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SUMMARY

This paper describes a method of estimating the location of transition
in an arbitrary laminar boundary layer on the basis of linear stability
theory. After an examination of experimental evidence for the relation
between linear stability theory and transition, a discussion is given of
the three essential elements of a transition calculation: (1) the inter-
action of the external disturbances with the boundary layer; (2) the growth
of the disturbances in the .boundary layer; and (3) a transition criterion.
A brief discussion is given of the computer program which carries out these
three calculations. The program is first tested by calculating the effect
of free-stream turbulence on .the transition of the Blasius boundary layer,,
and is then applied to the problem of transition in a supersonic wind tunnel
The effects, of unit Reynolds number and Mach number on the transition of an
insulated flat-plate boundary.layer are calculated on the basis of experi-
mental data on the intensity and spectrum of free-stream disturbances.
Reasonable agreement with experiment is obtained in the Mach number range
from 2 to 4.5.

INTRODUCTION

One of the most difficult problems in theoretical aerodynamics is the
prediction of transition from laminar to turbulent flow, a problem that is'
especially severe for supersonic and hypersonic boundary layers. Examples
ranging from high-velocity reentry vehicles to the wind-tunnel testing of
transonic airfoil sections can be put forward to illustrate the dramatic
effects on flow characteristics which result from differences in the loca-
tion of transition. The search for some method of estimating whether the
boundary layer will be laminar or turbulent for a particular external flow
has mostly focussed on empirical correlations of some type. These methods
are limited in scope and should be replaced by a more fundamental approach
which involves the calculation of the development of the perturbed boundary
layer as it responds to its disturbance environment. The direct solution
of the three-dimensional time-dependent Navier-Stokes equation of compres-
sible flow, which could be of great benefit, still lies in the future. The
use of turbulence model equations is a promising approach although it re-
mains to be demonstrated if enough of the complexity of the transition
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process is retained in these time-averaged equations, which were primarily
intended for fully developed turbulent flow, to make them useful as a pre-
diction technique. A third possibility is the use of linear stability
theory. This approach might at first appear to be of little value because
of the evident nonlinearity of the final breakdown of laminar flow. However,
it does have the considerable advantage that within the restrictions of line-
arity and locally parallel flow one is dealing with solutions of the unsteady
Navier-Stokes equations. Furthermore, in many disturbance environments most
of the region preceding transition will involve a disturbance of small ampli-
tude. In these cases, the process by which the dominant external disturb-
ances form an organized wave structure in the_boundary layer, and the sub- .
sequent growth of the internal boundary-layer disturbances both lie within
the scope of a linear theory. Nonlinearity occurs only in a small region
immediately preceding transition. Consequently, it should follow that at
least the change in the transition Reynolds number as the mean boundary layer
or the disturbance environment changes can be calculated from linear theory.

In reference 1, a detailed investigation was carried out to determine
whether in a supersonic wind tunnel the change in the transition Reynolds
number of a flat-plate boundary layer with Mach number and surface cooling
can indeed be accounted for by linear theory. The results reported there
are sufficiently promising to encourage taking the next step, which is to
use linear theory to make a quantitative estimate of the transition Reynolds
number. It is the purpose of this paper to describe a numerical method and
computer program which combine information about the external disturbances
with stability theory and a transition criterion to provide estimates of
transition location in a wide variety of cases. As examples, the effect on
transition of free-stream turbulence in low-speed flow, and of Mach number
and unit Reynolds number in a supersonic wind tunnel are given.

SYMBOLS

A disturbance amplitude

Aj free-stream disturbance amplitude

A0 initial disturbance amplitude

A amplitude transition criterion

c phase velocity, ou/a

E(oo) energy density of normalized power "spectrum

f frequency
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dimensionless frequency, c»

L .' length scale

* /„ *2

integral length scale of turbulence
*"

M . '.•:•• -.Mach number

p' . pressure fluctuation

Re .free-stream x-Reynolds number

RL Reynolds number based on LX̂ . •

R.A displacement-thickness Reynolds number

u', v' velocity fluctuations • •

U . mean longitudinal velocity ;; •

U average source velocity
s

x,y,z longitudinal, transverse and lateral coordinates

a complex wave number in x-direction, ot + ia.

P complex wave number in z-direction^ 3 + ip.

Y ratio of specific heats

(j, viscosity coefficient

V kinematic viscosity coefficient

T Reynolds stress ratio
Jx

(T ) Reynolds stress transition criterion
R t -

i|t wave angle, tan"x(P /ot )

GO circular frequency

Superscripts:

( ) dimensional quantity

( )' .fluctuation quantity
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( ) average quantity "

Subscripts:

t transition

i free-stream condition

o neutral-stability condition

LINEAR STABILITY THEORY AND TRANSITION

The idea of calculating boundary-layer transition by means of linear
stability theory would be on much more solid ground if it were possible to
point to experimental evidence that there is indeed a direct quantitative
relation between linear instability and transition. Schubauer and Skramstad
(ref. 2) demonstrated the correctness of the theory of Tollmien and Schlichtihg
as a description of the behavior of small disturbances in the laminar boundary
layer preceding transition. They also showed that the location of transition
could be changed by varying either the frequency or amplitude of an artificial
disturbance, but no quantitative results were given.

Apparently the only published" experiment that does offer quantitative'
results in this regard is the one described in reference 3 by Jackson and
Heckl. An axisymmetric model of circular cross section on which a Blasius
boundary layer formed was mounted in a wind tunnel of moderate turbulence
level (0.2 - 0.4%). A loudspeaker was placed inside the model and the sound
introduced into the boundary layer through a circumferential slit located
12 in. from the effective start of the boundary layer. Transition was fixed

-at &- point 15-in. downstream~of the slit for a range of frequencies by ad-
justing the amplitude of the loudspeaker. The amplitude of the disturbance
created in the boundary layer was monitored with a hot-wire anemometer located
in the boundary layer above the slit. Transition was measured by a hot wire
located at the downstream (15 in.) station and was judged to have "occurred
when the disturbance spectrum changed to a turbulent form. Thus the end
rather than the start of transition was being measured.

For a given free-stream velocity Uj (asterisks refer to dimensional
quantities) the frequency and amplitude were varied to find the frequency
which resulted in transition at the downstream station with the smallest
initial amplitude. These frequencies are called the critical frequencies
and are shown on a typical stability diagram in figure 1 where the dimen-
sionless frequency F = a^V^/U^* is plotted against Re, the free-stream
x-Reynolds number, and RK*> the displacement-thickness Reynolds number.
In, terms of linear stability theory, the experimental procedure was equiva-
lent to finding the frequency with maximum total amplification at a given
Reynolds number. Consequently, if the location of transition is determined
by the linear instability of the undisturbed laminar boundary layer, the
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critical-frequency data points should lie along the theoretical line of maxi-
mum amplification. Figure 1 shows that this condition is satisfied. Further-
more, this close relation between transition and linear instability is not
restricted to what are commonly thought of as small disturbances. The transi-
tion Reynolds numbers of figure 1 are between 0.3 X 106 and 1.2 x 106 which
would correspond to free-stream turbulence levels of 0.4 to 1.67o if transition
were caused solely by free-stream turbulence.

Finally, it must be remarked that stability and transition experiments
with artificially produced sound as the disturbance source are notoriously
difficult to carry out, a situation already noted and discussed at some length
in reference 2. It would be highly desirable to repeat the same type of ex-
periment as in reference 3 with a different method of producing the artificial
disturbances .

With some experimental support available for the idea of using linear
theory for transition prediction, it only remains to decide on how to apply
the theory. Any naturally occurring disturbance, will have its energy dis-
tributed over a range of frequencies, and in the most general case its develop-
ment in a boundary layer can only be calculated by considering the separate
development of all frequencies with a significant portion of the total energy.
However, amplification in a boundary layer is selective, and for small initial
disturbance levels the selectivity, or tuning, is sufficiently sharp so that
by the time transition is approached most of the disturbance energy is concen-
trated in a narrow band about the most-amplified frequency. This phenomenon
suggests simplifying ,the application of stability theory by considering only
disturbances of a single frequency. Such a procedure is possible because the
amplification is linear and there is no transfer of energy from one frequency
to another. Therefore, transition will be predicted in this paper on the
basis of the single-frequency disturbance of maximum amplitude at each Reynolds
number. Since the amplitude of a disturbance at any Reynolds number depends
on its initial amplitude as well as on the amplification it has undergone, it
is necessary to consider the initial energy spectrum of the complete wide-band
disturbance to arrive at the single-frequency disturbance of maximum amplitude.

A comparison of the growth of the theoretical single-frequency disturb-
ance of maximum amplitude at transition with the measured growth of the same
frequency component is shown in figure 2 for an insulated flat-plate boundary
layer in a supersonic wind tunnel at Mx = 4.5 and Re/in. = 1.8 x 10

5. The
dimensionless frequency of the two growth curves, F = 0.3 X 10~4, is the theo-
retical frequency of the disturbance of maximum amplitude only if the initial
energy distribution of all single-frequency disturbances is identical to the
power spectrum of the free-stream disturbances as measured by Laufer (ref. 4).
The experimental narrow-band disturbance growth is taken from Kendall's mea-
surements (ref. 5) in the JPL 20-in. wind tunnel, the same.tunnel as used by
Laufer. Because of the interaction of the irradiated sound from the turbulent
boundary layers on the tunnel walls with the laminar boundary layer near the
leading edge of the flat plate, there is. no experimentally discernible neutral-
stability .point . The theoretical and experimental disturbance amplitudes are
matched at the theoretical neutral point.
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•'• The theoretical disturbance of maximum amplitude has a wave angle i|t
equal to 60°, while the experimental narrow-band disturbance includes all J
wave angles. Unfortunately, the distribution of energy with respect to
wave angle in the experiment is unknown. Even so, the growths of the two
disturbances are seen to be closely related. By coincidence, the two growth
curves cross at almost exactly the start-of-trans ition Reynolds number
measured by Coles (ref. 6), also in the JPL 20-in. wind tunnel. The fact
that transition occurs where the theoretical disturbance is growing rapidly
means that a transition criterion based on amplitude has a good chance of
predicting the start of transition provided only that the region of maximum
growth-does vary, as assumed, with the mean-flow parameters" in "the same way
as the transition Reynolds number.

REQUIREMENTS OF TRANSITION CALCULATION

In addition to the calculation of.the velocity and temperature profiles
of the mean.boundary layer, the transition calculation can be divided into,
three distinct parts: (1) the interaction of the external disturbances which
lead to transition with the boundary layer to form the internal boundary-layer
disturbances of Tollmien-Schlichting type; (2) the growth of the internal
disturbances; and (3) a transition criterion, based on some property of the
growing disturbances. In this section each of these three aspects will be
discussed separately starting with the second for reasons of clarity in the
exposition.

Spatial Stability Theory v

The calculation of the disturbance growth in the boundary layer is the
-element-which brings- in1 the -traditional" linear "stability'"theory r""A"detailed •
account of compressible stability theory may be found in reference 7. What
is required of the theory are the eigenvalues of the stability equations for
a spatially growing disturbance. For the parallel-flow form of the' stability
equations," a Fourier component of a typical three-dimensional fluctuation --
quantity is given by

q'(x,y,z,t) = Q(y) exp [i(ox + 3y - cot) ] (1)

where q' is a small quantity; x,y,z are the longitudinal, transverse arid
lateral coordinates'; Q(y) is a complex amplitude function; cu sis the real
circular frequency; and a and 3 are the complex wave numbers

(3 3 +r (2) .

j
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All quantities have been made dimensionless with respect to a length scale
L and a velocity scale V . The disturbance wave angle is

" . . ' • • * - tan~Mp lo t ) (3)r r . . .

and P /or is assumed equal to p /a . The phase velocity is ...

: - c =• ui/a (4)
P r

and the imaginary part of cv is the amplification rate

(l/A)(dA/dx) = - a, (5)

The notation A has been introduced as the amplitude in equation (5) to
emphasize that in the parallel-flow theory all flow variables grow at
the same rate and independently of y. The amplitude is given as a func-
tion of Reynolds number by

Re

<YdRe)
A(Re) Mo '- exp ( - ct. dRe ) (6)

The subscript o refers to the lower-branch neutral point, i.e., where the
disturbance has its minimum amplitude and first starts to amplify. The
initial amplitude A0 is obviously of as much importance in determining
the amplitude A as the amplification, and is the quantity that must be
obtained from the external disturbance and an interaction relation.

The eigenvalues a. and c are obtained from repeated numerical
integrations of the stability equations. For a three-dimensional com-
pressible disturbance, the equations form an eighth-order system of complex
linear ordinary differential equations (ref. 7). The four solutions which
satisfy the boundary conditions as y -» °° provide the initial conditions
for the numerical integration which proceeds from the free stream to the
wall at y = 0. There are a total of 64 real equations to integrate. At
y * 0, a linear combination of the four solutions satisfies three of the
four homogeneous boundary conditions. With Re and the dimensionless fre-
quency F fixed, an iterative linear search procedure finds the eigenvalues
or and c which satisfy the remaining boundary condition.
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Interaction of External Disturbances

, . Quantities computed directly from the linear stability theory such
as the minimum critical Reynolds number and amplification rate are inherent
properties of the mean boundary layer on the same basis as the displacement
thickness or skin-friction coefficient. On the other hand, the transition.
Reynolds number is not at all an inherent property as it depends not only
on the instability of the boundary layer, but also on external disturbances
which interact with the boundary layer to form the internal disturbances
which lead"ultimately to transition. With no disturbances, transition can
not occur no matter how unstable the boundary layer is. The external.dis-
turbances can arise from any one of several sources of unsteadiness such
as free-stream turbulence, sound or vibration. Ideally, one would like to
have a theory to give the initial amplitude of each Fourier component of
the internal disturbance from the known external disturbance, but no such
theory exists. A forced response of the boundary layer can be computed in
certain instances, and the initial amplitude of the free internal disturbance
assumed to be related in some way to the forced internal disturbance. An
example.of such a procedure is given in reference 1, where the effect of •
irradiated sound on the stable region of a laminar boundary layer is cal-''r~'
culated from a simple forcing theory. ' '

Yet a third procedure for determining the initial amplitude is to ,
adopt an empirical relation. The simplest of these assumes that the square
of the amplitude of each frequency component of the internal disturbance is
directly proportional to the energy density of the same frequency of the
external disturbance, and that the constant of- proportionality is the same
for. all frequencies. That is, the initial amplitude A0 of the single-
frequency internal disturbance of frequency cu is related to Aa , the amplitude
of the external disturbance, by

! "••*• -"4 -(7)
=*

where- E(u>) is the normalized (unit area) energy density of the one- t ' •' "
dimensional power spectrum of A.^ . The constant A can be regarded as an
interaction or. coupling coefficient which "couples" the external'to' the '
internal disturbance. It is determined by adjusting the calculated tran-
sition Reynolds number to a measured value. Once A is determined in
conjunction with .a specific transition criterion ana for a specific dis-
turbance' source, there are no more free constants in the entire calculation.
More generally, A is a function of ou and is so given when calculated from
a forcing theory. . '

\
Equation (7) is in accord with the stated procedure of applying
lity theory in the form of sing]
a. equation (7) would be an enerj

bance amplitude A^ would be given by

stability theory in the form of single-frequency disturbances. Otherwise,
A0 in equation (7) would be an energy density, and the internal distur-
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(A/A0)
3 A0

3(u>) dio (8)

where A/Ag is the frequency-dependent amplification ratio given by equation.
(6). There is one circumstance under which A^ differs from the A of the^
most amplified frequency only by a constant, and that is when A/AQ has the
character of a delta function. For transition in a low-disturbance en- . • :/,
vironment where large amplifications take place, A/Ag does resemble a delta
function-near transition, but in many cases it does not. ;It must be kept
in mind that the'development of a disturbance composed of a whole .spectrum -;
of frequencies is being represented by a fictitious disturbance of only a -.^
single frequency. Such a representation can not always be adequate, and
it is most "likely to be seriously in error when the amplification is small...

• • ' - ' ' »t

A potentially serious problem for which there is no solution at the
present time' is that the available disturbance spectra both in the free
stream and the boundary layer are one-dimensional. As can be seen from - .,.,•
equation (!•) the elementary disturbance of stability theory is an oblique
wave in the x-z plane. For supersonic flow, the most unstable first-mode
disturbance is oblique with a wave angle \|; of .between 50° and 60° over a,
wide range of Mach numbers (ref. 7). What is needed, therefore, is the
energy distribution with respect to if as well as - frequency. In the absence
of any measurements, it will be assumed that the frequency power spectra
are the same for all wave angles.

Transition Criterion

The final step in the transition calculation is to apply a transition
criterion, the simplest of which is an amplitude criterion based on a value
of A, say A . The theoretical disturbance growth curve of figure 2 shows
that the choice of Afc is not critical, as a. rather large change in Afc makes
only a small difference in the corresponding Reynolds number Ret which is
to be identified with the transition Reynolds number. The use of A itself
as the transition criterion avoids the troublesome problem in the application
of the parallel-flow theory of having to identify A with a particular fluc-
tuation quantity. In a growing boundary layer, the eigenfunctions are func-
tions of Re and as a result the different flow variables do not all grow in
the same manner. Even within the scope of an amplitude criterion, one could
identify A with, say, the mass-flow fluctuation and use the pressure fluc-
tuation as the transition criterion with somewhat different results than if
the mass-flow fluctuation were the transition criterion. ' " ' "''''

Some SO.years^ago Liepmann (ref. 8), in an exceptionally clear p re sen--'?"
tation of the requirements of a transition calculation based on linear theory,
proposed that transition starts when the Reynolds stress equals the mean
viscous stress, i.e.., when . . * " - - • ' •
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TR - P U V / I A ou/dy - i (9) •

The basis of this idea is that when the Reynolds stress reaches such a
value the mean velocity profile must change in an important way.
Liepmann's criterion can be modified somewhat by selecting a value (TB)
different from unity as the criterion.

In order to calculate T_, it is necessary to first calculate the
eigenf unctions. --Since the "amplitude ~ "in "linear" stability theory is arbi- -
trary, A must be identified with the peak value of a particular fluctua-
tion to set the amplitude, and only then can T_ be calculated. Thus, as
mentioned above, the transition Reynolds number obtained will depend to
some extent on which fluctuation is chosen.

.At present it is not clear how to use Liepmann's criterion in com- '
pressible flow. There are other momentum transfer terms besides ~p u *v ',
and even if this single term can properly represent the distortion of the
mean velocity profile there are still fluctuation heat-flux terms which
perhaps should be included as a measure of the distortion of the mean
temperature profile. For these reasons, only the amplitude criterion will
be used in this paper for compressible flow.

A third criterion which also involves the Reynolds stress has recently
been proposed by R. Kaplan of the University of Southern California. This
criterion is based on an argument concerning the total stress tensor. Transi-
tion is considered to start when the transverse principal stress vanishes, a
condition that is satisfied when I

oU/oy = (u' -v' )* . (10)

Again this .criterion will only be used for incompressible flow.

COMPUTER PROGRAM

The computer program developed for the transition calculation is based
on the author's stability program (ref. 9) which has been used for several
years to work on a variety of incompressible and compressible boundary-layer
stability problems. The stability program was first simplified and put in
single-precision arithmetic except for the independent variable of the
differential equations. The first new feature to be added was the auto-
mation of the eigenvalue computations so that a large number of eigenvalues
can be obtained in a single computer run. Up to 12 dimensionless frequencies
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F may be calculated at a given initial Reynolds number at either equal
increments in F or at unequally spaced specified values of F. Then for
each F in turn, up to 14 eigenvalues are computed over a range of Reynolds
numbers which may also be unequally spaced. . -x

The eigenvalue search procedure is set up to do a minimum of two
iterations. Only one perturbation integration is required per.iteration •
because with F and Re fixed, the secular determinant is an analytic func-
tion of the complex variable a for a spatial disturbance. Thus two itera-
tions require four integrations of the 64 equations (16 for incompressible v

flow). Convergence is usually achieved after the two mandatory iterations,
but if not., and the search has started to converge, up to two more iterations
are allowed. .If there is still no convergence, or the search did not give
adequate signs of converging after the first two iterations, the increment
in F or Re is halved, and if necessary, halved a second time. If nonsimilar
boundary-layer profiles are being used, the Re increment can not be halved
as the program.is set up to use precomputed profiles which are read in from
mass storage as needed. . ' •

After the.eigenvalues have been obtained over a sufficient Reynolds
number range for a given frequency, the next step is to compute the Reynolds ;
numbers of the neutral-stability points. Up to four neutral points can'be
computed to allow for the possibility of two separate unstable regions. The
neutral points are found by interpolation,, and if desired the interpolated
neutral points can be further refined by applying an eigenvalue search pro-
cedure which requires a minimum of six additional integrations per neutral
point. When the lower-branch neutral point ReQ has been found, A/AQ is
calculated from equation (6).

The next step is the calculation of the initial amplitude A0 from
equation (7). For an empirical interaction relation, A1 and A are both
input quantities and E(u>) is calculated from one or several formulas which
are specific to a particular problem. If the sound-forcing theory is used
to calculate A , then two integrations of 80 equations each are needed for
this purpose. With both A/A0 and AQ known, A(Re) can be calculated and the

 :

amplitude transition criterion applied. When A exceeds A , the corresponding
Ret is computed by inverse interpolation. When this series of calculations
has been carried out for all of the frequencies of importance, the minimum
Re is the predicted transition Reynolds number.

The evaluation of the Reynolds stress criteria requires the computation
of the.eigenfunctions at each Reynolds number. Two integrations are needed
for this purpose.. The peak value of-the mass-flow fluctuation is identified .
with. A* to assign a magnitude to the eigenfunctions and thus to the-.Reynolds ~
stress. The Liepinann and Kaplan criteria are evaluated, and when either -.
criteria is exceeded the.equivalent transition Reynolds number is found by..- .-.
inverse interpolation. . . . {
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Storage and Time.Requirements

The program requires a total of 49,000 single-precision words (36 bits)
of storage, or 31,200 words with segmentation (overlays). On the UNIVAC 1108
time-sharing system, the basic integration time is 7.4 X 10~* sec to integrate
one equation across one step. For incompressible flow, where 80 steps are
adequate and there are 16 equations for a two-dimensional disturbance, it
.requires 0.95 sec for each integration, and a total of 3.8 sec for each
eigenvalue provided there is convergence--in two iterations . -- For" compressible
flow with 100 steps and 64 equations, the respective times are 4.7 and 19 sec.

A minimum requirement for a transition calculation is about four fre-
quencies with eight Reynolds numbers for each frequency. Consequently, to
find the eigenvalues requires 122 sec for incompressible flow and 608 "sec
for compressible flow if all eigenvalue searches converge in two iterations.
The time required to obtain the neutral-stability points by interpolation,
evaluate the integral of a., calculate Ao and determine Re on the basis of
the amplitude criterion is negligible. For example, the results to be pre-
sented at Mx = 4.5 were obtained with five frequencies and a total of 45
Reynolds numbers. The time to compute the eigenvalues was 855 sec, but to
do all of the other calculations took only 1.5 sec.

The Reynolds stress transition criteria require two integrations per
Reynolds number, and thus 50% as much time as the computation of the eigen-
values if the transition criteria are to be evaluated at all Reynolds numbers.
However, if an Re is obtained first from the amplitude criterion, then the
eigenfunction calculation need not start until one or two stations before
this Reynolds number. In practice, the two Reynolds stress criteria required
about 25% more time than for the eigenvalue calculation alone.

Since the transition Reynolds number is often computed as a function
of_ sQme_jnean-:flow_parameter-such as-Mach-number or altitude,-a great "many "
different boundary layers have to be evaluated. At 10-15 minutes per
boundary layer, a large amount of computer time can be involved and a faster
computer than the UNIVAC 1108 would be an advantage. It is estimated that
the program would run about ten times faster on a CDC 7600. On a parallel-
processor computer such as the ILLIAC, a further time advantage could be
realized by integrating the independent solutions simultaneously instead of
consecutively as at present, and by calculating the eigenvalues and eigen-
functions of different frequencies simultaneously.

EFFECT OF FREE-STREAM TURBULENCE

In order to debug the final program as economically as possible, but
still work on an important problem, a calculation was made of the effect of
free-stream turbulence on the transition of the Blasius boundary layer.
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Figure 3 shows the published measurements as taken from reference 10. The
ordinate is the start-of-transition Reynolds number, and the abscissa is
the rms intensity of free-stream turbulence which is identified here with
the amplitude AJ . The curve is from the present calculation and is dis-
cussed below. Unfortunately, none of the experimenters measured either the
turbulence spectrum or the scale. In the absence of this essential infor-
mation, the spectrum was assumed to be the Dryden spectrum (ref. 11) of
isotropic turbulence,

U1*E*(«,*)/L * = 4/[l -*- (cu*L */U1*)
3] (11)

X X

where Lx is the integral length scale of turbulence. Although it is not nec-
essary to set'individual values of Ul and LX in the present calculation at
a single turbulent Reynolds number (R^ = U1*Lx*/v*), the spectrum is entered
in the program as given by equation (Tl) in order to be able to calculate
the separate effects of Ua* and LX*. Therefore, u\* and LX* had to be
assigned and the values chosen were

Ux* = 44 ft/sec , Lx* = 2.18 in. (12)

With E (to ) known, the next step is to set the interaction constant
A . ; For this purpose, the start-of-transition Reynolds number Re =

2.8 x 10s measured by Schubauer and Skramstad (ref. 2) for Ax = 0.1% was
used. Although the lowest measured-disturbance level in their tunnel
(0.02 - 0.03%) was mostly sound, particularly for the unstable frequencies,
it will be assumed that disturbances of 0.1% and greater are primarily
'turbulence. Since the Kaplan transition criterion is the only one that
does not require a numerical value to be chosen, it was used to calculate
Az. With A identified as the peak value of u', the rms longitudinal ve-
locity fluctuation referenced to the free-stream mean velocity, it was
found that AZ = 0.086 gives Refc = 2.8 x 10

s. With this AZ, the same Re
is obtained with the amplitude criterion set at Afc = 0.04, or with the
Liepmann criterion set at (Tĵ )t = 0.14 instead of Liepmann's suggested
value of 1.0..

• At this point everything should be in readiness to calculate the
effect of Aj on Ret. However, the change of AQ with AX as given by
equation (7) and the Dryde'n spectrum, together with the frequency depen-
dence of A/AQ for a two-dimensional instability wave in the Blasius bound-
ary layer, does not begin to give a large enough effect on Ret to account
for figure 3. There is no experimental information on the relation between
the turbulence intensity in the free stream and the amplitude of the insta-
bility wave, so only conjectures are possible. One possibility is that
the interaction is not linear as assumed by equation (7). A second pos-
sibility is that there is indeed a linear interaction, but that the initial
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disturbance forms in the damped region rather than at the neutral point.
As a result, AQ would vary with F.along the neutral curve just from the
different damping ratios between the.initial point and the neutral point.
Since,the frequency of the disturbance of maximum growth also changes with "
A1, the second possibility is in a certain sense equivalent to the first. '"*"
Consequently, it will be assumed without further inquiry into its meaning "
that

A = 0.043 [1:__t_(Ai/0.001)S'_3] .._.'.. . (13)..

where the multiplicative constant is just one-half the.previous value of
AZ in order to give the same Ret as bef9re when A.l = 0.1%. The exponent
2.3 was chosen to fit the experimental curve at Ax = 0.4%. As a note of
caution, equation (13) is not intended to relate the entire free-stream
spectrum to the internal spectrum, but only to give the A0, and hence
the amplification ratio, that is required to account for the initial rapid
decrease of Ret with increasing Aj. ,

, Ret was computed with equations (7), (13) and the amplitude criterion
of 4% up to A! « 2%, and the result is the curve shown,in figure 3. It
is surprising that agreement with the experimental results is obtained
all the way to At = 2% where transition is not far from the minimum criti-
cal, Reynolds number.

.The curve shown in figure 3 is not much more than an empirical fit
to the data. Unfortunately, until the amplitudes of Tollmien-Schlichting
waves can be related in a fundamental way, either theoretically or experi-
mentally, to the free-stream turbulence, nothing better can be done at the
present time. The advantage of the present procedure over a direct curve
fit of Re to the data is that the effects of turbulence scale, spectrum
and free-stream velocity on Ret, as well as the_jLnfluence_of turbulence-on-
the transition of arbitrary boundary layers, can all be calculated with no
further assumptions. Furthermore, it is possible to use the method to
compare results obtained with the three transition criteria, and some of
these calculations have been carried out. Simply stated, the computed
transition Reynolds numbers appear to depend very little on the particular
criterion used. For Ax < 0.5%, there is virtually no difference between
the criteria; for At = 1%, the results for the amplitude, Liepmann and
Kaplan.criteria are, respectively, 0.567 x 106, 0.600 x 10s and 0.609 X 106,
a maximum difference of 7%. '

TRANSITION IN SUPERSONIC WIND TUNNELS

s • Determination of Input Quantities . -

,/ ' • • • . • . .
Transition in a supersonic wind tunnel above MX = 2-3'is dominated by

the sound radiated from the turbulent boundary layers on the tunnel walls.
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In reference 1, linear stability theory was used together with an amplitude
criterion to calculate the variation of Ret with Mx for an insulated flat-
plate boundary layer. The external disturbances were included by the simple
expedient of taking AQ ~ Mj , as suggested by Laufer's finding in referenced
that the free-stream rms pressure fluctuation pj varies essentially as Mj .
The calculated variation of Ret with Mx bore a striking resemblance to the
experimental measurements, although the unit Reynolds number dependence of
pl was not sufficient to explain the measured dependence of Ret on unit
Reynolds number. The spectrum of pf plays an essential role in this depen-
dence and must be included in the calculation.

With the interaction in the form of equation (7), E*(u)*) was obtained
from the measurements of Laufer (ref. 4). The faired experimental spectra
are shown in figure 4. The spectrum at Mx = 4.5, Re/in. = 3.4 X 10

5 is
approximated in the computer program by curve fits accurate to about 57,,
A. unit Reynolds number correction as given by the spectrum at Mx = 4.5,
Re/in. » 1.8 x 105 , and a Mach number correction as given by the spectrum
at M! = 2.0, Re/in. = 3.4 X 10e are both included in the program. The
energy density and frequency f*(= (ju*/2rr) were made dimensionless by Laufer
with LX*, the integral length scale of the wall pressure fluctuations ; and
U8*, the average velocity of the sound sources. Both of these quantities
are entered in the program as curve fits to the measured values .

Laufer measured p^ at two Re/in, from Mj = 1.6 to 5.0. Other measure-
ments (ref. 12) have shown that p^ varies with Re/in, as (Re/in. )n. The
power that agrees best with Laufer's two values over the Mach number range
is n = -0.2. Consequently, the value of Aj entered in the program is

Ax = 0.00045 YM
2 [(Re/in.)/(3.4 X 105)]"°'2 (14)

where y = 1.4.

The remaining quantity in equation (7) is the coupling coefficient A .
• Z . 4

The program provides for AZ to be computed by the sound-forcing theory pre-
sented in reference 1. This theory requires a value of the sound source
velocity which in turn defines ijrc, the cut-off value of the wave angle ty
beyond which there is no sound radiation. The angle \|fc is usually less
than the angle of the disturbance of maximum amplification and can result
in a marked reduction in the amplification ratio A/A0 . In addition, the
source velocity is a strong function of frequency and this dependence has
been measured only at 1^ =4.5 (ref. 13). Even though with an average value
of the source velocity the theory gives the result that AZ is inversely
proportional to F and increases slowly with Mx in agreement with the mea-
surements of Kendall (ref. 5), it was decided that the uncertainties involved
in using the sound-forcing theory in the present calculations are greater
than just assuming AZ to be constant.

115



With an amplitude transition criterion of 17», the constant AZ was
adjusted to give Ret = 1.45 x 10

6 at Mj^ = 4.5, Re/in. = 3 x 105, the start-
of-transition Reynolds number measured by Coles (ref. 6). It must be pointed
out that the amplitude criterion is here completely arbitrary. A different
value of At would merely change Az' in proportion. What is really being set
is the amplification A/AO needed for transition at the specified Reynolds
number. The coefficient Az would acquire a physical meaning only if the
entire spectrum were being used to compute the amplitude rather than
a single frequency. However, it is helpful to use constants'whose magni-
tudes make-physical-sense-,- and 17o~was chosen on "the"" i'de~a"~th"a~t" it "represents
the pressure fluctuation. The mass-flow and pressure fluctuation both
become large in the free stream as Mj^ increases. In the boundary layer,
the "mass-flow fluctuation, which is mostly a density fluctuation at high
Mach numbers, is larger than in the free stream. On the other hand, p
is smaller than in the free stream and declines relative to the mass-flow
fluctuation as M1 increases. Since it is known that a boundary.layer at
hypersonic Mach numbers can support large mass-flow fluctuations without ' •••
becoming turbulent, it may be that p .is the more suitable quantity to
relate t o transition. ' • . . - . - •

Results of Calculations

' -' '; With the constant AZ set once and for all, a series of calculations
were carried out for MX = 2.2, 3.0 and 4.5, and 1 < Re/ini X- 10~

B <4.
These Mach numbers were chosen because most of the eigenvalues .needed
were already available. The results are shown in figures 5'and 6 where
they are compared with Coles' measurements at four Mach numbers, only one
of which is the same as the Mach numbers of the calculations. Figure 6
is cross plotted from figure 5, and there is one additional point shown
at Mj.- 1.6 that does not appear in figure 5.

There is seen to be reasonable agreement between the calculated and
experimental values, with a maximum difference of about 157o. The unit
Reynolds number effect has been a particularly difficult one"to account
for in anything resembling a fundamental manner (ref. 14), and it is en-
couraging to see some features of the measured effect appear in"the cal-
culated results. Many measurements of the unit Reynolds number effect
can be fitted by the relation . . ,

•i • ' ,',

Ret ~" (Re/in.)
m . (.15)

A common value of m is.0.4, although a wide range of values have been t:
encountered, and there are measurements which do not fit this relation
at all. The measurements for MX = 2.57 in figure 5 fall into this latter,
category when the entire Re/in, range is included. However, for Re/in.- >
1 x 105 a power law is a reasonable fit to the data with ra = 0.28, 0.36,
0.63, 0.47 at Mt = 2.0, 2.57, 3.7, 4.5, respectively. The calculated

116 :



slope at M! = 2.2 is m = 0.35 which is close to the experimental value at
Mx = 2.57. Although the calculated curves at the other two Mach numbers
are not straight lines, they are in agreement with experiment to the extent,
that their slopes increase with Mach numbers.

The increased slope calculated at the lower Re/in, may possibly be
a reflection of this same tendency in the experimental results for Mt = 2.57, ...
but it more likely comes from an inadequacy in the method. The^ best agree^ .. .<•
ment is found at. Mj^ = 2.2, and this agreement would be even better as to the
magnitude of Ret if the actual measured value of p^/yM^ at Mx = 2.2, 0.00055,
were used instead of.the average value 0.00045. At Mx = 2.2, the total ampli--
fication at Re/in. = 1.5 X 10s is 11.1, and the representation of the dis-
turbance growth by a single frequency should be valid. In contrast, at
Mj = 4.5 the amplification at the same Re/in, is only-3.5, and it is possible
that the single-frequency.approximation at this and lower Re/in, is not valid
because of the small overall amplifications involved. .

In support of this conjecture, a calculation made by the author a .
number of years ago (ref. 7, fig. 13-46) is helpful. In this calculation,
growth curves were obtained at Mx = 4.5 with the complete frequency spectrum
taken into account, but with still only a single wave angle of 60° (there is
a similar calculation with energy distributed uniformly with respect to ty) .
In this calculation the spectrum and p^ were assumed to be independent of
Re/in.,.and a^ was computed approximately from the temporal stability theory.
Of these simplifications, the most serious is believed to be the-one concern-
ing PJ . A unit Reynolds number effect smaller than in the present calculation;
was found. With an amplitude criterion set to yield Ret = 1.45 X 10

s at
Re/in. = 3 X 105 as here, the Ret at Re/in. = 1 X 10

5 can be determined from
reference 7 to be 1.15 X 10s. This value can be compared with Ret =. 0.66 x 105

of the present calculation with n = -0.20 in equation (14). If n is set equal
to zero, then Ret increases to 0.83 X 10s. If the influence of n on the result
with the complete spectrum is in the same ratio as with a single frequency-, .•
then with.n = -0.20, Ret would decrease from 1,15 x 10$ to 0.91 x 1Q6. it '
can be seen from figure 5 that this value fits the measurements quite well,
and the value of m in equation (15) is 0.43 as compared to the experimental
value of. 0.47.

;• Figure 6 requires little comment except to point out that computations;.,
are needed at more Mach numbers to better define the curves drawn in the . ...
figure. In order to extend the calculations to higher Mach numbers, addi-
tional px and spectrum measurements are needed. For Mj <2, there is a dif-
ferent sort of problem. With decreasing Mach number, the influence of the
irradiated sound decreases and that of free-stream .vorticity increases. Con-
sequently, the nature of.the interaction changes and Az can not be expected
to remain constant. The present indications are that the sound is more ef-
fective in creating instability waves than is vorticity, so that AZ should
decrease below Mx = 2 with resulting larger values of Ret. In support of this
reasoning, Ret = 3".4 X 10

s at Mx = 1.6, Re/in. = 3 X 10
5 in figure 6, while

an experiment by Kendall in the JPL 20-in. tunnel showed no transition on a
flat plate at Re =4.3 x 106 with Re/in. = 3.4 x 105.
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CONCLUDING REMARKS

The origin of transition has been viewed here as the result of specific
external disturbances with well-defined characteristics interacting' with the
boundary layer and being amplified according to linear stability theory until
a critical state is reached. The example of the effect of free-stream tur-
bulence on transition could not be carried to a conclusion because not enough
is known of the all important interaction process,. It is .in the supersonic - —
"wind tunnel that the most complete information exists. The free-stream dis-
turbances have been measured in the necessary detail, transition data are
available, and the interaction appears to be linear and of such a nature that
it can be represented by a simple relation. In these favorable circumstances,
linear stability theory has been shown capable of providing reasonable esti-
mates of the start of transition as a function of unit Reynolds number and
Mach number for the simplest possible boundary layer, the boundary layer on
a smooth, insulated, flat plate. However, there appears no reason to doubt
that the method, perhaps modified to include the complete spectrum, will work
for more complicated boundary layers and in different disturbance environments
if the interaction can be properly accounted for.

Further progress would seem to require more study of each of the three
parts of the transition calculation. The stability theory must be extended
beyond flat-plate boundary layers; the spectral characteristics of the dis-
turbances which occur in different flow environments must be measured; and
the interaction of these disturbances with the boundary layer to create in-
stability waves must be understood. Some factors which influence transition
and are commonly thought of as causes of transition, such as surface roughness
and waviness, are not true sources of instability waves in the absence of an
unsteady local separation, but act to influence existing disturbances which
have arisen from other sources. This influence is exerted through a modifi-
cation of the mean boundary layer which sharply_ increases__the._ instability am--—
"pllflcation (ref. 15).. The requirement in these instances is the capability
of computing the modified mean boundary layer.

To the objection that it is very difficult to obtain the necessary
information about the external disturbances, it can be replied that otherwise
the prospects for real progress in the ability to predict transition are indeed
bleak. Repeated experimentation in similar disturbance and flight environments
can result in some definite conclusions, but once the environment is changed
the whole procedure must start all over again. Even when it becomes possible,
as it will one day, to replace the linear stability theory with the three-
dimensional time-dependent Navier-Stokes equations, this part of the problem
will not change. The interaction can then be solved directly, but the neces-
sity of defining the external .disturbances will remain exactly what it is
today. Without quantitative knowledge of the disturbances, transition pre-
diction, difficult enough in any case, is likely to remain forever just out
of reach.
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