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SUMMARY

Shock-capturing solutions for an axisymmetric supersonic inlet at small
angles of attack have been obtained. Good overall agreement between the ,
shock-capturing solutions and experimental data have been shown except in
.regions of strong viscous effects or boundary-layer removal. Although the .
results indicate a strong potential for the use of shock-capturing or finite-
difference solutions for internal :flows, 'improvement in the ability to handle
the reflection of strong Shockwaves having downstream Mach numbers near 1 is
needed. ' ' • -

INTRODUCTION

Traditional approaches to the design of axisymmetric.supersonic .inlets
have employed the method of characteristics (refs. 1 to 3). References 2 and 3
include engineering modeling of the viscous effects, with reference 3 incor-
porating the effects of the boundary layer on the inviscid core flow. For
two-dimensional flows — including axisymmetric flows — the method of character-
istics provides a standard for any other computational technique. However,
extension of the method of characteristics to three-dimensional flows, particu-
larly complex internal flows, presents a very formidable task.

Recent developments in the use of finite-difference techniques show promise
for application to three-dimensional internal flows. References 4 and 5 have
been concerned with solutions to the flow about shuttle-type vehicles, both
with diffuse (captured) and discrete bow Shockwaves. References 6 and ,7 .
describe techniques to fit discrete Shockwaves into the computational mesh.
A comparison of a discrete-shock, finite-difference technique with the.method
of characteristics for planar internal flows was given in reference 7; agree-
ment between the two techniques was excellent. An advantage in using.the -
finite-difference codes referenced above, as opposed to the method of charac-
teristics, is that embedded Shockwaves are captured in the finite-difference
mesh without requiring any special logic.

The present paper describes an adaptation of the shock-capturing tech-
nique of reference 4 to the particular problem of inviscid flow in axisymmetric ;
supersonic inlets at small angles of attack. (Many helpful suggestions con-
cerning the present paper were made by Paul Kutler.) Comparison of the theo- .
retical solutions with experimental data for the MO,, = 3.5 inlet described in
reference 2 is presented. The present shock-capturing solutions represent the
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first step in a. long range program that will ultimately incorporate discrete -
Shockwaves, boundary- layer effects, mass exchange, and an arbitrary body cross
section. The computer code for this analysis was developed by Dennis J. Maine,
Computer Science Corporation.

SYMBOLS
.'. -

a local speed of sound - - . . •

M Mach number

p pressure .normalized by the free-stream stagnation pressure

q total velocity normalized by the maximum adiabatic velocity

r radius from axis of symmetry :

u z-component of velocity.

v r-component of velocity

w <j)-component of velocity

Z : axial coordinate from centerbody tip

0 angle of attack . ' •

Y ratio of specific heats

6 boundary surface angle

p density ' • .

4> meridional coordinate ' .,

Subscripts :

a annulus

b centerbody

c end of cone

1 index in £ direction , .

J index in $ direction

o outer boundary '
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t ^ stagnation conditions ' : '.'••
;.:• •s -•' .- • . , • • : ' • - • . . - . • • .

«°7 free-stream conditions

Superscripts:

n array of known flow properties

n+1 advanced array of flow properties

METHOD OF ANALYSIS

General Equations

The technique used in the present analysis is a direct adaptation of the
shock-capturing technique presented in references 4 and.5. The major details
of the analysis will be presented here, primarily for reasons of completeness.
The equations of motion can be written in conservative form,, using vector
notation and cylindrical coordinates as

E <f, H (1)

where the E, F, G and H vector components are defined as:

pu

kp + pu2

puv

puw

; F =

pv

puv

kp + pv2

pvw

'•J ,< • i

; *•-$

pw

puw

pvw

kp + pw2

'.*'"•

PY .

puv

p(v2 - w2)

2pvw

Equation (1), which represents the continuity and the three momentum equa
tions, comprises a complete set when coupled with the energy equation in the
following form: . . __

p = p(l - q2)

where

+ w2

(2)

(3)

In applying shock-capturing techniques to the computation of internal
flows, it is most convenient to transform the. physical coordinate system to
one wherein the distance between the inner and outer computational boundaries
is normalized. This is done by the following coordinate transformation:

r - r.

r - r.o b

r - r.

U)
; * - * (4)
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where, for the case considered here and as shown in figure 1(a), the inner and
•outer boundaries are given respectively by . .

rb(Z) ' = ro(Z) ,(5)

It should be noted that, for an axially symmetric configuration, the inner
and outer boundaries are independent of the meridional angle.

The conservative form of the equations of motion, equation (1), can be
retained in the transformed coordinate system as:

; • .E + G_ + G +, H
* : Z ^ <J> .

where new variables are defined as follows: '

. • \ ' E = E •' • ..

•:/-''./ , '.:,-..;"••; /'*-'£'* Hf

H = H - E

The transformation derivatives are

(6)

(7)

II
9Z

Ifk
9Z.

0) ' 9r; F a) ' 9Z 9?
(8)

", A plane of known flow quantities at some constant Z is required to
initiate the solution. Within this plane, an array of discrete points is .-. ,
identified (fig. l(b)) such that along each meridional ray, there are Nr ; .
points indexed by 1 < i < N^, and there are N^ meridional rays indexed by
T ^r j ̂  N<{). A step size consistent with the stability requirements: of; the
differential equations is first determined for advancing the solution to - '
.Zn+l. Since only supersonic flows are considered in the present analysis, .
the Z-axis is the hyperbolic coordinate. For each point in the flow field
a minimum of four step sizes, corresponding to the four characteristic
directions, must be found as follows:

AZ =

and (9)

The maximum eigenvalues are given by
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a--='[a(p)]v v - : ... = max (-\a^\, |a9
M|)p L ^' -"local max u i i »I 2 U- (10;

'„ - LW\«/-JI i - roax l|<T,̂ |,|a,q L •Jlocal max u 1 ' ' 2

where

M: = 1£ , uv ± a/u
2 + v2 - a2

1,2 8Z U)(u2 - a2)

and

N _ _L luw ± a/u2 .+ w2 - a^
Ol,2 " r I (U

2 - a2) )
(11)

Advancing the solution to Zn is controlled by the smallest step size
determined for the entire array at Zn.

New conservative variables, E, , 3 t+» are found at step Z using
MacCormick's second-order predictor-corrector technique. Some modification
to the indexing for these equations is required, depending upon the region of
the flow being analyzed, as shown in figure l(a). These predictor difference
equations are given by

(a) For conical, external, and internal flows, where 1 < 1 < Nt - 1
and 1 < j < N ,

• v.

* (b) For conical and external flows, where i =-N^ and 1 <. j. < N^, the ..,{
predicted values, are set equal to.the free-stream values, which will be • £
defined later. . • • - • • ' . ! !

' (c);' For internal flows, where" 1' = Nr and 1 < j <

where the superbar denotes predicted values at Z . The computations are
carried out on only one side of the plane of symmetry, 0 < $ < TT. For the
predictor step, information at if = ir-'+ A<(> is heeded, while (as will be
seen shortly) information at $ = - A<J> is needed for the corrector step.
This information is obtained by simply mirroring w (i.e., changing the sign
of w) across the plane of symmetry at the appropriate points and using the
values of p, p, u, and v from the mirror image point.

The corrector difference equations are given by
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(a) For conical and external flows, where 2 < i < Ng and 1 £ j < N̂ ,/
and for internal flows, where 2 S i i N^ - 1 and 1 s j i N^, r-• ->'

.

__n+l 1 [In _n+T AZ /LIST -.n+T \ AZ L^l r^T \ A7Hn+ll
E. A 7 IE< .1 + E. . - -rr- IF. . - F. . .1-- -rr ICj. . - Or. . I - AZH. /I

i»J 2 l_ 1*1 i»J A5 \ i»J i~1»J/ A* V iiJ i»j-l/ i,jj

(14)

(b) For conical, external, and internal flows, where 1=1 and
1 < j < fy,

" " Az

1,J 2

(c) For internal flows, where i

1,J

n (15)

iri-l 1^ n
, 2

(

and 1 < J <'

• A| /FrriT piH-T \
" AC-^H^.J ~ Nc-

1>d/

+ TT- (16)

After both the predictor and the corrector steps, the conservative
variables E^ 2 3 i» must be decoded to yield the physical variables. p,p,u,v,
and w such tna£ new predicted or corrected conservative variables F,G, and H
can be found. Decoding is accomplished by the following equations:

E

E.
w

. E2 + /E2
2 - 4kE1

2(i, - k)(l - v2 - w2)

2E1(1 -

p « p(l - u2 - v2 - w2)

- (17)
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After the advanced array is decoded, the flow along the.centerbody and
annulus boundaries will not necessarily satisfy the tangency requirement. As
described in reference 8, the velocity vector at the wall must be rotated
through a small angle, Av, and the wall pressure corrected using the.Prandtl-
Meyer relationship. The turning angle Av for all j is found as follows:

(a) For the centerbody,

*n+l . *-Uj tan o,
Av = sin'1 —

where the carets over the symbols denote the decoded values from the corrector
equations (i.e., those values that do not satisfy tangency).

(b) For the annulus,

, , v1 tan

-e V
tan

The pressure ratio associated with this turning angle is found from

n+l
(20)

. . .IT* 1 _ -I IT J. * 1 ** * f I

P

where:

m-

and

M =

Note that if Av >• 0, an expansion will result, while, if ,.Av ,< 0, a compres
sion will result.' The new corrected wall pressure, consistent with the tan-
gency condition, is '

and the corresponding density is
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/(22)

This relationship for density assumes that the entropy on the centerbody
and annulus is everywhere equal to the free-stream values. Once the pressure
and density are known, the total velocity is found from :

n+1 -fir
and the individual velocity components are

n+1u

vn+1

[un+1 + (M/N2) tan 6]

- M / N 2 )

n+1-n+1w
L •

The quantities L; M, and N are

L FA n+1 . M „. • A2 . A n+1 M\2 , /-n+l\2"!(u + —=• tan 6) +(v —-5-} +(w I|\ N2 ) V Nv V /J
„ ^ • ~ , - -M.= u tan o + v

---Vtanz 6 + 1

1/2

(23)

•(24).

. (25)

The. angle 6 in equations (24) and (25) can be either the surface .angle of
the centerbody or the annulus at Zn+l. . :.

Method of Solution:

Input to the program consists of the free-stream Mach number, the number
of points N^ and Ify (both of which are held constant throughout?the solu-
tion), body coordinates (which herein are only a function of • Z), and the ••.:'. ,
initial angle'of the conical tip. The-remaining free-stream input quantities
are calculated as follows: - - . , '•• :. • ••• ', • - - • • :

(26a)'

P_ = (26b)
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1/2

q^ cos a

q sin a cos

W

(26c)

(26d)

(26e)

(26f)

The body coordinates are entered at discrete Z locations. For any
three points on either the centerbody or annulus, a quadratic of the form
r « aZ* + bZ + c was determined. Choice of which coordinates to use for
defining the coefficients was determined such that for any Zn+1 , determined
from Zn+1 = Zn + AZ, two of the three points should have Z > Zn+1 . No
explicit attempt at smoothing the angles at the input points was made; however,
the present technique has been found to provide a satisfactory representation
of 'the actual contours. The slope of any Z location was found by differen-
tiating the above.

Solution of the conical flow is obtained by an iterative method. First,
an outer computational boundary "for both the conical and external flowfield
must be found that will allow the Shockwave from the cone tip to be captured
between the centerbody surface and the outer boundary. As shown in figure 1,'
this boundary is taken to be inclined at an angle, relative to the axis of
symmetry of .the inlet, that is, equal to the angle of attack plus, the planar
Shockwave angle for a flow deflection equal to the cone half Wangle. Similar
to the technique of reference 9, the free-stream quantities are assigned
between the outer boundary and the cone surface at some initial Z start.
The solution is advanced N£ steps in Z. Since the flow is conical, these
values can be inserted at Z start and the solution again advanced Ng steps
in Z, This cycling continues until the pressures on the cone at the end of
the Nth' cycle agree to within an e of 0.0001 of those on the N-lth cycle.
The solution was then taken to have converged, and these final flow quantities
were assigned to the end of the conical flow zone Zc. (The location of Zc .
is somewhat arbitrary, here taken as Zc = 1 (see fig. l(a)), but it should
always be less than or equal to the portion of the centerbody that can be
represented as a cone.) Usually, convergence was obtained within eight cycles
for the cases considered here.

After the conical flow was defined, the solution was advanced to .the
plane of the annulus lip. Here, the mesh is renoded to provide N£ points
between the centerbody and the annulus lip. For. the remainder of the solution,
the outer boundary ro is the radius of the annulus. <jlf the -external flow
outer boundary fell outside the annulus lip, the flow properties at the
renoded radial points were found using linear interpolation in the external
flow solution. If the external flow outer boundary fell inside the annulus
lip, linear interpolation was still used, but free-stream flow quantities
were assigned between. the external flow outer boundary and the annulus lip.
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Computation of the internal flow continues until the end of the inputy
coordinates. No attempt to define the external flow beyond the plane of the
annulus lip was made in this study.

RESULTS AND DISCUSSION

Coordinates of the M =3.5 axisymmetric supersonic inlet, for which
shock-capturing solutions nave been obtained herein, are given in table 1, arid'
shown schematically in figure 2. This inlet, which resulted from the design .
study of reference 2, has the feature that the minimum area remains in nearly'
the same location, relative to the annulus, "as the centerbody is translated
forward for off-design (M^ < 3.5) operation. To obtain maximum performance
with this inlet, it is necessary to remove the boundary layer in regions of
strong adverse pressure gradients, such as produced by Shockwave boundary-
layer interactions. Regions of boundary-layer removal remain fixed on the
annulus but, through a complicated porting system, move rearward on the
centerbody as it.is translated forward. (See ref. 2 for "details.) Since, in
this analysis, boundary-layer effects and mass exchange through the boundaries
were .not considered, discussion of this boundary-layer removal system is ;

important only insofar as indicating regions wherein good agreement betweeri
theoretical calculations and experimental data stibuld not tie expected.

Any new computational technique should be compared with a standard solu-
tion before being applied to more generalized problems. As shown in refer-
ence 7, excellent agreement between a discrete-shock, finite-difference tech-
nique and the method of characteristics was obtained for.planar internal
flows, with good qualitative agreement also being obtained,.with a straight
finite-difference method (shock-capturing technique) '. It remains to be shown
that .similar agreement between a shock-capturing solution and the method of
characteristics can be obtained for axisymmetric flows, particularly when
using a shock-capturing,technique developed for three-dimensional flows.. A
Shockwave pattern obtained from the method of characteristics for the inle't at
M^ = 3.5, ot = 0°, with the centerbody in the design position (herein defined ,
as the position wherein the Shockwave from the centerbody tip hits the annulus
lip at M,,,, = 3.5) is shown in .figure 3. Corresponding static pressure distri-
butions on the centerbody and annulus, obtained using the method of character-
istics, are shown in figure 4, along with the pressure distributions obtained-,
by using the shock-capturing technique. For all shock-capturing solutions
obtained herein, 20 intervals in the £ direction and 10 intervals in the <(»
direction were used. The shock-capturing solution agrees very well with the
method of characteristics up to the second Shockwave reflection on the center-
body. This is a fairly"strong Shockwave reflection, with the method of
characteristics indicating a downstream Mach number less than 1.2. Failure of
the shock-capturing solution at this point .is due to the Mach number becoming
subsonic in the,interaction region. Overshoots in static pressure, and hence
undershoots in Mach number, are typical of the solution of reflecting oblique
Shockwaves using MacCormack's second-order-accurate differencing in a shock-
capturing technique (ref. 10). Several possibilities exist that can possibly
resolve this situation: (1) incorporation of higher-order differencing terms,
as described in reference 10; (2) incorporation of a damping term near the
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Shockwaves, as was used in reference 11; (3) incorporation of a technique for
allowing the wall entropy to change across reflection regions; or (4) incor-
poration of discrete Shockwaves into the solution* At present, all four of
these possibilities are being examined. However, it can.be said at this point
that until the failure occurs, the solution obtained by the shock-capturing
technique agrees well with that obtained by the method of characteristics.

A comparison of the shock-capturing solution discussed above with experi-
mental data is shown in figure 5. Good overall agreement with the experimental
data-is obtained at a = 0°, except in the regions of boundary-layer removal.
The experimental data indicate Shockwave intersections with the annulus and
centerbody slightly ahead of the predictions of the shock-capturing technique.;
This is reasonable, since the presence of boundary-layer effects in the experi-
mental data would tend to displace the Shockwave interactions forward.

An angle of attack solution (a = 5° for the same centerbody location and
M^ as the above calculations) is shown in figure 6. Again, the solution
fails (at station Z/ra = 4.5) due to the Mach number becoming subsonic in the
strong interaction region; nevertheless, some qualitative conclusions concern-
ing angle-of-attack effects can be drawn. Static pressures along the windward,
<j> = 0, and leeward.-, <|> = ?r meridians for both the annulus and centerbody are
shown. Comparison with the solution shown in figure 5 shows that the magni- ,
tude of the pressure rise across the Shockwave reflections is markedly increased,
particularly on the centerbody. Further, evidence that the solution is produc-
ing a plausible reproduction of the physical flow^is indicated by the behavior
of the pressure distribution near the annulus lip on the windward meridian.
Here, the Shockwave from the centerbody tip should pass inside of the annulus
lip and, since the initial angle of the annulus lip is about one degree, a
local expansion should be generated at the annulus lip. The decrease of pres-
sure indicated by the solution on the windward meridian near the annulus lip .
2.86 < Z/ra < 3.1 is ,in agreement with the postulated physical flow.

All of the angle-6f-attack experimental data that will be discussed herein
is for angles of attack of 3°. In the following paragraphs, two different
Mach numbers, and hence, two sets of different centerbody location data, will
be discussed. The pattern will be first to show an a = 0° solution for the
inlet and then an angle of attack solution and corresponding comparison with
experimental data. Angle-of-attack effects on the internal flow pattern will
thereby be identified.

The first Mach number data that will be discussed is for M^ = 3.3, where
a forward centerbody translation AZ/ra = 0.356 was required. Note that even
a small change in angle of attack requires a change in centerbody position for
optimum inlet operation. At this M^ and a = 0°, complete solutions were
obtained to Z/ra =5.0, which is beyond the minimum area of the inlet (fig. 7).
The corresponding solution for a = 3° is shown in figure 8. Although the
angle-of-attack effects here are not as large as shown in figure 6, there is an
indication that the strength of the shock reflections on the leeward side are
increased. Here again, a complete solution was not obtained because the Mach
number became subsonic in the strong reflection region near Z/ra =4.8 on
the centerbody. Most of the experimental data are for the leeward side, with
good qualitative agreement being obtained (except for the viscous effects
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noted earlier). Some data on the windward side of the annulus were obtained
and these show the same qualitative behavior with respect to the leeward data
as indicated by the shock-capturing solutions.

The last Mach number data that will. ibe. discussed is for Ml = 2̂ 5̂ %here'"•"
a forward translation AZ/ra = 0.855 was required. The a =6 'solution is
shown in figure 9, where a complete solution beyond the minimum area was
obtained. At this Mach number, a complete solution was also obtained-"at angle
of attack, and again the strength of the Shockwave reflections was increased
(fig. 10). For this case, the centerbody was, extended sufficiently far for-
ward that some expansion'to pressures lower than the conical values'was
expected, and this is shown by both the" data and the shock-capturing solution.
Again invoking the qualifications on the agreement due,to viscous effects,
good'qualitative agreement between the shock-capturing solution arid experiment
*- ol A at" a -TJa o nX#- a-I nAi^' ' ' ' '' ' • - • - ' . i . . _ . , • . ' , . ..- , >. • -.. ftal data was obtained.

CONCLUDING REMARKS

For all of the internal flows examined.herein, several observations can
be made: " " " ' •" ' ' • " ".;<:"~ • " - • • • • ' •: ' .. " : •'• -. -: •:•" •'• •• • r
; . . .-'. '. . ..- • •-:-•• _ - , . ~.;'- . . • . - - , - ' • - . • •••/ 'v-'-v*,.'-...--

((1) A solution given by the shock-capturing technique agrees well with
one given by the method :of characteristics for a = 0°. * ' "• f-';

(2) . SecondTprder-accurate differencing can' fail in regions near1the:

reflection of strong Shockwaves where the downstfe'am Mach'number Is near i.-
Several possibilities such as higher-qrder differencing, damping terms near
the shopkwaves,,wail entropy correction, and discrete Shockwaves are being M

investigated to determine if this failure can berovercome.

/ (3) Shbck-rcapturing solutions agree well with experimental data,, except
in regions of strong viscoiis effects and. boundary-layer removal'. « -t: ,
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TABLE 1.- 3.5 INLET CONTOUR DEFINITION

Z/ra r/ra

Centerbody

0.0

4.0
4.1
4.2
4.3
4.4 •
4.5
4.55
4.6
4.65
4.7
4.8
4.9
5.1 *••
5.3
5.5
5.6: '

ft

5.7'
5.8
5.9
6.0

•

~

0.0

0.70532
0.7228 '
0.7387
0.7512
0.759
0.7625
0.763
0.7625
0.7611
0.7585
0.7504
0.7391
0.7120
0.6829
0.6525
0.6362
01618

'. 0.5973
0.5744
.0.5467

* ' ' " . ; '

Z/'a ''/'a
Annulus

: 2.86

3.1
3.2
3.4
3.6
3.8
'4.0
4.1
4.2
4.25
:4.3 ;•••:
4.4
4.5
4.55
4.6
4.65

'-4.7 •
4.8
4.9

- ' 5.0
5.1

.,5.6 '-
. 5.8 ;
5.9

„•- 6-0 ,

1.0

1.004188
1.0054 -
1.0051
0.99996
0.9882
0.9681
0.954
0.9364
0.9261

''• 0.9154 '•'•'
0.8949
0.8768
0.8695
0.864 '
0.86
0.8572
0.8533
0.8511
0.8502
0.85

.0.85 . .'•
0.8574 •
0'.8646
0.8735
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EXTERNAL FLOW

r

• • . . OUTER
. COMPUTATIONAL BOUNDARY INTERNAL FLOW

(a).— Schematic diagram of computational domains.

ARRAY

OUTER
COMPUTATIONAL

BOUNDARY

| ' +

0

(b).- Diagram of indexing scheme for shock-capturing technique.

Figure 1.— Details of flow-field model.
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ANNULUS

['-REGION OF BOUNDARY-LAYER
REMOVAL]

Figure 2.— Contours of M^ = 3.5 inlet.

1.2

.8

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2

Figure 3.— Shock wave pattern given by the method of characteristics
for tr »3.5, a » 0°, and design centerbody location, A2/ra " 0.
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.4

Pr

Too
.2

ANNULUS

METHOD OF
CHARACTERISTICS

SHOCK CAPTURING
TECHNIQUE

.4

Pf,oo

CENTERBODY

2.4 2.8 3.2 3:6 4.0
Z/ra

4.4 4.8 5.2

Figure 4.— Comparison of pressure distributions given by the shock-capturing
technique and the method of characteristics for H^ = 3.5, a = 0°, and
design centerbody location, AZ/ra =0.

.4

.2

ANNULUS

SHOCK CAPTURING
TECHNIQUE

o DATA (BOEING)

.4

P,
.2

'co

CENTERBODY

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
Z/ra

Figure 5.—.Comparison of pressure distribution given by the shock-capturing
technique with experimental .for. -M^ = 3.5, a = O6, and design centerbody
location, AZ/ra =0.
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.4

.2

ANNULUS

WINDWARD MERIDIAN
LEEWARD MERIDIAN

0

.4

P o

n

CENTERBODY .

y
r >f
" CJ1 r 1 1 f 1 1 1 f / 1 i 'l i 1

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
: z/ra-

Figure 6.— Shock-capturing solution for M = 3.5, a «= 5°, and design
centerbody position, AZ/ra =0.

.4

.2
Too

ANNULUS
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Figure 7.— Shock-capturing solution for
AZ/ra - 0.356.
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Figure 8.— Comparison of pressure distributions given by shock-capturing
technique with experimental data for M = 3.3, d = 3°, and
AZ/ra = 0.356.

ANNULUS

.2
Tco

AZ/r a= 0.855

.4r

.2
rco

CENTERBODY

j
.4 2.8 3.2 3:6 4.0 4.4 4.8 5.2

Z/ra
Figure 9.—Shock-capturing solution for M^ = 2.5, a = 0°, and AZ/ra= 0.855.
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Figure 10'.— Comparison of pressure distributions given by shock-capturing
technique with experimental data for
AZ/ra = 0.855.
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