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SUMMARY

The status of an investigation of four numerical techniques for the time-dependent
compressible Navier-Stokes equations is presented. Results for free shear layer calcu-
lations in the Reynolds number range from 103 to 8.1 x 104 indicate that a sequential
alterating-direction implicit (ADI) finite-difference procedure requires longer computing
times to reach steady state than a low-storage hopscotch finite-difference procedure. A
finite-element method with cubic approximating functions was found to require excessive
computer storage and computation times. A fourth method, an alternating-direction cubic
spline technique which is still being tested, is also described.

INTRODUCTION

The quasi-parallel assumption successfully used in boundary -layer-type calculations
is not applicable for many free mixing flows. The complete Navier-Stokes equations must
usually be solved for flows which have no single dominant flow direction. This paper pre-
sents the current status of a detailed investigation of several numerical procedures for
obtaining steady-state solutions for two-dimensional, high Reynolds number, compressible
free shear flows using the time-asymptotic approach. In particular, the research has
been directed toward the solution of mixed subsonic-supersonic flow problems.

Most published numerical solutions of the compressible viscous time-dependent
Navier -Stokes equations have been for flows with Reynolds numbers much less than 103.
Peyret and Viviand (ref. 1) have summarized these solutions through mid-1973. Taylor
(ref. 2) also analyzed the literature at that time. Most methods up to the time of these
surveys used explicit difference schemes. Later, Briley and McDonald (ref. 3) and Baum
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and Ndefo (ref. 4) published alternating-direction implicit (ADI) calculations. The high
Reynolds number solutions (Victoria and Steiger (ref. 5), Carter (ref."ﬁ), and MacCormack
(ref. 7)) were all computed with explicit difference schemes. Recently, additional high
Reynolds number solutions have appeared, e.g., Holst and Tannehill (ref 8) and Baldwin
and MacCormack (ref. 9). These solutions were also computed with exphcxt methods

Although conceptually simpler and more easily coded than implicit methods, exp11c1t
methods are restricted to small time steps relative to the spatial grid size for numerical
stability. Consequently, such methods require long computatlon ‘times to reach a steady’
state, especially for flows in which a fine mesh has been used such as in regions of high
shear. For example, the calculation of a shear layer impinging on a blunt body fora :
Reynolds number of 104 by Holst, Tannehill, and Rakich (ref. 10) usmg the MacCormack
method requires up to 80 min on a CDC 7600 computer. e

The methods under investigation are the following: (1) hopscotch (explicit) finite
difference, (2) alternating-direction implicit (ADI) finite dlfference (3) finite element :
and (4) implicit cubic spline integration. ' In addition, some calculations have been made
with the Du Fort-Frankel procedure. The goal of this study is tﬁe'deveidprﬁent of an effi-
cient numerical tool to be used in testing fully two-dimensional turbulence models for a
wide range of free shear flow applications such as interference heating (shock/shear layer
impingement), separated flows, jet exhaust noise reduction, combustor design, and tangen-
tial slot injection. This paper summarizes results of calculatlons for sample mixing
problems with Reynolds numbers ranging from 103 to 8.1 x 10%. The procedures are
compared with respect to their accuracy, computer storage requ1rements ease of 1mple-

- mentation, and total time to steady state for computation of sample problems.

SYMBOLS
c speed of sound
Dj diameter of jet
g general functions IR L T T PR "
H enthalpy
L differential operator
M Mach number
M; second derivative of S(xi)
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mi L first derivative of S(?‘i)_“ '

N integer:
I'{C‘o T Cqui‘aht number, Ax/(u ftv+ 2) .
Nne - Reynotas s, PRy T e e
P , ‘pressure ' . : c e .
R gas constant BRI ‘
S(if L ct%b_ic splifxe fu;lcfign '
T ' o texi;peratulfg | ,
t . time :
u o k.’s'tre‘amwi‘se'velocity a ,
Upef | réfgfénce velocity, 2ﬁs'
v véctor of unknowns
v ~ normal velocity
X,y streamwise and normal directions, respectively
a artificial diffusion éoefficient
v ratio of specific heats -
A incremental change
noo molecular viscosity
v kin?matic viscosity
P density
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¢y B-spliné function in equation (14)

Subscripts:

i ih&ex.denotingl grid _pgin_t spatial location |

J ;. i,x_lbda_i:index in finite -_‘eléni::e:nt mesh ' g

s éfa;gnatibn c.c.mdi't'ion

txy - derivative with respect to tirgg., ;g-.clli:;'eé:'t_iop, and y-direction
Superscripts: R

nx* index denoting time level

A bar over a symbol denotes a dimensional quantity. - An arrow ovér a symbol
denotes a vector quantity.

- PROBLEM DEFINITION

To provide a basis for comparison of the numerical procedures, a set of standard
test problems was selected.

Sample Problems

Figure 1(a) shows the mixing problem (case 1) originally chosen for use as the
standard sample problem. This flow is the mixing of a two-dimensional laminar super-
sonic (Mach 3) jet and a laminar subsonic flow normal to the jet axis. The peripheral
velocity vp is higher in magnitude than the normal velocity component arising from
natural entrainment of the resultant free shear layer for the same jet issuing into quies-
cent surroundings. As shown in figure l(ai)', the solution domain does not extend to infin-
ity in either the positive streamwise or normal directions. The peripheral flowis applied
one or more jet diameters above the corner of the wall, and the calculation is'truncated
one jet diameter downstream from the jet -exit plane. This problem thus embodies some
complicating factors which are often unavoidable in computations of flow fields for real
vehicles, e.g., a sharp corner and the artificial downstream boundary with a significant
portion of subsonic outflow. Since the individual effects of these factors are difficult to
isolate in the computation of such a flow field, calculations were also made for the related
problem, mixing of two parallel streams, shown in figure 1(b). The computational region
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begins downstream of the base of the infinitely thin splitter plates. Suc_h a calculation
obviously does not require the full_ Navier-Stokes equations, since solutions can be

obtained with the usual quasi-parallel approach (boundary-layer equations with free shear

flow boundary conditions). However, since steady-state calculations could be made with
another method, solutions were obtained for comparison with computed Navier-Stokes
results. The mixing of a subsonic stream and a supersonic stream (case 2) shown in
figure 1(b) was chosen for the study of subsonic boundary conditions. Calculations were
also made for the mixing of two supersonic (Mach 3 and Mach 1.68) streams (case 3), a
flow free from subsonic boundary problems.

Governing Eguatiohs =

| The governing equations cén be written in nonconservative forms as fc;llows.: .
Continuity
Py + PVy + Puy + VPy + upy =0 . _ L Y
X-momentum |
puy + PVUy + puUy = -Py + ﬁ\%— (p,ux)x ) 3—b?—' ‘(L'LVy> + 1\_11— (“y + Vx)]  (2)
S TRen R TTRer TE TRelL 1T Ty
y-momentum

pvt + pvvy + puvy = -?y + ﬁ(ﬂvy)y - -:S—I;IZ-R;;;-(LLUX)Y + ﬁ%; u(uy + Vx):ly (3)

These equations are nondimensionalized with respect to the jet diameter and stagnation - -
flow conditions, i.e., :

p p
p=_: p: —= g
| T":’Lr—“! .’ X = z—
Ty D;
Uref = y2Hs . y=D'y—j
- PTpeiD;
u=—L_-_ T Nge = =221
\ﬁﬁs Uref Hs
v = v =—-§— ﬂ-=_'.&
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The pressure was evaluated by means of the perfect gas equation of state
. . . B . . :4;‘7

p = pPRT . : '_ - " . (4)

where R = 2'-—. Air was the test gas. Only lammar (molecular) viscous effects were
considered, the Sutherland law bemg used to express the v1scos1ty as a functlon of temper-

ature . .
e ' ] . (TR

3/2 1+ 198. 6/T

H= T + 198.6/T T ‘ - B

, To simplify the system of govermng equations and’ to reduce requ1red machine storage,

Y a constant total temperature of 530° R (294 K) was assumed Calculations for a Mach 3
jet into still air with the quasi-parallel code of Oh (ref. 11), which included the energy
equation, ‘'showed that the total enthalpy varied les§ than-5 percent throughout the mixings
region from the constant value assumed in other:calculations. This small variation: had,
a negligible effect on the other flow param'eters "As a result of this assumptlon the. tem-
perature could be evaluated by the algebralc relat1onsh1p : weri R

i . oo . . . . , PRI
T=1-u?-v2 . .. L L Ye)
which eliminated the need for solving the complete energy equation. Constant"static ”
pressure was assumed in all calculations to generate initial values of density using . .:: ’
equations (4) and (6) along with the given initial velocities. The linearized version of‘ f
equations (1) to (6) with the viscous terms neglected has been shown by Gottheb and
Gustafsson (ref 12) to be well-posed for the initial value problem. -

DESCRIPTION OF NUMERICAL PROCEDURES

Hopscotch

The hopscotch method is a two-step exp11C1t procedure whlch was shown to be uncon-
d1t1onally stable for the d1ffus1on equatlon by Gourlay (ref 13). It was used by Scala g
'and Gordon (ref. 14) for compress1b1e viscous calculatlons of low Reynolds number flow

et by

around a c1rcular cylinder, and it has been apphed to hyperbohc systems W1th shocks by
Gourlay and Morris (ref 15).

Figure 2 shows the pattern of the two sweeps. Consider, for example, the equation

Up = Uyy +Uyy _ S ()]
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With forward time and centered space differencing, u?‘;l is computed at each t1me step
at the nodes for which i + ] +n is even (marked with circles in fig. 2) during the first

sweep through the mesh w1th the equation

SR T 1 oy -2l el
u;hg:un At Ui, “1,32 i-1,3| | aqlbitl ,J i,j-1 @)
d b (Ax) (ay)?
LT} ”
This sweep is fully explicit. In the second sweep at this t1me step,
n+l n+1 n+l1 n+l1 n+l n+1
n+1 [:11_'.1’] _2ui,.]. +U5 1,] Uy ]+1 2_u. ,j +,_u.,j_1~l e
L Tz T ™

.....

at the nodes (marked with squares-in fig. 2) for .which i+ j+n -is odd .This sweep is~
implicit in the sense that the values in:the computation of the spatial derivatives are at .
- the new time level n + 1. However, this implicitness does not require the reduction.of .
a matrix, since these values were computed during the:first sweep.: Differencing which

does not fit into this pattern, such as a five-point difference for uy, wusing values of

' n+1 n+l
i+2,] i-2,j’
ence analog for cross-derivative terms must receive treatment which usually requires

the reduction of a matrix. 'The computational efficiency of the hopscotch procedure is ¢
thus reduced. - For the full Navier-Stokes equations, hopscotch has no cell Reynolds num -

and u, , requires special consideration. The conventional nine-point differ -

ber 11m1tat10n but the max1mum time ‘step is l1m1ted by the-condition, At = — %’i TS
u. + y
For the present appllcatmn a suff1c1ent cond1t1on for stab111ty is At = ____A_x_
u+v+if2c

The hopscotch version derived for the present investigation is a low—storage pro-
cedure (one array per dependent variable). The equations were linearized by lagging the
nonlinear coefficients. On the second sweep, values at time n +1 are used only where
available. This laggmg ehmmates the need for matr1x reductlons and thereby s1mp11f1es

" the codmg, mamtams the low storage and minimizes CPU time per nodal ‘point. Gottheb
and Gustafsson (ref. 12), cons1der1ng the convect1ve terms only, have analyzed the stability
of thlS vers1on ‘of hopscotch w1th the laggmg of some values and have found its stablhty to
be identical to that of the or1g1nal hopscotch method. The method is d1fferent however
when the diffusion terms are included. The stability limit which was derived from the
advection terms is not changed for the range of Reynolds number considered in the present
investigation. The lagging of values used to compute the viscous terms introduces slightly
more second-order dissipation than in the original hopscotch method. The new procedure
is formally not consistent with the time-dependent problem; however, the extra error term
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introduced is very.small for large Reynolds numbers (such as 103). In the present appli-
cation the interest is not in the transient but in the steady-state solution; therefore, this
error term, which goes to zero at steady state, has no detrimental effect.

During each sweep the x-momentum, y-momentum, and continuity equations are
solved sequentially at each-nodal point with the boundary values then bein'g updated at the
end of each time step. . To illustrate the present ve}'sion Qf ‘hopscotch, the differencing of
the x-momentum equation is as follows: ' ' ' '

First sweep

n+l . o n 0 n au) - n (au) 1 (EE)
s .= U s + At (-u; J[— - Vi =
ul’] ula] + ul:](ax i,j vl:] oy i’] pn] i,j

,.»u 1 n\ up‘l.-u‘p\' o "

4 ' i+ ,] 1;] 1+1,) 1,] n /éu

+ 2A|- . + 2Bu; . —)
n 2 / Ax; |/ #1,]( i

3NReP; )3

n .

B 9.<_5V)
. + “'1,] ay il
i+1,j sJh

n n n n ] S
+ 20 “i,j"“i—l,}(“i,j Y-1) 2 ‘—A“n (g)“

2 AX- n i+1,j )
/ i-1 3NRepi,j|_ »J\8y

n n n n - n

n. D Nul. o -u S

+ Cu <"’+1 M “‘M"J*l "J\ '+ 2Eup'(iu-)
i- 1»1 1 1,] NRep AN / BRANE

ij- l\(u i,j ] -1 1 Do fav\

) )
+2F 5 / A +N o “'i,j+1('—>, -
| RePi,j S L

E ‘ avn . F n . a,‘.,\n NIE f ~ . ) 10
-+ ”l;l(aX) jt Hi :] 1(3&11] 1 s C . _ (10)

G S o
£ S BEIRBIEE S N R N ARAC B ETsDM

whére A,. B, C, D, E,and F are coefficients arising from’the differencing.
Second sweep ‘
n+l n ‘ n [ag n+l n [gy n+l 1 n+1
uoit = us .+ At G- us L = -V s - —
v lsj 1,) 1,) i,j 1,) ay i’j pn i,j
(Equation continued on next page)
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n+1 \ n+l1 \ . el
+ 4 A Hiv,j+ Hij <1+1,] Y N 2B”n (m) F
n . ) ’] i,j’

-2 AX. X
3NRepi,j / i /
- n n+l ) fn _ on+l . o
; oC “i,j + ui_l’h ui',j ui—l,j\ i 9 A"'n+1 . n+l . B n (5 n+l
e T Va5, /| n-'.“i+1,j5y'il'. Hilay).
i-1 Refi,j | . ol i, )

ety N . N e 1

1 n+1
n+1 S Ky \ - u; \ n+l
+ C“n"'l :‘ ( ,]+1 1,) 7]+1 1,) + 2ElJ- ](811)
1, o\ : b

/)

. n+ un _ n+1 -
4 n+
+2F< . 131 -1 i,j- 1 b1 D“mil( )
| / / NRe'p L) i ]+1

n+l

LEQ! ](3")“*1 + Futl ’ﬂ) (11)

1 e

Alternating-Direction Implicit Method

The alternatmg-dlrectlon implicit (ADI) technique developed by Peaceman and
Rachford (ref. 16) is a two-step procedure requiring reduction of tridiagonal matrices for
which an efficient solution algorithm, the Thomas algorithm (ref. 17), exists. The method
was originally applied to the two-dimensional heat conductionA equation in reference 16 and
later to a system of hyperbolic equations by Gourlay and Mitchell (ref. 18). For both of
these model problems, it was shown to possess unconditional stability. The method, how-
ever, has not been extensively applied to the compressible Navier -Stokes equations. In
1966, Polezhaev (ref. 19) obtained solutions for a natural convection problem. His ADI
method removed the diffusion time-step limitation; however, he found experimentally that
the time step was still limited to the usual maximum explicit value. In 1973, Baum and
Ndefo (ref. 4) published a two-dimensional implicit method based on the Peaceman-
Rachford procedure. The Baum-Ndefo method iteratively solves nonlinear difference
equations as a sequence of linear equations using a qﬁasi-linearization technique. Ina '
one-dimensional calculation of shock structure, the method was found to be stable for
Courant numbers as large as 10. However, reference 4 does not consider the full Navier-
Stokes equations. Later in 1973, Briley and McDonald (ref. 3) presented a method based
on a fully implicit backward time difference scheme in which nonlinearities at the implicit
time level are linearized by a Taylor's series expansion about the known time level. The
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resulting system of multidimensional coupled linear difference equations is solved with a
noniterative Douglas-Gunn ADI approach. The method was shown to be stable for very
large Courant numbers in" calculation of threé-diménsional subsoni¢ flow in a straight

duct with rectangular cross section. For a flow with Mach number of 0.044 and a Reynolds
number of 60, stable solutions were obtained for Courant numbers up to 1250. For a Mach
numbe_r of 0.5 and a Reynolds number of 600, the time step was gradually increased as the
solutlbn progressed, resulting in an average Courant number of 73.” /Thus; the actual A
Courant number decreases with increasing Reynolds number, perhaps because of diagonal
dominance problems as discussed in reference 3. The computational effort per time step
was reported tobe twice that of.most explicit;: methods T ) KIS '

In the ADI procedure used in the present 1nvest1gat10n a sequentlal solution of the" *" ~
difference equations is obtained for each row durmg the f1rst one-half time step (horizon- -
tal sweep) and for each column durmg the second one-half t1me step (vertlcal sweep). - All .
spatial derivatives were approx1mated by centered f1mte d1fferences time derlvatlves , by
backward differences. The nonlinear coefficients in the convective terms were lagged one-
half time step. In addition, the pressure terms and cross-derivative terms were treated
explicitly in each swéep. ‘The terhbe'xlature‘. and viscosity were updated for the entire field
after each sweep. The order of solution for each row and column is (1) x-momentum equa-
tion, (2) y-momentum equation, and (3) continuity equation. The solution is then marched
to steady state without iteration. This ADI formulatlon requires two storage arrays for
u, v, p,and p- and one for T.- :

To illustrate the 'ADI method the finite- d1fference form of the x-momentum equation
is shown. For the horizontal sweep, from time level n to an intermediate time denoted.

by *, o
% nv A n AL I
n (Y, "), oo on (Tl ui,j-'1>+pn n <i+1,j “i-1,j>
P At/2 LTS Ay LN 2 Ax

) n n\/n n
p1+11 Pi- -1,] 1 M5+ B B e 7 Yy
= +
T 24x - ) "N, Ay|\ 2 v Ay

n n n n n - n
_<“i,j -1, T Y-l A T i+1,j+1 ',"1-1,j+1>
2 Ay Npe Ay i,j+1 - - 2 AX

. n n - [/ n n * *
v n <Vi+1,j—1 “Vi-1j-1)|, 4 ("i+1,j + “i,j)(“iﬂ,j B “i,")
T ' 3NRe Ax [\ 2 \ :

-j “i’j"l 2 Ax Ax

(Equation continued on next pege)
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*
_( j + M- 1,1\ i,]
2

u1 1,]) 2
/ ,Ax - 3Np, Ax

S_‘. i f: . . 1 1 nl,;.l—-'-!, v-‘, L ‘A » . . . R
1 1+ 1 ]- + . - - ‘ .
N T U-l -¥,j T2 Ay 2 , ) R v S e (12)~
The unknowns are u1 1 ], u; ], and u. +1' j.’*fSimilarly, for the vertical sweeb, from. - 1.,
*ton;l-_lf,:. ’ J_’
IARERRN Y5 B R R TS B R "R L B R L
SRS Yij - “i,') £ o Ui g+l 7 Yij-1 +pF Yiel,i " %i-1, L
AP\ Az ) T PLIT 2ay L/ TP\ 2 ax . .

* * ' '
s Pieny Pieng) 1

n+1 3 ' * *
i ,3 1\ Y i,j 1\ 1 «  [Vied 41 " vi-l,j+1\‘
[
o * . / % o
“* Viel,i-1 ~ Vi-1,j-1}]. 4 Hiv1 5t ,]\ i+1,j ~ %
1,i-1 2 Ax 3NRe AXx 2 / Ax
* * * * \ | r * y
(Hig * “i-l,j\ Yij cYi-1§i 2 x (Vied o1 7 Vied,§-1
S22 L) "Ax 3NRe Ax [ 1+1,] 2 Ay '
V* : |
* i-1,j+1 ~ Vi- 1,] -1
- y’i-l,j( 7 Ay > 13)

Finite -Element Method

The {finite -element method has been used extensively for the numerical solution of
structural mechanics problems for a number of years; however the procedure has only
recently been applied to fluid mechanics problems. (See pp. 240-257 of ref. 20. ) Using a
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stréam ;fﬁnctioh;-vortlcity apbroach with lineai"- elements, Baker (ref. 21) has developed
an algorithm for s'te‘ady viscous compressible fl_owé. Solutions have been obtained for
Reynolds numbers up to 7750. The present method appears to be the first finite-element
p’rbcedure for the compressible Navier-Stokes équations in primitive variables.

The solution algorithm uses a Galerkin method with leapfrog time integration. The

.solution domain is discretized with triangular elements w1th b1cub1c trlal functlons F1g-

. ure 3 shows a hmte element mesh for case 1. As an example of a trlal functxon the den-

Loa R M J—l

sity is of the form
10

R ZpJ(t)qu(x,y) R ¢ )

(AR R T A e e

4. B M ° . - Ky

,‘ where J 1s the nodal 1ndex and the ¢>J . are the .$0- called B- sphne bas1s functlons whlch

are p1ecew1se cubic over the problem domam

: The unknown parameters in each trial functxon are the flow variable functlon values

" (p,. uyand. v)and their first partial derivatives; (px, Py; Uy, Ug, .V ,and . vy) -at the

triangle vertices and the function values alone at the triangle centro1d In the Galerkin
approach, the weighted residuals formed by using the weights ¢. g are set-equal to zero.
This yields a set of algebraic equations for the nodal values. Thus, if the governing equa-
tions are of the form : ‘

»

L(w) = 0

._ _Where w is a general f?mction, the Gélerldn approach yields a set of equations

H g0 | . s

~ Solution

domain.
The time discretization scheme is similar to the Crank-Nicolson Galerkin method
described by Douglas and Dupont (ref. 22). Centered time differences over two time
steps, n -1 to n+1,and the averaging of space derivatives over fimes* n"-'1" and
n +1 yield second-order time truncation error. This spatial averaging also elimin-
ates nonlinearities in the resulting implicit system of difference -equations. jThe syetem _
of determining equations has the following form: ' S :

Continuity -

‘ - —n,n-1 o B
ann+1 FD’ . T T . (16)
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' -~ Momentum equations :

“r——~nn,n-1 : S
ZR]" Fo| . |

T ' (17)

\Fv[. - _ : - :

# 'where p “is the unknown dens1ty vector and v " are vectors of unknowns from the
" 'x- and y-momentum equatxons ZZ "ZR, RZ RR, ‘and D are nonsymmetric matrlces
with varying bandwidth, and FD, FU,and FV are vectors of known quantity. '

; The matrices in these equations are assembled at, each time step The continuity
'equatmn is solved with a standard triangular decomposmon method whxch takes advantage

of matnx sparseness. The momentum equatxons are solved w1th a unlque block iterative
LU solver developed durmg the present mvestlgatlon Desplte large matfices and the
accompanying problem of efficient data management, the use of cubic elements yields

. fourth-order spatial discretization error.::Cubic elements also.allow éxact incorporation

“of first-derivative boundary conditions; unlike finite-difference methods which require a
discretization. In addition, the triangular mesh allows the method to be easily adapted to
e nonrectangular ‘'solution domains. -

Cubic Spline Integration Method

The potential of a cubic spline collocation.procedure for the numerical solution of
partial differential equations has been demonstrated by Rubin and Graves ‘(ref 23) for
several model problems This use of a cubic spline approx1mat10n for the evaluation of
spat1al gradients provides a highly eff1c1ent and accurate procedure for computatmn with
a nonuniform mesh (which is necessary for high Reynolds number calculations in the phys-
ical plane) and/or curvilinear boundaries. The basic spline approximation leads to a
second-order accurate expression for second derivatives, e.g., the diffusion terms in the
momentum equations, for both a uniform mesh and an arbitrarily nonuniform mesh. First
derivatives, i.e., the convective terms, are third-order aecurate with a nonuniform mesh
and fourth-order accurate with a uniform mesh. With a three-point finite-difference
approximation, the order of the truncation error is significantly decreased with even a
moderate variation in the mesh spacing (ref. 24). Thus, the spline procedure is more
accurate than the usual finite-difference procedures for nonuniform grids. The spline
method also allows accurate mterpolatmn if grid realinement becomes necessary.

In add1t10n f1rst and second-derivative boundary conditions can be applied more
accurately and more easily than with conventional finite-difference methods, since dis-
cretization is unnecessary. Unlike the finite-element or other Galerkin procedures, the '
evaluation of quadratures, which are generally not tridiagonal, is unnecessary.

- 449



In reference 23, Rubin and Graves present a detailed discussion of the general spline
formulation and methodology for solving second-order quasi-linear partial differential
equations. Therefore, only a brief description of the general cubic spline procedure is
presented in this paper.

A cubic spline S(x) is a continuous function which has continuous first and second
derivatives‘on an'inteérval ‘a <ix < b i(a i and’ b’ are-two arbitrary points) and ¢ofresponds
to a cubic _polynomial in each subinterval Xj.1 S X =%;. tThe ‘mesh ‘spacing * }y1 'is defined’
by hj =X - X 4.

v The following tridiagonal formulas are obtained by enforcing the continuity require-
ments at the collocation points X;t

h. h + h. ;.71 -U; U; - U, - )
i i+1 h1+1 i+l i i i-1 -
— M. — M = -
6 .l-l + 3 =6 +1 h1+1 4 hl Ve . (18)
X S Y B - - ) . ioe .
' 3{u - u, 3(u., - u, ’ o
h_l-ml_1+2Q—ll—+h—1— m1+h1 mi+1= (1+21 1)+ (1 3 1-1) (19)
. i i i+l ivl s h1+1 : hi - _

‘where at x = X S(x; ) = “1’ S'le = my, and S"( )- M;. The followmg useful relation-
sh1ps also exist between the firs and second der1vat1ves

' h1+1 S ’ 4
m; 4 -m = (M +M1+1) S : B s (20)
h. h. - . - W : ’ ‘

_ny i Yi -~ Y41 . ‘
. h: h. u. - U. ' v . ' -
I T3 Y e CO R Y S o €2 S : e
m, = 3 Mi 3 ’M1+1 + hyi1 - ) o . (22);

¥l e e md Y -

For a governing partial differential equation of the form

u, =vf(u,ux,uxx) v : | - A (23) |

the approximate solution is found by considering the solution of
(“t)l (“ my M) S | | - " (24)
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where the time derivative is discretized in the usual finite-difference manner, i.e.,

ndl  n
u. - U, R ey b

-(ut)i - _.1TL

P

(25)

_As.;an;example,,c,_onsidezj-an impl_ieit solution of,the linearized Burgers! equation, which. _

has the:-general form of the momentum: equations . -- ERIYE : R E S U
3ii.pe Mg RUU = Vel H e P TR S SRS DS B : S (26)
e ! 3 ; vl te
where
. : ) T A B IR ) i1 Y” ......
u = u(x,t) v=vx,t) . .’ :

The approximation for this equation becomes
R . AR i L . - v
ntl _ n n+l_n+l n+1 n+1) - ’ '
u = - At(ui m; ) At( M (27)
W1th the sphne relatlons (18) and (19), a system of . 3N equatlons is generated for T

3(N + 2) unknowns. This system can be wrltten as

-] +1 n i - - R ’ . . ~.
ATl B o o | (28)

i+l ©

where \-f.i = 'ui,mi,Mi T and A, B, C,and D a;re' 3 X 3 coefficient matrices. Initial
conditions are prescribed so that u(x,0) = g(x). Equations (20) to (22) can be used, if
necessary, to relate information at the boundaries and prov1de a closed system which can
then be solved by the standard tridiagonal algorlthm .

An alternate procedure can be derived by substituting u; and m; as functions

of M;. The resulting tridiagonal system for M; has the form

alMiH-f + b Ml’l+1 + C. Mln.:'ll - (i= i, « . ., N) (29)

This procedure is being used in the present application for the two momentum equations.
If the partial differential equation to be solved has no second-derivative terms (e.g., the
continuity equation), a tridiagonal system of equations in terms of mj; can also be found.
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For the two-dimensional Navier -Stokes equations, a spline ADI procedure has been
used. This two-step method apphes the spline procedure to each of the one-half step ADI
equations. The cross derivatives are found by using equation (19) with the cross deriva-
tives being m, and the appropriate first derivatives replacing u,. The three governing
equations are solved sequentially at each row and column during the horizontal and verti-
cal sweeps, respectively..- '

. ' The boundary conditions for uxy, Uyys Vxx» Vyy px, and py are found by eval-
uating the appropriate governing equation at the boundary with the time derivative set equal
to zero, to give in effect steady-state boundary conditions. The initial values of the second
‘derivatives of u and v and first derivatives of - p are obtained by fitting cubic splines : -
to the given initial function values :

COMPUTATIONAL RESULTS

Subsonic Boundary Conditions

One of the major difficulties associated with the computation of case 1 is proper
specification of boundary conditions for the region of subsonic flow, i.e., for the subsonic
portion of the inflow jet profile, the peripheral inflow, and the subsonic portion of the down-
stream boundary. This boundary-condition problem was therefore studied for case 2-with

Nge = 8.1 x 10% using hopscotch as well as a second-order Du Fort-Frankel procedure
descr1bed by Gottlieb and Gustafsson in reference 25.

_ The mathematical analysis of boundary- condltlon speclﬁcatlon by Gottlieb and :

- Gustafsson (ref. 12) formed the basis for this study. At the leit subsonic inflow boundary
(see fig. 4), the analysis indicated that two of the three dependent variables (u, v,and p)
must be specified. Since v .was itself a characteristic variable in the x-direction, it had -
‘to be one of the two specified functions; u was the logical choice for the second. The
density boundai‘y condition was chosen to be px5'1—- 0. No difficulties were encountered in
any of the calculations with this set of inflow boundary conditions. At the upper inflow
boundary, u is a characteristic variable in the y-direction; therefore, again u and v---:-
were specified and’ p, = 0 was selected as the third boundary condition. This combina-
tion created no numerical difficulties in any calculations. ' However;the combination:ofs=
p and u specified with vy = 0 usually led to erroneous values for v, especially in the
region near the upper boundary where positive values of v, indicating outflow, occurred.

At the subsonic outflow boundary the one -dimensional analysis indicated that one
function value, either p or u, must be spec1f1ed Of course such a boundary condition
is not convenient for most applications since downstream function values are generally
not known a priori. F1gure 5 shows the results of calculations using hopscotch with three
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different subsonic downstream boundary conditions. The boundary conditions used in the
subsonic region are indicated in figure 4. '

The initial flow field was obtained by setting the downstream (outflow) boundary
values for u and v equal to one-half of their steady-state values (obtained from the
parabolic code described in ref. 11) and linearly interpolating to obtain values at interior
nodes. Computed steady-state profiles of the streamwise and normal velocity components
u and v, respectively, at the downstream boundary are compared with results obtdined =
with the parabolic technique. The streamwise component is accurately predicted for all
three boundary conditions; however, only the specification of -'p 'gives a smooth and accu-
rate v.,profile. Specifying u produces large: oscillations in the 'v' profile in the vis-
cous region. These oscillations may be critical in turbulent flows when the turbulence
model is locally a function of 8v/dy. The least accurate results are obtamed for linear
extrapolation of all three function values.

The results of calculations with the Du Fort-Frankel procedure (see ref. 12) were
identical to the hopscotch results with the exception that the linear extrapolation had to be
altered to obtain converged solutions. Extrapolation of values at time level n+1 to
obtain boundary values does not work for any degree of extrapolation (linear, quadratic,
etc.). Linear extrapolation of the form

n+l n n-1 : 3
= 2f. - £, .
4 imaxd " imax-1d imax-2J . (30)

for p, u,and v, where i,.. is the outflow boundgry, gave results which converged to
the correct steady state. The boundary condition

n+l. _.n : . . .
fma.x’] flmax'l'j . (31)

which has been shown to be stable for scalar hyperbolic equations for the pure leapfrog
scheme in reference 26, also gave good results. Using both values at n +1 in equa-
tion (31) results in an unstable condition. :

Parallel Mixing Calculations

Calculations of case 3 were made with the hopscotch and ADI methods for Np, = 103
and 5x 103, The supersonic inflow, supersonic outflow, and upper inflow boundary condi-
tions shown in figure 4 were used. The computed steady state u and v velocity pro-
files and pressure profiles at x=0.15 for Npg = 103 are compared in figure 6 with the
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corresponding calculation using a parabolic_ method The ADI and hopscotch results are
v1rtually identical with both procedures accurately predlctlng u and v. For this grld

spacing (Ax = Ay = 0. 025) the pressure shows hlgh-frequency OScﬂlathl'lS in the wscous ‘

mixing region, although the maximum osclllatlon is only about 2 percent of the correct o

value. . For the initial flow f1eld the y=0 1nflow profiles were also specified at all other
-statlons downstream The tlme step m the hopscotch calculatzon was 0. 9 of the mam-

mum allowed for stablhty, 1 e, the Courant number NC(; was 0 9 Identlcal SOl?tldnS ~

s ve vl hodmsise o
were also obtained with ADI for NCo =6 but w1th no decrease in the total number of step(s
to steady state The solution diverged for NC o = 12,

At both NCo = 6 and 12, the large t1me ‘step,was. used for the entire solution. The
probable cause of divergence at N, = 12 is roundoff error from the tridiagonal matrix
inversion occurrmg when the coeff1c1ent matrlx d1d not possess, dlag?nal dommance 2 -
sufﬁclent but not. necessary condxtlon for convergence of the matr1x reductlon In thls o
mstance the contmulty equat1on was, not d1agonally dommant for any Tow in the honzontal
sweep, and in add1t1on the two momentum equat1ons lacked d1agona1 dommance for many *

TOWS. .., ... 1

o N s -r/

F1gure T:contains the steady state results at ;x = 0 15 for NR .= 9. 0 X 103 Flg-
ure: 7(a) shows that again the hopscotch and ADI results are virtually.identical for: .u:.and;
v. With the same :grid spacing as in the;previous calculation, u -is-accurately predicted,:
whereas the : v profile exhibits an oscillation in.the viscous-region. Halving the grid so, .
that:Ax = Ay = 0.0125 : .eliminated this oscillation. The pressure profile shown in fig- ..
ure 7(b) has very small oscillations for both grids with the hopscotch pressure varying less
" from the constant value g1ven by the parabohc code than the ADI pressure. For NC o= 0.8,
with either. gr1d the ADI method requlred approxrmately 5 times as _many steps for conver-
gence to steady state as hopscotch The solutlon was cons1dered to be converged when -

PN A

fn+1 S . : S BT
-—LL'A—t——LJ' = 0 01 g s . se L. H 4, ' : ’(32)

CLed R

for : f p, u, and v at every pomt in the f1eld and g p, u “and u, respectxvely o
Converged ADI solutrons were obtamed for NCo = 6, but the solution again d1verged for
Neo = 12. Hopscotch solutions were not attempted with Courant numbers s1gn1f1cantly
greater than one.

. ‘Figure 8 shows results of hopscotch calculations for case 3 w1th NR = 8.1 X% 104
Profiles of v and p are shown at the downstream boundary x = 0. 45. The Jboundary
conditions shown in figure 4 were used with function values obtained from the parabolic _,
procedure providing the necessary specifications of v at the upper boundary and p at
the downstream boundary. The initial field was obtained by using steady-state values o_f
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all functlons (obtamed from parabohc code) at the downstream boundary and calculating
the interlor values by linear 1nterpolatlon Tlus gives'an initial flow field which is a good”
approx1mat10n of the steady-state field. For a gr1d spacing of Ax = Ay = 0.025, the hop-
scotch solution converged in 1637 time steps The u veloclty component was accurately
pred1cted and figure 8 (a 0 curve) shows that v also agreed with the parabolic results
however small osc111at1ons occurred 1n the pressure It was found that the'} pressure could

"-.4

be smoothed by expl1c1tly addmg art1f1c1a1 d1ffus1on to the contmmty equatlon that i8]

S bl (V) 5 oax ot atan?

LTSRN l:"‘.:.

pyy! Hlb SRS I S-S
i
T S S I X D P S y - S TR S S S DR SRRy
.3

[0

Victorla and Wldhopf (ref 27) also found 1t necessary to add artlﬁcial diffusion to the’’ ,
continuity equatmn For thlS case fa'= 0 1 smoothed the | pressure W1thout altering u

or v moreover the solutron converged in 1150 t1me steps (The coefﬁc1ent of pxx “Hg -
then apprommately 5 to 10 umes as large as the average coefficients of the viscous terms
in the two momentum equations.) Although the solution converged in 1837 time steps for -
a=1.0,both p and:v show oscillations.s For® a'= 0, a significantly different initial
flow field was generated by halving o andi'v4 at the downstream edge and then linearly- -
interpolating for interior values. ' Steady state was reached in 3050 steps-with u, v, -
and p found to be identical to the previous results. - For this grid; no-converged ADI:. - :
results were obtained with or without artificial diffusion. Oscillations' in v in the mixing
‘region’grew 'wi'th time, and the solution diverged ‘

1

The Du Fort Frankel procedure w1th the downstream boundary condition given by
equation (31) for u and Vv was compared w1th hopscotch which used hnear extrapolation
when the initial flow field was obtained by setting the outflow values of u and v to one-
half of their steady-state values and linearly interpolating for interior values. Both solu-
tions converged to steady state at approximately the same nondimensional time, although
slightly different time steps were used in each method. The maximum difference in the
u profiles was approximately 3 percent and occurred in the viscous region. This slight
edifference 1s‘att”r1_huted to the difference in exp11c1t artificial diffusion in the two methods.
Second-order 'dlfrfusmn w1th a=0.1 was used in hopscotch and fourth- -order dlffuslon
was added to the Du Fort Frankel procedure

Results for Case 1

Computations were attempted for the original test problem, case 1, with a Reynolds
number of 8.1 x 104 with the two finite-differenceé methods and with the finite-element
method. A nonuniform grid was used for the finite-difference methods. From the sharp-
corner, Ay was increased by a factor of 1.05 for each successive spacing in the positive
and negative y-directions from the smallest value, Ay = 0.005. Thus, grid points were
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concentrated in the v'1scous mixing region. The grid also increased in the x- d1rect10n by
a factor of 1.05 (A)Ll/A:iz1 1=1. 05) for each successwe spacing. !

Computations with hopscotch were made with the boundary condltlons of flgure 4

- along with a no- slip wall condition and constant density assumpt1on near the wall. The
upper boundary .was approx1mately six jet ¢ diameters above the center line. F1gure 9
shows steady-state hopscotch results for an interior x- locatlon usmg hnear extrapolatlon
for density in the subsonic portion of the outflow boundary (extrapolat1on used smce - P
is unknown).. The magnitude of the perlpheral velocity at the upper boundary was 0.07,
which is several times greater than the natural entramment for the same jet issuing into-
_Stlll a1r Since, the upper. boundary effect1vely models a jporous wall w1th nonumform mass
1n]est10n 1nto the boundary layer t was necessary to mod1fy the upper boundary cond1t1ons
by. setting _uy =0, The results shown m f1gure 9 were obtamed w1th o= 10 after 3 hr .
of computmg txme on a CDC 6600 computer As expected from the parallel m1x1ng results,
the u component is smooth and appears to be qual1tat1vely correct (There are no known
'experlmental ‘data for such a flow with which to compare the computed results.)” The v

proﬁle shows the oscillation characterxst1c of using linear extrapolation for the subsomc
outflow ‘density. “For some’ engmeermg apphcatxons however, these results: may be suffic-
ient. The local increase m.the ‘pressure proﬁle indicates the'presence of a weak shock. -

" Fully converged ADI results were not obtained for case't. With linear density

extrapolation and the same nonumform ‘grid; ‘the solutioris appeared to be nearly converged
,after approx1mately 3 hr' of 'CPU timé on the CDC 6600, but the computatlons were not
contmued further smce the results did not" appear to be better than hopscotch As with
hopscotch the u profiles were smooth and apparently quahtatlvely correct although v

) agam exh1b1ted spatial oscillations. : ‘

At the present time, converged results have not been obtained with the' finite -element
method for thxs problem. The ma]or difficulties appear to be the lack of sufficient spatial
- resolution in the viscous reglon and mcorporatlon of the second-derivative downstream
"contmuatlon boundary conditions. The 103-triangle mesh currently in use (shown in fig. 3)

requires excessive machine storage and prohibits a significant increase in resolition: -

The cubic spline algorithm has been coded, but presently no steady-state results
have been obtained.

CODE COMPARISON

For case 1 the hopscotch code requires machine storage of approxim_ately 50000g
for 3045 node points, whereas the ADI method requires approximately 150000g for the _
same grid. The 103-triangle finite-element mesh which has 301 nodes requires 330000g.
The cubic spline algorithm will presumably require fewer grid points for accuracy com-
parable to the finite-difference results. ' |
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For each At step the CPU t1me on the CDC 6600 for hopscotch is 1. 08 x 10~ 3
sec/node and for the ADI method, 3. 74 x 10'3 sec/node The finite-element code requires '
1. 93 X 10~ -1 sec/node to assemble the ma“trlces and even with the fast block 1terat1ve
solver, requires 4.25 X 10~ -2 sec/node for equatlon solution at each time step. No data
are ava1lable for the splme code (The Du Fort Frankel code requlres 1. 28 x 10'3
: sec/node for ‘each t1me step) C e ‘ el i S

e 2o .. - S e . . : L -
RARE I 3 £SO IS [ MRS S LEETRY B A R A A T SRR Bl St

| CONCLUDING REMARKS
7 ‘A study of m1xed supersomc subsomc free shear ‘flows ha's shown that correct cal-
’ culatlon of the normal velomty component requlred spec1f1cat10n of the densxty in the ‘sub-
somc portxon of the outflow boundary The streamw1se veloclty was however correctly
computed even when lmear dens1ty extrapolatlon was used for this boundary BEIEENRE

. .

- For high Reynolds number flows (flows w1th small viscous terms in the momentum
-equat1ons), it was necessary to add artificial dlffusmn in the continuity equatlon to ehmm-
- ate oscillations in the static pressure.. The addxtlon of .too much artificial wscosny had
adverse effects on both the pressure and the normal component of veloclty

For the problems considered, the maximum allowable time step for the sequential .

. alternatmg -direction implicit (ADI) procedure was less. tha.n 10 tlmes the max1mum )

explicit time step. 'This increase in time step, however, did not 81g'n1f1cantly 1mprove .
the convergence rate. The hopscotch procedure, with a t1me step no greater than the
maximum explicit time step, still converged faster than any of the ADI solutions. A fully
coupled ADI procedure may allow larger time steps; however, the effect of large steps on
, convergence rate must be investigated. -

The finite-element method w1th cubxc elements appears to have excessive storage
requ1rements and computing times. Therefore , as currently formulated, it does not appear
to be a competitive procedure for h1gh Reynolds number calculations in aerospace vehicle

analysis.
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(a) Mixing of laminar supersonic jet with imposed peribheral flow
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(b) Mixing of two parallel flows.

Figure 1.- Standard sample problems.
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At time level n .
i+j+neven
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Figure 2.- Hopscotch grid. .
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Figure 3.- Solution domain showing finite-element mesh for case 1 with 103 tria.nglés
with boundary conditions (BC) indicated. '
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Figuré 4 - Schemaf:i_c of computational domain with best boundary:conditions for case 2.
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Figure 6.- Supersonic-supersonic mixing for

Npe = 10% ax= Ay = 0.025 Ng, = 0.9.
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Figure 8.- Effect of artificial diffusion in continuity equation;
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