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NUMERICAL METHODS FOR THE .
CALCULATION OF THREE-DIMENSIONAL NOZZLE
. EXHAUST FLOW FIELDS*

By Sanford M. Dash and Paul D. Del Guidice
Advanced Technology Laboratories, Inc.

SUMMARY

Two numerical codes have been developed for the calculation of three-dimensional
nozzle exhaust flow fields associated with hypersonic airbreathing aircraft. Both codes
employ reference plane grid networks with respect to three coordinate systems. Pro-
gram CHAR3D is a characteristic code utilizing a new wave preserving network within
the reference planes, while program BIGMAC is a finite difference code utilizing conser-
vation varlables and a one-sided d1fference algorlthm Secondary waves are numerically
captured by both codes while the underexpansmn shock and plume boundary are treated
discretely. The exhaust gas properties consist of hydrogen-air combustion product mix-
tures in local chemical equilibrium. Nozzle contours are treated by a newly developed
geometry package based on dual cubic splines. Results are presented for simple config-
urations demonstrating two- and three- d1mensmna1 multiple wave 1nteract1ons '

mTRoDUCTION

Hypersonic-aircraft with airbreathing propulsion will require a high degree of
engine/airframe infegration in Order to achieve optimized performance. The engine
exhaust flow, because of phys1ca1 area. 11m1tat1ons will generally be underexpanded at the
nozzle exit, and in order to obtain maximum propulsive efficiency, the vehicle afterbody
undersurface is used to prov1de additional expansion. This results in a three-dimensional
nozzle flow whose boundarles are defined both by the solid boundary of the nozzle wall and.
by the boundary separatmg the nozzle flow from the vehicle external flow. A typical
exhaust nozzle (fig. 1):may be characterized as having nozzle modules with cross sections
which are rectangular in shape. These nozzles may be arranged in multiples and dis-
charge into a common nozzle. The flow fields to be analyzed start at -the combustor exit
and each module may be analyzed individually until its merger with adjacent modules and
the external ﬂow f1e1d
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In developing a numerical model for this ﬂow field, the following dominant features
must be accounted for:

(1) The flow properties at the combustor exit are highly nonuniform. Burning and
mixing in the combustor yield regions of highly varying composition, temperature and
stagnation propertles. In addxtlon, shock waves are produced in the vicinity of the m]ec-
tors. Although the strength of these waves decays rapidly as they propagate through the
burner, they are generally present at the burner exit and must be accounted for.

~

(2) The exhaust gas mixture consists of hydrogen;air combustion products and sig-
nificant burning may still occur in the initial regions of nozzle expansion.

(3) The flow field geometry is quite complex. The engine modules consist of mul-
tiple surfaces with sharp interior corners, and flow fences to contain the external exhaust *:
flow may be present. ‘ ‘

LA

(4) The interior nozzle flow field is dominated by complex wave interactions W1th A
waves generated and reflected off multiple surfaces In addition, sharp interior corner "~
regxons ‘must be accounted for. ' ‘ '

(5) The nozzle exhaust flow interacts with the nonumform vehlcle external ﬂow )
field. This complex interaction for underexpanded exhaust ﬂows results in an expansxon . ; ‘
system propagating toward the vehicle undersurface from the cowl trailing edge and a _
spanwise expansion generated by the sidewall mteractwn. An underexpansmn shock prop—
agates outward into the nonuniform vehicle external flow, and the exhaust and external
flow are separated by a plume boundary. In addition, pressure and flow deflectmn m1s- |
match between adjacent modules may occur, resulting in a spanwise multlple shock
system.

To best accommodate highly rotational variable composition flow fields, a grid net- -
work which follows streamlines is preferred. For nonstreamline networks, large errors,_ .
may be associated with streamline interpolation procedures for nonequilibrium flow cal- M
culations, ag discussed by Sedney (ref: 1). For two-dimensional flow fields, a grid net- Lo
work following the flow streamlines is readily obtained. Such a system is employed in . . ;
references 2 and 3 for the calculation of chemical reacting nozzle flow fields and .super- - .-
sonic combustor flow fields, employing a 'viscous' characteristics technique. In this ..
approach, a uniform marching step Ax is taken, new streamline grid points are obtained,
“and characteristic data are obtained by interpolation on the initial data line. - Sucha -
scheme can readily be éxtended to three dimensions via the reference plane approach.
This approach involves the definition of a reference plane system in which the three-~ ,
dimensional volume under consideration is spanned by an appropriately selected series i .
of planes which intersect the boundaries of i}, considered volume. The equations of
motion within the reference planes are e¥- ~=ssed in a quasi- streamlme coordmate system,

LER}
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where quasi-streamlines are the projections of the actual stream surfaces onto these-
reference planes. Then, although the actual streamlines are not traced streamlme
mterpolatmn procedures are mrmmized : )

In addition to minimizing streamhne mterpolatmn procedures use of the reference
plane approach has other distinct advantages By developmg the equatlons of motion with
respect to different reference plane systems (Carte51an cyhndncal and line source),
complex geometric conﬁguranons may be analyzed. In figure 2(a), a reference plane net-
work is depicted for a typical nozzle module, wherein the line source system shown alle-"
viates the need for adding reference planes as the sidewall opens. The addition or dele-
tion of reference planes is provided for antomatically, based on their proximity to walls.
A more complex situation is depicted in figure 2(b) for the flow field downstream of the
modules. For this calculation, a combination of several systems is employed and provi-
sions are included for automatic switching from one system to another as the character
of the boundary surfaces changes. The reference plane system also caters to the usage
of reference plane characteristics at all boundary points. This approach is generally
recognized as the most accurate boundary calculational procedure (ref. 4). However, it
proves cumbersomeé when employed in conjunction with nonreference plane networks due
to the complex interpolation procedures then requlred

The reference plane characteristic techmque has been W1de1y used for the calcula-
tion of three -dimensional supersomc flow fields, and the authors had previously developed
a program employmg this techmque for the calculation of nozzle exhaust flow fields (refs. 5
and 6), which is in current usage at NASA Langley Research Center (réfs. 7 and 8). ' That .
program, as well as most reference plane characteristic (refchar) codes in common usage
(refs. 9 and 10), employs an inverse scheme wherein interpolations are performed to obtain
data-at the intersection of the quasi-characteristics with the initial data surface. Com-
parisons of such refchar codes with shock capturing finite difference codes (ref. 11) have.
led to the general conclusion that such difference codes are better able to analyze complex
flow fields with multiple secondary shocks. From experience gained with the authors'
original refchar code, it was felt that the inability to successfully. analyze such flow fields
was primarily due to the inverse interpolation procedures .employed. . Such procedures
tend to ignore the presence of weak waves by allowing the quasi-characteristic lines to
arbitrarily cross each other. The numerical diffusion associated with these interpolations
can become significant, particularly when the local Courant number (ratio of overall
marching step to local maximum allowable marching step) is much less than one. The
smearing of these weak waves is enhanced by resorting to higher order interpolations on
the initial data line. :

To treat complex multiwave flow fields and still retain the advantages that reference
plane methods afford, two new numerical codes have been developed. Program CHAR3D
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is a refchar code which employs the wave preserving network depicted in figure 3(a) as
compared to the standard inverse network of figure 3(b).

This new network tends to pre-

o

14

serve wave systems and secondary shock waves have been successfully . captured with it

with a minimum of smearing. In addition, CHAR3D employs a nonisentropic pressure-
density relation along, streamlines. to: calculate shock entropy losses and utilizes conser-

vation variables in constructmg derivatives normal to the reference plane.

- BIGMAC is a reference plane finite difference code utilizing a’ quasi-streamline grid in
the reference planes as depicted in figure 3(c).
use of conservation variables in conjunction with a one-sided difference algorithm.

ae . ..

E(K)
F(k)
Glk)

H(Kk)
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SYMBOLS

.equilibrium sound speed, ft/sec (m/seq)( ' L

specific heat at constant volume..

~ conservation variables (k “=4 1 to, 6) defined in text (see eq. (1)) .
conservation variables (k = 1 to 6) defined in text (seé eq. (1)) -
conservation variables (k = 1 to 6) defined in text (seev,.evq. ‘((‘1))4‘ L

conservation variables (k = 1 to 6) defined in text (séé 'eq. (1)).

stagnation enthalpy, ft2/sec (m2/sec?)
static enthaipy, £t2/sec? (m2/sec2)
defined in text (see eq. (1-))

index of data point in reference plane

index of reference plane

defined in text (see eq. (1))

index of marching step

Mach number in reference plane;_ q/ag -

BIGMAC captures shock waves via the

<5
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X,y,2
r,0,z

x,0,r

" unit normal to surface
" pressure, Ib/ft2' (N/m?2)
" “magnitude of velocity in reference plane, ft/sec (m/sec)

) ‘ _entr'opy; 'tt2/sec2-OR (mz/sécz-K) '

temperature, °R (Kj '
flow velocity vector

velocity component in marching direction in reference plane, ft_/sec (m/sec5 '
velocity éomponent normal to reference plane, ft/sec km/sec) '

velocity component in reference plane normal to marching direction,.
ft/sec (m/sec)

Cartesign coordinates

line source coordinates
cylhind.ricall coordinates
eﬁuilibrium isentropic exponent

density,_slugs/ft3 (kg/m3)

fuel-air equivalence ratio

velocity direction in reference plane, rad

velocity direction with respect to reference planes, rad

Arrows over symbols denote vector quantities. Coordinate subscrlpts denote dif-

ferentiation with respect to the coordinate.

2,

Y
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GOVERNING EQUATIONS

Program BIGMAC

The equations of motion for the steady inviscid ﬂow of a gas mlxture in chem1ca1

equilibrium, written in conservation form wrth respect to the streamline reference plane

system described, are:

-

Eg +F,+ G, + H- F'na=0

y ?il EzA"

V=
i

where' tana is az/ay' at constant x andfor k= 1to 6

pu o v
P + pul . BN puv
puv ' - P+ pv2
E(k) = hghg - S F(k) = hyhg|
puw - : f'a
puH. o .. o . pvH
pud : 4 pvd
pw 0
puw : : ‘ -J1h3(P + pv2)
pvwWw : o J1hqu + Johyw}pv|.
' P + pw2 o _ ‘JZhI(P + pvz,)
pwH N 0
pwd .0
System J1 ) hy - , h2 ' " h3.
Cartesian 0 0 1 1 1
Line source 1 0 - 1 X 1
Cylindrical 0 1 1 z 1

' Program CHAR3D

In nonconservatlon form, these equations (m contmuous regions of the flow field)

may be written

664
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v. W) =0 A

p(V-V)V+vp=o> ' -

e - . . (2)

. V+VH=0 Lo : ' : S
V.vé=0 -

The equations may be cast in characteristic fc')'rm‘with. respect to the reference plane -
systems described by writing the above eqhations in scalar form and transposing those
terms not involving variations in the x- or z-direction onto the right side. ‘Then, the
left side is identical to the corresponding two-dimensional system in the X,Z plane.
The equations' in reference plane characteristic form (ref. 6) may be written:

Along

M2 cos s

£ _dz _
A

M2 cos? (¢) - 1

in¢+ B | I | (3)

where M2 = (u2 + wz)/ag “and BZ =M2-1 -

where

and

Along

d¢t-r-%2d(lnp)= F*di . 4)

- ¢y tan Y (cos

‘d§=-g’i-+J1d(lnx)

Jg

N

s ‘:('Siv'"?’"j X.*i cos ¢>[(£a’n- vy s any "_"f‘(in"if.)‘;] - o

¢ +2* sin ¢) + (Jp - \*1y) tan? y

ASL = g—zx' = tan ¢
d(tan ¢) c tan ;P d(ln P) + G &% ~ ' (6)
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where

G = -1 (n P)y (1' 9 ) s .
—COS¢ I-MZ + tan 1P(tanll/)y+tanl.0 + tan l,l/(Jl C_OS¢+J2$1D¢)

The flow deflection angles ¢ and zl/, velocity components u, v,and w, and stream-
line and characteristic orientations A% are shown in figure 4. A detailed description
of orientations with respect to the various reference plane systems may be found in ref-
erences 9 and 6. ' - e

 CALCULATIONAL PROCEDURES e

>
aa e

Interior Point Calculation’ -~ .~ . - . =<0

Properties are desired at the grid point'(T;J ,K) shown in figure 4. ' The allowable -
step size Ax is determined by satisfying the CFL condition. For BIGMAC, this requires
. that the intersection of the Mach cone from (I,J,K) with the initial data surface falls within
the numerical domain as depicted (i.e., the quadrilateral (I,J’-ﬁl),‘ (1-1,3), (1,3-1), (I+1,J)).
Note that the effective numerical domain for the characteristic calciilatiori inclu"dés the .

. pomts I+1 and I-1 on planes J-1 and J + 1; hence a larger step may be taken

BIGMAC The MacCormack (ref. 12) scheme .used to dxfference equatlon (1), y1elds

ET’J-= EI,J -2 AX<FY+ ,GZ - Ew —z F‘.ZAta.n a..+ LZI)I 5 - o (7a)

where

-\l : ' : . .
- [z z A h . -
tan a = 12 iJﬂ < I,Jd Ay1> 3 ' O
| vy + Ay y.24 Ahg/ . : o ‘
afl _ i<fI,J:|:1 - fI,J><AY1>, |
9y 1J Ay + By, \AY, )

3f| fI;t:lJ'fIJ A2-1
%l g T Azz Azg)
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Ay; = V15~ Y1,5-1

SRR s & s S I8

for any variable f and

_1 =
1= E{EIJ + By J) 2 A"[Fy +

where

Ay
Ay

IJ¢1
+ Ay2

2
1

\_/

tan &' = 52 <
' i z +1
7l _[fae - T g)/ay
-4 - L) |
FY- T,J Ay1 + Ay2 Y1
' o ;<fm J -, J) )2
= 3 AZ Z
I’J + 22 1

h
- = 1w
iJ=2%,3* <h3 u> Ax
1,J

’

m X} ’

gl

¢

[

The physical variables are obtained by the following iterative procedure.

of u is assumed. Then,

p= E(l)/u

P=E(@2)-E(1)u

Bz =213

AYy = Y1541~ 913

21,J

A value

(8a)

(8b)
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v = E(3)/E(1) | (8c)

Fa)

w = E@)/E() SR T ey
H=EG/EQ) L ) "T,g_‘.wg'
& = E(6)/E(1) - ‘f_ | dp:@5
h=H--%(u2+y2.+w2)." | o (8g)

The following three parameter curve fits (based on data from ref. 13) are incorporated
into this code and are described in detail in the appendix of reference 6.

=

h = h(P,8,T) N A L . (9a)
p = p(P,3,T) | | (8b)
= [(P,8,T) e - (9¢)

Thevalue of h obtained in equation (8g) yields . T via an inversion of equation (9a).

" Equation (9b) yields an alternate value of the density compared to that obtained in equa-
tion 8(a). The value of u is perturbed and the procedure repeated unt11 the two values
of density agree to w1th1n a specified tolerance.

CHAR3D Point I in figure 5 is located along the quasr-streamlme by the relanon

2§ 5= 25 * (atan¢IJ+btan¢IJ)
where a=1, b=20 in the predictor step and as= -%-, b= -% in the corrector step. In
this new wave preserving network, the calculation proceeds upWard from the lower bound-
ary where points (I-1,J) are calculated for all reference planes’ J to second order prior
to calculating points (I,J). In addition to the standard initial data array (the points (1,J)),
an extra array (f,J) is required. To calculate properties at (,J), the standard initial data
grid in the reference plane (I-1,J), (I,J), and (I+1,J) is employed to calculate the forcing
function terms ihvol’ving derivatives normal to the reference planes. Properties are
known at points 'Hl, Gy, and T-1 from the calculation of point (I-1,J) to second order.

. “Point A ‘islocated between H; and Gy -on the quasi-characteristic Al
‘where A* is defined in equation (3). All properties (including forcing functions) are
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obtained via linear interpolation! between Hy; and Gl; Then, Hg is located between
T and I+ 1 such that the downrunning quasi-characteristic from Gg (or B) passes
through (1,J). To first order, properties at (I,J) are calculated using points B and A,

where Pg and - ¢B are determmed using compatxblhty relations (eq. (4)) along IB

and HzB.

" Then PI and ¢I are calculated employmg the compat1b111ty relations

and

~ Remaining properties are determined at I via the following streamline relations:..

™

- - B
(%1 - ¢p) *‘(I,Mz

(t;an'\l‘/) = (tan t[/)- + a(t;:dg ) + b(t:;q;p ) In (PD + (::LGI + be) Airf :
. I B

T T tan ¢
Hy = Hyp - a(coscp

- tan ¥
%1= 91" a(cosd)

)

B

HY)I + b<ta“ L4

|
tan ¢
°”>1 ' b<°°s ¢ "I’Y)i

and in continuous regions of the flow

(®/eTy = (2/o7) -

cos ¢

{Ean v

R P N
| (9% - ¢A) + a( B 2> + b(l“:/12> ln (Pi) = '(aFX + bFf) ARy,

B

)| "les
—_— N{o—=]=
PMZT Pp

e
cos ¢ HY>I

( ./ pr)y} + b[::,‘;ﬁ

(aF;3 + bF‘-I':) Az

J

=

7
SN

(p/o)] Yorg

(10)

(11)

12) -

(13)

(14)

Linear interpolation along a characteristic: 11ne calculated to 'second order is con-

slstent to-second order.

(See- appendxx.)
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The flow velocity is obtained via the relation. - et - R

oy

'[_ Coq12 S S 9
.= V2 H.- hP.&.,T. -

Ell h( 1 1)] . . (15)
where Tf 'is obtained via an inversion of equation (9b){with p_I., Pf’ and &. known

and hy is obtained employing equation (9a). Then, I} is obtained from equation (9c)
2 _ r.p_lo '

snd ag I‘I PI pI.
This calculation is performed for points I in all reference planes to first order.

" Then, cross derivatives 9/dy are evaluated at I employing the relation

2) - (2) - ne(2) ()
(ay xz \Yxm %)%y _ N
where ‘

(i) } 1,J+1\Ay, Ay, fJ /.\y1 Ay, 1J-1 Ay,

ay M (Ayl + Ayz)

A = VY. _ =~ V= Ay, = ..v - V=

Y1595 " Y 3-1 Yo = Y5341 " Y19
tan o = (-%) ,
x,n

<i> g fag '
3Z,x,y'-fZ'I',J'vzf-1',J' | o L

Derwatwes are made the same way at the mit1a1 statmn I, except here 8f/ az is eval- ‘
uatedby o : : ' : d 2

<_a_f_) : ="‘fI'+1,J~' fI,J : :
X,y zI+'1,J.'z_I',J C R

_ CI-IAR3D m addltlon to the centered difference algorlthm described above, has the
option of evaluatmg cross derivatives via an alternating one-81ded difference algorithm. '
_For th1s 0ptxon denvatlves are eva.luated as descnbed in the sectlon for BIGMAC. Cross
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derivatives are required for the variables''P, ¢, ¥, H, &, and" P/pl. In evaluatmg
cross der1vat1ves for ‘P, ¢,and l,l/, conservatmn variables are employed as follows:

. .\'
‘.Py=F@&-Fﬂh@-vF0&
_;'wy’cos¢-uy sin¢ . . Cae e .
L avg - (udy + Wwy) tan ¥ |
. (tan ¥ =
(@an ¥)y T
where .. = - . » o A .
uéqcoe¢ ' w = q sin ¢ v=qtahll/
a2 = u2 + w2
and - : : . .
| E@)y - vE(), )
Vy © EQ)
E(2), - hohoP, - u E(1) o S ‘
Uy =. Ay\..ZE.‘:i(lg' ' y? .o e . 18)
EM&-wEu& _
wy = D )

The conservation variables E(k) and F(k) are given by equation (1). The use of con-
servation variables in construction of these cross derivatives tends to suppress oscilla-
tions. that occur when employing physical variables to dlfference across shock waves. .

However, the use of a one-sided difference algorlthm in con]unctwn with CHAR3D tends

to produce spurious results in regions of large cross flow.

In the characteristic reference plane algorithm, cross flow vanatwns are expressed
via the forcing function terms F* appearing in the right side of the compatlbxhty rela-
tions (eq. (4)). These terms are assumed to vary mildly within an mtegratmn step. When
a one- sided algorlthm is employed to evaluate cross derivatives in the vicinity of shocks,
the values of the forcmg function terms may vary greatly between the predlctor and cor-
rector steps._ ‘In addltlon the numencal domam of dependence is somewhat ‘vague for the
" charactenstlc reference plane approach in con]unctlon with one-sided dﬁferences so that
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part of the problem may be due. to stability. The’ recommended approach for evaluating
cross derwatwes in CHAR3D is to employ conservatlon variables in con]unctlon witha
centered dlfference algorlthm although this matter requlres further study. o

In CHAR3D, secondary shocks are captured as rapid changes spread over approxi-
mately three grid points. These discontinuities are preserved by use of the wave network
descrlbed which performs all mterpolatmns off quasi-characteristic surfaces. The
entropy change associated with these shocks is evaluated employing a nonisentropic
pressure-density relation (illustrated here for a perfect gas) '

'v,.v"m‘;(r/pr)w’-%% T (19)7

For a shock of strength £ (pressure ratlo across shock), this change is determined
employmg the relation (for perfect gas)

AS:_ [(r+1)s+<r )] ‘
e 1)§+(r+1)] - - @0

where AS “is the entropy change along a streamline produced by the captured shock.
" This. relatlon involves only the pressure distribution in the vicinity of the shock and is.
' read1ly apphed in regions of nomnteractmg shocks as follows. Let

(r+ 1) +(r-1)
(T - 1)g + (T +1).

Assume 2 shock is spread over the marching interval K = 1to 6 (fig. 6) for a typical
quas1-streaml1ne. Then 1. represents free stream conditions for this shock The
entropy change in the mterval K-1 to K is then expressed by

(%S_> =<'CA'§> _<%§> | 1 [EIK <;K—1> | o _
Y/ 41(_-41,{1{_‘; .'V‘II,IK.‘_?‘, v 1K-1" I.IK" 1K N

where -

F(£ F) =

2 = Px/ P

Then'

461, e o)
. _K-l,K‘

e 2
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_ Since the shock geometry does not appear in the entropy ]ump relatlon, the entropy rise

* associated with extremely complex three-dimensional shocks can be accurately obtained.
Special provisions have been 1ncorporated into ‘the program for’ the computatlon of sirgu-
lar points at the juncture of intersecting shock waves and/or shock reflection points. At
such points' the streamline undergoes a discontinuous pressure.rise:corresponding to-that
through both shock waves. - If the shock .intensities are different, an entropy discontinuity:
occurs separe.ting the different zones, and a vortex of infinite intensity results. Numeri-
cally, the entropy procedure described would predict an entropy rise associated with this
pressure jump. Theoretically, this occurs in the limit of vanishing mass flow, while
numerically the finite mass within this region would lead to unduly large entropy levels.
Special coding has been incorporated at such singular points to suppress these "numerical"
peaks. -

Wall Point Calculation

Solid surfaces are prescribed via discrete -contour data and fitted via a newly devel-
oped method based on the use of partial cubic splines (ref. 14). The surface fitting is done
by a separate geometry‘ package and the array of coefficients generated is stored on tape.. .
BIGMAC and CHAR3D employ this coefficient data in conjunction with a surface interpola-~- -
tion procedure yielding highly accurate values of the dependent variable and surface unit
normal.

In both BIGMAC and CHAR3D, wall point calculations are performed employing a
reference plane characteristic calculation. In flgure 7, CD is the intersection of the
reference plane y = Yo With the surface z = f(x,y). Reference planes are oriented so
that the surface normal lies nearly within the reference plane. For s1dewa11 calculatlons,
this is accomplished via local coordinate rotations. : '

In CHAR3D, P, ¢c,and Y. are evaluated utilizing the characteristic compat-
ibility relation (eq. (4)) along BC, the normal momentum equation (eq. (6)) along the
streamline projection CD*, and the relation V i =0 appliedat C ,» Which yield the
relation

sin ¢ = (f)c €08 ¢¢ + (fy)c tn ¥¢ (21)

The compatibility equation yields a relation between PC and ¢C, and the normal
momentum equation yields a relation between PC and z,bc' This system is solved in
the context of the wave preservmg network prev1ously described by a 31mp1e iterative
procedure. _
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- In BIGMAC, this iterative procedure is eliminated by combining the normal momen-
tum equation with the quasi-streamline momentum equation, yleldmg the following system

~of equations for Pc, (w/u)C, and (v/u)C

iwz/é??mg I S 2 | C7
B 1 o 0 . (y)e| (mPe | =

|tan wém ¢)CD* (P tan wzcos '¢> S 1 W /U)C‘

‘ ‘ P Jep* |

where

| ,
- 1 + ke v
R1 = ° ZPRiigR; [t - WA - MB + c] Ax+1n Py + <ﬂP>BC(u)B

1

Ry = (ix)c

‘T—EBSL tan ¥ (B cos ¢ + C sin ¢)]

pu hihghg
and - ‘
' y . E(l) G(l)
A=h1h3—2-+pvy +J1h th
i‘ e ":‘ ' . ",V.F(l)'
v . v~} ‘- . ‘
. 4_ - ) . . v F(l)
C = Flt)y - wF()y - 3 15
B = FG3). - F@), ; F@)"
D A me *91 hy * "2_ B3

(32)

,Then, relatlons applied along the streamline projection CD* yield remaining flow var-
.iables at C, in conjunction with the equilibrium curve fits (eq. (9)), for both programs.

The process is then repeated with coefficients averaged for second order accuracy. -
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IR Y A PR N I R T
[ S LI A :

dw.0 o T InterioriCormer - T

[ RS S TR MR
Interlor corners occur in the 1nterna1 modules and are dlscretely treated as the

intersectxon of specified surfaces, as depicted in flgure 8. A detailed descrlptlon of these
corner calculatlons with respect to the various reference plane coordinate: ‘systems may
be found, m reference 6 The procedure. is out.hned here for a Cartesian system where

M the, mtersectlng surfaces are prescribed by z = f(x,y) and y = g(x,z).

The relatlon V.i= 0 applied to both mtersectmg surfaces at C (the point to be
calculated) yields the flow deflection angles - ¢>C' and” tl/c explicitly

Iy +gxfy w
= ta -1 ———
¢C n <1-ngy> L
S
: gx + ixgz - IR . o L
Y~ = tan~1|cos ¢ ——— 22
C < C l-fygz
: J

Then, a redundant procedure is employed wherein reference plane calculations for the
pressure at C are performed in the reference planes Z = zC and y=7Yc ThlS yields
tive forcing functlon terms in the compatibility relations via backward dxfferences A
‘weighting of these pressures is performed by accounting for the relative wave strengths
in each of these reference planes. This gives the stronger weighting to the calculation V
performed in the reference plane containing the dominant waves via the relation

AYA,C - Adac
PC A A P t 2 A
VAC * B%anc T C1 7 A¥p 0+ APanc

Pc, (24)

Streamline relations are performed along the corner, CD and the process is repeated for
second order accuracy. '

i

Shock Point Calculation

A discrete three-dimensional shock point calculation is performed for the nozzle
underexpansion shock, which propagates into the nonuniform external stream surrounding
thé ‘vehicle.  ‘In figure 9, subscript 2° ‘refers to the shock free stream.:: Shock geometry
is defined in terms of the direction cosines of ‘@' and B8, where B is the angle made by
the shock cut-with the reference plané and “ @ is-the ¢rosscut angle. " For given'values -
of o' and B8, the shock normal is
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fig = ix cosa sin B- iy sina + 1, cosa cos B (25)

where fx,fy,fz are the unit vectors in the X-, y=, and z-directions. The characteristic -
relations on the free stream side yield flow properties at Cg. The Hugoniot relations

in a shock normal system yield properties at Cl' The compatibility relation along A1Cq
yields an alternate value of preSSure Pé 1 The angle B is perturbed locally until A Pc 1

from the jump relations equals PC from the compatibility relations to within a speci-

fied tolerance. This procedure is performed in all reference planes, and the process is

" then repeated using updated values of the crosscut angle a. ‘The complete details of this
procedure including rotation into the shock oriented system, jump relations, and iterative
procedures may be found in references 5 and 6. .

Contact Surface Calculation

A three-dimensional contact surface is significantly more complex. than its two-
dimensional counterpart, since the streamlines on each side of the discontiriuity not only
differ in velocity magnitude but also may be highly skewed with respect to each other. In
figure' 10, ¢ and B are as previously defined for the shock calculation, and the stream-
lines passing through 'C emanate from Dj on the lower side and Dg on the upper -
side. * Hence, discontinuities exist in the flow angless ¢ and. ¥ at point C. " The bound- '
~ary relatmn V.i=0 appl1ed at Cl and Cy y1elds the relations.

. sin (B ¢Cl) + tan-otan t,l/C1
' = (26),
“sin (B ¢Cz) + tan'a tan wCZ

‘Then, characteristic compatibility-,.relatlons ‘may be applied along A{C; and ByCy
yielding Pc 1" ¢C1 and Pc 5" ¢C'2 relations. The normal momentum relations

applied along the streamlme prOJect1ons C1D1 and C2D2 yield relations between
Pec., - L ‘/’C L and PC 5 - _‘PC 2 - For a given value of the crosscut angle a, a value of B

is obtained via an iterative process satlsfymg the above relations and the boundary condi-
tion Pe 1 = PCZ' This procedure is performed in all reference planes and repeated with

updated values of the crosscut angle o. Again, complete details may be found in refer-
ences 5 and 6. - SR '

RESULTS

Inlernal corners represen‘t just one eeg'ment- of the overall'boundary. ""calculational
procedure and hence must be calculated as part of the overall marching procedure. '
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Recently, inviscid corner flow f1elds have been studied in detail (refs. 15 and 16) utiliz-
ing. comcal coordinates in a timelike marching procedure until conical invariance was .
'aclueved .While these schemes do yield the flow field details in the corner region, they
_zare not apphcable to general three -dlmensronal flow problems which are noncomcal

Corner results are presented using the general interior corner pomt calculatlon
outlinéd above and previously described in references 5 and 6. Results for a 5° double
expansion corner are depicted in figures 11 and 12. These results were obtained with"
CHARS3D starting from uniform initial flow conditions (P = 845, M, = 2.94, $= Y= 0)
* with an 11 x 11 Cartesian gr1d ‘Results are shown after nine axial marchmg steps and
the axial pressure variation at the corner is also indicated. S1m11ar results have been
obtained with BIGMAC.

An expansion-compression has been calculated using BIGMAC which yielded the.
results depicted in figure 13. These results were obtained with an 11 x 11 Cartesian
grid for initially uniform flow (Moo = 2)'and are depicted after 10 axial marching steps.
Results are compared with the detailed solution of Shankar (ref. 16) and the experimental

results of Nangia (ref. 17). '

Results for the double compression corner, as obtained by BIGMAC, are shown in
figure 14 after 35 axial marching steps. A 12 X 12 line source network was employed
with initially uniform flow at M, = 3.17. A comparison is made with Shankar's numer-
ical results (ref. 16) and the experimental results of Charwat and Redekeopp (ref. 18).

The above results ver1fy the accuracy and validity of the 1nter10r corner procedure
employed and, hence, yield credibility to the application of this procedure for general cor-.
ner calculations within "truly" three-dimensional flow fields.

To demonstrate results obtainable with the new wave preservmg network of CHAR3D
a simple two-dimensional inlet flow field is calculated. Calculation was performed with
a uniform equally spaced initial proflle (P = 845, M= 2. 94) employing 11 and 21 grid
pomts Wall pressures are dep1cted 1n f1gures 15 and 16 for three shock reﬂectmns
After the fourth reﬂectlon the flow on the upper boundary is subsonic, and thus the pro-'
gram could not calculate past this region. Note that both the pressures obtained as well
as the propagation rates are in excellent agreement with the exact solution and no addi-
tional smearing results from wall reflections. '

A complex internal module flow field calculation (square nozzle) as depicted in fig;
ure 17 has been performed using‘BIGMAC. This flow field is characterized by the initial
interactions of expansion waves emanating from mutually perpendicular surfaces and the
subsequent interaction of enveloping shock systems generated by recompression on the -
upper wall and sidewall. This calculation employed a 21 x 11 Cartesian network, with
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additional reference planes being inserted as, the sidewall opened. At the straight sectlon
the:final network was 21 x 18, Uniform flow propernes ( » = 845, M,,o 2. 94) were
stipulated at the nozzle entrance. Pressure.contours on the symmetry plane are deplcted
in figure 18. Of partlcular interest is the intersection of four three- dlmensmnal shock .
surfaces.at- x =17 and z =y = 0. This results from the reﬂectlon of the envelope _
shock produced by. the. S1dewall and the reflection of the envelope shock produced by the‘
upper wall, resulting in an approximate 15/1 pressure ratio at this 1ocat1on The ax1al '
pressure variation along the corner is deplcted in f1gure 19 and pressure var1at1ons along
several streamlmes m the symmetry plane are deplcted in ﬁgure 20." '

All results presented employed a perfect gas opt1on with I'=14 for the sake of
simplicity.  The equ1hbr1um option has been extenswely used and tested (refs 5 6 7 '
and 8) and provides.no further insight into these problems. The results were all obmmed
with relatively crude grid networks, yet provided accurate and detalled ﬂow field results.
Further gr1d refmement would y1eld somewhat better flow resolutlon, if desired or neces-
Asary. It should be noted that due to the use of disc storage techmques as employed in

7 both programs flow f1eld resolutlon is not l1m1ted by machme core storage &

C_ONCLUDlNG REMARKS

. Two new computer codes have been developed for analyzing complex three-! -
dimensional supersonic flow fields. Their use of a quasi-streaml_ine network in conjunc-
tion with a reference plane grid allows for the calculation of complex geometric config~
urations and caters to highly rotational, variable composition flow fields. Both BIGMAC
"and CHAR3D are currently running internal flow codes with perfect gas or equilibrium
hydrogen-air chemistry options. '

- CHAR3D employs a totally new grid network which caters to both the following of
streamlines and the preservation of wave systems. This is done in conjunction with an
axial marching procedure. Hence, in addition to its application to three~dimensional ref-
erence plane systems, it is equally applicable to "viscous' characteristic techniques,
since forcing functions are also employed.

BIGMAC employs the commonly used MacCormack algorithm in conjunction with
conservatlon variables and hence falls in the general ‘classification of finite difference
shock capturing codes. However, it does this in conjunction with a reference plane
streamline grid which provides significant advantages for the flow fields treated.

Both programs treat complex three-dimensional flow fields accurately, locating
secondary shock waves and evaluating flow field propertles in their v1c1n1ty mcludmg
wall and interior flow entropy. From our limited experience with these codes CHAR3D
appears best suited to flow fields wherein the predominant wave propagation occurs within
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the reference planes. For such flow fields, CHAR3D with half the grid points- yields : -
results’ comparable to those of BIGMAC. In addition, no overshoots occur in the vicinity’
of shock waves and a larger marching step may be taken.  However, when the assumption
ofa m11d1y varying forcing function is violated (i.e., in the vicinity of strong crosswise -
comﬁre‘s:s’i’c'ms) BIGMAC would be the preferred code. This program has no preferen-
tial d1rect10n and has been shown capable of calculatmg arbltrary mult:lshocked three- C
d1menS1ona1 ﬂow fields. » '

Our current effort is devoted to extendmg both. these codes for the calculatlon of
the ﬂow field downstream of the engine modules. ‘This calculation is performed in the
authors prevmus code and similar procedures will be incorporated.” “Future efforts wﬂl
involve the incorporation of finite-rate hydrogen-air chemistry, frozen chemistry, and .
assoc1ated sudden freezmg criterion. In addition, the extenswn of these codes to mxxmg
’calculatmns along the plume interface is anticipated. :

oIt should be noted that while the calculation of nozzle exhaust flow f1elds has been
specifically discussed, both codes are capable of analyzmg quite general three-d1mens1ona.l
flow fields. Results to date.indicate that these techmques yield minimum smearing of cap-
tured shocks, even after multiple reflections and/or intersections.- Thus, these codes

appear capable of calculating inlet type flow fields and can readily be modified to calculate Ca

the simpler problem of external supersonic flows.

LN . . s . PR TR R . s
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APPENDIX
LINEAR INTERPOLATION ON CHARACTERISTIC
A SECOND ORDER PROCEDURE

In previous reference plane characteristic codes (employing inverse interpolation
procedures), data are interpolated on a noncharacteristic surface. To achieve full second
order accuracy, most codes resort to higher order interpolation procedures. Such pro-
cedures are helpful in smooth regions of the flow field but are detrimental in regions of
weak discontinuities. In such regions, linear interpolation is more accurate as explicitly
discussed by Sedney (ref. 1). 'The authors had performed an independent study (unpub-
lished) on such higher order interpolation procedures aiid concluded that for general
multiwave flow fields, linear mterpolatxons provide the most accurate results.

'~ Now, with th1s new "wave preserving’ network, all interpolations are performed on
characteristic lines. Employing a linear interpolation procedure on a characteristic line
-calculated to second order is consistent with a second order algorithm. This point can’
be inferred from Ferri's article (ref. 19) but apparently, is not universally accepted. (See
réf. 1.) Hence, a simple proof of this statement is presented.

Along any line AC, a series expansmn for the pressure and flow deflection are

wrltten - L : S

LI

P = By + (Pyla A% + (P (4072 + 0 (ax)? o T @
0= bp+ (b o (b G2 e 0@
but i |
’ .-<1;x)c'$:l-(P “)A + (P )A AX + 0: (Ax)2 ; S »'(Aal)
("’x)é = (Px)a * (P 2 + 0 (a0)® I w0

where x denotes distance along AC.

- Substituting’ equation (A3)-into equatlon (Al) and equatlon (A4) into equatlon Aa2).
resultsin _ £ : N , : iy

Pg = P, + RPX)A R (Px)C1 (ax/2) + 0 (ax)® . (a5)
bo = 0a+ [(Pa * ()] (ax/D +0 (4 | (a8)
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APPENDIX — Continued

The previous expressions are valid along a‘rii line - AC. Assuming that AC is a down-
running characteristic, the compatibility relations at points A a;_xd C are

(®x)a = AA(Px)a =0 o : )
ekt as
where:
“A = ,
] I-MZP

%3
AT

_Solving -the system of equations (A5) to (A8) for (Px)A + (P*)C results in

- (Pga = —W K‘PC - ¢4) - Ac(Pc - ?A)] | (Aé)

and.

- e . 2 | . ‘ . | ) L
(Px)c = ax(Ac - Ag) IE""C - 9a) - Aa(Pc - PA)] s ' (A10)

e,

Now consider a point x* between A and C. The pressure at this point to seé‘-
ond order is given by

: : P - (P 2
P* = Py + (Pyla (x* - x4) + ( X)ngé xA (x* - x4) +0 ({éx)3. (A11)
" where (Px)A and (Py)c are given by equations (A9) and (A10). Up to this point, all
relations are quite general and have not required that a second order compatibility rela-

tion exist between A and C. We now make use of this relation by stating that by sec-
ond order, we imply that the relation

Ap + A A o
(bc - 4a) - (-—A 3 C)(Pc " Py)=0 | (A12)

is satisfied betweén points A and C. ina con\}ergent fashion as detailed in reference 19.
Then, substituting equation (A12) into equations (A9) and (A10) results in

(Px)c - (Px)a = © | | A
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APPENDIX - Concluded

and

7. (A14)
W

L

H?hcé, substituting these relations into equation (A'll) yields
P*=P,+ P. -P )u +0 (ax)®
T = PA+ (Po Pa)lgg=xy) 0

which clearly demonstrates that a linear ’mtexjpolation for pressure (or flow deflection) -
on a characteristic calculated to second order is consistent with a fully second order
approach. S S . L
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- Figure 4.- Interior grid point. . 7 '

688



REFERENCE PLANE J (Y =CONSTANT)

) OSTREAMLINE GRID ARRAY

e INTERMEDIATE POINT

(CHARACTERISTIC
CALCULATION )

X O EXTRA GHARACTERISTIC
", ARRAY (INTERPOLATED
| T © ALONG GHARACGTERISTIC)

Figure 5.- CHAR3D interior point grid.

689



K2 3 4 5 6
J Ve
%

~

v

R
e -
—

|
ANQN
AN

Figure 6.- Entropy calculational procedure. Py
' P; is final pressure.

is initial pressure;

690



I3

CHAR (A7)

) i __PLANE y=CONST.
e / y=Co

SOLID BOUNDARY
z=f(x,y)

CHAR (X))

'Figure T7.- Solid boundary calculation,

691



2 IS FREE g,
STREAM
y SIDE

REF,
_FpLane -

“~ PLANE -

Figure 9.- Shock surface calculation. Figure 10.- Contact surface calculation.

692



ISOBARS IN 5° EXPANSION CORNER
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