms generated more diffusion in the other variables as well. Only values of an
artificial viscosity larger than the actual flow viscosity had any significant effect and no
improvement was effected by the incorporation of these fictitious terms. Thus, the flow
was permitted to naturally adjust to the initial discontinuity. If this was smoothed ini-
tially over a few grid points, the pressure disturbance was smaller and shorter lived.
Consequently it appears that no difficulties will be encountered if correct initial data are
prescribed from experiments or boundary-layer calculations.
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Problems Associated With Application of Boundary Conditions

The expectation that the elimination of solid walls and stagnant regions would ease
boundary condition difficulties was not realized. The boundaries of the computational
domain were the axes of symmetry of the jet and the point in the free stream considered
to approximate infinity. The conditions to be applied at these axes were symmetry of all
quantities except the cross -plane velocity normal to the axis which was equal to zero.
Thus at y = 0, for example, the conditions to be applied were uy = wy = Ty = py = 0
and v = 0. Writing the governing equations differenced on the boundary (see fig. 5) and
using the above relations to eliminate the unknown points outside the domain created by
the central differences resulted in the values of the functions on the boundary be'coming
an additional row of unknowns to the vector W,- in the block tridiagonal system. The
inversion technique thus allowed the simultaneous solution of the boundary values as well
as the interior points, and the resulting solution was smooth for all variables except the
pressure. At the symmetry plane the pressure profile contained a spike (see fig. 6) and
the other unknowns had gradients which differed from zero. This entire difficulty was
eliminated by imposing a quadratic fit for the zero gradient condition onto each of the
variables. The relation

insures a zero gradient with second-order accuracy, which matches the truncation of the
difference scheme, and retains the tridiagonal aspect of the solution matrices.

The "infinity" boundary conditions must be imposed at boundaries in the free
stream. These boundary conditions could be imposed at a suitable distance from' the
symmetry plane if asymptotic conditions could be derived far from the jet. However,
asymptotic conditions are not known for the three-dimensional jet, and even if they were,
the question arises as to a suitable distance at which they could be applied. Treatment
of these boundary conditions can be classified into two groups: alterations in the actual
conditions imposed at the last grid point and, concurrent with these, changes in the grid
size. ' -:: . -• -

At first, all variables were specified at their free-stream values; that is,
u = T = p = 1 and v = w = 0 at the last grid point in the domain with a uniform grid.
The calculation proceeded smoothly, but after the usual jet crossflow velocity established
itself, a sharp, one -grid-width gradient developed at the outer edge of the computational
domain due to the difference between the negative entrainment velocity and the imposed
zero value. (See fig. 7.) , To alleviate this condition, an expanding nonuniform grid was
used in place of the uniform one. Where the uniform 41 x 41 grid had y = z = 4 as the
last grid point, the nonuniform grid using the same number of points allowed the edge to
be displaced to y = z = 17.5, after remaining uniform to y = z = 1. This resulted.in a
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delay in the appearance of this boundary gradient until the solution marched further
downstream; however, it did not eliminate the problem.

The expanding jet both deflects the crossflow away from the jet axes and entrains-
fluid from the free stream. An interaction between the jet and variables such as v, w,
and possibly p is quite likely to be present, and consequently, the specification of values
for these-quantities at some finite near point would be of doubtful validity. Instead, the
equations should determine the necessary boundary effects. To do this, a quadratic

. extrapolation consistent with the second-order differencing was imposed on v, w, and
p by using both the uniform and nonuniform grids. The pressure solution quickly deterio-
rated and the cause was traced to the lack of actual specification of a pressure level.
With zero gradient conditions on the axes and extrapolation at the outer edge, no fixed
pressure value is specified. Hence, the extrapolation was limited to the crossflow veloc-
ities, which proved more successful, and the x-marching proceeded to a distance of
approximately 20 jet widths. However, difficulties again occurred at the outer edge of
the domain as shown in figure 8. The expected crossflow velocities appeared and the
extrapolation did not affect the profiles. But, as the jet proceeds downstream, it-grows
and the zero velocity point of the crossflow moves out from the axes. Eventually, as
shown in figure 8, this point moved completely out of the computational domain, leaving
only outflow from the centerline which is not characteristic of a jet.

Until this point was reached, the development of the profiles showed the correct,
trend for the streamwise velocity (see fig. 9) but, as later calculations Indicated, the
greatest x-distance achieved was well ahead of the end of the jet core region, even if the
nonunif orm grid was used. For the square jet initial profile, all the .variables were com-
puted symmetrically about the jet axis, and the pressure became uniform to within 0.2 per-
cent of the free-stream value. • " L.

All these difficulties with edge conditions arise due to the growth of the jet with x
when it.is computed by using the unsealed, spatial coordinates. To overcome this prob-
lem area a transformation was introduced in the Y-Z plane to contain the jet totally
within the computational domain. '

Transformation of Coordinates

.The objective in transforming the coordinates is to aid in the imposition of "infinity"
boundary conditions. The uncertainty in these.conditions can be overcome only if the
exact free-stream conditions can be imposed. To enable this to be accomplished, the
point at infinity must be mapped to a finite point in the transformed space. One of the
simpler transformations by which this can be accomplished is

(20a)
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^ ~ i + BZ ;

which maps zero onto zero and infinity in the physical plane onto unity in the 77-{
With equations (20) the governing equations are as follows (with | * x) :

(20b)

plane.

+. [pv + 2Aji(l - 77)] A(l - 77)% + [pw + 2B|Li(l - ?)]B(i -

lJA2(l-r,)4(M B2(l -

Pt
*

(21)

fpv + 1 AM(! - 77)JA(1 - 77)% + [pw

A2(1 -

(22)

pv

AB(1 - (23)

r 2u , xipuTt + pv + ̂ *— A(l - 77)
[ NPr J

pw

vA(l - wB(l - B2(l -

AB(1 -

w??2 + 4 B
2(l .. C)4 4

(24)
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up £ - puT^.+.pu^ + A(l - Tj)^ - pvT^ + pv^) + B(l - 0(wp ? - pwT^ + pw^) = 0 (25)

These equations were cast in finite difference form and solved numerically by using the '*
same ADI method, linearization scheme, and block tridiagonal solution algorithm :as pre- :

viously discussed. The boundary conditions u = T = p = 1 and v = w = 0 are imposed
at 77 = 1 or C = 1, corresponding to infinity in the untransformed plane. A coarse
21 x 21 equally spaced mesh was used on the unit square in the 17 -£ plane to reduce the
core storage to more acceptable levels (6 3000g) for computation.

Results Computed in Transformed Plane

Cases comparable to the ones calculated on the untransformed variables were com-
puted successfully for a variety of initial geometries with no difficulty. The loss of
entrainment velocities never occurred, confirming the usefulness of the transformation.

The first test case was a square jet with unit sides. The streamwise centerline
velocity decay of this jet is presented in figure 10. After a lengthy core, region the cen-
terline velocity quickly decays according to the laminar relation for axisymmetric jets
x~l (ref. 1). Thus, although the equations compute the flow as if it. were truly three-
dimensional, the axisymmetry is reproduced. Another square jet was computed to test
the transformation. A large jet with sides of length equal to four was formed by taking .
unequal scalings of y and z. That is, five points in £.. sufficed to give z = 2 (half
the jet width), while 11 points in f] were necessary to give the equivalent y = 2. The
centerline decay for this case is also shown in figure 10. After a much longer core than
the 1 x 1 jet (since the initial shear layer is fpur times farther from the axis), this con-
figuration also very rapidly begins to decay along the axisymmetric curve. In fact, if the
1 x 1 curve is displaced to the right by the difference of core lengths, the decay curves
coincide.

The three-dimensional capabilities of the method were tested on rectangular jets of
varying aspect ratios. A rectangular 2 x 1 jet gave results for velocity decay shown in
figure 10. The initial core region was of the same length as the 1 x 1 square jet.
However, the decay was slower than the 1 x 1 jet, and in fact there was a region where
the two-dimensional laminar jet decay x"1/^ described the flow. Eventually though,
the decay increased and approached the axisymmetric behavior seen before with slope
x-1. Only this far -field behavior could be described by an axisymmetric boundary -layer
analysis, whereas the length to its asymptotic decay could not.

A rectangular 4 x 1 jet is more two-dimensional than either of the previous cases,
as indicated by its decay. (See fig. 10.) After the initial core length, characteristic of
the distance needed for disturbances one width away from the centerline to reach the axis,
the decay curve obviously follows the two-dimensional slope for a greater distance down-
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stream to about x = 500 (see fig. 10) where it also gradually starts to approach the
axisymmetric curve. The length x = 500 is not too surprising, for this is the core dis-
tance of the 4x4 square jet, the distance needed for disturbances four widths away to
reach tiie axis. The even higher aspect ratio 8 x 1 jet continued the established trend
and is also shown in figure 10.

; Finally,.-note the advantage gained through the use of the transformation. Prior to
its use, by using a greatly expanding mesh in the untransformed plane with extrapolation
at the last mesh point, complete loss of entrainment took place at approximately x = 20.
Even at this point the accuracy of the solution is questionable, and this is not even half-
way to the end of the core region as computed by using the transformation and depicted
in figure 10.

CONCLUDING REMARKS

The parabolic-elliptic Navier-Stokes equations have been shown to be a viable '
method for computation of three-dimensional supersonic jet flows. The difficulties asso-
ciated with the unbounded domain of the jet can be eliminated by incorporating a transform
mation into the equations so that the points of infinity in the cross plane are mapped^to a
finite value at the transformed plane. -

Although the character of the computed flow can be predominantly axisymmetric in'
the case of the square jet or approach a two-dimensional limit, as is the case for the
8X1 rectangular jet, no prior assumptions to this effect are required. The solution
computes the particular flow under investigation as though it were three-dimensional,
allowing the initial geometry of the prescribed jet to determine the ultimate nature of
the solution.

The present calculations have been for laminar jets; however, jet flows are gener-
ally turbulent. Thus, even if some simpler method could be used instead of the present
integration scheme to recover the gross characteristic of the laminar flow, the inclusion
of turbulence modeling in the fully elliptic crossplane requires numerical treatment.

" ' . ' " " •'"•t

A subsonic analog of the parabolic-elliptic Navier-Stokes equations, where the
streamwise pressure gradient is correctly accounted for, is currently being investigated
so that the more advanced state of the higher order incompressible turbulence models can
be drawn upon for inclusion into the governing equations. If this proves successful, then
the supersonic equations will be used as a means to test various modeling procedures for
compressible turbulent flows.
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(a) Upper surface blowing. (b) F-15 with proposed rectangular nozzle.

Figure 1.- Examples of three-dimensional jets in aerodynamic flows.

(i) (*)
Figure 2.- The ADI procedure: first step implicit in z, explicit in y; second step

implicit in y, explicit in z.
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(engine) \

Figure 3.- Conceptual model of three-dimensional supersonic jet flow.
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(a) Profiles at x = 0.

—T
(b) Profiles downstream of initial plane.

Figure 4.- Initial x-behavior of solution prof lies.
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Figure 5. - Differencing used on a boundary.

Figure 6.- Qualitative pressure behavior
attributed to boundary differencing.
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Figure 7.- Crossflow prof lies when
free-stream conditions imposed:
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Figure 8. - Crossflow profiles when free-stream conditions extrapolated.
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a Q 6 A g ~~
Q

a 1 x l square jet

s 4 x 4 square jet

A 2 x l rectangular jet

O 4 x l rectangular jet

o 8 x 1 rectangular jet

ex

X

\
.-1/3

\
\

20 so '-" ioo • ' 2do5' •500 '-'"^ 2000 4000
x/h

Figure 10.- Centerline velocity decay for three-dimensional jets.
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COMPUTATIONAL ASPECTS OF THE PREDICTION OF MULTIDIMENSIONAL

TRANSONIC FLOWS IN TURBOMACHINERY

By David A. Oliver and Panagiotis Sparis
Massachusetts Institute of Technology

INTRODUCTION

The analytical prediction and description of transonic flow in turbomachinery is
complicated by three fundamental effects: (1) The fluid equations describing the transonic
regime are inherently nonlinear, (2) shock waves may be present in the flow, and (3) turbo-
machine blading is geometrically complex, possessing large amounts of curvature, stagger,
and twist. Simple analytically separable solutions are therefore not readily obtainable.
(The complex geometry of a typical transonic compressor rotor is shown in fig. 1.)
Because of these analytical difficulties, a computational approach to the prediction and
design of transonic turbomachine flows is strongly warranted.

In the present work, a three-dimensional computation procedure for the study of
transonic turbomachine fluid mechanics is described. The 'fluid differential equations
and corresponding difference operators are presented, the boundary conditions for com-
plex blade shapes are described, and the computational implementation and mapping pro-
cedures are developed. Illustrative results of a typical unthrottled transonic rotor are
also presented.

' FLUID EQUATIONS AND DIFFERENCE OPERATORS

The densities of mass p, momenta m^, and energy e defined by the fluid state
vector U_(xi,t) are governed by the fluid conservation laws in cylindrical coordinates

= r, X2 = 9, and X3 = z) and time t:

In a coordinate system fixed to a turbomachine blade rotating at angular velocity n
the state vector U, and the flux vectors F^U) and K(U) are

U= [p,pur,pu0,puz,e] (2)
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2 +p

puruz

(e + p)ur

p(u0 - i

pur(u0 - rfl)

puz(u0 - ro)

(ug - ro)

(3a)

puru0

+ p

(e + p)uz

purU0

0

0

(3b)

In equations (3), the pressure p appears which is expressed in terms of the state vec-
tor U through the equation of state.

A time-explicit difference operator S approximating the fluid equations (eq. (1))
with second-order accuracy coupled with a local stabilizing operator D is used to ..
advance the fluid state from time level n to level n + 1 over the interval 6t as
follows: - . . " . . . .

Un+1 = (S + D)Un

Here, following MacCormack (ref. 1), S is formed in two steps as

(4)

U - 6tK(U*)jj (5)

The operators Aj1" and A7 are the forward and backward difference operators in
the coordinate directions x^:

A+f (x) = f (x + 6x) -f(x)

A'f (x) = f (x).- f (x - 6x) (6)
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K the difference operator (eq. (5)) is applied successively in split steps (ref. 2) for
each coordinate direction, the numerical stability conditions are

6 t ^Min< - 1 — > . . . ( 7 )

At stagnation points or sonic points, the linearized version of the difference opera-
tor (eq. (5)) is neutrally stable independently of the choice of 6t/6xj. For a genuinely
linear difference operator this occurrence is of no consequence and stable solutions of
the difference equations can be achieved. In the nonlinear case, however, the true sta-
bility of the operator at the neutral point will be determined by the higher order nonlinear
terms, and these terms will destabilize the difference operator. This numerical instabil-
ity is an inherently numerical instability induced by higher order terms in the truncation
error. Hence the nonlinear difference operator may be stabilized by the introduction of
an artificial dissipation term of the order of the truncation error of the difference opera-
tor. In the case of the difference operator (eq. (5)), this term must be of third order in
6t,fiXi.

The global damping or stabilizing operator Do may be summarized in the arche-
typal form

where Q(U) is a matrix diffusion coefficient of order 6t,6xi and K is an order unity
nondimensional constant. A Taylor's series expansion of this operator shows that it is
the difference expression for the continuous diffusion operator

The neutral stability condition of the linearized operator occurs at sonic points and stagna-
tion points. While a sonic point exists in the interior of a shock wave ,J the nonlinear insta-
bility could be just as important in smooth isentropic regions of transonic flow passing
continuously through the sonic point as in regions where shocks are present. Calculations
performed with the operator (eq. (5)) have confirmed this conjecture. For subsonic flows
up into the high subsonic regime, the undamped operators have been demonstrated to be
stable. However, where the Mach number was increased into the transonic regime, numer-
ical instabilities occurred which could be eliminated with the use of the damping operator.

On the basis of the observations, the nonlinear instability should be confined to those
regions of the flow where the eigenvalues of the amplification matrix are unity, i.e., at
sonic and stagnation points. The damping operator D should then be structured such
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that- it'becdmes significant only near the sonic and 'stagnation points and not operative in
other portions of the flow. A damping operator with such characteristics is '

_

where f(M) is a distribution function which depends upon the local Mach number such
that f(M) = 1 for M = 0 ,or M = 1, but f(M) « 1 for M * 0 and'.l. A useful function
with such properties is the Lorentz Line shape function

f(M) = - - + - - (11)

where the parameter AM represents the effective, width in Mach number, of the distriT
button function which peaks at M = 0 and 1. • The/use of the local damping operator D. .
in place of the global operator Do can offer significant improvement in the resolution.
of the flow while maintaining stability of the difference operator. •

. The utility of the local damping operator is shown in figure 2 where the supercriti
cal transonic flow of a y = 1.4 gas over a right circular cylinder has .been computed.
This calculation was performed with a minimal number of mesh points (20) distributed
over the surface of the half-cylinder to test the utility of the local damping operator.
Significant improvement of the 'flow -field resolution, including the shock wave;, results.

BOUNDARY CONDITIONS ON BLADE SURFACES

The appropriate boundary condition on an. impenetrable blade surface for an invis-
cid flow is the single condition

where un is the velocity normal to the blade surface in blade coordinates. This bound-
ary, condition is not readily implemented in the finite-difference procedures described in
the previous section because the full fluid state U is required at each point including
the boundary points. If, as in figure 3, the boundary points are treated as interior points
to which the difference equation (eq. (5)) is to be applied, then the application of the bound-
ary condition, which consists of the determination of the state vector U at the auxiliary
point, must be such that only the single condition (eq. (12)) is imposed'at the blade surface.
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If S is the surface of a sufficiently smooth three-dimensional body, then at each
point M on the surface S a triply orthogonal curvilinear coordinate system may be
defined consisting of the local normal £ to the surface 2 at the point M and two
curves of the surface 2(77 and £) that are normal to each other at the point M. If
dn, dr, and ds are the differential arc lengths along the axes |, 77, and £, respec-
tively, then

ds = hs

dr = hT drj

dn = hn

(13)

The equations of motion may be expressed in the curvilinear coordinate system g,
rj, and £. By introducing the boundary condition un = 0 and the radii of curvature Rs

and RT of the surface 2 in the direction of the axes | and 77, the equations of
motion may be written in the following form, correct only for points on the surface -••2
(ref. 3):

8M _= 0 (14)

8US , US 8US i
 UT 8US , UTUS 8hS U

8t s hshT 877 hshT Phs

(15)

8t hT 877 hshT hshT 877 phT 877
(16)

_
2 8n 8n

(17)

Equations (14) to (17) have been obtained with the isentropic assumption in which a^ is
the square of the speed of sound. By eliminating the space and time derivatives of the
density between equations (14) and (17) and replacing the general curvilinear coordinates
£, 77, and £ with the local s, T, and n, the following condition on the normal deriva-
tives of the normal velocity is obtained (ref. 3):
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n-

 0 8p n
8n2 8n 8n

Su«, 8uQ u_ 8u
_£_£ + JL_
Rs 8t R T 8 t / a 2

(18)

By center differencing the normal first and second derivatives' of the normal veloc-
ity, an approximation is obtained to u~ on the auxiliary point correct to order (6n)^ if
the right-hand side of equation (18) can be approximated with an error no greater than
O(6n). Thus, on the surface of the body, equations (14), (15), and (16) have to be solved
while a boundary condition is applied for un using equation (18). Note also that the
radii of curvature of the surface Rs and RT are required for this accurate determina-
tion of un. The second normal derivative of the normal velocity is rigorously required
for a second-order-accurate boundary, condition, the expression for ujj| being

' " " ' " '

un = - +

However, for mildly curving shapes with, 1/R of order 6n,,a simple reflection of un

will yield second-order accuracy without the complication of introducing the second nor-
mal derivative given by equation (18). This simplification is used in the results to be
illustrated in the subsequent sections. "-"" ' .. '"

• ' • « - . , , ' " * " • * '

UPSTREAM, DOWNSTREAM BOUNDARY CONDITIONS

For a steady-state one -dimensional duct flow, one is not free to specify the down-
stream boundary conditions if the upstream conditions are fully specified. This is not so
in a transonic multidimensional duct flow. In this case the upstream conditions may be
set. However, one can still vary a single downstream variable such, as .the pressure and
achieve different steady-state solutions. This degree of freedom on downstream pressure
arises because the oblique shock waves present on the blades in the transonic regime are
free to move and alter their strength in response to the different downstream pressure
conditions. This range of freedom on downstream pressure is limited. It ceases, for;/ ̂ .;;..
example, if the downstream pressure is set high enough so that the shocks are blown for-:

ward out of the cascade. - l - . . - ,,

In the actual calculation, boundary conditions were set so that the mean flow at the
inlet plane to the duct was held fixed. Waves generated by the rotor which moved
upstream into the inlet plane were then allowed to escape. This escape condition was
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formulated as an axially one-dimensional characteristics construction at the inlet plane
Of the computational domain. At the downstream exit plane the pressure was held fixed
and the remaining flow variables forced to take a zero axial gradient condition. This
condition allows the mean flow velocity at the exit to adjust itself to the correct mass
flow; however, it distorts the structure imposed by the rotor locally in the vicinity of the
exit plane. This distortion is a consequence of the condition of uniformity of flow in the
axial direction rather than in the streamline direction (which is helical rather than axial).

COMPUTATIONAL IMPLEMENTATION

The geometry of the flow field for an illustrative transonic rotor calculation is
shown in figures 4 and 5. On the conical spinner are attached N = 23 blades with an
average hub to tip ratio of 0.6. Thus the flow field of a blade element is bounded by the
machine outer and inner casings in the radial direction and by two surfaces 0j(r,z) and
#2(r,z) in the angular direction such that

. : ; 02(r,z) - £i(r,z) = A 0 , . . - - . .

A0^: ; ; (20)

'• ' . , • * • - , , •

Let rjjfcO and TT(Z) be the equations of the inner casing (hub) and the outer
casing (tip) surfaces. K 9 = 0s(r,z) and 0 = 0p(r,z) are the equations of the blade
suction and pressure surfaces, respectively, then the computational domain boundary sur-
faces BI and 02 may be constructed by making Oi = 0S and 62 = 0p in the blade
region and then extending these surfaces upstream and downstream as ruled surfaces
parallel to the machine axis as shown in figure 4.

The complex geometry formed by the extended blade and casing surfaces may be
handled computationally by carrying out the computational work in a computational domain
xj = (r'jO'jZ') obtained as a mapping of the physical domain Xj = (r,0,z). The complex
turbomachine surfaces should map into planar surfaces in the computational domain.
Mapping functions selected for this purpose are

r - rH(z) . .

••„ 122)02(r,z)- 0!(r,z) '
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2 = Z (23)

The Jacobian derivatives of this transformation g- appear in the conservation

laws (eq. (1)) so that —- is replaced by g,. —-. Similarly, the difference operator
SXj J 8xj

(eq. (5)) in the computation domain becomes

r(r',z')

su =-/u* +u -
- 2-r ~ r(r',z') j

(24)

In addition, the blade boundary conditions which require the normal derivatives in
the physical domain must be expressed in terms of computational domain coordinates.
If !/£. denotes the three direction cosines of the blade surface normal, then the first nor-
mal derivative expressed in computational domain coordinates xj is

^

and the second normal derivative is

(25)

8n< j
(26)

The derivative forms (eqs. (25) and (26)) and similar forms for the s and r deriva-
tives replace those of equations (14) to (18) allowing finite differences to be taken in
terms of computational domain coordinates xj.

INITIAL RESULTS FOR A TRANSONIC ROTOR

Some initial results obtained with the foregoing method for the single-stage tran-
sonic rotor shown in figure 1 are now presented. This rotor operates with a tip Mach
number MT of 1.2 and an average axial Mach number Ma of 0.5. The calculation
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illustrated here is for an open throttle situation in which the static pressure behind the
rotor remains at a low value relative to the full load design values of the rotor.

. The calculation was performed on an IBM 370/168 system. -. Although this machine
has a large primary memory capacity, economic considerations necessitated the use of
the .secondary memory units for the storage of the Un and Un+^ arrays. Continuous
input-output operations between the core and the secondary memory units were required
for the calculation. ,•. . . ,

The computational domain shown in figures 4 and 5 was discretized with 67 points
in the axial direction, 30 of which are in thej-egion of the blade. The radial direction
was discretized with 12 points, the angular direction with 10 points. This discretization
was selected as being the minimum number of points which would provide a representa-
tive although not detailed resolution of the flow field. Considerations of economy dictated
the use of such a coarse mesh in a developmental calculation such as the one described
here. Future calculations may be carried out with expanded, mesh densities.

Before going into the details of the obtained results, it might be useful for the reader
to familiarize himself with the nature of the coordinate transformation and especially with
the shape of.the r' = Constant and 01 = Constant surfaces in the physical space. The
rf = Constant surfaces are cylindrical surfaces as indicated in figure 5, ranging be.tween
the hub and the tip. Actually the tip and the hub surfaces belong to the r' = Constant t

family of surfaces. The 0' = Constant /surfaces are more complicated and, as it can be
seen in figure 4, they have no degree of symmetry. However, it is quite apparent that
these surfaces are more geometrically related to the blade shape than the 9 = Constant
planes. Thus, some of the plots of the field properties have been made in the r', .0',
and z' coordinate system rather than the r, 0, and z system to improve their
clarity. ' . :-

In figure 6, the Mach number distribution is plotted in r and z coordinates along
,the span on the 0' = Constant surface that passes at the suction surface of the blade
(0' = A0).

There is a strong shock wave originating from the trailing edge of the blade; on
the other hand, there is hardly any trace of the leading-edge oblique shock. The flow
upstream of the blade varies almost linearly from subsonic close to the hub to super-
sonic at the tip, as expected, due to the solid body rotation of the flow in the rotary frame.

Because of the wide open throttle condition, the flow accelerates near the hub to a
higher Mach number (approximately 1.9 compared to 1.6 at the tip). This causes the
shock wave at the trailing edge to be strongest near the hub. The flow at the supersonic
tip is relatively smooth, the trailing-edge shock decelerating the flow* from a Mach num-
ber of 1.6 to 1.3. * ' '•
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In figure 7, a similar plot of the Mach number distribution on the pressure side of
the blade is illustrated. The effect of the hub geometry becomes more apparent now
since the flow on the pressure side is accelerating. The maximum Mach number on the
pressure side is 1.55 arid occurs at the tip'section. A shock is present also on the pres-
sure side; however, its strength is diminishing towards the hub, where the flow becomes
nearly sonic. The pressure side shock appears upstream of the trailing edge and, as will
become apparent in the next figures, it extends to the trailing edge of the suction side of
the adjacent blade.

In figures 8 and 9, the intersections of the sonic surface with the pressure and the
suction side have been traced in r and z coordinates. In figure 8, corresponding to
the pressure side (9 =.0), the presence of the trailing-edge shock is rather apparent.
This shock is normal to the hub surface at the pressure side, changing to an oblique
towards the suction side (fig. 9). In figures 10, 11, and 12, the Mach number contours
have been plotted in 6 and z coordinates pn the three r' = Constant cylinders cor-
responding to the tip, mid, and hub sections of the blade. The location and the strength
of the trailing-edge shock can now be easily established. ' .

Figures 13 and 14 show the pressure coefficient

r - p " p °° ; '
P ~~2

Pcoa~

(where ( )00 indicates the properties far upstream) on the suction and pressure sides at
typical blade sections near the tip and the hub, respectively. The location of the trailing-
edge shock can be easily established on both blade surfaces.

In figure 13, the leading-edge shock can be clearly identified. This shock appears
to be stronger on the suction side of the blade. At the pressure side near the trailing
edge, there is evidence of an expansion fan that matches the local static pressure at the
two sides of the blade. With respect to the blade's lift distribution along the span, the tip
section produces little work at the open throttle condition; on the other hand, the hub sec-
tions are working very hard, but in vain, in view of the strong shock at the trailing edge
that dissipates much of the stagnation pressure rise produced at the hub.

In figure 15 is plotted the distribution of the crossflow velocity ur on the
e = Constant surface that passes at the blade's suction surface (8 = A0). The behavior
of ur is generally determined by the shape of the hub and tip; however, in the region
around the trailing edge of the blade, the appearing shock has a significant effect. Due to
the acceleration of the flow, the pressure upstream of the shock is lower at the hub than
at the tip; thus, a crossflow is developed from the tip to the hub. On the contrary, down-
stream of the shock, the crossflow reverses direction because now the hub pressure is
higher since the shock is stronger at the hub.
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Figures 13 and 14 also clearly show the acceleration of the flow, even in the super-
sonic region near the blade tips, due to the influence of the subsonic zone near the hub.
This is a crucial effect in such a genuinely mixed flow; for even though axially propagating
signals cannot influence the supersonic zone, it is possible for disturbances to feed back
upstream through the subsonic zone and then radially impact the upstream supersonic
flow at the tip.
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Figure 1.- Single stage transonic compressor rotor designed
with average hub-tip radius ratio of 0.6; axial Mach num-
ber, 0.5; tip Mach number, 1.2.
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Figure 2.- Test of local damping operator D(M) for
transonic flow of y = 1.4 gas over right circular
cylinder. Twenty points distributed over 6.
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U

Figure 3. - Surface geometry.

Figure 4.- Computational domain (passage view) illustrating blades and
tf = Constant surface.
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Figure 5.- Computational domain (section view) along axis of machine
illustrating r* = Constant surfaces.

SURFACE
NUMBER

Figure 6.-*Mach number distribution over blade surface (suction side).
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Figure 7.- Mach number distribution over blade surface (pressure side).

Figure 8.- Sonic surface intersections with 9 = 0j surface (pressure side).
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Figure 9.- Sonic surface intersections with 6 = 62 surface (suction side).

Figure 10.- Mach number contours in interblade region along
rr = Constant surface (tip section).
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Figure 11.- Mach number contours in interblade region along
r' = Constant surface (midspan section).

Figure 12.- Mach number contours in interblade region along
rf = Constant surface (hub section).
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Figure 13.- Pressure coefficient through passage and over blades at tip.
(1 in.; = 2.54 cm.)
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Figure 14.- Pressure coefficient through passage and over blades at hub.
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Figure 15.- Crossflow velocity ur distributions.
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TIME-DEPENDENT TRANSONIC FLOW SOLUTIONS

FOR AXIAL TURBOMACHINERY

By John Erdos, Edgar Alzner, Paul Kalben,
Advanced Technology Laboratories, Inc.

William McNally,
NASA Lewis Research Center

and, Simon Slutsky
Polytechnic Institute of New York

SUMMARY

Three-dimensional unsteady transonic flow through an axial turbomachine stage is
described in terms of a pair of two-dimensional formulations pertaining to orthogonal
surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting
systems of nonlinear, inviscid, compressible equations of motion are solved by an expli-
cit finite-difference technique. Separate computer programs have been constructed for
each formulation. The blade-to-blade program includes the periodic interaction between
rotor and stator blade rows. Treatment of the boundary conditions and of the blade slip-
stream motion by a characteristic type procedure is discussed in detail. Harmonic anal-
ysis of the acoustic far field produced by the blade row interaction, including an arbitrary
initial transient, is outlined in an appendix. Results from the blade-to-blade program are
compared with experimental measurements of the rotating pressure field at the tip of a
high-speed fan. The hub-to-casing program determines circumferentially averaged flow
properties on a meridional plane. Blade row interactions are neglected in this formula-
tion, but the force distributions over the entire blade surface for both the rotor and stator
are obtained. Results from the hub-to-casing program are compared with a relaxation
method solution for a subsonic rotor. Results are also presented for a quiet fan stage
designed by the National Aeronautics and Space Administration, which includes transonic
flow In both the rotor and stator and a normal shock in the stator.

INTRODUCTION

Flow through a high-speed fan or compressor is highly three-dimensional and can
include complex shock wave systems. In addition, flow through a complete stage consist-
ing of a rotor and stator or a fan preceded by inlet guide vanes is unsteady even in the
rotating frame of reference. Effects of viscosity and turbulence are known to be signifi-
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cant; in fact, the turbulent wakes may be the predominant source of aerodynamic inter-
action between the rotating and stationary blade rows and responsible for the associated
noise. Vortex filaments are known to stream from the rotor tips and undoubtedly inter-
act with the wall boundary layer. Sufficiently far downstream, turbulence generated by
the first blade row may encompass the entire flow.. Calculation of transonic flow field
solutions in high-speed turbomachinery stages is clearly one of the most formidable
challenges to present-day capabilities in computational aerodynamics.

A traditional approach to solution of. this complex problem has been taken.
Description of the inviscid flow field is addressed first, boundary layer and turbulence
effects being, superimposed as small perturbations. The basic system of equations which
is solved numerically consists of the complete nonlinear .equations of motion for an invis-
cid compressible gas:

pv = _i v pDt P V

*• -.ft'Vv..
Dt ' "Dt^ ' 7 ... . ^ ,.. t£(

where ' • : ' ' . ,- • . : • • • • ' • . ' - , ; : " . '•" • • • , ' - •• • > - . • ' • ;

P = PRT ' • ' • • : • ' / • • • ' : " (4)

• • " • - v
 e P _ _ . • - . - . ' . • • • • ' . . . - . • v . . - , . - " j / K V

(y - i )p : - , , : ..---,, : - , . . « • - " V -

D T = I + V ' V • ; • • • ' ' '".•" ' - • : ' • < • • ' ' - - ^

and.

e ' internal energy

p , ? pressure

R gas constant

T temperature

t time -

V velocity vector
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p . density

The only essential simplifications introduced pertain to reduction of the spatial
dimensions of the problem from 3 to 2. Solution of the full three-dimensional problem is
reduced to a pair of two-dimensional solutions on orthogonal surfaces. A separate pro-
gram tailored to the particular aspects of each formulation has been developed. Both
computer programs which will be discussed herein are intended for analysis of a com-
plete stage, that is, rotor and stator, although an isolated blade row can also be treated.

A harmonic type analysis of the acoustic far field due to blade row interactions has
also been developed. This analysis provides a direct coupling between the numerical
near-field'solution and the acoustic far field, with a particular view toward characteriz-
ing the acoustic far field. This aspect of the flow model will be only briefly outlined
herein, but a complete description is given in reference 1. The boundary-layer and wake
representations utilize standard integral methods and it is assumed that the boundary
layer and wake are quasi-steady. The reader is again referred to reference 1 for a com-
plete description.

SYMBOLS

An,Bn,Cn,. . . Fourier coefficients .

a speed of sound . .

b stream sheet thickness or blade thickness • ; •

t \ centerline

' * \

c chord

E total internal energy

e internal energy

H total enthalpy

h enthalpy

M Mach number
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m meridional distance along a blade-to-blade stream surface
•-.-'.:'"V ' ' ! - . - , • • - ' " - . . " • , . . • - • .

Nj number of blades in ith row
'.. > . I • l - ' • • . - • • • . * • • • • 1 . ' 4' i
' ' ' ' . • • I . - •. • . • i, . I

n blade-to-blade distance

P,Q,R boundary conditions at interface of numerical near-field and acoustic far
field solutions

p pressure •- •

R gas constant ' ' '

r radial distance from axis of rotation

S entropy . .

a distance along the stream path , ,

T temperature , , . --..- • . . . ; • •

t time

U a reference velocity . v :,'

u meridional component of velocity ._,; . .

u velocity component parallel to slipstream or blade surface.

V velocity vector

v circumferential component of velocity

v" velocity component normal to slipstream or blade surface

vr radial component of velocity; also circumferential velocity component in
rotating coordinate system

• '• . '.. - O*'*
Vz axial velocity component
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Vg circumferential velocity component

x meridional distance along a blade-to-blade stream surface

x , distance along slipstream or blade surface

y circumferential distance .

y .distance normal to slipstream or blade surf ace

z axial coordinate

an>0n acoustic propagation coefficient .

y ratio of specific heats

0 circumferential angle .

#1,02 blade surface coordinates

p density

.'.»'. • nJ-" , " " '

0 angle between slipstream or blade surface and meridional plane
tt

fy ratio of mass flow to total,mass flow ':/.- ••-,..

n angular speed of rotor :
> * * ••

(i) . vorticity; also frequency .

Subscripts:

o ' initial or reference condition

* reference condition <

00 • free stream
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A circumflex (") over a symbol denotes an average value. A bar over a symbol
denotes vector quantities except in appendix where it denotes time to frequency transform.

j:- . . : -f.

BLADE-TO-BLADE ANALYSIS - ;

In the blade-to-blade formulation the previously stated equations of motion are
expressed in a curvilinear coordinate system alined on an axisymmetric stream surface
as shown in figure 1. This stream surface is considered to have small but finite thick- •
ness b(z) and variable mean radius from the axis of rotation r(z). The velocity com-
ponent normal to the stream surface is neglected; as a result, a two-dimensional approx-
imation to the flow field is produced. (See refs. 2 and 3.) When the m,0 coordinates
are transformed to a rotating system by

x = m . ' . , - ' • ' , . . - ' ' < 7 )

y = r (0-J2t) (x = Constant) (8)

and the circumferential velocity component is transformed by .

vr = v - Or (9)
• ' • " . * • " ' . ' * ' " ' - ' . . .

then the following system of governing equations result: .

where the relative total energy and total enthalpy are defined by

Hr = H - firv (14)

Er-Hr -E . : - (15)

The terms on the right-hand side of the equations result from the variations in cross -
sectional area and radius of the stream surface, which are intended to account for the
effects of variations in hub and casing radii. The terms on the left-hand side of the
equations correspond to the familiar. set of two-dimensional unsteady equations of motion
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of an inviscid compressible gas. Note that the relative total enthalpy is not the same as
tthe total enthalpy defined on the basis of velocity components in the rotating frame.
Numerical solution of this system of equations at interior grid points is accomplished by
the MacCormack algorithm (ref. 4). Systematic rotation of the order in which the non-
centered differences are evaluated is employed to minimize any bias in the solution due
to the alternating directions of the noncentered differences. No artificial damping or
stabilization is used. ,

'*• As shown in figure 1, the computational domain is divided into a maximum of seven
segments;- not all of which need be included in every case. The grid network extends
axially-f rom an inlet station to a discharge station and circumferentially across one
blade-to-blade passage. The inlet station is located either 1 axial chord length upstream
of the first blade row, in which case domain 1 is deleted,,or an arbitrary distance
upstream exceeding 1 chord length. Placement of the discharge station can be selected
in the same manner as that employed for the inlet station. Domains 2 to 6 are each lin-
early mapped into a unit square which is spanned by a rectangular grid network. In
domains 1 and 7 a linear stretching of the axial coordinate is used to map these domains
into unit squares. The axial grid spacing in domains 1, 4, and 7 is determined by the
locations of the axial boundaries of.these domains. The lateral boundaries of domains 1
and 2 lie on extensions of the mean camber line. The lateral boundaries of domains 3
and 5 lie on the blade surfaces. The instantaneous locations of the blade slipstreams
form the boundaries of domains 4, 6, and 7. Domains 1 to 4 are attached to the first
blade row and domains 5 to 7 are attached to the second blade row either of which may be
selected as the rotating row; It is assumed that the number of blades in the second row
equals or exceeds the number in the first row.

It is emphasized that a periodic solution due to the aerodynamic interaction of the
rotating and stationary blades is anticipated. The formulation is thus a numerical coun-
terpart of the problem for which Kemp and Sears (ref. 5) obtained an analytic solution
pertaining to thin, slightly cambered blades of low solidity in an incompressible flow.
Linearized solutions have more recently been obtained for compressible flows, but the
authors are not aware of any other attempt to develop nonlinear solutions for. the periodic
blade-row interaction problem at transonic or supersonic conditions.

In connection with the periodicity of the subject problem, two main points of depar-
ture from other numerical solutions for transonic airfoils or cascades should be recog-
nized. First, the slipstreams are moving surfaces of discontinuity across which jumps
in tangential component velocity and in total pressure can occur. Only static pressure

' ' " " . ' . » - ; - -

and the component of velocity normal to the surface must be continuous. It should be
noted that the jumps in tangential velocity across the slipstreams are related to the
unsteady variations in lift of the blades and therefore cannot be obtained from the con-
servation form of the equations of motion through a limiting process as' in the case of
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shock waves. Treatment of the slipstreams as surfaces of discontinuity in the present .*.
model is therefore warranted for two reasons: It allows, attainment of an accurate, peri? :
odic solution without requiring a very large grid point density to approximate the slip-
stream discontinuities, and tracking of the slipstreams is necessary to determine the
trajectories of the viscous wakes which diffuse outward from the inviscid slipstreams.
The second point is that in the case of an unequal number of blades in the two rows, the ;

angular period of the circumferential variations in the flow field is not the width of a
blade -to -blade passage but it is the circumference divided by the difference between the
number .of blades in the rotor and stator. Furthermore, the flow pattern rotates with an
angular velocity which, in general, is a multiple of the wheel speed. Numerical repre-j

sentation of this periodicity condition pertaining to the lateral boundary points of the grid
network, as well as to those points along the interface between domains 4 and 5, is • ' "••
accomplished by a cyclic procedure which is discussed later. • • • • • . -

BOUNDARY CONDITIONS

The calculation of boundary points and indeed the exposition of proper boundary
conditions .is facilitated by recasting the equations in the form of characteristic compati- .
bility relations pertaining to a quasi one -dimensional unsteady wave system (as suggested
by Moretti and Abbett (ref. 6) and Serra (ref. 7)). Although actual numerical implementa-
tion of the characteristic formulation is far more complex than the finite -difference pro-
cedure used in the interior points and can possess certain drawbacks, such as inconsis-
tency with the interior point solution, it is nevertheless adopted here for the particular
advantages it offers with respect to the slipstream, inlet, and discharge point calculations.

Consider first the inlet station sketched in figure 2. As is. well known, the momen-
tum and energy equations can be rewritten in the form: . • . ' . , • • • ' . - . ' , . . :

P -p=0 or S = Constant on M = -*! = At (16)
. Dt .- ; . . . " -u vr • • .

• „ - * • " ' "

= 0 or = Constant on M = Z = At : (17)

By assuming that no flow reversal occurs at the inlet station, the values of the entropy
and ratio of vorticity to density at the inlet station are, therefore, solely properties of the
incoming flow and may be specified a priori; both the entropy and vorticity of the incom-
ing flow are assumed to be zero. Three options have been considered with regard to
physical interpretation of the inlet boundary conditions. First, if the inlet station repre-
sents an open end of a finite length duct, the static pressure can be specified as



Second, if. it is an arbitrary station in a duct of infinite length, the Riemann invariant on
the downstream traveling wave can be specified as

•^':^*»=;.^ft«--''' ; . . , . - , . . ' . ' ; U8b)
; .= ••'•••• I - - . -,,: - •-.. • • • . . . . . - . - • • . . . . - • - . . .

Use of this-.relationship implies that the outward traveling waves are one-dimensional
(i.e., either planes or helices). As a third option the numerical solution can be matched
to the acoustic far-field analysis at the inlet station, in which case all acoustic modes
are properly accounted for. This procedure is outlined in an appendix. In any of these
cases, the., solution of the inlet boundary points is completed by first using a compatibility
relation on the,.upstream running wave which originates within the computational domain
at point C in figure 2; that is,

as A log p - Au = a "8 log P\ „ 9vr . a d log rb- a —-^ - ua
dx

At

^ori M = u - a and ^Z = vo) (19)

and second by solving the following angular momentum equation, which only involves
spatial derivatives'of the dependent .variables in the circumferential direction, by the
MacCormack finite-difference algorithm: , . • -

• - V . - :̂.= -fuS + vr-Sf + iS+uJ2^) . (?0).dx

This..characteristic compatibility relation may be interpreted as pertaining to the projec-
tion of the true characteristic conoid on a reference plane which is alined normal to the
inlet station and translates in the circumferential direction with an arbitrary velocity vo,
for example, vr from the previous time step. The acoustic far-field analysis can be '
used to replace equation (18a) or (18b).

A similar procedure is employed at the discharge boundary points but here the
entropy and vorticity are determined by tracing a particle path from within the computa-
tional domain (point B in fig. 2) to the boundary point. The system of equations pertain-
ing to a discharge boundary point are stated below for the case of either a finite length
duct or an infinite duct

-U« (21b)

y.-1 y -1
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Use of the acoustic model would replace equation (21a) or.(21b)

S = S*

(on *f= (22)

A log p + Au =

8V
9t

= - u

. y.wau , a a logp'
°'lay y ay

au avr i ag
ay + VT ay + P ay

.
3y

on

dx
At

Z =and = vo

dx,

(23)

(24)

The boundary condition at the blade surface points is simply vanishing of the com-
ponent of velocity normal to the surface. At the trailing edge the Kutta condition is sat-
isfied by requiring the pressure to be continuous and the velocity component normal to
the mean of the camber line and slipstream to be zero. On the slipstream the pressure
and normal component of the velocity must.be continuous. .Implementation of these condir

tions is facilitated by recasting the equations into a characteristic form similar to that. •-
described; however, in this case the reference planes are normal to the surface and
translate in the streamwise direction, as shown in figure 3. Combination of the continu-
ity equation and normal momentum equation results in the following pair of compatibility
relations:

a A log p ± y Avr = (aQj ± yQ2)At ,on —f = yr ±.a and ff = uo

where

Ql a . (u -1 + yu
ax ax

- ufi cos ̂

(25)

(26)

(27)

The energy equation is stated as

' 1Dt

S = Constant J

(on Ax = u At and Ay = v At) (28)
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and the streamwise momentum equation is solved in the LaGrangian form' - ;

... . ,. ; (29)
Dt , y as q dx

where q =\u2 + y2 an(j ds/q = dx/u = dy/v = dt.

It is pointed out that the form of the compatibility .relations given by equation (25)
provides an algebraic solution for the quantities which are continuous across the blade
slipstream, namely, the pressure and normal velocity. Thus, the boundary conditions on
the blade slipstream can be satisfied without iteration, other than that necessary to locate
the characteristic geometrically (points A and D in fig. 3) by successive approximations,
of which two are usually sufficient. However,, at the trailing edge .an iteration is required
to determine the slipstream angle which satisfies the Kutta condition.

The overall scheme for imposing the boundary conditions along the blade surface
and slipstream points is shown schematically in figure 4; The time axis projects verti-:,
cally out of the page in this. figure. The dashed lines represent the intersections of the-
translating reference planes with the axisymmetric stream .surface and .the intersections '
of the:particle paths with the stream surface during avtime step At. - ,

PERIODICITY CONDITION

Illustration of the nature -of the cyclic procedure devised to enforce the periodicity
of the solution can best be accomplished with respect to the following simplified configu-
ration. Consider first a stage having three rotor blades and three stator blades. This .
configuration is shown in figure 5 in both axial and cascade projections. At time < to all
rotor and stator blades are alined, whereas at time to + At the .rotor has moved through
a fraction of a revolution, and none of the blades are now. alined. It is clear in this case
that the geometric conditions which determine the flow through the stage are identical in
each blade-to-blade passage at any time.A In this case.the solution along an exterior grid
row 6 can be equated to that along the interior grid line |3 and similarly that along
exterior line a can be equated to that along interior line y at any instant. Consider
now the case with three blades in the stator and four blades in the rotor as shown in fig-
ure 6. At time to rotor blade 2 is alined with stator blade b, whereas at time to ,+ At
rotor blade 3 is alined with blade c. In this case the geometric conditions pertaining to
the passage between blades a and b are obviously different from those for the passage
between blades b and c at any time. However, it may be noted that'those pertaining
to passage be at' to + At are precisely the same as those which pertain to passage ab

*It is assumed, of course, that the boundary conditions imposed at the inlet and dis-
charge stations are spatially uniform so that the blade geometry provides the only scale
for circumferential variations.
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at the previous time to. Therefore, the flow, conditions along exterior grid line 6
time t0 + At can be equated to those along interior grid line /3 at the earlier time to.
However, in this case those along exterior grid line a at time to + At cannot/be
equated to those occurring in passage ab at time to, but must be equated to,those
occurring along line y at an earlier time. Thus a phase shift is introduced in applica- ,"
tion of the. lateral boundary conditions. The necessary boundary information/is acquired ,
during the passage of time, and therefore the desired periodicity is attained asymptoti-
cally in time. .

, NUMERICAL EXAMPLE: BLADE-TO-BLADE PROGRAM/ . ,.^

• ' • ' ' • - • ' • • • . : - • • • • . . . : ' • : . . . . . ; > i ;

Results from the blade-to-blade program have been compared with data for a high-
speed. (1500-fps) fan tip section for which experimental data are reported in reference 8.
The casing wall was instrumented with an array of fast response pressure gages, from
which a contour plot of the rotating pressure field around the tip section was recon-
structed. This fan was preceded by a set of guide vanes and followed by a row of stators.
However, the unsteady interaction was neglected in this case and only the rotor was con-^
sidered. The grid network was very coarse and consisted of 9 grid rows in the circum- ''
ferential direction and li in the axial direction in each of 3 domains, that is, a total of ^ '
297 grid points.

The experimental pressure contour plot is reproduced on the left-hand side of fig-
ure 7. The data indicate the presence of an oblique shock off the leading edge of the
upper blade which reflects off the lower blade and reimpinges on the upper blade near the
trailing edge. A lambda'(\) type shock is apparently formed on the aft portion of the
upper blade because of the boundary-layer separation. The isobars constructed from the
numerical solutions are shown on the right-hand side of'this figure. The numerical " '
results exhibit qualitatively similar behavior, although boundary-layer effects have not
been included and the grid is admittedly very coarse. Although a qualitative correlation
is apparent with respect to the main features of the flow field, a quantitative comparison
is somewhat difficult. Therefore, the experimental isobars have been used to construct
pressure distributions along the suction and compression surfaces of the blade and along
a mid-channel line. The accuracy of the data obtained in this manner may be somewhat
suspect, but the agreement between the data and the numerical solution shown in figure 8
is considered to be very encouraging.

Numerical solutions for interacting blade rows have thus far been limited to ideal-
ized test case configurations for which no comparisons with other solutions or experi-
mental data are available. However, results for the full stage consisting of fan and sta-
tor tip sections from reference 8 are included in reference 1.
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HUB -TO-CASING ANALYSIS

Attention is now shifted to the second program, which considers a hub-to-casing \
, '* • • • • * * ' i

stream surface. The coordinate system and grid network is illustrated in figure 9. The
finite -difference grid lies on a meridional plane extending from hub to casing and from an
inlet station to a discharge station. Circumferential variations are removed in this case
by integration of the governing equations with respect to 9 from one blade to the next
and defining average properties over this angular interval. The angular velocity compo-
nent and angular momentum equation are retained because of the presence of a pressure
force exerted by the blades. The effects of blockage of the flow area due to the blade
thickness and boundary -layer displacement thickness are included. Multiple blade rows
can be considered but the effects of periodic interactions between the blade rows are
necessarily neglected because of integration of the equations with respect to the angular5'-
variable.

,. In this analysis the basic system of equations given by equations (1) to (6) are stated
in cylindrical coordinates, multiplied by dfl and integrated from 0i(r,z) to 02(r>z)> ,;
which are the surface coordinates of two adjacent blades, as indicated in figure 9. Out-
side a blade row, the integration interval is taken as 2?r/Ni. The blade-to-blade passage
width is defined by

000
(Within a blade row)

; ' (30)

(Outside a blade row)

Circumferentially averaged values of the dependent variables are defined by

: « -r&z • ' • :

p = n-iNs \ pr d0 (31)
01

pvz = n-^ ' prv

It is assumed that the blades are thin and sharp and hence the local' blade surface
angles can be replaced by the mean camber line angles:

881^ 9 0 2_ 30
8Z 9Z 9Z

(33)
Camber line
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1 ^ 2_ 80
ar ar 8r Camber line

Furthermore, differences between root-mean-square (rms) values and mean squared
values are neglected:

-> 9 ~ 9 9vz - vz^ ~ -«

/" 04)

vrvz - vrvz «

(35)

(36)

A

The following system of equations is thereby obtained—

(37)

J>(pnvz) + JL(pnvz2) + JL(pnvr) = -n £ + Apr (38)

where

J> (pnvr) + JL(pnVrVz) - -n Ap(r |i

= -r Ap

= -rfi Ap

Ap(r,z) =p(r,z,92) -

(39)

(40)

(41)

(42)

Thus the variable n represents the circumferential distance around the annulus, reduced
by the cumulative blockage due to all blades, at fixed r and z. The term Ap repre-
sents the cumulative pressure differential across the blades, that is, the pressure differ-
ential across each blade times the number of blades. The terms involving Ap in the
momentum equations represent the three components of the pressure force exerted by the
blades. The term on the right-hand side of the energy equation is the work performed by
the rotating blade row.

superscript notation to denote average quantities is dropped in the following
discussion.
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Within a blade row the velocity vector is assumed to remain tangent to the mean
camber surface at all times:

(43).

The tangency condition is used within the blade rows to determine the angular velocity
component, and the blade pressure differential Ap is obtained from the angular momen-
tum equation. Outside the blade rows Ap = 0 and the angular momentum equation is
used to determine the angular component of velocity.

;

Representation of the inlet and discharge boundary conditions and numerical solu-
tion of these boundary points follows the general approach described in connection with
the blade-to-blade program. However, since a steady, rather than periodic, solution is
sought in this case, somewhat less care need be taken in modeling a physically correct
boundary condition. In particular, the "infinite duct" condition discussed previously has
been replaced in this case by prescription of the total pressure at the inlet station. Sim-
ilarly, prescription of the components vorticity of the incoming flow can be replaced by
direct statement of the flow angles or of the radial and circumferential velocity compo-
nents. At the discharge boundary the static pressure is specified! Solution at the bound-
ary points along the hub and casing surfaces is accomplished by restating equations (37)
to (41) in a body-oriented coordinate system similar to.that used to derive equations (25)
to (29). In this case, the boundary condition v" = 0 replaces the normal momentum
equation. The same finite-difference procedure as used at the interior points is used to
accomplish the solution of the remaining members of the system of equations. Noncen-
tered differences are used for the derivatives normal to the walls, which only involve
gradients of the normal velocity component. The accuracy of this procedure has been
found to compare very well with that of the interior point solution, with considerable less
complexity than the characteristic procedure used in the blade-to-blade program.

NUMERICAL EXAMPLES: HUB-TO-CASING PROGRAM

The present hub-to-casing program is analogous in many respects to the relaxation
method program developed by Katsanis and McNally at NASA Lewis Research Center.
Their program MERIDL (ref. 9) solves the stream function equation on a meridional plane
through a blade row for steady subsonic conditions by use of a finite-difference method.
The comparison between the present program and their program has been carried out for
a case in which their solution should be very accurate. The rotor configuration selected
corresponds to the test case used by Katsanis and McNally in reference 9.

The relative swirl angle is shown in figure 10. This angle is defined as that
between the velocity vector and the projection of the velocity vector on a meridional plane,
measured in a rotating frame of reference. The three curves pertain to the hub surface,
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the tip or casing surface, and a mid-channel surface. Within the blade row the relative
swirl angle along the hub and casing is completely determined by geometric constraints.
However, everywhere else it is obtained from the solution for the three velocity compo-
nents. The agreement between the two programs is'considered to be quite satisfactory.

The. magnitude of the velocity vector in the rotating frame is shown in figure 11.
The mid-channel values were deleted from this figure for clarity. The only significant
difference between the two solutions occurs near the leading edge. Both programs allow
grid columns to cross the leading and trailing edges in an arbitrary fashion. However,
Katsanis and McNally's program accounts for the effects of bluntness ot the leading edge
in some detail whereas the.present program assumes that these edges-are sharp.

f - - .. . •" ••:,". .

. Next, a transonic fanjstage designed by NASA Lewis. Research Center .for the. Quiet ;
Fan Program has been considered. Designated, the QF-1 stage it combines an 110Q-fps;_
tip speed rotor with a stator having highly "leaned" blades (up to 45° at the tip). A range
of stator positions relative to the rotor location are possible .with this stage; position VI
was selected in this case. The rotor and stator are relatively close in this position, less
than 1 chord length apart. :

The pressure distributions along the hub and casing surface are shown in figure 12,
and the absolute Mach numbers are displayed in figure 13. The supersonic region'which
develops in the stator along the hub; due to the combination of the hub curvature and blade
thickness, is terminated by a normal shock. This shock is spread over about 4 or 5 grid
points, or about 25 percent to 30 percent of the 16 grid points which cover the stator
axially in this case. Only 10 grid points cover the rotor tip section; consequently, a "
shock in the rotor would be difficult to detect with the present grid point density. A rapid'
compression is evident on the aft portion of the rotor tip section, which corresponds to a '
reduction in relative Mach numbers from 1.12 near the leading edge to 0.64 at the trailing-
edge. Therefore, the rotor-tip compression substantially exceeds the normal -shock • '• ' ' •'-'
compression by itself. . ..„ .
. ' • ' * • " • . .- . ' , . • • * . . -

COMPUTER EXECUTION TIME AND.STORAGE REQUIREMENTS > • _

The blade-to-blade program will fit in small-core memory of a CDC 7600 computer,
that is, about 160K octal words, with a maximum of 1000 grid points (not including the
exterior points required for the boundary point calculations), exclusive of the storage
required for the periodic boundary data needed for unequal numbers of blades. In its
present form, disk storage is used for the periodic boundary data, although use of the
large-core memory would undoubtedly be more efficient. The blade-to-blade program
requires approximately 2 x 10-4 second per grid point per time step for execution on a
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CDC 7600 computer by using the FTN (opt = 2) compiler to generate the binary code. The
results presented in figures 7 and 8 required less than 1 minute of execution time.

The hub-to-casing program also fits in^ small-core memory with a maximum of
1600 grid points. It requires approximately 4 x 10~^ second per grid point per time
step for execution. The additional time relative to the blade-to-blade program is
believed to be associated with calculation of the blade pressure differential Ap, solution
of an additional momentum.equation, and continuous reevaluation of the maximum permis-
sible time step. .(A variable time step is not allowed in the blade-to-blade program
because of the procedure for storing and retrieving boundary data.) The subsonic rotor
case discussed in connection with figures 10 and 11 required less than r minute of execu-
tion time with a 27;by 17 grid network. The transonic stage results shown in figures 12
and 13 required approximately 7 minutes of execution time. • ">•• •

CONCLUDING REMARKS

A blade-to-blade formulation and a hub-to-casing formulation have been developed .
for analysis of transonic unsteady flow through an axial turbomachine stage and imple-
mented in two computer programs. Both .employed an explicit finite-difference technique
for solution at the interior grid points, and a characteristic type procedure at the inlet
and discharge boundaries. The blade-to-blade program can treat periodic interactions
between rotating and stationary blade rows, and particular attention has been given to
correct representation of the blade slipstreams and their motion due to unsteady blade
loading. A comparison with experimental measurements of the rotating pressure field of
a high-speed fan tip section is considered to be very encouraging. The computer execu-
tion time for this case was very modest, less than 1 minute on a CDC 7600, and use of a
higher grid point density to improve the numerical accuracy is therefore practical.

The hub-to-casing program compares favorably with a relaxation time solution for
a flow condition when the latter should be very accurate. Results have also been obtained
for a quiet fan stage which includes transonic flow in both the rotor and stator and a nor-
mal shock in the stator. The program resolves the shock reasonably well, although a
higher grid point density would probably be beneficial in this case.

These programs offer a substantial improvement in the predictive1 capabilities
available to aerodynamicists involved in design and evaluation of high-speed turboma-
chinery stages. However, it is clear that a complete description of the three-dimensional,
unsteady,, turbulent flow prevailing in such stages will require continued development of
the computational models.
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APPENDIX

ACOUSTIC FAR-FIELD ANALYSIS '

Under the conditions typically prevalent in highly loaded transonic fan or compres-
sor stages, the linearized, small-perturbation approximations to the equations of motion
cannot be expected to be descriptive of the flow in the vicinity of the blades. Thus,
recourse is made to the numerical solution of the complete nonlinear system of equations
as discussed in connection with the blade-to-blade program. However, sufficiently far
from the blade rows, the amplitude of the flow disturbances will decay to acoustic levels
and the linearized, small-perturbation approximations will be descriptive of the far field.
Therefore, an intermediate region in which both analyses are valid should exist at some
distance from the blades. The inlet and discharge stations of the blade-to-blade compu-
tational domain can serve as the interfaces between the near-field (numerical) and fair-
field (acoustic) analyses. The present far-field analysis is formulated with respect to an
infinite duct model, namely, outgoing waves should propagate without reflection. It dif-
fers, however, from conventional inlet duct analyses in that the signal may begin with an
arbitrary, transient, associated with the deviation of the assumed-initial data in the near .
field from the periodic-solution which is sought as the asymptotic limit in time. There- ,
fore, the. acoustic analysis must recognize .that a transient signal will occur during , ,>
startup and that a simple harmonic time dependence, which is the usual basis of inlet xtuct
acoustics, cannot be assumed. The analysis should allow the transient to radiate, outward
without reflection, and should be capable of identifying the attainment of a periodic solu-,
tiqn by the growth of discrete harmonic components in the solution.

The inlet and discharge/stations indicated in figure 1 as the axial boundaries of .
domains 1 and 7 (or possibly of domains 2 and 6 if 1 and 7 are deleted) form the axial . * " , • •
boundaries of the acoustic far field. However, the lateral boundary should extend;;over -.
that fraction of the circumference which corresponds to the fundamental period of-the
stage configuration (that is, an integer number of blade r to-blade passages). This will •" •
require storage and retrieval of numerical data along this interface in the same manner ;
as is performed along the interface between domains 4 and 5 of the. near field. .

As discussed in connection with the characteristic procedure used at the inlet and;

discharge boundaries, the compatibility relation on the outward running, waves (eqs,. (19)
and (23)) provide a connection between the combination of pressure and axial velocity on
the boundary points at time t + At and the known interior point solution at time t. This
information provides the mechanism for matching the acoustic far-field solution with the
numerical near-field solution on a point-by-point, step-by-step basis. Since the blades
are capable of producing a vorticity field which will convect downstream, additional infor-
mation is necessary to define the downstream far field. (Recall that the inlet flow is

604



assumed to be irrotational.) If the standard small-disturbance approximations are
employed, the numerical data to be provided at the inlet consist of

P(y,t) = j^a - (u - u_o) (Al)

and at the discharge station

Q(y,t) = ̂ f + (u - Uoo) (A2)
"00*^°

v R(y,t) = v (A3)

where the subscripts denote the reference states at x - ±°o, which are not necessarily
the same. Equations (Al), (A2), and (A3) form, in effect, the boundary conditions for the
far-field analysis, from which the instantaneous values of the pressure perturbation and
velocity perturbation at the inlet and discharge stations are obtained.

With these preliminaries in hand, attention is now focused on the acoustic far-field
analysis. In the following discussion the subscript ()o will be used to denote the refer-
ence conditions for either boundary, that is, x — ±°o, and all variables without subscript
will refer to perturbations with respect to the reference state, namely, p = p - po and
u = u - u0.

Since the present effort is addressed toward a cascade formulation, the governing
equations are written in a two-dimensional Cartesian coordinate system. It is noted that
the two-dimensional problem could be described by a solution of the wave equation alone,
were it not for the fact that the time dependent force distribution on the blades is capable
of producing a convected vorticity field (as well as a corresponding entropy field, which,
however, is not relevant to the present problem). It will be seen that the convected vor-
ticity field (characterized by a solenoidal velocity component) does not contribute to the
acoustic pressure field by itself, as distinguished from the irrotational component of the
velocity field which is directly coupled with the acoustic pressure. Therefore, the veloc-
ity perturbation field downstream of the discharge boundary station and upstream of the
inlet boundary station is characterized by the sum of an irrotational velocity vector uj
and a solenoidal velocity vector u"2, which satisfy the linearized conservation equations^:

p-du +Vp = 0 . (A5)

^Note that U2 = 0 upstream of the inlet; however, the analysis is developed with
respect to the more general case pertaining to the flow downstream of the discharge
station.
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^B _ a 2 dp _ p dS _ n
ji- O jij f^ ttdt dt Cv dt

(A6)

where

V x U2 = u» * 0

V • u2 = 0

V xu = 0

_ . -
dt at ax

u = u2

u2 = Tu2

= M0a0

It can be implied from these equations that solutions for p and uj are purely radia-
tive (propagating acoustically in a coordinate system convecting at the mean flow veloc-
ity U) whereas solutions for u2 are purely convective. These results can be
expressed in terms of a Fourier integral representation:

n 2ir
(A7)

"2?-iany (A8)

The boundary data can be expressed as

P(y,ti

' Q(y,t) \ =

R(y,t)
n

C00 (Qn°(cu
J-oo . 27T

•' (A9)

where a bar over: a.symbol denotes the time to frequency transform, and the superscript
o indicates transformation from spatial location y to spatial harmonic n which will
be discussed later.

Substitution of these integral forms into the governing equations gives

0!jl . -
c = — B (A10)
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- D n - , . . . . r • • (All)

B -Bn -
n

 n '. - - (A12)

A n + B n + Dn = Qn° (A13)
• .

C n + E n = Rn° - . (A14)

The value of An, find thus Bn, Cn, Dn, and En, can thereby be expressed in terms of
the transform of the boundary data as "' '

An = _ - -n o,Qn + UttnRnQ (A15)

The propagation coefficient /3n is determined by substituting the integral relation for.
pressure into the convected wave equation as

0 ±
2 -an

2a0
2(l -M6

2)
' (A16)

where the + sign refers to downstream propagation (the discharge boundary) and the
- sign to upstream propagation (the inlet boundary).

• ' «• • '

•„, The selected representation of the solutions and boundary conditions as Fourier
series in the y-direction is appropriate for enforcement of the periodicity boundary condi
tion pertaining to spatial variations in this direction. The coefficient an is defined
accordingly as . . . *

«n = ^ - - " ' • (A17)

.where Y is the fundamental period of the stage cascade configuration. In addition, the
fact that the boundary data are specified at a discrete number of grid points, say N, on
the boundaries implies that the Fourier series can only include N terms, that is,
n = 0, 1, 2, . . ., N - 1. Since the distance y to each point can be written as mY/N,
where m = 0, 1, 2, . . ., N - 1 also, the Fourier series can be expressed in the stand-
ard Discrete Fourier Transform (DFT) hotation: : ' ' : ''• -

--2»lnm/N (A18)
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The inverse DFT is then

N-l

N
m=0

(A19)

The desired solution for the pressure perturbation on the boundaries is accom-
plished after some manipulation as

N-l

Pm(t) = P0a0

Hn°(t) * Qn°(t) + Jn°(t) *

n=0 \Kn°(t) * Pn°(t)
(A20)

where Pm(t) refers to the value at one of the N boundary grid points on the inlet or
discharge boundary. Use of DFT techniques for Pm(t), Qm(t), and Rm(t) and similar
DFT expansions for Hm, Jm, and Km then leads, to the convolution:

N-l rHn(t) * Qm_n(t) + Jn(t) * Rm-n(tJl

N~ L \ K vt\ * p /i\
n=0 \^w-> vro.-\^-> ,.

JA21)

on the discharge and inlet boundaries, respectively. Thus a double convolution over both
time and distance (in the y-direction) is required. The functions Pm(t), Qm(t), and
Rm(t), therefore, represent the point sources of time-varying strength which are alined
along the considered boundaries, spatial resolution being consistent with the number of
grid points specif led. The functions Hm(t), Jm(t), and Km(t) are the duct response
functions defined by . :

(A22)

'Hm(tri
Jm(t)

Km(t)J

>

n

N=.l
= y (VWV e-27r inm/N=^

/ / 1 i

- n=0 I.,'
[KnO(t)J

I6(t)
."

••
N-l

°-|-t >:•
2

^

n=l

n2(l -M02) J-
(A23)

r°°. ..
n(l -M0

2)J-°°
(A24)
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(A25)

where 6 is the Dirac delta function and

T =

A group of subroutines including an efficient Fast Fourier Transform routine has
been developed for use in conjunction with the blade-to-blade computer program to carry
out the indicated convolutions numerically. Results have been thus far limited to test
cases with a simple harmonic input signal. For example, in one of the calculations the
discharge station was assumed to be divided into 8 intervals covering a total circumfer-
ential distance of 0.1 foot. The selected reference (average) Mach number of the dis-
charge flow was 0.8. The flow was assumed to be irrotational so that only one input
function Q(y,t) was required, and the second input function R(y,tj could be considered
as a response function (that is, it was calculated from Q(y,t)). The input function
Q(y,t) = cosfar - ^pV with Q(y,t) = 0 for T < 0, was selected for this case, where

T = 27rNa0t/Y, n = 1, 2, . . ., N, N =8, Y = 0.1 foot, ao = 103 fps, and fi = 1. The
input function Q and response function R at n = 1 are plotted in figure (Al). It
should be noted that the response function is initially out of phase with the input function
because of the assumption that Q = 0 for T < 0. However, the effect of the transient at
T = 0 dies quickly, and after about 1/3 millisecond the response function closely approx-
imates the input function and indicates the desired harmonic solution is being approached
asymptotically. The nondimensional perturbation pressure is plotted in figure (A2). The
complete history is shown for the point n = 1, whereas the history of the points n = 2
and 3 is only shown at early times, where a difference in amplitude as well as phase
exists. At later times (that is, after about 1/3 millisecond) the pressure solutions at
the various grid points only differ noticeably by the phase angle corresponding to the
input fuction, as the differences in amplitude asymptotically decay.
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Figure l.r Blade-to-blade coordinate system and grid network.
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Figure 2.- Characteristic surfaces and grid points at inlet and discharge stations.
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Figure 3.- Slipstream and blade surface characteristic geometry.
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Figure 4.- Blade and slipstream characteristic system.

612



(a) t»t 0 (b) t = to + At

Figure 5. - Illustration of cyclic algorithm for stage with equal number
of blades in stator and rotor. Nj = 3, 1*2 = 3.
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(a) t = t0 •.' (b) t = t0 + At

Figure 6.- Illustration of cyclic algorithm for stage with unequal number
of blades in stator and rotor. Nj = 3, N£ = 4.
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Figure 7.- Comparison of experimental and numerical pressure;distributions
for 1500 fps rotor.
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Figure 8.- Rotor pressure.distributions.
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•''• Figure 9.- Hub-to-casing coordinate system and grid network.
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Figure 10. - Comparison of relative swirl angle variations through a subsonic rotor.
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Figure 11.-'Comparison of relative velocity distributions through a subsonic rotor.
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A COMPARISON OF A SHOCK-CAPTURING TECHNIQUE WITH EXPERIMENTAL DATA FOR

THREE-DIMENSIONAL INTERNAL FLOWS

By Leroy L. Presley
NASA Ames Research Center

SUMMARY

Shock-capturing solutions for an axisymmetric supersonic inlet at small
angles of attack have been obtained. Good overall agreement between the ,
shock-capturing solutions and experimental data have been shown except in
.regions of strong viscous effects or boundary-layer removal. Although the .
results indicate a strong potential for the use of shock-capturing or finite-
difference solutions for internal :flows, 'improvement in the ability to handle
the reflection of strong Shockwaves having downstream Mach numbers near 1 is
needed. ' ' • -

INTRODUCTION

Traditional approaches to the design of axisymmetric.supersonic .inlets
have employed the method of characteristics (refs. 1 to 3). References 2 and 3
include engineering modeling of the viscous effects, with reference 3 incor-
porating the effects of the boundary layer on the inviscid core flow. For
two-dimensional flows — including axisymmetric flows — the method of character-
istics provides a standard for any other computational technique. However,
extension of the method of characteristics to three-dimensional flows, particu-
larly complex internal flows, presents a very formidable task.

Recent developments in the use of finite-difference techniques show promise
for application to three-dimensional internal flows. References 4 and 5 have
been concerned with solutions to the flow about shuttle-type vehicles, both
with diffuse (captured) and discrete bow Shockwaves. References 6 and ,7 .
describe techniques to fit discrete Shockwaves into the computational mesh.
A comparison of a discrete-shock, finite-difference technique with the.method
of characteristics for planar internal flows was given in reference 7; agree-
ment between the two techniques was excellent. An advantage in using.the -
finite-difference codes referenced above, as opposed to the method of charac-
teristics, is that embedded Shockwaves are captured in the finite-difference
mesh without requiring any special logic.

The present paper describes an adaptation of the shock-capturing tech-
nique of reference 4 to the particular problem of inviscid flow in axisymmetric ;
supersonic inlets at small angles of attack. (Many helpful suggestions con-
cerning the present paper were made by Paul Kutler.) Comparison of the theo- .
retical solutions with experimental data for the MO,, = 3.5 inlet described in
reference 2 is presented. The present shock-capturing solutions represent the
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first step in a. long range program that will ultimately incorporate discrete -
Shockwaves, boundary- layer effects, mass exchange, and an arbitrary body cross
section. The computer code for this analysis was developed by Dennis J. Maine,
Computer Science Corporation.

SYMBOLS
.'. -

a local speed of sound - - . . •

M Mach number

p pressure .normalized by the free-stream stagnation pressure

q total velocity normalized by the maximum adiabatic velocity

r radius from axis of symmetry :

u z-component of velocity.

v r-component of velocity

w <j)-component of velocity

Z : axial coordinate from centerbody tip

0 angle of attack . ' •

Y ratio of specific heats

6 boundary surface angle

p density ' • .

4> meridional coordinate ' .,

Subscripts :

a annulus

b centerbody

c end of cone

1 index in £ direction , .

J index in $ direction

o outer boundary '
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t ^ stagnation conditions ' : '.'••
;.:• •s -•' .- • . , • • : ' • - • . . - . • • .

«°7 free-stream conditions

Superscripts:

n array of known flow properties

n+1 advanced array of flow properties

METHOD OF ANALYSIS

General Equations

The technique used in the present analysis is a direct adaptation of the
shock-capturing technique presented in references 4 and.5. The major details
of the analysis will be presented here, primarily for reasons of completeness.
The equations of motion can be written in conservative form,, using vector
notation and cylindrical coordinates as

E <f, H (1)

where the E, F, G and H vector components are defined as:

pu

kp + pu2

puv

puw

; F =

pv

puv

kp + pv2

pvw

'•J ,< • i

; *•-$

pw

puw

pvw

kp + pw2

'.*'"•

PY .

puv

p(v2 - w2)

2pvw

Equation (1), which represents the continuity and the three momentum equa
tions, comprises a complete set when coupled with the energy equation in the
following form: . . __

p = p(l - q2)

where

+ w2

(2)

(3)

In applying shock-capturing techniques to the computation of internal
flows, it is most convenient to transform the. physical coordinate system to
one wherein the distance between the inner and outer computational boundaries
is normalized. This is done by the following coordinate transformation:

r - r.

r - r.o b

r - r.

U)
; * - * (4)
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where, for the case considered here and as shown in figure 1(a), the inner and
•outer boundaries are given respectively by . .

rb(Z) ' = ro(Z) ,(5)

It should be noted that, for an axially symmetric configuration, the inner
and outer boundaries are independent of the meridional angle.

The conservative form of the equations of motion, equation (1), can be
retained in the transformed coordinate system as:

; • .E + G_ + G +, H
* : Z ^ <J> .

where new variables are defined as follows: '

. • \ ' E = E •' • ..

•:/-''./ , '.:,-..;"••; /'*-'£'* Hf

H = H - E

The transformation derivatives are

(6)

(7)

II
9Z

Ifk
9Z.

0) ' 9r; F a) ' 9Z 9?
(8)

", A plane of known flow quantities at some constant Z is required to
initiate the solution. Within this plane, an array of discrete points is .-. ,
identified (fig. l(b)) such that along each meridional ray, there are Nr ; .
points indexed by 1 < i < N^, and there are N^ meridional rays indexed by
T ^r j ̂  N<{). A step size consistent with the stability requirements: of; the
differential equations is first determined for advancing the solution to - '
.Zn+l. Since only supersonic flows are considered in the present analysis, .
the Z-axis is the hyperbolic coordinate. For each point in the flow field
a minimum of four step sizes, corresponding to the four characteristic
directions, must be found as follows:

AZ =

and (9)

The maximum eigenvalues are given by
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a--='[a(p)]v v - : ... = max (-\a^\, |a9
M|)p L ^' -"local max u i i »I 2 U- (10;

'„ - LW\«/-JI i - roax l|<T,̂ |,|a,q L •Jlocal max u 1 ' ' 2

where

M: = 1£ , uv ± a/u
2 + v2 - a2

1,2 8Z U)(u2 - a2)

and

N _ _L luw ± a/u2 .+ w2 - a^
Ol,2 " r I (U

2 - a2) )
(11)

Advancing the solution to Zn is controlled by the smallest step size
determined for the entire array at Zn.

New conservative variables, E, , 3 t+» are found at step Z using
MacCormick's second-order predictor-corrector technique. Some modification
to the indexing for these equations is required, depending upon the region of
the flow being analyzed, as shown in figure l(a). These predictor difference
equations are given by

(a) For conical, external, and internal flows, where 1 < 1 < Nt - 1
and 1 < j < N ,

• v.

* (b) For conical and external flows, where i =-N^ and 1 <. j. < N^, the ..,{
predicted values, are set equal to.the free-stream values, which will be • £
defined later. . • • - • • ' . ! !

' (c);' For internal flows, where" 1' = Nr and 1 < j <

where the superbar denotes predicted values at Z . The computations are
carried out on only one side of the plane of symmetry, 0 < $ < TT. For the
predictor step, information at if = ir-'+ A<(> is heeded, while (as will be
seen shortly) information at $ = - A<J> is needed for the corrector step.
This information is obtained by simply mirroring w (i.e., changing the sign
of w) across the plane of symmetry at the appropriate points and using the
values of p, p, u, and v from the mirror image point.

The corrector difference equations are given by
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(a) For conical and external flows, where 2 < i < Ng and 1 £ j < N̂ ,/
and for internal flows, where 2 S i i N^ - 1 and 1 s j i N^, r-• ->'

.

__n+l 1 [In _n+T AZ /LIST -.n+T \ AZ L^l r^T \ A7Hn+ll
E. A 7 IE< .1 + E. . - -rr- IF. . - F. . .1-- -rr ICj. . - Or. . I - AZH. /I

i»J 2 l_ 1*1 i»J A5 \ i»J i~1»J/ A* V iiJ i»j-l/ i,jj

(14)

(b) For conical, external, and internal flows, where 1=1 and
1 < j < fy,

" " Az

1,J 2

(c) For internal flows, where i

1,J

n (15)

iri-l 1^ n
, 2

(

and 1 < J <'

• A| /FrriT piH-T \
" AC-^H^.J ~ Nc-

1>d/

+ TT- (16)

After both the predictor and the corrector steps, the conservative
variables E^ 2 3 i» must be decoded to yield the physical variables. p,p,u,v,
and w such tna£ new predicted or corrected conservative variables F,G, and H
can be found. Decoding is accomplished by the following equations:

E

E.
w

. E2 + /E2
2 - 4kE1

2(i, - k)(l - v2 - w2)

2E1(1 -

p « p(l - u2 - v2 - w2)

- (17)
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After the advanced array is decoded, the flow along the.centerbody and
annulus boundaries will not necessarily satisfy the tangency requirement. As
described in reference 8, the velocity vector at the wall must be rotated
through a small angle, Av, and the wall pressure corrected using the.Prandtl-
Meyer relationship. The turning angle Av for all j is found as follows:

(a) For the centerbody,

*n+l . *-Uj tan o,
Av = sin'1 —

where the carets over the symbols denote the decoded values from the corrector
equations (i.e., those values that do not satisfy tangency).

(b) For the annulus,

, , v1 tan

-e V
tan

The pressure ratio associated with this turning angle is found from

n+l
(20)

. . .IT* 1 _ -I IT J. * 1 ** * f I

P

where:

m-

and

M =

Note that if Av >• 0, an expansion will result, while, if ,.Av ,< 0, a compres
sion will result.' The new corrected wall pressure, consistent with the tan-
gency condition, is '

and the corresponding density is
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/(22)

This relationship for density assumes that the entropy on the centerbody
and annulus is everywhere equal to the free-stream values. Once the pressure
and density are known, the total velocity is found from :

n+1 -fir
and the individual velocity components are

n+1u

vn+1

[un+1 + (M/N2) tan 6]

- M / N 2 )

n+1-n+1w
L •

The quantities L; M, and N are

L FA n+1 . M „. • A2 . A n+1 M\2 , /-n+l\2"!(u + —=• tan 6) +(v —-5-} +(w I|\ N2 ) V Nv V /J
„ ^ • ~ , - -M.= u tan o + v

---Vtanz 6 + 1

1/2

(23)

•(24).

. (25)

The. angle 6 in equations (24) and (25) can be either the surface .angle of
the centerbody or the annulus at Zn+l. . :.

Method of Solution:

Input to the program consists of the free-stream Mach number, the number
of points N^ and Ify (both of which are held constant throughout?the solu-
tion), body coordinates (which herein are only a function of • Z), and the ••.:'. ,
initial angle'of the conical tip. The-remaining free-stream input quantities
are calculated as follows: - - . , '•• :. • ••• ', • - - • • :

(26a)'

P_ = (26b)
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1/2

q^ cos a

q sin a cos

W

(26c)

(26d)

(26e)

(26f)

The body coordinates are entered at discrete Z locations. For any
three points on either the centerbody or annulus, a quadratic of the form
r « aZ* + bZ + c was determined. Choice of which coordinates to use for
defining the coefficients was determined such that for any Zn+1 , determined
from Zn+1 = Zn + AZ, two of the three points should have Z > Zn+1 . No
explicit attempt at smoothing the angles at the input points was made; however,
the present technique has been found to provide a satisfactory representation
of 'the actual contours. The slope of any Z location was found by differen-
tiating the above.

Solution of the conical flow is obtained by an iterative method. First,
an outer computational boundary "for both the conical and external flowfield
must be found that will allow the Shockwave from the cone tip to be captured
between the centerbody surface and the outer boundary. As shown in figure 1,'
this boundary is taken to be inclined at an angle, relative to the axis of
symmetry of .the inlet, that is, equal to the angle of attack plus, the planar
Shockwave angle for a flow deflection equal to the cone half Wangle. Similar
to the technique of reference 9, the free-stream quantities are assigned
between the outer boundary and the cone surface at some initial Z start.
The solution is advanced N£ steps in Z. Since the flow is conical, these
values can be inserted at Z start and the solution again advanced Ng steps
in Z, This cycling continues until the pressures on the cone at the end of
the Nth' cycle agree to within an e of 0.0001 of those on the N-lth cycle.
The solution was then taken to have converged, and these final flow quantities
were assigned to the end of the conical flow zone Zc. (The location of Zc .
is somewhat arbitrary, here taken as Zc = 1 (see fig. l(a)), but it should
always be less than or equal to the portion of the centerbody that can be
represented as a cone.) Usually, convergence was obtained within eight cycles
for the cases considered here.

After the conical flow was defined, the solution was advanced to .the
plane of the annulus lip. Here, the mesh is renoded to provide N£ points
between the centerbody and the annulus lip. For. the remainder of the solution,
the outer boundary ro is the radius of the annulus. <jlf the -external flow
outer boundary fell outside the annulus lip, the flow properties at the
renoded radial points were found using linear interpolation in the external
flow solution. If the external flow outer boundary fell inside the annulus
lip, linear interpolation was still used, but free-stream flow quantities
were assigned between. the external flow outer boundary and the annulus lip.
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Computation of the internal flow continues until the end of the inputy
coordinates. No attempt to define the external flow beyond the plane of the
annulus lip was made in this study.

RESULTS AND DISCUSSION

Coordinates of the M =3.5 axisymmetric supersonic inlet, for which
shock-capturing solutions nave been obtained herein, are given in table 1, arid'
shown schematically in figure 2. This inlet, which resulted from the design .
study of reference 2, has the feature that the minimum area remains in nearly'
the same location, relative to the annulus, "as the centerbody is translated
forward for off-design (M^ < 3.5) operation. To obtain maximum performance
with this inlet, it is necessary to remove the boundary layer in regions of
strong adverse pressure gradients, such as produced by Shockwave boundary-
layer interactions. Regions of boundary-layer removal remain fixed on the
annulus but, through a complicated porting system, move rearward on the
centerbody as it.is translated forward. (See ref. 2 for "details.) Since, in
this analysis, boundary-layer effects and mass exchange through the boundaries
were .not considered, discussion of this boundary-layer removal system is ;

important only insofar as indicating regions wherein good agreement betweeri
theoretical calculations and experimental data stibuld not tie expected.

Any new computational technique should be compared with a standard solu-
tion before being applied to more generalized problems. As shown in refer-
ence 7, excellent agreement between a discrete-shock, finite-difference tech-
nique and the method of characteristics was obtained for.planar internal
flows, with good qualitative agreement also being obtained,.with a straight
finite-difference method (shock-capturing technique) '. It remains to be shown
that .similar agreement between a shock-capturing solution and the method of
characteristics can be obtained for axisymmetric flows, particularly when
using a shock-capturing,technique developed for three-dimensional flows.. A
Shockwave pattern obtained from the method of characteristics for the inle't at
M^ = 3.5, ot = 0°, with the centerbody in the design position (herein defined ,
as the position wherein the Shockwave from the centerbody tip hits the annulus
lip at M,,,, = 3.5) is shown in .figure 3. Corresponding static pressure distri-
butions on the centerbody and annulus, obtained using the method of character-
istics, are shown in figure 4, along with the pressure distributions obtained-,
by using the shock-capturing technique. For all shock-capturing solutions
obtained herein, 20 intervals in the £ direction and 10 intervals in the <(»
direction were used. The shock-capturing solution agrees very well with the
method of characteristics up to the second Shockwave reflection on the center-
body. This is a fairly"strong Shockwave reflection, with the method of
characteristics indicating a downstream Mach number less than 1.2. Failure of
the shock-capturing solution at this point .is due to the Mach number becoming
subsonic in the,interaction region. Overshoots in static pressure, and hence
undershoots in Mach number, are typical of the solution of reflecting oblique
Shockwaves using MacCormack's second-order-accurate differencing in a shock-
capturing technique (ref. 10). Several possibilities exist that can possibly
resolve this situation: (1) incorporation of higher-order differencing terms,
as described in reference 10; (2) incorporation of a damping term near the
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Shockwaves, as was used in reference 11; (3) incorporation of a technique for
allowing the wall entropy to change across reflection regions; or (4) incor-
poration of discrete Shockwaves into the solution* At present, all four of
these possibilities are being examined. However, it can.be said at this point
that until the failure occurs, the solution obtained by the shock-capturing
technique agrees well with that obtained by the method of characteristics.

A comparison of the shock-capturing solution discussed above with experi-
mental data is shown in figure 5. Good overall agreement with the experimental
data-is obtained at a = 0°, except in the regions of boundary-layer removal.
The experimental data indicate Shockwave intersections with the annulus and
centerbody slightly ahead of the predictions of the shock-capturing technique.;
This is reasonable, since the presence of boundary-layer effects in the experi-
mental data would tend to displace the Shockwave interactions forward.

An angle of attack solution (a = 5° for the same centerbody location and
M^ as the above calculations) is shown in figure 6. Again, the solution
fails (at station Z/ra = 4.5) due to the Mach number becoming subsonic in the
strong interaction region; nevertheless, some qualitative conclusions concern-
ing angle-of-attack effects can be drawn. Static pressures along the windward,
<j> = 0, and leeward.-, <|> = ?r meridians for both the annulus and centerbody are
shown. Comparison with the solution shown in figure 5 shows that the magni- ,
tude of the pressure rise across the Shockwave reflections is markedly increased,
particularly on the centerbody. Further, evidence that the solution is produc-
ing a plausible reproduction of the physical flow^is indicated by the behavior
of the pressure distribution near the annulus lip on the windward meridian.
Here, the Shockwave from the centerbody tip should pass inside of the annulus
lip and, since the initial angle of the annulus lip is about one degree, a
local expansion should be generated at the annulus lip. The decrease of pres-
sure indicated by the solution on the windward meridian near the annulus lip .
2.86 < Z/ra < 3.1 is ,in agreement with the postulated physical flow.

All of the angle-6f-attack experimental data that will be discussed herein
is for angles of attack of 3°. In the following paragraphs, two different
Mach numbers, and hence, two sets of different centerbody location data, will
be discussed. The pattern will be first to show an a = 0° solution for the
inlet and then an angle of attack solution and corresponding comparison with
experimental data. Angle-of-attack effects on the internal flow pattern will
thereby be identified.

The first Mach number data that will be discussed is for M^ = 3.3, where
a forward centerbody translation AZ/ra = 0.356 was required. Note that even
a small change in angle of attack requires a change in centerbody position for
optimum inlet operation. At this M^ and a = 0°, complete solutions were
obtained to Z/ra =5.0, which is beyond the minimum area of the inlet (fig. 7).
The corresponding solution for a = 3° is shown in figure 8. Although the
angle-of-attack effects here are not as large as shown in figure 6, there is an
indication that the strength of the shock reflections on the leeward side are
increased. Here again, a complete solution was not obtained because the Mach
number became subsonic in the strong reflection region near Z/ra =4.8 on
the centerbody. Most of the experimental data are for the leeward side, with
good qualitative agreement being obtained (except for the viscous effects
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noted earlier). Some data on the windward side of the annulus were obtained
and these show the same qualitative behavior with respect to the leeward data
as indicated by the shock-capturing solutions.

The last Mach number data that will. ibe. discussed is for Ml = 2̂ 5̂ %here'"•"
a forward translation AZ/ra = 0.855 was required. The a =6 'solution is
shown in figure 9, where a complete solution beyond the minimum area was
obtained. At this Mach number, a complete solution was also obtained-"at angle
of attack, and again the strength of the Shockwave reflections was increased
(fig. 10). For this case, the centerbody was, extended sufficiently far for-
ward that some expansion'to pressures lower than the conical values'was
expected, and this is shown by both the" data and the shock-capturing solution.
Again invoking the qualifications on the agreement due,to viscous effects,
good'qualitative agreement between the shock-capturing solution arid experiment
*- ol A at" a -TJa o nX#- a-I nAi^' ' ' ' '' ' • - • - ' . i . . _ . , • . ' , . ..- , >. • -.. ftal data was obtained.

CONCLUDING REMARKS

For all of the internal flows examined.herein, several observations can
be made: " " " ' •" ' ' • " ".;<:"~ • " - • • • • ' •: ' .. " : •'• -. -: •:•" •'• •• • r
; . . .-'. '. . ..- • •-:-•• _ - , . ~.;'- . . • . - - , - ' • - . • •••/ 'v-'-v*,.'-...--

((1) A solution given by the shock-capturing technique agrees well with
one given by the method :of characteristics for a = 0°. * ' "• f-';

(2) . SecondTprder-accurate differencing can' fail in regions near1the:

reflection of strong Shockwaves where the downstfe'am Mach'number Is near i.-
Several possibilities such as higher-qrder differencing, damping terms near
the shopkwaves,,wail entropy correction, and discrete Shockwaves are being M

investigated to determine if this failure can berovercome.

/ (3) Shbck-rcapturing solutions agree well with experimental data,, except
in regions of strong viscoiis effects and. boundary-layer removal'. « -t: ,
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TABLE 1.- 3.5 INLET CONTOUR DEFINITION

Z/ra r/ra

Centerbody

0.0

4.0
4.1
4.2
4.3
4.4 •
4.5
4.55
4.6
4.65
4.7
4.8
4.9
5.1 *••
5.3
5.5
5.6: '

ft

5.7'
5.8
5.9
6.0

•

~

0.0

0.70532
0.7228 '
0.7387
0.7512
0.759
0.7625
0.763
0.7625
0.7611
0.7585
0.7504
0.7391
0.7120
0.6829
0.6525
0.6362
01618

'. 0.5973
0.5744
.0.5467

* ' ' " . ; '

Z/'a ''/'a
Annulus

: 2.86

3.1
3.2
3.4
3.6
3.8
'4.0
4.1
4.2
4.25
:4.3 ;•••:
4.4
4.5
4.55
4.6
4.65

'-4.7 •
4.8
4.9

- ' 5.0
5.1

.,5.6 '-
. 5.8 ;
5.9

„•- 6-0 ,

1.0

1.004188
1.0054 -
1.0051
0.99996
0.9882
0.9681
0.954
0.9364
0.9261

''• 0.9154 '•'•'
0.8949
0.8768
0.8695
0.864 '
0.86
0.8572
0.8533
0.8511
0.8502
0.85

.0.85 . .'•
0.8574 •
0'.8646
0.8735
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EXTERNAL FLOW

r

• • . . OUTER
. COMPUTATIONAL BOUNDARY INTERNAL FLOW

(a).— Schematic diagram of computational domains.

ARRAY

OUTER
COMPUTATIONAL

BOUNDARY

| ' +

0

(b).- Diagram of indexing scheme for shock-capturing technique.

Figure 1.— Details of flow-field model.
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ANNULUS

['-REGION OF BOUNDARY-LAYER
REMOVAL]

Figure 2.— Contours of M^ = 3.5 inlet.

1.2

.8

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2

Figure 3.— Shock wave pattern given by the method of characteristics
for tr »3.5, a » 0°, and design centerbody location, A2/ra " 0.
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TECHNIQUE

.4

Pf,oo

CENTERBODY

2.4 2.8 3.2 3:6 4.0
Z/ra

4.4 4.8 5.2

Figure 4.— Comparison of pressure distributions given by the shock-capturing
technique and the method of characteristics for H^ = 3.5, a = 0°, and
design centerbody location, AZ/ra =0.
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ANNULUS

SHOCK CAPTURING
TECHNIQUE

o DATA (BOEING)

.4

P,
.2

'co

CENTERBODY

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
Z/ra

Figure 5.—.Comparison of pressure distribution given by the shock-capturing
technique with experimental .for. -M^ = 3.5, a = O6, and design centerbody
location, AZ/ra =0.
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y
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" CJ1 r 1 1 f 1 1 1 f / 1 i 'l i 1

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
: z/ra-

Figure 6.— Shock-capturing solution for M = 3.5, a «= 5°, and design
centerbody position, AZ/ra =0.
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Figure 7.— Shock-capturing solution for
AZ/ra - 0.356.

3.3, ot = 0*, and
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LEEWARD

.4

.2
TOO

CENTERBODY

A WINDWARD
o LEEWARD

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2

Figure 8.— Comparison of pressure distributions given by shock-capturing
technique with experimental data for M = 3.3, d = 3°, and
AZ/ra = 0.356.
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AZ/r a= 0.855
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CENTERBODY

j
.4 2.8 3.2 3:6 4.0 4.4 4.8 5.2

Z/ra
Figure 9.—Shock-capturing solution for M^ = 2.5, a = 0°, and AZ/ra= 0.855.
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Figure 10'.— Comparison of pressure distributions given by shock-capturing
technique with experimental data for
AZ/ra = 0.855.

= 2.5, a = 3°, and
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INTERNAL AND EXTERNAL AXIAL CORNER FLOWS

By Paul Kutler,
NASA Ames Research Center . '

Vijaya Shankar, Dale A. Anderson,
' Iowa State University

. and Reese L, Sorenson
NASA Ames Research Center

SUMMARY

The inviscid, internal and external axial corner flows generated by two
intersecting wedges traveling supersonically are obtained by use of a second-
order shock-capturing, finite-difference approach. The governing equations
are solved iteratively iri conical coordinates to yield the complicated wave
structure of the internal corner and the simple peripheral shock of the
external corner. The numerical results for the internal flows compare favor-
ably with existing experimental data.

INTRODUCTION

Existing supersonic aircraft such as the B-l, F-14, F-15, Concorde, and .
recently proposed designs of advanced hypersonic research aircraft such as
that shown in figure 1, possess engine .inlets which are composed of planar
compression or expansion surfaces with swept and unswept leading edges.
These surfaces form various combinations of internal and external axial cor-
ners. Such a corner configuration can generate a rather complicated inter-
ference flowfield whose prediction is of considerable interest to the vehicle
designer, because of the severe pressure gradients and high local heating that
can occur at the surface.

The typical internal corner configuration studied in this paper and the
coordinate system used are shown in figure 2. The flow direction is aligned
with the x-axis. The vertical wedge is unswept and is always considered a
compression surface; i.e., 62 > 0. The horizontal or base wedge can have a
sweep of A and be either a compression or an expansion surface; i.e.,
61 £ 0.

The conical wave structure for a typical swept, compression-compression
configuration is also shown in figure 2. The shock structure consists of a
planar shock emanating from the leading edge of each wedge, a corner shock
that joins the two wedge shocks, and two embedded shocks that stretch from
the body to the triple points. A slip surface exists between each of the
triple points and the axial corner at which there exists a vortical singu-
larity.
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If the base wedge is an expansion surface; i.e., 6^ > 0, then a Prandtl-
Meyer expansion fan emanates from the leading edge and intersects the vertical
wedge shock perpendicularly. As a -result of the Interaction, the wedge shock
is bent and shifted 'slightly towards the axial corner, becoming weakened in
the process. The expansion fan, after interaction with the wedge shock,
becomes concave with respect to the corner.

A typical external corner configuration is shown in figure 3 and con-
sists of two intersecting compression surfaces with angles 6^ and 62
sweeps and o. The flow structure about the external corner is consid-
erably simpler than that of the internal corner. It consists of a single
continuous shock wave whose strength in rounding the corner transitions from
that of the 6i~wedge shock to that of the 62~wedge shock. Like the inter-
nal-flow problem, there also exists a vortical singularity at the axial cor-
ner due to the convergence of the cross-flow streamlines (each with different
values of entropy) .

Both the internal and external axial corner flows are conical since
there is no characteristic length associated with the body. Viscous effects
are assumed to be minimal, and therefore the flow is governed by the three-
dimensional steady-flow Euler equations. These equations, under a nonorthog-
onal coordinate transformation which introduces conical self-similarity and
aligns certain independent variables with the body, are hyperbolic and can be
integrated in an iterative fashion using MacCormack's finite-difference
algorithm (ref. 1). The internal corner problem with its complicated wave
structure is solved using the shock-capturing philosophy (ref. 2) while the
external corner problem with its single peripheral shock is solved using both
the shock-capturing and shock-fitting approaches.

THEORY

The governing partial differential equations (continuity, x, y, and z
momentum) in Cartesian coordinates (see figs. 2 and 3) are first written in
the dimensionless strong conservation-law form:

** ** **
• E , . + F + G = 0x y z (1)

where

..E
**

pu

kp + pu

puv

puw

**

pv

puv

kp + pv

_ pvw _

**

pw

puw

pvw
f

_kp + pw _

and where k = (y-l)/2Y» Y being the ratio of specific heats.
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In equation (1), pressure p and density p are made dimensionless with
respect to free-stream stagnation conditions, and velocity components u, v,
and w are made dimensionless with respect to the maximum adiabatic velocity.
The above system of equations is made complete by the addition of the steady-
flow energy equation which can be written in the following dimensionless form:

/-, 2ill - u -
2 2

v - w (2)

It is desirable when solving fluid flow problems to transform the
independent variables so that the new coordinates are aligned with the;sur-
face of the body. This alleviates the numerical difficulties associated with
satisfying the tangency conditions for an unequally spaced grid. A transfor-
mation which satisfies the above criterion and also includes conical self-
similarity is

C = x

n = y/(x - z tan

£ = z/(x + y tan A2)

(3)

where A^ and A2 are depicted in figure 3 for the external corner. For
the internal corner, A^ = A and A2 = 0.

Under the above transformation equation (1) becomes

* * * *
E +F +G_ + H =0
C n £

(4)

where
x xx
E = E cd

X XX XX XX

F = -E pc + F c + G T]c .+ tan A

* XX XX XX

G = -E £d - F ?d tan A2 + G d

H = E*[-c(-b +(C/e))tan ̂  - d(a -(n/e))tan H2]

+ F*[-d(-l +(l/e))tan AZ - C(c/e)tan AX tan

+ G [-c(l -(l/e))tan A., - n(d/e)tan Aĵ  tan /I

a = n(l - 5 tan Â )̂ .

b = 5(1 + n tan A_)/ei
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c = C(l + a- tan

d = C(l - b tan

e, = 1 + n? tan A.. tan A-

Thus equation (4) governs the flow over both the internal and external cor-
ners and can be solved without any further relations using the shock- :; ':
capturing approach.

In order to treat the peripheral shock of the external problem as a
sharp discontinuity, equation (4) is first normalized between the surface of
each wedge and the shock. This requires a separate coordinate transformation
for each of the two regions outlined by points 1-2-3-4-1 and 5-6-7-8-5 in
figure 4. The necessary equations will be developed for the horizontal
region only, since the derivation of the analogous equations for the vertical
region is the same, • '

The required transformation is

x = (n - nb)/[ns(?,O - nbJ

and when applied to equation (4) yields

r + F. + G_ + H = 0c, A t,

(5)

(6)

where

E = E

* ... . * *
F = E X,. + F X + G X _

C n £

G = G*

* * ..::* i

H = H -EX - G X
^X ^X

X_ = —X(n ) _/(n — Tin.)£ s £ s b

X = l/(n - TV)ri s b

'X

^X

V
V
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The equation of the shock is ys = ys(x,z), and the quantity (ns)̂  of
equation (6) can be expressed as a function of the derivatives (ys)x

 and

(ys)z as follows:

" y •- (y,),- (ys)22

VVZ - ̂

vhere

82

•*• •
ne

tan A.

. Zzc = F
£ tan

z =1 • Tie.

n?(l - 5 tan A )
~~

K n tan
• z = — '• •

.The quantity (ns)̂  is evaluated numerically and (7s)x
 is computed from

the Rankine-Hugoniot equations:
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(y \ = u/•̂ s/x »lv -«

> (8)

1 +
Y +

where

Vo
and the subscript °° indicates the free-stream condition.

Folloving the approach developed by Thomas e.t al. (ref. 3), it is only .
necessary to know the pressure behind the shock in order to propagate ,it. The
remaining flow quantities can be found from equation (8). Shock pressure is
determined by a finite-difference approximation of the governing partial dif-
ferential equations at the shock (refs. 4 and 5).

Equation (4), which governs both corner flows (via shock-capturing), and
equation (6), which governs only the external corner flow (via shock-fitting),
are hyperbolic with respect to the conical coordinate ?. These equations
can therefore be solved iteratively until. E* of equation (4) and E^ of
equation (6) are zero, indicating the establishment of conical flow.

»'. " "'. i - ' * '

The boundary condition at the surface of each wedge requires that ,the
flow be tangent to it. Since an iterative procedure is employed to solve the
governing equations, a simple Euler predictor/modified Euler corrector with,
one-sided normal derivatives is used at each surface. The following condi-
tion on the velocity components is imposed after the corrector, step.to.satisfy
tangency:
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v = u tan 6-j - w tan 6-j. tan ^1> horizontal .wedge
w = u tan 62 + v tan 62 tan hy.'* vertical wedge

The axial corner is treated as a multiple-valued point to account for the
vortical singularity that exists there. Although pressure is continuous,
density and velocity are discontinuous.

The computational boundaries for both the internal and external corner
flows are shown in figure 4. Region I corresponds to the uniform free stream,
region II to the horizontal wedge flow, region III to the vertical wedge
flow, and region IV represents the unknown conical flow. Regions I, II, and
III are known flow regions and are hyperbolic zones -in the cross-flow planes.
Region IV is unknown and elliptic in the cross-flow plane. It is the deter-
mination of this region that is the crux of the present problem.

RESULTS

Numerical results for the internal corner flow problem are shown in
figures 5-10. These results were computed by Kutler (ref. 6) and Shankar and
Anderson (ref. 7).

Some of the most recently published experimental data obtained for the
corner-flow problem are by West and Korkegi (ref. 8). They tested an equal
wedge angle (6^ = 62 = 9.49°) configuration in Mach 2.98 flow over a
Reynolds number range from 0.4xl06 to 60xl06, which included laminar, tran-
sitional, and turbulent boundary layers. A numerical solution for this same
case was obtained, and the shock wave and slip surface structure are compared
with the high Reynolds number experiment in figure 5.

The inviscid embedded shock is slightly concave when viewed from the
origin falling inside the location' of the corresponding experimental shock.
The corner shock, which is slightly convexed when viewed from the origin,
also falls inside the experimental shock. The positions of the experimental
and numerical wedge shocks agree exactly. It appears, therefore, that the
displacement effects of the boundary layer in the region bounded by the cor-r
ner and embedded shocks result in an effective thickening of the body, and
this forces the shock structure outward.

The location of the slip surfaces for this case can be found from plots
of density and is shown as the thin double line in figure 5 stretching from .
the triple point to the origin. The slip surface is slightly curved and
asymptotically approaches the bisector near the origin. The experimental
shear layer is also curved but appears to merge before the origin is reached.
Since the positions of the numerical and experimental triple points are dif-
ferent, the'comparison between the inviscid slip surface and viscous shear
layer, which originate at the triple-points, is unfair. But, qualitatively,
their basic-shapes are the same.- '-•

A comparison of the numerical and experimental (turbulent boundary
layer) surface pressures is shown in figure 6. The first pressure rise in
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the experimental data.(decreasing) indicates the onset of separation. This
is followed by a reduced gradient region that indicates separation and again
a .rapid pressure rise that indicates reattachment. The pressure between the
reattachment point and the.origin is greater than that of. the inviscid *
result. This higher pressure indicates an apparent thickening of the bp'dy in
this region due to .boundary-layer displacement effects.

Nangia (ref. 9) performed an experimental study on the wave interactions
in supersonic intakes and obtained some rather interesting data. Figures 7-9
are numerical solutions which compare with Nangia's results. Figure 7 is a
pressure contour plot for an unswept configuration with '.6]_ = -5° and '
62 =7.5° for a Mach number of 3. It is interesting to note that the'wave.,
structure does not exhibit any corner shock or slip surfaces. This appears
to be correct because changes through the expansion fan occur isentropically.
However, an auxiliary compression wave is formed in the corner region. The '
wedge expansion fan, after the interaction with the wedge shock, turns away
from the axial corner and is concave when viewed from the origin, whereas the
wedge shock turns toward the axial corner and appears to be slightly .convex; .

- ,The inviscid numerical wave structure compares very well with the exper-
imental results of Nangia. The auxiliary compression fan in the corner
region, as predicted by the numerical solution, is not observed in theexper-'
imental results, however.

A .pressure contour plot for a A = 30°, 6^ = 5°, and 63 = 7.5° ,,corifig-
! uration at.a Mach number of 3 is shown in figure 8. The numerical solution
is again compared with the experimental data of Nangia. The computed surface-
pressure distribution for both the horizontal and vertical wedges is compared
with Nangia?s experimental measurements in figure 9. " ' 7

The final case considered on the internal corner problem consists 'of a.""*
.A *:30°i 6j - -58, and 62 = 7-5° configuration at a Mach number of 3... The
pressure contour plot of the numerical solution is shown in figure 10. The.
wedge expansion fan, after interacting with the wedge shpck^. turns away from
the axial corner and appears to be concave when viewed from the origin. The
intersecting wedge shock is deflected towards the axial corner under the
influence of the wedge expansion fan.. An auxiliary weak shock is formed in
the corner region which merges with the .weak embedded shock and forms a
strong,shock near the horizontal wedge surface. The shock impingement on :,
this surface is nearer the axial corner than the wedge shock. The strength
of the impinging shock appears to increase with increasing sweep angle..
Furthermore, the interference region decreases as the sweep angle increases..

' '•• ' ' - • • ' • •. . •• "L •',.*•
Numerical solutions for two external corner configurations were generated

and are shown in figures 11-14. Results are-presented for both the shock-
capturing and^shock-fitting techniques. Figure 11 shows the shock, shape and1

cross^flow sonic line for an unswept equal-angled (6^ = 62 = 10°) .configura-
tion at a Mach number of 3. The surface-pressure distribution for, this case
compared to linear theory is shown in figure 12.

The shock and cross-flow sonic-line locations for a swept (A^ = A2 =
30°)., equal wedge angle (61 = 62 = 10°) configuration at Mach number 3 is
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shown in figure 13. The shock-capturing results are almost identical-'.to the
shock-fitting solution. The surface pressure distribution for this configura-
tion is shown figure 14, and again both the shock-capturing and shock-fitting
results agree. ta - . • • .

All of the numerical results presented here were obtained on serial
machines but employed a numerical procedure which is particularly well suited
for the parallel processing philosophy. Should the computing power of an
ILLIAC IV be required for a more complicated problem, such as a multiple-
corner configuration, some of the coding techniques used for the solutions
presented here could easily be applied. •
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Fig. 1 Hypersonic airbreathing aircraft
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Fig. 2 Coordinate system and wave structure for internal axial corner.
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-; 1i , NUMERICAL METHODS FOR THE -
'•, "*'

CALCULATION OF THREE-DIMENSIONAL NOZ ZLE

EXHAUST FLOW FIELDS*

By Sanford M. Dash and Paul D. Del Guidice
\i "

Advanced Technology Laboratories, Inc.

; SUMMARY

Two numerical codes have been developed for the calculation of three-dimensional
nozzle exhaust flow fields associated with hypersonic airbreathing aircraft. Both codes
employ reference plane grid networks with respect to three coordinate systems. Pro-
gram CHAR3D is a characteristic code utilizing a new wave preserving network within
the reference planes, while program BIGMAC is a finite difference code utilizing conser-
vation variables and a one-sided difference algorithm. Secondary waves are numerically
captured by both' codes, while the underexparision shock and plume boundary are treated
discretely. The exhaust gas properties consist of hydrogen-air combustion product mix-
tures in local chemical equilibrium. Nozzle contours are treated by a newly developed
geometry package based on dual cubic splines. Results are presented for simple config-
urations demonstrating two- and three-dimensional multiple wave interactions.

INTRODUCTION

Hypersonic* air craft with airbreathing propulsion will require a high degree of
engine/airframe integration in order to achieve optimized performance. The engine
exhaust flow, because of physical area limitations, will generally be underexpanded at the
nozzle exit, and in order to obtain maximum propulsive efficiency, the vehicle afterbody
undersurface is used to provide additional expansion. This results in a three-dimensional
nozzle flow whose boundaries are defined both by the solid boundary of the nozzle wall and.
by the boundary separating the nozzle flow from the vehicle external flow. A typical
exhaust nozzle (fig. l)-may be characterized as having nozzle modules with cross sections
which are rectangular in shape. These nozzles may be arranged in multiples and dis-
charge into a common nozzle. The flow fields to be analyzed start at the combustor exit
and each module may be analyzed individually until its merger with adjacent modules and
the external flow field.

*This research was performed under Contract No. NAS 1-12726.
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In developing a numerical model for this flow field, the following dominant features
must be accounted for:

(1) The flow properties at the combustor exit are highly nonuniform. Burning and
mixing in the combustor yield regions of highly varying composition, temperature, and
stagnation properties. In addition, shock waves are produced in the vicinity of the injec-
tors. Although the strength of these waves decays rapidly as they propagate through the
burner, they are generally present at the burner exit and must be accounted for. '

(2) The exhaust gas mixture consists of hydrogen-air combustion products and sig-
nificant burning may still occur in the initial regions of nozzle expansion.

(3) The flow field geometry is quite complex. The engine modules consist of mul-
tiple surfaces with sharp interior corners, and flow fences to contain the external exhaust '•'•
flow may be present. :

(4) The interior nozzle flow field is dominated by complex wave interactions with
waves generated and reflected off multiple surfaces. In addition, sharp interior corner
regions must be accounted for. • • .»

(5) The nozzle exhaust flow interacts with the nonuniform vehicle external flow
field. This complex interaction for underexpanded exhaust flows results in an expansion . ,
system propagating toward the vehicle undersurface from the cowl trailing edge and a
spanwise expansion generated by the sidewall interaction. An underexpansion shock prop-
agates outward into the nonuniform vehicle external flow, and the exhaust and external
flow are separated by a plume boundary. In addition, pressure and flow deflection mis-
match between adjacent modules may occur, resulting in a spanwise multiple shock
system. .

To best accommodate highly rotational variable composition flow fields, a grid net- -
work which follows streamlines is preferred. For nonstreamline networks, large errors
may be associated with streamline interpolation procedures for nonequilibrium flow cal-r .«,*.
dilations, as discussed by Sedney (ref; 1). For two-dimensional flow fields, a grid net- ..-,>
work following the flow streamlines is readily obtained. Such a system is employed in ;
references 2 and 3 for the calculation of chemical reacting nozzle flow fields and super-
sonic combustor flow fields, employing a "Viscous" characteristics technique. In this •,... v
approach, a uniform marching step Ax is taken, new streamline grid points are obtained,
and characteristic data are obtained by interpolation on the initial data line. Such a ,:
scheme can readily be extended to three dimensions via the reference plane approach. ,
This approach involves the definition of a reference plane system in which the threeT
dimensional volume under consideration is spanned by an appropriately selected series .
of planes which intersect the boundaries of thr. considered volume. The equations of
motion within the reference planes are eV essed in a quasi-streamline coordinate system,

• . ' - • - . * • '
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where quasi-streamlines are the projections of thej actual stream surfaces onto these
reference planes. Then, although the actual streamlines are not traced, streamline
interpolation procedures are minimized.

In addition to minimizing streamline interpolation procedures, use of the reference
plane approach has other distinct advantages. By developing the equations of motion with
respect to different reference plane systems (Cartesian, cylindrical, and line source),
complex geometric configurations may be analyzed. In figure 2(a), a reference plane net-
work is depicted for a typical nozzle module, wherein the line source system shown alle-
viates the need for adding reference planes as the sidewall opens. The addition or dele-
tion of reference planes is provided for automatically, based on their proximity to walls.
A more complex situation is depicted in figure 2(b) for the flow field downstream of the
modules. For this calculation, a combination of several systems is employed and provi-
sions are included for automatic switching from one system to another as the character
of the boundary surfaces changes. The reference plane system also caters to the usage
of reference plane characteristics at all boundary points. This approach' is generally
recognized as the most accurate boundary calculational procedure (ref. 4). However, it
proves cumbersome when employed in conjunction with nonreference plane networks due
to the complex interpolation procedures then required.

The reference plane characteristic technique has been widely used for the calcula-
tion of three-dimensional supersonic flow fields, and the authors had previously developed
a program employing this technique for the calculation of nozzle exhaust flow fields (refs. 5
and 6), which is in current usage at NASA Langley Research Center (refs. 7 and 8). That
program, as well as most reference plane characteristic (refchar) codes in common usage
(refs. 9 and 10), employs an inverse scheme wherein interpolations are performed to obtain
data at the intersection of the quasi-characteristics with the initial data surface. Com-
parisons of such refchar codes with shock capturing finite difference codes (ref. 11) have
led to the general conclusion that such difference codes are better able to analyze complex
flow fields with multiple secondary shocks. From experience gained with the authors'
original refchar code, it was felt that the inability to successfully analyze such flow fields
was primarily due to the inverse interpolation procedures employed. Such procedures
tend to ignore the presence of weak waves by allowing the quasi-characteristic lines to
arbitrarily cross each other. The numerical diffusion associated with these interpolations
can become significant, particularly when the local Courant number (ratio of overall
marching step to local maximum allowable marching step) is much less than one. The
smearing of these weak waves is enhanced by resorting to higher order interpolations on
the initial data line.

To treat complex multiwave flow fields and still retain the advantages that reference
plane methods afford, two new numerical codes have been developed. Program CHAR3D
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is a refchar code which employs the wave preserving network depicted in figure 3 (a) as ^
compared to the standard inverse network of figure 3(b). This new network tends to pre-
serve wave systems and secondary shock waves have been successfully captured with it «
with a minimum of smearing. In addition, CHAR3D employs a nonisentropic pressure-
density relation along, streamlines, to calculate shock .entropy losses and utilizes conser- ^
vation variables in constructing derivatives normal to the reference plane. Program
BIG MAC is a reference plane finite difference code utilizing a quasi-streamline grid in 55

•"- • • u' . * . • • t«

the reference planes as depicted in figure 3(c). BIGMAC captures shock waves via the
use of conservation variables in conjunction with a one-sided difference algorithm. -,,

SYMBOLS . . . . . . . f

a e equilibrium sound speed, ft/sec (m/sec) . . . . . .

Cv specific heat at constant volume . . . . . . . f ,

E(k) conservation variables (k = 1 to 6) defined in text (see eq. (1))

F(k) conservation variables (k = 1 to 6) defined in text (see eq. (1))

G(k) conservation variables (k = 1 to 6) defined in text (see. eq. (1))

' • • • . - - , ' . ' 'tvV*
H(k) conservation variables (k = 1 to 6) defined in text (see eq. (1))

. ' , . ' . j • ' ^ y
H stagnation enthalpy, ft2/sec2 (m2/sec2)

h static enthalpy, ft2/sec2 (m2/sec2)

hj,h2,h3 defined in text (see eq. (1))

; . - ' • . ' . • I .:!•*.' v?
I index of data point in reference plane

. '- '•- . ' ' : - • - . / ' . . . : - , ' • : • • .'-.-.i.": • ' . - l i
J index of reference plane

Jj,J2 defined in text (see eq. (1))

K index of marching step . . . . .. *

M Mach number in reference plane ̂  q/ae
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ft unit normal to surface

P ; pressure, Ib/ft2 (N/m2) '

q ' 'magnitude of velocity in reference plane, ft/sec (m/sec)

8 entropy, ft2/sec2-°R (m2/sec2-K)

T temperature, °R (K)

¥ flow velocity vector

u velocity component in marching direction in reference plane, ft/sec (m/sec)

V velocity component normal to reference plane, ft/sec (m/sec)

w velocity component in reference plane normal to marching direction,,
ft/sec (m/sec)

x,y,z Cartesian coordinates

r,6,z line source coordinates

x,0,r cylindrical coordinates

T equilibrium isentropic exponent

p density, slugs/ft3 (kg/m3)

* fuel-air equivalence ratio

0 velocity direction in reference plane, rad

ty velocity direction with respect to reference planes, rad

Arrows over symbols denote vector quantities. Coordinate subscripts denote dif-
ferentiation with respect to the coordinate.

/) '. ;
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GOVERNING EQUATIONS

Program BIGMAC

The equations of motion for the steady inviscid flow of a gas mixture in chemical
equilibrium, written in conservation form with respect to the streamline reference plane
system described, are:

Ex + Fy + Gz + H- l tan a= 0

where tana is 8z/9y at constant x and for k= 1 to 6

pu

P + pu2

puv

puw

puH

= h2h3 = hjh3

pv

puv

P + pv2

pvw

. pvH

pw

puw

pvw

P + pw2

pwH

pw*

H(k) =
-J2hi(P

0

0

System

Cartesian
Line source
Cylindrical

Jl

0
1
0

J2

0
0
1

hi

1
1
1

h2

1

X

z

v h 3

1

1
1

(1)

Program CHAR3D

In nonconservation form, these equations (in continuous regions of the flow field)
may be written
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V • (p7) = 0

p(V • V)V + VP = 0

v • VH = o

v • v$ = o

(2)

The equations may be cast in characteristic form with respect to the reference plane
systems described by writing the above equations in scalar form and transposing those
terms not involving variations in the x- or z-direction onto the right side. Then, the
left side is identical to the corresponding two-dimensional system in the X,Z plane.
The equations in reference plane characteristic form (ref. 6) may be written:

Along

2± _ dg. _ M cos 4> sin <ft ± /3

M2 cos2 «>) - 1

where M2 = (u2 + w2)/a2 and )32 = M2 - 1

(3)

where

and

Along

in p) = dx (4)

= (sin> - X± cos n P)

*- <f>y tan ty (cos ̂  + A. sin 0) + tan

dx = - + Jr d(ln x)
2

d(tan P) + G dx (6)
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where

G =
COS 0

(In P).

FM2

y / o w
^- + tan i// (tan fy) + tan )// U + tan^ <W(Ji cos <j> + 3% sin

The flow deflection angles 0 and V, velocity components u, v, and w, and stream-
line and characteristic orientations X* are shown in figure 4. A detailed description
of orientations with respect to the various reference plane systems may. be found in ref-
erences 5 and 6. '

CALCULATIONAL PROCEDURES • • ' , , , „
' • ' ' '.. ..' - - _/ ',

~>

Interior Point Calculation . ' • • • . . • • - v • • , - , •

Properties are desired at the grid point (I,J,K) shown in figure 4. The allowable
step size Ax is determined by satisfying the CFL condition. For BIGMAC, this requires
that the intersection of the Mach cone from (I,J,K) with the initial data surface falls within
the numerical domain as depicted (i.e., the quadrilateral (I,J+i)," (I-1,J), (I,J-1), (I+1,J)).
Note that the effective numerical domain for the characteristic calculation includes the
points I + 1 and I - 1 on planes J - 1 and J + 1; hence, a larger step may be taken

BIGMAC.- The MacCormack (ref. 12) scheme, used to difference equation (1), yields

- 2 Ax Fy + Gz - j-1* EZ . _2 Fz tana + fl (7a)

\ o • o • 1J

where

tan a

af

W-MM*1
9ZI,J = V'l + ^A^
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Ayl - yr,J - yl,j-l
Azl = 2I,J'ZI-1,J

Ay = y • y

for any variable f and

%J
ZI,J

where

ET,J = - 2 - F tan 3 (7b)

dz

Zf , = Z, , + U-S AxI,J i|J \ho u/
V ° XI,J

r,j Ax

The physical variables are obtained by the following iterative procedure. A value
of u is assumed. Then,

(8a)

P = E(2)- E(l)u (8b)
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v = E(3)/E(1) (8c)

* ' " , ' " " " " ' ' • - " « • _ , ' - i * >

: - w = E(4)/E(1) • . (8d);

• . * • • ' . • ' • - . ^
H= E(5)/E(1) , < -, . • (8e.)

.̂

* = E(6)/E(1) (8f)

h = H - i(u2 + v2 + w2) . (8g)
&

The following three parameter curve fits (based on data from ref. 13) are incorporated
into this code and are described in detail in the appendix of reference 6.

h= h(P,*,T) . • (9a)

P = p(P,*,T) (9b)

T= r(P,$,T) , .

The value of h obtained in equation (8g) yields T via an inversion of equation (9a).
Equation (9b) yields an alternate value of the density compared to that obtained in equa-
tion 8 (a). The value of u is perturbed and the procedure repeated until the two values
of density agree to within a specified tolerance.

CHAR3D.- Point I in figure 5 is located along the quasi- streamline by the relation

zi,j = v + (a ten V + b ten ^i,j) **
where a = 1, b = 0 in the predictor step and a = i, b = i in the corrector step. In

£i ft -

this new wave preserving network, the calculation proceeds upward from the lower bound-
ary where points (T-1,J) are calculated for all reference planes J to second order prior
to calculating points (T,J). In addition to the standard initial data array (the, points (I,J)),
an extra array (I,J) is required. To calculate properties at (T,J), the standard initial data
grid in the reference plane (I-1,J), (I,J), and (I+1,J) is employed to calculate the forcing
function terms involving derivatives normal to the reference planes. Properties are
known at points H^, Gj, and I - 1 from the calculation of point (I-1,J) to second order.

Point A is located between Hj and Gj -on the quasi- characteristic X+(AI)
where X* is defined in equation (3). All properties (including forcing functions) are
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obtained via linear interpolation1 between Hj and Gj. Then, H2 is located between
I and 1+1 such that the downrunning quasi-characteristic from G2 (or B) passes
through (I,J). To first order, properties at (T,J) are calculated using points B and A,
where Pg and $B are determined using compatibility relations (eq. (4)) along IB
and H2B.

Then P? and <t>? are calculated employing the compatibility relations

£M• aFA

and (10)

Remaining properties are determined at I via the following streamline relations:

(tan V) = (tan /
T !•>

tan
(11)

H f = H I - COS 0 ">/ \COS <p ,
A ***AxT (12)

ftan ty , \ u/tan ̂ /
^r $tr +b ^r

COS
(13)

and in continuous regions of the flow

(p/pr)_ = (P/pr) . <jafe2J> (P/pr) 1 + bfelL4 (P/prj 1 "\\ /^ /T \ i * j, \ cos rf) \ /f /y cos (^ v ' xy L f
. - ' . ' v.L J I L V

, * Linear interpolation along a characteristic line calculated to second order is con-
sistent to second order. (See appendix.)

669



.The flow velocity is obtained via the relation

Vj = 1/2 b. - h/Pf)$f>TfM - (15)

where T- is obtained via an inversion of equation (9b) /'with p_, P., and $_ known\

and hj is obtained! employing equation (9a). Then, Fj is obtained from equation (9c)

and a2, = T-1

This calculation is performed for points I in all reference planes to first order.
Then, cross derivatives 8/8y are evaluated at I employing the relation

I) -(ft) - — (ft)J/x,z \ J/X,TJ \ /x,y

where

Ayl = yl,J " yf,J-l Ay2 = yf,J+l

tan a = \oy
'X,TJ

fr,j-
. Zf T - Zf

x,y M I-

Derivatives are made the same way at the initial station I, except here 8f/3z is eval-
uated b y . . . . .

- /af \ =- f i+l,J" f i ,J
. . \9Z/ . ' • .* : . Zu.1 T ~ ZT- T ; . - . . • ' . • . , < • ' • • : •\ 'x,y 1+1,J I,J ' •

CHAR3D, in addition to the centered difference algorithm described above, has the
option of evaluating cross derivatives via an alternating one-sided difference algorithm.
For this option, derivatives are evaluated as described in the section for BIGMAC. Cross
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derivatives are required for the variables ' P, 0, 4>, H, $, and P/p1". In evaluating
cross derivatives for P, 0, and »//, conservation variables are employed as follows:

;' • " ' ~x
,- -Py = F(3)y- F(l) Vy - V F(l)y .

(h = ' '
. y - •

. (tan

; cos 0 - Uy sin

qvv - (uuv + wwv) tan
= y V y 'y;

(17)

where

and

u = q cos 0 w = q sin $ v = q tan

q2 = u2 + w2

E(3)y-

U y -

E(2)y - - u E(l)y I

E(4)y - w

(18)

"y E(l)

The conservation variables E(k) and F(k) are given by equation (1). The use of .con-
servation variables in construction of these cross derivatives tends to suppress oscilla-
tions, that occur when employing physical variables to difference across shock waves.
However, the use of a one-sided difference algorithm in conjunction with CHAR3D tends
to produce spurious results in regions of large cross flow.

In the characteristic reference plane algorithm, cross flow variations are expressed
via the forcing function terms F* appearing in the right side of the compatibility rela-
tions (eq. (4)). These terms are assumed to vary mildly within an integration step. When
a one-sided algorithm is employed to evaluate cross derivatives in the vicinity of shocks,
the values of the forcing function terms may vary greatly between the predictor and cor-
rector steps. In addition, the numerical domain of dependence is somewhat vague for the
characteristic reference plane approach in conjunction with one-sided differences, so that
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part of the problem may be due to stability. . The recommended approach for evaluating
crqss derivatives in CHAR3D is to employ conservation variables in conjunction with a
centered difference algorithm, although this matter requires further study.

In CHAR3D, secondary shocks are captured as rapid changes spread over approxi- ,
mately three grid points. These discontinuities are preserved by use of the wave network
described which performs all interpolations off quasi-characteristic surfaces. The
entropy change associated with these shocks is evaluated employing a nonisentropic
pressure-density relation (illustrated here for a perfect gas)

(19)

For a shock of strength £ (pressure ratio across shock), this change is determined
employing the relation (for perfect gas)

ASi- In•ys— = In - Tin-!
(r+"i)| + (r-1)
(r- " ( r + i ) (20)

where AS is the entropy change along a streamline produced by the captured shock.
This relation involves only the pressure distribution in the vicinity of the shock and is
readily applied in regions of noninteracting shocks as follows. Let

(r -. (r +

Assume a shock is spread over the marching interval K = 1 to 6 (fig. 6) for a typical
quasi-streamline. Then 1 represents free stream conditions for this shock. The
entropy change in the interval K - 1 to K is then expressed by

where

= In

= P K

Then
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Since the shock geometry does not appear in the entropy jump relation, the entropy rise
associated with extremely complex three-dimensional shocks can be accurately obtained.
Special provisions have been incorporated into "the program for the computation of singu-
lar points at the juncture of intersecting shock waves and/or shock reflection points. At
such points7 the streamline undergoes a discontinuous pressure rise corresponding to that
through both shock waves. If the shock intensities are different, an entropy discontinuity
occurs separating the different zones, and a vortex of infinite intensity results. Numeri-
cally, the entropy procedure, described would predict an entropy rise associated with this
pressure jump. Theoretically, this occurs in the limit of vanishing mass flow, while
numerically the finite mass within this region would lead to unduly large entropy levels.
Special coding has been incorporated at such singular points to suppress these "numerical"
peaks. .

Wall Point Calculation

Solid surfaces are prescribed via discrete contour data and fitted via a newly devel-
oped method based on the use of partial cubic splines (ref. 14). The surface fitting is done
by a separate geometry package and the array of coefficients generated is stored on tape.
BIGMAC and CHAR3D employ this coefficient data in conjunction with a surface interpola- :

tion procedure yielding highly accurate values of the dependent variable and surface unit
normal.

In both BIGMAC and CHAR3D, wall point calculations are performed employing a
reference plane characteristic calculation. In figure 7, CD is the intersection of the
reference plane y = y^ with the surface .z = f(x,y). Reference planes are oriented so

- ^ • ' ; -
that the surface normal lies nearly within the reference plane. For sidewall calculations,
this is accomplished via local coordinate rotations.

In CHAR3D, P^, 0^, and I]/Q are evaluated utilizing the characteristic compat-
ibility relation (eq. (4)) along BC, the normal momentum equation (eq. (6)) along the
streamline projection CD*, and the relation V • n = 0 applied at C, which yield the
relation

sin 0C = ft^c cos <t>c + (fy)c tan ^c (21)

The compatibility equation yields a relation between P£ and 0^, and the normal
momentum equation yields a relation between P£ and ^. This system is solved in
the context of the wave preserving network previously described by a simple iterative
procedure. . - . . ' . '
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In BIG MAC, this iterative procedure is eliminated by combining the normal momen-
tum equation with the quasi-streamline momentum equation, yielding the following system
of equations for PC, (w/u)c,and (v/u)c:

(tan tf> sin

where

Rl = -1

fP tan »// cos ft \

'CD'

°]

0

-(fy)c

-i

(w/u)c

In PC

(v/u)c

'=

Rl

R2

R3

(22)

R i r ~i
=. A ESL ~ tan ^ (B cos ^ + C sin 0) Ax

ou^hi hoho L ' J ^jj*

and

/vP,,
A = pvv + J,

B = F(2)y - u F(1L - Jy y

= F(4) -wF(l) v - Jy y h3

ESL = F(3)y ' y + J2
F(4)

Then, relations applied along the streamline projection CD* yield remaining flow var-
iables at C, in conjunction with the equilibrium curve fits (eq. (9)), for both programs.
The process is then repeated with coefficients averaged for second order accuracy.
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• ' • : • : -.ii-it-::^; ',v: : . ; . . • ,;..,- -InteriorCorner " • ' • • ' " • • • • > ' • ' . > . ' : • ' • • • • . ; • • . . : • • •

interior corners occur in the internal modules' and are discretely treated as the '
intersection of specified surfaces, as depicted in figure 8. A detailed description of these
corner calculations with respect to the various reference plane coordinate systems may
be found;in reference 6. The procedure is outlined here for a Cartesian system where

4he. intersecting surfaces are prescribed by z = f (x,y) and y = g(x,z).
3 "»a;. ' ".-• -

The relation V • n = 0 applied to both intersecting surfaces at C (the point to be
calculated) yields the flow deflection angles ,0Q and J//Q explicitly

(23)

Then, a redundant procedure is employed wherein reference plane calculations for the
pressure at C are performed in the reference planes z = ZQ and y • = y^. This yields
two values of pressure P^1 and PQ which differ due to evaluating ,the cross deriva-i z
tive forcing function terms in the compatibility relations via backward differences. A
weighting of these pressures is performed by accounting for the relative wave strengths
in each of these reference planes. This gives the stronger weighting to the calculation
performed in the reference plane containing the dominant waves via the relation

p _C ~

Streamline relations are performed along the corner CD, and the process is repeated for
second order accuracy.

Shock Point Calculation

A discrete three-dimensional shock point calculation is performed for the nozzle
underexpansion shock, which propagates into the nonuniform external stream surrounding
the vehicle. In figure 9, subscript 2 : refers to the shock free stream. Shock geometry
is defined in terms of the direction cosines of a and /3, where /3 is the angle made by
the shock exit with the reference plane" and a is the crosscut angle. "For given 'values
of a and p, the shock normal is
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ns » tx cos a sin /3 - ty sin a + iz cos a cos /3 (25)

where ix>iy»iz are the^nit vectors in the x-, y-, and z-directions. The characteristic -
relations on the free stream side yield flow properties at €2- The Hugoniot relations
in a shock normal system yield properties at Cj. The compatibility relation along AjCj
yields an alternate value of pressure PCT Tne anSle 0 is perturbed locally until PQ

from the jump relations equals P£ from the compatibility relations to within a speci-cl
fied tolerance. This procedure is performed in all reference planes, and the process is
then repeated using updated values of the crosscut angle a. The complete details of this
procedure including rotation into the shock oriented system, jump relations, and iterative
procedures may be found in references 5 and 6.

'f

Contact Surface Calculation

A three-dimensional contact surface is significantly more complex than its two-
dimensional counterpart, since the streamlines on each side of the discontinuity not only
differ in velocity magnitude but also may be highly skewed with respect to each other. In
figure 10, a and /3 are as previously defined for the shock calculation, and the stream-
lines passing through C emanate from DI on the lower side and D2 on the upper
side. * Hence, discontinuities exist in the flow angles 0 and. fy at point C. The bound-
ary relation V • n = 0 applied at Cj and G£ yields the relations .

sin (B - 0C ) + tan a tan .!/£ = 0
i A / 1* ,: (26),

sin (Q - 0<O + ton a tan ^c9 = 0
V • "/ **

Then, characteristic compatibility relations may be applied along AjCj and B2C2
yielding P^. - 0^ and P£ - 0£ relations. The normal momentum relations

applied along the streamline projections C^D^ and C2D^ yield relations between

P£ - \f/g and P(^ - V'c • For a given value of the crosscut angle a, a value of /3

is obtained via an iterative process satisfying the above relations and the boundary condi-
tion P£ = P£ . This procedure is performed in all reference planes and repeated with

1 2 •
updated values of the crosscut angle a. Again, complete details may be found in refer-
ences 5 and 6. - • ' '

RESULTS

Internal corners represent just one segment of the overall boundary calculational
procedure and hence must be calculated as part of the overall marching procedure.
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Recently, inviscid corner flow fields have been studied in detail (refs. 15 and 16) utiliz-
ing conical coordinates in a timelike marching procedure until conical invariance was
achieved. While these schemes do yield the flow field details in the corner region, they

<are not applicable to general three-dimensional flow problems which are nonconical.
" ' " " • .
Corner results are presented using the general interior corner point calculation

outlined above and previously described in references 5 and 6. Results for a 5° double
expansion corner are depicted in figures 11 and 12. These results were obtained with
CHAR3D starting from uniform initial flow conditions fP^ = 845, M^ = 2.94, 0 = fy. = 0)
with an 11 x 11 Cartesian grid. Results are shown after nine axial marching steps and
the axial pressure variation at the corner is also indicated. Similar results have been
obtained with BIGMAC.

An expansion-compression has been calculated using BIGMAC which yielded the
results depicted in figure 13. These results were obtained with an 11 x 11 Cartesian
grid for initially uniform flow (M^ = 2) and are depicted after 10 axial marching steps.
Results are compared with the detailed solution of Shankar (ref. 16) and the experimental
results of Nangia (ref. 17).

Results for the double compression corner, as obtained by BIGMAC, are shown in
figure 14 after 35 axial marching steps. A 12 x 12 line source network was employed
with initially uniform flow at M^ = 3.17. A comparison is made with Shankar's numer-
ical results (ref. 16) and the experimental results of Charwat and Redekeopp (ref. 18).

The above results verify the accuracy and validity of the interior corner procedure
employed and, hence, yield credibility to the application of this procedure for general cor-
ner calculations within "truly" three-dimensional flow fields. .

To demonstrate results obtainable with the new wave preserving network of CHAR3D,
a simple two-dimensional inlet flow field is calculated. Calculation was performed with
a uniform equally spaced initial profile (P * 845, M = 2.94) employing 11 and 21 grid
points. Wall pressures are depicted in figures 15 and 16 for three shock reflections.
After the fourth reflection, the flow on the upper boundary is subsonic, and thus the pro-
gram could not calculate past this region. Note that both the pressures obtained as well
as the propagation rates are in excellent agreement with the exact solution and no addi-
tional smearing results from wall reflections.

A complex internal module flow field calculation (square nozzle) as depicted in fig-
ure 17 has been performed using BIGMAC. This flow field is characterized by the initial
interactions of expansion waves emanating from mutually perpendicular surfaces and the
subsequent interaction of enveloping shock systems generated by recompression on the
upper wall and sidewall. This calculation employed a 21 x 11 Cartesian network, with
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additional reference planes being inserted as, the. sidewall opened. At the straight section
the final network was 21 x 18. Uniform flow properties (p^ = 845, M,^ .= 2.94jswere
stipulated at the nozzle entrance. Pressure, contours on the symmetry plane are depicted
in figure 18. Of particular interest is the intersection of four three-dimensional, shpck
surfaces at x = 17 and z = y = 0. This results from the reflection of the envelope,
shock produced by the sidewall and the reflection of the envelope shock produced by .the
upper wall, resulting in an approximate 15/1 pressure ratio at this location. The axial
pressure variation along the corner is depicted in figure 19 and pressure variations along
several streamlines in the symmetry plane are depicted in figure 20.

'" • *-l - * , .'

All results presented employed a perfect gas option with r = 1.4 for the sake of
simplicity.. The equilibrium option has been extensively used and tested (refs. 5, 6, 7,
and 8) and provides.no further insight into these problems. The results were all obtained

" J - ' - ' ' ' ' i\ ' :.'.
with relatively crude grid networks, yet provided accurate and detailed flow field results.
Further grid refinement would yield somewhat better flow resolution, if desired or neces-
sary. It should be noted that due to the use of disc storage techniques, as employed in
both programs, flow field resolution is riot limited by machine core storage. " - - *

CONCLUDING REMARKS ; -

Two new computer codes have been developed for analyzing complex three-'
dimensional supersonic flow fields. Their use of a quasi-streamline network in conjunc-
tion with a reference plane grid allows for the calculation of complex geometric config-
urations and caters to highly rotational, variable composition flow fields. Both BIGMAC
and CHAR3D are currently running internal flow codes with perfect gas or equilibrium
hydrogen-air chemistry options.

CHAR3D employs a totally new grid network which caters to both the following of
streamlines and the preservation of wave systems. This is done in conjunction with an
axial marching procedure. Hence, in addition to its application to three-dimensional ref-
erence plane systems, it is equally applicable to "viscous" characteristic techniques,
since forcing functions are also employed.

BIGMAC employs the commonly used MacCormack algorithm in conjunction with
conservation variables and hence falls in the general classification of finite difference
shock capturing codes. However, it does this in conjunction with a reference plane
streamline grid which provides significant advantages for the flow fields treated.

Both programs treat complex three-dimensional flow fields accurately, locating
secondary shock waves and evaluating flow field properties in their vicinity including
wall and interior flow entropy. From our limited experience with these codes, CHAR3D
appears best suited to flow fields wherein the predominant wave propagation occurs within
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the reference planes. For such flow fields,' CHAR3D with half the grid points yields
results' cdmparable to those of BIGMAC. In addition, no overshoots occur in the vicinity:

of'shock waves and a larger marching step may be taken. However, when the assumption
of a mildly varying forcing function is violated (i.e., in the vicinity of strong crosswise
compressions) BIGMAC would be the preferred code. This program has no preferen-
tial direction and has been shown capable of calculating arbitrary multishocked three-
dimensional flow fields.

Our current effort is devoted to extending both these codes for the calculation of
the flow field downstream of the engine modules. This calculation is performed in the
authors' previous code and similar procedures will be incorporated.' "Future efforts will
involve the incorporation of finite-rate hydrogen-air chemistry, frozen chemistry, and •
associated sudden freezing criterion. In addition, the extension of these codes to mixing
calculations along the plume interface is anticipated. " ;

It should be noted that while the calculation of nozzle exhaust flow fields has been
specifically discussed, both codes are capable of analyzing quite general three-dimensional
flow fields. Results to date, indicate that these techniques yield minimum smearing of cap-
tured shocks, even after multiple reflections and/or intersections. Thus, these codes
appear capable of calculating inlet type flow fields and can readily be modified, to calculate
the simpler problem of external supersonic flows.
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APPENDIX

LINEAR INTERPOLATION ON CHARACTERISTIC "

A SECOND ORDER PROCEDURE

In previous reference plane characteristic codes (employing inverse interpolation
procedures), data are interpolated on a noncharacteristic surface. To achieve full second
order accuracy, most codes resort to higher order interpolation procedures. Such pro-
cedures are helpful in smooth regions of the flow field but are detrimental in regions of
weak discontinuities. In such regions, linear interpolation is more accurate as explicitly
discussed by Sedney (ref. 1). The authors had performed an independent study (unpub-
lished) on such higher order interpolation procedures arid concluded that for general
multiwave flow fields, linear interpolations provide the most accurate results.

Now, with this new "wave preserving" network, all interpolations are performed on
characteristic lines. Employing a linear interpolation procedure on a characteristic line
calculated to second order is consistent with a second order algorithm. This point can
be inferred from Ferri's article (ref. 19) but apparently, is not universally accepted. (See
ref. 1.) Hence, a simple proof of this statement is presented.

Along any line AC , a series expansion for the pressure and flow deflection are
written ' , ?, ... .. ' . ,.. ;.. ,, '

p • Pc • PA - (PX)A *x - (PXX)A

but,'

where x denotes distance along AC.

Substituting 'equation (A3) into equation (Al) and equation (A4) into equation (A2)
results in

pc =

(Ax/2)v " IS'"/" \ *v >^j
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APPENDIX - Continued

The previous expressions are valid along any line AC. Assuming that AC is a down-
running characteristic, the compatibility relations at points A and C are

' ' " ' "

° (A?)
0 • ' ' - • " . . " ' (A8)

where;

• I * - . - " *A.-£- ' -. ' • • . " . . . . . . / ' - "
Vi FM2P

Solving the system of equations (A5) to (A8). for (PX)A + (px)c results in -

(PX)A = AxfAc2- AA) h - *A) - AC(PC - PA)]

and • • • ; .. •

(px)c - AX (AC
2- AA) [»c -»A) - AA(PC - P

Now consider a point x* between A and C. The pressure at this point to sec-
ond order is given by .

(All)
.

where (Px)^
 an<* (px)c are Siven bv equations (A9) and (A10). Up to this point, all

relations are quite general and have not required that a second order compatibility rela-
tion exist between A and C. We now make use of this relation by stating that by sec-
ond order, we imply that the relation

(Ai2)

is satisfied between points A and C in a convergent fashion as detailed in reference 19.
Then, substituting equation (A12) into equations (A9) and (A10) results in

(PX)C - (PX)A • o . .
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APPENDIX - Concluded
V " •

and .

Hence, substituting these relations into equation (All) yields

fc*.-x,

which clearly demonstrates that a linear interpolation for pressure (or flow deflection)
on a characteristic calculated to second order is consistent with a fully second order .
approach. .
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TOP VIEW

(a) lii line "source system for internal nozzle module. JW designates sidewall.

VEHICLE rUNDERSURFACE

BOUNDING
STREAM
SURFACE

CONTACT

PROJECTION OF COWL
ONTO PLANE **CONST.

PROJECTION OF SIDEWALL
ONTO PLANE x=CONST.

EXTERNAL SIDEWALL -V
CALCULATION IN Y,Z SYSTEM

(b) Downstream of modules.

Figure 2 . - Reference plane configuration. ' ' • • • ' • • • • • :
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STREAMLINE
PROJECTION

O WAVE GRID POINT .

O STREAMLINE GRID POINT

(a) Reference plane grid network for CHAR3D.

(b) Standard reference plane
characteristic network.

£-
/
-v-d

A

(c) Finite difference network.

Figure 3.- Reference plane networks.
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I-l $

Y,v

INITIAL
SURFACE

J-l

Figure 4.- Interior grid point.

688



REFERENCE PLANE J (^CONSTANT)

:—-o O STREAMLINE GRID ARRAY

• INTERMEDIATE POINT
(CHARACTERISTIC
CALCULATION)

>X" D EXTRA CHARACTERISTIC
ARRAY (INTERPOLATED
ALONG CHARACTERISTIC)

— X

Figure 5.- CHAR3D interior point grid.
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4 5 6

Figure 6.- Entropy calculational procedure. Pj is initial pressure;
Pj is final pressure.
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CHAR (X")

PLANE y = CONST.

SOLID BOUNDARY
Z*f(x,y)

CHAR (X")

Figure 7.- Solid boundary calculation.
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y=g(x ,z )

z* f (x ,y )

Figure 8.- Internal corner calculation.

B
2 IS FREE
STREAM

Y SIDE

B

REF.
PLANE

CONTACT
SURFACE

REF
PLANE

Figure 9.- Shock surface calculation. Figure 10.- Contact surface calculation.
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\

ISOBARS IN 5* EXPANSION CORNER

\ i i \
,400 i450 J5OO 1550 .

\ \ I I ' P .\ • . . n... »

\
\ 1 1 1

! .l-,l '

*

lOOOr AXIAL V1^RIATION OF CORNER
PRESSURE

P 500

.2

* . '"' ̂  "j • '

Figure 11.- Results for 5° expansion corner. Pc is corner .pressure;
P is two-dimensional wall pressure.
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P-845
M-2.94

6i-

PxK)

O CHAR 3D II POINTS
X CHAR 3D 21 POINTS

EXACT SOLUTION

Figure 15.- Upper wall pressure distribution for 10° wedge inlet flow field.
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Figure 16.- Lower wall pressure distribution for 10° wedge inlet flow field.
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Figure 19.- Streamline pressure distribution at sidewall corner of square nozzle.
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Figure 20.- Streamline pressure distribution in plane of symmetry of square nozzle.
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