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PREFACE

This compilation consists of papers presented at a conference on Aerodynamic
Analyses Requiring Advanced Computers held at the NASA Langley Research Center on
March 4-6, 1975.

The purpose of the conference was to present results of recent theoretical research
on aerodynamic flow problems requiring the use of advanced computers. The conference
was divided into the following sessions: (1) Viscous Flows, (2) Internal Flows, (3) Two-
Dimensional Configurations, and (4) Three-Dimensional Configurations. Papers were
presented by members of NASA Centers, Universities, and Industry.
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COMPUTERIZED PROCEDURES FOR AIRFOIL DESIGN

By Raymond L. Barger and Cuyler W. Brooks, Jr.
NASA Langley Research Center

SUMMARY

Several airfoil design procedures are described. The first is a procedure for
designing an airfoil shape to have a prescribed surface pressure distribution. It is
applicable to the design of supercritical as well as subcritical airfoils. The second is a
computerized procedure based on the Theodorsen e-function design technique and is
essentially incompressible. It also permits prescription of the pressure distribution,
but with the additional feature that it provides simple means of controlling important air-
foil parameters. The remainder of the discussion is concerned with the application of
various techniques based on the e-function theory to specialized design problems.

INTRODUCTION

The inrhouse airfoil design investigation with which this paper is concerned was
initiated as part of the general airfoil research program at Langley. An interesting
aspect of this program is the variety of directions that the design problem has taken; for
example, supercritical wing sections, general aviation wing sections, helicopter rotor
blades, and "span-loader" sections. There are also numerous airfoil characteristics,
such as design lift coefficient, ideal angle of attack, pitching moment, shape of the pres-
sure distribution, maximum thickness, and distribution of thickness, that must be con- .
trolled in the design process, to a greater or lesser degree, depending on the application.

For example, in the design of helicopter rotor blades, a low pitching moment is an
important factor. On the other hand, for general aviation wing sections, the pitching
moment is not a primary consideration, but such characteristics as the ideal angle of
attack and the design lift coefficient assume a more important role. For supercritical
wing sections, the essential consideration is the shape of the compressible flow pressure
distribution. For a "span-loader" section, the pitching moment again becomes important
together with such factors as the distribution of thickness and the design lift coefficient.
Of course, the maximum thickness has to be controlled in all these applications.

\

To handle such a variety of design problems, a number of design procedures have
been developed. Several of them are described briefly in this paper, and some examples
are discussed.
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SYMBOLS

A},A2 Fourier coefficients *.

c airfoil chord

c» airfoil lift coefficient

c, . airfoil lift coefficient at zero angle of attack1,0 • - •

cm 'airfoil pitching-moment coefficient - '

(•j airfoil pressure coefficient - . ..

M Mach number .

t airfoil thickness , -

x axial distance with origin at airfoil leading edge

a. angle of attack . . . . .

aideal ideal angle of attack . . .

0 =e(7r) . •• . . , • : . .

6j,62 phase angles

e function relating angular coordinates of near-circle and exact-circle airfoil
transformations

q> angular coordinate of exact-circle transformation of airfoil

t// function relating radial coordinates of near-circle and exact-circle airfoil
transformations ..

-i// average value of fy , . . . •.
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DESIGN OF SUPERCRITICAL AIRFOILS FOR A

PRESCRIBED PRESSURE DISTRIBUTION

Figure 1 is a schematic outline of a computerized procedure that is intended to
provide the designer with one of his most important tools: a means of obtaining the kind
of pressure distribution that he wants (ref. 1). This computer program requires an ini-
tial airfoil whose pressure distribution, indicated by a solid line, is known. It then
tailors the airfoil to obtain the desired pressure,distribution, indicated by a dashed line,
as nearly as possible within the constraints of the program. A formula based on the
streamline curvature momentum equation relates the prescribed changes in local veloc-
ity to corresponding changes in local curvature. The new curvature distribution is used
to reconstitute, by a purely geometric construction, a revised contour.. This contour is
then adjusted linearly so that it will have the prescribed trailing-edge thickness. This
linear adjustment does not alter the curvature distribution except very slightly at the
leading edge of the airfoil, where the pressure has a high positive value anyway. The
pressure distribution of the revised airfoil is then computed by means of the Korn-
Garabedian analysis program (ref. 2), which is utilized as a subprogram in this proce-
dure. This pressure distribution is compared with the desired distribution, and the
process is iterated to obtain a closer approximation to the de'sired result. This entire
procedure is automated without any man-machine interaction.

'•i t

Inasmuch as neither the Korn-Garabedian program used in the analysis phase of
this procedure nor the streamline curvature relation used in the design phase is
restricted to subsonic flow, the entire procedure is applicable not only to the compres-
sible flow case but even to the design of supercritical airfoils. The procedure is not
limited to a particular class of airfoils, and there are no small perturbation or lineari-
zation limitations. Furthermore, it can be used to design for a pressure distribution
prescribed at a positive or a negative angle of attack.

The example shown in figure 2 was calculated to demonstrate the applicability of
the procedure in the presence of shock waves. On the original airfoil the initial super-
sonic expansion is terminated by a shock, with subsequent reexpansion followed by a sec-
ond shock. The prescribed distribution replaces these two shocks with a single weaker
shock at an intermediate location. As can be seen in the figure, this distribution is
fairly closely obtained.

DESIGN APPLICATION OF THE e-FUNCTION THEORY

The streamline curvature design method is also applicable at low'speeds, but for
such applications another method, which is in some respects more versatile, is more

"often used. This method is based on the Theodorsen transformation (ref."3), as indicated
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in figure 3. The ^-function and e-function shown in this scheme are theoretically
obtained by comparing successive conformal mappings of the airfoil, first into an approx-
imate circle and then into an exact circle. The abscissa <p for these functions is the
angular coordinate on the circle. The point at zero corresponds to the leading edge of \
the airfoil; the interval (0, IT) corresponds to the upper surface; and the interval (IT, 2ir) |
corresponds to the lower surface, from the trailing edge back to the leading edge.

In actual practice ty can be calculated directly from the airfoil coordinates.
Then its average value i//0 is obtained, and e is calculated as the conjugate function
of i// - fy0. The pressure distribution can then be computed from the i//- and e-
f unctions.

This theory is admittedly complicated, but it is invaluable in airfoil design work
because the i/'- and e-functions have an almost "magical" quality in the way that they
control in a simple manner the important airfoil characteristics. For example, i//o
controls the thickness of the airfoil and the level of the pressure-distribution curves (but
not their shape). The value of ij/ at the leading edge determines the leading-edge
radius, and the value of ty in the trailing-edge region determines the trailing-edge
angle and the pressure recovery. The ordinate (3 of e at ir is the negative of the
angle of zero lift. Consequently, /3 is very closely proportional to the lift at zero angle
of attack. The value of e at zero and the value of P determine the ideal angle of
attack and the design lift coefficient. K the e-function is resolved into its Fourier com-
ponents, the pitching moment is determined by the coefficients of only the two lowest
modes.

Furthermore, small variations in the pressure distribution are approximately pro-
portional to local changes in the slope of the e-function. Consequently, the e-function
theory can also be used to obtain a prescribed pressure distribution, according to the
following procedure (refs. 4 and 5):

(1) Calculate the pressure distribution of the initial airfoil and assign the desired
changes.

(2) From these prescribed changes in the pressure distribution, compute the corre-
sponding variations in the slope of the e-function.

(3) By integration, obtain the new e-function. Adjustments to the e-function to
insure that it satisfies the appropriate mathematical constraints are included in the com-
puter program.

(4) Obtain the function i// - 4>Q as the conjugate of e.

(5) Assign a value to i//o to obtain the desired thickness.

(6) From ^ and \l/0, compute the revised airfoil coordinates.

i
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(7) iterate, if necessary, to obtain a closer approximation.

Once the various calculations indicated in figure 3 have been computerized, a num-
ber of design short cuts or "tricks" become available. The discussion of two specialized
design problems which follows may give an indication of the versatility of the e-function
theory. -

DESIGN OF AIRFOIL FAMILIES

Figure 4 represents a design problem in which it is desired to maintain the basic
form of the pressure distribution of the original airfoil and to increase the lift by 20 per-
cent without changing the thickness. To accomplish this result, one increases the slope
of the e-function over the interval (0, TT) by a constant so as to increase j3 by 20 per-
cent. Over the interval (n, 27r), the slope is decreased by the same amount. The result
is a nearly constant increase in suction on the upper surface with a corresponding
decrease on the lower surface, and the lift is consequently increased.

To generate a family of airfoils in which the various members have different lift
values, the slope of the e-function is simply altered by the various appropriate constants.
Then, in order to vary the thickness ratios of the members of the family, one varies the
parameter 4>Q.

An alternate procedure that can be used to generate airfoil families is to multiply
the e-function by an appropriate factor. For example, the factor required to increase the
lift by 20 percent would be 1.2. The corresponding i//-function is then automatically
changed by the same factor, but the thickness can be varied at will since the parameter
ifsQ is entirely arbitrary (ref. 6).

Another approach to the pf bblem of designing families is to use the thin airfoil.
theory (ref. 7); that is, multiply the basic camber line ordinates by an appropriate con-
stant to obtain the desired lift and superpose various multiples of the thickness distribu-
tion. The problem with this method is that, although the desired lift is obtained, the
superposition of velocities approximation is not uniformly valid. Consequently, airfoil
shapes generated by this method often have unsatisfactory pressure distributions and,
therefore, require considerable tailoring.

LOW-PITCHING-MOMENT AIRFOIL DESIGN

A second specialized problem of current interest is that of designing airfoils which
are characterized by a low value of the pitching-moment coefficient. Again, it is possi-
ble to apply the thin airfoil superposition theory to this problem, inasmuch as it is rela-
tively easy to specify camber line parameters that will yield desired values for lift and
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pitching moment. However, as has already been stated, such designs usually require
extensive tailoring.

An approach that is not limited by thin airfoil approximations is indicated in fig-
ure 5. This procedure does not modify an initial airfoil but starts at the e-function
phase in the design process (see fig. 3). A two-Fourier-component formula is assumed
for the e-function (ref. 3), and this form also determines the conjugate 4> - 4>Q. Five
arbitrary parameters are involved: . the two amplitudes Aj and A2, the phase,angles
6j and 62, and the parameter i//Q, the average value of 4>. The pitching moment about
the aerodynamic center can be expressed in terms of these five parameters by a compli-
cated highly nonlinear relation. Four of the parameters U>o, Aj, A2, 61\ are selected
to provide desired values of lift, thickness ratio, etc., and then the relation is solved by
means of an interval-halving algorithm for the value of 6j that yields the specified
value for the pitching moment, " '

The calculations shown in figure 5 for the sample case include the boundary layer
at a chord Reynolds number of 6 x 10^. It is seen that very low pitching-moment values
are obtained with a reasonable positive lift at zero angle of attack.

CONCLUDING REMARKS

Several airfoil design techniques have been developed and computerized. These
include a procedure applicable to the design of a supercritical section for a prescribed
surface pressure distribution. Other methods, based on the e-function theory, although
essentially incompressible, are appropriate for certain specialized design problems as
well as for designing for a prescribed pressure distribution. These techniques do not
exhaust the available means for designing airfoils, but they are representative of the
methods that have been studied in the course of this investigation.
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• APPLICABLE TO BOTH SUPERCRITICAL
AND'SUBCRITICAL AIRFOIL DESIGN

• UTILIZES FULL INVJSCID FLOW EQUATIONS

ORIGINAL AIRFOIL ' N0 "MAN-IN-LOOP" REQUIRED

REDESIGNED AIRFOIL CHARACTERISTICS

STREAMLINE
CURVATURE REDESIGN

C
RESULTANT AIRFOIL KORN-GARABEDIAN ANALYSIS

r
CLOSED A I R F O I L

Figure 1.- Streamline curvature approach to airfoil design.

PRESCRIBED

MODIFIED, t/c = 0.110
)'"__ . _ ' - \ •-" ' . -

Figure 2.- Example of streamline curvature design method.
a = 0; M = 0.75.
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•NO THIN AIRFOIL APPROXIMATIONS

•PROVIDES SIMPLE CONTROL OVER IMPORTANT
~<p. AIRFOIL PARAMETERS: ^ 0,"aj(Jeal, t/c, etc.

'••A PRESSURE DISTRIBUTION CAN BE PRESCRIBED

<p

»x

Figure 3.- Airfoil design using Theodorsen e-function.

DESIGN GOALS FOR THIS EXAMPLE:
• INCREASE LIFT BY 20%

. • RETAIN SAME t/c VALUE
• MAINTAIN SIMILAR PRESSURE DISTRIBUTION

ORIGINAL (Cj = 0.156)

UPPER SURFACE MODIFIED (C =0.187)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
x/c

Figure 4.- Example of technique for generating airfoil families.
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A COMPUTER PROGRAM FOR THE ANALYSIS OF MULTIELEMENT

AIRFOILS IN TWO-DIMENSIONAL SUBSONIC, VISCOUS FLOW

By Harry L. Morgan, Jr.
NASA Langley Research Center

SUMMARY

A computerized analytical model which computes the performance characteristics
of multielement airfoils in subsonic, viscous flow has been developed under NASA con-
tract to the Lockheed-Georgia Company. The model computes the viscous pressure dis-
tributions, lift, moments, and local boundary-layer properties on each element of an
arbitrarily arranged slotted airfoil in attached flow. The final viscous solution is
obtained by an iterative technique for successively combining an inviscid solution with
boundary-layer displacement thicknesses. The surface of each airfoil element is approx-
imated as a closed polygon with segments represented by distributed vortex singularities.
The ordinary boundary-layer solution is comprised of mathematical models representing
state-of-the-art technology for laminar, transition, and turbulent boundary layers. An
additional boundary-layer model has been incorporated to compute the characteristics of
a confluent boundary layer which reflects the merging of the upper-surf ace boundary
layer with the slot efflux.

This computer program has been used extensively at Langley and throughout the
industrial and academic communities for both the design and the analysis of airfoils.
Presented in this paper are summary descriptions of the general operation and capabil-
ities of this program and a detailed description of the major improvements that have
been made to the program since its initial formulation. Sample comparisons between
theoretical predictions and experimental data are presented for several types of multi-
element airfoils. Areas of agreement and disagreement are discussed with recommen-
dations for areas of needed program improvement.

INTRODUCTION

During the initial design phase of an airfoil the effects of various modifications can
be easily evaluated by describing the potential (inviscid) flow around the airfoil. Many
methods are available to compute the potential flow and most generally require rather
small computer storage and execution times, which make them very desirable during the
initial trial-and-error design phase. However, during the final design phase a more
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accurate assessment of the selected modification can be evaluated by describing the vis-
cous (viscid) flow around the airfoil, which means simply that the boundary-layer prop-
erties have been included in the analysis.

No general, mathematically closed form solution presently exists which describes
the viscous flow around an airfoil. Until very recently, airfoil design has relied mainly
on potential-flow theory to obtain the theoretical pressure distribution from which the
boundary-layer properties were approximated, with the interrelationship between the two
being largely ignored. However, the use of iterative techniques has provided a practical
solution for defining the interrelationship between the potential and viscous flows around
an airfoil. State-of-the-art technology in the areas of potential flow and boundary layers,
plus the availability of high-speed large-capacity computers, has provided the background
capability essential to the formulation of computer codes to compute accurately the per-
formance of an airfoil in viscous flow.

One such computer code used extensively at the'Langley Research Center and
throughout the industrial and academic communities was developed by the Lockheed-
Georgia Company under NASA Contract NAS 1-9143 in 1969. This computer program,
entitled "2-D Subsonic Multi-Element Airfoil Program," was formulated to handle single-
element and multielement airfoils (a maximum of four elements) in subsonic, viscous
flow. A complete description of this original program is given in detail in. reference 1.
Since the initial formulation of this program, there has been a continuing effort to
improve and modify the program to handle an ever increasing range of airfoil geometries.
The initial debugging and general program maintenance and improvements have been per-
formed through in-house efforts at Langley. The only other major contribution to the
program improvement has been the work done by Delbert C. Summey and Neill S. Smith
under NASA Grant NGR 34-022-179 to North Carolina State University. Their work was
concerned primarily with the single-element version of the program and consisted of pro-
gram modifications to improve the lift and drag predictions, to reduce .the computer stor-
age requirement, and to reduce the computer execution time. A detailed description of
their work is presented in reference 2. . .

A summary description of the general operation and capabilities of the airfoil pro-
gram and detailed descriptions of the major changes to it are presented in this paper.
Sample comparisons between theoretical predictions and experimental data are also pre-
sented for several airfoil geometries. Areas of agreement and disagreement are dis-
cussed with recommendations for areas of needed program improvement.

SYMBOLS

al»a2>a3 coefficients of quadratic equation of the form f(x) = ajx2 + a£X + a.%
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AH aerodynamic, influence coefficient

c chord of airfoil, cm (in.)

C(j section profile-drag coefficient

Cf skin-friction coefficient r i

GI section lift coefficient

cm . section quarter-chord, pitching-moment coefficient

cn section .normal-force coefficient

Cp . local static-pressure coefficient, Pstatf? " P°°

H boundary-layer form factor, d*/0

K local curvature, cm~* (in-1)

M Mach number

N number of corner points for polygon approximation of airfoil

p , -static pressure, N/m2 (lb/ft2)

q^ • free-stream dynamic pressure, N/m .(lb/ft ) .

RQ • Reynolds number based on momentum thickness, ^

s surface distance along airfoil contour, cm (in.)

Ue velocity at edge of boundary layer, m/sec (ft/sec)
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Uoo free-stream velocity, m/sec (ft/sec)

v local velocity on airfoil surface, m/sec (ft/sec)

x airfoil abscissa, cm (in.)

z airfoil ordinate, cm (in.)

a angle of attack of airfoil, deg

y strength of vortex singularity, m2/sec (ft^/sec)

6 boundary-layer thickness, cm (in.)

5f s or v angular deflection of flap, slat, or vane, deg

6* , , . . - • boundary-layer displacement thickness, cm (in.).

9 . . boundary-layer momentum thickness^ cm (in.)

v • kinematic viscosity, mVsec (ft^/sec) -

0 cosine distribution angle, 0i = |?, deg

i// stream function, m^/sec (ft^/sec)

Subscripts:

c control point . - . • • . • • .

1 matrix row

j "' ' matrix column -

1 lower
• • - - - ' -1 '

te trailing edge
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u upper

00 free stream

Abbreviations:

B. L. boundary layer

NC number of components

TE trailing edge

PROGRAM OPERATION AND CAPABILITIES

The original airfoil program developed by the Lockheed-Georgia Company was
designed to handle single-element and multielement airfoils. As many as four elements
can be handled which typically consist of an airfoil with a leading-edge slat device and a
double-slotted trailing-edge flap system. The airfoil program is composed of three main
parts: (1) geometry specification, (2) potential flow, and (3) boundary layer. The non-
overlay version of the program requires a computer storage of approximately
200 000 octal locations (CDC 6600) and an execution time of approximately 200 CPU sec-
onds for a typical four-element airfoil. An overlay version has reduced the required
storage to approximately 65 000 octal locations with only a slight increase in execution
time. The single-element version developed by North Carolina State University requires
a computer storage of approximately 110 000 nonoverlay octal locations and 53 000 over-
lay octal locations with execution times of the order of 30 CPU seconds for a single case.

A flow chart of the single-element version of the airfoil program is presented in
figure 1. After data input and geometry specification (subroutine READIT and GEOM),
the program enters an iterative cycle which involves the determination of interrelation-
ship between the potential flow and the boundary layer (subroutines MAIN2 and MAINS).
After each iteration a convergence check is made which consists of a simple comparison
of the computed normal-force coefficients. Experience has shown that only five iterations
are necessary to obtain a converged solution. This rapid convergence is possible because
of the unique method used to combine the physical airfoil geometry and the computed dis-
placement thicknesses from the boundary-layer computations in order to obtain the next
iteration geometry. This convergence method will be discussed further in a following
portion of this paper.

The flow chart for the multielement version is very similar to that for the single-
element version, the exceptions being.an expanded geometry routine to handle the posi-
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tioning of the elements relative to one another- and an additional boundary-layer routine
-to handle the merging of boundary layers between fore and aft elements (confluent bound-
ary layers). A program routine was available in the original multielement version to :

correct the pressures in the slot regions between elements to account for the high fric-
tional and surface curvature effects. This routine employed a marching-type.calculation
procedure which required an accurate definition of the slot inlet conditions. An empiri-
cal formula was derived to estimate the inlet conditions from the potential-flow solution.
Experience has shown that this slot-analysis routine produces erroneous results and it
has, therefore, been omitted from the more recent program version.

Since the inception of the airfoil program, the program input has been kept as sim-
ple as possible to make it more user oriented. The coordinates of each element of a
multielement airfoil can be input with respect to a separate coordinate system and easily
positioned relative to other elements by specifying the pivot point location and deflection
of the element. The boundary-layer transition location (transition from laminar to tur-
bulent) on each surface of an element can be input as either fixed or free. The total num
ber of calculation points at which the pressures are desired can also be input and will be
automatically allocated using the formula

= 2 (1)

where Nj is the number of points allocated to the ith element, NSp is the total num.- .„• i
ber of calculation points, Nc is number of components, ci is the chord of a given ele-;i"
ment, and c<p is the summation of the values of c^. During a single machine pass, the
angle of attack and Mach number can be varied for a constant Reynolds number, Prandtl
number, and stagnation temperature. To represent the effects of compressibility, the
well-known Karman-Tsien pressure correction law is employed which, therefore, limits
the input Mach number to that producing critical flow. The laminar and turbulent
boundary-layer routines contain methods to.predict boundary-layer separation, but do not
contain methods to model the flow after separation. Therefore, the angle of attack should
be limited to that producing only minor separation (less than one percent of the surface).

PROGRAM THEORY AND MODIFICATIONS

Airfoil Geometry Specification

The user inputs to the airfoil program are the upper- and lower-surface coordinates
of the airfoil shape. The airfoil is modeled within the program as a polygon approxima-
tion which is illustrated in figure 2. This polygon consists of N number of corner
points with N - 1 number of straight line segments. Previous experience has shown
that an N equal to 65 is sufficient to obtain an accurate viscous flow solution for a
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single-element airfoil. Of the 65 total points, 32 points are distributed, on the upper sur-
face, 32 on the lower surface, and 1 at the leading-edge nose location. In most instances,
the user desires to input more than 65 coordinates and does not want to be concerned
about whether or not the input spacing will affect the computed results. For this reason,
an automatic collocation method has been included in the airfoil program.

The original version of the airfoil program distributed corner points with the
cosine formula

. (2)
6

where 0.j.= ^-, i = 1, 2, . . ., N. This procedure is illustrated in figure 3 and a sam-
ple distribution shown in figure 4(a). This method, in effect, closely spaces points near
the leading and trailing edges of the airfoil. A close spacing near the leading edge is
very desirable because of the high curvature and high velocities occurring in that region.
Experience has shown, however, that closely spacing points near the relatively thin
trailing-edge region can result in extreme oscillations in the computed velocities. The
reason for these oscillations is discussed further in the potential-flow portion of this
paper. To overcome this problem, a new collocation method has been formulated and
incorporated into the airfoil program.

The basis of the new method is that points are spaced relative to the local curva-
ture. This method will closely space points only in regions of high curvature. To uti-
lize this method the curvature at each user input coordinate is computed with the formula

,2

(3)
3/2

where - a^, a.%, and a3 are taken from a curve fit of the airfoil points of the form

z2 = ajx2 + a2X + a3 (0 s x < o.8c) (4)

and

z = ajx2 + a2x + a3 ' (0.8c S x s c) (5)

A curvature summation is then computed from the following equation and stored for back-
ward interpolation:

Is (6)

719



where

/ / T 5 / \ ~ 2 •si = si-l + \l(xi ~ xi-l) + (zi ~ zi-l)

The maximum value of K is divided into N equal portions and the s value .corre-
spond ing to each portion is then determined by backward interpolation between the Sj
and Ki arrays. Additional backward interpolations are then made between the. si, 24,
and Zi arrays to determine the new distributed airfoil coordinates. A sample of the
results of this collocation method is presented in figure 4(b). Note the improvement in
the distribution of points as compared with the cosine method.

Caution by the user should be exercised regarding the number and relative posi-
tions of the input coordinates. If more input points are given, the computation of the
curvature summation array will be more accurate and, therefore, the distribution of
points more accurate. The'curve fit formula of equation (4), which is used in the nose. ,
region, is designed to approximate an infinite slope and a better estimation of the high
curvature in that region can be obtained if more points are input. , .

' I
Potential-Flow Solution

The potential-flow methods used to determine the velocity at specified locations on
the surface of an airfoil generally fall into two categories. One category consists of con-
formal transformation methods and the second, singularity distribution methods. Con- .
formal transformation methods have not been greatly utilized because of the difficulties
encountered when trying to obtain transformation equations for airfoils of arbitrary shape
and because of the inability of this method to handle blunt-base airfoils. Singularity dis-
tribution methods have been widely utilized since the advent of the high-speed, high-
capacity digital computers which are needed to solve the large systems of simultaneous
equations characteristic of these methods. These methods can handle arbitrarily shaped
airfoils at any orientation relative to the free stream.

For singularity distribution methods, either source, sink, or vortex singularities
are distributed on the surface of the airfoil and integral equations formulated to deter - .
mine the velocity induced at a point by the singularity. By dividing the airfoil surface
into N segments and specifying either zero-normal or a tangential flow boundary condi-
tion for each segment, the integral equations can be approximated by a corresponding
system of N - 1 simultaneous equations. By satisfying the Kutta condition at the trail-
ing edge of the airfoil, the Nth equation can be formulated and then the singularity
strengths determined with any one of a number of matrix-inversion techniques. The

• ' *" * •

Kutta condition usually employed is that the velocities at the upper- and lower-surface
trailing edge be tangent to the surface and equal in magnitude. - ' • • , _ . _ _ _
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The singularity distribution method used in the original version of the airfoil pro-
gram consisted of a distribution of vortices at the corners of the polygon approximation
of the airfoil, with an additional constraint that the vortex strength vary linearly along
the surface segments. A control point was selected at the midpoint of each segment and
a boundary condition of no flow normal to the surface was applied. This resulted in N
unknown vortex strengths and N - 1 boundary conditions and equations. An additional
equation was obtained by satisfying the Kutta condition at the trailing edge as . ,.

because, for a vortex singularity, the magnitude of the tangential surface velocity is equal
to the vortex strength at the corner point.

Several problems were encountered with the original singularity distribution
method. For airfoils with a trailing -edge cusp, the upper- and lower -surf ace vortices'
near the trailing edge tend to become identical and, thereby, generate an almost singular
matrix. For other types of airfoils, a too close spacing of vortices near the trailing, edge
results in extreme oscillations of the vortex strengths. This method could not handle
airfoils with an open or blunt -base characteristic of the recently developed Langley
supercritical or "shockless" airfoils. To overcome these handicaps an improved singu-
larity distribution method has been incorporated into the airfoil program.

The new singularity distribution method was first formulated by H. J. Oellers to,
compute the pressure distribution on the surface of airfoils in cascade, and is described
in reference 3. Instead of working with induced velocities, characteristic of the previous
method, Oellers' method employs stream functions. The stream function for a uniform
free stream plus that of the vortex sheet is set to be a constant on the airfoil surface.
This is represented mathematically by the Fredholm integral equation .

_ L C
2?r Jf

In r(s,£) d£ = Ilexes) cos (a) - O^zfe) sin (a) . (8)
0

where . if is the unknown stream function constant, r(s,£) is the distance between two
points on the airfoil surface, x(s) and z(s) are coordinates of a point on the surface,
and y(£) is vortex strength at a point. By dividing the surface into N segments and
assuming C9nstant vortex strength for each segment the above equation becomes

' ; - - N . . • . . - . . . •

i// - } Ayyj = Uoofxi cos (a) - zi sin (a)J (9)

where the influence coefficient Ay is

! « " ' • ' ' (10)
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By specifying a control point at the midpoint of each segment (denoted by a "c" subscript),
the influence coefficient becomes

At, - it, in (r2) - tl in (r - £

and

where

(i = j) (12)

As = sj+1

= (xj+l - xc,i) 2 - z 2,i)

n _ ^^__^___^___^__^_____^__^___^_________^_

t, _ (XJ - Xc»l
13

-As

.As J

(13)

To determine the vortex strength (y) at the intersection of two segments, the following
"interpolation formula is used:

(j ..* 1 or N) (14)

For this method, an additional equation is needed to obtain an N by N system of
equations. (The unknowns are N-l number of y's and «//.) A new method of apply-
ing the Kutta condition has been formulated to reduce the oscillations of the vortex
strengths caused by a too close spacing of points near the trailing edge. This new Kutta
condition simply requires that the vortex strengths (y) vary quadratically for the last four
segment corners near the upper and lower surface of the trailing edge and that at the
trailing edge
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This quadratic variation is expressed as .

y(s) = ajs^ + a2s + a3 (16)

By combining equations (14) and (16), the equation for the vortex strength at the lower-
surface trailing edge becomes ">

(17)

where

Ji =
_ S4s2(s3 - s4)

D

Jo =
_ 84 (S3 " S2)(S3 + S2 " S4)

D

J, =

S2(S4 -S3) s4

S3(S2
•5-

-S3)"
83

D

_. _ J . =
" S3s2(s2 - s3) (s5 - s4)= -

D(s5 - s3)

and

D = s2
2(s3 - 84) + s3

2(s4 - s2) + s4
2(s2 - s3)

A similar expression can be obtained for the upper-surface trailing-edge vortex by
replacing the subscripts in equation (17) as follows:

(i = 1, 2, . . ., 5)si = SN - sN+1_t

Ji = JN-i
= l ,2 ,3 ,4)

Combining equations (16) and (17) with equation (15) yields the needed Nth equation in the
form .

= 0 (i = 1, 2, 3, 4, N-4, N-3, N-2, N-l) (18)

The Oellers1 method with the modified Kutta condition has been incorporated into
the current version of the airfoil program. This new potential-flow method combined
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with the new geometry specification method has successfully overcome the problems
encountered with t h e original methods. - . . . - ' - .

Boundary-Layer Solution . .

The pressure coefficients computed in the potential-flow portion of the airfoil pro-
gram are corrected to account for compressibility with the well-known Karman-Tsien
correction law. Using the isentropic flow relations, the local Mach number is computed-
and input to the boundary-layer portion of the program. The boundary-layer develop-
ment on a typical multielement airfoil is illustrated in figure 5. The boundary layer con-
sists of an ordinary boundary layer (nonmerging boundary layer) and a confluent boundary
layer (merging boundary layer). The ordinary boundary layer is composed of laminar,
transition, and turbulent regions. The confluent boundary layer is composed of core,
main I, main II, and turbulent regions as shown in figure 6. The confluent boundary- "
layer model was developed by Sure sh H. Goradia from the Lockheed-Georgia Company
and is one of the unique features of this program. The meaningful parameters output
from the boundary-layer portion of the program are (1) the,displacement thickness 6*,
(2) the momentun thickness 0, (3) the form factor H, and (4) the skin-friction coefficient
Cf. The theoretical development of the boundary-layer methods used in this program are
quite lengthy and, therefore, only a brief description will be presented in this paper.

A flat-plate boundary-layer analysis is performed on each surface of an airfoil
element, and the leading-edge stagnation point is the plate leading edge. A flow chart of
the boundary-layer computations is presented in figure 7. An initial laminar boundary-
layer region exists from the stagnation point to the point of transition from laminar to
turbulent. The laminar boundary-layer model used is the method of Cohen and Reshotko
as presented in reference 4. After computing the laminar boundary-layer characteristics
at a discrete point, routine BLTRAN is called to check for transition and, if transition has
occurred, to check for the formation of a long or short transition bubble and for laminar
stall. The sequence of calculations within BLTRAN is presented in figure 8; An initial
check is made to determine if the laminar boundary layer is stable or unstable based on
the instability criterion established by Schlicting and Ulrich as presented in reference 5.
If the boundary layer is unstable, a transition check is then made based on an empirically
derived transition prediction curve. 'If transition1 has occurred, the initial quantities
needed to start the turbulent calculations are computed. If transition has not occurred,
the formation of either a long bubble with corresponding laminar stall or a short bubble
with corresponding'reattachment is determined. The user .can input a fixed transition
location and a check will be -made at the beginning of BLTRAN to determine whether or
not the fixed location has been reached. . .

After computing the transition location and corresponding initial boundary-layer
properties, the turbulent boundary-layer calculations are made. The original version of
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the program used a modified Truckenbrodt method derived by Gdradia to compute the
turbulent boundary-layer properties. The Goradia method was less sensitive to local
pressure oscillations and was capable of traversing localized separated/reattaching flow
regions. These local pressure oscillations were caused primarily by the numerical
inacccuracies associated with the potential-flow method. The Goradia method underesti-
mated the boundary-layer displacement thicknesses which, therefore, resulted in an
underestimation of the lift,and pitching-moment coefficients. After incorporating
Oellers' potential-flow method, the pressure oscillations were reduced which meant that
the original Truckenbrodt method described in reference 6 could be used to improve the
turbulent boundary-layer computations. The original Truckenbrodt. method was coded
and incorporated into ,the recent program version and has resulted in an imprpvement in
the estimation of the lift and pitching-moment coefficients.

If a slot exiting plane is reached during the turbulent boundary-layer computations,
the confluent boundary-layer computation is initiated. The confluent boundary layer is a
result of the mixing between the slot efflux and the wake from the forward element, and
can exist from the slot exit to the trailing edge of the element depending upon the pres-
sure distribution. The confluent boundary-layer model was formulated by Goradia and
consists of various regions and layers as illustrated in figure 6. The model is based on
the assumption that-the merging of fore-and-aft element boundary layers will have
"similar" velocity profiles if nondimensipnalized in a way analogous to that for a free-jet
flow. By utilizing this assumption, the governing partial differential equations were,
reduced to a set of.ordinary differential equations which could be easily solved with avail-
able numerical techniques. .Several empirical constants were needed to establish the
similar velocity profiles and were obtained from experimental tests performed by
Goradia as reported in reference 7. The only improvement made to the original conflu-
ent boundaryTlayer routines has been, minor adjustments in the values of these empirical
constants. The model formulated by Goradia assumed that the core velocity exiting the
slot is greater than the velocity at the upper edge of the wake layer at the slot exit.
Experience has shown that this velocity relationship is not always true and, therefore,
erroneous performance predictions can occur. It is generally believed that this velocity
relationship should be true for an efficient design and, therefore, no additional work has
been done in this area.

None of the boundary-layer methods used in the airfoil program include curvature
effects; All the methods used are basically integral methods which are generally less
accurate than finite-difference methods but require considerably less computer time.
More accurate infinite-difference methods are available, as described in references 8, 9,
and.10, and can be easily incorporated into the existing program.
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Equivalent Airfoil Geometry

The airfoil program uses an iterative procedure to obtain the viscous solution and
the basic steps are as follows:

(1) Compute a potential-flow solution for the basic airfoil.

(2) Compute boundary-layer properties based on the potential-flow solution.

... (3) Construct a modified airfoil by adding the boundary-layer displacement thick-
ness to the original airfoil.

(4) Compute the aerodynamic performance coefficients.

(5) Repeat steps (1) through (4) until convergence of the performance coefficients is
obtained.

The most important step in the iterative procedure is step (3) which involves selecting a
geometry modification method that will insure convergence for almost any input airfoil
shape in a reasonable number of iterations. The method developed by Lockheed has been
highly successful and has provided converged solutions after only four or five iterations.

The method developed by Lockheed to modify the airfoil shape is based on the
assumption that the effect of the boundary layer on the basic thickness and basic camber
can be considered separately and then superimposed to determine the net effect. The
addition of the boundary layer has an uncambering effect near the trailing edge which
causes a reduction in the effective angle of attack and lift coefficient, and it has a thicken-
ing effect along the airfoil which causes an increase in the local surface velocities and
lift coefficient. .Experience has shown that the thickness effects are of secondary impor-
tance for multielement airfoils and are, therefore, omitted in the multielement program
version. Thickness effects are, however, included in the single-element program version
to improve the overall accuracy of the performance predictions. The camber change is
given as the difference in the magnitude of the upper- and lower-surf ace displacement
thicknesses as illustrated in figure 9(a). The thickness change is given as the difference
in two thickness solutions as shown in figure 9(b).. The first thickness solution is for a .
symmetric airfoil at a 0° angle of attack with the same thickness distribution as the orig-
inal input airfoil/; The second thickness, solution.,is also, for a> symmetric airfoil at a 0°
angle of attack with the thickness distribution of the original input airfoil plus the sum of
,the upper- and lower-surface displacement thicknesses. . .

' Applying superposition and a proportioning technique to prevent over-correction dur-
ing the initial iterations, the velocity distribution becomes

(vtotal)i =
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where BT stands for the basic thickness distribution and

kt = 1 (i * 2)

k i = f . (1 = 2)

The addition of the displacement thickness to obtain the thickness solution often produces
a symmetric airfoil with a very thick trailing edge. In actual flow the wake acts as an
afterbody with a rapidly decreasing thickness distribution. Based on the work of Powell
as reported in reference 11 and from observations of available experimental data,
Summey and Smith from the North Carolina State University formulated the following
analytical expression to represent the afterbody shape:

= ±I[(zte -Zoo)e-6.9xx+ZooJ(i _xx) . . (20)

where xx = £ - 1 for c = x § 2c and z^, =-i GJ c. The Squire and Young drag form-
. c . 2 u ° o

ula from reference 5 is used to compute the drag coefficient at infinity and is given as

Hu+5 H1+5
:

.,Slk»Y 2 .'jOt* 2

After each boundary -layer solution, the displacement thickness distribution is
smoothed three times by using a standard least-squares smoothing technique. To prevent
over -correction during the initial iterations, a proportioning technique similar to that.
used for the velocities is used to compute the effective displacement thickness distribu-
tion and is given as

where BL stands for the present boundary-layer solution.

COMPARISONS BETWEEN EXPERIMENT AND THEORY

Both the single -element and multielement versions of the airfoil program have been
widely distributed and utilized by the industrial and academic communities. The program
is widely used within Langley for the design and analysis of new subsonic and transonic
airfoils for application to helicopters, general aviation aircraft, and transport aircraft.
Shown in figure 10 is a comparison between the theoretical and experimental performance
characteristics for the recently developed NASA GA(W)-1 airfoil that was designed by
Richard T. Whitcomb especially for application to general aviation aircraft. .(See ref. 12.)
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Excellent agreement is demonstrated until an angle of attack is reached at which the
boundary layer begins to separate near the upper-surf ace trailing edge. Currently,
a flow separation model does not exist in the program; however, a research study
is being proposed by Langley in this area of boundary-layer research. Excellent agree-
ment is also demonstrated for the drag prediction of the GA(W)-1 airfoil, but this is not
generally true, for all airfoils. The method used in the program to compute drag con-
sists of a simple integration of the pressure and shear (skin friction) forces. An
improved drag computation method is currently under development by Lockheed-Georgia,
under NASA Contract NAS 1-12170, which computes the drag from computed downstream
wake characteristics. This improved drag method will be incorporated into the single-'
element airfoil program after verification at Langley. '

' • • *•

A Fowler^type, _single-slotted flap was also designed for the GA(W)-1 airfoil and .
later tested at Wichita State University under a NASA grant. , The results of the flapped
airfoil tests are presented in reference 13, and a summary of the agreement between,
experiment and theory is presented in figure 11. Excellent agreement is demonstrated
until a 40° flap deflection is reached where separation occurs on the upper surface of the
flap. Similar agreement was obtained from tests of a blunt-base airfoil with a single -
slotted flap reported in reference 14. Typical agreement between the experimental and
theoretical confluent boundary-layer velocity profiles for this airfoil is shown in fig-
ure 12. The multielement airfoil program can also be used to perform a gap optimiza-
tion study of a given flap system. Presented in figure 13 are the results of a gap optimi-
zation study for a 10° drooped-nose airfoil with a single-slotted flap as reported in ref-
erence 15. The viscous and inviscid theory predictions are also presented in this figure,
and although the agreement between viscous theory and experiment is fair, the viscous
theory does predict the correct optimum gap of 2 percent.

The agreement between theory and experiment for multielement airfoils with three
or more elements has not been generally as good as that for single- or two-element air-
foils. This can usually be attributed to the fact that an airfoil with three'or. more
elements generally will have some separated flow on at least one element. Shown in
figures 14(a) and: 14(b) is the agreement between viscous and inviscid theory and experi-
ment for a typical three-element airfoil with a leading-edge slat and a single-slotted,
trailing-edge flap. (See ref. 16.) Excellent agreement is demonstrated over an angle-
of -attack range from -4° to 12° for the force and moment coefficients. A typical
pressure-distribution agreement is shown' in figure 14(b) for an angle of attack of 8°.
Shown in figure 15 is the agreement between theory and experiment for a typical four-
element airfoil with a leading-edge slat and a double-slotted, trailing-edge flap. (This is
model C in ref. 14.) The low -5°/15° vane/flap deflection case showed poor agreement
because at those deflections there were large overlap areas between the vane and flap and
the airfoil program does not correct the pressure distribution for slot effects. (Previous
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discussion pointed out that the original slot flow correction method proposed by Lockheed
was erroneous and, therefore, has been dropped from the program.) The high 30°/65°
deflection case showed very poor agreement because of the large amount of flow separa-
tion on the upper surface of the flap element. The intermediate 14°/33° case, however,
showed good agreement because there were no large overlap or separated flow areas
present. Shown also in figure 15 is the extremely poor drag agreement which is typical
for multielement airfoil cases.

The sample cases presented in this paper were selected to demonstrate some of
the good as well as bad features of the airfoil program. The first major area of needed
program improvement is the computation of profile drag. Many researchers use the
well-known Squire and Young drag formula (eq. (21)) to compute the profile drag; how-
ever, this formula was derived based on a proven erroneous assumption about the varia-
tion of the downstream boundary-layer form factor, H. The second major area of
improvement is the computation of the characteristics of the flow region after boundary-'
layer separation. The lack of experimental data for separated flow regions has greatly
hampered the development of a theoretical model. Experimental tests have recently been
completed'at Wichita State University to map the velocities and pressures in the sepa-
rated regions of the GA(W)-1 airfoil. The third major area of improvement is the com-
putation of the pressure corrections in the slot areas between overlapping elements of
multielement airfoils. This area has been of lesser importance because the designer
generally desires to have as much Fowler motion (increase in effective chord) as possi- -
ble which results in relatively small overlap regions.

CONCLUDING REMARKS

This paper has discussed in detail the theoretical and operational features and cap-
abilities of the Langley "2-D Subsonic Multi-Element Airfoil Program." Several major
modifications have been made to improve the applicability and prediction accuracy of this
program and involve the use of:

(1) Curvature instead of cosine method to distribute segment corner points for'
polygon representation of the airfoil •' '

(2) Oellers' stream function method to obtain the potential-flow solution

(3) Modified Kutta condition to reduce pressure oscillations at the trailing edge

(4) Truckenbrodt method to obtain the turbulent boundary-layer characteristics

Comparisons between experimental data and theoretical predictions indicate excel-
lent agreement for single-element airfoils in attached flow and good agreement for multi-
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element airfoils in attached flow with small overlap regions between elements. Three
major areas of program improvement are needed and involve the computation of:

(1) Profile drag from downstream wake characteristics

(2) Flow characteristics after boundary-layer separation

.(3) Pressure corrections in the slot areas between overlapping elements of multi-
element airfoils

The airfoil program has been demonstrated as an effective tool for the design and analy-
sis of single-element and multielement airfoils in viscous flow, and has been widely dis-
tributed to and utilized by both the academic and industrial communities.
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APPLICATION OF NUMERICAL OPTIMIZATION TECHNIQUES TO AIRFOIL DESIGN

By Garret N. Vanderplaats, Raymond N. Hicks,

NASA Ames Research Center

and Earll M. Murman

Flow Research, Inc.

SUMMARY

A practical procedure is presented for automated airfoil design using
numerical optimization techniques. The procedure uses an optimization pro-
gram based on conjugate directions for locally unconstrained problems and
feasible directions for locally constrained problems. This program is
coupled with an aerodynamic analysis program which uses a relaxation method
to solve the partial differential equation that governs the inviscid small-
disturbance fluid flow.

Basic optimization concepts and the techniques used in the optimization
program are described. The procedure for automating airfoil design is out-
lined. Design objectives which are considered include lift maximization,
drag minimization, and pitching-moment minimization. Various aerodynamic
and geometric constraints on the design are accounted for. Design results
are presented to demonstrate the simplicity and generality of the method.

INTRODUCTION

Computational techniques for aerodynamic analysis have been considerably
improved in recent years, both in efficiency and reliability. Concurrently,
numerical methods of optimization have been developed which provide an effi- \
cient means for automating the design process. In the study reported here,
two existing programs, one for aerodynamic analysis and the other for opti-
mization, have been coupled to provide a general and efficient design tool.
The aerodynamic analysis program uses a relaxation method to solve the
partial differential equation that governs the inviscid, small-disturbance
fluid flow. Complete details of the theory and solution procedure are given
in reference 1. The optimization program is based on the method of feasible
directions. A conjugate direction algorithm is included in the optimization
program for locally unconstrained problems. Details of the optimization
theory and computer program can be found in references 2 to 5. This com-
bined design program is described here with particular emphasis on the
optimization techniques and on the formulation of the numerical design
problem.

Basic optimization concepts are discussed first, and the techniques used
in the optimization program are described. Next, the procedure for automating
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airfoil design is outlined. Finally, several examples are presented to
demonstrate the simplicity and generality of the method.

SYMBOLS

a ,b. polynomial coefficients

a ,b. coefficients of jth polynomial

c chord

C_. section drag coefficient

CT section lift coefficientL

C section pitching-moment coefficient
m

C pressure coefficient
P
F(X) function of design variables

G. (X) function defining design constraint

M , Mach number . . .

OBJ design objective

q : design iteration number

S search direction in design space

x. ith design variable '':..

x chordwise distance

X~ vector of design variables L-

y '• J airfoil coordinate

y1 airfoil surface slope

Y airfoil shape function

a angle of attack

a* one-dimensional search parameter

3 objective of direction-finding problem

V . -gradient operator . .

0 pushoffjfactor ,. •'.'-.-.• - - .
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Subscripts:

As lower surface

us upper surface

min minimum

Superscripts:

H lower surface

u upper surface

q design iteration

OPTIMIZATION CONCEPTS

Consider the airfoil shown in figure 1 in which the upper surface is
defined by the functional relationship Yus (x/c) , and the lower surface is
defined by the functional relationship Ŷ g(x/c). If we choose to use a
polynomial representation for the upper surface, the equation for the upper
surface of the airfoil would be given by

a2(x/c)
2 + . . + an(x/c) (1)

where the square root term allows for a blunt leading edge. Another poly-
nomial of the same form could be used to describe the lower surface of the
airfoil.

Now assume we wish to design an airfoil for minimum drag at some Mach
number and angle of attack. Furthermore, the airfoil must have a lift
coefficient C^ of at least CT . . Additionally, the thickness of the
airfoil must be positive for all nx/c. We can now state the optimization
problem as

minimize CD (2)

subject to CL^ ~ CL < 0 (3)

and Yus -'Y4s > 0 for all 0 < x/c i 1 , (4)

In this example the drag coefficient • CD is defined as the objective func-
tion. The minimum lift requirement of equation (3) and positive thickness
requirements of equation (4) are referred to as constraints on the design
problem. If we use the polynomial representations for the airfoil shape, the
problem becomes one of determining the coefficients of the polynomials so
that drag is minimum, subject to the constraints on the design. The
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polynomial coefficients, then, are called the design variables. Note that
the objective function and the constraint on lift are both implicit functions
of the design variables and are 'computed using the aerodynamic analysis '
program. The requirement of positive airfoil thickness is an explicit func-
tion of the design variables and is determined directly from the geometry "of
the airfoil. This statement of the problem is not unique and we could just
as well maximize the lift coefficient with an upper bound on drag, in which
case the. objective would be CL with CD being constrained. This ability
to arbitrarily choose the objective and constraint functions forms the basis
for the generality of the method.

It is of course possible to impose constraints on the design problem
which cannot be met. For example,.an unrealistically high lift requirement
may be .imposed on the drag minimization problem. In this case the optimiza-
tion program will obtain the design which is as nearly acceptable as possible
(i.e., greatest lift) while some man-machine interaction will be necessary to
obtain the final optimized airfoil which most nearly meets designer's. .
requirements. '

' _,In general, the numerical optimization problem is stated mathematically
..as'. ' / ' . " ' . , . • • ' • • -

'minimize OBJ = F(X) (5)

subject to:

! G±(X) < 0 (i = l,m) (6)

^ \ . . x±* < x± < x±
u (i = l,n) / (7)

where'*OBJ is the objective function, for example, drag coefficient. The
vector X contains the n design variables. In the case of a polynomial
representation for the airfoil shape, the vector X would simply contain
the coefficients of the polynomial which would be changed during the design
process In such a way as to minimize the objective function OBJ while
satisfying the constraints. GI(X) defines the constraints which the designer
wishes to impose on the optimization problem. F(X) and ljGi(X) may be either
implicit or explicit functions of the design variables ~X but must be con-
tinuous. Variables x^ and x^u define the lower and upper bounds, _
respectively, on the design variable and are the limits over which F(X) and
GI(X~) are defined. If the inequality' cdhdition of equation (6) is violated
(Gi(X) > 0) for any constraint, the constraint is said to be violated. If
'the equality condition is met (Ĝ CX) = OĴ , the constraint is called active,
and if the strict inequality is met (Gi(X) < 0), the constraint is inactive.
Because a precise zero is seldom meaningful on the digital computer, a con-
straint is called active if its value is within a specified tolerance of zero.

The n-dimensional space spanned by the design variables X is referred
to as the design space. Any design which satisfies the inequalities of
equations (6) and (7) is referred to as'a feasible design. If a design
violates one or more of these inequalities, it is said to be infeasible. The
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minimum feasible design is said to be optimal. Note that if one wishes to
maximize some function such as lift, it can be done simply by minimizing the
negative of lift. Thus, any design problem can be cast in the above form.

The optimization program begins with an initial X vector which is
input to the program and may or may not define a feasible design. The
optimization process then proceeds iteratively by the following recursive
relationship: - .

Xq ot*Sq (8)

where q is the iteration number, vector S is the direction of search in
the n-dimensional design space, and a* is a scalar which defines distance
of travel and direction S. The notation a* for the move parameter is
used here for consistency with mathematical programing nomenclature and
should not be confused with the airfoil angle of attack a.

The optimization process then proceeds in two steps. The first is the
determination of a direction S which" will reduce the objective function
without violating constraints. The second is the determination of the scalar
a* so that the objective function is minimized in this direction, a new
constraint is encountered, or a currently active constraint is encountered
again.

Consider, for example, a hypothetical drag minimization problem in two
variables Xj and x2 which may correspond to two coefficients in the
polynomial shape function. Assume that the lift coefficient must be greater
than or equal to some specified value CT . , and that the cross-sectional
area contained in the airfoil must be greater than or equal to some speci-
fied value Amin. Figure 2 is a graphical representation of such a problem
showing contours of constant objective function value as well as the con- ,.
straint boundaries. Assume that a design at point A is given so .that ......
initially no constraints_are active or violated. The program then begins by
perturbing each of the X variables to determine its effect on the objective
(drag). -That is, the gradient of CD is calculated by finite difference
using a single forward step, and the gradient vector is constructed as

V OBJ =
3C

ACD
Axn

(9)
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Because no constraints are active or violated, it is obvious that the great-
est improvement in the objective function is obtained by moving in the
negative gradient or steepest descent direction so that S = - VC^. Having
determined S, the scalar a* in equation (8) must now be determined .so that
either the objective function is minimized in this direction or some con-
straint boundary is encountered. That is, a one-dimensional search is done
in direction S to determine the appropriate value for a* so that an •
improved design is. obtained at point B. No further improvement can be
achieved in this direction; it is now necessary to determine a new S vector•.
which will improve the design. Point B defines the end of the first design
iteration. The second design iteration begins by again perturbing the two
design variables (xj and x2) to obtain the gradient of the objective function
CD. Now, instead of moving in a steepest descent direction, the S vector
is calculated from the following relationship .

S<* = - V OBJ* + VOBJ -q-i. (10)

JvoBJ11"1! • ; • • • '

where OBJ. is drag CD in this example. Equation (10) defines the conju-
gate direction as developed by Fletcher and Reeves in reference 4. The
advantage that this definition of the S vector'has over .the steepest
descent direction is that if the objective is a quadratic function of the
design variables, convergence to the optimum can be guaranteed to occur in
n iterations or less. Although most problems of practical interest are not
quadratic functions of the design variables, they may still be approximated
as quadratic in the region of the solution. In other words, if the first
three terms of a Taylor series expansion of the objective function form a
reasonable approximation to that function, then equation .(10) can be expected
to provide more rapid convergence in a steepest descent search, since steep-:
est descent uses only-the first two terms in the Taylor series expansion;:
Having determined the new direction S, one searches in that direction until
the lift constraint is encountered at point C in figure 2, which ends the"
second design iteration. The design variables are again perturbed to' obtain
the gradient of the objective function CD. At the same time we obtain the
gradient of the active lift constraint CL. Now a search direction must be
found which will reduce the objective function without violating the -lift
constraint. Such a direction can be found by solving the following sub-
problem, which is a linear programing problem with a single quadratic
constraint. '

Find S to maximize g (11)

Subject to: • • ' -

V OBJ(X) • S + 3 £ 0 (12)

V G,(X) • S + 9.6 < 0 (J = 1 NAG) - (13)
i J j •

S • S ̂  1 (14)
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where. V OBJ (X) = VCD, VGj(X) = - VCL, and Gj(X) = CLffiin - CL. NAC is the

number of active constraints. In this example NAC = 1. The details for
solving this problem are given in references 2 and 3. Note that if
equation (12) is satisfied and g is positive, the resulting direction will
reduce the objective function and is defined as a "usable" direction.
Similarly, if equation (13) is satisfied and 6 is positive, S is called
a "feasible" direction because, for a small move in this direction, no con- ,
straints will be violated. The prespecified parameter 0j is referred to as •
a pushoff factor for the jth constraint and has the effect of pushing the
design away from the active constraint. The value of 6^ must be zero or
positive to maintain a feasible design. If 8j were- zero, the resulting
direction would be precisely tangent to the active constraint. On the other
hand, a very large 6j would push the design away from the active constraint
and nearly tangent to a line of constant objective function. A value of
6j = 1 will yield a direction which approximately bisects the angle between
constant objective function and the constraint as shown in figure 2. If the
maximum value of 6 obtainable from equations (11) to (14) is zero, then no
direction exists which will both reduce the objective function and satisfy
the constraint, and the current design is optimal or is at least a local
minimum. In this example, a direction can be found, and a one-dimensional
search leads to point D in figure 2, ending the third iteration in the
optimization process. The design variables are again perturbed to obtain the
gradient of the objective and the active constraint. This time the con-
straint is on area. The subproblem of equations (11) to (14) is again solved
to obtain a new S vector. Note here that the area constraint is a linear
function of the design variables Xj and x2; therefore in equations (12)
and (13) the pushoff factor 6j is set to zero allowing the S vector to
precisely follow the linear constraint. A one-dimensional search now yields
a solution at point E in figure 2 which is the vertex of two constraints and
ends this .design iteration. Once again the design variables are perturbed .
to obtain the gradient of the objective and both active constraints, and the
subproblem of equations (11) to (14) is again solved. This time the solution
of the subproblem will be zero, indicating that the optimal design has been
achieved. , Point E is clearly optimal since no direction exists at this point
which will reduce the objective function any further without violating one
or both of the constraints.

In the airfoil design problem, it is often difficult to insure that the
initial design will satisfy all the constraints. It is quite possible that
the initial design will lie in the infeasible region, say at point F in
figure 2. Logic is included in the optimization program so that if this
situation occurs, a direction vector S is obtained which will point toward
the feasible region with minimal increase, in the objective function.

Consider the case where an initial design is described at point G in
figure 2, and assume that we wish to obtain the optimal solution simply by
perturbing each variable in sequence to obtain the minimum drag coefficient
which satisfies the constraint. Note that if either xj or X2 is increased,
the value of the objective function will increase. On the other hand, if
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xj or. X2 is decreased, the constraint on minimum area will be violated.
Therefore, it is not possible to improve the objective function by minimizing
(with respect to one variable at a time, it is only by changing the variables
Sin the proper combination that the optimal solution is obtained. This again
underscores the value of using optimization techniques to solve the^design
problem. . . . .

The methods used in this simple example are; in principle, directly
extendable to n-dimensional problems. Also, additional constraints can be
imposed on the problem without increasing the complexity of the design
process. . .

There are, however, two important limitations on the use of optimization
.techniques for airfoil design. First, the computation times increase dra-,
matically as the number of design (Variables.is increased. This is because
the number of required aerodynamic analyses increases in order, to obtain
gradient information. Also, large problems tend to converge more slowly due
to the interaction between design variables and because of numerical inaccu-
racy during the optimization process. It is desirable to use as few design
variables as possible. Experience suggests that between 10 ,and 15 design
variables are adequate to define the airfoil shape, and this is well within
the capabilities of the optimization program. ..

Aerodynamic analysis programs, which are based on an iterative solution
of the fluid-flow equations, are particularly well suited for use in optimi-
zation. These programs begin with an initial estimate for the solution.of
the fluid-flow equations, and iteratively update the solution until conver-.
gence is obtained. The program efficiency is then largely dependent, on this
initial estimate, and if a good estimate for the solution is. available, the
program will converge quite rapidly. During optimization, the majority of
the aerodynamic analyses are required to obtain finite difference gradient
information. However, the gradient computations require only very small
perturbations from the previously analyzed airfoil, and the previous solution
of- the fluid-flow equations usually provides a good starting point for the
new analysis. The result is that the optimization process is computationally
more efficient than would be anticipated based on the computer run time for
a single aerodynamic analysis. - ':••'::.

The second concern when using optimization techniques for airfoil design
is that there is:no guarantee that the absolute; optimum solution will be
obtained. It is quite conceivable that the optimization process: will drive
the design to a relative rather than a global minimum. The probability of .
obtaining a true.optimum is improved by beginning the optimization from
several different initial designs. In this study, each design resulted in
improvement over the initial airfoil shape, so that even if the true optimum
was not obtained, some improvement was realized.

A block diagram of the airfoil shape optimization program is shown in
figure 3. The optimization program modifies the vector of design variables
X to minimize the objective, while the aerodynamics program evaluates the
objective and constraint functions for each proposed X vector. The
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aerodynamic program requires a table of y-coordinates of the lower and upper
surfaces at numerous stations along the airfoil._ The optimization program
deals only with the vector of design variables X which may be coefficients
of a polynomial, as described earlier. A principal consideration in the air-
foil design problem is that of choosing the relationship between the design
variables and the y-coordinates of the airfoil so that the design process is
both general and efficient. "This interface between design and analysis vari-
ables is discussed in the following section.

AIRFOIL DEFINITION

In choosing the mathematical description for airfoil shape optimization,
it is important to have the capability of modeling a wide range of airfoil
shapes while maintaining computational efficiency. The aerodynamic analysis
routine to describe the airfoil typically requires the y-coordinates at 50
stations along the upper and lower surface of the airfoil for a total of 100
points. A direct approach to optimization might be to treat each of these
coordinates as design variables so that the optimization would maintain,the
same degree of generality in describing the airfoil as -dealt with by the
analysis program. However, this would lead to an optimization problem of
100 variables, which would clearly be quite costly from a computational
standpoint. A logical compromise is to choose a functional relationship to
describe the airfoil with as few"variables as is practicable. A wide variety
of functions may be developed which will adequately describe most airfoils
with fewer than 15 design variables. The problem then becomes one of
choosing a functional relationship which is numerically well conditioned;
that is, the design variables should be chosen so that the~optlmization.
process will converge in as few iterations as possible while retaining a high
degree of geometric flexibility.

The solution to this problem is far more subtle than that of reducing
the number of design variables. Even though a function may be chosen which
is mathematically precise and which adequately defines the airfoil, -the
numerical optimization process 'may converge very slowly or .not at all as a •
result of the numerical interdependence between design variables; that is,
the n-dimensional design space defined by these variables may be highly non-
linear and may even contain relative minima as a result of the functional
relationship used. Numerical experimentation is usually required to deter-
mine if a proposed mathematical model is adequate. • • . :

Several alternative geometric descriptions for the airfoil are con-
sidered. The polynomial

y - b̂ ETc + a0 + alX/c + a2(x/c)
2 + . . + an(x/c)

n (15)

was chosen as the basic functional relationship used to describe the geometry
of the airfoil. Using this relationship, the geometry may be described in
various ways.
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The classical approach is to use one polynomial for the camber line of
the airfoil, and another polynomial for the .thickness distribution. Although
this description of the airfoil shape is physically meaningful, it has the
disadvantage that the upper and lower surfaces of the airfoil cannot be
changed .independently.. If the .optimization process requires a reshaping of
the upper surface only, it is necessary to change both polynomials in the
proper ratio in order to maintain a constant lower surface geometry. Numeri-
cally this may be difficult.

A second ̂ approach is to define the upper surface with one polynomial arid
the lower surface with another. This effectively uncouples the design vari-
ables associated with upper and lower surfaces.

However, another problem exists with both of these descriptions. Assume
the optimization problem .requires reshaping of. the leading edge of the air-
foil without changing the aft contour, so that the important design variable
is the" coefficient on the square-root term in.equation (15).. If this term is
changed, it .is also necessary to change the other coefficients so that the :
airfoil shape aft of the leading edge remains essentially unchanged. ' This
situation arises if we require that the trailing edge of the airfoil have"
very small thickness. In other words, the design variables may not be
coupled only.with respect to the objective and constraint functions, but they
may be geometrically coupled in order to maintain a meaningful airfoil.

Another factor which affects the numerical stability of the optimization
process is that the result of changing one design variable on' the objective
and constraint functions may be much different from that of changing another
design variable. For example, the effect of changing the coefficient on (x/c)5

is different from the effect of changing the coefficient on x/c/ This problem
may be alleviated somewhat by using an orthogonal set of polynomials, such as
Lagendre polynomials, an approach which has-.been used with some success.
However, the. problem is not completely alleviated, and an alternative approach
based on the original simple polynomials is proposed.

The ideal mathematical model would be one in which the effect of changing .
one design variable on the objective and constraint functions would be iride-
' pendent of the value of the other design variables, so that the design
variables are completely uncoupled. If this were the case, the optimization
problem could be solved independently with respect to each variable, and the
true optimum would be obtained. Then the optimization techniques described
here would be totally unnecessary. While this is seldom achievable in design
problems of practical interest, some degree of design variable uncoupling can
be achieved. The geometric airfoil description shown in figure 4 is: con-
sidered to be relatively well conditioned from a numerical optimization
standpoint, and yet to maintain most of the desired simplicity and generality.
The airfoil is made up of several polynomial sections, each being defined by
the general relationship given in equation (15).

Figure 5 shows a typical segment of the airfoil. Except for special
design situations, it is desirable that both the y-coordinate and slope be
continuous between segments in order to insure geometric continuity. One
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method of doing this would be to eliminate two of the coefficients of each
polynomial in favor of the boundary conditions, so that geometric requirement
is always satisfied. For a segment defining the leading edge of the airfoil,
only one coefficient would be eliminated since the infinite slope at the lead-
ing edge is satisfied as a natural condition of equation (15). This would
essentially result in a spline function modeling of the airfoil surface. The
remaining polynomial coefficients would then be treated as design variables'
in the optimization process. This has the disadvantage that if one of the
coefficients of a polynomial defining the leading edge of the airfoil were
changed, the geometry would be changed over the entire airfoil surface, just
as if a single polynomial had been used to define the surface. In other
words, the desired uncoupling of the design variables cannot be achieved with
this approach.

A second approach, and the one which was used in this study, is to treat
the y-coordinate and slope at the match point between segments as design vari-
ables. For each such geometric boundary condition to a segment, one poly- '
nomial 'coefficient can be eliminated. Then the design variables in the
optimization process will be the coordinates and slopes at the match point '
between polynomial segments plus the polynomial coefficients which have not
been eliminated in favor of these boundary conditions. The. slope at the
leading edge of the airfoil will not be treated as a design variable since it
is a natural boundary condition of equation (15). By using geometric vari-
ables and polynomial coefficients in this way to define the airfoil shape, the
segments are now coupled only by the coordinate and slope at the match point.
For example, if the y-coordinate is changed in figure 4 at the match point
between segments 1 and 2 on the upper surface, only the geometry of these two
segments is .changed. The geometry of segment 3 on the upper surface and
segments 4 and. 5 on the lower surface will not be affected.

The method used here for defining the airfoil shape may be summarized by
considering a simple example. Figure 6 is an airfoil in which the upper and
lower surfaces are each defined by 2 segments, the match point being at the
50-percent chord. This is the basic airfoil definition which will be used in
the design examples. The segments are defined by the following set of poly-
nomials : ; . • • • ' " ' "

y1 = 'bĵ c/c" + a01 + anx/c + a21(x/c)
2 + a31(x/c)

3 + â Xx/c)1* (16)

y2 = a02 + a12x/c.+ a22(x/c)
2 + a32(x/c)

3 (17)

y3 = b3/x/c -h aQ3 + a13x/c + a23(x/c)
2 + a33(x/c)

3 (18)

a21t(x/c)
2 + a34(x/c)

3 . (19)"

where the subscript on y and the second subscript on the coefficients denote
the segment number. The geometric boundary conditions imposed on the airfoil
are
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yjO/c = 0] =.0 (20)

; y2[x/c = 1] = 0 (2.1)

. y3[x/c = 0] = 0 :. , , , (22)

• ' . . ' . , . yjx/c = 1] = 0 . ! . . (23)

The upper surface leading edge is defined by a fourth-order polynomial while
the remaining segments are defined by third-order polynomials. The square-
root term is omitted from segments 2 and 4 since It is unnecessary for these
segments to satisfy the infinite slope requirement. This definition of the
airfoil is arbitrary and other sequentation or polynomial .order could be used
just as easily. ,. . v • ,.f

;The coordinates and slopes of the match points at the 50-percent jchprd -
for the upper and lower surface will be treated as design variables,as will
the slope at the trailing edge for the upper and lower surface. Artotal'of
19 coefficients of the polynomials define the entire airfoil. Four of these
coefficients are automatically eliminated in order to satisfy the geometric
boundary conditions at the leading and trailing edge. An additional four
coefficients are eliminated to satisfy geometric" continuity at the match
points, so that 11 independent variables can now be used as design variables
in the optimization process. The set of design variables chosen here is

Y — JIT *r' It a o ' ' U oA ~ 1X12 ^12 1 11 m V22 ^32 ^32 3 13

where the second subscript on y denotes the end point of the segment (fig. 5).
The remaining ;coeff icients of the polynomials in equations (16) -to (19.) will be
used to satisfy the geometric continuity and boundary conditions. ' . _

Having specified the airfoil definition for design it is now only, neces-
sary to provide an interface between the optimization "and analyses programs
to calculate the table of y-coordinates required by the aerodynamics, program.
This interface has been coded to provide the general airfoil design capabil--
ity. .-.The following section contains several examples to demonstrate the
efficient application of. the program. . ,-• . . ,;

DESIGN EXAMPLES , ..",'.;..'-.

The following examples serve to identify -the applicability of optimiza-
tion techniques to airfoil design problems of general interest. .The computer
code is written in FORTRAN IV and 'was executed on a CDC 7600 computer.

" ' • ' • , ' ' * ' , * * " ' ' , • "

, . "'Case 1: Lift Maximization, M = 0.1, a = 6° , . . ..

The airfoil shown as a solid line in figure 7 was optimized to obtain
maximum lift. -Constraints were imposed on the area enclosed by the airfoil,
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upper surface pressure coefficient near the leading edge, and maximum pitching-
moment coefficient. The airfoil definition was the same as that described by
equations (16) to (24) and by figure 6. The final airfoil is shown as dashed
lines on figure 7, together with the initial and final pressure distributions
and the airfoil characteristics. The section lift coefficient was improved
by approximately 10 percent, and the constraint on pitching moment was active
at the optimum. The design required 103 aerodynamic analyses and used 2 CPU
minutes of computer time.

Case 2: Pitching-Moment Minimization, M = 0.1, a = 6°

The airfoil designed in case 1 was redesigned, except this time the
absolute value of pitching-moment coefficient was minimized subject to a
minimum section lift coefficient of 0.1. The results are shown in figure 8.
In this case the initial design did riot satisfy the lift .requirement. The
program overcame this constraint violation, while reducing the pitching-moment
coefficient by approximately 10 percent. This design required 140 airfoil
analyses and 3 minutes of CPU time.

Case 3: Lift Maximization, M = 0.75, a = 0°

Figure 9 presents the results of lift maximization for a high-speed
airfoil with a wave drag constraint. The initial airfoil is the same as that
used for low-speed optimization in the previous two examples and represents
an extreme violation of the drag limit. This constraint violation was over-
come, resulting also in a lower lift coefficient at optimum. The final air-
foil represents the maximum lift that could be achieved while satisfying this
drag constraint. The design required 143 aerodynamic analyses and 9 CPU
minutes of computer time. While the design time could be reduced by begin-
ning with a more reasonable initial airfoil, this example demonstrates that>'-
major improvements can be achieved even beginning with an arbitrary initial •
design which violates one or more constraints.

Case 4: Design of Wind-Tunnel Strut for Minimum Wave Drag

The final example of this study was the design of the strut for the
Ames 12-ft wind tunnel which will have a higher drag divergence Mach number
than the commonly used double wedge strut. The results of the design are
shown in figure 10. Only the,leading and trailing edges of the strut were
redesigned, and the strut was required to be symmetric about the midplane.
The wave drag was minimized at M = 0.82, arid the design required 47 airfoil
analyses arid 1.5 CPU minutes of computer time. As shown in figure 10, the
drag divergence Mach number is increased by approximately 0.1 for the opti-
mized strut. It is also interesting to note that the rate of increase in
drag after divergence is less for the optimized strut than for the double
wedge.

\ . Such reshaping of the strut is important from energy considerations.
Lower wave drag means less power to run the tunnel at a fixed Mach number
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and total pressure. Or the excess power could be used to attain a higher test
Mach number than could be achieved with a double wedge strut.

CONCLUDING REMARKS

A practical procedure has been presented for automated airfoil design
using numerical optimization techniques. The approach is to couple an exist-
ing aerodynamic analysis program with a general application optimization
program. This is possible as a result of simultaneous development in recent
years of efficient optimization techniques and reliable aerodynamic analysis
methods. Because the optimization process usually requires only small per-,
turbations of a previously analyzed airfoil, iterative methods for aerody- "
namic analysis are well suited to this process. The choice of functional
relationships used to describe the airfoil is a critical factor in achieving
efficiency and reliability of the method. ' .

The procedure is efficient and easy to use; the engineer is free to
specify the objective and constraints in order to satisfy his particular set
of design requirements. Extension of the technique to viscous drag minimiza-
tion or lift/drag maximization appears to be straightforward. Additionally,
application to other aerodynamic design problems, such as rotor blade design
or engine inlet design, appears feasible. Each of these extensions.is pri-
marily dependent on the availability of the appropriate aerodynamic programs.

Extension of the method to include constraints on off-design aerodynamic
characteristics is desirable. The feasibility of this extension was demon-
strated in reference 6 where an airfoil was designed for a minimum wave drag
at M = 0.8 with a drag rise constraint at M = 0.81. The addition of con-
straints on off-design conditions is straightforward but does increase
computer run times because of the required aerodynamic analyses. However,
for finite difference gradient computations only those off-design conditions
for which constraints are active or violated need to be analyzed, thereby
reducing the required computational effort.

Optimization techniques, together with efficient aerodynamic analysis,
offer a general and efficient automated design capability. It is desirable
that the aerodynamic programs be written so that.they are easily incorporated
into the design program. This is readily achieved by separating the programo
into input, execution, and output segments so. that the execution portion of
the program can be called repeatedly during the design process. Because many
aerodynamic analyses are required for design, it is important that this pro-
gram be as efficient as possible. Major effort is warranted to developx'
programs which perform efficient re-analysis for a variety of flight condi-
tions. : Development of such "design-oriented" aerodynamic analysis programs
will greatly enhance the automated airfoil design process.
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AERODYNAMICS PROGRAM OPTIMIZATION PROGRAM

INPUT DESIGN AND ANALYSIS
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Y—X
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YES NO

Figure 3.— Program organization.
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Figure 4.— Typical airfoil description.
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Figure 7.— Lift maximization, M = 0.1, a - 6°.

CONSTRAINTS: |CPus|^2.0 CL^ 1.0 A^.075

CL CM

INITIAL AIRFOIL .9849 -.0560 .0863

FINAL AIRFOIL 1.000 -.0507 .0804

Figure 8.— Pitching-moment minimization, M = 0.1, a
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CONSTRAINTS CD< 0.004 A > 0.075

INITIAL AIRFOIL

FINAL AIRFOIL
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Figure 9.— Lift maximization, M = 0.75, a = 0°.
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Figure 10.—Wave drag minimization of strut, M = 0.82.
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TSFOIL - A COMPUTER CODE FOR TWO-DIMENSIONAL TRANSONIC

CALCULATIONS, INCLUDING WIND-TUNNEL WALL EFFECTS

AND WAVE-DRAG EVALUATION

By Earll M. Murman,
.3 Flow Research, Inc.

Frank R. Bailey,
.. NASA Ames Research Center

and Margaret L. Johnson
Computer Sciences Corporation

SUMMARY

An up-to-date computer program to solve the transonic small-disturbance equa-
tion for two-dimensional flow past lifting airfoils has been written. The theoretical
and numerical formulation of the code is outlined and several computed examples are
included. The user-oriented code is capable of computing both free-air flows and var-
ious wind-tunnel wall conditions. Applications and limitations of the program are
discussed.

INTRODUCTION

During the past 5 years, many transonic flow design and analysis problems have
been solved using computational methods. Rapid advancement has been made in the
speed and accuracy of the numerical techniques, in the level of approximations used in
the governing equations, and in the complexity of the configurations analyzed. In this
period of growth, it has been difficult for the development of the user-oriented or pro-
duction computer programs to keep pace with the basic research computer programs. A
notable exception has been the two-dimensional codes employing the full-potential equa-
tions developed at the Courant Institute (ref. 1). The present work was undertaken to
provide a user-oriented program for solving the two-dimensional transonic small-
perturbation equations for lifting airfoils. The objectives have been to assemble a well-
organized computer program which could solve a variety of problems, and to provide
sufficient documentation to allow users to modify and extend the basic code to new cases.
It is anticipated that the solution of the small-disturbance problem embodied in TSFOIL
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will provide a complementary analysis tool to the programs incorporating the full-
potential equations.

This paper describes the features and capabilities of the program and presents
some sample calculations. Full documentation of the governing equations, numerical
analysis, and computer program will follow in future NASA publications. The basic solu-
tion of the problem follows the work of Krupp and Murman (refs. 2 and 3). Various ,
improvements in the numerical techniques (refs. 4 and 5) have been incorporated as well,,
as the extensions of transonic small-disturbance theory to evaluate inviscid drag (ref. 6)
and to treat wind-tunnel-wall boundary conditions (ref. 7) and supersonic free-stream
flows (ref. 8). The basic program has been assembled and mostly debugged during this ;, (•
past year. Although the final version is not yet available, some preliminary copies have
been distributed on request. .

SYMBOLS ;

A = —

C contour of integration

CD inviscid drag coefficient

CL lift coefficient .

CM pitching-moment coefficient

C D pressure coefficient , • < • - • : • •

C* critical pressure coefficient .

F slot parameter

F(x) airfoil shape function

H ratio of tunnel half-height to airfoil chord

H transonic-scaled tunnel height

K transonic similarity parameter :
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M Mach number

P0 total pressure

P porosity

P transonic-scaled porosity

5 shock

U velocity

x,y Cartesian coordinates normalized by the airfoil chord

xm location of pitching-moment axis

y transonic similarity coordinate

Ax mesh spacing in x-direction

Ay mesh spacing in ̂ direction ,

a angle of attack

y ratio of specific heats

T circulation

6 airfoil thickness ratio

8 flow angle

$, 0 perturbation potentials .

*t total potential
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Subscripts:

i denotes the x mesh point

J • denotes the y mesh point on tunnel wall boundary

s evaluated on shock

4 lower surface

• • ' • • • . ' • - . . - . • • • » • . . - ' , • • • : • - • • • - - • , <- . ; ; - - : j . • • • •
u upper surface

max maximum

min minimum

"° free-stream conditions

Superscripts:

k,m,n exponents for transonic similarity .parameters (see table I)

THEORETICAL FORMULATION

The partial differential equation solved by TSFOIL is the transonic small
disturbance equation which may be written either in physical variables

or in similarity variables

where $,0 are the perturbation potentials defined as

•• (3)
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and where 6 is the airfoil thickness ratio, M^ is the free-stream Mach number, . .
y is the ratio of specific heats, x and y are the Cartesian coordinates normalized
by the airfoil chord, and - - . ' • • • • • • . • . - , *

y = 61/3Mmy • -:/- : .. ,. ... - .- , . . , ,.'- - . - : . ,,.. (4)7.

2
m • "~ '• . I 1 '* 1 • . i «• • ;.: . •; ' -i

(5)
M2m62/3

In the actual program, the similarity notation (eq. (2)) has been adopted to properly scale
the variables and to provide consistency with the theory developed in the references. As^
one of the input options, the user may choose to specify all information in either the phys-
ically scaled variables (M^, 6, a, etc.) or the similarity variable s~(K,' A = a/6, etc.).
By selecting the values for k, m, and n in equations (1), (3), (4), and (5), the scaling
rules given by Cole, Spreiter, or Krupp (table I) may be selected. The choice of these '
exponents of M^, basically modify or "tune-up" the small-disturbance theory to pro-
vide a more accurate approximation of solutions to the full-potential equation over a
wider range of M^, and 6.

The airfoil is assumed to be at an angle of attack a with a shape described by

V= 6F°V O i x s i (6)

for the upper (u) and lower (£) surfaces. Again, the user may choose to input the physi-
cal variablesi<y;,,.e. and a. >or the similarity variables F .0 ,and, .A = a/6 by.either

U,x • - - • • U, x . . . .

a formula or a table of .ordinates,.g Incorporated in the program are, descriptions of .the. ,
parabolic arc airfoil,

F(x) , = ±2x(l - x) ' (7)u,*

NACA four-digit series airfoil,

F(x)u L = ±(l.4845yx - 0.63x - 1.758x2 + 1.4215x3 . Q.5075X4) - (8)

and Horn (ref. 9) airfoil as default cases. In the small-disturbance theory the airfoil
boundary condition is applied as a Neumann condition . ..
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on the mean surface slit (y = ±0, 0 = x = 1). Small^disturbance theory is singular at the
leading- and trailing-edge stagnation points. However, if in the region of the leading
edge, the airfoil shape is described as

F(x) = axp + . . . (10)

the singularity is integrable if p > 0.4, and local solutions show that no leading -edge
singular drag force is present for nonlifting shapes (ref. 10).

To complete the specification of the potential flow problem past a lifting body, a
condition must be added to give a unique value of lift or circulation. .Two choices have
been incorporated. The first option is the usual Kutta condition wherein it is required
that the pressures or velocity perturbations at the trailing edge be equal, i.e.,

4>x(l,0-) (11)

The method proposed by Ballhaus and Bailey (ref. 5) has been used to enforce the Kutta
condition. When the Kutta condition is specified, the value of lift constitutes part of the
solution to the problem. The second option is to specify the value of lift as an input and
to eliminate the Kutta condition requirement (eq. (11)). In this case, the pressure is
double-valued at the trailing edge. A third option of specifying both the lift and Kutta
condition and computing the angle of attack as part of the solution has not been incorpo-
rated. In any of these cases, the pressure and flow angle downstream of the airfoil slit
must be continuous but the potential must jump by the value of the circulation (fig. 1).

For the conditions far away from the body, boundary conditions have been incorpo-
rated to represent free -air flows and various wind-tunnel wall conditions at both sub-
sonic and supersonic free-stream conditions. For free-air flow with M^, < 1, the
appropriate conditions at infinity require that all velocity perturbations vanish

' ' -• • 4> ,<fc ~ 0 as x2 +y2 -°° ..• • , . • • • • : . (12)y
In the program a far -field solution for a compressible vortex and a doublet (ref .- 7) are
used to specify <p on outer boundaries (fig. 1). For free-air flows with M^, > 1, the
appropriate boundary (or initial) conditions are .

0 ,0~ - 0 as .x- -«o (13)
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On the top and bottom boundaries a far -field condition is specified '

(14)

to prohibit reflected waves (fig. 2). At the downstream boundary, the flow is required to
be supersonic so that no condition is needed.

To simulate flow in a wind tunnel, the classical homogeneous tunnel-wall boundary
condition

/ ' * x ± F H * ^ ± | « l > y - 0 < i • ' • ' ; ' ; • • • • : : (15)

is applied at the tunnel walls (y = ±H), where H is the tunnel half -height to chord ratio,
F is the slot parameter (ref. 7), and P is the porosity. Equation (15) is transformed
to the similarity variables

~±-i :.0~ = 0 on y = ±H - -(16)

The following special cases extracted from equation (16) have been computed: '""' : '

solid wall P -^ 0 $~ = 0 (17)

free jet F - 0, P - <» " 0 = 0 :'(18):
A

perforated wall F•— 0 - P4> ± <p~ = 0 (19)x y

ideal slotted wall P.-°° 4> ± FH0 ~ = 0 (20)A •^y

The general case given by equation (16) has been included in the theoretical formulation
but has not yet been included in the numerical analysis. For tunnel flows with subsonic
free streams, upstream and downstream far-field boundary conditions are derived for $
which satisfy 4>v — 0 at x — ±°o together with equation (16) and the linearized version

A.

of equation (2). The case of choked tunnels has not been considered. For supersonic
free-stream Mach numbers, the upstream conditions ^x>^y "* 0 at .x — -°o are incor-
porated directly, and at the downstream boundary, the flow is required to be supersonic
Figure 3 summarizes the boundary conditions used for the wind-tunnel simulation
problems.

It is hoped that the theoretical formulation has been kept sufficiently general that
other flow conditions besides the above can be incorporated into the program by future
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users: - The simplifications of transonic .small-disturbance theory, particularly in regards
to the mean surface approximation for applying boundary conditions, should permit this
with minimum modifications to the basic code; •••- - .• , • •>•

" When the solution for <j> is known, virtually all quantities of interest may easily
be obtained throughout the entire flow field. These include the pressure coefficient, flow
angle, Mach number, and total pressure loss across embedded shock waves given by the
respective formulas: . \:

(21)

'". . . ,;. (22)

(23)

9°°

where [ ] denotes the jump in a quantity across a shock wave. The lift and pitching
moment are computed by integrating equation (21) around the airfoil in the usual way

1 / \ . . • • " . .
, (CP,u - Cp^/dx ' " ' . . " " " (25)

(x - xm)(cp,u - Cpjje)dx • ; , (26)

The inviscid drag coefficient is obtained by integrating the appropriate momentum flux
relationship around a contour C enclosing the airfoil and including an integral along all
shocks S contained within C as illustrated in figure 4 and discussed in reference 6.
The formula is ;

(27)

NUMERICAL FORMULATION

Equation (2) is replaced by a system of mixed finite-difference equations which are
solved by an iterative successive line overrelaxation (SLOR) algorithm. The difference
equations are in the fully conservative form (ref. 4) to guarantee that the correct shock
jumps are calculated. A Cartesian mesh with variable spacing used by the authors in
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previous work has been retained in lieu of the coordinate mapping procedures adopted by
some workers. Although:either approach would be acceptable for the present problems,
it was felt that the variable Cartesian mesh would ease the extension of the program to
new problems,.while it also retains the ability to locally refine the mesh where desired.
The initial guess for <p needed to start the relaxation solution may be selected either.,
as undisturbed flow (0 = 0), or from a previously calculated case stored in core or on a
peripheral unit. . . . . . .

Convergence of the relaxation iterations to a desired residual error is accelerated
by using overrelaxation and mesh refinement. The latter is incorporated in the follow-
ing way. An input x and y mesh is specified which has an odd number of mesh points
(including the end points) equal to 4N + 1 in each of the four intervals: (1) x^^ to
x = l (trailing edge), (2) x = 1 to xmax, (3) ymin to y = 0, and (4) y = 0 to . ymax.

With this arrangement, every other mesh point may be deleted, leaving 2N + 1
mesh points with the same end-point location. Once again, every other mesh point may
be deleted, leaving N + 1 mesh points with the same end points to each interval. The
process can be repeated again if all N are odd or if there are 8N + 1 initial mesh
points, etc. The iterative solution may;then be started on the coarsest mesh and, after.,
suitable convergence is achieved,.continued on the next fine mesh by reinserting every,,
other mesh point. The advantage of this is twofold. First, the user may input the mesh
on which the final solution is desired, and all the intermediate mesh deletions and refine-
ments proceed automatically. Second, the points on which boundary conditions are
applied remain unchanged. In practice, we have found that three meshes (coarse,
medium, and final) are adequate. On each mesh, overrelaxation factors are used for
elliptic points, and slight underrelaxation factors are used for the other points. The
rate of convergence is greatly enhanced by increasing the overrelaxation factor as much
as possible while maintaining stability. We try to achieve 1.8 on the finest mesh. Other
convergence acceleration techniques, such as the extrapolation methods explored by
Hafez ahd'Cheng (ref. 11) and the circulation updating techniques employed by Ives and
Melnik (ref. 12), have not been incorporated as yet into the code.

The numerical procedures employed here are of the shock-capturing variety; i.e.,
the shock is spread over several mesh intervals rather than being an exact discontinuity.
Use of the fully conservative difference equations ensures that the correct shock jump
will be computed as the mesh is refined (ref. 4). Earlier, versions of the difference equa-
tions were not in fully conservative form, and incorrect shock jumps were often computed.
Fortuitously, the incorrect shock jumps are in better agreement with the data. As an
input option, the user may specify the not fully conservative form of the difference equa-
tions. The authors do not recommend such calculations as they are generally incorrect.

777



The difference equations for 0 — must be modified at the top and bottom bound-
aries (y = ±fi) to incorporate the wind-tunnel-wall boundary conditions (eqs. (17) to (20)).
These modifications are given below for y = H and for an even mesh (Ay = Constant,
Ax = Constant). Extensions to the uneven mesh case and for y = -H follow directly.
For the free jet and perforated wall with P > 1.5, equations (18) and (19) are integrated
once in x to yield, respectively, . . :

- • n + 1 . . . - . - - . . • . . . . . . . . . . . . . . - •
0(x,H) = 0(-oo,fi) _ (28)

n+1 rx.
. . . . - • 0(x,H) = 0(-oo,fi) - 1 , 02 dx .. . . ,.. . - . - , . . ( 2 9 )

p -°° . y -'.

at the (n.+ l)th iteration. Let i denote the x mesh point and J the y mesh point
at the wall (y = H). These Dirichlet boundary conditions for . 0(x,H) are then incorpo-
rated into the difference formula for <f> — at the mesh point i,J-l as , •

' " *

0 ^ , j
. 2 V-l * V-2 :,. ,

yy

For the solid wall, perforated wall with P ^ 1.5, and ideal slotted wall, equations (17),
(19), and (20) are applied as Neumann boundary conditions for </>~. The difference equa
tions used for <t> — at the mesh point i,J is

yy
n+l . n+1

= :
r. y y A y r
yijj A y . . .

For the solid wall, $n = 0. For the perforated wall, 0n+ is computed from the
. yi.j yi,j

upwind formula

. - • , , , (32)

. - ..
The ideal slotted-wall condition is applied by integrating equation (20) once in x to give

0(-,H) (33)

Applying the perforated-wall condition differently, depending on the value of P, increases
numerical stability and permits a s'mooth transition to the limiting cases of a free jet
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(P - °°) and a solid wall (P - 0). Equation (33) has proven to be quite stable for:

the range of FH computed to date.

COMPUTER PROGRAM

TSFOIL is written in FORTRAN IV and has been run and debugged on a CDC 7600.
Clarity in the program structure and function has been stressed whenever it does not
unduly compromise computational efficiency. As a result, TSFOIL consists of approxi-
mately 50 subroutines, 30 common blocks, and is liberally laced with comment cards.
All input, except for an identifying header card, is read in NAMELIST form into one sub-
routine, READIN. Each input quantity contains a default value so that the entire program
could be executed by only reading a header card and the required minimum of one value
into NAMELIST INP. Multiple cases may be run sequentially. A number of "fail-safe"
checks are included to identify bad input data and divergent calculations. Output includes
(1) all input data, (2) convergence history, CL, CM, and computed pressure distribution
with printer plots for each mesh (coarse, medium, final), (3) additional flow-fie Id informa-
tion and drag coefficient for the final mesh, and (4) pressures on the tunnel wall.

i

A number of cases have been computed using TSFOIL during the last 6 months and
the program has been essentially debugged. There are, however, some ongoing problems
which-are discussed subsequently.. .-. .

COMPUTED EXAMPLES

Several computed examples are included here to illustrate the capabilities and,accu-
racy of program TSFOIL. Figure 5 shows the calculation for a shock-free lifting tran-
sonic airfoil designed by Korn (ref. 9). The result is essentially identical to the original
calculation by Krupp (ref. 3) except that the original result did not include evaluation of
the drag coefficient by equation (27). The three integrated force coefficients are in good
agreement with the exact solution, although the pressure distributions are somewhat dif-
ferent. This calculation represents the default calculation in TSFOIL and requires
approximately 10 CPU seconds of CDC 7600 time with the use of the FTN, OPT-2 com-
piler. On the coarse x,y-mesh (15 x 20) the calculation took 300 iterations and the resid-
ual in 0 did not converge. On the medium mesh (29 x 39), the calculation converged in
130 iterations to a residual of 5 x 10~5. On the fine mesh (57 x 77), the calculation con-
verged in 180 iterations to a residual of 5 x 10-5.

Free-air and ideal slotted wind-tunnel calculations are compared in figure 6 with the
data of Stivers (unpublished data from Ames Research Center) for a NACA 64A010 airfoil
at a measured M^ = 0.802 and geometric a = 2.0°. The data were obtained in the
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Ames 2- by 2-foot transonic wind tunnel, using a 15.2-cm (6 in.) chord model (H = 2).at
a Reynolds number of 4 x 10^. The formula of Baldwin, et al. (in ref. 7) was used .for the
slot parameter F giving a value of 0.066.. Three calculations are shown. The free-
air result is seen to, greatly overpredict the value of lift and, consequently, the pressure
distribution is in poor agreement with the data. When the slotted-wall boundary condi-
tion representative of the Ames 2- by 2-foot transonic wind tunnel is included, the lift is
substantially decreased and the shock wave is displaced upstream approximately 10 per-
cent of chord. A considerable discrepancy between data and calculations still remains,
however, due to the displacement thickness of the turbulent.boundary layer. Finally,
when the lift is set at the measured value and the tunnel wall is included, the .theory and
data are in good agreement everywhere except downstream of the shock. It appears for
this case that approximately,40 percent of the difference between free-air theory.and
measured results for lift.and shock position are attributable .to tunnel-wall effects, and .
the remaining 60 percent is a result of viscous effects. Clearly, a complete theory for
airfoils must treat both..of these effects, since they can be of the same order of magnitude.

Figures 7(a) to 7(d) illustrate the effect of different tunnel-wall boundary conditions
for an NACA 64A010 airfoil at M^ = 0.75, a = 2°, and H = 2. For the range of param-
eters selected, the slotted tunnel produces the least interference drag. The large inter-
ference drag of the perforated tunnel is caused by a transonic buoyancy effect (ref. 6).

A final result (fig. 8) shows a comparison between the results of TSFOIL and a
supercritical airfoil designed using the optimization method reported at this conference
(ref. 13) and the full-potential equation program of Jameson (ref. 14). The differences
between the two results are evident but not severe for this rather thick (12.8 percent)
airfoil. The two results yield the same shock position with some difference in strength.
The small-disturbance solution using fully conservative difference equations predicts a
considerably lower wave drag as was earlier discovered for nonlifting airfoils (ref. 6).

DISCUSSION

Several computational problems have been encountered in using TSFOIL. One of
these, illustrated in figure 8, is the appearance of oscillations or irregularities near the
leading edge. The oscillations appear greater than in the earlier results of Krupp (ref. 3)
and may be due to some differences in the numerical procedures or to an undiscovered
error in the program. However, it would be desirable to eventually incorporate a local
solution for a lifting blunt-nosed airfoil to avoid numerically integrating through this
region. A number of calculations which were anticipated to be successful were divergent
and this might be attributable to a nose problem. A second difficulty has been encoun-
tered when the shock wave on the upper surface reaches the trailing edge, although we
cannot see any fundamental reason why this case cannot be computed. The current
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treatment of the Kutta condition and/or jump relations across the slit (y = 0, x > 1) :

appears inadequate. A third source of difficulty has been the computation of supersonic •
free-stream cases for lifting airfoils. Nonlifting symmetric airfoil cases have success-
fully been reproduced. Again, we feel there is no fundamental reason to prohibit'success-
ful solution of this category of problems. " ;- ••

• ".' ' ' .' ' CONCLUDING REMARKS !r-
*', '•. *

The program TSFOIL has been written for calculating a variety of two-dimensional
transonic flows using small-disturbance theory. The program incorporates many of the-"
advances in numerical methods and theoretical extensions of small-disturbance theory-"
made during the past few years. Although the" program is not in its final form, the:major
part of the development is complete, and a number of interesting examples have been
computed. The input/output and program structure have been kept as simple as possible.
It is hoped that the program will provide a basic tool which can be used to analyze free-
air and wind-tunnel flows, which can be. extended to other problems of interest, and in
which can be incorporated the ever increasing number of improvements in numerical
methods.: • .
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TABLE I,- EXPONENTS FOR TRANSONIC

SIMILARITY PARAMETERS

Cole
Spreiter
Krupp

k

0
2

7/4

n

0
2/3
3/4

m

0
2/3
1/2
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field

Figure 1.- Boundary value problem for lifting airfoil in subsonic free stream.

dF,,
= = 0

Figure 2.- Boundary value problem for lifting airfoil in supersonic free stream.
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Figure 3.- Boundary value problem for lifting airfoil in ventilated wind tunnel.
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Figure A.- Contours for evaluating drag integral.
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CL=.63 CD=0 CM=-.I46
SMALL DISTURBANCE THEORY
CL=.6I CD =-.0001 CM = -.I53

Figure 5.- Comparison with exact solution for Korn shock-free airfoil,

= .802 : = 2.0°

CP of,

OV NASA-AMES 2x2' TUNNEL
.28I CM = -.0024

FREE AIR THEORY
.7I3 CD=.0287 CM=-.IOO

IDEAL SLOTTED TUNNEL THEORY
CL = .530 CD = .OI38 CM=-.033
IDEAL SLOTTED TUNNEL THEORY
CL = .281 (FIXED) CD =.0048 CM =.026

Fieure 6.- Comparison of free-air and wind-tunnel solutions
with data of Stivers for NACA 64A010 airfoil.
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(a) Comparison of free-air and
free-jet results.
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(b) Comparison of free-air and solid-wall
tunnel results.
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(c) Comparison of free-air and
slotted-wall tunnel results.

1.0

(d) Comparison of free-air and
perforated-wall tunnel results.

Figure 7.- Comparisons of results using free-air and various wind-tunnel-wall
boundary conditions for NACA 64A010 airfoil.
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O DESIGN SOLUTION-
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SMALL DISTURBANCE THEORY
CL=.52I CD = .0008 CM=-.MO

Figure 8.- Comparison with airfoil designed by optimization method,
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NUMERICAL INTEGRATION OF THE SMALL-DISTURBANCE POTENTIAL

AND EULER EQUATIONS FOR UNSTEADY TRANSONIC FLOW

By Richard M. Beam

NASA Ames Research Center

. and

William F'. Ballhaus !

U.S. Army Air Mobility R & D Laboratory

INTRODUCTION . '

Subsonic and supersonic unsteady aerodynamic coefficients generally have
been satisfactorily determined from linear theory. Classically, two differ-
ent but compatible approaches have been taken. In one approach, it is
assumed that the solution depends Harmonically on time'(refs. 1 to 3). For
application in flutter analysis, the solutions, in the form of lift and
moment coefficients, are tabulated as functions of, reduced frequency and Mach
number. The flutter (stability) boundary is obtained by using the unsteady
coefficients in the airfoil equations of motion with the assumption that the
motion is harmonic in time (ref. 4). .

The second approach (refs. 5 and 6) is the indicia! method. For
example, if an airfoil is given an instantaneous sinking velocity (i.e., a
discontinuous change in vertical velocity), the resulting flow field is the
indicial response. For a given step change in motion (sinking, pitching,
etc.) the solutions, generally in terms of lift and moment coefficients, can
be tabulated as functions of time. With the aid of Duhamel's integral, the
indicial solutions can be used to obtain the solution for a general time
history of the airfoil motion. The oscillatory aerodynamic coefficients can
be computed by Fourier transforms of the indicial functions and, conversely,
although rarely done in practice, the indicial functions can be obtained by
the inverse transform of the oscillatory aerodynamic coefficients computed by
the first approach (ref. 7).

Both approaches can be used to obtain unsteady aerodynamic coefficients
for certain cases of transonic flows by assuming .that the unsteadiness of the
flow can be treated as a small (linear) perturbation about a nonlinear steady
state solution (ref. 8). The solutions are only valid for the particular
airfoil used to generate the initial steady state solution as opposed to the
classical solutions (refs. 1 to 3)., which are valid for all airfoil shapes
(i.e., the initial steady state flow was assumed uniform).

Although the linear perturbation assumption removes the nonlinearities
from the unsteady flow equations, variable coefficient partial differential
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equations must be solved, and numerical methods are generally required. The
oscillatory approach has been used in reference 9 to solve the small-
disturbance potential equation and in reference 10 to solve the low-frequency,
small-disturbance potential equation. The steady state solution and the
unsteady perturbation solution were computed using relaxation algorithms.
The numerical indicial approach was investigated in reference 11. A third-
order-accurate, explicit finite-difference scheme applied to the Euler equa-
tions-was used to develop, the indicial functions for. small perturbations . .-.
about a nonlinear steady.state. Although the.method of reference 11 is not•
restricted to, the linear perturbation assumption, no investigation was made
of large amplitude nonlinear motions.

For some flow.situations the unsteady linear perturbation assumption is
not valid, and the niceties of the superposition principle must.be abandoned.
The solutions must then be computed by time accurate integration of the
unsteady flow equations for the particular airfoil motion of interest. An
example of such a flow situation is the blade element on a high speed heli-
copter rotor tip. During a cycle the blade element accelerates from a rela-
tively low subsonic Mach number up into the transonic regime, where it can
experience increased drag'and moment. The onset of these adverse transonic
effects can severely limit high speed helicopter performance. On the other
hand, since transonic flows depend so strongly on airfoil shape, improved
design should significantly increase helicopter performance. The expense and
difficulty involved in rotary wing testing make the computational 'approach
particularly attractive in this regard.

The limitation of the linear unsteady perturbation assumption to air-
foils traveling with a constant forward velocity (i.e.., flutter and stability
analyses) is not well defined. The capability of solving the nonlinear flow
equations is necessary, therefore, to establish the limitations of the linear
analysis as well as to solve the truly nonlinear problems.

Explicit numerical methods were used in references 11 and 12 to solve
for the flow fields'about oscillating airfoils. Both methods solve the Euler
equations and, although neither is limited to linear perturbations, only
reference 12 considers large amplitude rotating motions of the airfoil. The
motivation for considering additional numerical methods and/or forms of the
equations of motion comes from the computational time required for the
explicit methods applied to the Euler equations. Most nonlinear unsteady
transonic phenomena of practical interest are anticipated in the low reduced
frequency spectrum (ref. 8). The' low frequency (long period) coupled with
the numerical stability time step limitation of the explicit schemes leads to
orders of magnitude more time steps per cycle of oscillation than are
required for numerical accuracy.

In this paper we investigate and compare two methods that solve unsteady,
nonlinear, transonic flow problems. Each method is an attempt to remove the
.numerical stability limitation discussed above; thus the computational time
is reduced while the numerical accuracy is preserved. One method .is to solve'
the Euler equations by using an implicit numerical scheme to increase the '
integration time step. The second method is an extension of the approach
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described in reference 13 to the lifting case. This method uses a semi-
implicit scheme to solve the low-frequency, transonic, small-disturbance
potential equation.

Although the second method is more limited (small disturbance, low fre-
quency) than the first, it offers considerable savings in computer time and
storage requirements over the first method. The details of the two methods
are presented in section I. In section II we compare results from the two
methods and the results of linear theory. The two sample motions, a sinking
airfoil with stea'dy forward velocity and an airfoil with increasing thick-
ness, were chosen to provide a simple representation of the flutter-maneuver
and rotor tip motions, respectively. Finally, results are presented for an
NACA 0010 airfoil undergoing simultaneous angle of attack and free stream
Mach number oscillations. This computation is a strip theory simulation of
the flowfield about an advancing helicopter rotor.

I. NUMERICAL METHODS

Implicit Scheme for Euler Equations

The gasdynamic equations for two-dimensional, unsteady, inviscid flow
are expressed in conservative (or divergence law) form;as

+ + = 0 (1)

where t, x, and y represent the time and Cartesian space coordinates^ and
U, F, and G are the vectors:

U

P

pu

pv
F =

pu

pu2+p

puv

(e+p)u

G =

pv

puv

PV2+P

(&fp)v

(2)

The variables in equations (2) are the density p, the velocity components
and v, pressure p, and total energy per unit volume e. The additional
required equation is the equation of state (for a perfect gas):.

u

p - (Y - Die - f(u2 + v2)] (3)

where y» a constant, is equal to the ratio of specific heats (taken as 1.4
in this study). The conservative form of the differential equations is
chosen to insure accurate resolution of the weak solution (shock wave) to the
differential equations.
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The numerical method for solving equations (1) is an implicit, time-
split, finite-difference scheme.1 The development of the scheme starts with
a Taylor's series in t (as does the Lax-Wendroff explicit scheme, ref. 14,
p. 302),

+. . . (4)L \3tV

For simplicity, consider the one-dimensional form of equation (1)

The highest order term retained in equation (4) may be rewritten with the aid
of equation (5) as

32u
— 2
du

3 /3F\ 3 /3F\ 3 /. 3u
-K\to) ~ ~ 3x- \3t-J * -3x-\A It1

where the matrix A = A(U) is the Jacobian of F(U) ; that is, ajj
The Lax-Wendroff scheme replaces the final time derivative in equation (6) by
substitution from equation (5) to obtain the explicit scheme

The implicit scheme used in this paper was .obtained by using a forward time
difference to replace 3U/3t in the final step of equation (6)

For the two-dimensional equations (1), the implicit scheme has the form:

**>-*- «(i * ff - f
Where the matrix B = B(U) is the Jacobian of G(U) . The spatial differences
are approximated by central differences, and a fourth-order dissipatiye term is
added to the otherwise nondissipative scheme. The resulting difference

The algorithm was developed by R. F. Warming and Richard M. Beam of
Ames Research Center. . . •
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equations are solved by a time split algorithm which employs a block tri-
diagonal matrix inversion routine.

Semi-Implicit Scheme for the Low-Frequency, Small-Disturbance,
Transonic Potential Equation

Because of the success obtained using the small-disturbance approach ,to
predict two- and three-dimensional steady transonic flows, an effort was
initiated to develop a similar approach for unsteady transonic flows. In
reference 13, semi-implicit difference operators were developed for the
unsteady, transonic, small-disturbance equation and its low-frequency approx-
imation. The former, ;

- • • - • - ' !
Sl »tt + 2S2 +xt ' Vc »KX + »yy ' (10)

is the lowest order approximation to the Euler equations for unsteady, tran-
sonic flow about a thin airfoil. Here Vc = 83 - (y+l)M£<{>x, S3 = (l-M£)/6

2/3,
Si = M*(2k)2/62/3, S2 = M£2k/<5

2/3, $ = disturbance velocity potential, M,,, =
free-stream Mach number, and 6 = airfoil) thickness/chord ratio. The reduced
frequency k is a measure of the degree of unsteadiness of the motion. For
ah airfoil of chord length, c, traveling at a mean velocity of !!„, and under-
going some periodic motion of frequency to, k = a)c/2U00. Equation (10) is
derived under the assumption 62/3 ~ 1 - M£ « 1 . < j > , t , y , and x have
been scaled by c62'3U , l/oi, c/S1'3, and c, respectively. Contained in
equation (10) is a relationship for the jumps in the derivatives of the
velocity potential across shock waves. This relationship is the lowest order
approximation to the Rankine-Hugoniot shock relations. • ' • - ! -

' • •' I '
The equation for low-frequency, transonic flows is obtained by taking

the limit k ~ 82/3 ~ 1 - M2 -»• 0. The first term in equation (10) drops
out leaving

2S0. <}> = V <f> + <J> , ' (11).2 Yxt c Yxx yyy

Retarded differences in both x and t are used to approximate <j»xt . The
term Vc$-xx ^-s evaluated )at the old time level using Murman-Cole type mixed
difference operators (including the shock point operator) (ref. 15). For
meshes with variable grid spacing, special care must be taken to ensure that
the difference operators are conservative. The term <f>yy is obtained using
central differences in y. Half of <J>yy is evaluated at the new time level
and half at the old. At each time level, the scheme is marched in the x
direction solving (directly) a tridiagonal matrix for each x = constant grid
line.

In the low-frequency approximation, the lift can be handled in a manner
similar to that commonly used in two-dimensional, steady, relaxation methods.

793



The circulation is given by the jump in potential at the airfoil trailing
edge. This jump in potential is enforced from the trailing edge .to the down-
stream boundary. (The assumption here, which is a consequence of the low-
frequency limit, is that the time scale associated with the change in lift .
(i.e., the time scale of the oscillatory .motion) is much greater than the .
time scale of the forward flight; i.e., l/u ». c/Vm ->• 2k = uic/U^ « 1. So
the jump in potential across the vortex sheet appears nearly uniform to an
observer on the airfoil) . Ideally, the far field boundaries should be-
removed sufficiently far that the interaction of disturbances, with the
boundary does not affect the solution near, the airfoil during the computed
time period. In practice a variable grid is used in both x and y so that
the far field boundary conditions are applied at distances of from ten to
thirty chord lengths from the airfoil. At the downstream boundary, a constant
pressure condition is applied; at the other boundaries, the. mean lift vortex
solution is applied.

Considerable experience in the computation of two- and three-dimensional
steady transonic flows has shown that the small disturbance approach provides
solutions that agree very well with solutions to the full potential and Euler
equations for thin airfoils at free-stream Mach numbers close to one. Good
agreement can .also be obtained for thicker airfoils at lower Mach numbers
provided the small disturbance formulation is. properly "tuned." For example,
Krupp (ref . 16) modified the nonlinear coefficient of <}>xx by replacing

vc = s3 - (Y+DM ^ (I2a)

by

5 4> (12b)

to force the small-disturbance equation to change type for a value of
Cp = Cp (critical pressure coefficient) that., is a good approximation to the
critical pressure coefficient obtained from the full potential equations for
a wide range of free-stream Mach numbers. Krupp. also, in effect, divided the
airfoil slopes by M*/1* so that the airfoil boundary condition. applied cor-
responds to an airfoil of thickness ratio. 6/M̂ /1*. Notice that as. Mo,
approaches unity,, the effects of Krupp 's "tuning" diminish. . ..

In the present unsteady, small-disturbance approach, the coefficient of
<|>xx is expressed as

Vc " S3 ~

where n is selected so that the steady form of equation (11) changes type
for a value of Cp = Cp that is the same as the critical pressure
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coefficient obtained from the full potential equations. For example, .n = 1.64
for IV = 0.85, n = 1.65 for H,, = 0.825, and n = 1.69 for M^ = 0.72. Here
we also increase the airfoil slopes by a factor of M^1/1*. In this report, we
refer to equation (12a) as "Von Karman-Spreiter scaling" and to equation .(13)
(and the slope .factor of M^1/1*) as "C* scaling." This approach agrees
remarkably well (ref. 17) with solutions to the steady Euler equations
computed by Magnus and Yoshihara (ref. 12) for transonic flow about an
NACA 64A410 airfoil, provided the Mach number immediately upstream of the
shock does not exceed about 1.3. For shock Mach numbers greater than 1.3,
the small-disturbance shock jumps become considerably stronger than the
Rarikine-Hugoniot jumps; it is at this point that the small-disturbance
approach breaks down. However, this is also the point at which the inviscid
assumption breaks down, since for shock Mach numbers greater than 1.3 'the
shock usually separates the boundary layer.

Just as tuning the small-disturbance equations for steady flows has
extended the ranges of thickness ratios and free-stream Mach numbers over
which the small-disturbance approach can be successfully applied, tuning the
unsteady term in equation (11) should increase the range of reduced fre-
quencies over which the low-frequency approximation can be successfully
applied. For example, the upstream propagation rates (characteristic traces
in the x-t plane) for the linearized forms of equations (10) and (11) differ
by a ratio 2}̂ / (Mw+l). Changing S2 in equation (11) from $2 = 2kM£ to
S£ = (Moo+iyikMoo forces the (linear) upstream propagation rate of the low-
frequency approximation 'to match that of equation (10), which is valid for
all frequencies. Here we refer to equation (11) with this modification as
the "modified low-frequency approximation." Some solutions using this form
of the equation are presented in the section on results.

II. NUMERICAL RESULTS

Types of Unsteady Motion

Two types of unsteady airfoil motion are of primary importance in tran-
sonic flows. One is the acceleration of the airfoil in the streamwise
direction, for example, the rotor blade on a helicopter in forward flight or
an aircraft experiencing gross maneuvers. The second motion consists of
perturbations (not necessarily small) about a mean forward velocity. These
•perturbations may be pitching, plunging, or complex elastic deformations of
the airfoil. This second class of motion includes most flutter (usually
small perturbation) and aerodynamic stability phenomena.

Two simple motions have been chosen for the comparison of the numerical
methods. They were chosen because (1) we believe they present the basic
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physical phenomena and numerical problems associated with the more general
motions, (2) linear theory solutions are readily available for comparison,,
and (3) they provide a simple basis of comparison for various numerical
methods. - ..

Nonlifting airfoil with increasing thickness (growing airfoil). First we
consider a parabolic arc airfoil, in a uniform free stream, whose thickness in-
creases from zero as a function of time (fig. l(a)). (The slowly growing motion
can be related to that of an accelerating airfoil.) The thickness increases
from zero to 6 in time T . The transition is taken as the polynomial in T:

0 < j < T— —. o (14)

T > T

Linear theory solutions for this problem are available (ref. 13).

Oscillatory plunging airfoil. . Next we consider a parabolic arc airfoil
with a mean forward velocity and a sinusoidal velocity normal to the free
stream (fig. l(b)). This is usually referred to as a sinking or .plunging air
foil and has the characteristic of a sinusoidal variation in angle of attack.
The linear theory solutions are available for many Mach. numbers and fre-
quencies . . . .

Results for Growing Airfoil

In figure 2 (a) we consider the pressure coefficient near ,midchord for an
airfoil growing to its maximum thickness (eq. (14)) while traveling two chord
lengths (TQ = 2). The final thickness to chord ratio, 60 = 0.10, and the
free-stream Mach number, =0.785, lead to a transonic (embedded. super-

where Cp denotes the sonicsonic) steady state flow field, Cp . < Cp ,
condition. The linear theory is, or course, proportional to thickness and
does not have a supercritical steady state. .In figure 2 (a) results from the
linear form of equation (10) (linear theory) are compared with results from
the modified low-frequency approximation and the Euler equations. In. figure
2(b) the low- frequency approximation with Voq Karman - Spreiter and Cp
scaling are compared with the Euler solution for the same motion. Notice
that the Von Karman-Spreiter scaled results have a subcriticai steady state
pressure. . .

As ,the airfoil begins to grow, the disturbances are very small and the
nonlinear effects negligible. Thus the Euler equation numerical solution
agrees with linear theory. The numerical low-frequency approximation pres-
sure leads the other solutions. This initial discrepancy and the later ampli-
tude difference between the low-frequency and Euler numerical solutions are
due to the high frequency content of the airfoil growth rate (k= 0 (TT/T = 1.6)).
To have primarily low-frequency content in the growth rate
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(k = 0(0.1)), the rise time, TQ, must'be greater than about 30 chords. Both
the lead in the initial Cp and the subsequent underexpansion in Cp for'the
low-frequency approximation are also apparent in a comparison of the analyti-
cal solutions for the small-disturbance equation and the low-frequency,
small-disturbance equation (fig. 3). As TO is increased to 10 (fig. 4),
the difference between the two solutions diminishes. -

The differences between the Euler and low-frequency numerical solutions
for , t0 = 2 (fig. 2) can also be attributed to the low-frequency approxima-
tion. As T0 is increased to 20 (fig.~5),' the difference between the two
solutions diminishes. For this case k = 0(ir/To = 0.16).

From an aerodynamic viewpoint the significant features of figure 2 are
the nonlinear effects: (1) the near doubling of the maximum midchord pres-
sure and (2) the significant increase in time to reach steady state, when
compared with linear theory predictions.

Results for Oscillatory Plunging Airfoil

First we consider small amplitude motions for very thin airfoils, i.e.,
cases where linear theory is valid. This provides a test of the numerical
schemes against known analytical solutions. In figure 6 we compare the lift
and leading-edge moment coefficients obtained from analytical solutions of
the linear potential equation to numerical solutions of. the linear (y = -1)
low-frequency potential equation and the Euler equations. The low-frequency
approximation begins to deviate (especially the phase angle) from the other
solutions as the reduced frequency exceeds 0(0.1). This result is, of course,
anticipated from the development of the approximation. The numerical solu-
tions of the Euler equations provide reasonable agreement with the analyti-
cal solutions throughout the entire frequency range investigated. > •

.' - • ' ' f.-

In order to investigate the nonlinear effects, we consider 'a 7.5% thick
parabolic-arc airfoil for various Mach numbers between 0.8 and 0^875 (fig.
7). The'reduced frequency is 0.05 and the amplitude of oscillation is ±1°.
Shown for comparison are the analytical results from linear theory and the
numerical results for thin airfoils. Solutions are given in terms of the
real and Imaginary components of the midchord moment and are compared as
functions of Mach number. Note that linear theory predicts minor dependence
on Mach number. However, the-thicker airfoil shows a drastic change in both
real and imaginary parts of the midchord moment as the center of pressure
passes through midchord with the development of a shock wave on the airfoil.
The change in sign of the midchord moment near Mach number 0.86 agrees with
experimental results (ref. 18) which show that this airfoil, oscillating
about midchord, exhibits an oscillatory instability (one degree of freedom
flutter) from Mach numbers' of approximately 0.87 to OV89.

The difference in the imaginary part of the pitching-moment coeffi-
cient due to angle of attack "a, ImjC^ T, determined from the low-frequency
and Euler numerical solutions (fig. 7) has not been completely resolved, but
it is probably due to the breakdown of small-disturbance theory for strong
shocks, which was anticipated in section I. That is, for large shock Mach
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numbers, the small-disturbance shock jumps become considerably stronger than the
Rankine-Hugoniot jumps. This moves the shock and center of pressure aft, and
thereby increases | CjH an(j |r | for the small-disturbance results relative
to the Euler results. Small changes in shock strength (and, hence, shock
location) can have a large effect ~on lift and pitching-moment coefficients C^
and Cjj,. This is especially true for a parabolic-arc airfoil, for which the
flow expands rapidly streamwise up to the shock point. The unsteady effects
in the small-disturbance solutions are also more amplitude dependent, hence,
more nonlinear than those in the Euler solutions. At M^, = 0.85, results
were computed (fig. 7) for oscillation amplitudes of |a | = 0.1°, 0.5°, 1.0°,'
Considerable amplitude dependence is apparent for ImrCjjj J in the low-
frequency calculations. On the other hand, Euler solutions were nearly inde-
pendent of amplitude. (Therefore only one value is shown.) Nonlinear unsteady
effects would be expected to occur at smaller amplitudes for lower reduced fre-
quencies (ref. 8). ' '

For the small-disturbance potential calculations, a uniform chordwise
mesh spacing of five percent chord was maintained on the airfoil surface.
For the calculations using the Euler equations, the grid spacing near mid-
chord was five percent chord, but additional points were grouped near leading
and trailing edges for a total of 25 grid spaces on the airfoil surface (as
opposed to 20 for the potential calculations). In all the calculations air-
foil slopes were applied on the mean surface.

Results for a Helicopter Blade Element

A small-disturbance equation governing the subsonic and transonic flow
field resulting from the motion of a helicopter rotor blade in forward flight
was derived in reference 19. The (two-dimensional) equivalent of that equa-
tion for a blade element has the same form as equation (11). with

S = M2 (1 + u cos t) e/62/302. .

= [l - M2 (1 + y cos t)2l/62/3 (15)

vc = s3 - (y + DM (1 + y cos t)"*,

Here <fi = disturbance velocity potential and is scaled by c62'^U00; x and
y are the chord and vertical coordinates fixed with respect to the rotor and
are scaled by c and c/61'3, respectively; t is scaled by l/u, where u •
is the rotor rotational.jvelocity in radians/sec; the free-stream velocity and
Mach number are U (1 + u cos t) and Moo(l + y cos t), respectively, where y,
the advance ratio, is the ratio of the rotor forward flight to rotational
velocity. The exponent n varies with MOO as previously discussed. In
equation (15) e . is equal to the inverse of the blade aspect ratio and is,
essentially, a reduced frequency (see ref̂ ; 19, P2- 20-21). For an airfoil
section given in unsealed coordinates! by y = 6f (x) , the airfoil boundary
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condition applied on the mean surface is <ky = (1 + v cos t)f' (x)/(Mi/
4(l *+

V cos t)1/4) (C* scaling used). The pressure coefficient is given by
Cp = -262/3<J>x/-(l + y cos t). : ,. ' ...

For an example we solve equation (15)-for the flow field about an NACA
0010 airfoil with a free-stream Mach number and angle of. attack given by , ,
0.61 (1 + 0.4 cos t) and 2°(1 - cos. t), i.e., M^, = 0.61 and u = 0.4. Here;
t is the azimuth angle on the rotor, disc. The reduced frequency, e, is 6.1.
Surface pressure coefficients at selected times; during the motion are com-. ., ,
pared with quasi-steady results in figure 8. At t = -180° the angle of .
attack has a maximum (4.0°) and the free-stream Mach number a minimum (0.366).
Over the region -180° <t< -65°, the Cp, Cj,, and Cm phase lags are all .
small as, expected. The flow first becomes supercritical at; about t f -65°..
Here the Cp phase lags begin to increase considerably, as shown by the :.
increasingly large differences between the unsteady and quasi-steady pres-
sure coefficients. This is also apparent, more so for center of pressure,
xp, than for C&, in figure 9. At 't = 0 the angle of attack has a minimum
(0°) and the free-stream Mach number a maximum (0.854). As the Mach number
decreases and the angle of attack increases, the flow continues to expand 'in
the upper surface supersonic region, as shown in figures 8(c), 8(d), and (8(e).
However, the shock wave moves forward and decreases the lift and center of pres-
sure. The center of pressure actually decreases past the quarter chord point
to reach a minimum of xp = 0.2 at t = 56° (see fig. 9). The surface pres-
sures for t = 56° are shown in figure 8(e), As t increases further, the
shock continues to move forward into the supersonic region. The center of
pressure moves aft and reaches the vicinity of the quarter chord at t = 68°,
which corresponds to the disappearance of the supersonic flow region. A
similar shift in Xp was reported in reference 20 for a nonlifting, three- •
dimensional rotor with a parabolic-arc section.

Computational Efficiency

Although our applications of the two numerical schemes are at present
quite .limited, we may draw some preliminary conclusions concerning their
applicability and limitation.

First we consider the numerical effort per time step or the machine
time required to advance the numerical solution one time step. With an
explicit scheme applied to the Euler equations as reference, table 1 presents
a comparison of the two methods considered herein. The extra work for the
implicit method comes from the block tridiagonal matrix inversion. The
reduced effort of the low-frequency potential equation is derived basically
from the fact that one (small-disturbance) equation isj solved instead of
four. The machine storage requirement for the potential equation will also
be one-fourth that of the Euler equations.

The time step limitation of the implicit method is basically accuracy
dependent, while that of the explicit method is generally numerical-stability
dependent. The semi-implicit scheme for the potential equation has a numeri-
cal-stability time step limit of 2 to 20 times (depending on the stagnation
region in the flow field, see ref. 13) that of an explicit method. The time
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step limitations, combined with the numerical effort per time step (Table I),
imply that the explicit method for the Euler.'. equations will achieve best over-
all numerical efficiency for high reduced frequencies, while an implicit
method will achieve best overall efficiency for low reduced frequencies. The
"cross-over" frequency based on a uniform grid spacing and Mach number near _:
unity is. estimated to be k = a)c/2Uco * 0.2. For the low-frequency calcula-
tions, the semi-implicit method for the potential equation will have superior
numerical efficiency except for very low reduced frequencies k = 0(0.001),
where the implicit method for the Euler equation will once again become most
efficient.- This implies!that.an implicit method (in place, of;the .semi-implicit
method) should be used to solve the low-frequency equation for very-low reduced
frequencies.

TABLE I

Equations (Numerical Scheme) Numerical Effort Per Time.Step

Euler (explicit) : ' .1 -..-,- . . '< K
*

Euler (implicit) A

Low-frequency, small-disturbance, potential _ .
(semi-implicit) .

. CONCLUDING REMARKS .

Two numerical algorithms have been used to compute unsteady transonic
flows about airfoils. Each scheme was developed for its anticipated high
numerical efficiency when applied to low-frequency motions. For such motions
previously developed (explicit) numerical schemes have a severe time-step
limitation that is based oh numerical stability rather than numerical accura-.
cy. The implicit method applied to the Eiile'r equations provides satisfactory
results over a wide frequency range and achieves considerably better (rela-
tive to an explicit scheme) numerical efficiency for low reduced frequencies..
The semi-implicit method applied to the small-disturbance, low-frequency
potential equation results in an order of magnitude further increase in
efficiency and is recommended for application when the assumptions used in
developing the equation are fulfilled, i^e., (1) small disturbances and "(2)
low reduced frequencies. Based on our present calculations, these restric-
tions imply reduced frequencies less than one-tenth (k = u>c/2Uoo•"< 0.1) and
shock Mach numbers less than 1.3.

The semi-implicit, small-disturbance approach was applied to the case of
an NACA 0010 airfoil simulating the motion of a helicopter rotor'in forward
flight. The most interesting result here was the forward overshoot in the
center of pressure, which occurred as the airfoil decelerated. This was
caused by the forward motion of the shock wave just before the flow became
subcritical.
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Figure 1.- Unsteady motions for comparison of numerical and analytical
results.
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CALCULATION OF INVISCID SHEAR FLOW USING A RELAXATION METHOD

FOR THE EULER EQUATIONS.

By Joseph L. Steger and Harvard Lomax

NASA Ames Research Center

SUMMARY

A fast block relaxation method is developed for the subsonic two-dimensional
Euler equations. The procedure is applied to the problem of computing inviscid
flow about a thin airfoil in a moderately nonuniform stream (shear flow). It
is demonstrated that the technique of overlapping grid regions can be used to
improve the convergence rate of block relaxation methods. Solutions and pos-
sible extensions are discussed.

I INTRODUCTION

In aerodynamic applications there are numerous problems in which large
portions of the flow field can be characterized as inviscid but rotational.
This can be true, for example, for flow behind a propeller or for the vortex
flow behind a highly loaded wing. This type of flow is described by the Euler
equations, and an accurate and fast numerical procedure for the solution of
these equations is needed for subsonic flow regions.

In this paper, a block relaxation method for the subsonic steady Euler
equations is developed. The procedure uses the equations in nonconservative
form and, for the formulation used here, the sonic line is a singularity. In
sections II and III the Euler equations are formulated in a successive approxi-
mation scheme where, at each iteration, a^Poisson equation (or a set of nonhomo-
geneous Cauchy-Riemann-like equations) is solved. A block relaxation procedure
for the Poisson equation is reported in section IV. Results for a thin lifting
airfoil in moderately nonuniform flow are given in section V. Extensions of
the present formulation to transonic flows and three dimensions are suggested
in section VI. . . •

• II FORMULATION

The steady Euler equations in two dimensions can be written in the non-
conservative form for Cartesian coordinates as

A3xq + B3yq = 0 (1)
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0

(2)

where u and v are the x and y velocity components, c2 = YP/P» and p and p
are the state variables of fluid pressure and fluid density. The nonlinear
coefficient matrix A has eigenvalues u, u, u+c, and u-c, and B has eigen-
values of v, v, v+c, and v-c; consequently, A is nonsingular if u?*0 and u^c,
while B is nonsingular if v^O and v^c. Therefore, in the absence, of "sonic1.1

points '(i-e., u=c) or "stagnation" points (u=0), equation (1) may be;, rewritten. -
as -''-'- "' • ' ' • '"••:> •••-•• . - • • ' . . . • . ; . , . •

= 0 (3)

An alternate but untried formulation, valid at u=c points, will be suggested
in a later section. The matrix A-1B is rewritten as the difference between
a constant reference matrix and a perturbation matrix

(A~1B)r - P (A)

such that P contains the nonlinear terms. Applying equation (4) to equa-
tion (3) results in

3xq + (A-
1B)r3yiq = P8yq (5)

and solution of equation (5) can be obtained by successive approximation

(n+1)
(P3yq)

(n) n = 0, 1, 2, 3, (6)

if -»• q(n) for large n.

Equation (6) is in a conventional form for numerical solution, and indeed,
the solution process described by equation (6) may be termed a simple relaxa-
tion algorithm once finite difference approximations are introduced. The
difficulties in this process are associated with: (1) the iterative convergence
of the solution procedure, (2) the convergence of the difference equations
solution to the differential equation solution, and (3) the efficiency with
which the solution is obtained. There are numerous ways to proceed. In the
following method, in order to keep simple boundary conditions and to have P
small, it is assumed that the airfoil is thin although the upstream flow is
n o t necessarily uniform. ; . . .
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The matrix A^B has as its elements

-uv<J>. c2<J> ^

0

pvc2<)>

pv<j> -puiji

u-1v

-puc2<{>

(up) '1

0

0

0

-U .

(7)

where . ' < J > is'defined by

(c2,- u2)"1 .(8) .,

If; the'-coordinate system is closely aligned with the flow streamlines as is .-,.,
ofteh: the case in the study of thin airfoils, v should be small-compared .to
u. In certain other problems the same effect might be achieved by coordinate, ,
transformations. The terms of A~1B. not containing v could also be refer-
enced to a linear solution or to the upstream flow profiles. Here, to illus-
trate the method, these terms are perturbed about an upstream constant value
denoted by subscript °°. That is

with

A-IB;

o

0

0

0

- p
00 ~

(9)

(c24>)c

-(pu.40.

0

•p);1
0

0

0

0

0

0_

(10)

and

(up)'1 - (up)"1

pvc2<J> - puc2<|>

u

0

0

0

-1,

(ID

Henceforth, P3 q> '., is denoted by ,t and equation (6) is 'rewritten as

(12)

At any iteration level the system, equation (12), can be reduced to .a
coupled set of two equations for p and v, that is
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(9 v+ (up^atO = f2 <13a>X oo y f.

= f3
(n) (13b)

After these equations are solved, u and p are found by integrating

= fi(n) 'aim)

O^ - (P̂ V̂)̂  = f^

At any successive approximation level, equations (13) are essentially the
nonhomogeneous Cauchy-Riemann equations (or the wave equations, 4> < 0) with
Prandtl-Glauert transformation and source terms. If, in fact, the equations
are linearized so that f = 0, then comparing equation (13b) with equation (14a)
shows that P̂ û u = - p, and as expected, equations (13) are simply equivalent
to the classical Prandtl-Glauert equations

(15)
3xu + (1 - Mf^-^yV =0

Equations (13) can also be cast as a Poisson equation ($ > 0) or a wave
equation (<f> < 0) in terms of either v or p by appropriate differentiation,
scaling, and addition. Elimination of p gives

\o v T- ̂ e,̂ >—0-,r,T̂ J ~ v-v*-*) Vfoô oo' "v"" 9A. A *** w y y ** £- j 3

For boundary conditions, v is assumed known at infinity and along the airfoil
it is given by

/j \
(17)

Depending on the incoming flow, for a thin airfoil u may often be taken as
a 'constant on the body, u = u(x s -», y =0). For lifting cases, the Kutta
condition must also be imposed. The procedure used here consists of adjusting
the value of v just prior to the leading edge so that the streamline that
stagnates the airfoil is the one that gives an equal trailing edge pressure on
the upper and lower surface (see fig. 1). This procedure is equivalent to
adjusting the value of the stream function tyg, which is constant on the body,
until the trailing edge pressures are matched. Adjusting v as described
above also permits the proper leading edge singularity to form for̂ a lifting
profile. If equation (16) is linearized to the Laplace equation, f = 0, the
maximum and minimum values of v can occur only on the boundaries and the
correct leading edge behavior is excluded unless it is specified as part of
the boundary conditions.
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III SOLUTION PROCEDURE

••••''. A solution procedure for equation (12) could now proceed as follows:
begin with f(̂ ) = Q and numerically solve equations (13) for v'1' and .
followed by numerical integration of u'1' and p*1'. Use these updated values
to evaluate f'*' and successively repeat this solution process until conver-
gence is obtained — although in certain cases this procedure can also diverge.

The major computational part of this successive approximation scheme is
the solution of the linear elliptic problem — equations (13) or the Poisson
equation. A fast direct solver for numerical solution of equations (13) has
been developed by Lomax and Martin (ref.' 1). This procedure has been extended
to transonic flows, see Martin and Lomax (ref. 2), and Martin (ref. 3), but
not to lifting airfoils. Even more extensively developed, from the early work
of Buzbee, Gplub, and Nielson (ref. 4), Hockney (ref. 5), and Buneman (ref. 6),
are the fast direct algorithms for the Poisson equation. All of the fast
direct solvers rely upon the orderliness of the finite difference operators
and are limited in the type of grid spacing permitted. Furthermore, internal
boundary conditions (such as needed for a lifting profile) require special pro-
cedures (see, for example, refs. 7 and 8). For these reasons it was decided
to solve equation (16), not by a direct solver, but by a block relaxation
technique where the grid is divided into layers and a direct solver is used to
solve the Poisson equation over each layer. This is a flexible procedure,
although it is much less efficient than the use of fast direct solvers for
problems where direct solvers are applicable.

In differencing equation"(16), centered three-point second-order accurate
difference operators are used to approximate ail x and y derivatives. Since
variable grid spacing is employed, three-point approximations to second deriva-
tives are formally first-order accurate; however, the grid variation is kept
sufficiently gradual so that the actual accuracy is effectively "second order."
Once v is.updated from the Poisson equation, p, u, and p are integrated
from left to right using equations (13b) and (14) and second-order differencing
schemes.

With some variations, the solution procedure from (n) to (n-4-1) is to solve
the Poisson equation for v with given values of v on the boundaries. To
impose the Kutta condition, a single value of v̂ ĵ̂ ,) is specified at the
mesh point just prior to the nose (a very fine x grid spacing is used there).
If the trailing edge pressures fail to match, v ĉ is adjusted as a function- ••
of Ap and previous changes of v^c- As this portion of the solution process
is a linear problem, solutions at two difference values of Vfcc can always be
extrapolated to find the v^c that gives a zero Ap at^the trailing edge.
Once the linear problem is solved, _the nonlinear terms, f(n+1), are updated
and the process is repeated until f(n+1) = f(n). In relaxation procedures it
is often advantageous to update the nonlinear terms and the Kutta condition at
the same time the iterative process for the linear terms takes place. For the
present block relaxation procedure this has'not been an appropriate technique.
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IV SOLUTION OF THE POISSON EQUATION

-A block relaxation method was used to solve the Poisson equation in an
effort'to combine"some'of the good properties.of both,direct and'iterative
methods. A description-of the direct method is included for completeness. It
follows-an-approach outlined by Buzbee, Golub, and Nielson. .(ref. 4) .and.. Dorr
'(ref; 9). • • -i • . • • : . ' . • : . ' : . - . " , . . ' \; •"!<

Consider the Poisson equation defined on a rectangle

; . . 9xxv + S?yyv = g (18)

with Dirichlet conditions, and let the derivatives be approximated by three-
point centered difference schemes. We require that the space inrthe y
direction be covered by K equispaced'rows, but allow the grid in•the :x

1 direction to consist of J- lines not .necessarily equispaced. See figure 2
for, the case when K = 7. The difference equations corresponding to equa-
tion (18) form a linear system of equations '' '

. Av = f (19a)

and with the notation given in figure 2, these can be expressed in block
matrix-vector form

*;£ where / *-.:

Ll

a2I

trid

a3I

c2I

TJ-l

-23

T , c T- .J-l J-l

J»-*.

I

• -

Jj

=
•

-i.

(19b)

":• WP"] ?:.TJ ls,°%̂
f. contains elements of g , and boundary values
• J '• •'. • . • - - . ' • ••. • J.K .:. i . ' • - . . ' • ' •
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\

and

j (x - x )<
J J *

There are as many block matrices Tj as there are columns of mesh points and
each TJ is a K by K tridiagonal matrix. The first remark to be made is
that all the Tj have identical eigenvectors. In fact if the elements of the
matrix X are

v-l sin (20)

the columns of X are the eigenvectors of T j . It follows that X-1TjX is
a diagonal matrix^havlng elements which are eigenvalues "of T j , that is

that X~
Inverse.

-a. - c. -

* =

sin m .1, 2, K. , The second remark is

X, or XX » I; that is, the matrix of eigenvectors X is its own

The solution of equation (19) can be computed in the following way.
Multiply the equations by the block diagonal matrix

Y = (21)

noting that Y-1

The solution for
=_JT. Equation (19) then becomes
v is given by

YAv = Yf or YAYYv = Yf.

v = Y[YAY]~!Yf (22)

The value.of such a solution lies in the fact that each of the three ogerationt
Implied in equation (22) is computationally simple. The expression Yf is
computed by a multiplication of each fj vector_J>y X. The results can be
stored back in fj. The next operation, [YAY]""1 ,̂ is carried out by K solu-
tions of a scalar tridiagonal system — one for each row in the layer. The
results can again be stored back in fj. Finally, J multiplications by X
results in the complete solution.

The above process^involves extensive matrix multiplications, namely the
dual calculation of Xfj, j = 1,2, ..., J. Since the eigenvector matrix X
is dense, this would ordinarily require K2 multiplications and K(K - 1)
additions for each matrix multiplication. It is apparent from an inspection
of equation (20), however, that this matrix operation is identical to a sine
transform. This means that the symmetry in rows and columns of X can be



used to greatly reduce the arithmetic required. More precisely, the matrix X
can be factored and replaced by the product of much sparser matrices. Figure 3
gives an example when K '= 7. (The simple matrix of 1's is identical to
Hockney's (ref. 5) folding matrix.) Notice that in this case the arithmetic
operations are cut from 49 multiplies and 42 adds to 11 multiplies and 18 adds.
Other efficient cases occur when the order of X is 2m - 1, although the
factoring concept is not restricted to this order. Cooley, Lewis, and Welch
(ref. 10) have shown how to. efficiently implement the fast Fourier transform
in the factorization of X and this approach is preferred when the order of
X is' large. • , .'

.' • V • T

As mentioned in section III, the Poisson equation is solved in blocks or
layers each one of which is inverted directly by a fast solver. In computing
flows about airfoils, there can be advantages to this layer approach. For
example, one has the ability to decrease the grid spacing from one layer to
the' next if the flow gradients warrant better resolution. Furthermore, the
use of 'special difference operators near the airfoil can be restricted to
relatively narrow layers and, if need.be, the transforming eigenvectors can be
found numerically. For "thin layers the dimension of the eigenvector transform
matrix is" small so it is not even essential that this matrix .or its inverse
be factorable. .

In solving a given layer it is necessary 'to use points 'from adjacent
layers as boundary data. The updating of the points within a layer is carried
out using a weighting parameter to- provide the acceleration customarily asso-
ciated with overrelaxation. However, there is another way to improve the
convergence rate — a technique we refer to as overlap. The basic idea is to
allow an intersection of layers so that the boundary condition for one layer
lies several lines deep within an adjacent layer. In this way a band of
points is common to both.

The advantage of overlapping grid regions was found in analysis of the
simple equation

ByyU = f(y) •: ' - '-. ,-. (23)

with specified end points and -use of the three-point-centered difference
operator. Let a finite difference grid of K interior points be partitioned
.into two grids of R interior points and S interior points such that
K .•£ R+ S < 2K. The difference equations are inverted directly ,: .using as
boundary conditions the latest updated values of u in the adjacent grid
until u£n+1' •* u£n< . The spectral radius of this two- layer relaxation scheme
is given by

x . (K- RHK- s) ;
ASR (S U ;

(see the appendix for \the derivation and possible extension of this result)
If, for example, K = 28 and R and S are each "taken as 14 — a block Gauss-
Seidel scheme— then ŜR.~ 0.871. But if R arid S are each taken as; 15,
while K remains ' equal to 28, there is a slight overlap. and ĝ̂ '=; 0.66.
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Since (0.871)3 = 0.66, the effect of overlap In this simple case results in a
3 to 1 improvement in the number of iterations needed to converge.

.The,block overrelaxation method in two dimensions is also considerably
improved .by overlapping the blocks. For example, on a square grid of 47x47
the y direction can be split into three layers each of which has 15 interior
points from 1 S j ̂  47: 1 £ k £ 17, 16 £ k £ 32, and 31 S k S 47. However, a
better'procedure is to use four of the 15-point layers in overlap (each for
1 < j S 47) as 1 < k < 17, 11 < k < 27, 21 < k < 37, and 31 < k < 47. In
figure 4 a comparison of these methods is given where each technique begins
from a bad guess and is run until the solution is less than 10~̂  of its exact
value. At optimum conditions the overlap method requires about half as many
iterations as the three-strip successive block overrelaxation method, and
although it.requires 4/3 more work, the overall improvement is substantial.
The efficiency of the overlap method is also less sensitive to the choice of
an optimum relaxation parameter. (In this respect, both methods are much
superior to the successive line overrelaxation (SLOR) scheme which is also
shown i n figure 4 . ) ~ - ' " • . .

There is generally a clear advantage to overlapping the grids in the-
block relaxation procedure. This advantage must be weighed against the cost
of doing larger block inversions under the constraint that the number of
points in the layer should correspond to the most efficient eigenvector trans-
form number. More complicated problems have to be analyzed, but numerical
experimentation, in general, shows that the block overlap method maintains its
advantage for multiple strips and for overrelaxation factors. A good guess
hastens convergence, and doubling of the grid spacing from one region to the
next is not detrimental and can be advantageous. Finally, if special algo-
rithms are isolated in a region covering the boundary, overlapping and (some-
times) more frequent calls to adjacent strips can improve overall computer
time.

V RESULTS

All results for a lifting airfoil have been obtained oh a grid of
JxK = 59*90 where the grid spacing in x is variable but changes' gradually.
The grid'spacing in y is uniform over layers of 17 points (15 interior
points) and consists of 6 main layers for an accumulation of 90 points. For
adjacent layers above and below the body Ay = 0.03, the intermediate strips,
have spacing of 0.09, and the final outermost layers have grid spacing of•
0.27. The grids are overlapped and the airfoil is contained midway between
the innermost grids. Overlapping and connecting the innermost grids above
and .'below the airfoil is another 15-polnt layer which extends from x = "-<*>"
up to the nose of the airfoil and from beyond the tail of the airfoil to
x = "OB." For the entire grid, "infinity" conditions with v = 0 occur at
y+co = ±5.54 and *$„ = -1.74, 2.74 where a chord length is unity.

A linear solution for a 6 percent thick biconvex airfoil at 3° angle of
attack and M^ = 0.5 is compared to the exact solution in figure 5 to indi-
cate how well the procedure can handle the leading edge singularity. While
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the results are reasonably good there is an inconsistency, not unexpected,
that at y locations in the plane of the airfoil-the running integrations for
u, p, and p ,do not return exactly to free-stream values at x^. At zero
angle-of attack the leading-edge square-root singularity is not present and
downstream values match upstream values to at least 5 significant figures.

For the shear flow calculations, all of the upstream profiles have'the
form shown in figure 6 where the parameter 6 can be positive or negative and '
represents half of the percentage defect. The spacing of the vectors also
indicates the actual inner grid spacing, which is tripled beyond y = ±0.495.
The grid overlap is also indicated by flagging of vectors that are common to
the intermediate layer. Two Cp distributions for an 8 percent thick para-
bolic arc airfoil at 2° angle of attack and M^ = 0.5 are shown in figure 7
for 6 = ±0.1. Here Cp uses reference infinity values at x = -00, y = +°»,
that is, the undisturbed flow. Also, a linearized tangency condition is used,
v = u(-°°,0)tan 6 where tan 6 is the slope along the body, surface. In these,,
calculations only the u profile is perturbed; v, p, and p are ail at uni-
form M^ conditions so the upstream stagnation enthalpy is variable. In
figure 8, C^ versus a data are presented for the same airfoil and flow con-
ditions. The calculations show that a loss of lift occurs for a defect in u
and that gradients in pressure are reduced. The steepened pressure gradients
that correspond to the negative defect (i.e., accelerated) flow are likely to
intensify separation effects so that the increased lift due to the higher
kinetic energy may not be fully realized.

Flows with large defects in the incoming pr£file will not converge—:
after perhaps 4 or 5 successive corrections of f'n+1', the corrections begin
to grow. This situation is aggravated at an increasing angle of attack and
higher Mach number. However, all of the computations use reference values of
[A"1]*]̂  at x = -», y = °°. Perturbation of A-1B about the incoming pro-
files, or some midpoint of the profile, should extend the range of convergence.

Computation times for the solutions shown in figure 7 are approximately
17 seconds for the case 6 = 0.1 and 19 seconds for the case 6 = -0.1.
Times were measured on a Control Data Corp. 7600 computer and they include all
initialization and output. In both cases the solutions begin from parallel
flow conditions and use a 59X90 grid. The same fine grid in x is used,
throughout, and reduced times would result if the grid spacing in x were
doubled in the outer strips away from the body.

The solution procedure allows arbitrary incoming profiles to be specified,
and figure 9 shows calculations with incoming profiles in both variables u
and p for flow over a parabolic arc airfoil at . a = 0° and M^ = 0.4. In
these cases u is accelerated and p is defective (a higher temperature than
free stream) and these conditions lead to the expanded pressure distributions
shown.

All of the preceding calculations used the linearized tangency condition
that is typically used with thin airfoil theory. This is not necessarily con-
sistent with using the full nonlinear Euler equations in the outer flow, so
calculations for the lifting airfoil case were repeated with the tangency
condition
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v(x,±0) = u(x,±0)tari 6+ , 0 < x < 1 (25)

Consequently, tangency is still applied along the y = 0 plane, which
neglects displacement effects but is otherwise precise. Changing the boun- '
dary conditions in, this manner leads to the more expanded solutions indicated
in figures'10 and 11, although peak leading edge pressure gradients are
reduced. "At higher angles of attack the amount of change due to altering the
tangency condition would seem to justify a more precise boundary condition fit.

VI POSSIBLE EXTENSIONS TO TRANSONIC AND THREE-DIMENSIONAL FLOWS

The previous formulation is excluded from points u = c because the
equations were multiplied by A""1. If instead, equation (!) is multiplied
through by the nonsingular matrix (unless u = 0) '

H =

the following equations are obtained:

-u.

0 1

(26)

.= -v3yv

> - ':

(c2 - u2)3xp - .puc
23yv = v(u8yp -/pc

23yu)
(27)

and

u3xu = -v3yu -

u3xp = - - p3xu - p3yv
(28)

For small v, equations (27) are similar to the transonic small perturbation
equations.

If equations (27) are further perturbed about °° (or sonic conditions),'"]
there results • - - . - « • .

(29)
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or if vyx 1 vxy

3X[(1 - M
2)3xp] 3yf a*i (30)

where 3yp *. -(pu3xv + pv3yv) -might be used to supply a Neumann condition if
v is specified on the body. The above formulation has not been tried, but it
is conjectured that a stable iteration scheme could be developed based on
schemes developed for the transonic small-perturbation equations (for example,
Murman and Cole (ref. 11) and Human (ref. 12), Martin and Lomax (ref. 2)).. ;;
If shock waves are not fit but captured, an alternate conservative set of
equations would have to be substituted in these regions.

The extension of the original formulation of the equations to three
dimensions is straightforward. Let qfc = (u,v,w,p,p) and.begin with

M- 0
I

(31)

with

— • '•'vu~

,0

0
1

0

0

;. •- • , .

.'• , pv*

-vu<|

0

0

pvV

-1vu

~PUC2(J)

0

0

0

vu'1

0

-vu-1*"

yp'1*

(pu)'1

0

-uv*_

(32)

and

wu"1

0

0

0

0

pw<|>

-uw*

0

0

PWC2(J)

0 -pu<f>

0 c2<|)

wu"1 0

0 wu"1

1
t
\ 2

-wu~*$

wp'1*

0

(pu)'1

-wu*

(33)

Bringing derivatives whose coefficients contain v and w ' to the right-hand
side, and perturbing the remaining terms about Infinity values results in the
reduced system \

3xv + (pu);
13yp = g3

3xw (34)

3xp - (puc
2<j))00(3yv + 3zw) = g5
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Once values of v, w, and p are updated, p and u follow from the integrations

3XP - §! + (pu(f)aoOyV + 3zw)

(35)
3xu = g2 - : (c2*).(3yv + 3zw)

f • • ',• •

^ vxy ° vyx an<* wzx ° wxz» equations (34) can be replaced by a Polsson
equation in p. and the integrations of 3xv and 3xw.

CONCLUDING REMARKS

The block-overlap relaxation.procedure that has been described here is
efficient for certain problems, but it is limited to subsonic flows. Further
developments in efficiency and generality are expected, but for immediate
applications the procedure could be coupled with conventional time-dependent
procedures. These more general methods could be used, for example, in regions
of sonic flow and shock waves and the relaxation procedures could be used
elsewhere with, perhaps, an overlapping of the two methods in compatible
regions. A most useful extension of the present method will be In the calcu-
lation of nonunlform three-dimensional flows which are so prevalent in many
V-STOL configurations.
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APPENDIX

The improvement in iterative convergence due to overlapping 'the grids' can-1

be analyzed by considering the one-dimensional problem

- av = f , a > 0 (A-l)

As indicated' in section IV, the difference equations corresponding to equa-
tion (A-l) are equivalent to those of equation (18) in the transform variable
—:that is, for purposes of analysis the difference equations are considered to
be ordered and transformed by the eigenvectors of the tridiagonal blocks
generated by differencing of 3xxV.'

For simplicity, only two strips will be considered arid the relaxation
parameter will be taken as 1. The .Iteration procedure is given .in two steps

(i)

b c

a b'.-.c; •

. >

. " * *

- a ,br c
a b

A

^ -

. ' ;• . t

i

i

*vi
•.
.
'

j < t
\ vs
1 V*! vs+i

VM

. [ . . : V 1
I

• - . - : . . ' - I - - - " i. ' • i"•' i
• • • • " • . - • ' • . ' > ' !

o -c ' ;.
!

L . . " : J

r • 'i *
v?].,.

•

.^ •

.
vs

vn 1

'

vn 1- MJ

"'•1
•

fs
0

_ ; _

(A-2)

and

(ii)

i

i

a b c

a b c

a b

vn+l

vn+l. :
Mfl-R

.

vMf*

=

1

1

• . • • ' ' • ' • • - • - a

, , • • '.$

0

r. i
vt
.

VM-R
• ^ .

Mfl-R

•

;
*

|_ VM

+:'

^

T

0

o !
i

'f .* ' .; • ''/ A ** \fMtl-R" (A-3)
1 -

j
i

£M j
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An intermediate result for the iteration matrix is obtained by performing
the inversions in equations (A-2),and (A-3) and eliminating v*.

1

(A-4)

where

(A-5)

(R)
trid(a, b, c) (A-6)

and gj is the first unit vector of order R (i.e., the first column of the
order R Identity matrix). Likewise

>2» *•• » 'S* "' (A-7)

With this notation defined, the multiplications in equation (A-4) yield

(A-8)

with B a matrix of zeroes save for column S+l,
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B

For m Iterations

S + R + 1 - M (A-9)

(A-10)

and the necessary and sufficient condition (if ||B|| is bounded) for itera-
tive convergence is that

If equation (A-l) is differenced by the three-point centered operator for
a uniform grid, then a=c=h~2 = (Ay)~2 and b = -2h~2 - a. The inverse ele-
ments of a constant tridiagonal matrix are known̂ analytically (see, e.g". , , :

eq. (4.14) in ref. 13) and elements of r\ and L. are given as '"•: • "

./Dr JLy ^ } • • • , } Xx

r = -h2(-h2)R"SD /D_ , s - 1, 2 S
8 • 8—i O

(A-ll)

where

1 = 2, 3, ..-., D0 5 1 , Dx = b , (A-12)

and D£ is the determinant of

For this problem the determinants are increasing in magnitude and
l^rl* l?sl < ^« ^e largest values of nr and ?8 can occur if 0=0 (since
a > 0) - and this worst case can occur, for example, If the boundary condition
in x is a condition of periodicity. Taking 0=6, the relations for nr
and £8 can be simplified to

826



Tir - j^ ' r = 1, 2, ... , R (

Cs = s~TT s = 1, 2, ... , S (A-14)

Consequently, the term Tln^N-R (which is the spectral radius in this the worst
case) -is .

and the greater (R +. S) is than M (i.e., the more the overlap), the fewer
iterations are needed to drive (n-)11""1 "*" °*

If overrelaxation parameters or more than two layers are used, it is
necessary to find the eigenvalues of a tridiagonal matrix in order to deter-
mine the spectral radius of the Iteration matrix. The eigenvalues will have
to be found numerically; however, the order of the tridiagonal is only equal
to the number of layers. . • ,
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PROGRESS IN APPLICATION OF DIRECT ELLIPTIC SOLVERS

TO TRANSONIC FLOW COMPUTATIONS

By E. Dale Martin

NASA Ames Research Center

SUMMARY

Recent progress is described in the continuing development and extension
of a semi-direct iterative computational method for the rapid finite-difference
solution of transonic flow over airfoils. Additions and modifications to an
earlier formulation are shown to produce stability, and therefore iterative
convergence, of the iteration procedure based on use of an extended direct
elliptic solver for strongly supercritical flows, governed by mixed elliptic-
hyperbolic equations. An improved version of an extrapolation technique
introduced earlier is also described.

Preliminary results computed by the semi-direct method for pressure dis-
tributions on a biconvex airfoil agree with solutions computed using the
improved Murman-Cole line relaxation method. The preliminary time per itera-
tion for a 39X32 mesh on a Control Data 7600 computer is 0.040 sec, and a
strong transonic case required 23 iterations, or 0.92 sec. These results,
which are expected to be improved, indicate a significant potential for highly
efficient transonic flow computations.

INTRODUCTION

The continuing development of advanced computers is complemented by the
continuing development of advanced efficient computational techniques, which
multiply the power of the computers. Regardless of the computing power and
efficiency inherent in any computer, its ultimate potential in obtaining
solutions to complex problems can be realized only with use of the most effi-
cient computational methods.

The purpose of this paper is to describe recent progress in the continu-
ing development and extension of an iterative computational method for the
rapid finite-difference solution of transonic flow over airfoils. In the first
phase of this investigation, reference 1 introduced the basic iterative com-
putational method based on the use of a direct ellvp-kio solver. That semi-
direct iterative method did not converge for flows at more than slightly
supercritical conditions, so it was restricted to subsonic and slightly super-
critical flow. The present paper (a) shows that some additions and modifica-
tions provide more general stability of the iteration to allow convergence at
higher Mach numbers, (b) very briefly describes a research computer program
that is being used for numerical experiments to determine optimal values of
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some free parameters for most rapid convergence, and (c) presents some prelim-
inary results computed for strongly, supercritical flows.

The investigation is limited to two-dimensional, steady, inviscid, irro-
tational flow over simple thin symmetrical airfoil shapes in a uniform subsonic
free stream. The transonic small-disturbance equations, which are written in
terms of u,v velocity, components, are assumed to apply.

The basic idea in the method of reference 1 is to use a fast, direct,, .
linear elliptic solver to determine the solution at all points in the entire,
computation field simultaneously at each iteration in the treatment of the
nonlinear finite-difference equations governing the flow. As a result, changes
.ar.e felt immediately at all points in each succeeding iteration, so rapid con-
vergence is possible. The direct 'solver used in reference 1 was a "Cauchy-
Riemann solver" (ref. 2), based on Buneman's (ref. 3) recursive cyclic reduc-
tion, for the equations in terms of the.velocity components. The finite-
difference equations that are solved in this approach are equivalent, in the
"converged form," to those of Murman and Cole (ref. 4) with inclusion of the
"parabolic-point operator" (ref. 5) and the "shock-point operator" (ref. 6).
Therefore, even though an elliptic operator is solved at each iteration, the
appropriate type-dependent differencing (e.g., upstream differencing for hyper-
bolic points) is used where needed. At convergence, the elliptic character of
the left side of the equations is cancelled out at nonelliptic points by
appropriate terms on the right side. An additional feature of the method of'-
.reference 1 is an effective new approach to applying the Aitken/Shanks formula
(refs. 7 and 8) for accelerating the convergence of the iteration.

The developments in this paper show that the addition of certain terms to.
the finite-difference equations makes the iterations "time-like." Simplified
stability considerations then indicate that certain ranges of free parameters
multiplying the extra terms should provide stability, and therefore iterative
convergence, for transpnic flows including large supersonic regions. To
handle the inclusion of the additional terms, the Cauchy-Riemann solver of-
reference 2 has been extended (ref. 9), and the more general form is used for
all present computations. Additional free parameters are introduced by • '
"shifting and scaling" of terms in the equations and by inclusion of a relaxa-
tion factor. A more precise method of applying the Aitken/Shanks formula is
also introduced. ,

The main significance of the results, that are presented lies in the fact
that a direct elliptic solver is used successfully to obtain converged solu-
tions to strongly supercritical flows, governed by equations of mixe.d type
with significantly large embedded regions in which the equations are hyper-
bolic, and containing relatively strong shock waves. Although semi-direct
methods have been used previously (e.g., refs'. 10-12), reference 1 contained
the first such computation of a slightly supercritical flow, and now the '•'
present results extend the semi-direct method to strongly supercritical flows.

The present results are considered to be only preliminary.' A systematic
parametric study is in progress to determine the optimal values of all free
parameters for most rapid convergence, and the method is continually being
improved. .•'•'•-' :
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•EQUATIONS AND BOUNDARY CONDITIONS • • .

For present purposes consider only a symmetrical thin airfoil, with-the
Cartesian x- and y-axes respectively parallel and normal to the airfoil .
chord. Both x and y are normalized by the chord length c, and the y- ,
axis bisects the chord. Let U and V be the x- and y-components of
velocity normalized by the free-stream velocity qmi and let M^ be the free-
stream Mach number and y be the ratio of specific heats. Then-with the-
small perturbation velocities u and v defined by

U = 1 + TU , V = TV '(I)

where T is the small thickness ratio of the airfoil, the transonic small-
disturbance equations are - .

ux + vy = buk + a(u
2)x . (2a)

u - v = 0 (2b)
/ A . -

where.

a = (1/2)(Y + l)Tf(MJ ;' b = M2 (3)

and where . .

. . f(MJ ='o"(l) as M^-v 1 .

In what may be considered to be the classical formulation, f (Mo,) = fg = M
2,.

A study by Spreiter (ref. 13) recommended this form. More recently. Murmari
and Krupp (ref. 5; see also ref. 14) found that f(M.J = fMKl = M^/

2 gives
equally good results under Spreiter's criteria and also gives results that
compare well with numerical solutions to the full inviscid equations. Simi-
larity parameters incorporating these respective choices are ;

1 - M2 1 - M2

KS ' [(Y + l )M2 i ]2 /3 ' ^Kl =

(In later work, e.g., refs. 15 and 6, Krupp and Murman use f = fMVo. - - MlvZ

and 'the same similarity parameter KVI,-) Since the purpose- here is to

describe a method for solving equations (2), these differences are not dis-
. cussed further. In later discussion of results, an arbitrary choice is made
for fCM,,,,) as fg. Table 1 shows values of 1C for which computations are

later performed. The computed scaled solutions will be the same for a corre-
2/3spending KJQ̂ I numerically equal to (y + 1) Kg, also shown in table 1, but

these correspond to slightly different M^ and T.
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For the thin-airfoil problem, the outer boundary conditions are

u,v ->• 0 as x2 + y2 -»• °° (5)

and for a symmetrical thin airfoil specified as

yb(x) = ±T¥(X) (-.5 < x < .5) (6)

the condition at y = 0 for an airfoil at zero incidence is

v(x,±0) = ±dY(x)/dx (-.5 < x < .5)

=0 (|x| > .5) '

For a parabolic-arc biconvex airfoil,

Y(x) = .5 - 2x2 (-.5 < x < .5) (8)

The pressure coefficient in the small -disturbance theory, is C = -2m.

A number of free parameters are introduced by more general scaling and
shifting transformations than were used in reference 1. It is convenient to
also include a relaxation parameter v.j in the transformations. It will be
seen in a later section that both "Method 1" and "Method 2" can then employ
the relaxation parameter, whereas in reference 1, Method 2 did not include the
relaxation parameter.

The transformations are derived as follows. In a' straightforward itera-
tion procedure for equations (2) with a relaxation parameter Vj,' the solution
for u at iteration n ' could be written

un = (1 - VVl + V; C9)'

where u* is the solution ton

(Vy '

If now u* is obtained in terms of u and u from equation (9) and put

into equations (10) and if the following defined first step of the trans-
formation is used

u(x,y) = (l/VMx.,/) (11)
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one obtains the following equations to solve for u when u is known at
all x,y: " •. n-l ,

1-1'X
(12a)

(u ) - (v ) = (1 - v,)(u ) (12b)

One can see from these equations (if eq. (11) were put back into eq. (12)) -that
use of a relaxation factor v, ̂  1 is equivalent to a shifting from one side to

the other of a certain portion of the ux term in equation (lOa) and a certain
portion of the u term in equation (lOb). Noting that at convergence

u _, = u-, one can take as the equations to be solved (by either method to be

described in a later section):

v1b)Qx-.+ av
2(u2)x

U - V = (1 - V,)Uy x *• . 1 y

(13a)

(13b)

Of course, equations (13) and (11) reduce directly to equations (2), but the
forms of equations (12) and (13) will be useful in several ways. First, one may
introduce an arbitrary parameter b' to provide an arbitrary shifting and cor-
responding appropriate scaling. Rewrite equations (13) as

(14a)

(14b)

Vj(l - b. + b')u + v = Vjb'u + av2(u2)

U - V .• = (1 - Vi )U
V X v !•' V

Then with the definitions:

a = (1 - b + b')3/2 '

6 = (1 - b)1/2 = (1 -

3* = (1 - b)1/2

3 = (1 - b + b1)1/2 = 3/3

b = b1

+ b1

(15)

the transformation

u(x,y) = V j V Z g Q C X j y ) = v1 '1/23u(x,y)

v(x,y) = v(x,y)

y = V

(16a)

(16b)

(16c)
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produces from equations (14a) and (14b)

u + v- = bG + a(u2) (17a)
- Jt j -A. «•

u- - vx = (1 - v^ii- (17b)

One may note at this point that equations (14) (put in terms of u with
eq. (11)) could have been obtained directly from equations (2) by a simple
shifting in both equations (2a) and (2b) without going, through equations (9)
to (13) , but the motivation for the fl - V-̂ \ on the right side of equation

(14b) is provided by this procedure, and the resulting equations (17) are a
combination of arbitrary shifting in equation (17a) , use of an arbitrary
relaxation factor v^, and appropriate scaling.

Special cases of equations (17) are:
(a) vj = 1 and b1 = b = b = M£: Equations_(17) are then the same as equa-

tions (2), without transformation, .and a = a;
(b) vi = 1 and b1 = b = 0: Equations (15) and (16) then give the Prandtl-

Glauert transformation, and equations (17) are the P-G scaled equations
used in reference 1. In this case .

, v Tf(MJ -•.„ a/63 = L_ 2 , a (18)

where

\ (Y + 151SlK if f^ " £MK1

(See eqs. (4).)

To complete the biconvex-airfoil problem governed by equations (17), the
corresponding boundary conditions are given by equations (5) and (7). For the
computations, the infinity conditions (eq. (5)) can be replaced by correspond-
ing approximate far-field conditions applied on a boundary at some distance
from the airfoil, for example, on a rectangular boundary denoted by B. Either
u or v may be specified on portions of B. On the left and upper sides of B,

u = Ug(x,y) = v^1/2 j§uB(x,y). On the right side of B, v = Vg(x,y) = Vg(x,y).

For example, u_ and v_ may be the analytical Prandtl-Glauert solution
D D

(ref. 1). On y = 0:

v(x,0 ) = -4x (-.5 < x < .5)

=0 (|x| > .5)
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The transformed critical velocity in equations (17) is obtained by writing
those equations as

(1 - b - 2au)u + v- = 0x y (20a)

-y -X - (20b)

and by noting that for positive Vj this system is elliptic if u < urR, • .
nai"iaKr*1 T r» i •(• n = n anH V»\rnoTV\n 1 T r* T-P n "> 11 u/Vio-no

CRJ

rR,
parabolic .if u = u D, and hyperbolic if u > u_D, whereLK LK

u = (1 - b)/2a = v u = (1.- b)/2a (21) (

SEMI-DIRECT METHOD WITH STABILIZING TERMS

This section describes the semi-direct finite-difference method as
developed in reference 1, but applied to equations obtained from the trans-
formed equations (17) incorporating the free parameters 6 and Vj and with
added stabilizing terms containing free parameters. In addition: (a) simpli-
fied stability considerations are outlined, which indicate the time- like char-
acter of the iterations as well as indicating a stable iteration process;
(b). the use of multiple relaxation factors is described; and (c) a modified
version is described for "Method 2," the new approach developed in reference 1
for applying the Aitken/Shanks acceleration formula.

For all developments that follow, the "bars" on the variables and param-
eters in equations (17) are omitted, with the understanding that u represents
u, etc. The terms to be added to both sides of equation (17a) are denoted as
â u* • and a~u~, where a+ and a" are free parameters and

u+ = u(x + Ax,y). , u" = u(x - - Ax,y) (22).

with Ax being the uniform mesh interval in the x-direction. The reason for
specifying these terms at .half intervals from point x,y will be evident -when
the difference equations to be satisfied at x,y are written. With these '. *•
terms, equations (17) are ' ' -

+ +
u + v + a~u~ t a u = a"u + a u + bu + a(u2)
*t . j A. . ' ' •"•

(23a)

(23b>

with conditions

v(x,0) = -4x

= 0

(-.5 < x < .5)

(|x| > .5)

(24a)

(24b)
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and on B:

u = UB or v = VB (24c)

The Differencing Mesh, Finite Differences, and Converged Forms
of the Difference Equations

The equations in terms of u and v (eqs. (23)) are to be written in finite
difference form and solved by using an extension of the direct Cauchy-Riemarin
solver that treats the left side of equations (23) (ref . 9) when the right
side is known. A staggered u,v mesh is used, a portion of which is shown
in figure 1. The indices j and k respectively denote the x- and y-
directions. The dots and the point labeled s. , on figure 1 are the points

J > K
where the continuity equation (23a) is to be satisfied; the crosses and the
point labeled u>. , are the points where the vorticity equation (23b) is to

J »K

be satisfied. Here u. , and v. . are to be evaluated at the points indi-
J»K J »K

 +
cated. Thus, for x,y at the point labeled s . . on figure 1, u and u"

J >K ,
(eqs. (22)) are respectively u. , and u. . , and central differences for

J» K J-1**
V Cuz) , and vv . are . .'

uxc = <uj,k - uj-i,k)/AX (25a)

vyc= (Vj,k- vj,k-l)/Ay -C2SC)

which are second-order accurate at the point s. , . Also needed will be
J ' ,

upstream, or backward differences for u and (uz) :
X

Uxb

which are first-order accurate at the point s. , . For the point labeled w< ̂

on figure 1, where equation (23b) is to be satisfied, the second-order accurate

central differences are
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Without type-dependent differencing, the iterative solution of equations
(23) would be done by putting subscript n on the left side, subscript n-1
on the right side, and by representing all the derivatives by finite differ-
ences such as equations (25) and (27) and solving the resulting difference equa-
tions iteratively. However, in this iterative method for the problem with both
elliptic and hyperbolic regions (the latter requiring upstream differences),
it is desired to solve, at convergence, finite-difference equations that are
equivalent to those solved by Munnan (ref.- 6), with the four type-dependent
operators (elliptic, hyperbolic, parabolic, and shock), although Murman's
equations are in terms of a perturbation velocity potential and this method is
in terms of u and v. Thus we may first write, for each type point, what we
call the appropriate converged forms of the difference equations as follows:

Nothing about equation (20b) or (23b) changes when the system changes
type, so equation (23b) is central differenced at all u)j ^ points (crosses
on fig. 1), and the converged form for equation (23b) is

u - v = (1 - v,)u (28)yc xc *• . i-* yc ^ J

However, equation (20a) or (23a) changes the character of the system according
to the sign of u - urD, so the points s. , (dots on fig. 1), where equation

LK 3 >K
(23a) is to be solved, are distinguished as "elliptic, hyperbolic, parabolic,
or shock points" (E,H,P,S) following Munnan (ref. 6). For an E point, all
central differences are used in equation (23a) , and the converged form is

E: uxc + vyc = buxc + a(u*)xc (29a)

If equations (25) to (27) are substituted into equations (28) and (29a) , one
finds that the difference, equations are an appropriate elliptic system if

For an H point, all x-derivatives in equation (23a) are backward differenced,
and the converged form is

(29b)

If equations (25) to (27) are substituted into equations (28) and (29b) one
finds that the difference equations are an appropriate hyperbolic system if

>UCR

where we note that
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Therefore; ,an E'point has at least the one condition '(eq. '(30a)), and. an H
point has at least the one condition (eq. (30b)). However at a point (labeled
sj,k on f*-6' 1) near the sonic point where the flow is accelerating from sub-

sonic to supersonic,'neither equation (30a) nor:(30b) is satisfied (because of
eq. (31)) since (uh). . < UCR < (ue). . . This is a P point (refs. 5 and 6),

and equation (23a). is represented by the converged form ..

P: • • v-= ' = 0yc- .

At a point s. . near the shock wave,, where, the flow is 'decelerating rapidlyj ,K • • -. • • • - • . . - . . .
from supersonic to subsonic, both equations (30a) and (30b) are. satisfied.
Murman :(ref . 6) has found that a shock-point operator is then neede'd to main-
tain a fully conservative computation, ah'd equation (2 3a) is' replaced by

xc xb yc xc xb xC

The test conditions determining the type of point .are therefore:

E: and ^iV
and (

P:

S:

(32)

and, since the extension of the Cauchy-Riemahn solver from reference § 'that,
solves the left side of equations (23) always solves the central differenced
form,:,the converged ;forms of the finite-difference equations (eqs. (29a,b,c,d)
with eq. (28)). are written equivalentl'y' as

where

'u +vxc yc
• ,• . • • ,+au = s . , iu}j,k

U - V =
yc xc (1 - v^u.yc

(33a)

(33b)

E':

H:

PV

s .••;. {u}- =.a u
• J >K •

bu + a(u2) (34a)

s. v{u} = a"u~ + aV + u^ + (b - l)uvK + a(u
2) (34b)
XD

• - - • ' ' * ,-,-0340

xc " ~' xb

. : > s. , {u} = a'u". +' a'u' + u:xc
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S: sj,k{u} = a"u" •* a*u*-*'buxc * ̂  ~ 1)uxb * ?[(u2)xc * (u2)xb]

v •• . Preconverged Forms of the Equations in Method 1

Consider now the solution of the difference equations (33) with equations
(34) by the straightforward semi-direct iterative Method 1, as described in
reference 1. Although a relaxation parameter v^ is already incorporated into
t)he equations through the transformation equations (16) leading to equations
(17), and thus to equations (23) and (33), that built-in parameter is neces-
sarily constant at all points and at each iteration n. It is desirable to have
this parameter built in when switching to Method 2, to be described later.
However, during the treatment by Method 1, it is also desirable to be able to
vary the relaxation parameter depending on the sign of u - UCR, on the itera-
tion n, or on considerations such as the extent to which the solution is con-
verged. Therefore, an additional relaxation parameter V£ is introduced by

un = (1 - v2)Vl * v2uj (35)
, - f

where v2 may vary with j,k and with n. Here u* is the solution to

K>xc + CVyc + a-(unr + aX) + = s.^u^} (36.)

KV - Vxc * <1 - v l><Vl>yc ' (36b)

where the s. .{u ,} are obtained from equations (34) at each point. By
j,K n-1

this scheme "multiple relaxation parameters" are used. The terminology
"multiple" is used because it can be shown that such successive use of relaxa-
tion parameters (if done without shifting or scaling) amounts to using the
product viV2 as a single relaxation parameter.

For later convenience, the difference equations (36) are written, letting

Ol s -a*Ax , o2 = -a~Ax , v = Ay/Ax (37)

as

= Ax s . ,{u .} (38.)

and

- u. k)n-1 (38b)
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where

E: Ax s {u} = (b - a,)u, . - (b + a2)u,
J , K. 1 J » K J'

H: Axs.)k{u}.= (i.ai)u.jk- (1 + «2)u..lfk :

+ a^-i,k - uj-2,k^

)k + a(u*fk -u

(b - l)(u..1>k u._2>k)

P: ' >x s {u} = (1 - Ol)u. - - (1 t".o2)ii. . ,J , K •"• J , K • - . *- J - 1 , K •!

S: Ax s.)k{u} = (b - ai)ujfk - (b + cx2)u._1)k + (b -

a(u? . - u?

(39a)

(39b)

(39c)

(39d)

The. extended Cauchy-Riemann solver (ref. 9) can be applied at each iteration
n to solve equations (38) with equations (39),' and then equation (35) is used
to find (uĵ )̂ . The boundary conditions applied at each n are:

on x =

on x = x

and y =

" - . . . ' . - on y = 0 : (v ,) = -4x (-.5 < x < .5)
- • • " . J ».K .11 i • . • . • ;-,

'-. ''".' . . . = ° C|>|*> .5) • -

At n = 1, the right side of equations .(38) : requires specification of Ug-^at
each j,k, which may be taken to be, for example, either the Prandtl-Glauert
solution .or .a numerical solution obtained previously. , •• ? -.

(40)

Time-Like Character and Simplified Stability Considerations

In this subsection a simplified heuristic stability analysis is considered
in order to estimate the conditions for convergence of the iteration of equa-
tions (35), (38), and (39) for each type of point.' Assume'for this-discussion
that vj = V2 = 1 in those equations so that each u* is replaced by u in equa-
tions (38) and the right side of equation (38b) is zero. This simplified anal-
ysis is not considered to be rigorous, so the results are to be used only as a
guide in estimating the free parameters. From experience, this type of anal-
ysis is known to give generally conservative estimates of stability bounds,.

... The existence of the extra terms in both sides of equation (36a) in:the
iteration scheme of Method 1 makes the iterations'time-like. If t is an:
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artificial time, these terms contribute to terms involving ut, utt, u^, etc.
(See related discussion by Garabedian, ref . 16, and by Lomax and Steger, ref .
17.) For the following discussion, define the artificial time t, its increment
At, a parameter A determining the artificial time scale relative to the mesh
interval Ax, and a related parameter a by

t = nAt , At = XAx , a = (ctj + a^X (41)

A simplification is introduced by also using the transformation

u = 2au + b - 1 = 2a (u - UCR) = (1 - b.) (U/UCR - 1)
(42)

v = 2av

To discuss the time- like character and the stability, we consider the
"modified equation" approach (refs. 18 and 19). In that approach, a system of
(modified) partial differential equations is found that represents the actual
equation system that is being solved by the particular, finite-difference scheme
being used and thus includes all truncation errors as terms involving higher
derivatives. For a linear equation with one dependent variable, one can
always eliminate all higher order time derivatives to obtain what Warming and
Hyett (ref. 19) refer to as the modified equation, which then contains terms
involving higher derivatives only in the space variables. These terms can be
interpreted explicitly in terms of dissipation and dispersion and relate to
accuracy, consistency, and stability. If care is taken, one need not elimi-
nate time derivatives in order to determine the latter qualities. One first
substitutes a Taylor series for each term in the finite-difference equations,
expanded about the point where the equation is being solved (e.g., the point
labeled s. , , or the dots, on fig. 1, where "eq. (38a) applies). One may refer

J » •
to the resulting equation, which contains both time and space derivatives, as
an "intermediate modified equation." One may eliminate some time derivatives
to obtain another intermediate form (e.g., corresponding to the sum of the first
few rows in Warming and Hyett 's table 1). The first equation obtained after
substituting Taylor series for all terms may be called the "first intermediate
form" of the modified equation, and the form with all time derivatives elim-
inated, up to the order desired, (Warming and Hyett 's modified equation) as
the "final form." If done properly, all intermediate forms yield the same or
equivalent results for the stability investigation.

For an E point, the result of expanding the terms of equations (38) with
equation (39a) in Taylor series in x, y, and f for small Ax, Ay, and At
and using the transformation equation (42) is

(oj - a2 - 2)utx - 2(uux)J = 0(Ax
2,At2) (43a)

u - v = 0(Ax2) (43b)/ A
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This is the first intermediate form of the nonlinear modified equations repre-
senting equations (38) with equation (39a). As At and Ax approach zero, .
equations (43) are consistent with equations (20) (with the transformation
equation (42) and v^ = 1) except for the artificial time-derivative term aut
resulting from insertion of the extra terms in equations (23). This exhibits
the time-like character of the iteration method if a ̂  0. When all time
derivatives vanish (i.e., as the iterated solution converges), the accuracy is
seen to be second order. Before considering the stability of the iteration at
an E ooint, note that one can eliminate the utt term from equation (43a) by
differentiating that equation with respect to t, multiplying the result
through by At/2, and adding to equation (43a). The result is

£. f(. - ., - 2)» - (Su ) . v I .
2 I ' 2 xt * < >"J

0(Ax2,At2) (44)

whi'ch is a second intermediate form of the modified equation. For the stabil-
ity analysis, either equation (43) or (44) could be used. Consider equation
(44) with equation (43b) . First locally linearize equation (44) , with u£
representing a constant local value, to obtain

- " - 2 - a - ] =f i - 2 - - xt -

' Equation (43b) is satisfied to second order by the assumed locally periodic
1 solution

/ ' ' .
/ u = im̂ 1'-"'2'1' eimix eim2y (46a)

(ci+ic2)t im,x im0y (46b)v = im2e
v i ^J e 1 e V

where n^ and m2 are local "wave numbers" and i = /̂ T". A negative value
for Cj would indicate a stable iteration. To determine the condition on
c-i, substitute equations (46) into equation (45) and separate the result into
real and imaginary parts: :

L
2(ai - a2 - 2 - u£) - m2

2U 0(At2,Ax2) (47a)

Ate r
2 2 - L I 2 r 7 ~ 1 2I

L , J

+ 0(At2,Ax2) (47b)

From equation (47a) , assuming mi and ^2 to be 0(1) as At and Ax -*• 0,
we see that c-i - 0(At); therefore, to first order; equation (47b) gives

C2 =~ (48a)
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and-then.equation (47a) gives

cl = a - - 2 - (48b)

(•Identical results to first order are obtained from eq. (43a).) The first -
factor in equation (48b) is always positive. Recalling the transformation
equation (42), we note that u£ is always negative in subsonic regions (E
points)', so the second factor is also positive. Therefore the condition for
stability requires, from the third factor in equation (48b) with use of
equation (42) ,

oj - 2 - R + (1 - b)(l - u /u )

where

R E

(49)

(50)

and where it is recalled that "bars" have been omitted from b, u , and u-,_.
.x. CK

Since the arbitrary b must be <1 and the minimum value.of u^ is negative
in the elliptic region (at the leading or trailing edge), that minimum value
is the crucial value for condition (49). If (u.,)m̂ _ : -2u™ and if b isGR
taken to be zero, then condition (49) becomes

- R (51)

Sketch (a) illustrates this roughly determined stability condition for an E

STABLE

-I + R

Sketch (a) — Stability diagram for an E point.

point. If R is very large, condition (51) is not crucial, but when R is
very small, the condition is the most crucial, i.e.,
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+ 1 (52)

A similar procedure can be used for H, P, and S points. For an H
.point, expansion of the terms of equation (38a) with equation (39b) in Taylor
series leads to the first intermediate modified equation,

At
aut + uux - vy + T-

= 0(At2,Ax2) (53)

along with equation (43b). At convergence, when all time derivatives vanish,
equation (53) with equation (43b) is first-order accurate and, with the 0(Ax)
term locally linearized, is equivalent (ref. 14) to the viscous-transonic equa-
tion derived by Sichel (ref. 20; see also ref. 21 for the u,v form). The
second intermediate form of the modified equation is the same as equation (44)
but with the 0(Ax) term from equation (53) added. Local linearization, as in
the case of the E point, and substitution of. equations (46) leads, to first
order, to

ml
C2 = — (R - u£) (54a)

and
m 2At m 2u Ax

c1 = — (R - ujl)(a1 - o2i - 2 - u£ - R) - -̂ —̂ — (54b)

where R is defined by equation (50). The only difference from the E point is
the last term of equation (54b). In a supersonic region, where.H points are
located, u^ is positive. Therefore the last term in equation (54b) is always
negative if a > 0. Noting then that the first term has «2 in the denomi-
nator and the second term has a in the denominator, we can always rely, at
worst, on the condition that a, or a-^ + ou, be positive and sufficiently
large so that the last term in equation (54b) dominates. (See the right end of
sketch (bl).) However, it would also be sufficient for stability to have both
terms in equation (54b) negative without requiring a to be large. For the
second term, we therefore need a > 0, or

a2 > -al (55a)

(indicated by the left oblique line on sketch (bl)).
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STABLE IF
Kuc /uC R< I +R/( l-b)

STABLE

STABLE IF
UC/UCR> I +

Sketch (bl) — Stability diagram for an H point.

In the first term of equation (54b), the first factor is positive but the sec-
ond factor may be either negative or positive depending on the magnitude of R

relative to u.£ + (1 - b)(U£/UCR - 1), which is positive in supersonic regions

(H points). If u < R, then the condition for stability, from the third fac-
tor is

a2 > c^ - 2(1 + R) (55b)

(above the dashed line on sketch (bl)). On the other hand, if u > R, then
the condition is

a2 < ctj - 2(1 + R) (55c)

(below the dashed line). Sketch (bl) is more difficult to interpret than
sketch (a), but will be useful as a guide. A more precise condition for an
H point can also be stated. From equations (41), otAx/At = c^ + ot2, so equa-
tion (54b) yields the condition

,2At
c, = — IfR - a,)(a, - a, - 2 - un - R) - 2ufl(a, + a,)| < 0 (56)

ml At f: i = ~i^~ r" a £ ) ( a i " ° 2 " 2 " u * "
from which

For very large R, condition (57) requires only that

(57)

a 2 > c t . - R (58a)
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but for very small R, condition (57) requires

a2 > -3al + (2 + u.) as R -* 0

STABLE

SLOPE = -3

(58b)

UNSTABLE

Sketch (b2) —Stability diagrtm for an H point with R very small.

Sketch (b2) illustrates condition (58b), but this is pertinent only at a point
where a small value of R is dominating the solution.

For a P point, expansion of the terms of equation (38a) with equation (39c)
in Taylor series leads to the. first intermediate modified equation,

= 0(At2,Ax2) (59)

to be used along with equation (43b). Noting that within a distance of order
Ax of a sonic^point, .where .the. quantity ...!.•- b - 2au ,in,equation- (20a)
vanishes, that-'quantity is of .order. Ax,,we see that equation (59). is
consistent with equation (20a) and is-first-order-accurate as the solution con-
verges (when time.,derivatives vanish) . Equation (59)..is already, linear, so . r /
direct substitutloni.of,,the^ assumed solution (eq-; (46)) leads,. to. first order., to

(60b)

where R is defined., by equation (50). Stability at a P point therefore requires

<x2 > dj -' (2 + R)

which is illustrated in sketch (c).

(61)
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STABLE

Sketch (c) — Stability diagram for a P point.

For an S point, formal expansion of the terms of equation (38a) with equa-
tion (39d) in Taylor series leads to the first intermediate modified equation,

ou + 2uu - v *t A y f [-«utt - 4(uux)t]

- Ax(uu) = 0(At2.,Ax2) (62a)
" " 1 • •

to be used along with equation (43b) . The second intermediate form is

aut * 2uux - vy + T - 2(uux)t - vt]

= 0(At2,Ax2) (62b)

Equations (62) are not consistent with equations (20) as time derivatives
vanish and as At and Ax -»• 0, but Murman (ref. 6) has shown that instead the
correct jump conditions are given corresponding to a shock-wave discontinuity
and that a fully conservative computation is insured. Nevertheless, equations
(62) can be formally investigated for stability of an S point by,:a procedure .'
similar to the other type points. Local linearization, as before, and substi-
tution of equations (46) into either equation (62a) or (62b) leads, to first
order, to

m

and

(R -

l

- a2 - 2 - 2u£ - R) - a

(63a)

(63b)

where R is defined by equation (50). As for the H point, equation (63b) can
be rewritten using equation (41), to require
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(R - a2 - 2 - - R) -
1

from which
2Q

R)

< 0 (64a)

(64b)

At an S point, u. < 0, since it is the first dot on figure 1 behind an H-point
X» • i

dot at which (u ) . , < u_D. Therefore the coefficient of a, .in condition (64b)e j , K LK . .- - x

is positive but the last term may be positive or negative.
trates the stability for an S point.

Sketch (d) illus-

STABLE- SLOPE = I -4u0-/Ri,

UNSTABLE

. (l-2ue/R)(2
Sketch (d) — Stability diagram for an S point,

Looking at sketches (a), (t>2) , (c) , and (d) , we see that there are some
and «2 for which all four operators are stable. For example,values of

taking __. a,^ =. 0 and a sufficiently large provides stability. Further study.

of such diagrams along with numerical experiments will- determine the most.
appropriate values ;of Oi ; and <x2 for most rapid. convergence of the iteration.

•'. Preconverged Forms of the Equations in Method 2 ; - , •; ;

Method 2, as introduced in, reference 1, constitutes a new approach" to • .
applying the Aitken/Shanks formula (refs. 7,8) for accelerating convergence, .
or extrapolating from successive iterates to an approximation of the correct
solution. (A quite different method of applying the Aitken/Shanks formula .•
is used by Hafez and Cheng in reference 22 to accelerate convergence of itera-
tions in line-relaxation of transonic flow computations.) The approach of
reference 1 finds the successive iterates in a most appropriate form (i.e.,
in a nearly geometric sequence) for use in the Aitken/Shanks formula. The
method entails expanding the unknown solution in powers of an artificial param-
eter e, substituting this expansion into an extended form of the original •
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equations, ... and then collecting coefficients of powers of ' e to Obtain the~
v respective problems for. the successive iterates. . Three successive .iterates at
each meshi point are then obtained from these problems for substitution into
the Aitken/Shanks formula, which yields the extrapolated solution at each
point. The method as formulated and used in reference 1 works well if the
solution is not too nearly converged. However, when the successive iterates
of the solution are very nearly the same at any one point, that formulation
experiences difficulty by introducing errors caused by the loss of signifi-
cant figures in the subtraction of nearly equal numbers.

To avoid the above difficulty, Method 2 is now formulated in a manner
that eliminates the subtraction of nearly equal numbers, and thus gives pre-
cise results even when the solution is nearly converged at some points. The
.new procedure is the following:

The extended form (see ref. 1) of equations (33) is

- uvr * vvr + a"u" * a+u+ = Cl - e)s- k{u } + es. ,{u} (65a)AC y c . • j * K " J » "

Uyc - Vxc a Cl - 0(1 - VCVyc + e(1 ' vl)uyc " -.

owhere s. ,{u } and s. ,{u} are given by equations (34) and where uJ , K O J j K . . . . . . .

uo(x,y) is a previously determined approximate solution (e.g., after some n
in Method 1). The tests in equations (32), to determine which of equations
(34) apply to the right side of equation (65a) , depend on (ue)̂  ̂  and
(uh)-i k obtained from equations (30a) and (30b) using . uo at each j,k. The
boundary conditions on equations (65) are the same' as equations (24) "(see eq.
(40)). Formally expand the unknown solution to equations (65) in powers of the
artificial parameter e (equivalent to a, Taylor series about £ = 0) ;

• u(x,y,e)_.= Uj(x,y) + eu2(x,y) + e
2u3(x,y) + . . . (66a)

v(x,y,e) = vl(x,y')'+ ev2(x,y) + e
2v3(x,y) + . . . (66b)

Although the successive approximations to u>' which were used in Method 2 as
formulated in reference 1, are Uj, Uj + eu2, and Uj + eu2 + e

2u3, the new
formulation will use the terms- Uj , eu2, e

2u3, where eu2 is the difference
between the first and second approximations and £2u3 is the difference
between the second and third approximations. As in reference' 1, it is con-
venient to evaluate the solutions, as represented by equations (66), at e = 1.
The. corresponding form of the Aitken/Shanks formula in terms of these differ-
ences (ref. 8) is then , - -

2
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where u*(x,y) is the extrapolated solution at each x,y. To obtain Uj, u2,
and u$, substitute equations (66) into equations (65) with equations (34) and
the boundary conditions. Collecting coefficients of powers of e then yields
the respective problems for n » 1, 2, 3:

CVxc + (Vyc + a'un + a+un = Vi

with conditions for n ° 1: :

VjCx.O) = -4x (-.5 < x < .5)

(69a)
'•' • 0 (|x| > .5)

on B: u, = un or v, = vn (69bj1 D * 0 .

and for n__'« 2,3:

vn(x,0) =0 (70a)

on B: u^ == 0 or v = 0 (70b)

and where (with ŝ  .{u} given by eqs. (34)):
J »K . .

) (71a)rye

' iVc-'Vyc] (?lb)

-«2 = (1 - Vj)(u2)y c (71c)

s^ = s. ,,{u^} (72a)o j,k o

si a s-i k{ui} ' si v{uo} ^72b^- . . * • j > K t J » K °

and , ' " ,

E: s* « a'u^ + a*ut + b(u2) + a(2u1u5), . ^ t. e. ^ *'xc * * XC

>xc + 0> - D(u2)xb + ad^^^H: s2 - a-u$ + "a*u+ + (u2) * (b - I)(u2) . + aCa^u^ . (73b)
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2 2 2.2 xc 2' xh, J ; ̂

. • • (73d)

Substitution of the finite-difference" expressions (eqsl '(25) to (27)), along
with the definitions in equation (37), into equations (68) to (73) yields the
final forms of the difference equations to be solved by the extended Cauchy-
Riemann solver for n = 1, 2, 3 in Method 2. The resulting values of, un at
j,k are then put into equation (67) to obtain the extrapolated solution. , t .•

. , , COMPUTATIONAL CONSIDERATIONS AND SOME PRELIMINARY RESULTS

S' 'T • . •

Research versions of a computer program have been written to solve
rapidly the small-disturbance equations for transonic flow over a thin, sym-
metrical, biconvex airfoil at zero incidence by Methods 1 and 2 as described
above. Use of Method 1 with v2 = 1 (so that eq. (35) would not be used) .
would require only two two-dimensional arrays: u and v, with s. , being.

, ; J > K 'L
put into the v array to start each iteration using the extended Cauchy-
Riemann solver (ref. 9). -With v2 ^ l,..Method 1 requires three two-dimensional
arrays, and Method 2 requires four arrays.

The program was run both on a Control Data 7600 computer and also, on an
IBM 360/67 computer. All timing runs were made on the 7600. The 360/67 was
used to run the program conversationally, for interacting with .the..program.-, ~
This capability is especially important to numerical experiments currently
being done and was used to accomplish some results to be presented here.

In the earlier study (ref. 1), which did not include the arbitrary param-
eters otj, oc2, and b, subcritical ;cases converged very fast — in a few itera-
tions — and also a slightly supercritical case (al = .3555556) converged rather
rapidly. At slightly stronger supercritical conditions, the computed results
evolved in cycles and would not settle down, arid at yet stronger conditions
the iterations diverged catastrophically. However, because the simplified
stability considerations for the revised method outlined above indicate stabil-
ity of the iterative procedure for some ranges of values of the arbitrary
.parameters, and also because switching to Method 2 after an arbitrary number
of iterations is now made more effective by the.slightly modified approach for
Method 2 outlined above, the conversational version of the program containing
numerous options was developed for investigating the many possibilities. The
capabilities of this research computer program include (1) display of the peak
velocity and the maximum residual after; each iteration, (2) the optional plot-
ting of the iterated velocity distribution versus x after any iteration,
(̂3). the optional plotting of the type of all points (labeled s. , on fig. 1)

' '• • ......--•'. - ' - ' . •' J jK

where the continuity equation is solved, at any iteration, including indica-
tion of any change of type from the previous iteration -(see fig. 2),
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(4) accumulation of the number of iterations since a change of type occurred,
(5) ability to arbitrarily specify vls b, cx1, and cx2 at the beginning of
each case, (6) ability to change c^ and a2 at any iteration depending on
conditions such as the magnitude of the maximum residual or the number of
iterations since a change of type occurred, (7) ability to arbitrarily specify
and change v2 at each point depending on conditions such as the sign of
u - u and the extentf to which the solution is converged, (8) ability to

L»K

switch to Method 2 after any n (e.g., if some condition is satisfied) and
back to Method 1 if desired, and (9) ability to store u. . at a given n,j >K
then continue the iterations and later stop, recall the stored u. , ,j >K
change one or more parameters in the problem, then continue the iterations
again starting with the stored u. , , and compare the succeeding results withj ,k
the previous results. After the best values of parameters are determined by
numerical experiments, their evaluation can then be built into the final com-
puter program. .

Preliminary results for pressure distributions on the biconvex airfoil,
obtained by the research computer program, are shown plotted in figure 3,
parts (a) to (d), for a range of transonic conditions. For these computations
the classical formulation (eq. (19a)) was arbitrarily chosen. (Some values of
parameters corresponding to Murman and Krupp's similarity parameter are given
in Table 1.) Figure (3a) shows the only supercritical case that was presented"
in reference 1. Parts (b), (c), and (d) of figure 3 show cases with strong
shock waves. The shock in figure 3(d) is nearly at the trailing edge. These
results were computed on a 39x32 mesh with upstream and downstream computation
boundaries at about one-half chord length from the leading and trailing edges.
The upper boundary was at about 3.5 chord lengths above the airfoil for
figures 3(a) and (b) and at 5 chord lengths for figures 3(c) and (d). The con-
ditions on u and v applied on the outer boundaries were the Prandtl-Glauert
solutions for u and v evaluated at the Mach number and thickness ratios
indicated on the figures.

The pressure distributions on figure 3 are compared with results from the
line-relaxation program of Murman, Bailey, and Johnson (ref. 23), based on the
method of references 4-6. In that program, the option of using the classical
formulation corresponding to equation (19a) was chosen for a proper comparison.
The outer condition on the velocity potential in that method is the far-field
condition of Klunker (ref. 24), and their outer boundary was at one chord
length in front of the leading edge, .875 chord behind the trailing edge, and
5.2 chords above and below the airfoil. The mesh used in their program is
variable and finer than the uniform mesh used for the present computations,
so the agreement and differences are as expected. Even the case for which the
shock is nearly at the trailing edge (fig. 3(d)) shows good agreement despite
the coarseness of the mesh.

The results in figures 3(a) to (d) were all computed using Method 1 to
convergence. Figure 4 shows an interesting effect of switching to Method 2
before the iteration has converged enough, when the type of all points is not
yet the same as ,the final type. Method 1 was used for nine iterations; then
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Method 2 was used to obtain the three successive terms at each point and the
extrapolated solution shown in figure 4. A property of the Aitken/Shanks
extrapolation as used in Method 2 is that all the significant figures of the '
three successive approximations at any point contain information about the
exact solution, even though those successive approximations themselves are not
very close to the exact solution (see example problem in -ref. 1). It thus
appears in figure 4 that this procedure may be picking up the fact that the
exact solution to the equations (or the solution on a very fine mesh)-has the
well-known logarithmic singularity just behind the shock, even though the con-
verged solution on the coarse mesh smears over this singularity. Even the
finer mesh used by the program of reference 23 was not fine enough to pick up
the singularity, partly because that point apparently occurs between the mesh
points for this case. (There is also the possibility that the extrapolation
technique may be, merely overpredicting changes near the steep shock, but con-
sideration of the process that obtains the extrapolated values in Method 2 .
tends to exclude that explanation.) This phenomenon illustrated on figure 4
is not an isolated case but is a typical occurrence in Method 2. It may be
that the numerical solution in figure 4 is just as good a representation of
the exact solution to the equations .as is the fully converged solution in
figure 3(b).

Corresponding to the cases computed in figure 3, figure 5 shows the sonic-
line, locations obtained by linear interpolation between the velocities on the
two sides of the forward sonic line and of the shock wave.

.For these computations on a 39*32 mesh, the Control Data 7600 computer ~
required 40 milliseconds per iteration. (This is a preliminary result;' the
time can still be significantly reduced by modifying the program.) The
slightly supercritical case of figure 3(a) required only 6 iterations (0.24 sec)
for the peak velocity to be converged to within 1 percent of its final con-
verged value, 9 iterations (0.36 sec) for 0.1 percent, and 14 iterations
(0.56 sec) for .01 percent. For these results, Method 2 was used successively
for n = 1 to 9 (i.e., three cycles of Method 2), then the program was switched
to Method 1. For the strong transonic case of figure 3(b), the results com-
puted in 23 iterations (0.92 sec) are-virtually indistinguishable from the
fully converged results shown. It may be noted that the test on the residuals
used to determine sufficient convergence may be much less stringent than con-
ventionally required by line-relaxation programs because errors are felt simul-
taneously at all points in succeeding iterations, rather than requiring time
to propagate. Results for the strong cases in parts (c) and (d) have rela-
tively low iteration .cpunts, but no reportable'numbers or times are available
yet because those results were obtained during experimentation with the arbi-
trary parameters. . The optimal values of the parameters and the corresponding
computing times will be reported later, after a parametric study is completed.

CONCLUDING REMARKS

The recent progress in the application of semi-direct iterative methods
to transonic flow computations has been described here. The extension described,
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of the earlier method to strong transonic cases, is part of the second stage
of the overall study. The modifications that produce stability of the itera--.
tive procedure, as well as a more effective version of .an extrapolation tech-
nique, have been described and analyzed.

The results of the computations agree with those computed using accepted,
methods, and the computations are rapid. This demonstrates that the,fast
semi-direct method is definitely applicable to strongly supercritical tran-
sonic flows. This demonstration, with a direct elliptic solver being used
successfully to compute iteratively the solution to the mixed elliptic- .
hyperbolic'problem, is regarded as the most significant result of the present
study. The short computing times indicate a significant potential for highly
efficient transonic flow computations.

The research computer program has been briefly described for use in a
parametric study that will in the near future determine the optimal values of
free parameters in the method for most rapid convergence.
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TABLE 1.- SIMILARITY PARAMETERS AND CORRESPONDING CONDITIONS.

*1
.3555556

.4525193

.5930949

.8097111

*s
1.2551867

1.0687807

.8924089

.7251479

MOO
(T = .10)

.800

. 825

. 850

.875

Moo

(T = .06)

.850

.870

.889

.9085

Corres-
ponding*

KMKI
2.2499998

1.9158555

1.5996981

1.2998725

Mro
(T = .10)

.7870

.8145

.8425

.8695

Mw
(T = .06)

. 8425

.8635

.8855

.906

*The corresponding is taken to be (Y + I)2/3 Kg.
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Figure 1.— Staggered meshes for u and v.
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Figure 2.- Conversational computer printout of plot of type of points. Blank
is elliptic; H, P, and S are hyperbolic, parabolic, and shock points.
Asterisk in front of a symbol indicates change in type of point from pre-
vious iteration.
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• PRESENT METHOD
39x22 MESH

— Cn* ° PRESENT METHOD
99x32 MESH

MURMAN et Ql. (ref.23)
VARIABLE MESH
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(a) ax = .3555556 (Kg = 1.2551867: M«, = .800, T = .10)

o PRESENT METHOD
39X32 MESH

MURMAN et ol. (ref. 23),
VARIABLE MESH

-1.00 -.75 -.50 -.25 0 .25 .50 .75 1.00

(b) a^ = .4525193 (Kg = 1.0687807: Mtt = .825, T = .10)

Figure 3.- Pressure on a thin biconvex airfoil.
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o PRESENT METHOD
39x33 MESH

— WURMAN et al. (ref. 23),
VARIABLE MESH

-1.00-.75 -.50-.25 0 .25 .50 .75 1.00

Figure 4.— Pressure distribution resulting from Aitken/Shanks extrapolation
(Method 2), before iterative convergence (al = .4525193, K_ = 1.0687807:
M^ = .825, T = .10). b
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Figure 5.— Sonic line over a thin biconvex airfoil computed on a 39x32 mesh.
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RECENT DEVELOPMENTS IN PROPULSIVE-LIFT AERODYNAMIC THEORY

By Richard J. Margason, Long P. Yip, and Thomas G. Gainer
NASA Langley Research Center

SUMMARY

This paper reviews the progress of propulsive-lift theories from their beginning
in 1956 with Spence's development of a two-dimensional jet flap to the present general
three-dimensional theories that require a large computer. Results of jet-flap theories
are compared for high-aspect-ratio wings with full- or partial-span blowing. Applica-
tions of the jet-flap theory and the more general wing-jet interaction theories under
development to externally blown flap and upper -surface blowing configurations are also
discussed. The possible direction of future developments is indicated.

INTRODUCTION

Propulsive lift began in the early days of aviation when the propeller slipstream
flowing over the wing was used to attain increased lift. Various propulsive-lift concepts
are shown in figure 1. The most advanced example of this type of propulsive lift is
illustrated by the Breguet 941, first flown in 1965. The Germans first used jet-powered
high lift in the 1930's with the experiments using jet flaps in which a sheet of high-
velocity air was ejected from the trailing edge of the wing. Later work in Germany,
England, and the United States further developed the concept. The first jet-flap research
aircraft, the British Hunting H.126, flew in 1963. During the 1960's, the augmentor flap,
which adds an ejector to augment the thrust of the jet flap, was developed in a cooperative
program by NASA Ames Research Center and DeHavilland Aircraft Company of Canada
and resulted in the Buffalo augmentor wing research airplane, first flown in 1972.
Recently, the U.S. Air Force has developed two advanced short take-off and landing (STOL)
aircraft: the YC-15 externally blown flap (EBF) configuration scheduled for flight
later this year and the YC-14 upper-surface blown flap configuration scheduled for flight
in 1976.

Along with the concept development and experimental work done (ref. 1) on config-
urations with propulsive lift, a number of theoretical and computational methods have
been developed to predict the characteristics of these configurations. These methods
have increased in complexity from those requiring a simple back-of-the-envelope calcu-

871



lation to those requiring the largest, modern digital computer. The purpose of this paper
is to outline the development of these computational methods for powered lift.

SYMBOLS

A aspect ratio, b^/S

b wing span, m (ft)

drag coefficient

CL lift coefficient

Cm pitching-moment coefficient

Cn momentum coefficient, Thrust

c chord, m (ft)

ct section-lift coefficient, Section lift

Cp section-pressure coefficient . . •

c^ -section-momentum coefficient •

d jet diameter, m (ft)

h height of jet center line relative to the wing-chord plane (positive above the
wing), m (ft) , •

q free-stream dynamic pressure, N/m^

r radius of curvature of jet sheet, m (ft)

S wing area, fh2 (ft2)
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Voo free-stream velocity, m/sec (ft/sec)

x fraction of chord

a angle of attack, deg

y vorticity, m/sec (ft/sec)

6f flap deflection, deg

6j jet-wake deflection, deg

6j section jet-wake deflection, deg

77 nondimensional spanwise location

(f> velocity potential, m^/sec (ft^/sec)

Abbreviations:

EBF externally blown flap

EVTJL elementary vortex distribution

SDM section design method

USB upper-surf ace blown

JET-FLAP THEORIES

2-D Jet Flap

The first theoretical method for a wing with powered lift was developed by Spence.
(See refs. 2 and 3.) This method gave the lift and pressure distribution on a two-
dimensional wing with a jet flap. Spence used a vortex sheet whose vorticity depended
on the section-momentum coefficient and curvature of the sheet to represent the thin jet
wake behind the wing as shown below:

ccj, v
y = ^> (i)
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Spence approximated the solutions to the integral equations involved by a Fourier series
expression and then, by solving for Fourier coefficients on a computer, was able to obtain
the general results .shown in figure 2. The lift results in Spence's method are in the
form of two equations - one for lift-curve slope dci/Ba and the other for lift due to jet
deflection 9cj/96j. Both equations contain terms that depend on section-momentum
coefficient c^. The lift-curve slope, for example, is 2ir modified by two additional
terms that account for cj^ effects. The chordwise pressure distribution on the wing
was also obtained and is given by the following equation:

= 2
7TX(1 - X)

1/2
6! (2)

The pressure difference Acp between the upper and lower surface is a function of
jet -deflection angle, section-momentum coefficient, and chordwise location. In the
pressure -coefficient plot in figure 2, the computed pressure difference has been com-
bined with the pressure distributions over an ellipse to obtain the total pressure distri-
bution for an elliptical airfoil with jet flap. The Spence formulation is valid from the
leading edge to a point near the trailing edge at

TTC],

and is seen to give a very good approximation of the experimental data (symboled points)
over most of this range. .

Limited 3-D Jet-Flap Methods •

Based on Spence's vortex sheet approximation for the two-dimensional jet wake,

a number of three-dimensional methods for jet flaps were then developed. However,
because of the limited capacities of the computers at that time, these were also limited
by assumptions that had to be made in evaluating the integral equations. The earliest

three-dimensional jet-flap methods, which included those of Maskell and-Spence (ref. 4),
Hartunian (ref. 5), and Das (ref. 6), assumed a large aspect ratio and an elliptical span-
load distribution. Later work by Kerney (ref. 7) and Tokuda (ref. 8) assumed large. ,-. ,- :

aspect ratios and low momentum coefficients. In addition, Kida and Miyai (ref. 9)
obtained a solution for a jet flap in ground effect, and Addessio (ref. 10) obtained a solu-
tion that assumed an elliptical C^ distribution over part span flaps with high momen-.
turn coefficient and included a computation of the flow -field characteristics.

More General 3-D Jet -Flap Methods

It is not until computers of the CDC 6000 class became available that more general

jet-flap methods began to be developed. These were completely numerical methods pat-
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terned after methods developed for conventional wings (fig. 3) - that is, they assumed
potential flow and used numerical integration of influence coefficient matrices to obtain -
a solution. (See, for example, ref. 11.) They extended the conventional theory by
including Spence's relationship for the high-momentum jet wake. This implies the
assumptions of thin jet sheet and modest wake deflection angles. The methods that were
developed included lifting-line methods by Lissaman (ref. 12) or Lopez and Shen (ref.' 13)
and lifting-surface methods by Clever (ref. 14) and Goldhammer, Lopez, and Shen
(ref. 15). In.addition, Hackett and Lyman (ref. 16) and Holmes, Barnett, and Jacobs
(ref. 17) developed equivalent mechanical-flap methods.

Transonic 2-D Theories

Additional methods for transonic two-dimensional theories have been developed by
Malmuth and Murphy (ref. 18) and Ives and Melnick (ref. 19). These methods include
both jet-flap and shock-induced effects. There will be no attempt to discuss these meth-r
ods in the present paper other than to recognize the need for these efforts and their'
future extension to three-dimensional methods.

Jet-Flap Theory Experiment Comparisons

In figure 4, the results of some of these jet-flap theories are compared with the
experimental data obtained in reference 20 for a wing with a rectangular planform, an
aspect ratio of 6.8, and a full-span jet deflected 31.3°. Basically, the agreement between
the theories and experiment is good for a high-aspect-ratio wing with a modest jet deflec-
tion. The Lissaman and Addessio methods somewhat underpredict the lift, while the
Maskell and Spence, Tokuda, and Hackett and Lyman methods either go through the data
at the low values of C^ or slightly overpredict the data at the higher values of C^.

A similar comparison for a partial-span jet flap deflected 37° in one case and 67°
in the other is presented in figure 5 using experimental data from reference 21. For the
lower flap deflection, generally there is good agreement with the experimental data with
only the Lissaman method being somewhat low. For the higher flap deflection, there is
relatively good agreement from the Lopez methods, while the other methods underpre-
dict the data at low values of C^ or are somewhat off at the higher values of C^.

To evaluate these jet-flap theories for a larger variety of partial-span combinations
and deflection angles, data were obtained in the Langley V/STOL tunnel on the model
shown in figure 6. This model, known as the jet-flap theory verification model, was
jointly funded by NASA and the U.S. Air Force Flight Dynamics Laboratory. It was con-
figured both as a pure jet flap with a 60° trailing-edge deflection and as a jet-augmented
simple flap with the jet blowing from the knee of the flap for a large range of deflections.
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The wing was equipped .with pressure orifices at six spanwise stations to indicate the.. -.
span!oad distribution for various blowing arrangements. . .- • ;

The lift, drag, and pitching-moment coefficient results obtained with this model •••••
and the corresponding calculated values using the elementary vortex distribution (EVD)
theory are presented in figure 7 for the case of the jet flap blowing over the inboard two-
thirds of the span, 45° flap deflection, and values of C^ from 0.5 to-4.0. The data
show generally very good agreement between theory and experiment, especially for the
lift and pitching-moment coefficients. It should be noted that the profile drag has not
been included in the EVD calculations; adding it would bring the calculated drag into
closer agreement with the experimental values.

The calculated and experimental spanload distributions at a C^ of 4 and an angle
of attack of 0° are presented in figure 8. The high loading inboard is seen to be repre-"
sented fairly well by the theory, and the general shape of the spanload distribution is in
good agreement with the experimental distribution. This would indicate that in general
the jet-flap theories are valid as long as the jet-flap assumptions are closely met.

Externally filown Flap

(. • f An example of an application of the jet-flap theory to a configuration for which the
assumption of a thin jet exhausting near the trailing edge of the.wing was violated is pre-
sented in figure 9. The experimental data, presented .in reference 22, are for an exter-
nally blown flap configuration having four engines whose exhausts impinge on a double -
slotted flap. Calculations were made for this configuration using experimentally
measured distributions of the exhaust deflection angle and momentum coefficient at the '
flap trailing edge (shown on the right in fig. 9). Such calculations might not be practical
in the general situation, of course, since this information would not ordinarily be avail-
able. A,method, such as that described by Hirsh (ref. 23), would be needed to describe
the wake as it leaves the engine exits until it reaches the trailing edge.' The purpose
here was to determine if the jet-flap methods could give useful results even though the
powered-lift system and resulting flow pattern were more complicated than a simple jet"
flap. The measurements, shown in figure 9, of deflection angle and momentum coeffi-
cient were made with a hot-film velocity probe while the model was at an angle of attack
of 8° and a momentum coefficient of 4. The data show that the maximum and minimum
deflection angles occurred on approximately the center lines of the inboard and outboard'
engines, respectively; whereas, the peak momentum coefficient occurred between the
center lines.

.The results on the left .in figure 9 show that the two jet-flap theories r Lissaman
and EVD -.give fairly good approximations of CL for values of C^ of 0 and 2, but
not at a C^ of 4. The EVD program underpredicted the lift and the Lissaman program
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overpredicted it. At least part of this discrepancy could be attributed to the fact that :

the flap, rather than having a thin jet emanating from its trailing edge, was operating .
within;;a relatively thick jet. As a result, noticeable jet interference effects come into
play which are not accounted for by the. jet-flap theory.

... • . WING-PLUS-JET THEORIES ...

It was shown in references 24, 25, and 26 that as a wing or flap gets close to or
becomes immersed in jet exhaust, there is an increase in the local lift coefficient which
can be significant even for the case of a jet located more than one jet diameter above or .
below the wing. An example of the lift that can be developed by wing-jet interaction,
along with some of the methods being developed to account for the interaction effects, is
shown in figure 10. The sketch on the upper left in figure 9, which was taken from ref-
erence 24, shows lift coefficient plotted against the height-to-diameter ratio of a jet
exhausting in the presence of a wing. The wing is at a 10° angle of attack and its basic
lift coefficient without power is 1.1 (the line marked "wing alone"). If the wing was
equipped with a jet flap at a C^ of 0.25, its lift coefficient would be 1.28, but if that
same momentum were.put into a relatively thick jet (as indicated by the sketch), its lift
coefficient would vary with the height of the jet relative to the wing as shown by the "wing
and jet" curve. Its maximum lift coefficient would be approximately 1.6 when the jet is .-
immersing the wing in the high-velocity flow. ' - .

The three theoretical methods illustrated in figure 10 for solving the general wing-
jet interaction problem are the methods developed by Dillenius, et al. (ref. 27),
Shollenberger (ref. 28), and Lan (ref. 29). These methods use systems of vortex "or
source sheets to represent the jet exhaust and a vortex-lattice system to represent the
wing. The Dillenius method is semiempirical in that the vortex strengths and the cross-
sectional shape of the jet are prescribed. While the curvature of the jet center line is
allowed to vary, the jet may penetrate the flap system. The boundary condition that
determines the curvature of the jet center line requires that the jet flow at the boundaries
must be parallei to the outer flow. In the Shollenberger method, the vorticies of the
sheets enclosing the jet region, the curvature of the jet, and.its cross-sectional shape
are all allowed to vary; this is done by satisfying the additional boundary condition that
at the edge of the jet the pressure inside the jet is equal to that in the outer flow. Lan's
method also satisfies these two boundary conditions - tangent flow and pressure conti-
nuity at the jet boundaries - but uses double vortex sheets to represent the upper and
lower edges of the jet. These vortex sheets remain straight during-the computation.
The changes in .the vorticies in the calculated sheets account for the effects-of the wing
flow field on the jet and of the jet in the wing flow field. These methods are primarily in
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their developmental stage, and none has yet been systematically applied to a wing with
upper-surf ace blowing. .,. • •

j • ,,

Externally Blown Flap

The Dillenius method, however, has been fairly extensively applied to an EBF con-
figuration, and some of the results are shown in figure 11. The comparison shown indi-
cates good agreement (below the stall) between theory and experiment for the cruise
configuration (6f = 0°, C^ = 0) and for the C^ = 5.5 case with 6f = 35°, but only
moderately good agreement at lower values of C^ with 6f = 35°. The pitching
moments predicted by the thoery are noticeably more negative than the measured values.

Figure 12 compares the Dillenius theory with data obtained by Perry and Greene
(ref. 30) with an EBF configuration in the NASA Ames 12.2- by 24.4-m (40- by 80-ft)
Full-Scale Wind Tunnel. In this investigation, the wing and flap pressure distributions
were measured as well as overall model forces and moments. The distributions of
section-lift coefficient obtained from these pressure distributions are shown on the right
of figure 12. The pressure integrations were carried out separately for the portion of
the wing ahead of the flap and for the flap. These are indicated by the "wing alone" and
"flap alone" plots, respectively. The data indicate differences in the chordwise as well
as spanwise pressure distributions between theory and experiment. The calculated
values of section-lift coefficient show peaks (corresponding approximately to the engine
locations) on the wing that were about the same magnitude as those on the flap. The
experimental data on the other hand show no peaks on the wing but very high peaks on
the flap, indicating a more rearward distribution of pressure for the experiment. The
data for the wing-alone and flap-alone distributions have been combined to give a total
wing-flap lift coefficient on the left of figure 12. It can be seen that the theoretical
(dashed curves) and experimental (circle data points) data obtained from the pressure
distributions were not in very good agreement. Although the shape of the calculated lift
curve and the experimental data (square data points) for the complete configuration,
which included a fuselage, empennage, and nacelles, were similar, the calculated lift was
substantially lower. This case, in contrast to figure 11, indicates that the model with
the jet exhausting through the wing is not totally realistic when compared with experi-
mental results. Further development of the method is currently under way to improve
the representation of this problem and to apply it to the upper-surface blown flap.

Upper-Surface Blown Flap

The upper-surface blown (USB) flap configurations represent another propulsive-
lift concept for application of the wing-plus-jet theories. The twin-engine configuration
(ref. 31) operating at a momentum coefficient of 2 is shown in figure 13. The wing has
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an aspect ratio of 7.8. The experimental data are represented by the symbols for flap
deflections of 0°, 20°, and 60°. The jet-flap theory results are based on the Lopez EVD
method. Like all jet-flap theories, the jet is assumed to exit at the trailing edge of the
wing. Hence, there is no high-velocity flow over, the approximate 14 percent of the wing
upper surface immersed in the engine efflux. As a result, the jet-flap theories under-
predict the lift coefficient at all three flap deflections as illustrated by the results of
EVD theory in figure 13. This deficiency of the jet-flap theory shows the need for the
wing-plus-jet theory. As an illustration of such a method, results of the Lari theory .
(ref. 29) are presented by the dashed curves in figure 13. At a flap deflection of 0°,
there is excellent agreement between theory and experiment; at 20° flap deflection, the
values of the theoretical and experimental lift coefficient are similar, but the theoretical
lift-curve slope is low. At the highest flap deflection, 60°, the values of the theoretical
lift coefficient are high and the slope is low. While these results represent an improve-
ment over jet-flap theory, there is room for further improvements which may come from
additional use of these methods.

CONCLUDING REMARKS

The progress of propulsive-lift theory began in 1956 with Spence's simple two-
dimensional jet-flap computation which represented a back-of-the-envelope computation.
In the early sixties, limited three-dimensional jet-flap methods which usually assumed
an elliptic spanload were developed and required the use of a modest digital computer,
such as an IBM 709. In the early seventies, more general three-dimensional jet-flap,
wing-plus-jet, and transonic two-dimensional theories which account for shock effect
were developed. These require large digital computers, such as the CDC 6600. For
future applications, methods for complete wing-body-tail configurations that use either
the three-dimensional jet-flap or wing-plus-jet theory will be needed. There is also a
need to develop transonic three-dimensional powered-lift theories. Ultimate solutions
for propulsive-lift configurations may require the formulation of this problem using the
Navier-Stokes equations. To solve these problems properly, the use of very large digi-
tal computers which are capable of solving matrices and vectors which contain up to
10 000 elements will be required.
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Figure ,?.- Variation of lift and pressure coefficients according to Spence's
; two-dimensional jet-flap theory.
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Figure 6.- NASA/USAF jet-flap theory verification model.
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SURVEY OF COMPUTATIONAL METHODS FOR LIFT-GENERATED WAKES

By Vernon J. Rossow
NASA Ames Research Center

SUMMARY

The persistence and strength of vortices that trail behind heavy aircraft have
recently caused attention to be focused on the potential hazard they present to smaller
aircraft that might encounter them. A survey is made here of some computational
methods that are used to predict the structure and duration of these lift-generated vor-
tices and to explore mechanisms that might significantly reduce their lifetime and haz-
ard potential.

INTRODUCTION

Large aircraft leave behind them substantial disturbances to the air that may pose
a hazard to smaller aircraft entering that airspace. The turbulence in the wake caused
by engine exhaust dissipates rather quickly, but the circular motions produced by the
wing-tip vortices persist for distances of the order of miles behind the generating wing.
During cruise, aircraft can usually be separated laterally and vertically to avoid encoun-
tering one another's wake, but near airports the aircraft are usually confined to a rela-
tively few entry and exit corridors, so that the probability of encountering the wake of a
preceding aircraft is greatly increased.

In the early 1950's concern was expressed when the DC-6B was put into operation
because it was a new large aircraft. A "rather complete analysis of the hazard in the
wake of the DC-6B aircraft by Bleviss (ref. 1) concluded that the hazard is due to the
wake vortices and not the "propwash," and that the vortices decay very slowly. The sug-
gested solution was to increase the separation between aircraft. This solution is no
longer acceptable because the increase in air traffic volume at airports has brought
about the desire for decreased aircraft spacing. A decrease in spacing with the present
large variation in aircraft size and without a compromise in safety of flight can be
accomplished either by locating the hazardous volumes posed by the vortices and
directing the aircraft around them or by changing the lift-generated wake so that the haz-
ardous distance behind the generator is substantially decreased. The FAA and Trans-
portation System Center (DOT) have concentrated their efforts on the development of
avoidance systems. NASA is studying means for aerodynamic alleviation of the hazard
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posed by lift-generated wakes. This paper discusses some of the theoretical methods
used to analyze lift -generated wakes and will not discuss avoidance schemes. Although
the theoretical methods used at NASA Ames Research Center rely heavily on electronic
computers, the programs are not of a size that requires large advance computers. How-
ever, as refinements are made in the methods used to analyze complex wakes with mul-
tiple vortex pairs, larger and faster computers will probably expedite the research
effort. Since the survey as given here does not cover all the literature on wake vor-
tices, the reader is referred to references 2 to 4 for a more complete bibliography.

It is convenient to divide the flow field into the several regions shown in figure 1.
Each of these regions and some methods for analyzing the properties will be discussed
briefly in the following sections. It should be noted in figure 1 that the vortices are
shown as extending straight behind the generating aircraft. Distortions due to atmos-
pheric motions (ref. 5) and due to various instabilities (e.g., refs. 2 and 6) will not be
discussed. It is assumed here that the alleviation achieved by aerodynamic means must
also be effective even under calm conditions.

SYMBOLS

AH aspect ratio

b span of wing • • ' :

CT lift coefficient, , Lift
0.

|pUoo2S

G£ local lift coefficient

C, rolling-moment coefficient, Roll™$ ™meni

•

c wing chord

"5 mean geometric chord
," '

f (ro/v) Reynolds number function

local lift
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N number of vortices

r . radius of vortex

S wing area

T dimensionless time

t time

Uoo free-stream velocity, alined with x-axis

Vj maximum circumferential velocity in vortex

VQ circumferential velocity in vortex

X,Y,Z dimensionless coordinates, e.g., X = 2x/b

x,y,z coordinates, x is streamwise and z is vertical

a angle of attack

T circulation

y circulation in point vortex

v kinematic viscosity

p air density

Subscripts:

f following model that encounters wake

g model that generates wake

o centerline value of circulation
j • - -

v vortex
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w wing • . . • ' , • • • • - .

• ' '"

A bar over a coordinate indicates the center of gravity of vortex.

GENERATION OF WAKE

If the vortex wake calculations are to be meaningful, the starting conditions at the
generator must be known as accurately as possible because the rest of the calculations
depend on those data. That is, the properties of the wake are predicted only as com-
pletely, as the analysis of the generator aircraft is carried out. This aspect of the wake-
vortex problem has received considerable attention during the past several decades^ but
a general method for finding the complete wake is not yet available. However,'very good
approximations to the lift-distribution and wake starting conditions may be obtained by
use of in viscid vortex-lattice computer programs. The status of these methods can be
found in references 7 to 9. Efforts are currently being made to include the effect of the
rollup of .the wake on the lift distribution (e.g., refs. 10 and 11). The comparisons in
figure 2 prepared by Brian Maskew at Ames Research Center show that the rollup of the
vortex sheet can affect the span loading substantially at the wing tips when the wing is at
high angles of attack. The agreement of that prediction with the experimental span-'
loading measurements of Chigier and Corsiglia (ref. 12) is much better than the result
obtained when the vortex wake is assumed to remain flat. Such a change in span loading
has an effect on total lift, but the much larger effect appears in the distribution of vor-
ticity in the wake. Caution should therefore be exercised when a flat wake is assumed in
calculating the span loading on the generating wing because the loading gradients at the
wing-tip may not represent the correct concentration of vorticity. Most of the wind-
tunnel studies at Ames Research Center were made at small angles of attack so the
accuracy of the flat wake approximation was adequate. For these calculations, a modi-
fied version of a program by Hough (ref. 13) was used. - ; • :

. . CONVENTIONAL WAKES . . ... ,

The first part of the discussion on the dynamics of vortex wakes will'be restricted
to wakes produced by approximately elliptical spanwise loadings on the generating wing.
They are called conventional because most aircraft have this kind of loading, so that the
wake then consists of two vortices of opposite sign. Immediately behind the generating
wing these wakes often contain a number of small vortices that originate from .flap edges,
pylons, and so forth. In the far field, only two vortices are found because-the weaker
vortices merge with the stronger wing-tip vortices to form a single vortex pair that is
quite stable and persists for a large number of span lengths behind the generator. In an
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effort to reduce the wake-vortex problem, the second part of this discussion treats uncon-
ventional wakes produced by span loadings that differ appreciably from elliptic.

Near -Field Wake Structure

The vorticity distribution in the wake immediately behind the lift-generating sur-
faces usually changes rapidly from a flat spanwise distribution into two circular regions
of vorticity. (See fig. 3.) This reshaping process is usually referred to as the rollup of
the wake or vortex sheet shed by the wing. Ideally, it would be desirable to treat the
rollup of ,the distributed vorticity by a numerical scheme that includes the boundary layer
on the wing, fuselage, and other surfaces along with the drag of the landing gear and this
thrust of the engines. Since this technology is not available and would probably be quite
cumbersome to operate if it were, most researchers resort to the very approximate
method introduced by Rosenhead (ref. 14) and Westwater (ref. 15) over 40 years ago.
As is well known, the continuous vorticity distribution in the wake is approximated by' a
number of two-dimensional point vortices so that the reshaping of the wake distribution
can be solved as a two-dimensional time-dependent problem in the so-called Trefftz ' '
plane (fig. 3). An example of an elliptically loaded wing is presented in figure 4 (taken
from ref. 16). Estimating the wake restructuring by such a time-dependent method has
two principal difficulties. The first is'to assess the numerical accuracy of the calcula-
tions and the second is to interpret the results.

.A variety of papers have been written to elaborate on the shortcomings of the
method and to-introduce ways to remedy these shortcomings (e.g., refs. 17 to 24). These
discussions generally agree that the spiral shape at the edges of vortex sheets is often.,
not well simulated by the vortex array and that the point vortices sometimes undergo ,,x,
excursions believed to be associated with the vortex array and not with the vortex sheet
being represented. .Several methods have been introduced recently (refs. 21 to 23) to ..
stabilize these vortex motions and to eliminate the excursions believed not to be a part.
of the vortex-sheet structure. Although these techniques suppress vortex excursions and
sheet kinking, they also introduce another error source. The use of finite cores in the
vortices suggested by Chorin and Bernard (ref. 21) and Kuwahara and Takami (ref. 22) or
the accumulation of vortices at the center of the spiral as suggested by, Moore (ref. 23)
all contain.arbitrary parameters that are not related to the conservation equations for
the fluid they are to represent. The computed results may then appear more reasonable
than those obtained from point vortices, but the quantitative accuracy is .uncertain.
Finite vortex .cores instead of point vortices were used in some of the cases analyzed,,
and the vortex-motions were smoothed. The qualitative nature of the solutions was found
not to change if the core radius cnosen.for the vortices was less than the,initial spacing
of the vortices. However, the vortex motions were found to depend on the core size
chosen.
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Numerical accuracy.- The.motion of a number of two-dimensional point vortices in
an incompressible fluid is a problem for which numerical calculations are known to be
unstable; consequently, any initial error grows w.ith each time step. For this reason,
the calculations are usually begun with a large number of significant figures (double pre-
cision.on most computers) in the hope that the desired result can be achieved before
accumulated errors wipe out all the accuracy. It is also essential that the accuracy or
error accumulation be monitored during the calculations to detect an inappropriate
choice of mesh size or excessive error growth. For example, Westwater (ref. 15) used
the first moment of vorticity as an indicator of accuracy. When suitable error monitors
are used, it is possible to determine whether seemingly unrealistic results are attribu-
table to numerical error or to properties of the vortex array being analyzed.

Three error monitoring parameters are used in'the calculations made at Ames:

(1) The first moment of vorticity for each side (to reduce the likelihood of compen-
sating errors due to symmetry):

N/2 N/2

w ;. w
(2) The second moment of vorticity J about the center of gravity for the vortices

on each side: '

N/2 .

"^ i. ., • (2)

(3) The Kirchhoff-Routh path function Wr for the entire array of vortices:

N

(3)

Note that none of these quantities are used in the time-dependent calculations nor do
they depend,on the numerical integration scheme used. They are continually evaluated
(usually after every 10 or 20 steps) to ascertain how much error has accumulated in the
positions of the assembly of vortices. It was found that the Kirchhoff-Routh path func-
tion was the first to indicate the presence of errors in the calculations and that the first
moment of vorticity was hardly ever affected. That is, the first moment is the least
sensitive of the three accuracy monitors. When enough significant figures are retained
.in the results to-cover the plotting accuracy, the gross aspects and trends of the vortex
sheet observed in various experiments appear to be modeled correctly.
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Interpretation of data. - The interpretation of the point vortex distribution in terms
of a continuous distribution is not straightforward. A technique from reference 16 pro-
vided a vortex structure when a group of point vortices in the wake were known to be
associated with a given rotational motion, e.g., vortices on one side of an elliptically
loaded wing. Within each such group, the distribution of point vortices was first reinter-
preted as a stepwise radial distribution of circulation about the centroid of vorticity for
one side of the wing. This was done by assuming that the vorticity associated with a
point vortex in the array is spread uniformly on a ring with a radius equal to the dis-
tance of the vortex from the centroid. As indicated in figure 5, the resulting stepwise
curve for circulation as a function of radius agrees quite well with the variation pre-
dicted by Betz' theory (refs. 25 and 26) for elliptic loading even though rollup is not
entirely completed (fig. 4(b)). A faired curve through the stepwise variation could then
be used to determine the circumferential velocity distribution in the vortex.

Direct- and Inverse-Rollup Theories

Direct-rollup theory.- A theoretical tool frequently used to study the circumferen-
tial velocity distribution in lift-generated vortices is the simple rollup method of Betz
(ref. 25). His theory is based on the conservation equations for inviscid, two-dimensional
vortices and relates the circulation in the fully developed vortex to the span loading on~\
the generating wing. The simplicity of the method results from the assumptions that the
vortex is completely rolled up and that the rollup process is inviscid. In order to
achieve a unique result, the vortex sheet is assumed to roll up in an orderly fashion from
the wing tip inboard, so that successive layers of the sheet are wrapped around the: center
and over previous wrappings. (See fig. 3.) Any axial or streamwise variation in the
flow velocity is assumed to have a negligible effect on the rollup process. The Betz
method does not treat the transition or intermediate stages between the initial vortex
sheet behind the wing and the final rolled-up vortex structure. When the derivation is
completed (e.g., ref. 26), the vortex structure is related to the span loading on the gen-
erating wing by

rv(rl) = rw(7l) . . .. _ (4)

where the radius in the vortex rj is related to a spanwise station on the wing yj by

'I'-r-T^r1 rw(y>dy («rw(Yl) Jb/2 ,

The symbol Fw denotes the bound circulation on the wing,' and Fv, the circulation in
the fully developed vortex. Although the Betz theory does not appear to have been used
extensively for a number of years after its first derivation, it has recently been demon-
strated by Donaldson et al. (refs. 27 and 28) to be useful and often more accurate than
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more complex methods. The favorable publicity given to. Betz' method by Donaldson led
to an elaboration of the theory and more examples by Mason and Marchman (ref. 29) and
to use by Brown (ref. 30) of the rollup theory to predict the axial flow velocity in the vor-
tex. Another example of the good representation provided by the inviscid rollup theory
is presented in figure 6. The experimental data (ref. 31) were obtained with a three-" "
component hot-wire probe, and the span loading for the Betz calculation was obtained
with a vortex -lattice theory (ref. 13). It appears that viscous effects have not altered the
vortex structure appreciably. . . , . . • • • •

Inverse rollup theory. - As more experimental velocity data were accumulated with
the ground-based facilities (refs. 31 and 32), it became desirable to relate the vortex
structure backward to the span loading on the wing that generated the vortex. This led
to what might be called an inverse Betz method (ref. 33) which is based on the same
basic equations and assumptions as the direct Betz method. The derivation is begun with
the expression presented previously that relates the radius rj in the vortex to, the span-
wise, station on the wing y^ which contains a given amount of circulation. After some
simple manipulations and because the vortex is axially symmetric, so that the circulation
may be written as Fv = 2nriVQ, the inverse relationship becomes

' »
where VQ is the measured circumferential velocity in the vortex.

': .--Two-sample cases presented in figures 7 (a) and 7(b) include the measured vortex
structure, the span loading -inferred from these measurements by the inverse rollup
method, and, for comparative purposes, the span loading .predicted by vortex --lattice
theory. These results show that the inverse rollup theory can recover the span loading
on the generating wing fairly accurately. With almost all configurations a difference .
occurs near the wing tip as a result of the finite core size and solid -body rotation in the
•vortex near r = 0. The magnitude of the distortion in span loading depends on the size
of the core, which is influenced by the character of the boundary layer on the wing and on
the viscous and turbulent shear forces in the vortex itself. In most, cases, these distor-
tions appear to be small and to occur' only near -the wing tip. . . .

Region of applicability of rollup theories: - The simplicity of both the direct and the
inverse rollup methods results from the assumptions that the vortex is completely rolled
up and that the fbliup process is inviscid. These two assumptions then limit the down-
stream interval over which the theories apply. The upstream end of the region of appli-
cability begins where the rollup of the vortex sheet is largely completed and can be esti-
mated by use of inviscid, time -dependent rollup calculations. Results such as those in
figures 6 and 10 of Rossow (ref. 16) indicate that a major part of the rollup process
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behind many wings can be considered as practically complete within three to five span
lengths behind the generating wing. . -

The downstream end of the region of applicability is the distance at which viscous
and turbulent decay of the vortex has modified its structure to the extent that the inviscid
theory no longer approximates it. An estimate for this limit can be obtained from the
recent.data of Ciffone and Orlpff (ref. 32) wherein a so-called plateau region (to be dis-
cussed in the next section) is identified. Within this plateau region, they found that .the
vortex decays very little, but it is followed by a region where the vortex decays roughly
as t~*/ . These considerations suggest that the region of applicability of the Betz
method lies between about three span lengths and the downstream end of the plateau
region, which is estimated from the data of Ciffone and Orloff (ref. 32). Another conse-
quence of the inviscid rollup assumption is that excessively high velocities are often
predicted at and near the center of the vortex. Nevertheless, comparisons made by
Donaldson et al. (refs. 27 and 28) have shown that outside the core region (radius of max-
imum circumferential velocity), the Betz rollup theory yields reliable estimates for the
vortex structure.

Plateau and Decay Regions for Isolated Vortex

The accuracy with which both the inviscid direct and inverse Betz methods relate
the span loading to the vortex structure suggests that either the early history of the vor-
tex is nearly inviscid or that the decay process is very slow. The correct interpretation
appeared when the circumferential velocity was measured by Giffone. and Orloff (ref. 32)
at a number of stations behind several generating wings. Figure 8, taken directlyyfrom
their paper, shows that the maximum circumferential velocity is essentially'unchanged ,
for approximately 40 span lengths behind those .three wings. The expected decay of the
vortex, which is inversely proportional to the square root of distance; then begins to .
occur. The two straight lines for each configuration shown in figured approximate the
data in each region, and the sharp corner at their intersection is not intended to approxi-
mate the transition between the two regimes. The presence of both a plateau (nearly
inviscid) and decay region is also indicated in Donaldson's analysis (ref. 34) of the decay
of a vortex using his second-order closure model for turbulence. Since a wide variety of
wing planfqrms all exhibited the same characteristic plateau and decay regions, Iversen
(ref. 35) set about finding an explanation for the onset of decay. By using a self-similar
turbulent vortex, he was able to correlate the data obtained in groundrbased facilities and
in flight into the single curve shown in figure 9 (taken from Iversen, ref. 35). The vari-
ation of the Reynolds number function f (ro/^) (fig. 10) shows that it is conveniently 1.0
for Reynolds numbers over 10^. From the.data of reference 32 and these correlation
functions,. Ciffone (ref. 36) has developed an empirical relationship that makes it possible
to predict easily the peak swirl velocity in vortices. The information gained by Iversen
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(ref. 35) and Ciffone (ref. 36) was then extended by Iversen in reference 37 to a numerical
analysis of an isolated vortex using a mixing length model for the eddy viscosity. The
initial data for the structure of the vortex were obtained using the rollup theory based on
span loading. The numerical analysis is then able to predict the structure of the vortex
in the plateau region; through the transition process, and into the decay region.

Rossow (ref. 33) and Iversen (ref. 37) assumed that each vortex in the pair acted
independently of the other (i.e., as if it were isolated). The fact that such an assumption
is valid for large distances into the wake was predicted in the theoretical.work of Nielsen
and Schwind (ref. 2, p. 413). The very slow decay of an isolated vortex or. of a single
pair indicates that radical changes must be made in these lift-generated wakes if the
hazard to encountering aircraft is to be substantially reduced.

Rolling Moment On Encountering Wing-Axial Penetration

The encounter of a wing or aircraft with a vortex was restricted in the NASA
studies to axial penetration. This is not meant to imply that a cross-vortex encounter is
less hazardous, but that entry into the vortex along the axis is probably most likely to
occur during landing and take-off operations. The experimental setup used in the Ames
40- by 80-foot wind tunnel to simulate this flight condition is shown in figure 11. The
swept-wing model used to generate the vortex wake was mounted on the tunnel centerline
at the entrance to the test section. The encountering model was mounted at the exit of
the test section on a tower that moved horizontally and on a strut that moved vertically.
In this way the following model could be moved throughout the wake to find the largest
rolling moment. Theoretical results show that this rolling moment occurs when the
centerline of the encountering wing is alined with the center of a vortex. In these exper-
iments, only rectangular wings at zero angle of incidence were used because they were
simple to make and to analyze. The schematic diagram in figure 12 indicates .the way
in which the rolling moment on the following wing is analyzed. The axial velocity is . : •
assumed to be nearly constant and equal to that of the oncoming stream. The upwash or
downwash on the wing'is then equal to the circumferential velocity VQ in the vortex.
The rolling-moment coefficient, defined as C^ = Rolling momentAl/2pU<x> SfbfJ, can
then be calculated by a lifting-surf ace theory or a variety of strip theories.' Good agree-
ment with experiment was found in most cases for several followers when vortex-lattice
theory was used with the measured vortex velocity profiles to find the rolling moment
(ref. 31). Consequently, it is desirable to measure the pressure distribution on a follow-
ing wing and to compare it with predictions made by various theories. Also ,the unsteady
aspects of the flow field were ignored here. Furthermore, data taken on wings making
various types of penetrations need to be compared with the corresponding theoretical
methods for predicting the pressure distributions.
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- - UNCONVENTIONAL WAKES .

' Alleviation of Rolling-Moment Hazard

The single vortex pair shed by wings with conventional span loadings persists for
such distances behind the generating aircraft that the traffic density at airports during
peak times cannot be accommodated. Efforts made to enhance the decay process of the
two-vortex wake by injection of turbulence (refs. 2, 38 to 41) and by stimulation of insta-
bilities in the vortex system (e.g., refs. 42 and 43) provide a degree of alleviation. The
various investigations by NASA on minimization of wake turbulence by aerodynamic
means is summarized-by Gessow (ref. 44). A mechanism is needed, however, in the ,
wake dynamics to bring about mixing on a scale comparable to the span of the wing .
rather than the usual eddy size so that angular momentum is convected rapidly across
the wake. Two hypothetical span loadings, first explored theoretically by Rossow
(ref. 16), were derived by specifying that the vortex wake remain flat and not roll up
from its edges as illustrated in figures 13(a)>and 13(b). The first wake considered was
designed to rotate as a unit so that it would appear as if a twisted ribbon were shed from
each side of the wing. The objective of this design was to produce as large a. vortex core
as possible. The span loading would then taper gradually to zero at the wing tips rather
than dropping abruptly as with elliptic loading. When compared with an elliptically
loaded wing, this tailored loading was found to be only moderately effective for small fol-
lowing wings and worse for larger followers. The higher centerline lift required to
maintain a given lift on the generator leads to higher rolling moments when the span of
the follower is more than about 0.2 of the span of the generating wing. (See Rossow,
refs. 16 and 31.)

The second wake studied consists not of,a continuous vortex sheet but of .an array
of vortices designed to move downward as a unit behind the generating wing. Since the •
sign of the vortices alternates, the loading is stepped or sawtooth shaped. When the
time-dependent method discussed previously is used to predict the shape of the wake, it
is found to remain flat because all the individual vortices move downward at the same
velocity. If, however, a disturbance is given to one of the vortices, the specified uniform
motion breaks down and the vortices form pairs that make large excursions across the
wake as shown in figure 14(a). Hence, although the shape of the sawtooth loading fluctu-
ates about elliptic loading, the vortices in the wake do not revolve about the edge or tip
vortices in the way that they do for elliptic loading (fig. 14(b)). If a similar disturbance
is given to the vortices shed by elliptic loading, the general shape of the wake is not
altered although the positions of some of the vortices change slightly.

The numerical result shown in figure 14(a) suggests that wakes with multiple vor-
tex pairs can be designed so that they are unstable to disturbances and convection of vor-
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ticity across the wake can be considerably enhanced by the resulting excursions of the
vortex pairs. Similarly, wakes with only a single vortex pair are to be avoided because
they tend to be stable to disturbances and, as described in the foregoing sections, tend to
persist for large distances behind the generating wing.

Wings That Shed Multiple Vortex Pairs :

The discussion in the previous section was based on inviscid calculations using two-
dimensional point vortices. It remains then to find out whether the sawtooth span loadings
can be implemented so that the large vortex excursions in the wake can be achieved.
Two experimental wings were modified to approximate to a limited extent the sawtooth"
loading. The first wing was swept and equipped with seven flap segments per side
(refs. 31 and 32). When these segments were deflected alternately up and down across
the span, the loading is predicted by vortex-lattice theory to be as shown in figure'15.
Tests by Cifforie and Orloff (ref. 32) in a water tow tank showed that the vortices shed by
this wing did undergo large excursions in the wake and that various pairs -linked in'the
way'described by Crow (ref. 6) and MacCready (ref. 2, p. 289). But when the various
excursions and linking were completed, a vortex pair still remained in the wake. -These
preliminary results indicate that generation of multiple vortex pairs will bring about
large vortex excursions that lead to linking but that additional criteria are needed to .
achieve adequate diffusion of the wake vorticity.

A second wing on which vortex wake alleviation was attempted by span load modifi-
cation was that of the Boeing 747 subsonic transport (refs. 44 and 45). The wing has
inboard and outboard ,flaps (fig. 16) that can be deflected separately so that the loading
can.be enhanced inboard or outboard within the limits indicated in figure 17. lithe
inboard flaps are deflected their full amount (30° setting), the span loading has a large
hump inboard resembling a combination of tailored and sawtooth span loading. Although
that loading produces three vortex pairs in the near-field rollup region, the two flap vor-
tices combine, so that only two vortices per side persist into the far-field region. Far
downstream these two vortices, which are of the same sign, merge into a single diffuse
vortex. Tests in a water tow tank and in a wind tunnel indicated that the rolling moment
imposed on a following aircraft by the wake of this configuration would be less than half
of that posed by the wake of the landing configuration at the same lift coefficient. Fur-
thermore, this reduced value was below the roll-control capability of a Learjet aircraft
which could be used to probe the wake.

Flight tests conducted with the Boeing 747, the Learjet, and a T-37 aircraft (ref. 45)
confirmed the predictions:of the ground-based facilities when the landing gear was
retracted. It was found, however, that if.any of the landing gears were extended or if the
aircraft were yawed, the hazard alleviation achieved with the unconventional flap settings
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was greatly reduced. Efforts are now underway first to identify the mechanism by which
the drag of the landing gear destroys the favorable vortex interactions, and second to ""'
find ways to remedy the configuration so that alleviation is operable and effective under
all conditions.

It should be mentioned at this point that tests were also made with the outboard
flaps deflected fully and the inboard ones withdrawn. (See fig. 17.) Both the data from
ground-based facilities and the flight experiments indicated that this configuration was
not an improvement over the conventional landing configuration. Also, a few other flap
settings were tried but none Were as effective as the (30°/0°) configuration.

Tests on both of these wings indicate that the hazard posed by lift-gene rated wakes
can be significantly reduced by changing the spanwise lift distribution so that several.' . .
pairs, .rather than one pair, of vortices are shed into the wake.. Strong interactions
between the vortices through linking, merging, or some other process diffuse the wake .
vorticity to a tolerable level.' At this time, however, no adequate theoretical tools are
available to aid in explaining the effect of gear or yaw found in the flight tests. NASA
has several studies underway which should .lead to the development of numerical, methods
that are capable of treating multiple vortex wakes and the interactions that occur. Since,
the flow field is three-dimensional and time-dependent, the computer programs.will no
doubt be complex. .

CONCLUDING REMARKS

None of the theoretical methods described here for analyzing lift-generated'. Wakes '
that consist of a single vortex pair were complex enough to require large or advanced
computers. The results of the analyses and experiments indicate, however, that the haz-
ard posed by these simple wakes is unacceptable, and means must be sought to enhance
the diffusion of the angular momentum in the wake. Preliminary tests of wakes with
multiple vortex pairs indicate that the interactions that occur may provide the mecha-
nism for reducing the wake hazard. However, better design guidelines and better theo-
retical methods for checking them in various installations must be developed so that"fail-
ures of the alleviating mechanisms under certain circumstances can be avoided. Any "•'
theoretical study of multiple vortex wakes will probably be so complex as to require' a'
numerical analysis. Even though some simplifications can be made based on experience
with vortex wakes of a single pair, the three -dimensional time -dependent nature of these
wakes will require large computer capacity and long computing times. It can be antici-
pated therefore that the availability of larger and faster computers will expedite the find-
ing of acceptable ways to alleviate the wake vortex hazard behind aircraft. -• .
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WAKE-GENERATING AIRCRAFT

DOWNWASH

FOLLOWING AIRCRAFT-
(AXIAL ENCOUNTER)

^ROLL-UP REGION

^-PLATEAU REGION

DECAY REGION

Figure 1.- Flow field produced by lift-generated vortices.
drawn to scale.

Distances are not

Figure 2.- Measured spanwise lift distribution on rectangular wing compared
with loading predicted by vortex-lattice theory assuming a flat .wake and

i that near wake is rolling up.
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Figure 3.- Schematic diagram of wake rollup and .relationships between span
loading and vortex structure.
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Figure 4.- Rollup of vortex wake shed by elliptic loading calculated by
inviscid two-dimensional time-dependent approximation, W is dimensionless
vertical velocity.
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Figure 5.- Comparison of structure of vortex shed by elliptic loading as
predicted by time-dependent method with that predicted by Betz direct
rollup theory. F* is circulation on centerline.
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Figure 6.- Comparison of measured vortex structure with prediction made by
Betz rollup theory using span>loading predicted by vortex-lattice theory

, f o r a swept wing • . • . . .
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(a) Measured vortex velocity profiles (ref. 31)

EXPERIMENT-INVERSE BETZ
VORTEX-LATTICE THEORY
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WING

(b) Calculated span loadings.

Figure 7.- Comparison of inverse rollup theory with vor.tex-lattice theory.
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Figure 8.- Maximum circumferential velocity in vortices behind wings as
measured in water tow tank (from Ciffone and Orloff, ref. 32).
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Figure 9.- Correlation of data from ground-based and flight experiments on
maximum circumferential velocity in vortices shed by various conventional
span loadings (from Iversen, ref. 35),.
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Figure 10,- Reynolds number function used to correlate data in figure 9 (from
Iversen, ref, 35).
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Figure 11.- Experimental setup used in 40- by 80-ft Wind Tunnel to measure
rolling moment on an encountering wing.
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Figure 12.- Wake vortex impinging on following-iwing.
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CONVENTIONAL SPAN LOADING TAILORED SRAN LOADING

WAKE ROLLS UP
FROM EDGES

WAKE FROM EACH SIDE
ROTATES AS RIGID SHEET

(a) Rotating wakes.

CONVENTIONAL SPAN LOADING SAWTOOTH SPAN LOADING

WAKE ROLLS UP
FROM EDGES

WAKE TRANSLATES DOWNWARD
AS A RIGID SHEET

(b) Translating wake.

Figure 13.- Comparison of conventional wakes with wakes designed to avoid
. rollup from the edges of the vortex wake.
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(a) Large-scale wake mixing. (b) No wake mixing.

Figure 14.- Wake structure predicted by time-dependent vortex calculations for
elliptic and sawtooth span loadings.
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Figure 15.- Span loading predicted by vortex-lattice theory for swept wing
with seven flap segments per side deflected alternately up and down 15°.
CL = 0.7.
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INBOARD FLAP

OUTBOARD FLAP

Figure 16.- Plan view of Boeing 747 subsonic transport.

FLAP SETTINGS

Figure 17.- Span loadings calculated for Boeing 747 wing using
vortex-lattice theory.
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SIMULATION OF UNSTEADY THREE-DIMENSIONAL SEPARATED

FLOWS WITH INTERACTING VORTEX FILAMENTS

A. Leonard*

NASA Ames Research Center

SUMMARY

Interacting, three-dimensional vortex filaments are used for the numeri-
cal simulation of separated, incompressible flow past solid bodies. Vortices
are introduced at the boundary to simulate the boundary-layer vorticity.
These filaments then move with the local fluid velocity determined kinemati-
cally from a Biot-Savart integral over the vortex filaments plus a time-
dependent potential flow. Preliminary results are given for three-dimensional
flow past a sphere.

I. INTRODUCTION

Recent success using discrete vortices to simulate unsteady two-
dimensional, incompressible flows at high Reynolds numbers (ref. 1) including
separated flows over airfoils (data supplied by R, S, Rogallo) has prompted
development of a similar technique for three-dimensional problems. The basic
idea is to model the vorticity distribution in terms of continuous filaments .
and to track these filaments in a Lagrangian reference frame. Viscous effects
are assumed to be important only in the determination of the fine structure
within the filament core. Each filament moves according to the local fluid
velocity appropriately averaged over the filament core. The vorticity distri-
bution within a filament is parameterized by a locally defined, effective core
radius determined dynamically by the effects of viscous diffusion and vortex
stretching.

Initially, the three-dimensional simulations were limited to rotational -
flows away from solid boundaries such as jets, vortex rings, and aircraft
trailing vortices after initial rollup (ref. 2). In this paper, an extension
of the method is presented which allows simulation of flows about solid bodies
including vortex shedding to the wake. The influence of the boundary is two-
fold. First, to ensure tangency of the velocity field at"the boundary, a
harmonic contribution to the velocity field must be computed at each time

*NRC-NASA Resident Research Associate.
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step. Second, the mechanics of the boundary layer must be approximated with
sufficient accuracy so that the separation lines are located correctly on the
•surface of the body.

After a brief review in Sec. II of the physics of the unsteady flow field
in terms of vorticity (dynamics, an efficient procedure for the calculation of
the above-mentioned harmonic velocity field is given in Sec. III. In Sec. IV
a simple model of the boundary layer is described which provides for ejection
of vorticity into the wake. Additional computational aspects of the problem
are discussed in Sec. V and in Sec. VI some preliminary results are presented
from the application of the method to flow past a sphere.

Another approach to the simulation of unsteady separated flows which re-
quires less modeling is, of course, to use the full Navier-Stokes equations
with an Eulerian grid. In two dimensions, for example, such methods have been
successful in computing unsteady laminar flow past an elliptic cylinder (ref..
3) and an airfoil (ref. 4) at angle of attack. These computations were cost-
ly, however, and such three-dimensional simulations promise to be very time
consuming even on advanced computers (ILLIAC IV or CDC STAR).

II. PROBLEM FORMULATION

To motivate our approach to the computation of unsteady, separated flows...
past solid bodies at high Reynolds number, some of the fundamental .aspects oft-'-
the problem will first be reviewed (ref. 5). Vorticity, initially formed at-;H
the surface of the body through the action of pressure gradients along the
surface, is ejected into the wake region at separation lines. The locations/
of these lines are determined by the internal dynamics of the boundary layer •,- .
which, in turn, are strongly influenced by outer flow boundary data at the top
or edge of the boundary layer, namely pressure gradient and edge velocity.
The wake or outer flow region is characterized by fluctuating concentrations
of vorticity immersed in an unsteady potential flow (see fig. 1).

The vorticity field u^ in the outer flow satisfies the incompressible
vorticity transport equation

' B^ = w • Vu + v V2w ~ (2.1)
Dt — — —

where v is the kinematic viscosity. The velocity field _u can be deter-
mined from the kinematic relation

V2_y = _ v xoj (2.2)

where again incompressibility (V • u. = 0) has been assumed. Boundary condi-
tions on (2.2) appropriate to this problem are

lim H(r,t) = û  .. (2.3a)
|r| ->•» .

and

u_(r )'.• n = 0 (2.3b)
™™* 5̂ ™̂" • '.
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where ri is the unit outward normal at the surface and, neglecting a term,
which is OCRe"'5), _r_g is an arbitrary point on the body surface S. Condi-
tion (2.3b) excludes that part of the surface where the'boundary layer is sep-
arating (i.e., at the separation lines). Within the separating region the
flow'is entering'the wake region. Elsewhere, along the'outer flow boundary "
near the solid surface, the flow is either tangent to the boundary or is leav-
ing the outer flow region and is assumed inviscid. Thus the integration of
the outer flow vorticity equation (2.1) requires only acknowledge of the fluid
velocity distribution within the separated shear layers at the time of separa-
tion (ref. 6).

In the boundary layer away from the separation lines, the Navier-Stokes
equations reduce to the boundary-layer equations under the usual approxima-
tions. These reduced equations require as input the pressure gradient along
the surface, ^sp» and the edge velocity of the boundary layer. Both are
available from the outer flow solution. The latter quantity is simply ".(£3) •
Near the separation lines the full Navier-Stokes equations may be required to
achieve an accurate solution to the boundary-layer flow. In any case, the
boundary-layer calculation must supply the locations of the separation lines
and the velocity distributions of the separated shear layers at separation as
input to the outer flow computation.

However, the boundary-layer model employed in this work does not expli-
citly rely on the use of the boundary-layer equations, so there is no need to
write these equations here. Rather, the following integral properties of the
boundary layer will be stated for later use. The total vorticity per unit
area of the boundary layer is perpendicular to and equal in magnitude to the
external flow velocity,

_ dn = _nxu.(r ) . . (2.4)
S _ • i

• o . .
Here 6 is the boundary-layer thickness and n is the coordinate normal to
the surface.

BOUNDARY LAYER

t\ 8. / ?? /SURFACE VELOCITY u(rs)

The circulation within the boundary layer passing a given surface point per
unit time in the direction of u^r ) is given by :

dr f6 ~* l«<^>|2 .
d7 = - (nxu>(n))c u?(n)dn Y~~ ' (2.5)

0

where E, is the coordinate in the direction of u.(ĵ) •. Thus, the average
vorticity in the boundary layer has an apparent speed of |u_(r )|/2. Finally,

S
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it should be noted that the vorticity flux into the boundary layer at the
solid surface is , .

8u) ' I . •
v^ . , = — V p x n ' (2.6)

surface

where p is the fluid density.

III. OUTER FLOW SIMULATION

As in the earlier study (ref. 2), the vorticity distribution in the wake
is modeled in terms of a set of closed vortex filaments. These filaments are
marked with a sequence of node points and are tracked in a Lagrangian refer-
ence frame. The vorticity distribution within each filament is parameterized
by a locally defined, effective core radius. Thus, each filament is complete-
ly specified in terms of the positions of the node points, 'the local core
radii, and its circulation.

The velocity of each node point is given as an appropriate average of the
velocity field over the filament core velocity. The velocity ia ,is the solu-.
tion to (2.2) and may be written as

u(r,t) = -̂  J (r-r')̂ r.yt)dr' +..̂..

where the integral is over all the vorticity containing fluid in the outer flow
and \r is the irrotational contribution constructed so as to ensure that
boundary conditions (2.3) are satisfied. The model for the vorticity field
described above is used t'o split the Biot-Savart integral in (3.1) into two
contributions, one due to nonadjac.ent segments and the other due to the two
segments adjacent to the given node point. The latter contribution is in-
versely proportional to the local radius of curvature of the filament and de-
pends logarithmically on the local core radius. The details of this procedure
are given in reference 2 along with dynamical equations for the core radii
based on vortex stretching and viscous diffusion effects..

The computation of the potential flow v_ proceeds as follows. Write v^
as the sum of three contributions

..;..,, ,.«.,v..= v, + VTM + v- . . (3.2)
- - 00 - J_M - - . . . .

where v satisfies
—CO . ,

lim v = u . . (3.3)
— — • V
—00—00

and VTM represents the irrotational velocity field induced by vortex fila-
ments within the solid body serving as approximate images to filaments in the
outer flow which are close to the surface. Use of images allows a relatively
coarse surface mesh for the determination of the remaining 'contribution \r.
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The velocity v is constructed to ensure that u(rs) • n = 0. If q is
defined by

n- (r -r')*a>(r')dr'

Us-I
« 13 + [ v ( r s > + Y IM(r_)] • n (3.4)

then (2.3a) requires that

Y(rs) • n = -q(rs)

Let the potential for v be <f>,

. Y .= - y<t> .
then <(> is the solution to the Neumann problem,

(3.5)

(3.6)

(3.7)

J (3.8)

on S. 'The function <}> is conveniently expressed as a single layer potential
in terms of a density Y,

exterior to the solid body and

8*

2ir

Y(£ s )d r s
(3.9)

Then Y satisfies the integral equation (ref. 7)

Y(ES) -L 1
27T

S- (r s-r s ' )Y(r s ' )dr s ' ^

S =

9n

q(rs)

(3.10)

where n is the. outward normal at rs.

Once (3.10) is solved for y»"(3.6) and (3.9) combine to yield the con-
tribution v at any desired point on S or in the outer flow region.

For numerical purposes, the body surface S is partitioned into a set of
surface patches {S^, 82. ' ' '. SM^' Within each the density Y is assumed
constant. With this assumption, integration of (3.10) over S^ gives

M

3=1
Y J = q J (1-1, 2, , M)

where

-s

(3.11)

(3.12)
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ii i r' n • (r - r ' )
K = AAJ

(3.13)

= j q(rs)drg (3.14)

S.i
and A.* is the area of patch Sj. The q1* may .be computed from (3.4) using
the vortex filament description for the vorticity field. Therefore, q1. re-
duces to a sum over all the filament segments in the outer flow plus the image
segments with a possible additional free-stream contribution.

Physically, if one were solving a radiation heat-transfer problem inter-
ior to S, then K^ would be the view factor of patch S-^ for radiation
emitted at S.= ; that is , K1^ is the probability that a photon starting from
$£ will pass through Sj (assuming the interior is vacuous) . For a strictly
convex body the matrix I + K is therefore positive and strictly diagonally
dominant. Hence, solving the system (3.11) by; say, the LU algorithm (ref.
8) presents no problem.

. . At. each time step then, the q1 are computed, then y1 are solved for
and used in (3.9) and (3.6) to give v at each of the filament node point
positions. , The other contributions, y , vj^, and the Biot-Savart term, are
added in to give the net velocity at each node point. The node positions are
then stepped forward in time. -

IV. BOUNDARY LAYER MODEL

As discussed in Sec. II, vorticity is ejected into the outer flow from
the boundary layer at separation lines. Accurate simulation of the boundary
layer and therefore the location of separation might require the use of an un-
steady boundary-layer calculation with the full Navier-Stokes equations near
separation.

On the other hand,.the outer flow strongly influences separation through
u(r_s) and Vgp irrespective of the internal dynamics of the boundary layer. A
relatively crude, approximation of the mechanics of the .boundary layer might
then suffice to,yield accurate characteristics of the wake. Therefore, in the
application of the method to flow past a sphere, described in Sec. VI below, a
simplified, economical model of the boundary layer was used.

• In this model the boundary-layer vorticity is divided into two parts —
(1) an upstream attached layer of vorticity (composed of a single sheet) and
(2) vortex filaments downstream of this sheet. The downstream boundary or
front of the sheet moves with local velocity u(rg)/2 which is consistent
with the discussion following equation (2.5). When the front moves past a
.specified downstream latitude, a ribbon of the sheet is removed from the down-
stream edge and formed into a vortex filament (see fig. 2). For a given cir-
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culation, the heights of the new filament nodes above the surface are chosen
so that the filament speed is |urs|/2 and the new position of the sheet
boundary is determined to maintain (2.5). The initial core radius of the fil-
ament is allowed to vary parametrically within a specific range. The minimum •
of this range is determined by matching the volume of vorticity in the ribbon
to the volume of the new filament. The former is, of course, proportional to •
boundary-layer thickness which in turn is proportional to Re$. The maximum
core radius in the range is simply the initial height of the node points above
the surface so that the edge of the core touches the surface.

The newly formed filament and its unseparated predecessors constitute the
vorticity in the remaining part of the attached boundary layer. Computation-
ally they are treated as part of the outer flow. Chorin (ref. 1) and Rogallo
use discrete vortices in simulations of two-dimensional separated flows with
similar boundary-layer models and have> achieved reasonable success in predict-
ing unsteady wake characteristics and body forces. In their studies, new vor-
tices are created at the surface to kill the slip velocity there. In the pre-
sent study, downstream vorticity production at the surface past the edge of
the sheet is ignored. Downstream of separation, however, vorticity production
at the surface is known from experiments to be small (ref. 9) due to the near-
ly flat pressure coefficient in this region. The remaining error can be min-
imized by adjusting the cutoff latitude to;be close to separation.

For general three-dimensional flows more elaborate models most likely
will be required.. For example, the present model assumes that all the vorti-
city released from the sheet is locally parallel with the sheet boundary. For
spinning bodies or even bodies at angle of attack the vorticity will not be
monodirectional from the surface to the top of the boundary layer. Rather,
external streamline curvature will produce new vorticity at the surface in the
streamwise direction.

V. COMPUTATIONAL ASPECTS

If N is the total number of filament node points and M is the number
of surface patches, then the total number of arithmetic operations required at
each time step # is given by

f£ = Kj N2 + K2 MN + K3 M
2 + 0 (N) +0 (M)

The first term is due to vortex-vortex interactions (i.e., each vortex segment
induces an incremental velocity on all others) . The constant K\ is roughly
50-100 or higher if images are used extensively. The second term arises from
the computation of the velocities induced by the filaments at each surface
patch and the calculation of v at each node point. The factor K£ is larg-
er than K! but of the same order. With respect to the third term, the LU
solution for the single layer potential y and the calculation of y at each
surface patch require 0(M2) operations. The constant K3 is in the range
5-10, an order of magnitude smaller than Kj .

The simulation runs for a sphere reported below were performed on an IBM
360/67. The number of node points N could range up to 500 with M = 100 be-
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fore computing times become unreasonable (> 2 min/step). For the same calcu-
lation scheme, upper limits for the CDC .7600 and the ILLIAC IV are probably
around N » 2,500 and N « 10,000, respectively. These limits do not compare
favorably with Eulerian grid schemes for, say, the problem of turbulence simu-
lation. There, 323 (= 32,768) grid points are typically used and run about
3-5 sec/step on a CDC 7600 (refs. 10, 11). The reason is that 9t grows asymp-
totically as N log N for grid calculations if efficient Poisson solvers or..
spectral methods with FFT are employed. . .. . . . . . .

On the other hand, -the Lagrangian vorticity method described in this pa-
per should require fewer mesh points for the same accuracy because (1) mesh or
node'points are needed only where the vorticity is nonzero, (2) the mesh
points concentrate themselves only where required.to achieve high concentra-
tions and/or gradients of vorticity, and (3) some of the fine scales are pre-
calculated as the structure of the filament cores.

If desired, however, large (N « 105) simulations would be possible by a
more efficient algorithm for the vortex-vortex interactions. Several modifi-
cations are possible. One is to expand the Biot-Savart integral in equation
(3.1) if |r--r'| is large and retain only the leading terms (ref. 3). Another
remedy would be to solve the velocity potential equation V2j^ = -to on a
relatively coarse grid and then interpolate the velocities at the filament
nodes (ref. 12). The. flow segmentation method of Wu (ref. 13) is..a third pos-
sibility related to the first one in which the influence of distant vorticity
is essentially treated on a coarse grid. . . .

VI. SIMULATION RESULTS .

In this section preliminary results are given from the simulation of flow,
past a sphere.. These results reveal some of the qualitative features of the
structure of the wake and the initial drag and side forces after an impulsive
start. More quantitative results, such as pressure distributions, Strouhal
number and time-dependent drag and side-force coefficients over several,Strou-
hal periods, are being compiled.

For Reynolds numbers below a few hundred the wake of a sphere takes, the
form of a steady, axisymmetric separation bubble (ref. 14). As Re increases
above this value, the separation bubble becomes unstable and periodically
forms into vortex loops which break away-(refs. 15, 16). In figure 3 a sche-
matic representation of the vortex configuration in the wake of a sphere at
Re = 103 is shown as observed experimentally by Achenbach using flow visuali-
zation techniques in a water channel (ref. 16). The flow is observed from two
directions perpendicular to one another. Notice the persistent asymmetry in
the depicted wake structure. In figure 4 a sequence of CRT displays is shown
from a simulation of flow past a sphere with an impulsive start. The
boundary-layer vor.tices were initially perturbed by a small rigid translation
upward normal to the flow axis to excite the wake instability. Each- point
represents a surface patch on the sphere and the loop farthest upstream to the
left is not a vortex but the front of the attached sheet of the boundary lay-
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er. Notice the tendency for some of the vortex rings to deform into horizon-
tal loops arid lie in a plane containing the flow axis; similar in nature to
those shown in figure 3. Longer simulations with provision to remove down-
stream vortices from the calculation-will be required to identify persistent
periodic structures witlr certainty. ' •"•"' , - • • - » • • . ••• . . '

Finally, in figure 5, time-dependent drag and side-force coefficients are
shown for the simulation depicted in figure 4. The points shown represent '
averages over time spans during which the number of vortices.in the outer flow
is constant. The drag force is clearly in the correct range, but, again,
longer -runs will be necessary to obtain an accurate time average to compare
with -experiment. Notice that significant side forces develop initially at an
exponential rate. These side forces are, of course, consistent with the ob-
served instability of the axisymmetric separation bubble and the resulting
horizontal vortex loops in the wake. .
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Figure 1.—Schematic drawing of 3-dimensional unsteady, separated flow.
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Figure 2.—Formation of new vortices from the attached sheet.
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Figure 3.—Vortex structure in the wake of a sphere as
observed by Achenbach (ref. 16) Re = 103.

»>o.o 2.5 5.0

Figure 4.—Simulation of flow past a sphere with an impulsive start as
observed from two directions perpendicular to one another.
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ADVANCED PANEL-TYPE INFLUENCE COEFFICIENT

METHODS APPLIED TO SUBSONIC

. AND SUPERSONIC FLOWS*

By F. Edward Ehlers, Forrester T. Johnson,
, .and Paul E. Rubbert

Boeing Commercial Airplane Company

SUMMARY

Advanced techniques are presented for solving the linear integral equations of sub-
sonic and supersonic potential flow in three dimensions. Both analysis (Neumann) and
design (Dirichlet) boundary conditions are treated. Influence coefficient methods are
used that encompass both source and doublet panels as boundary surfaces. The methods
employ curved panels possessing singularity strengths which vary as polynomials. These
and other features were selected to produce a stable, reliable, accurate, and economical
scheme, overcoming many problems experienced with earlier methods. Computational
results are presented that illustrate these advantages.

INTRODUCTION

Steady, inviscid, and irrotational fluid flow in a domain D is characterized by a
perturbation velocity potential 0 which for incompressible flow satisfies Laplace's
equation

° (P e D) (1)-

and for a free-stream supersonic Mach number of \j2, the wave equation

° . (P e D) (2)

The solutions of equations (1) and (2) are readily extended to linearized subsonic com-
pressible flows or supersonic flows at other Mach numbers by a scale transformation of
the x variable and by Gothert's rule.

*Work supported by NASA Ames Contract NAS2-7729.
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Both analysis and design boundary conditions are considered. Analysis conditions
are employed on portions of the boundary where geometry is considered fixed and result-
ant pressure distributions are desired. The permeability of the fixed geometry is known;
hence, analysis conditions are of the Neumann type (specification of normal velocity).
Design boundary conditions are used wherever a geometry perturbation is allowed for the
purpose of achieving a specific pressure distribution. Here a perturbation to an existing
tangential velocity vector field is made; hence, design conditions are fundamentally of the
Dirichlet type (specification of potential). The design problem is the more difficult of the
two and involves such aspects as stream surface lofting and the relationship between a
velocity field and its potential.

Under rather general assumptions, Green's third identity shows that a solution of
equation (1) or (2) may be expressed as the potential induced by a combination of source
singularities of strength a and doublet singularities of strength ju distributed on the
boundary surface B. For incompressible flow from reference 12,

rr I 1 \ rr a / 1 \
4>(P) = \\ a(Q)(^!-]dB +\\ M(Q)_(-i- dB (3)

JJ \47JT/ **«/ Biv-vViTrr/

where r is the distance from the field point P to the surface point Q, and 8/8nQ is
the derivative in the direction of the inner surface normal, i.e., directed into the domain
D . • • . • • • • • - ' • : : • . • - - • . . . - • • . - : • . - . . ; • :

For supersonic flow, Green's third identity takes the form

: (4).&H ^v -n. ^ oi/ov*y
where

H = - (YQ - YP) ' (ZQ -

is the so-called hyperbolic distance between the points P and Q, and the lines around
the integral denote the taking of the finite part in the sense of Hadamard (ref. 14). The
region Cg is the portion of the boundary surface intercepted by the upstream Mach cone

(H > Oj from the field point P. The quantity v is the conormal vector and is related

to the normal by the relation v =/-
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The specification of zero perturbation potential in the region exterior to , D leads
to a surface distribution on B comprised of a = 9,$/8n and fi = $. • The specification
of continuity of. 0 across. B leads to a source-alone representation. The 'specification
of continuity .of ̂ 3 <£/9n acrqss B leads to av doublet-alone representation. All',three
representations have. been employed successfully in practice.' . (See r'efs. 1, 2, and 3.)

. •- - T
4

Determination of a and /i is. equivalent to solving- equations (1) and (2);in view,^
of 'equations. (3) and (4). Once a priori restrictions on. a and \i have been specified,.-.
the entire flow may .be rendered unique by imposition of a proper set of boundary cpndi-->
tions. This may be done explicitly, e.g., direct specification of c and/or : pi, as well as
implicitly, e.g., sending P to B in equation (3) or (4) and producing an integral equa-
tion for ,a and .p.. .. In the latter case, it may be necessary to differentiate equation (3)
or. (4) first. . Thus for analysis boundary conditions in subsonic flow, : i

B \4^

(5)

For design boundary conditions, the normal derivative is replaced by the tangential deriv-
ative 9/9tp. . ,

- : For supersonic flow, the conormal and tangential derivatives are;used for the1 anal-
ysis and design conditions, respectively. For the analysis boundary conditions, equa- ;•{
tion ( 4 ) yields : . . • • . • •

90 _ 1 -\\ ff(Q)-^—(—|dB + \V M(Q) —• f—I <*B • ,J (6)
II r\ 1 j • \ T-T / '' ' '] ) ft 1J e\ 1J \ rT / *" • '

The numerical solution of equations (3) to (6) is usually accomplished by panel-type
influence coefficient methods. The surface B is divided into panels, and singularity
distributions dependent on a finite number of unknown parameters are defined for each
panel. Then a finite set of control points on B are selected at which the boundary con-
ditions are required to be satisfied. Upon performing the indicated integration, a finite
set of linear algebraic equations results, which is denoted symbolically by . . , ;:

' • ' - . ; - • • .Ax- = b . . ..,.- , .. ,(7)

'where "X is' the vector of unknown singularity parameters, b is the- vector of "known
boundary conditions, and A is a matrix of. influence coefficients. (A^j represents, the-.,

influence of Xj on the boundary condition bj.j The solution of equation (7) may be , •"'."
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accomplished by any number of computer algorithms; whereupon, substitution of the.solu-
tion into equation (3) yields the potential at any point in D. Sophisticated computer pro-
grams based on this procedure have been developed for analyzing the flow about complex
configurations involving wings, bodies, nacelles, and propulsion unit effects. (See refs. 4,
5, and 6.)

The earliest methods approximated the boundary surface by flat panels and employed
constant-strength source, doublet, or vortex singularities distributed on each panel.
These methods display a variety of practical difficulties. First, an excessive number of
flat panels are required to represent portions of surfaces with large curvature, e.g.,
leading edges. Second, quantities of increasing interest, e.g., velocity gradients for
boundary-layer analysis, require precise calculation of local velocities, which in turn
are affected by local curvature and singularity strength gradient. Third, flat-surface—
constant-singularity-strength methods can be quite sensitive to panel configuration.
Numerical problems arise when edges of some panels are near control points of others,
and fine paneling in regions of rapid flow variation often forces fine paneling elsewhere.
Experience and thorough understanding of panel arrangement criteria are often required
to obtain reliable solutions; therefore, practical usability is limited. Moreover, paneling
configurations desired by other disciplines, e.g., structural analysis and boundary-layer
analysis, frequently cannot be accommodated. Finally, the extra degrees of freedom
inherent in design boundary conditions require singularity distributions with more than
one degree of freedom per panel. . •..

Recently, some improvements to the original flat-surface—constant-strength panels
have been studied and in several cases implemented (refs. 6, 7, and 8). The present work
arose from extensive operational experience (ref. 4), which provided the motivation to
carry out an analysis (not presented) identifying the numerical features required to elimi-
nate the practical difficulties encountered. This led to the present computational scheme
employing curved panels, linearly varying source strengths, and quadratically varying
doublet strengths and also featuring the capability to handle the mixed analysis/design
problems of frequent practical interest.

INCOMPRESSIBLE FLOW

Outline of Method

The approach to the solution of the flow problem via equations (3) and (5) is a
building-block approach, wherein the solution is achieved by assembling select networks
for incorporation into the matrix equation (7). A network is viewed as a portion of the
boundary surface on which a source or doublet distribution is defined, accompanied by a
properly posed set of analysis (Neumann) or design (Dirichlet) boundary conditions. A
network is defined to be logically consistent in that it contributes as many equations to
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the overall problem as it contributes unknowns. Four general network types are used:
source/analysis; doublet/analysis; source/design; and doublet/design. The construc-
tion of a network involves four tasks: (A) Surface Geometry Definition, (B) Singularity :
Strength Definition, (C) Control Point and Boundary Condition Specification, and (D) Cal-

.*» • "•- • • • . . . / • • 'Vs ' i 'v .••*••. . • • • • : ' - - , •• ' .?•'••«
culation of Induced Potential or Velocity. Essential features of our computational
scheme for accomplishing each task are summarized below and discussed in detail in
appendixes A, B, C, and D, respectively. . , .. ..

' (A) Geometry input for a network is assumed to be a matrix of corner-point coordi-
nates partitioning the surface into panels. Panel surface shape is obtained by'fitting a
paraboloid to qorner points in an immediate neighborhood by the method of least squares.

(B) Discrete values of singularity strength are assigned to certain standard points
on each network. A distribution of surface singularity strength is obtained by fitting a
linear (source) or quadratic (doublet) form to these discrete values by the method of
least squares.

(C) Certain standard points on each network are assigned as control points. . These
points include panel center points, as well as edge abutment downwash points in the case .
of doublet networks. The latter.serve to enforce standard aerodynamic .edge conditions,
e.g., the Kutta condition, zero potential jump at thin edges, and continuity of singularity .
strength across network junctions. They also serve to render the individual networks
logically independent from one another by automatically conveying the proper continuity.
of singularity strength and gradient across the edges of adjoining networks. In the case
of the source design network, certain linear integral conditions are imposed to achieve
closure.

(D) Two.expansions of the induced potential kernel are employed.1 The near-field .
expansion is based upon the assumption of relatively small panel curvature; the far-field
expansion is dependent upon a relatively large separation between the field point and
panel. All resultant integrals are evaluated in closed form by means of linear recursion
relations that have as initial conditions the fundamental logarithm and arc tangent tran-
scendental terms appearing in flat-panel, constant-strength techniques.

Results and Discussion

In this section results from a preliminary investigation of the capabilities of the
four network types are discussed. (Further investigation, including comparative analyses
with respect to timing, accuracy, etc., is continuing.) The first example .consists of an
analysis of a thin circular, wing at unit angle of attack. The wing surface is represented
by a doublet/analysis network with the paneling scheme for the right half of the wing dis-
played in figure l(a). Cosine spacing was employed along latitude and longitude lines with
panels becoming triangular at the.tip. The wake network is not shown but consists of
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panels elongated in the stream direction that abut corresponding trailing-edge panels.-
The entire wing and wake have 108 effective panels (54 per semispan). The resultant
spanwise lift distribution is plotted in figure l(b).. The plotted points are obtained from
doublet strength along the trailing edge and agree well with the exact solution of refer-
ence 9. .The present method yields a lift coefficient of 1.776 as compared with the exact
coefficient of 1.790. Pressures at three span stations are plotted in figure l(c); they also
agree well with the exact solution. . ,

The circular wing is a reasonably difficult case for any method because of-the nec-
essity of using nonuniform paneling. Nevertheless, the panels are convex, similar in
size, and possess two streamwise parallel edges. The local least-square definitions of
geometry and singularity strength do not in theory require such limiting features. Fig-
ures 2 and 3 show the stability of the present formulation under extreme conditions of
panel size, shape, and control-point location. In figure 2, an 8 by 6 doublet/analysis .
network is used to represent, the right half of a thin swept wing at 5.7° angle of attack.
The panel layout was defined by means of a random number generator resulting in panels
that vary considerably in shape and size, that are occasionally nonconvex, overlapping,,
and inverted. Nevertheless, the calculated spanwise lift distribution, as shown in fig- .
ure 2(b), is highly accurate. Chordwise pressure distributions displayed in figure 2(c)
are/likewise stable and deviate appreciably from the reference solution only near the
leading edge where pressures become.singular. Mismatches in doublet strength and .
derivative across panels occur in this region indicating that finer leading-edge paneling -
is required for accuracy. (The .method does not enforce strict continuity-across edges
except for extreme cases where,the paneling istoo coarse to reproduce the proper sin-
gularity strength variation. Thus, the appearance of doublet strength mismatch provides
a valuable indicator of locally inadequate paneling.)

In figure 3, a 9 by 9 source/analysis network is employed to represent the right
half of a unit sphere immersed in uniform flow. The corner-point generation was again
accomplished by means of a random number generator leading to a- wide variation in
panel size and shape. The use of curved panels produced a geometry remarkably close
to spherical. All 81 control points are within a distance of 0.005 from the surface of the
unit sphere. Velocity magnitude at each control point is plotted in figure 3(b) as a func-
tion of polar angle relative to the free-stream direction. Agreement with the exact solu-
tion is good, especially considering the fact that the diameters of some of the panels span
an arc of over 60° in violation of our curvature restrictions (appendix A). For compari-
son, a flat constant-strength source panel analysis was carried out with the same panel
arrangement, and the magnitudes of the calculated velocities (V/Voo) were scattered
between 1.2 and 1.7 in the range 85° < 9 < 95°. ; .

These latter examples demonstrate the extreme "forgiveness" of the method to
irregular paneling, a feature which greatly enhances its practical usability for applica-

944



tions involving complex configurations where regular, evenly spaced paneling cannot ...
always b e constructed. . . - • - . .

Aerodynamic data for a'symmetric wing-body configuration at 10° angle of attack r

are presented.in figure 4.>,,The.fuselag^ is, a;.bodyrof feyolutipnjof fineness ratio Q.IL,,^,
The wing is symmetric, 10 percent thick, and of aspect ratio 5.6 with a leading-edge
sweep of 47°. The configuration was first analyzed by the method of reference 4 with
936 flat, constant-strength source panels on the standard wing and body surfaces accom-
panied with 12 lifting elements. (This represents a typical number of panels used for
wing-body applications with .the method of ref. 4.)

The paneling scheme for analysis by the present method is depicted in figure 4(a)
and comprises 160 surface panels. The body is represented by four source/analysis net-
works with a total of 96 panels. Two options have been employed for the wing. In the
first or source wing option, the wing surface is represented by a 64-panel source/analysis
network as shown. The lifting system (not shown) is composed of four networks. The -
first is a 32-panel (bound) doublet/analysis network on the camber surface of the wing
with stream-surface boundary conditions. The second is a 4-panel (shed) doublet/wake
network emanating from the wing trailing edge. The third is an 8-panel doublet/wake net-
work inside the body, which extends the bound system to the center plane. The fourth is
a 1-panel doublet/wake network, which extends the shed wake network to the center plane.
In the second or doublet wing option, the wing surface is represented by a 64-panel
doublet/analysis network as shown. No internal doublet/analysis network is required
on the wing camber surface; however, a 16-panel doublet/wake network is employed to
extend the wing to the center plane. The trailing wake networks are identical .to those of
the source wing with the following exception.' For convenience each wake panel is con-
structed to bisect the angle formed by the upper and lower surface wing panels at the
trailing edge. Three-edge control-point boundary conditions then control the flow off the .
wing onto the wake at the center of a panel column. One condition forces the sum of the
doublet strengths (signed) on the three panel edges to be zero. The remaining two have
been artificially modified to reflect the correct wake position, i.e., tangent to the upper
surface in this case. This leads to<a doublet derivative perpendicular .to the trailing edge,
which is zero on the lower wing surface and is continuous onto the wake from the.upper
wing surface. .

Spanwise circulation for both wings is displayed in figure 4(b), and a chordwise
pressure distribution is displayed in figure 4(c). Note that pitching moment CM is
computed at a predetermined point denoted in figure 4(a) by a cross. The discrepancy''
between the moments produced by the source wing and the method of reference 4 is equiv-
alent to a shift in the center of pressure of less than 0.5 percent chord. In order to obtain
good pressure data for the doublet wing, it was necessary to add a row of narrow panels

945



to the upper and lower surfaces at the trailing edge. Apparently, the doublet distribution
on a wide trailing-edge panel is unable to represent both the flow conditions at the panel
center as well as the local trailing-edge flow. Pressure data agreement was uniformly
good along the span except for a deterioration on the outboard panels of the doublet wing.
Here again the'doublet distribution is apparently unable to produce precise pressures at
the panel center while simultaneously maintaining zero load at the wing tip. A row of
narrow panels at the'tip corrects this deficiency as well. Because of such anomalies,
the relative advantages of the doublet wing compared with the source wing in terms of .
efficiency and practical usability are not yet clear. In the future, the intent is to study a
variety of wing-body representations from the standpoint of cost and usability. However,
it is already evident that a large reduction in the required number of panels as compared
with the method of reference 4 is possible. This significantly reduces computation cost
and provides opportunity for analysis of exceedingly large and cpmplex configurations.

Figure 5 shows the application of a doublet/design network to the solution of sepa-
rated flow off the leading edge of a sharp-edge delta wing. * The vortex sheet shed from
the leading edge was modeled with a doublet/design network, whose strength and position
were iteratively established to satisfy the design-type condition of zero pressure jump
across the sheet as well as the requirement that the sheet be a stream surface. 'The thin
wing was modeled by means of a 30-panel doublet/analysis network. A simple kinematic,
model of the vortex core was simulated with a wake network. Other wake networks (not
shown) extended downstream from the wing and leading-edge sheets. A typical pressure
distribution comparison is shown in figure 5(b) (experimental data from ref. 13). Further
details concerning the application of the metnod to leading-edge vortex flows are presented
in reference 10.

Figure 6 shows an application of the source/design network to a two-dimensional
airfoil design problem. An NACA 65-010 symmetric airfoil at zero angle of attack was
chosen as the nominal configuration. The arbitrary problem selected was a redesign of
the airfoil between 20 percent and 90 percent chord producing zero Cp there. Analysis
of the NACA 65-010 airfoil was accomplished by means of three source/analysis networks
placed between 0 and 20 percent chord, 20 and 90 percent chord, and 90 and 100 percent
chord.as shown in figure 6(a). The resultant pressure distribution is displayed in fig-
ure 6(b) and is virtually identical to that in reference 11. The center network was then
replaced by a source/design network with tangential velocities of free-stream magnitude
as boundary conditions. . Together with the closure (average stream surface) condition,
these boundary conditions produced a flow with nonzero normal velocities at the control
points. • The center network geometry was then updated to eliminate the normal flow and
the process repeated. Three iterations produced the reasonably converged geometry

The work in this area was performed under NASA Langley contract NAS1-12185.
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displayed in figure 6(a). Analysis of this geometry produced the pressure distribution in
figure 6(b), which is close to that desired.

. Figure 7 shows a three-dimensional test of the source/design network. Paneling
of the wing-bo'dy' model used for the test is. displayed in figure 7 (a). For economy^ the-'-,
model is somewhat abbreviated; nevertheless, the wing has camber, dihedral, and twist.
The purpose of the test was to determine if the source/design network in conjunction with
a geometry lofting routine could reproduce the original geometry from a perturbed geom-
etry, using as boundary conditions the pressure distribution of the original wing. Analysis
of the original geometry produced the wing pressures at four span stations displayed in
figure 7(b). A perturbed or modified wing geometry was achieved by compressing the
upper surface approximately 30 percent at four span stations as shown in figure 7(c).
Resultant analysis pressure distributions on the modified wing are displayed in figure 7(b)
These latter examples illustrate the combined analysis/design capabilities of the method
for both thin and thick surface shapes. -

SUPERSONIC FLOW

Outline of Method and Preliminary Results

The success of the subsonic method in achieving reliability and accuracy strongly
suggests that essentially the same approach be applied to the solution of equation (2) by
means of equation (4) for supersonic flow. This is currently being investigated with the
effort concentrated in the development of six supersonic network types'. Four of these
are being developed for application to thin, flat surfaces where linearized boundary con-
ditions suffice. These are source/analysis, doublet/analysis, source/design, and
doublet/design.. The remaining two are for arbitrary curved surfaces with exact bound-
ary conditions and are of the source/analysis and doublet/analysis type. The develop-
ments to date have yielded closed-form integration of the aerodynamic influence coeffi-
cients for linear source and quadratic doublet distributions. The inclusion of panel
curvature contributes additional terms to the integrals, but these are easily obtained
from the integrals for the flat panels of constant strength by simple recursion relations
in the same way as for subsonic flow. The integrals all contain the hyperbolic distance
which is real for points inside the upstream Mach cone, zero for points on the cone, and
imaginary for points outside of it. The domain of influence of points on the panel is . .
properly accounted for by retaining only the real terms as in Woodward's constant vortex
strength panel method (ref. 15). .

The general supersonic method for arbitrary configurations just described is now
in the process of development. However, a related method particularly suited for thin
wings was first studied with some success. Although this earlier approach is not planned
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to be continued, the basic approach and major findings are summarized in view of its
excellent accuracy and extreme computational efficiency for certain classes of problems.

Earlier Approach . - . . . v

Since wings in supersonic flow are usually thin arid thus adequately described by
linearized boundary conditions, it is natural to represent the wing by doublet and source
distributions on a plane. Discontinuities in velocity and velocity gradients occur only " •
along Mach lines emanating from corners of the planform for smooth wings. It is natural
in the light of this property to utilize panels formed by a grid of Mach lines on the wing
plane. With the introduction of Mach line variables, the hyperbolic distance on the wing
plane becomes separable in the variables, and the downwash for a doublet distribution as
well as the pressure coefficient for a source distribution takes on forms easily integrable
in closed form when the singularity strengths are represented by polynomials in each
panel. For panels rectangular in Mach line coordinates, the influence coefficients are
simple rational algebraic functions, for triangular panels on supersonic and subsonic,
leading and trailing edges, inverse sine and logarithmic terms occur, respectively.
Additional mathematical details of the method are presented in appendix.E.

For the source method representing the thickness distribution of the wing> the value
of the source strength is directly related to the downwash on the wing for analysis bound-
ary conditions; while design boundary conditions, in which velocity is specified, lead to an
integral equation for the downwash. To test the source method, a 30° swept wing having
double parabolic arc profile with a supersonic straight leading edge followed by a sub-.
sonic leading edge was chosen. The locations of the control points for both the source
and doublet methods are shown in figure 8 for six panels. The calculated pressure coef-
ficient is seen by the points in figure 9 to be indistinguishable from the exact linearized
theory solution to equation (4). Prescribing the exact linearized .pressure distribution
yielded the downwash distribution shown in figure 10. The agreement with.the actual wing
slopes is seen to be very good. . ' , .

To test the doublet method, a wing having a parabolic arc of zero thickness with
linear spanwise variation of maximum camber was chosen. The pressure coefficient in
the portion of the wing behind the supersonic leading edge is shown in figure 11 for three
panels and for 10 panels. In this example, as in the source results, increasing panel
density improved the accuracy of the panel method and the results were also not sensitive
to location of control points in the panel. The solution of the set of algebraic equations
for determining the influence coefficients can be speeded up by solving the equations for
each panel moving downstream along characteristic strips. This feature of supersonic
flow together with the simple formulas for the influence coefficients produces a very
efficient numerical method.
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: Unfortunately, difficulty occurs in the doublet panel method when a subsonic leading-
edge region is added. It was found that values of two coefficients in the corner subsonic
leading-edge panel are fixed by the requirement of continuity of the doublet distribution
across the Mach line emanating .from the..corner;. The downwash contribution from,these
two terms is large and must be canceled partially by the other two terms in order to
represent a smooth wing. To accomplish this, the values of the other two coefficients
must.be large. . The difference between the downwash distribution from the exact linear-
ized solution and the panel method on a cross section of the wing is shown in figure 12.
The oscillation increases in amplitude and period as panel density is increased.

Since this appears to be an effect of the corner, the flat-plate corner solution was
superimposed on the panel method. This completely solved the difficulties of the method
in the first column of panels downstream of the subsonic leading edge as seen in fig-
ure 13. However, the triangular leading-edge panels away from the corner still induce -.
instability i n t h e solution. . . . . .

Although it is likely that some changes may be found to correct the difficulty with
the subsonic leading-edge Mach line panel, the flexibility of panel choices in a more gen-
eral method based on the well-tested subsonic approach will be developed. A single
method suitable for both curved panels and planar wings is also a considerable advantage
for ease in application. Somewhat greater difficulty in developing a reliable and accurate
supersonic method is anticipated, but the added flexibility in the choices of panel shape
should aid in achieving satisfactory accuracy and ease in application.

CONCLUDING REMARKS

An advanced numerical technique for calculating subsonic and supersonic potential
flows about arbitrary configurations has been presented. The technique is completed for
subsonic flow and is accurate, stable, and reliable. Its extreme versatility and adapt-
ability to complex panel patterns fulfill the requirements for acceptance demanded by the
user community. The added feature of combined analysis/design provides a capability
that is extremely powerful for an extensive variety of applications. Most design applica-
tions involve the aerodynamic design of one or more components of a configuration in the
presence of others whose geometrical shapes are fixed. The present method provides
this capability along with the limiting cases of pure design or analysis. The method is
now being extended to supersonic flows.
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APPENDIX A

SURFACE GEOMETRY DEFINITION

Geometry input for a network consists of an M x N array of mesh point coordinates.
The network surface is defined locally by a panel passing through four adjacent corner
points. It is assumed that discontinuities in surface position, slope, and curvature occur
only at network edges; hence for a sufficiently fine mesh, each panel can be approximated
by a paraboloid whose shape depends on network mesh points in a surrounding neighbor-
hood. The paraboloid may be defined in a variety of ways; the following way was selected.

Let S be the panel surface corresponding to four adjacent corner points. Con-
struct an orthogonal £,TJ,£ coordinate system whose origin is the average of the corner
points and whose £,77 plane is the average plane of the corner points. In this coordinate
system, S is assumed to be represented in the following form:

£ = a£2 + br?2 + 2c^rj + d£ + er] + f . , (Al)

The coefficients are obtained by minimizing

k

where ik^kjCiJ *s a corner point of S or a mesh adjacent to a corner point of S. The

weights Wjj are chosen large when Uk^ujCk) *s a corner point of S so that S very

nearly passes through its corner points. The coefficients d and e may be eliminated
by an iterative process of rotation about the 1,77 axes followed by another minimization
of R. The coefficients c and f may be eliminated in the usual way by a rotation
about the £ axis and translation pf the £,77 plane, respectively. A canonical local
coordinate system is finally achieved with S defined by

C = a£2 + brj2 ((£,77) e S) (A3)

where S is the quadrilateral formed by the projection of the corner points of S on the
plane. Let

2
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The assumption is now made that

6 « 1 ' (A5)

*. ' • . . • * - . o v* . .) -

Define the diameter D of S by ' •

D = 2 Max <\ + 7?2> (A6)
(S^eS^

and the height o> of S by

:.. . w= Max < W , r i ) } (A7)

It can be shown that 6 is an upper bound for u>/D; hence, equation (A5) implies that the
ratio of the height of S to its diameter is small. Equation (A5) can always be ensured
by sufficiently fine paneling. As a practical matter,

6 < 0.066 (A8)

has been adopted as a "rule of thumb" governing panel density. For a two-dimensional
circular cylinder, equation (A8) would imply a maximum of 30° subtended angle per panel
or a minimum of 12 total panels.

The primary purpose of equation (A5) is to allow for expansion and subsequent inte-
gration in closed form of the induced velocity kernels. However, there are other reasons
as well. The geometry interpolation scheme for S begins degenerating at higher 6.
Moreover, it is doubtful that the assumed linear or quadratic distribution of singularity
strengths on S would be adequate for more highly curved panels.
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APPENDIX B

' SINGULARITY STRENGTH DEFINITION

The distribution of singularity strength on a panel S is assumed to be linear in
the case of a source network and quadratic in the case of a doublet network. Specifically,
the singularity strength X .at a point (£,T7,£) e S is assumed to be given*by

Source: ' . • . .

. .(Bl)

Doublet:

(B2)

. v The approximations are valid when paneling is sufficiently fine. The coefficients
are not assumed independent; rather they are linear combinations of an independent set
of .parameters A. The parameters A are chosen to be the singularity strengths at a ,
set of discrete points n on the network surface. The linear relationships between the
coefficients and independent parameters are determined by the method of weighted least
squares. For each panel S, we minimize

Source/Analysis Doublet/Anaylsis
( - O- "

Sketch (Bl).

(xk e A) (B3)

where the summation extends over all points
f^k'%'^k) ^ n which lie on S or one of its
immediate neighbors. The weights W^. .are
chosen large when (^,77^,^j actually lies ,.
on S. The choice of n for the networks
employed is shown in sketch (Bl). The cir-
cles represent points in fi; ' A doublet/wake
network was also employed, which is the
same as'the doublet/analysis network except
that the singularity parameters in each col-
umn are assumed identical.
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APPENDIX C

CONTROL POINT AND BOUNDARY CONDITION SPECIFICATION

On each network a set of control points T
is chosen at which boundary conditions are to be
applied. The set r for each network type is
shown in sketch (Cl). The circles represent
points in T at which velocity components are
specified; the x's on the source/design network
represent special integral conditions to be
explained later. Our doublet/wake network is
similar to the doublet/analysis network but with
control points only along the upstream edge.

Source/Analysis Doublet/Anaylsis
a o i oc .

Sketch (Cl).

At panel centers, control-point conditions of the following type may be imposed:

C i ( n - v) + c2X = /3

or

t, - v u • vx)A I

(specify C1,c2,

TSpecify .t^,t^,/3J

(Cl)

(C2)

Here v" is total inner surface velocity (perturbation plus free stream), X is

local singularity strength I with VX its gradient), n is the inner surface normal, and

t]_,t2 are surface tangent vectors. Conditions of type equation (Cl) are employed on
analysis networks, while those of type equation (C2) are used on design networks. These
conditions cover problems irivolving,;both interior and exterior flows as well as thin
sheets. For example, conditions of type equation (Cl) with . C j = l , C2 = 0, /3 = 0 are
the usual analysis conditions for flows with impermeable boundaries. For camber design

of a thin wing by a doublet/design network, tj = 0, t2 = X, /3 = -2 AVX might be used.

The edge control points on the doublet/analysis network serve to control edge down-
wash and provide for precise network matching. Analysis conditions (eq. (Cl)) with
CJ = 1, c2 = 0, /3 finite are applied at all edge points. (These points are slightly with-
drawn from the edges for this purpose.)

To give an example of what such edge conditions imply, it is noted that near the com-
mon edge of two smoothly adjoining networks, downwash is given by
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w(77) = A/a/r; + A(a/a/37j) In NTJ| J + Regular terms (C3)

where r\ is the tangential coordinate perpendicular to the edge, A/i is the jump in
doublet strength across the edge, and A(3/i/9Tj) is the jump in the derivative of doublet -'
strength perpendicular to the edge. A control point placed near the edge requiring that
downwash be finite will tend to make A/I vanish, i.e., \i continuous across the edge.
A similar control point on the opposing panel of an adjoining network will; in addition,
force A(8/i/8Tj) to vanish, thereby establishing continuity of 8/1/877. As an example of
the function of these edge conditions, consider the doublet/analysis network in sketch (Cl)
to be the, right side of a planar symmetric wing with free-stream flow perpendicular to
the upper or leading edge. The control points on the leading edge will force p. to zero
on that edge since /i is zero ahead of the leading edge. A similar situation exists for
the tip edge. The control points along the cehteriine in conjunction with a reflected doub-
let surface will ensure that 8^/877 vanishes along the centerline. Finally, the control
points along the trailing edge in conjunction with the control points on an abutting wake
network will produce continuity of /j. and 8/1/87] onto the wake. Because of the par-
ticular construction of the doublet distribution on wake networks, this implies that the
derivative of /i in the free-stream direction will vanish along the trailing edge. Recall-
ing now that doublet strength is identical to potential jump, it is seen that all the usual
planar wing edge conditions including the Kutta condition are automatically satisfied.

The edge boundary conditions for the particular doublet/design network displayed
in sketch (Cl) are identical to those of the doublet/analysis network. They control edge
downwash and consequently control Ajit and A(8/u/8r/) as well. In the case of the
design network these conditions are fundamental to the boundary value problem and
remove the.degrees of freedom produced by specifying only tangential derivatives of the
potential. The design network in sketch (Cl) assumes inflow on the left and upper edges ,.
(i.e., edges with control points), and, of course, the specified tangential velocity compo-
nents at panel center's must reflect this fact. Other variants are possible with edge con-
trol points wherever inflow occurs.

The source design network is assumed to be paneled with columns alined along
streamlines. In practice this requirement may be relaxed considerably, and only a gen-
eral streamwise alinement appears necessary. The auxiliary conditions schematically
denoted in sketch (Cl) by x at the head of each column are of the form

j(n • v ) + c2x ds = p ds (C4)C

c x c
- • - . . - • ' ' i • . - '

where c denotes a panel column of the network.
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Equation (C1) is assumed tc be satisfied in the mean for each column of the network.
This represents a closure condition, which enables a designed surface to continuously join
abutting upstream and downf o-ea i surfaces or to form closed airfoils in the case of thin
wing design.t

Finally, note that the cioublet/wake network is fundamentally of doublet/design type.
It is used in place of a doublet/design network when a reasonable guess of the geometry
and direction of vbrticity is deemed sufficient. (A common use is for the representation
of vortex wakes where it is deemed unnecessary to establish the precise wake .position.)
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APPENDIX D

CALCULATION OF INDUCED POTENTIAL OR VELOCITY

Sketch (Dl).

In this appendix, the potential induced
by a linearly varying source distribution
over a curved panel is calculated. The cal-
culation of induced velocity or doublet poten-
tial and velocity is not essentially different.

. As shown in sketch (Dl), let S be the
curved panel surface; S, its,tangent plane
projection; Q, a point on S; n, the inner
normal to S at Q; and P, a field point.
The potential induced at P by a linear
source distribution a on S is given by

= ± CC £. ds = — ff -
4irJJ R 4irJJ R

sec dr? (Dl)

where

a =

and

R = R + (y - r,)2 + (z -
1/2

The surface S is defined by

(D2)

hence,

sec K,77 = (D3)

The integral of equation (Dl) cannot be integrated in closed form as it stands. How-
ever, employing the hypothesis that 62 is negligible compared to unity (see eq. (A5)),

956



the integrand can be approximated by terms that are integrable in closed form. A uni-
form approximation to sec K,7jJ can be obtained by noting

(D4)

hence, •

• "sec K,TJ| ~ 1 (D5)

A uniform approximation to 1/R is somewhat more difficult to obtain since this
factor is singular. Let (xo,yo) be the point on S closest to (x,y) and set

h = z - zf = [,-
-,1/2

- (y - 77)2J (D6)

Then

1 = [(r2
 + h2) + 2h(z0 - C) + (z0-"

-1/2 1-1/2 2h(z0 - 0 + (z0 -

r2
 + h2

(D7)

Let

e = Max

Then

2h(z0 - C)

r2

+ (z0 - C)2

+ h2

< 2her + e2r2

r 2
+ h 2

(D8)

Therefore, if e2 is everywhere negligible, equation (D7) may be uniformly approximated

by

. . 1 _ 1 h(z0 - 0 • L
R P . P3

(D9)
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But

.. Max '««o*o>-««.1>l

= Max

f r ~1/2

' J r . 2 2 ol1/2 [fro - £)2 + (7o -
2 , "SiJ a2<xo - tf + OX + T,)2 L

g Max

A much better bound on e is possible when (x,y) is several diameters from S
and the assumption that 62 is negligible becomes unnecessary. However, in this case
we resort to the usual far-field expansion of 1/R requiring only moment integrals of
the form <

G(M,N) = \ \ rV d4 d?j (DIG)
S •

Upon substituting equations (D5) and (D9) into equation (Dl), an expression is
obtained which involves only integrals of the form

H(M,N,K) = ff (X " €) (y " ^ d^ dTj (Dll)
S P

where

, M = 0, 1, 2, ... N = 0, 1, 2, ... K = 1, 3, 5, ...

These integrals may be evaluated in closed form. The term H(0,0,l) is well
known and contains the familiar logarithm and arc tangent terms (ref. 1). No new tran-
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scendental terms appear for higher order integrals. In fact, H(M,N,K) may be cal-
culated with the aid of algebraic recursion relations. We have the obvious identity

H(M+2, N, K) + H(M, N+2, K) + h2H(M,N,K) = H(M, N, K-2) :

Integration by parts yields

(D12)

(K - 2)H(M,N,K) = (M - 1)H(M-2,N, K-2) -i, N, K-2) (D13)

and

(K - 2)H(M,N,K) = (N - l)H(M,N-2,K-2) + ^ F(M,N-1, K-2)
4

1
(D14)

The summation on the right side of equa-
tions (D13) and (D14) is over all four sides of
S with the contribution of a typical side L
displayed in sketch (D2). Here v = v(£,rj)
is the unit outer normal of L, and F(M,N,K)
is the line integral defined by

TYPICAL SIDE L

Sketch (D2).

F(M,N,K) = j*
xM,

>K
df. (D15)

The expression F(M,N,K) satisfies three recursion relations of its own.

We have the identities

F(M+2, N, K) + F(M, N+2, K) + h2F(M,N,K) = F(M, N, K-2)

and

v F(M,N+1,K) = -aF(M,N,K)

(D16)

(D17)
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Integration by parts yields

(K - 2)i/|F(M,N+l,k) - (K - 2)i^F(M+l, N, K) = Ni/^F(M, N-l, K-2) - M^F(M-l,N,K-2) .

+ E(M,N,K-2) (D18)

where .

E(M,N,K) =
i t \ / N(x - |) (y - T?)

PK
(D19)

The quantities E(M,N,K) may be evaluated directly from equation (D19), although recur-
sion relations exist for them as well.

The recursion relations for H and F may be recombined to yield efficient and
accurate evaluation procedures. For example, one should employ equation (D12) as an
outer recursion relation since the recursion relations for F must be applied separately
to each side L of E. Some care must be exercised, however, in view of the fact;that
S is a singular surface for H. In the interior of S , .

H(M,N,K) = X(M+N+2,K)|h|M+N+2"K +Finite terms . (D20)

where the A(M+N+2,K) are constants. This singular behavior of H is reflected in the
fundamental K recursion relation

(K- 2)h2H(0,0,K) = (K- 4)H(0,0,K-2) -£ ^F(l,0,K-2) + ^F(0,l,K-2) , (D21)

~ \ ' ~ •

that becomes singular as h -» 0. When h is sufficiently small, equation (D21) must be
reversed and applied to the finite part of H only. A similar situation exists for F

when ua2 + h2 - 0.
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APPENDIX E

PLANAR MACH LINE PANEL METHOD IN

SUPERSONIC LINEARIZED FLOW

With the introduction of Mach line variables,

X

y

M(x - /3y)
2/3

. M(x + |3y)
20

(El)

with

the hyperbolic distance H on the plane becomes separable in the variables and the down-
wash w = 30/ay = 90/3z for a doublet distribution from equation (6) reduces-to

w = -M_9l_ f
2ir 3x 9y ^

A(/)(xl'yl)dxldyl (E2)

Similarly, the pressure coefficient Cp from a source distribution a becomes

c ' - - J_ -L + -L
P TTfi\S-X 8v/

(E3)

where Sw is the region on the wing upstream of the Mach lines xj = x and yj = y.
The differentiation may be performed before the integration when new variables of inte
gration £,TJ are introduced and are defined by

dx,

Jx - x.
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Since the doublet distribution must vanish on the wing leading edge,
angular panels was chosen in the form

on tri-

+ agX + a3y + a4xyj , (E4)

where x + e^y = 0 is the equation of the panel leading edge. For rectangular panels,

+ a +3y (E5)

where the origin is the upstream panel corner. To ensure continuity of the doublet dis-
tribution, the panel edge distribution is continued downstream along characteristic strips
as shown in sketch (El).

Sketch (El).

For the source distribution,

a = a + + a3y + a^xy (E6)

on supersonic Ieading7.edge triangular panels, and cr = a-jxy on rectangular panels. For
subsonic leading-edge triangular panels, the source distribution is

a = a2xy

A method of analytic continuation along characteristic strips similar to the doublet method
is also applied to the source panel method.
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Substituting equation (E4) into equation (E2) and performing the integration leads to

a relation of the form

(E7)

For supersonic leading-edge panels ^ > 6), the gj functions are

g1(x,y) = fi(x,y) - f

3Jf2(x,y) - f2(x+€1s,y-s|

(x + ejs)

g3(x,y) = f2(x,y) -

X + 6iS

g4(x,y) = e ft'

> (E8)

,j)\ - |(5x + lly) f2(x+€1s,y-s) - f2(x,y)

+ 2 + . - , + 8
el V€l
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where

= sin-1

* f-v v,\ -f3(x'y) 16

2 2

-i2

x

(x > 0, y > 0)

»•<•• »«-.-fJ

(x>0, y>0)

x < 0 , yS-f

y>0)

(E9)

Here the origin of x,y is defined so that points on the panel are 0 = x = -€jS,
-x/€ § y = s. Equations (E9) hold for points outside the panel x > 0, y > s and may be
applied to evaluate the downwash as other points on the wing by setting all terms with

negative radicands to zero. ^Terms like y(x - es)(y - s) must be discarded,even though

they yield real values.] This rule applies to the influence coefficients in the subsequent

analysis as well.
'' - • i ' '

Similarly for a subsonic leading edge, with cj ~ ^ ~ € ' ' "<

(E10)
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where

- f4(x,y)J

S2(x,y) =xSl(x,y) W ' P ~ s]

,y) - f5(x-e2s,y-s)J - 2p - e2s||/y -

..
S4(x,y) = f- S^x

.2

£ 9 i i v r / \i
-|- ^ -.5y £5(x,y) - f 5(x-e2s, y-s)
, \ 2 -. . /L • • ' , - : ; J

- 4sl|

- (x -

(Ell)

and

= log
- y

+ - r-^^f4(x,y)

(x,y > 0)

(E12)

The origin for the coordinates x,y is the upstream leading-edge corner. The panel is
defined as 0 = x = 62s, x/e2 = y = s.
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For rectangular panels, substitution of equation (E5) into equation (E2) yields

4

(E13)

where ,.,;rj t ,

*~? • " • • * • • < • ' ' r • ' . • • : • • ' - • • • • • • • • .-'". • >

, ; . h^x.y) = 2 < ̂ Ey .-. \jx(y - Ay) - ^ -- Ax)y +..\f(x - Ax)(y - Ay) J

, ' ' . >2<x>y),= xhi(x,y) + Ax^x -
.- : " - " •- • U ^ ' ; • ' . , ' - , O • -, . ; , " , .

' ;h3(x,y) =|yh1(x,y) +| Ay/y - Ayfyx - Ax - tfxj

h4(x,y) = ^ -x . Ax Ay . I ix Ay + ——i + y Ax) wx - Ax

(E14)

- Axy|/y (yx - Ax

The panel is defined by 0 = x ^ Ax, 0 = y = Ay, and hj = 0 for x or y < 0.

The functions gj, S|, and hj are the influence coefficients in the matrix A of
equation (7) from the downwash boundary conditions on the panel. Except for the tran-
scendental functions

sin-1

and

log

ithe influence coefficients are rational algebraic functions. Note that the inverse sine is
finite on the supersonic leading edge (jr/2) while the log term becomes infinite on the lead-
ing edge — - y = 0. Since the jump in pressure on the wing is given by
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. (E15)

" i '•

with A0 defined by equation (E4), the pressure is finite at the subsonic leading edge
instead of exhibiting an. infinite square root singularity.

For the supersonic source panel method, the singularity distribution is equal to the
downwash on the wing surface. Hence, for analysis boundary conditions, the influence
coefficients at any point of the wing are simple polynomials of second degree since or is
continued analytically beyond the panel along characteristic strips by its values on the
panel downstream edges. Since each rectangular panel adds a parameter, there is only
one control point at which downwash is prescribed for analysis boundary conditions or the
pressure coefficient is prescribed for design boundary conditions. On leading-edge panels
there are two downwash control points and one leading-edge corner continuity condition on
the supersonic leading edge. (See fig. 8.) With design-type boundary conditions, the pres-
sure coefficient Cp is given and equation (E3) yields an integral equation for the down-
wash on the wing which must be integrated to yield the wing shape.

Substituting equation (E6) into equation (E3) and performing the differentiation and
integration yields

4 - '
(E16)-I

where

(E17a)

C2(x,y) = -2^f(l + ejjyfyx.y) - f^x-^s.y-s)] - (3 + e1)[f2(x,y) - f2(x*elS,y-s)] (ElTb)

- f2(x-K1s,y-s)J

(E17c)
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iLfljCK.y) - f^s.y-s)] + [(3 - ejji - (a> e,)y]

[f2(x,y) - f2(x«1s,y-s)] +L__!i![f3(x,y) - f3(x4€1s,y-s)] - 2(l - e^j

2(x + y - s)
-3S)f

+ s (E17d)

Here ffa), f2(x), and f3(x) are defined in equations (E9) and the panel definition
is the same, as for the supersonic leading-edge doublet panel. For rectangular source
panels the. singularity distribution is in the form

' , ' ' t -•<• . . . . .

a = axy

with origin at the upstream corner of the panel. Substituting a = axy into equation (E3)
and performing the differentiation and integration lead to -

= -ah(x,y) (E18)

where

h(x,y) = (x + y)\|xy - (x + y - Ay)\/x(y:- Ay) - .(x - Ax + y)\Jy(x - Ax)

+ (x - Ax + y - Ay)\|(x - Ax)(y - Ay) (E19)

As in the doublet panels, the panel is defined by 0 = x = Ax, 0 = y = Ay. For subsonic
leading- and trailing-edge panels, the source distribution has two parameters.and is of,
the form .

a = + a2xy (E20)

with the origin at the upstream corner of the panel. With its non Mach line edge defined
by x - €2y = 0, the substitution of equation (E20) into equation (E3) yields after integra-
tion and differentiation
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where

S2(x,y) =

7T/3Cp
= a1Si(x,y) + a2S2(x,y)

'-'•»)

(5e2 + 3)

1)
\vp

?2f

(x,y) - f4(x-e2s,y-s)

J

f5(x,y) - f5(x-€2s,y-

L 3
S)l-

, -

3,7-s) - ^(x,y) + f5(x-e2s,y-sj

L . € 2

VCz ' -3J[ 3 J

Si-
_ll/Y - f~R 4. V - S\i /V -' fi • ' .

(E21)

(E22)

The influence coefficients in equations (E16) to
(E22) were derived under the assumption that CTJ is
continued along characteristic strips by its value on
the downstream panel edges. If the y constant
Mach line through the point (x,y) intersects a point
on-the subsonic leading edge or trailing .edge (see
sketch (E2)), then there is a contribution to the pres-
sure coefficient from the subsonic portion of the
leading edge intercepted by the strip and the y
characteristic through the point (x,y). This has the
same form'for rectangular and supersonic leading-
edge panels and is given by

x,y

Sketch (E2).
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E(x,y) = (1 + €2)[f5(x,y) - f5(x-e2s,y-sj

(E23)

When the parameters associated with the doublet or source distribution are num-
bered consecutively by moving downstream on characteristic strips of panels and down-
stream panel to panel on each strip, the matrix of coefficients for equation (7) is almost
triangular. If, in those panels having more than one parameter, the associated equations
are combined appropriately, the matrix can be easily made triangular. Solving for the
parameters is then considerably faster than by the usual process of Gaussian elimination.
This property along with the simple influence coefficients makes the Mach line panel
method for planar wings very efficient.
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APPENDIX F

SYMBOLS
i

The symbols used in the figures are defined in this appendix as follows:

aspect ratio

span .

lift coefficient < :

pitching-moment coefficient . :. ,

maximum camber . ' -

Cp pressure coefficient

c chord

L length

M Mach number .

Moo free-stream Mach number

t thickness ratio

V velocity

Voo,Uoo free-stream velocity

w downwash . .

x,y,z coordinates

a angle of attack

A sweep angle

6 polar angle relative to free stream
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y =1.0
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(a) Circular wing paneling.

LIFT
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0

— EXACT (CL = 1.790), HEF. 9

• PRESENT METHOD
(CL.= 1.776)

0 = 1 RADIAN

.2 .4 .6 .8 1.0

V

(b) Spanwise lift distribution.

1/2 AC,,

(c) Chordwise pressure distributions,

Figure 1.- Circular wing.
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(a) Swept-wing random paneling.

"- .3

a = 5.7°

i- VORTEX SPLINE

« PRESENT METHOD

.5
2y/b

.6 .7 .9 1.0

(b) Spanwise lift distribution of swept wing.

-—VORTEX SPLINE
-a-- PRESENT METHOD

.1 .2 ' .3 .4 .5 .6 .7 .8 .9 1.0

(c) Chordwise pressure distributions for swept wing.

Figure 2.- Swept wing.
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Moo=°

(a) Random paneling of sphere, side view.
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i.o

.8

.6

.4
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PRESENT METHOD

20 40 60 80 100 120 140 160 180
6

(b) Velocity magnitude at control points.

Figure 3.- Sphere.
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(a) Paneling scheme for wing-body model,

o

o"
DC

1.2

-1.0

-.8

-.6

-.4

-.2

0

.2

.4

SURFACE PANELS 160
CL 0.703 .

CM 00076

SOURCE DOUBLET
WING WING REF. 4

160 936

0.699 -.' 0.697

0.0390 0.0033

REF. 4
,- SOURCE WING

DOUBLET WING

.3 .7 .8.4 .5 .6
2y/b ' , -"• .

(b) Spanwise circulation.

1.0

2y/b = .68
Mco=°

- o= 10°

(c) Wing pressures.

Figure 4.- Wing-tody analysis.
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(a) Paneling of delta wing and vortex sheet,

30 WING PANELS *»= 1.4559 M = 0

PRESENT METHOD

o r. EXPERIMENT. OF
MARSDEN. REF. 13

(b) Surface-pressure distribution of delta wing.

Figure 5.- Delta wing with leading-edge separation.
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— STARTING GEOMETRY
AND PRESSURE

— DESIGNED GEOMETRY
AND PRESSURE

(a) Geometry.

ANALYSIS DESIGN •'• ANALYSIS

(b) Pressure distribution.

Figure 6.- Design of arbitrary airfoil.

978



1 •

(a) Paneling of design model.

BASIC WING
MODIFIED WING
DESIGNED WING

(b) Wing-pressure profiles; analysis mode.

2y/b = 0.109

2y/b = 0.206

ACTUAL GEOMETRY

MODIFIED GEOMETRY

e DESIGNED GEOMETRY

(c) Wing geometry.

Figure 7.- Wing design.
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DOUBLET PANELS SOURCE PANELS-

CONTINUITY OF DOWNWASH

DOWNWASH CONTROL POINT

CONTINUITY OF NORMAL
DERIVATIVE OF DOUBLET

DOWNWASH
ONLY

CONTINUITY OF SOURCE.

' • DOWNWASH (OR PRESSURE)
CONTROL POINT

® PRESSURE CONTROL POINT
ONLY

Figure 8.- Doublet and source panel and control-point location.

, 6 PANELS

-.1 -.2

Figure 9.- Comparison of pressure coefficient .Cp from the source panel
method with linearized theory for a wing with a parabolic arc profile.
Analysis-type boundary conditions.
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BICONVEX AIRFOIL

MACH NUMBER = /T
30°

WING SLOPE, dy/dx
DOWNWASH. w

y 12 PANELS

Figure 10.- Comparison of downwash from supersonic source design
panel method with actual wing slope.

PARABOLIC ARC PROFILE WITH LINEAR
SPANWISE CAMBER VARIATION: z = 2t(1 - Cy) U - *2)

SWEEP ANGLE = 30°

_l L_
_l 1 I 1_

o 3 PANELS
6 10 PANELS

_J L
.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Figure 11.- Comparison of doublet panel method with exact linearized solution..
Region behind supersonic leading edge.
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CP/CMAX

LINE L
x/A x = -4.5

PARABOLIC ARC PROFILE
FREESTREAM MACH NUMBER
SWEEP ANGLE = 30°

•I/?
"DOUBLET PANEL METHOD
-LINEARIZED THEORY

0 1 2 3 4 5

Y/Ay

FLAT PLATE SOLUTION SUPERIMPOSED ON PANEL DOUBLET SOLUTION

(a) x/Ax = -4.5.

LINE L
x/A x = -4.0

I
lt PARABOLIC ARC PROFILE

FREESTREAM MACH NUMBER = JT
SWEEP ANGLE = 30°

DOUBLET PANEL METHOD
LINEARIZED THEORY

2 3 4 5
Y/Ay

FLAT PLATE SOLUTION SUPERIMPOSED ON PANEL DOUBLET SOLUTION

(b) X/AX = -4.0.

Figure 13.- Pressure coefficient Cp normalized to maximum camber

versus Mach line coordinate y along line L shown in the figure.
Limiting case of subsonic edge parallel to free stream.
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CP/CMAX

-i

PARABOLIC ARC PROFILE
X FREESTREAM MACH NUMBER V2"

SWEEP ANGLE = 30°

DOUBLET PANEL METHOD

LINEARIZED THEORY

J_
2 . 3

y/Ay

FLAT PLATE SOLUTION SUPERIMPOSED ON PANEL DOUBLET SOLUTION

»"C (c) x/Ax = -1.0.

PARABOLIC ARC PROFILE _
FREESTREAM MACH NUMBER =\/2
SWEEP ANGLE = 30°

DOUBLET PANEL METHOD

LINEARIZED THEORY

FLAT PLATE SOLUTION SUPERIMPOSED ON PANEL DOUBLET SOLUTION

(d) x/Ax = 0.

Figure 13.- Concluded.
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SOME RECENT APPLICATIONS OF. THE SUCTION ANALOGY

TO VORTEX^LIFT ESTIMATES '

By John E. Lamar
NASA Langley Research Center !:

SUMMARY

This paper reviev/s a recent extension of the suction analogy for the estimation of
vortex lift along the side edge of wings and develops the concept of an augmented vortex
lift to account for the effect of the leading-edge vortex passing downstream over an aft
part of the model. Applications of these extensions have resulted in an improved esti-
mating capability for a wide range of isolated sharp-edge p'lanforms and also for multiple
lifting surfaces. Hence, the suction analogy concept can now have wider applicability at
both subsonic and supersonic speeds, especially in the preliminary design cycle.

INTRODUCTION

In the design and analysis of high-speed aircraft, a detailed knowledge of the effects
of flow separation is required, particularly with regard to critical wing loads and the sta-
bility and performance at various off-design conditions. Since attached-flow theories are
inadequate for these conditions, the designer currently must rely on extensive and costly
wind-tunnel tests which include detailed pressure distributions. In many cases, wind-
tunnel tests occur too late in the cycle to impact the important aero/structural design
trade-offs. One class of separation which is often encountered is leading- and side-edge
separation and the resulting vortex-lift phenomena which are important with regard to the
aero/structural trade-offs and also are being increasingly utilized to improve the maneu-
vering capability of fighters. .-

In reference 1, Polhamus introduced the concept of a suction analogy for estimation
of the lift which arises from separated flow around sharp-edge delta wings reattaching on
the upper surface (called vortex flows). The suction analogy states that the potential-
flow leading-edge suction force, which no longer acts in the chord plane when leading-
edge separation exists, is reoriented on the upper surface (rotated 90°) by the vortex flow
action and thereby provides an additional normal force. Because of -the change in direc-
tion of the suction force, the normal force is how the resultant aerodynamic force.

Figure 1 shows an example of a 75° swept sharp-edge delta wing at a low subsonic
Mach number taken from reference 2. The plot of lift as a function of angle of attack
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shows the large vortex lift which is well estimated by the suction analogy method. Also
shown is the variation of vortex drag with lift and the data are again well estimated by
the theory.

After the original application of the suction analogy to delta wings, it was applied
to other pointed wings at subsonic speeds (refs. 3 and 4) and to delta wings at supersonic
speeds (ref. 4).

This paper deals with recent applications of the suction analogy to more general-
ized configurations as shown in figure 2. As in the earlier application, the configurations
are limited to planforms with sharp edges. At subsonic speeds, applying the analogy to
the side edges of planforms leads to an estimate of the vortex lift associated with side-
edge vortex flows. Analysis of this estimate has led to the concept of an augmented vor-
tex lift. At supersonic speeds the effects of Mach number and high angle of attack are
discussed for delta wings, evidence of vortex lift along the side edge of a rectangular
wing is presented, and its magnitude determined. The vortex lift arising on multiple
lifting surfaces, such as complete aircraft configurations, can also be treated by the

analogy. . , .

Subsonic solutions can be computed for potential -flow problems having matrix
sizes less than 200 x 200 with the CDC digital computer in about three minutes and
require a core of 53000s. Supersonic solutions obtained with the supersonic -linearized
theory can be written in closed form.

SYMBOLS

A aspect'ratio

b wing span '

Cn drag coefficient,u

o experimental value of drag coefficient at CL = 0

lift coefficient, Lj|ft

increment associated with augmented vortex lift
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Cm pitching -moment coefficient about reference point which is located at

unless otherwise stated, Aching moment ,

normal -force coefficient, Normal force

u change in upper surface pressure coefficient from its value at a = 0°,
Change in upper surface pressure .

Cg leading -edge suction -force coefficient, Kv^

c streamwise chord *
?

c characteristic length used in determination of Ky se

cn .section normal-force coefficient, Section normal force

cs section suction-force coefficient, Section suction force
^00

dFg differential leading -edge suction force (fig. 5)

fs se distributed side -edge suction force

„ 2fs>se(Ax')
= ~ - —

KL potential -lift factor, — — : — — - -v 3(sin a cos a)

leading -edge -vortex -lift factor,
J2 Leading -edge suction force from one edge\

a
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/2 Side-edge suction force from one edge1

wf" : :

Kv se side-edge-vortex-lift factor,
a sin2 a

— v IQKv se augmented-vortex-lift factor, '. c . - j
' > " (b/2)' sec A

I distance along leading edge from apex

'• ' '. -[] - • • : • . . v!? .-. • . .v . ' : • . , - • : • ' . • ' . : •
M free-stream Mach number

q^ free-stream dynamic pressure

• : ' a e - - . • . ' : • . : • • • . . - - - . : _ . . - .
S surface area

U free-stream velocity .

u induced velocity in x-direction at point (x,y)

v induced velocity in y-direction at point (x,y)
. - '•- ': "' " ' ' ' j..- •'-•- ii ;f.- ' • • - " >

wnet sum °^ Educed downwash and Ua at a = 1 rad

Wnet average value of wnet

x,y,z distances from a coordinate origin located at leading-edge apex; .x positive
downstream, y positive toward right wing tip, z positive up

x/c fractional distance along streamwise chord

Ax • distance along tip chord

Ax' = Ax/ct

a angle of attack

departure angle of attack
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F. equivalent circulation associated with leading-edge suction

" A*

F average value of r

y distributed bound vorticity. at point (x,y)

6 distributed trailing vorticity at point (x,y)

6t tip rake angle, positive as trailing-edge tip moves inboard
'..! . 'V

P density of fluid
• a • .

A leading-edge sweep angle, positive for sweepback

\ taper ratio, -^

V.

<£ dihedral angle, positive for wing tip up

.• v!
Subscripts:

av average . •

c centroid

i particular item of location

te leading edge

p potential or attached flow . . . . . .

r root

ref reference; for S, true wing area; for c, mean geometric chord

se side edge
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t tip

tot total

vie vortex effect at leading edge
i

vse vortex effect at side edge

w wing
' - •. >

SIDE -EDGE VORTEX LIFT

n5r Concept ,

The suction analogy is not limited to vortex flows around the leading edge but can
be applied wherever singularities in the potential -flow induced velocities produce an

' " R ' ; '
edge force. Figure 3 shows that this can occur along the side edges because of the sin-
gularities in v. Hence, with vortex flows associated with separation around the side
edges, the forces no longer act inHhe wing plane but in the normal -force direction as in
leading -edge separation. ! 'c

..
A mathematical procedure.,for computing this side force has been developed for

wings at subsonic speeds, initially, and is given in reference 5. The procedure employs
the modified Multhopp method Dereference 6 to provide the information needed, to begin ,-..
the side -force computation. In addition, three discrete -loading analyses employing the
vortex-lattice method (refs. 7, 8, and 9) have been made and are discussed in reference 9.
In reference 9, the vortex -lattice method is shown to yield results in close agreement
with those of reference 5; hence, the reference 9 method is utilized in this report for
some isolated planforms and all subsonic configurations for which the reference 5
method is not appropriate. Initially, the effect of the side -edge vortex lift is combined
with the leading -edge and the potential -flow effects to yield estimates which are denoted
on some figures as those of the present method. (Subsequently, the present method
includes the augmented vortex lift as well.)

The following equations relate the potential- and vortex-lift factors to CL, CD,
and Cm

cL,p CL,We CL,vse
( . , \ c - \ ( ' \

CL = Kp sin a cos^ a + Kv ie sin^ a cos Of + Kv se sin^ a cos a (1)
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or

; Kn sin a cos2 a + Kv tot sin^ a cos a (2)

and

Vjtot

CD = CD o + CL tan a = CD 5 +'Kp sin2 a cos a + KVjtot s^ a (3)

Cm,p CmjV£e Cm>Vse

- ^ ( : ——^

Cm = Kg sin a cos a —2_ + Kv ie sin2 a + Kv se sin2 a se (4)
* T*PT rs T ' ^I*PT

where the particular x-terms equal xref - xc ^ for i equal to p, le, and se. In this
paper, xref is the quarter-chord location of the mean geometric chord.

Application
iff . : • • ,.- -

Figure 4 presents a comparison of experimental.and theoretical subsonic aerody-
namic characteristics of an A = 1 rectangular wing. .^Also shown are the potential- and
vortex-lift factors and lift increments determined in reference 5. The figure shows that
the present method estimates the CL experimental data of reference 5 better than the
other methods. (See ref. 5 for a discussion of the methods in refs. 10, 11, 12, and 13.)
This figure also shows that the Cm>^e experimental data are better estimated by the
present method up to a « 16°. For higher angles of attack, the data show a larger nose-
down moment than the present estimate. This comparison indicates the magnitude of the
error introduced by the present method in assuming that the potential and vortex lifts, in
particular the leading-edge one, do not move with increasing a. v> ;

With the vortex lift from the side edge identified, its magnitude estimated, and good
agreement with experimental data shown, the vortex lifts on more generalized planforms
are now studied.

AUGMENTED VORTEX LIFT '

Concept

The concept of augmented vortex lift arises from the well-established fact that for
many delta wings the leading-edge vortex generated on the wing persists for a consider-
able distance downstream and therefore can act on other surfaces, such as the aft part
of more generalized planforms or aircraft horizontal tails. This persistence is not
accounted for in the suction analogy because the analogy deals only with the edge forces
generated along a particular edge, such as leading-edge vortex lift resulting from the
leading-edge suction force. Figure 5 shows examples of two systems employed that
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account for vortex lift on delta and cropped-delta wiugs. They are (1) a theoretical one
developed from a planar potential theory and utilizing the suction analogy and (2) a more
realistic (actual) one that is due to action of the leading-edge shed vortex. The following
important points are made from this figure: (1) the leading-edge suction distribution has
a peak value somewhere along the leading edge away from the extremes and goes to zero
at the tip because no edge forces are present beyond the point of maximum span; (2) forf

the cropped-delta wing, the. aft part .of the wing can generate additional (augmented) vor-
tex lift because of the presence of the leading-edge vortex (as discussed'in ref. 14); and .
(3) the side-edge suction distribution generally peaks near the trailing edge and is dis-
cussed subsequently.

Estimating Procedure . -
' ' • C • '. • • : • . . ' .'• • • - . • - . •

In order to estimate the augmented vortex lift, it is first necessary to quantify the
circulation of the shed vortex along the wing leading edge. This can be done as indicated
by the lower sketch on figure 5. The Kutta-Joukowski Law has been employed to relate
the differential suction force along the leading edge to an unknown circulation T(l). By
a coordinate transformation, it can also be related to the leading-edge suction distribu-
tion along the span as -

\ (5),

- . ' ' " ' ' • . ' • • ' • J3 1 ' • " " ' • - • * • * ' .-•—" ' - • • . - - ' ' •

Figure 6 shows an idealized; distribution of the product ':— ? e along with a

-wnet le ' 'fairly reasonable —-2— (upwash) distribution for a cropped-delta wing. As a con-

sequence, —=— can be estimated as shown. Because the actual circulation does not go
. . - . - • a u - . . . - •

to zero (hence the vortex persists downstream), the distribution of circulation cannot be
• *' , T 'used. Instead, an average value is employed. With an average value used for *• , it

is consistent to utilize an average value for = - —2 — as well. This result can be

expressed in terms of the leading -edge -vortex -lift factor by

Hence,

V,tt i c r • • . ! , - - - . . . _ .

. wnet,Zesec A ——'-—
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Employing this result in the Kutta-Joukowski Law, this time along the side .edge,
permits the estimation of the-augmented vortex lift. The details are .

Augmented vortex lift along one edgV' — jf f ~"' ' ,
•:. .• : o—: : iif ,"pwnet,se —9 c

* • * -

where the ———-— distribution and its average are again reasonably depicted at the ;

' • j • y/ " . ' ' ' ' . . : . . ( . - f - • • • ' • . , . .

bottom right of'figure 6 and c 'is a characteristic streamwise length. By inspection of
figure 6 • -• : • . - - . - ^.

t,S6 ^ "Ilel,m . XgX

U U

•'' •-' : K
Then defining the left side of equation (8) as v^sc QooSref leads to

.rn

• V

.or
. . - • . - - . . . . . - lit;

*v,se
(b/2) sec A

(ID

The term in brackets results from the use of average values and amounts to assuming
that the leading-edge-vortex-lift factor is developed at a constant rate along the leading-
edge length (b/2) sec A*. For..cropped-delta wings the1 value of c is taken to be the
length of the tip chord.

• , ' . '• . • * . . ' ' " • „ rrf ; :

Applications

Cropped-delta wings. - Figure 7 presents an application of the augmented vortex lift
to a cropped-delta wing of A = 45° and \ = 0.5. The value of Kv se is about two-
thirds of the other vortex-lift factors, and its inclusion leads to improved agreement with
both the CL and the Cm experimental data. (For Cm estimates the augmented
vortex lift is applied at the centroid of the side-edge suction distribution for cropped-
delta wings and at the centroid of additional area behind or ahead of the delta part for
pointed wings.)

At this taper ratio (\ = 0.5), CL is reasonably well predicted over the range of a
from 0° to 20°. Above a = 20° the data fall below the theory curve. The angle of
attack at which this occurs is called the departure angle otj) herein, and it is graphed
as a function of aspect ratio for this wing and other cropped-delta wings in this same
series which have a leading-edge sweep of 45°. The others have taper ratios of 0.4,
0.3, 0.2, 0.1, and 0. For comparison, the departure angles of sharp-edge delta wings are
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also graphed (from ref. 2), and the addition of area behind the moderately swept delta
(A = 45°) increases the departure angle, just as increasing the sweep on a delta wing
does. The explanation of the variation of aD with A is hypothesized to be related
to at least the leading-edge suction distribution and possibly to the side-edge suction
distribution.

In order to determine the relationships, the cropped-delta leading-edge and side-
edge suction distributions are presented in figures 8 and 9, respectively. For compari-
son, the leading-edge suction distributions for three delta wings are also presented in
figure 8 (the upper two from ref. 15). For both sets the peak values of leading-edge suc-
tion distribution become larger and occur at a more outboard location with decreasing
A. Hence, it can be stated that as the leading-edge suction distribution becomes more
triangular, the angle of attack for departure increases.

Figure 9 shows that the side-edge suction distribution increases for increasing
taper ratio and does not tend to zero at the trailing edge. The increase could be
expressed in terms of an increase in circulation along the side edge by an analogous
approach to that employed previously and would translate into a stronger "tip vortex."
This increase could also be thought of as providing a favorable pressure gradient for
the leading-edge vortex acting near the tip, so that a vortex flow would be produced
there where an unorganized flow had existed previously. The reason that the side-edge
suction does not go to zero at the trailing edge is that this suction force can be.sustained
along the edge of the trailing planar vortex sheet (ref. 16), unlike the spanwise extension
of the leading-edge suction as discussed previously. • . *'

Generalized plantorms. - Figures 10 and 11 present additional examples of the
augmented-vortex-lift concept for wings with pointed and streamwise tips, respectively.
(Some data of fig. 10 were taken from ref. 17.) The value of c used in the computation
of Kv se was determined empirically to be the streamwise distance from the trailing
edge of the root chord to the leading edge of the wing tip. (Positive c values occur for
wings such as the diamond type.) This definition of c enables one definition to be used
for .all wings, including the cropped ones. It should be noted that of the eight examples
shown in these two figures, c is positive for all but two. The negative values can be
thought of as due to the lack of complete flow reattachment on the more arrowlike wings.

From the examples presented, it can be seen that addition of the augmented vortex
lift improves the agreement of the theory with the data at least slightly and more often
significantly. -y". .

OTHER APPLICATIONS

Figure 12 shows two attempts to improve the vortex lift on pointed wings of low
sweep by altering the planform along the leading edge. In each instance it was postulated
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that by doing so the moderate-sweep leading-edge vortex system could be strengthened
and thereby provide additional lift to higher values of a. The first attempt (top right)
involved serrating the leading edges, but this resulted in two vortexes of opposite circu-
lation being shed at each concave juncture. From the figure, it can be seen that this
attempt was not successful.

The second attempt (bottom right) was to cause all of the shed vortexes along a
leading edge to be shed in the same direction in order to eliminate the previous difficulty.
However, comparison with the results for the basic delta wing (bottom left) shows that
this attempt offered no significant improvement and hence can also be classified as
unsuccessful.

Figure 13 presents the experimental and theoretical CL values for a cropped-
delta wing with varying tip rake angles 6t. They are compared at two angles of attack
and, in general, for each a the data fall between the two theory curves. The curve
labeled "both side edges" is shown for reference and is simply the 64 = 0 result
extended over the 6t range. The other curve labeled "one side edge" is the asymmetri-
cal wing solution* with only one side edge contributing to vortex lift. For each curve the
contributions of potential lift and leading-edge, side-edge, and augmented vortex lift are
summed. The conclusions from this figure are that: (1) the data are reasonably well
estimated; and (2) rake angles 6t ^ 13° are necessary for the data to no longer exhibit
an effective "side edge."

SUPERSONIC RESULTS

Delta Wings . - •

The suction analogy has been applied to delta wings at supersonic speeds in refer-
ence 4; however, some more recent applications, such as the ones in reference 19, raise
points which require attention. Figure 14 from reference 20 helps to illustrate the points.
Like the A = 1 sharp-edge delta wing of reference 4, the A = 1.1 sharp-edge delta
wing in this figure shows a similar reduction in the vortex lift available with increasing
M. This is because the upwash field between the Mach-cone and the wing leading edge
becomes more restricted with the 'increase in M, thereby leading to a reduction in
KV)£e- In addition, the angle of attack for departure decreases with increasing M
because the upwash field is further reduced by the model being located offcenter with
respect to the Mach cone axis. Therefore, the vortex lift realizable actually decreases
with a. But in order to estimate the Kv je variation with a, better supersonic
potential-flow solutions are needed.

1These solutions were obtained by James M. Luckring of Langley Research Center
with a recently developed*asymmetric version of the computer program described in
reference 18.
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Re ctangular' Wing

Figure 15 presents evidence that side-edge vortex lift is present for rectangular
wings at supersonic speeds. (The experimental data shown were taken from ref. 21.)
At the left of the figure is the change in upper surface pressure with a for two loca-
tions, one outside and one inside the tip Mach cone. The values of ACp u outside the
tip cone are well estimated by the potential theory of reference 22, whereas those inside
and near the tip trailing edge are underestimated over a wide range of a. At subsonic :

speeds, this type of nonlinear ACp u growth with a for a sharp-edge wing would be
attributed to vortex flow being present.

The middle graph.shows a comparison similar to the left graph except that the dif-
ference in cn at the outboard station is not as extreme as for ACp)U. This more
linear behavior is attributed to (1) values of ACP)U measured ahead of the illustrated
location demonstrating a smaller amount of. nonlinear variation with a and (2) the mod-
ifying effect of the lower surface pressure in the computation of cn. The difference in
Cn between the potential theory estimate and the data is, therefore, attributed to vortex
lift which comes from the side edges located within the tip cones.

• • • . • ' • • • £ - ; / ' - • • ' ' •
Hence, calculation of. the attacked-flow side force and use of the suction analogy

provide a means of estimating this vortex-lift effect. The linearized supersonic
potential-flow solutions of reference 23 have been employed to develop the supersonic
Kv se solutions presented in,,reference 14. These solutions are used herein. The
graph,at the right shows that:. (1) vortex normal force is present in the data; and (2) the
data,are well estimated by the combination of potential and vortex normal force.

'•" ' ; ' '." . • . f(. '• • • • •' , . , . ' ' • . . '
Variation of Kv se

Figure 16 shows for two planforms the variation of Kv se with M obtained by
using the method of reference 5 at M ^ 1 and the results of reference 14 at M > 1.
Also, selected side-edge suction distributions for eachplanform are shown. The . Kv se

values increase with M in the subsonic regime and decrease in the supersonic. .The
beginning of the supersonic results are set by the Mach number for which the tip cones
just inter sect" along: the trailing edge. 'The short dashed lines used to connect the sub-;
sonic and supersonic results 'are assumed variations. The reasons for the behavior.of
Kv se with M are contained in the side-edge suction distributions and are now
discussed. . . . .

For the rectangular wing; increasing the subsonic M is equivalent to; decreasing
A which in reference 5 was shown to lead to a rectangularization of the distribution and
an increase in Kv "'se. However, at supersonic M the side-edge suction distribution
again goes to zero^at the tip leading edge but now varies linearly over the side edge .
because'of the conical flow nature of the solution. The falloff of KVjSe with increasing
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supersonic M is the result of two conflicting effects. The first is the reduction in size
of the tip Mach cone and the magnitude of the upwash within it, and the second is the
increase in sidewash due to the limits .of^the Mach.forecone which eliminate the reducing
effects of the other wing panel. The tip cone reduction appears to be the stronger effect.

For the cropped-delta wing, reference 14 illustrates the Kv se reduction which
occurs with increasing subsonic M. In figure 16 the distributions are seen to peak at
higher values with increasing M. At supersonic M and with a subsonic leading edge,
there is an increase in the initial sidewash over the side edge due to the restrictive
limits of the Mach forecone at the leading edge of the tip. This is due to the conical-
flow assumption which results in the distribution being linear aft of this point. With
increasing supersonic M the size of the tip Mach cone and th^magnitude of the upwash
within it also decrease,'leading to a reduction in Kv se. 'c J '

' • ' " < • ' . ' ' • : : • - ' ' • . . . ' . • 9;(% ;_ _ ; ^ ,

: ' ' : • ' - . - Application • . . f l t • . - • •
' • = ' • " ' - ' . • . . . - • . - . ' • • • • . .a/'.1 . . . '

, .Figure ,17 presents a comparison of theraerodynamic characteristics obtained on a
> ' : ' . . - , ' • ' • ' - . f l l *

cropped-delta wing-body model tested at M = 1.2 (ref. 24) with the results of the pres-
ent method for the wing alone at the same Mach number. The comparison shows that

• ' -TI 'inclusion of the leading-edge-, side-edge-, and augmented-vortex-lift effects leads to
improved agreement. The pitching-moment contributions are obtained by having the .
vortex lifts act at their respective centroids, and by performing the analytic surface •. i.
integration, both inside and outside of the tip cone, of the product of the potential-flow --.;
lifting pressure (given in ref. 23) and its cliordwise position'. (See ref. 25.). The poteh- :

tial theory drag curve contains Crj> o and is presented forjfull leading-edge suction arid
with no separation around the side edges. The other theoretical drag curve also includes

CD,O-

MULTIPLE LIFTING SURFACES . . - . . - , .
* - • • - : • • • : - - . - . . . J , . - . . . . , . ,

- Vortex-lift estimates have been made-up to now for isblatedrwings, but- in this sec-
tion, multiple lifting surfaces are treated. Examples of these surfaces are wing-tail or
wing-canard configurations; however, configurations such as a wing.-body1 can also'be ,
considered-multiple lifting surfaces when the body is taken.jto be a lifting one and is rep-
resented by a flat surface. :

Figure 18 presents applications of the suction analogy to configurations. On-the
left are the lift results for a slender wing-body, and the data (taken from ref. 26) are well
estimated by'the combination of potential and vortex lifts. On the right of the figure are
the wing lift'results for a nonslender configuration. At the top the wing is in the presence
of a forebody and at the bottom it is in the presence of a high canard (z/cref = 0.185).
The top part'shows a CL variation typical of wings with moderate sw,eep because they
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are known to have low angles of attack for departure and vortex breakdown (ref. 2).
However, in the presence of the high canard, a favorable interference results, and even
with the reduction in CL p on the wing, due to canard downwash, the predicted amount
of vortex lift is developed on the wing. The data (taken from ref. 27) are well predicted
over the range of a , and reach higher CL values than those for the wing in the pres-
ence of the forebody.

Figure 19 presents the effect on the wing lift characteristics of changing the
canard position. From the figure it can be seen that both the high canard with anhedral
(0 = -18.6°) and the coplanar canard have a favorable interference effect on the wing. In
neither case has the augmented vortex lift due to the leading-edge vortex of the canard

•T1 ' , "
been taken into account. This omission is proper for the canard in the anhedral position
but questionable in the coplanar arrangement. This vortex lift was omitted because an
appropriate c has yet to'be determined; •;

• • • • •>& ' • ••' • . • .
.. CONCLUDING REMARKS.

* - 0 * ; ' - ' • ' ' •

This paper has presented some recent extensions of the suction analogy for the
5?-" ' • '

estimation of vortex lift from'the side edges and from the downstream effects of the
jQ ' '

leading-edge shed vortex. Applications of these extensions have resulted in an improved
estimating capability for a wide range of isolated sharp-edge planforms and.also for
multiple lifting surfaces. Hence, the suction analogy concept can now have wider appli-
cability at both subsonic and supersonic speeds, especially in the preliminary design
cycle. . s .

~ The following are areas in which additional research is needed: . : •

(1) An improved supersonic potential-flow program that properly accounts for the
changing proximity of the model and its Mach cone with angle of attack "•-.

(2) Development of a method for predicting the location and strength of the vortex
' ' flow originating ori-rounded-edge wings and the enlargements of the"influenced

region with angle of attack

(3) Surface pressure distributions for wings which have vortex flows originating
along the"'leading and side edges for use in critical design analyses .
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A THREE-.DIMENSIONAL SOLUTION OF FLOWS OVER WINGS

WITH LEADING EDGE VORTEX SEPARATION*

By James A. Weber, Guenter W. Brune, Forrester T. Johnson,
Paul Lu, and Paul E. Rubbert

The Boeing Company

SUMMARY

The application of a new, general, potential flow computational technique to the
solution of the subsonic, three-dimensional flow over wings with leading edge vortex
separation is presented. The present method is capable of predicting forces, moments,
and detailed surface pressures on thin, sharp-edged wings of rather arbitrary planform.
The wing geometry is arbitrary in the sense that leading and trailing edges may be
curved or kinked and may have arbitrary camber and twist distributions. The method
employs an inviscid flow model in which the wing, the rolled-up vortex sheets, and the
wake are represented by piecewise continuous quadratic doublet sheet distributions. The
Kutta condition is imposed and satisfied along all wing edges. Strengths of the doublet
distributions as well as shape and position of the vortex spirals are computed in iterative
fashion starting with an assumed initial sheet geometry. The method is verified by
numerous computed results. The extension to supersonic flow and more general con-
figuration types is suggested.

INTRODUCTION

The flow at the leading and tip edges of a swept wing with sharp edges separates at
moderate to high angles of attack, the separation producing vortex sheets which roll up
into strong vortices above the upper surface of the wing. The formation of these vortices
is responsible for the well-known nonlinear aerodynamic characteristics exhibited over
the angle-of-attack range (fig. 1).

The leading-edge-suction analogy described in references 1, 2, and 3 provides a
method suitable for calculating the magnitude of the nonlinear vortex lift on a rather
broad class of wing planforms. Polhamus (ref. 1) reasoned that the normal force needed
for the flow around a leading edge to reattach to the wing is equivalent to the leading edge
suction force necessary to force the flow to be attached to the leading edge in an unsepa-

*This work was supported by the NASA Langley Research Center under Contract
NAS1-12185.
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rated condition. . The unseparated leading edge suction force is calculated, and is then
rotated normal to the wing to obtain the lift contribution of the leading edge vortex. The
total wing lift computed by this method agrees well with experimental data, but the
leading-edge-suction analogy does not give flow-field details or detailed surface pressure
distributions.

Several attempts had been made in the past toward the theoretical prediction of
detailed pressure distributions and flow fields about swept wings with leading edge vor-
tex separation. Most of these past methods are limited to slender configurations, a con-
siderable simplification because the problem can be reduced to a solution of Laplace's
equation in the cross flow plane, for which conformal mapping becomes a powerful tool.
Smith (ref. 4) developed the best known method of this type by improving the work done
earlier in collaboration with Mangier (ref. 5). Assuming conical flow, which is approx-
imately valid near the apex of the wing, he was able to predict qualitatively the type of
pressure distributions that had been observed experimentally. Those pressure distri-
butions (fig. 2) exhibit a vortex-induced pressure peak at about 70 percent of the local
semispan of the wing. Toward the trailing edge, Smith's method overpredicts the exper-
imental load distribution by a considerable amount, the reason being that his conical
theory does not satisfy the Kutta condition at the trailing edge. Figure 2 shows such a
comparison of Smith's theory with experiments and also, for illustrative purposes, span-
wise pressure distributions from linear lifting-surface theory (e.g., ref. 6) and from
Jones' slender-wing theory (ref. 7) at two chordwise stations of a delta wing. This fig-
ure (supplied by Blair B. Gloss, of NASA Langley) shows clearly that none of these
theories can even approximately predict aerodynamic load distributions of wings with ' ,.
leading edge vortex separation and demonstrates the need for an accurate'prediction
method for this type of flow phenomenon.

DESCRIPTION OF THE METHOD

Basic Concepts

Inviscid, irrotational, incompressible fluid flow is characterized by a perturbation
velocity potential 0 satisfying Laplace's equation . .

0xx + 0yy + 0ZZ = 0 . ' (1)

Compressibility effects over a wide range of subsonic Mach numbers may be approxi-
mated by the Goethert rule, in which case a preliminary coordinate transformation again
produces equation (1). Hence, for the purposes of this paper, only solutions to equa-
tion (1) are considered. ' . -
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Green's theorem expresses <p, the .solution to equation (1), in terms of its value
and normal derivative on the fluid boundary S:

Here r is the distance from the field point P to a boundary suface point Q and .-
a/an is the derivative in the direction of the surface normal n pointing into the fluid.
Equation (2) gives <£ as a superposition of a source sheet cr(Q) of strength d<p/dn
and a doublet sheet pt(Q) of strength 0 on the boundary of the fluid. The source and
doublet are fundamental solutions of equation (1), their strengths being determined by an
appropriate set of boundary conditions.

The boundary conditions may be of the Neumann type (specification of 80/3n), of
the Dirichlet type (specification of $), or of the mixed type. Neumann and Dirichlet
boundary -value problems are referred to respectively as "analysis" and "design." In .
the present formulation all surfaces are considered as "thin," with continuity of a0/3n
across the surface, in which case the first term on the right-hand side of equation (2)
becomes zero and the second term is replaced by an integral over a single side of the
surface with 0(Q) replaced by A$(Q) = /i(Q).

Numerical Procedures

A new computational scheme for the numerical solution of Laplace's equation for
Neumann, Dirichlet, or mixed boundary-value problems was recently presented (ref. 8).
A boundary -value problem is comprised computationally of an assemblage of boundary
surfaces and their appropriate boundary conditions. A portion of the boundary surface
is termed a "network." The boundary surface is discretized into logically independent
networks, generally constructed by consideration of the specific characteristics of the
physical problem to be solved. Each network consists of a boundary surface oriented
arbitrarily in space, composed of source or doublet distributions and accompanied by a
properly posed set of analysis (Neumann) or design (Dirichlet) boundary conditions. The
computational scheme has been formulated as an aerodynamic influence coefficient
method.

Essential features of the computational scheme are

• Geometry input for a network is a matrix of corner -point coordinates. Panel
surface shape is obtained by fitting a paraboloid to corner points in an imme -
diate neighborhood by the method of least squares.

• Discrete values of singularity strength are assigned to certain standard points
on each network. A local distribution of surface singularity strength is
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obtained by fitting a linear source or quadratic doublet form to these discrete
values in an immediate neighborhood by the method of least squares.

' • Certain standard points on each network are assigned as control points. These
points include panel center points as well as edge abutment downwash points in
the case of doublet networks. The latter serve to .impose standard aerody-
namic edge conditions automatically, for example, the Kutta condition, zero
potential jump at thin edges, continuity of singularity strength across abutting
networks, so as to produce logical independence for each network, in the case
of the doublet design network, certain linear integral conditions are imposed to
achieve closure. In all cases the number of boundary conditions on each net-
work coincides with the number of assigned surface singularity parameters.

• Two expansions of the induced velocity kernel are employed. The near-field
expansion is based upon the assumption of (relatively) small panel curvature;
the far-field expansion is dependent upon a (relatively) large separation dis-
tance between the field point and panel. All resultant integrals are evaluated

. ' . - . - in closed form by means of recursion relations which contain the fundamental
logarithm and arc tangent transcendental terms that appear in flat-panel,

. constant-strength techniques.

Theoretical Model

.. . . Experimental studies (e.g., refs. 9 and 10) of the principal vortex indicate .that.its
shape and strength are relatively independent of Reynolds number. The relative lack of
viscosity, dependence suggests that the flow may be regarded as potential, with the free
shear, layer represented either as a vortex sheet, or equivalently, a .doublet distribution,
across, which exists a discontinuity in tangential velocity.

The essential elements of the present inviscid and incompressible flow model are
the wing, the trailing sheet (wake), the sheet emerging from the wing leading, edge and
tip (free sheet), and the rolled-up core or spiral region (fed.sheet) fed by the leading-,
edge and tip vortex sheets (fig. 3);

The boundary conditions which are imposed on these elements are

• The flow must be everywhere parallel to the wing surface, that is, 'n • Vs = 0,
where the symbols Vs and n are the average velocity (i.e., the average of
the velocities on opposing sides of the sheet) and normal vector-on the sheet
surface, respectively.

• The free sheet and wake cannot support a pressure differential ACp and must
be alined with the local flow, that is, ACp = 0 and ii • Vs = 0.
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• The fed sheet is an entirely kinematic extension of the free sheet, and no
boundary conditions are applied to the fed sheet. This is a simplified model of
the true physical vortex-core region which is viscosity dominated. The size
of the fed sheet is taken from the conical-flow results of Smith (ref. 4).

• Kutta conditions are imposed along the leading, side, and trailing edges of the
wing in the presence of free sheets emanating from these edges.

The geometric description is that of a general three-dimensional (not conical) con-
figuration consisting of a thin wing, free sheet, wake, and fed sheet (fig. 3). The wing
geometry is arbitrary in the sense that leading and trailing edges may be curved or
kinked and the lifting surface may have arbitrary camber and twist. The configuration
is subdivided into a network of quadrilateral panels whose corner points are defined by
coordinates in transverse cutting planes. The trace of the kinematic fed sheet in a
transverse cutting plane is either a circular arc extending over 180° or a single planar
panel locally perpendicular to the free sheet.

Briefly, the main features of the numerical representation are the following. The
wing and free sheet are represented by network distributions of doublets which-vary as
piecewise continuous quadratic functions in each of two coordinate directions over each
panel of the network. The cumbersome shedding of wakes associated with vortex panels
is thus avoided. An analysis type of network is employed on the wing (geometry of the
wing is specified), and a design type network of doublets simulates the free sheet
(unknown free-sheet geometry, zero pressure jump specified). Figures 4 and 5 display -
details of the two networks, showing the arrangements for the free doublet parameters
from which the six coefficients of the quadratic panel distributions are determined by
least-squares fits. All aerodynamic influence coefficients (AIC) are integrable in closed
form, resulting in an efficient and reliable AIC computation. Details of the development
of network .formulation and AIC are reported in reference 8.

Network types used for the wake and fed sheet are specializations of the design
type network.

Solution Procedure - - - . - • -

The boundary-value problem of wings with leading edge vortex separation is non-
linear because of the fact that the shape of the free vortex sheet (symbolized by n) as
well as its strength are-unknown. The solution procedure must therefore be iterative.
The basic approach driving the iteration involves a small perturbation from an initial
guess which .results in a linear formulation for the updated free-sheet position and
strength.
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The boundary -value problem can be written symbolically in terms of the following
three equations:

E(/ieJf,n) = P (3)

F(fie,M,n) = 0 (4)

0 . . (5)

Here, those doublet strength parameters defined at certain edge points of networks are
denoted by fie; all remaining doublet parameters, by JT; and the panel normal vectors,
by n. The specific form of these equations is given by appendix A. The first equation
expresses the stream surface boundary condition (n • Vs = Oj at certain edge points of
networks. Satisfaction of equation (3) is a necessary condition for the satisfaction of the
Kutta condition postulated for wing leading and trailing edges. The second equation (4)
symbolizes the boundary conditions AC« = 0 of the free sheet and wake and n • Vs = 0
of the wing. The third equation (5) is the stream surface boundary condition of the free
sheet and wake. ! .

Small perturbations of these equations from an initial "starting solution" result in
a set of linear equations governing perturbation variables Ajie, A/T, and An. The
specific form of the equations is given in appendix A. Symbolically,

'aE aE Q
9Me a]T
aF aF aF

8Me dJI an

aG aG aG
_9|^e ajtl an.

<

s- -s.

Afie

AM

An-̂ .̂

/- -N
0

AF

AG
^_ -S

(6)

where AF and AG denote the error in satisfaction of boundary conditions arising at
an intermediate, nonconverged point in the iteration cycle.

These equations are solved in each cycle of the iteration procedure to update dou-
blet strength and configuration geometry. Numerical experimentation revealed that it is
most advantageous to satisfy the first equation of (6) (i.e., the Kutta condition) exactly at
every iteration step. It is assumed that the Kutta.condition is not affected by the geome-
try update aE/an = 0. To avoid overshooting the correct solution, the step sizes are
scaled. Specific details of the iteration scheme are given in appendix B.
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VERIFICATION OF THE METHOD

A computer program has. been developed .which verifies the method;. ;The program,
which is presently restricted to 125 unknown parameters, is coded for the CDC 6600
computer, occupies 120 000 octal locations of central memory in an overlay structure,
and uses 15 Input/Output units. (The program is also operational on the Langley
CDC 6400 and 6600 computers.) Although quotation of execution time is qualitative at
best because of the many influencing factors, solutions for delta wings have been exe-
cuted in under 300 seconds of central processor time.

Numerous example cases have been executed to validate the method and its gener-
ality. Cases have been selected with a view to comparison with available theoretical
and.experimental data for a range of different geometric configurations including delta,
gothic, and arrow wings.

The capability of the method to predict overall wing coefficients accurately is
shown in figure 6 for a delta wing of aspect ratio 1 at low subsonic speed (M^ = 0). The
right-hand side of the figure shows the well-known nonlinear variation of the normal-
force coefficient Cjj with angle of attack a. Several values of Cjj were computed
for angles of attack up to 20° and agree very well with experimental data of Peckham
(ref. 10) and theoretical results from the leading-edge-suction analogy of Polhamus
(ref. 2). To the left of the figure is shown Cjj as a function of iteration number for
two different angles of attack. The curves demonstrate the excellent convergence char-
acteristics of the method. The corresponding load distribution at a = 20° is plotted in
figure 7 and compared with Peckham's experimental results. Although only 25 wing
panels were used on one-half of the configuration, the completely three-dimensional non-
conical load distribution was well predicted, including the location of the vortex-induced
pressure peaks and the decrease of the load toward the trailing edge.

Figures 8 and 9 show detailed surface pressure distributions for another delta wing
of aspect ratio 1.4559 at a = 14° and a = 19.1°. Upper and lower surface pressures
are very well predicted, as the comparison with experimental data (ref. 11) illustrates.
The experimental results clearly show the effect of the secondary vortex separation
which takes place on the upper surface just slightly outboard of the main vortex. The
present method does not model secondary vortex separation and consequently produces a
slightly different shape for the pressure peaks.

The method has application to more general configurations. For example, fig-
ure 10 shows the method applied to a gothic wing having a swept trailing edge and a
curved leading edge. The right-hand side of the figure shows good agreement of the
normal-force coefficient C^ with experiment at the relatively high angle of attack
(a = 14.3°). The convergence characteristics shown on the left-hand side are excellent;
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in this example the iteration scheme was modified such that the aerodynamic influence
coefficients (whose computation consumes the largest fraction of computer run time)
were updated only after the 5th and 10th iterations.

Figure 11 shows the predicted load distribution of.an arrow wing. Experimental
data are not available for comparison, but the plotted loads appear to be realistic and
demonstrate that the method is capable of handling other than delta-wing planforms.

CONCLUSIONS

The work reported here demonstrates one of the applications of a new, general,
subsonic potential flow computational technique recently developed (reported in AIAA
Paper No. 75-50, 1975). With the use of this technique, a three-dimensional method for
predicting the flow field about swept, sharp-edged wings characterized by the presence
of vortex separation at the leading edge has been formulated and verified. The method
has been highly successful in overcoming the most difficult aspects of the problem and
provides a potential breakthrough to eventual development of this initial capability into
a method suitable for supersonic flow and for complete configuration analysis in sub-
sonic and supersonic flow. In addition, it has application to related problems involving
free vortex sheets, which are encountered in the areas of powered lift, jet interactions,
jet flaps, and so forth.
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APPENDIX A

DERIVATION OF EQUATIONS

The set of boundary conditions defining the leading edge vortex problem were rep-
resented symbolically in-equations (3), .(4), and (5). The derivation of that set is.outlined
in this appendix.

First, consider several fundamental relationships which hold for a sheet across
which a jump in tangential velocity exists (e.g., a doublet sheet). The average velocity
for the sheet Vs is given in terms of the upper-surface and lower-surface velocities
Vu and Vj, respectively: •

• ' ' (Al)

The velocity difference across the sheet V^ is given as

v°= V-YI (A2)

The pressure jump ACp across the sheet ;is given as

• VD) (A3)

where UOQ is the free -stream velocity.

The jump of tangential velocity across the sheet is created by a doublet distribution
/i defined by a set of free doublet parameters jUp such that M = M (Mp) . The sheet
velocities are directly related to \i and p.p through the local point relationship for
VD and the global matrix relationship for Vs:

VD = Vjn = V M f i - (A4)

. (AS)

where [A] is the matrix of aerodynamic influence coefficients relating Vs to the dou-
blet parameters jnp. .

The boundary conditions are

Wing:

n - V s = 0 (A6)

Free sheet and wake:

n • Vs = 0 (A7)
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ACp = (A8)

plus the Kutta condition, where n is the normal vector.

Let the boundary conditions be represented symbolically in terms of the following
independent variables: p.e, doublet strength parameter on the edges of all networks at .
which the Kutta condition* is to be satisfied; ]T, all remaining doublet strength param-
eters of all the networks; and n, the normal vector representing a geometry parameter
defining the spatial location of the networks (wing networks are spatially fixed). Equa-
tions (A6) to (A8) are grouped symbolically into the following set:

E(ne,-JI,n} = n • Vs = 0 (Kutta condition) (A9)

_ (n • Vs = 0

\ACp = 0

G(Me,M,n) = n . Vs = 0

(Wingfl

(Free sheets and wake)J

(Free sheets and wake)

(A10)

(All)

To begin the iteration procedure, a linear perturbation of these nonlinear equations
from an initial "starting solution" is performed. An example of the perturbation tech-
nique is illustrated by a linear perturbation of E (= n • Vs) from the "old" value to the
"new":

Enew = Eold + AE = n • Vs + An • Vs + n • A Vs + o(A2)

or, rearranging and neglecting terms of order A^,

Enew
s =- Eold= Enew - n • V = An - V + n • AV = AES =

(A12)

(A13)

where AVS is related to A/ne, AJU., and An. A similar analysis of E, F, and G
yields the symbolic matrix equation

8E 8E 8E"
9Me 8/1 8n

8F_ 8F 8F
8Me 9]T 3n

8G 8G 8G
.aMe 8JT 3n_

<

^Me

A/T

A

> - <

f -\
AE

AF

AG^

(A14)

The iteration scheme (appendix B) is initiated by an initial geometry definition for
the wing (fixed), free sheet and wake, and fed sheet. The boundary conditions will not, in

Kutta condition is not treated as a separate boundary condition, since by the
nature of the free -sheet boundary condition (ACp = 0) it will be satisfied when the solu-
tion is achieved. Instead, a smooth "off -flow" condition is imposed as a necessary con-
dition (not sufficient) for the Kutta condition to be satisfied.
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general, be satisfied. The perturbed equations (A14) define the linear, one-step values
of the perturbed quantities necessary to reach the solution. In fact, however, when the
geometry is updated and all quantities are recb'mputed, the boundary conditions will, .once
again, not be satisfied. Symbolically, the "old" values of E, F, and G will not be
satisfied; it is required, however, that the "new" values will be satisfied such that

Enew = Fnew = Gnew = 0. This establishes the iteration procedure.

It was found to be convenient to make the following approximations to equation (A14):

AE = 0 insuring satisfaction of the Kutta condition for each iteration step.

assuming the smooth "off-flow" condition is not affected by geometry update
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; . • • - . ' - • • • • • ITERATION SCHEME . . • - • . - " " '

Represent the quantities of equation (6) symbolically as AX = (Afie;A/T,An), the
coefficient matrix (Jacobian) as J, and the right-hand side as -f. Equation (6) becomes

These equations are solved iteratively with a quasi -Newton scheme. Represent the
ith iteration by superscript i. The scheme proceeds to find the corrections AxW
from the equation : .

j(i) AXW = rf W . ., , . _ . - . .. . ,; .. . (B2)

and forms .the new approximate solution (next iterate). . , . .,, . . . . . . . , , . . .

X(i+1> = X^ + 6(0 AXW : / ' - ' — " . - : (B3)

where " jW = JJxM], fW = f[xW], and 6^) is a scaling parameter to limit the step
size of the correction vector. The Jacobian at X^i+1) is obtained by using the following
update formula (ref. 12):

j<i+l) , J<i) + D&> . (B4)

where

+D - f (i) - j(i)

In this way, there is no need to reevaluate the partial derivatives comprising the
elements of the Jacobian at every iteration.

Since the aerodynamic influence coefficients form an essential part of the method,
included in the iterative scheme is a procedure for generating new aerodynamic influence
coefficients only after every few iterations. This approach helps to reduce the overall
computing costs.

The scaling parameter fi") is introduced to alleviate the problem of overshoot in
the classical Newton scheme. For each iteration cycle, the following criteria are used
to determine

0 < 6 < « S 1 6 A x < y X • ,(B5)
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APPENDIX B

where y is a predetermined quantity to be set equal to a certain fraction of the length
of the initial vector X^°) and the notation 1 1 J| is the Euclidean norm representing the
length of a vector. In addition, a halving process of the scaling parameter 5 W is
applied to ensure the inequality

(B.)

The quality of the solution is monitored by examination of the residuals defined by

(B7)

where k ranges over all appropriate boundary-condition points.

To initiate the solution process, only an initial geometry is required for the free
sheet and fed sheet. This may be obtained from conical-flow results or, as experience
allows, by assuming an initial geometry form.
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ADVANCES IN SONIC BOOM THEORY*

By J.L. Lung, B. Tiegerman, N.J. Yu, and A.R. Seebass

Cornell University

INTRODUCTION

The theory required to predict the sonic boom of supersonic aircraft
and the numerical codes that do so on a routine basis have been available for
some time (references 1 and 2). This paper discusses recent advances in
three aspects of sonic boom theory and briefly addresses the role of numeri-
cal calculations in each. We first discuss the maximum extent to which the
sonic boom of supersonic aircraft can be reduced by careful aerodynamic design,
and describe a computer program that determines the aircraft area development
required to minimize various sonic boom signature parameters. We next describe
a result that predicts the minimum sonic boom of hypersonic vehicles; this
result is a consequence of a matching of numerical calculations with the results
of weak nonlinear wave theory. Finally, we. report on numerical results that
advance our understanding of the behavior of sonic boom signals in the vicinity
of a caustic surface. The numerical procedures developed for the latter prob-
lem have proved effective in calculating, transonic flows with embedded shock
waves.

COMPUTER PROGRAM FOR AERODYNAMIC MINIMIZATION

There are important trade-offs between the aerodynamic minimization of
an aircraft's sonic boom, and its performance. We ignore these trade-offs
and ask: What is the maximum sonic boom reduction that can'be achieved
through careful aerodynamic design? Specifically, we have minimized each
one of three signature parameters without any constraint imposed on the
others or on the aircraft's performance. The aircraft is characterized by
its weight, length and, in some cases, also by its volume and center of
pressure. We use the supersonic area rule to pose the appropriate minimiza-
tion problem in terms of the cross-sectional area development of the equiva-
lent body of revolution for the vertical azimuthal plane.

Determining the shape of the body of revolution that minimizes a given
signature parameter below an aircraft is equivalent to the specification of
the Whitham F-function for that azimuthal plane. With a few well-known facts
in hand, intuition may be used to guess the proper minimum. That this is
indeed a local minimum can then be proved by considering infinitesimal varia-
tions of the F-function; the proof that it is a global minimum requires the
use of control theory.

*Research was sponsored by NASA Langley Grant NGL-010-030-203.
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We have considered minimization of the parameters shown in figure 1:
1) the impulse of the positive phase with a resulting shock pressure rise of
Pj; 2) the maximum overpressure in the signal Pso; 3) the minimum shock
pressure rise, Ps, that can be achieved with the rest of the pressure increase
occurring in a prescribed rise time, T. The general procedures for this
minimization have been outlined in reference 3; they lead to a system of
four equations in the four unknowns. The evaluation of certain integrals
with analytical formulas and the elimination of two unknowns result in two
equations involving complicated combinations'of transcendental functions;
the unknowns are the length of the positive phase of the signal and the loca-
tion of the rear shock wave.

A computer program has been developed (reference 4) that, with the input
indicated in table 1, determines the appropriate area development needed to
minimize the above signature parameters. The output provided, also delinea-
ted in table 1, is both numerical and graphical, and in the international
system of units as well as in the more usual English units. The main param-
eters in the input are the Mach number, the aircraft's weight, length and
altitude, the rise time prescribed for the pressure following the shock wave,
and the ratio of the fear-to-front shock strength. For aircraft with "large"
volumes, the volume and center of pressure also play a role. Known solutions
to these equations are used to determine an initial guess for the unknowns.
The solution is found by using Newton's method. Should the operator choose,

—atypical- initial conditions, then there is an "option for the operator to"
choose his own initial guess.

There is nothing difficult about the numerical programming, and with an
appropriate initial guess for the two unknowns, Newton's method quickly pro-
vides '. the solutions. One might say that this program requires an advanced
programmable calculator rather than a computer. Typical computation times
are about ten seconds per case on an IBM 370/168, corresponding to less than
one minute on a 360/65.

For many practical designs with realistic volumes, the volume poses no
constraint because volumes up to a certain limiting value can be obtained
without penalty. Beyond that value, one must either compromise the minimum
shape in order to accommodate the additional volume or have recourse to a
Busemann biplane or ring wing.

The program we have developed treats only the case of an-, isothermal .
atmosphere. It is not difficult to generalize this program to standard atmos-
pheric conditions. Darden, in reference 5, has carried through such a gener-
alization to provide a simple means of correcting the results for an isother-
mal atmosphere so that they correspond to those for a standard-atmosphere.

Sample results for the flight conditions typical of an SST are depicted
in figures 2 and 3." Figure 3 shows the aircraft area development required to
achieve the minimum overpressure signature shown in figure 3 with the jconstraint
that the rear shock be no stronger than the front shock. The pressure rise
through both the front and the rear shock are tabulated, as is the impulse
of a positive phase of the signature. For this sample case, with equal
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strength front and rear shocks, the impulse is about 30% larger than the
minimum impulse that could be obtained for the same flight conditions; the
shock strength has, however, been reduced .45%. . . . ...

SONIC BOOM OF HYPERSONIC AIRCRAFT

While we can predict the sonic boom of slender aircraft at relatively
high Mach numbers, at the present time it is not possible to predict a sonic
boom of vehicles when the products of their slendefness ratios and Mach
numbers are comparable to 1. This absence of a complete theory does not pre-
clude the possibility of determining the minimum impulse that could be achie-
achieved by hypersonic vehicles. Furthermore, because of the strong non-
linear effects near the body, it is logical to assume that the minimum
impulse signature does not differ from that of minimum overpressure. In
hypersonic flight the wave phenomenon associated with the drag of the vehicle
undoubtedly sets a lower bound for its sonic boom.

We can invoke the hypersonic equivalence principle of Hayes to determine
the flow near the body; the cylindrical analog of the inviscid Burgers'
equation must describe the evolution of this flow field far from the body.
In the region intermediate between these two regimes there is no simple
theory, and one must meld the two flow regions with a numerical calculation
of the flow field. , .

In the drag-dominated case, the flow field far from the vehicle will be
that produced by the energy released by the vehicle per unit time, that is,
the product of the vehicle's drag with its velocity. We make the assumption
that this energy is released essentially instantaneously, that is that the
vehicle is relatively short; then the flow in the near field can be inter-
preted to be that associated with a cylindrical blast wave through the equi-
valence principle. There is no reliable way of coupling the similarity
solution to this problem, valid when the shock wave is strong, with the
inviscid Burgers' description, valid when the shock wave is weak. A simple
recasting of the results obtained by modifying the similarity solution to
take into account the first term in ambient pressure so that it yields an
inverse three-fourths power-decay asymptotically, provides a reasonable
estimate of the overpressure, but does not provide information about the
signature's impulse.

Atmospheric effects can be accounted for easily, provided the wave
becomes relatively weak in some fraction of an atmospheric scale height. The
conditions under which this assumption is a realistic one have been carefully,
delineated in reference 6.

In order to carry out this theory, then, one must have reliable numerical
solutions for the cylindrical blast wave. We were concerned that the earlier
numerical calculations for a cylindrical blast wave, carried to significant
times by Plooster (reference 7), would not be reliable because he used a
finite difference scheme which employed an artificial viscosity. While this
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artificial viscosity should not affect the strength of the leading shock
wave, we realized that it would prevent the steepening of the negative phase
of the pressure signature into an N-wave; hence we undertook to recalculate
the numerical solution for the cylindrical blast wave for even larger "time's
without recourse to artificial viscosity. In carrying forth this numerical
calculation, an implicit second-order scheme, modelled after that of Okhot-•
simskii (reference 8) was used. The numerical procedure we developed treats
the front shock wave as a mathematical discontinuity and applies the Rankine-
Hugoniot conditions across it. The position of this shock wave is determined
by a shock-fitting procedure, which was not difficult to implement. While
this procedure eliminates any artificial viscosity, it does mean that the
leading truncation errors are dispersive and when steep gradients are encoun-
tered in the negative phase of the signal, these dispersive errors become so
large that the calculation must be modified.

Near the origin of the blast wave the density of the gas is very low and
its temperature very high, leading to an entropy core that is difficult to
treat numerically. Consequently we treated the entropy core analytically and
used this analytical behavior as inner boundary data for the numerical solu-^
tion. Eventually the wave propagates far enough away from this region that
it no longer needs to be considered. At that stage it is necessary to refine
the computational grid in order to generate accurate numerical results. In
the later stages of the calculations it is necessary to change the difference
scheme to one that has a dissipative truncation error in order to damp the
"dispersive"oscillations that originate in the steepening zone of the negative
phase. The numerical results obtained extend essentially'a decade further,
in energy length scales, than those of Plooster. The results for the"over-
pressure as a function of the energy length scale, defined here as
R = (D/2irP1)

1'2) where D is the vehicle's drag and P-| the ambient pressure,
are shown in figures 4(a) and 4(b) (from referenced). While there is little
difference in the shock strength between these results and those of Plooster,
there is a considerable difference in the signature shape, particularly that
of the negative phase. The calculations are finally terminated by'the
growth of dispersive errors. Figure 5 shows the pressure profiles in terms
of normalized distance to the shock wave for various distances. These
numerical results provide the initial conditions for the inviscid cylindri-
cal Burgers' equation. A careful monitoring of the numerical results that
are appropriate for this matching show that even with .this additional decade
of calculation the matching can only be carried out to lowest order.

These results of this matching are in accord with those reported by Pan
and Sotomayer (reference 9) for a homogeneous atmosphere, as later modified
by them; they used Plooster's numerical results. When our results are modi-
fied to account for atmospheric effects, considering the atmosphere to be
isothermal, the results for the overpressure and impulse shown in figure 6
are obtained;. . the formulas that give these curves may be found in references
3 and 6. These results, modified for flight path angle, are compared with
measurements made on the Apollo 15 and 16 .re-entries in figure 7 . (references
10 and 11); the impulse is compared only in that case where it was.clear
there were no waves reflected from surrounding surfaces present in the signal.
The agreement is surprisingly good and provides a proper vindication of the
results.
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The computations were carried out on an IBM 360/65 computer and involved
four different stages of computation, beginning with a stage that took into
account the entropy core and concluding with/calculations with a truncation
error that simulated viscosity. The total computation time for all four
stages was. about six hours.

BEHAVIOR AT A CAUSTIC

To determine the amplification of a sonic boom at a focus that results
in a so-called superboom requires the solution to a mixed nonlinear equation
with discontinuous boundary data in the hyperbolic domain. We have developed ,
a second-order numerical scheme that treats discontinuities as such by apply-
ing the appropriate jump conditions.across them and, consequently, reduces
the numerical dissipation and dispersion associated with large.gradients. The
results utilizing this shock-fitting algorithm are substantially superior to
those computed by either a first-order or a.second-order scheme. The results
for this problem, which will be discussed shortly, illustrate three points:
1) computational difficulties and computational time can be reduced with
shock-fitting; 2) for some problems shock-fitting is essential if physically
meaningful results are to be obtained; 3) local analytical solutions may be
required to achieve reliable results with reasonable computing times.

Consider a shock wave reflecting from a sound speed gradient as sketched
in figure 8.. This phenomenon, after an appropriate scaling (reference 12)
is governed by .

(y + <j> )' - <j> = 0,J Yx xx yy

where $ may be thought of as a (perturbed) velocity potential, with boundary
data prescribed in accordance with the nonlinear generalization on the properly
posed problem for

. y<j) _ <j) = 0 . ' .

XX yy

Numerical boundary data are supplied from the solution to the linear equation
for an incoming signal of the form

-1/4 /T /T
y [H(x + 2 /y /3) - H(x + 2 /y /3 + 6)] , y + <}>x > 0,

0. y +.6 < 0,
* A ,

where H is the Heaviside unit function. Solutions to the linear problem are
given by complicated combinations of hypergeometric functions; through care
in choosing the expansion used to represent these functions the linear solution
may be computed with any precision required (reference 12).
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A first-order numerical solution to this nonlinear equation was first
obtained by Seebass, Murman and Krupp (reference 13) using an implicit,
backward difference approximation for x derivatives in the hyperbolic region.
This scheme is unconditionally stable and the numerical calculations con-
verge. However, the "solution" does not give a satisfactory representation
of the discontinuities, nor can it determine the maximum value of the ampli-
fication of a sonic boom at a caustic for any realistic grid spacing. A
second-order scheme that solves this equation has been developed, and while
the discontinuities are still smeared out, they are considerably thinner'
than those obtained with a first-order scheme. The truncation errors, how-
ever, are dispersive, causing an unpleasant "wiggle" on the downstream side
of the compressions. These second-order results are used to provide the
initial conditions for a second-order "shock-fitting" scheme that treats the
discontinuities as such in order to satisfy the jump conditions to second
order. The numerical scheme that we used is outlined in reference 14.

The computational region considered is indicated in. figure 8, which also
depicts a typical grid spacing. To understand the procedure, assume that the
computation procedure has reached station "i", i.e., x ='x^. The upstream
conditions are then all known, and the properties of the downstream shock
point can be calculated by using the characteristic relations and the shock
-jump-condition. At the point where the shock intersects vertical grid line -
x = xi, the value of <j> is calculated by direct integration of d<j>. Difference
approximations to the x and y derivatives are then constructed by using the
shock points, instead of the regular grid points (see reference 14). Again,
an implicit scheme is used when the equation is hyperbolic and a central-
difference scheme when it is elliptic. During the computation the position
of the shock is determined and the quantity y + <j>x is computed at each grid
point so that the proper difference equations can be selected.

As the incident discontinuity approaches the line where y +-<j>x = 0 it
grows in strength until the flow behind the incident wave becomes .sonic. At
that point we have assumed that a reflected wave.is formed. The initial
strength of the reflected wave is obtained by using backward differences to
approximate properties behind the shock. The strength of the discontinuity
increases rapidly and approaches its final value within 5 to 10 iterations.
The reflected discontinuity is weak, but this is probably due to the procedure
we invoked at the triple point.

Figures 9 and 10 show the results for typical second-order and shock-
fitting calculations. They depict the variation of <j>x with x for various
values of y. Note the marked difference between the results obtained with
shock-fitting and those obtained by more standard procedures.

Our calculations show that the results are sensitive to the.model picked
for the behavior near the triple point. It is clear to us that the sensitivity
of the results to this behavior is, indeed, critical. Various attempts to
model the triple point numerically have been unsuccessful, and refining the
grid in its neighborhood also leads to difficulties. Until we have an
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analytical description of the local behavior at the triple point, it will
probably be impossible to call our calculations a solution, although many
computational fluid mechanicians .would believe that- it was one; '-'-' • :

Both the first-order and the second-order schemes have approximately
the same rate of convergence; the initial guess was the linear solution
for both calculations. We could not use the linear solution as initial data
with shock fitting, as it is too poor an initial guess. Our shock-fitting,
computation used the final results from the second-order scheme as initial
data. It took only twenty computations to reduce the maximum "error" to one
percent, a result that could not be achieved with any number of additional
computations with the other two schemes. This fast rate of convergence with
shock fitting derives from the accuracy of the second-order "solution" away
from the discontinuities and the treatment of discontinuities as such.

The numerical scheme outlined here offers a reliable method of computing
solutions to mixed nonlinear equations with discontinuities. Comparison of
the graphical results from different schemes shows that the shock-fitting
procedure provides quantitatively superior results for an equal investment
in computational time, albeit at the expense of additional bookkeeping and
more complicated programming. Typical computation times are about twenty
minutes on an IBM 360/65. The results indicate the clear need to model one
grid of the computation analytically.

Recent progress on the analytical solution for an entering-steepening
simple wave indicates that we may soon have an analytical description of a
simple transonic flow problem ,with an embedded discontinuity (K.Y. Fung,
unpublished research). If we are successful in this pursuit, the results
can be used to test the efficacy of various computational procedures. The
problem posed by an entering-steepening wave removes the difficulty of having
to treat the triple point analytically within the numerical calculations.
However, it also seems desirable to obtain an analytical solution for an
entering discontinuous signal so that this, too, can be used as a canonical
test problem for transonic flow computations.
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TABLE 1. INPUT AND OUTPUT FOR SONIC BOON MINIMIZATION PROGRAM

INPUT

M MACH NUMBER
WT WEIGHT OF AIRCRAFT IN LBS OR KGS
L LENGTH OF AIRCRAFT IN FT OR M < • • -
H ALTITUDE OF FLIGHT IN FT OR M

. HS . ATMOSPHERIC SCALE HEIGHT IN FT OR M
' f RISE TIME IN SECS

R RATIO OF REAR-TO-FRONT SHOCK STRENGTH
V VOLUME OF AIRCRAFT IN FT • OR M - . .
XGP CENTER OF PRESSURE. OF AIRCRAFT IN FT OR M
KR GROUND REFLECTION FACTOR

_ ' - • • • OUTPUT

F(T) WHITHAM F-FUNCTION (NORMALIZED)
A(X) AREA DEVELOPMENT (NORMALIZED) :

PSO . MINIMUM FRONT SHOCK OVERPRESSURE
...PRO MINIMUM REAR SHOCK OVERPRESSURE
ISO IMPULSE CORRESPONDING TO MINIMUM OVERPRESSURE
PS MINIMUM FRONT SHOCK PRESSURE RISE
IS IMPULSE CORRESPONDING TO MINIMUM SHOCK PRESSURE RISE
PR MINIMUM REAR SHOCK PRESSURE RISE
PMAX MAXIMUM PRESSURE IN SIGNATURE
PMIN MINIMUM PRESSURE IN SIGNATURE
PJF FRONT SHOCK PRESSURE RISE FOR MINIMUM IMPULSE
IJ MINIMUM IMPULSE
PJR REAR SHOCK PRESSURE RISE FOR MINIMUM IMPULSE
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Figure 1.- Overpressure signatures considered. In the second and third, the
rear shock strength is a specified fraction of the front shock strength.
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Figure 3.- Overpressure signature.
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Figure 4.-' Overpressure for a cylindrical blast wave as a function of R.
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Figure 5.- Pressure signatures for various R.
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Figure 6.- Overpressure and impulse as a function of altitude, H, for hyper-
sonic vehicles of given drag, D. Here L is the vehicle's lift and HS
is the atmospheric scale height.
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Figure 7.- Comparison of theoretical and measured overpressure and impulses
for Apollo 15 and 16 re-entries.
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the behavior at a caustic.
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Figure 9.- Variation of <f>x with x at fixed y
for a second-order calculation.
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AN INTEGRATED SYSTEM FOR THE AERODYNAMIC DESIGN

AND ANALYSIS OF SUPERSONIC AIRCRAFT

By David S. Miller
NASA Langley Research Center

and

Wilbur D. Middleton
The Boeing Company

SUMMARY

An integrated system of computer programs for the aerodynamic design and analy-
sis of complete supersonic aircraft has been developed as a result of research efforts
conducted over a period of years at Langley Research Center and a recent Langley con-
tract with the Boeing Company. The goals of the system have been to develop an easily
used supersonic design and analysis capability with recognition of the need for con-
straints on linear theory to provide physical realism and with inclusion of interactive
graphics capability for increased control over the design and analysis iteration cycles.

INTRODUCTION

An integrated system of computer programs for the aerodynamic design and analy-
sis of complete supersonic configurations has been developed as a result of research
efforts at Langley Research Center over a period of years and a recent Langley contract
with the Boeing Company. The foundation for the integrated system consists of a series
of individual computerized methods developed at Langley Research Center and at the
Boeing Company for the design .and analysis of supersonic aircraft. These individual
computer programs are characterized by their reliability, as established in various con-
figuration development and evaluation studies, and their input simplicity. The applica-
bility and procedure for utilizing the individual programs have been thoroughly demon-
strated and reported at various stages of their evolution. (See refs. 1 to 3.) The
organization and assemblage of these individual computerized methods into an integrated
system required considerable modification to some of the existing methods, development
of several new methods, and creation of all necessary interface and interactive graphics
routines. These requirements were accomplished under contract with the Boeing
Company.
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The goals of the integrated system have been to develop an easily used supersonic
design and analysis capability with recognition of the need for modifications to linear
theory methods to provide physical realism. The system operates from a single geo-
metric configuration description and includes interactive graphics capability for
increased control over the design and analysis iteration cycles.

In this paper a discussion is presented of the overall integrated system with
emphasis on and detailed description of only the specific methods which offer new or
improved design and analysis capability.

SYMBOLS

area of equivalent body

wing span

drag coefficient

incremental drag coefficient due to lift

2 drag-due-to-lift factor "

. v . . - • • - ' * . - • ' . ' ' •

CD f friction drag coefficient

CL lift coefficient

Cm pitching-moment coefficient

Cm o pitching-moment coefficient at zero lift

Cp pressure coefficient.

AC- incremental pressure coefficient ' " ' • ' • • • • ' • - ' • -

M Mach number

R Reynolds number

; ' ' '

X,Y,Z Cartesian coordinates

a angle of attack
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DISCUSSION

Overall Integrated System • . • > • _

The integrated system is a single overlayed complex of computer programs con-
sisting of nine basic program modules. A schematic diagram of the complete system
along with sketches to illustrate some of the important features, of each individual pro-
gram module is shown in figure 1. The system has evolved from a complex of individual
programs developed at Langley Research Center and at the Boeing Company over the past
decade. Those program modules with the dotted pattern were incorporated into the sys-
tem as originally formulated, those with hatching were modified considerably, and the
remaining four modules were developed specifically for use as part of the system. As
indicated in the figure, the system programs operate sequentially from a common geo-
metric description of the configuration. The system is also integrated to allow for the
necessary exchanges of information between programs and to operate with or without
interactive graphics. The modular construction of the system permits the addition or
replacement of program modules with a limited amount of effort.

Executive

The operational sequencing of the system is controlled by the executive program
using special input "executive control" cards. Upon encountering one of these cards, the
executive program relates the information to the geometry program which sets up the
appropriate geometric description and then activates the computational module designated
by the special input cards.

Geometry

The function of the geometry module is to read system geometry input, update it
when called for, and arrange it in the required form for input to the other individual pro-
gram modules of the system. The format of the system geometry is the same as that of
the Langley Research Center plot program. (See ref. 4.)

The geometry module also serves as an intermediate step in the execution of any of
the other basic modules. Acting in this capacity, the geometry program assembles both
geometric information (stored in the geometry module) and nongeometric information
(read into system following an executive control card) onto a single input file. The abil-
ity to use a common and easily generated geometric description in which the system per-
forms any required manipulations internally is considered a major asset of the total
integrated system.
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Far-Field Wave Drag

The far-field wave drag program employs the supersonic area rule and slender
body theory to calculate the zero-lift wave' drag of complex configurations which may
include fuselage, wing, nacelles, canards, and horizontal or vertical tails. The proce-
dure employed and the assumptions, limitations, and accuracy involved are documented
in reference 5. As indicated in the sketch of figure 1, the far-field wave drag program
includes an optimization process. When given a set of constraint points on a cross-
sectional area distribution, the program.can generate an optimum area distribution
which can be used to redesign the fuselage. Results obtained by using the optimization
procedure (for examples, see ref. 2) may be used to update the fuselage definition in the
geometry module. The ability to handle extremely complex configurations in a rather
simple calculation procedure and the optimization capability make the far-field wave .
drag program module an indispensable part of the total system. :

Near-Field Wave Drag

As shown in figure 1, the near-field wave drag program is a new addition to the
system and computes the zero-lift wave drag by integrating surface pressure distribu-
tions over each of the configuration component surfaces. Not only does the near-field
wave drag calculation complement that of the far-field method, but also the near-field
method provides additional information pertaining to thickness surface pressure
distributions. . „ , • .

For discussion purposes, the main features are presented in figure 2. Presently,
the configuration components to be analyzed are limited to a fuselage that' is nearly cir-
cular in cross section, a wing of arbitrary planform and thickness distribution, and up to
three pairs of circular nacelles which can be located above or below the wing. Three
basic calculations are performed to obtain the required pressure fields. The isolated
wing surface pressures due to thickness are computed by use of a source lattice repre-
sentation of the flow over a wing (ref. 6) and the isolated fuselage and nacelle surface
pressures are obtained by application of Lighthill's slender body theory. (See ref. 7.)
The pressure fields of the fuselage and nacelles are computed by using the Whitham .
theory (ref. 8) which is essentially a correction to the linear theory to allow for the non-
linear propagation of pressure disturbances and provides for the possible formation .of
shocks. .

The wave drag is obtained in the near field by superposition principles; that is, the
wave drag of a particular component is due to its isolated drag plus interference drag
contributions resulting from the pressure fields of all other components. For interfer-
ence purposes the wing pressure field is calculated by zeroing the wing surface slopes in
the region of the fuselage and the computed wing pressures are transferred from the wing
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surface to the fuselage or nacelles along Mach lines. ' By summing the isolated and inter-
ference drags for. each component, one can generate a wave drag build up component by
component, as illustrated in figure 2, for first a .wing, then a wing-body, and finally a
wing-body-nacelle configuration. The near-field wave drag program also provides wing
surface pressures due to thickness as data for use in other program modules where
thickness and lifting pressures are combined into total pressure.

A typical example of an interference calculation is that of nacelle-on wing inter-
ference; As illustrated in figure 3, this example is particularly interesting because the
application of superposition principles in this situation is not straightforward and the
user has the option of selecting one of the two methods shown. In the first method a
nacelle pressure field is assumed to propagate around the other nacelles unattenuated.
The second method assumes that a pressure field will reflect from other nacelles in
such a way that the reflected field will have no further influence on the wing surface and
is thus terminated. Pressure fields for two pairs of nacelles have been computed using
both methods and are presented in the figure at three wing span stations along with some
experimental data for M = 1.1. The results indicate substantial differences between
the two theoretical methods; however, the experimental data are too sparse to indicate
clearly which method best represents the physical situation. It should be noted that the
first nacelle-on wing interference option appears to have the same degree of transpar-
ency as employed in the far-field procedure.

If a nacelle is located next to the wing, the nacelle pressure field may reflect from
the wing back onto itself or the other nacelles. This type of interference due to reflected
pressure fields can become significant at the lower Mach numbers and is calculated
directly in the near-field wave drag program. The far-field method does not account for
any reflected pressure fields.

As previously stated, theoretical wave drag results may be obtained from either
the near- or far-field wave drag programs. A comparison of results obtained by each
of these methods can be made from the wave drag component build up presented in fig-
ure 4. For the near-field results, the first option for nacelle-on wing interference was
used and interference contributions due to reflection were not included. At Mach num-
bers of 1.1 and 2.7, the wave drag was computed for an isolated wing, a wing-body, and
a wing-body-nacelle configuration shown in the figure. In all cases but one, the near-
field drag results were slightly higher than those of the far field. At most, the results
differ by less than 10 percent and establish confidence in the near-field method of com-
puting wave drag. . .
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-. . Drag-Due-to-Lift Analysis

The drag-due-to-lift analysis program module computes all the pressures and
forces associated witK the generation of lift. As indicated in figure 1, this program is
based on previous Langley methods but has been modified considerably. The initial lift
analysis method (ref. 9) was applicable to isolated cambered wings of arbitrary plan-
form and was later adapted to include canards or horizontal tails (ref. 10).

•
Refinements and improvements which recently have been made to the basic calcu-

lation procedure are presented in-reference 11. In these methods the effects of a fuse-
lage could be included only by representing the fuselage as a planar extension of the wing,
and the wing loading due to wing-nacelle interference was the result of a separate com-
putation. (See ref. 12.) The details of the drag-due-to-lift analysis module, as modified
for use in the integrated system, are presented in figure 5 along with a list of aircraft
components amenable to analysis. The lifting pressure solution of a complete configu-
ration may involve up to six principal calculation tasks as illustrated in figure 5. The
fuselage is no longer represented as a planar extension of the wing, but it is represented
as a circular cambered body of revolution. . The .isolated body upwash field is obtained in
the wing, canard, and horizontal-tail regions by using a slender-body line source and
doublet representation of the fuselage. For wing-body combinations in which the fuse-
lage volume is not symmetrically distributed above and below the wing plane (that is, riot
a midwing arrangement), the asymmetric loading is calculated by the following approxi-
mate procedure. The fuselage volume is divided into above- and .below-rWing portions as
determined by the wing-body intersection. The above-wing and below-wing volume con-
tributions are combined with the actual fuselage forebody volume distribution to create
effective above-wing and below-wing equivalent body representations. Whitham theory
is then employed to calculate above- and below-wing pressures which are differenced to
obtain the asymmetric wing loading. The wing loading due to the nacelle pressure field
impinging on and reflecting from the wing camber surface is calculated by using the
same application of Whitham theory as used for nacelle-on wing interference described
in the near-field wave drag section of the paper. The wing and canard loadings are cal-
culated in the presence of the body upwash by using a vortex lattice representation pf the
lifting surfaces (ref. 9). and the body loading is calculated by using slender-body theory
in the presence of the wing and canard downwash fields. The horizontal-tail loading is
calculated last for various specified angles of attack in the presence of the body, wing,
and canard induced flow fields.

As illustrated in figure 5, basic solution results are applied to generate aerody-
namic forces due to lift and to provide configuration-dependent wing loading definitions
for the wing design and optimization program. The generation of lift, drag, and moment
as a function of angle of attack is accomplished by superimposing two sets of basic solu-
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tion results; one set is calculated for the configuration at input incidence and the other
set gives the variation with angle of attack. The configuration-dependent wing loadings
due to body upwash, asymmetric body volume-distribution, and. nacelles can be .calculated
for an uncambered wing at zero angle of attack and saved for future use in the wing
design program. . . . - . . -

Linear theory imposes no restrictions on the allowable wing pressure coefficients;
consequently, it is possible to calculate pressure coefficients which are physically unat-
tainable (less than vacuum). In order to restrict the linear theory to realistic solutions,
a pressure-limiting option has been incorporated into the analysis program. This fea-
ture limits the wing surface pressure coefficients (thickness and lifting .contributions) to.
a prescribed percent of vacuum. The procedure employed is an integral part of the .
pressure calculation method and the constraints are satisfied continuously, rather than. .
being imposed after the solution is completed. Calculated results obtained with and with-
out pressure limiting for a cambered arrow wing at a Mach number of 2.05 are presented
in figure 6. along with experimental force and pressure data from reference 13.

The dashed and solid lines represent calculated results obtained for surface pres-
sures limited to 0.7 vacuum Cp and unlimited linear theory pressures, respectively.
The force coefficient results indicate that pressure limiting provides considerably •• - • •
improved agreement between theory and experiment at angles of attack greater than 2°.
Detailed chordwise lifting pressure distributions are also presented for angles of attack
of 2° and 6° at extreme inboard and outboard span stations. As shown in figure 6 the •
pressure-limiting feature offers considerable improvements in detailed pressure distri-
bution at large angles of attack for the outboard portion of the wing where the unlimited
linear theory results are completely unrealistic. .

Wing Design and Optimization

The wing design and optimization program solves the more direct problem of com-
puting the wing camber surface which will support a given loading distribution as illus-
trated in figure 1. Moreover, it also includes an optimization procedure for determining
the appropriate combination of linearly independent loading distributions which yield
minimum zero suction drag due to lift subject'to constraints on lift, pitching moment, and
minimum wing upper surface pressure coefficient. Based on the ideas set forth by Grant
(ref. 14), the initial wing design program (ref. 15) was developed to determine the opti-
mum combination of three independent loading distributions and corresponding camber
surface of an isolated wing of arbitrary planform at a specified lift coefficient. Subse-
quent modifications were made to the original version (ref. 16) to include a constraint on
pitching moment and, consequently, the number of available independent loading distribu-
tions was increased to seven.
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Considerable modifications and improvements have recently been made to the wing
design procedure used in the integrated system. The more important solution features
are listed in figure 7. Fourteen independent camber-induced loadings are available for
optimization. Eleven of these loadings are analytic functions of planform position such
as a constant loading, linearly varying chordwise and spanwise loadings, and so forth.
The remaining three camber-induced loadings are directly proportional to the three
configuration-dependent loadings.

In order to include the effects of fuselage and nacelles into the wing design proce-
dure, three configuration-dependent loading distributions can be employed. These load-
ings are due to fuselage upwash, asymmetrical fuselage volume, and nacelle pressure
field. The configuration-dependent loadings are generated in either the near-field wave
drag or the drag-due-to-lift analysis programs and the loading distributions are made
available to the wing design program. The design constraints include lift, pitching
moment, and allowable upper surface pressure coefficient. Theoretical values of drag-
due-to-lift factor (CD/CL'V and corresponding values of Cm>o are presented graphi-
cally in figure 7 for a supersonic cruise type configuration composed of a wing, body, and
two pairs of nacelles. Solutions for a flat wing, uniformly loaded wing, and optimum 3
loading wing are shown to provide a comparison with the 17 loading solution. The solid
line representing the 17 loading solution with no pressure limiting has a minimum value
of CD/CL at a value of Cm o of 0.014. The diamond symbols correspond to 17 load-
ing solutions with the upper surface pressure Cp limited to values greater than 70 per-
cent of vacuum Cp. The effect of pressure limiting is most pronounced at the large
values of Cm)O where the values of CD/CI? sharply break away from the unlimited
solution curve. . • • • . , . .

The 17 loading solution, with or without pressure limiting, produces a considerable
(25-percent) reduction in the theoretical drag-due-to-lift factor over the 3 loading solu-
tion,'but these substantial gains must be viewed with caution. The 17 loading solution
includes drag benefits from the fuselage upwash and nacelle pressure fields which aire
not recognized in the 3 loading solution. In addition, the 3 loading solution requires
pressure distributions which have mild gradients, whereas the 17 loading solution ••<
requires a pressure distribution with gradients which are possibly prohibitive. It is
anticipated that imposing pressure'gradient constraints on the 17-loading'-solution-; as is
currently planned, will offer improvements over the 3 loading solution which will be sig-
nificant but not as dramatic as those indicated in the figure. • '

Skin Friction and Plot Program

As indicated in figure 1 the skin friction and plot program were incorporated into
the integrated system as originally formulated. The friction drag of a complete configu-
ration is computed by strip integrating the various configuration components as illus-
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trated in figure 1. The method assumes that smooth flat -plate, adiabatic-wall, and fully
turbulent boundary-layer conditions exist on all components. The Karman-Schoenherr

<~

incompressible relationship between skinTfriction coefficient and Reynolds number is
employed and corrections for compressibility result from application of the Sommer and
Short T-prime method (ref. 17). The total configuration friction drag is found by sum-
ming contributions of the individual components.

The plot .program generates the necessary instructions for making drawings of the
configuration description stored in the geometry program. Various view options are
available and can be requested by program input cards. This program is most useful in
checking and modifying configuration geometry. Documentation of the program is pre-
sented in reference 4. .

• - • ' . • • .1 . • • •

Interactive Graphics

The system can be operated with or without the use of interactive graphics; how-
ever, this capability provides a considerable amount of on-line control of the system
which has been found useful during design and analysis iteration cycles. Basically, the
interactive capability consists of displaying and editing configuration geometry and some
.of the basic program calculation.

Figure 8 demonstrates how interactive graphics might be used during one design
and analysis cycle. The user first views and, if necessary, corrects any errors in the
input geometry. The far -field wave drag program is then executed and both the original
and optimized area distributions may be displayed. If desired, the original fuselage
description may be replaced by the optimized one in the basic geometry and modified.
In order to prepare inputs for the wing design and optimization program, the near-
field wave drag and the drag -due -to -lift analysis programs are executed next to gen-
erate wing -thickness pressures and configuration -dependent loadings, respectively.
Only final results are presently displayed by the near -field wave drag program, but
fuselage upwash and wing loadings due to the fuselage upwash can be displayed from the
analysis program. When the necessary inputs have been set up, the wing design program
is executed ,with (the; desired constraints. The results for a given wing design are then
displayed in a plot of drag -due -to -lift factor as a function of Cm o as was shown in
figure 7. The user has the option of saving a particular wing design or rejecting it and
selecting another set of design constraints. Once a design has been selected, the wing
geometry is updated. At this point the user can display and alter the new wing camber.
As an example, shown in figure 8 is a display of the optimized wing trailing edge which
may be edited to remove any unacceptable irregularities and then the camber line can
be twisted to match the edited values. Satisfied with the modifications, one would pro-
ceed to analyze the new configuration. Shown are tabulated lift-drag polar results
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CD, and Cm) generated by the analysis program. To complete the analysis, wave drag
and skin-friction drag results (not shown in fig. 8) would also be obtained.

To accomplish all these tasks on the CDC 6600 requires the user to spend approx-
imately li-hours at the scope and the total of 1100 seconds of CPU time. A breakdown
of the approximate times required by each program module in a typical design and anal-
ysis project is given in the following table: -

Program module

Geometry
Plot
Wine design
Drag -due -to -lift analysis (two executions) . . .
Far-field wave drag
Near -field wave drag (two executions)
Skin friction

Total

CPU time, sec

14
7

150
250
484
193

2

1100

CONCLUDING REMARKS

An integrated system of computer programs with interactive graphics capability
has been developed for the design and analysis of supersonic aircraft. The individual
computer programs operate independently from a common geometry description and the
operational sequencing is controlled by an executive program. Because of the modular
and overlayed construction, additional computer programs can be interfaced with a -
limited amount o f effort. - . • • • '

1058



REFERENCES

1. Robins, A. Warner; Morris, Odell A.; and Harris, Roy V., Jr.: Recent Research
Results in the Aerodynamics of Supersonic Vehicles. J. Aircraft, vol. 3, no. 6,
Nov.-Dec. 1966, pp. 573-577.

2. Baals, Donald D.; Robins, A. Warner; and Harris, Roy V., Jr.: Aerodynamic Design
Integration of Supersonic Aircraft. J. Aircraft, vol. 7, no. 5, Sept.-Oct. 1970,
pp. 385-394.

3. Carlson, Harry W.; and Harris, Roy V., Jr.: A Unified System of Supersonic Aero-
dynamic Analysis. Analytic Methods in Aircraft Aerodynamics, NASA SP-228,
1970, pp. 639-658.

4. Craidon, Charlotte B.: Description of a Digital Computer Program for Airplane
Configuration Plots. NASA TM X-2074, 1970.

5. Harris, Roy V., Jr.: An Analysis and Correlation of Aircraft Wave Drag. NASA
TM X-947, 1964.

6. Ashley, Holt; and Landahl, Marten: Aerodynamics of Wings and Bodies. Addison-
Wesley Publ. Co., Inc., c.1965.

7. Lighthill, M. J.: Supersonic Flow Past Slender Bodies of Revolution, the Slope of
Whose Meridian Section Is Discontinuous. Quarterly Jour. Mech. and Appl. Math.,
vol. I, pt. 1, Mar. 1948, pp. 90-102.

8. Whitham, G. B.: The Flow Pattern of a Supersonic Projectile. Commun. Pure &
Appl. Math., vol. V, no. 3, Aug. 1952, pp. 301-348.

9. Middleton, Wilbur D.; and Carlson, Harry W.: A Numerical Method for Calculating
the Flat-Plate Pressure Distributions on Supersonic Wings of Arbitrary Planform.
NASA TN D-2570, 1965.

10. Shrout, Barrett L.: Extension of a Numerical Solution for the Aerodynamic Charac-
teristics of a Wing To Include a Canard or Horizontal Tail. Paper presented at
AGARD Specialists Meeting on Aerodynamic Interference (Silver Spring, Md.),
Sept. 1970.

11. Carlson, Harry W.; and Miller, David S.: Numerical Methods for the Design and
Analysis of Wings at Supersonic Speeds. NASA TN D-7713, 1974.

12. Mack, Robert J.: A Numerical Method for Evaluation and Utilization of Supersonic
Nacelle-Wing Interference. NASA TN D-5057, 1969.

13. Carlson, Harry W.: Aerodynamic Characteristics at Mach Number 2.05 of a Series
of Highly Swept Arrow Wings Employing Various Degrees of Twist and Camber.
NASA TM X-322, 1960.

1059



14. Grant, Frederick C.: The Proper Combination of Lift Loadings for Least Drag on a
Supersonic Wing. NACA Rep. 1275, 1956. (Supersedes NACA TN 3533.)

15. Carlson, Harry W.; and Middleton, Wilbur D.: A Numerical Method for the Design
of Camber Surfaces of Supersonic Wings With Arbitrary Planforms. NASA
TND-2341, 1964.

16. Sorrells, Russell B.; and Miller, David S.: Numerical Method for Design of Minimum-
Drag Supersonic Wing Camber With Constraints on Pitching Moment and Surface
Deformation. NASA TN D-7097, 1972. ".:. .

17. Sommer, Simon C.; and Short, Barbara J.: . Free-Flight Measurements of Turbulent-
Boundary-Layer Skin Friction in the Presence of Severe Aerodynamic Heating at
Mach Numbers From 2.8 to 7.0. NACA f N 3391, 1955.

'1060
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INDICIAL COMPRESSIBLE POTENTIAL AERODYNAMICS

AROUND COMPLEX AIRCRAFT CONFIGURATIONS*

By Luigi Morino and Lee-Tzong Chen
Boston University

SUMMARY

A general theory for indicial potential compressible aerodynamics around complex
configurations is presented. The motion is assumed to consist of constant subsonic or
supersonic speed for time t = 0 (steady state) and of small perturbations around the
steady state for time t > 0. Using the finite-element method to discretize the space
problem, one obtains a set of differential-delay equations in time relating the potential to
its normal derivative on the surface of the body. The aerodynamic transfer function is
then obtained by using standard methods of operational calculus. The theory is embedded
in a computer code, SUSSA ACTS, which is briefly described. Numerical results are pre-
sented for steady and unsteady, subsonic and supersonic flows and indicate that the code
is not only general, flexible, and simple to use but also accurate and fast.

INTRODUCTION

Presented herein is a general formulation of unsteady, subsonic and supersonic
potential aerodynamics for an aircraft having arbitrary shape. The motion of the aircraft
is assumed to consist of small perturbations (starting at time t = 0) with respect to the
constant-speed motion (indicial potential aerodynamics). The objective of this formula-
tion is to describe the time functional relationship between aerodynamic potential and its
normal derivative (normal wash) in a form which can be used for computational analysis.
The finite-element method is used for space discretization. Results obtained with the
computer program SUSSA ACTS are also presented.

The analysis presented herein is based on a new integral formulation, presented in
references 1 and 2, which includes completely arbitrary motion. However, the numerical
implementation (refs. 3 and 4) was thus far limited to steady and oscillatory flows. On the
other hand, in order to perform a linear-system analysis of the aircraft, it is convenient
to use more general aerodynamic formulations, i.e., fully transient response for time-
domain analysis and the aerodynamic transfer function (Laplace transform of the fully
unsteady operator) for frequency-domain analysis. (See for instance, ref. 5.) Consistent

*This research is supported by NASA Langley Grant NCR 22-004-030.
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with this type of analysis, the unsteady contribution is assumed to start at time t = 0, so
that for time t = 0 the flow is in steady state. Furthermore, consistent with the linear
flight dynamics analysis, the motion of the aircraft is assumed to consist of small (infin-
itesimal) perturbations around the steady-state motion. .

Since the initial work by Wagner (ref. 6) on unsteady incompressible two-dimensional
flow, several problems have been considered. While several methods are available for
wings in subsonic and supersonic flow (see refs. 5 and 7), no tool has been available for
subsonic and supersonic flows around arbitrary complex configurations for either time-
or frequency-domain analysis. Such a tool is presented in reference 8, for both time and
frequency domains. In this paper only the subsonic formulation is presented in detail;
the supersonic formulation is only briefly outlined. For conciseness, material previously
presented (in particular, the material of ref. 4) is not repeated herein. The computer'
program SUSSA ACTS, which is based upon this new formulation, is, also briefly described.
Numerical results obtained with this program are presented.

SYMBOLS

a,*, speed of sound in undisturbed flow

AR aspect ratio

subsonic matrix transfer function, equation (27)Ajj

A!, | supersonic matrix transfer function, equation (39)

b span

B ; =(M2 - I)1/2

B^ defined by equation (18)

Bfl defined by equation (35)

Bih defined by equation (21)

B'., defined by equation (37)

c chord
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Cn defined by equation (18)

Cl defined by equation (35)

C.h Ch for P, = Pj

C:h C- for P..-P,

C. lift distribution coefficient

Cga lift distribution coefficient per unit a

CL lift coefficient

CL lift coefficient per unit a

C*, moment coefficient around x = x»

D^ defined by equation (18)

D^ defined by equation (35)

D.h Dh for P^Pj

D!h D; for P^P^

E(P) defined by equation (7)

Fn defined by equation (18)

Fjn Fn for P* = Pj

Gn defined by equation (18)

Gjn Gn for P, = Pj

H(P) defined by equation (31)

J number of nodes on body
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reduced frequency,

reference length

shape functions for

wake length

M Mach number,

N normal to 2
\

N number of nodes on wake

Nn number of diaphragm elements .

Nft(P) shape functions for * and <£, equation (12)

N«> number of wake elements in x-direction

Nx number of elements in x-direction on half-wing.

Ny number of elements in y-direction on half-wing

P point having coordinates (X,Y,Z)

p# control point

R defined by equation (4)

R' defined by equation (30)

s complex frequency (for Laplace transform)

Snh defined by equation (16)

t time

T nondimensional time, equation (2)

1070



U O Q velocity o f undisturbed f l o w ' • ' - : .

x,y,z space coordinates * -

xm pitch axis • -; ,

XM moment axis . • . . .

X,Y,Z nondimensional space coordinates, equation (2)

Of angle of attack .

0 =(1-M2)1/2

6., Kronecker delta, 1 for j = h, 0 for j =* h . - ; . . .

discontinuity of $ across the wake . . .

nodal values of A$ •

0 time for a disturbance to: propagate from P. .to P%, equation (6)

0+ defined by equation (33) .

0" defined by equation (33)

©jj^ 0 for P = Ph or Pn

0£ 0+ for P = Phh h

0T 0" for P = PKh n '

0t 0^ for P* = P. .jh h J

07, 0T for P4 = P.Jh h * j

II convection time of wake vortices, equation (11)
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n value of n for P = Pn

surface surrounding body and wake in X,Y,Z space

surface of body

surface of wake

thickness ratio

<p velocity perturbation potential

velocity potential, U^x + <p

nondimensional velocity perturbation potential,

nodal values of

$. Laplace transform of $.

normal wash in X,Y,Z space

conor mal wash in X,Y,Z space

nodal value of

Laplace transform of *.

frequency

nondimensional frequency, (subsonic), aj£/a.ioB (supersonic)

Subscripts:

B body

imaginary part of complex number

j,h,k nodes on the body (range from 1 to J)
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I lower . . :

m nodes on trailing edge • - . - . - . . - - . < - , • •

n nodes on wake (ranges from 1 to N)

R real part of complex number . ..

TE trailing edge

u upper

W wake .
?-

Special notation: . - . . , . ' . .

( ) Laplace transform of ( ) . .

{ y vector -. .

[ ] matrix . '

r - i e . - - . . -
[_ J defined by equation (5)

ARG( ) argument of ( )

SUBSONIC INDICIAL AERODYNAMICS

Integral-Differential-Delay Equation

Consider the subsonic flows first. Within the small-perturbation assumption, the J

motion of the surface of the aircraft with respect to a frame of reference traveling at uni-
form subsonic speed with respect to the undisturbed air can be assumed to be negligible
except for the boundary conditions. (See ref. 1.) Thus the Green theorem for the equa-
tion of the aerodynamic potential is given by (refs. 1 and 2)

1073



where

X = x//3£ Y = y/S. Z = z/£

T =

(2)

S is a surface of the X,Y,Z space which surrounds (and is infinitesimally close to) the
body and the wake, N is the normal to the surface S, and

(3)

is the normal derivative of $ on S (normal wash1), which is prescribed by the bound-
ary conditions (ref. 4). Furthermore,

(X - X*)Z + (Y - Y*)Z + (Z - Z,) (4)

(5)

(6)

R =

A dot over a symbol indicates differentiation with respect to T and

T-0

where

0 = M(X - X J + R

is the time necessary for a disturbance to propagate from P to P+. In addition, ,

E(P*) ="1 for P* outside 2

>„,)= 1/2 for P,,, on S

E(P*) = 0 for P* inside S

Note that the normal wash here indicates the component of the nondimensional
velocity in the direction of the normal N to the surface L of the X,Y,Z space (not in
the direction of the normal to the surface of the physical x,y,z space). x
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In equation (1) the surface S is assumed to be fixed with respect to the frame of
reference. However, the effect of the motion of the surface is retained in the boundary
conditions (ref. 4). .

Consistent with the hypothesis of small perturbations with respect to the. constant-
speed motion, is the assumption that the geometry of the wake is the one of the steady-
state flow. If small-perturbation hypothesis can be used for steady flow as well, the wake
may be assumed to consist of straight vortex lines emanating from the trailing edge. (See
refs. 1 to 4.) It may be noted that since S is fixed, equation (1) represents a linear
operator (integral equation on S, differential-delay equation in time). Hence the state-
steady contribution can be subtracted from equation (1). Therefore, in the following .
development it is understood that $ and * are the unsteady parts of the potential and
the normal wash, which (in line with the concepts of operational calculus) are" assumed to
be identically equal to zero for T = 0, i.e.,

0
(8)

0

In order to understand the nature of the aerodynamic operator, equation (1), it is
convenient to isolate the contribution of the wake. This yields

ffs(N
e4)-Meii)-w

^w^ \ / J

where Sfi is the (closed) surface of the body, Sw is the (open) surface of the wake,
and A<1>" is the potential discontinuity across the wake, evaluated in the direction of the
wake. normal, i.e.; A$ = 4>u - 4>^ if the upper normal is used. For simplicity, the side
corresponding to the wake normal will be called the upper side (even if this7 term is con-
fusing in the case of vertical surfaces or for rolled-up wakes). It should be noted that the
value of A$ is not an additional unknown, since (ref. 8)

A*(P,T) = A $ p , T - I l (10)

where II is the nondimehsional time necessary for the vortex point to travel (within the
steady flow) from the point PTE (°rigin of the vortex line at the trailing edge) to the
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point P. If small-perturbation hypothesis can be used for the steady-state flow, then
can be approximated by (ref. 8) ,

M
(11),

Space Discretization

Equations (9) and (10) fully describe the problem of linearized unsteady :subsonic
potential aerodynamics around complex configurations. In order to solve this problem,
it is necessary, in general, to obtain a numerical approximation for equation (9).- This
can be obtained by using the finite-element method. Consider the integrals over SB

first. Using a typical finite-element representation, it is possible to write (ref. 9),

*(p,T-e) =
h=l

J

*(PfT-0) =

Nh(p)

N ( P )

h=l

(12)

and-^T-Oh) are

(where

where J is the total number of nodes' on the body and

time -dependent values of * and $ at the node Ph at the time T -

is the disturbance-propagation time from P# to P^); furthermore, the N^(P) are

prescribed global shape functions, obtained by standard assembly of the element shape
function. (See for instance, ref. 9.) For simplicity, the same shape functions are used
for * and *, although this is not essential to the method.

Next consider the integrals on the wake. In order to facilitate the use of equa-
tion (10), it is convenient to divide the wake into strips defined by (steady-state) vortex
lines emanating from the nodes on the trailing edge; The strips are then divided into
finite elements with nodes along the vortex lines. The potential discontinuity can then be
expressed as

n=l
-en Ln(p) (13)

2whereas other interpolation methods can be used, the finite-element method
appears to be the only method sufficiently general and flexible to be used in this
formulation.
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where N is the number of nodes on the wake, A^jJT-On) is the value of A$ at the1--

nth node PJ^' on the wake at time T - 6n (where ^ is the propagation time from

Pn to PA and Ln(P) is the global shape function relative to the nth node of the wake.

Note that according to equation (10)

(TE)/ \
A*n(T) = A*.m JT-nn) (14)

where m(n) identifies the trailing-edge node which is on the same vortex line as the nth,

wake node P'W'. Furthermore, nn is the time necessary for the vortex point to be
•convected from the trailing-edge node Pm to the wake node PR '. It may be worth

/rpg\

noting that A$m = $h - $n where hu and hj identify the upper and lower
U {,

trailing-edge nodes of the body corresponding to the mth node on the trailing edge.
Therefore, it is possible to write

E) V / , cv
m(n) = L ***h . . <15>

h=l

(TE)
A*

where 5^ =.l(Sni1 = -Ij, if h identifies the upper (lower) node P^ on the body corre-
/m\ / (TE)

spending to the nth node P^ •' on the wake (i.e., Pn coincides with the node P .

on the trailing edge , and S^ = 0 otherwise. Thus,

if Pu = P is on the upper side of11 m(n)

(TE)if Pu = P is on the lower, side of
, m^

otherwise

(16)
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where

Similar definitions hold for Cjh, Djh, F-n, G-n, 6-n, and e.^.

'Time- Frequency Transformation

Equation (20) indicates the nature, of the aerodynamic operator relating potential
and normal wash as obtained by using finite-element representation to discretize the
spacial problem. The operator is a linear differential- delay operator to which the
methods of operational calculus can be applied. However, before considering the Laplace
transform of equation (20), it is convenient to make some remarks about the contribution
of the wake. It may be noted that, according to equation (8), <& is identically equal to
zero for T = 0; therefore, according to equation (15)

A$n = 0 (T = nn) (22)

Hence, if the analysis is limited to T = Tmax, the contribution of the elements
with nn = Tmax is identically equal to zero. Therefore, the wake can be truncated to
eliminate these elements. It may be noted that in any case these elements would contrib-
ute to the transfer function and thus to the transform of $ but not to the final solution
in the time domain for T = Tmax. The advantage is not only that less computational
time is used (since less elements are employed) but also that the problem of convergence

connected with the infinite wake (factors e n with s^ < 0 and nn - °°) are
bypassed.

Next taking the Laplace transform of equation (20) yields

• ' • ' (23)

where $n and , are the Laplace transforms of 3v and *. and

. *jh = 6jh - (Cjh + *Djh)eTS0» - I (Fjn + sG^e^V11^ (24j
n '

and
-s6ih

Zjh = Bjhe
 Jh (25)

_ .

A more refined analysis implies the evaluation of the limit of the present analysis
as the length of the wake goes to infinity.
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Solving for < $n > one obtains

I., v I ^T IJ T* v • • /oft\

\ ij ~ L Jh) 1 ^j
where

r_ -i rv -i-l r^ n ' .
(27)

Equation (26) indicates that the matrix A-J is the desired subsonic matrix transfer

function relating the transformed vector of the potential <$*) to the transformed vector
f ~ i L J

of the normal wash <* h >-

SUPERSONIC INDICIAL AERODYNAMICS

In this section the formulation for the superspnic case is briefly outlined. For
conciseness, only supersonic trailing edges are considered so that the contribution of the
wake can be ignored. Under small-perturbation assumption, the Green theorem for
potential supersonic flow is given by

4, E(P.) .(P..T) - - s [*0 + [*3 ffi

»w v \ / R' 9NC

^B

where *' = 8*/9Nc {8/8Nc is the conormal derivative (ref. 4)J is the conormal wash
which is prescribed by the boundary conditions, and . ;

(29)

with B = y M - 1. Furthermore,

ll/2
(30)

A
If the trailing edge is not fully supersonic then the contribution of the wake can be

treated similarly to the subsonic case with the only difference that the device of trun-
cating the wake at finite distance is not necessary in the supersonic case, since only a
finite portion of the wake can have an effect on the aircraft.

1080



whereas

H(P) = 1 for

H(P) = 0 for

^ - X > [(Y - Yj2 + (Z - Z J2]

* - X ^ [(Y - Y*)2 + (Z - Z
(3D

and

with

(32)

+ - X ) ± R » (33)

Using equation (12) and following the same procedure used for the subsonic case,
one obtains the supersonic indicial aerodynamic operator

(34)

where

SB 8N

N,.

'B

8R'

(35)

In particular, if P* coincides with the node P., E(P+) = 1/2, and equation (34)
reduces to
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) + *h(T-ejkj]
-I

(36)

where

Bh - (37)

Similar definitions hold for c!,, D!,, 0t, and 0^. Finally, taking the Laplace trans-

form of equation (36) .results in

(38)

where

-1

B j e (39)

Equation (38) indicates that the matrix A.. is the desired supersonic matrix transfer

function relating the transformed vector of the potential \ $t ) to the transformed vector{»,} to

of the conormal wash for supersonic trailing-edge configurations. If the trailing

edge is not fully supersonic, the formulation may be modified following the same ideas
used for the subsonic case. .. .

SUSSAACTS

The formulation presented above is embedded in the computer code SUSSA ACTS
(Steady and Unsteady, Subsonic and Supersonic Aerodynamics for Aerospace Complex
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Transportation Systems) which uses zeroth-order shape functions. A few specific details
of the SUSSA ACTS formulation are briefly illustrated here. The surface of the aircraft
is divided into small elements, S^. Consider the shape function Nn(P) equal to one
inside the element S^ and equal to zero outside the element Sn, i.e.,

Nn(P) = 1 if P is inside

'(40)
Nn(P) = 0 otherwise

Equation (12) may thus be interpreted as saying that, within the element S^ the normal
wash and the potential are approximated with the values \lv and $^ at the centroid P
of the element Sh. Similarly, the wake is divided into elements and the shape functions
Lj^P) (see eq. (13)) are defined in a similar way. It may be worth noting that the shape
functions given by equation (40) may be called zeroth-order shape functions. Therefore,
the formulation used in SUSSA ACTS is called zeroth-order finite-element formulation.

Next, note that using equation (40), equation (18) yields for instance

c = .^L. \\ _±.^ds (42)
h ZTT JJ Su i?2 8N h

n AV

The elements used in SUSSA ACTS are quadrilateral elements (in particular, tri-
angular) which are approximated with a hyperboloidal element of the type (see ref. 4)

= PO + < *PI + »jp2 + |w3 ' (-1 = S < i; -1 = ^ = i) (43)

and the integrals which define B^ and C^ are evaluated analytically. The expressions
for the analytical evaluation of the integrals are given in reference 4 and therefore are not
repeated in this paper.

The version of SUSSA ACTS used for the results presented herein is a preliminary
one in that (consistent with the oscillatory -flow formulation of SOSSA ACTS presented in
ref. 4) the coefficients D^ are evaluated as
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(44)
27T s,,T?23N : -n •"•1 ' -i • • •< . • . •

where Rh is the value of R at the centroid Ph of the element Sn.- The evaluations
of Fn and Gn are similar to the ones of Cn and D^. The evaluation of the coeffi-
cients for supersonic flow is similar: the modifications are indicated in reference 4 and
are not repeated herein. . , . .

The pressure coefficient is .evaluated by finite difference, using the same method
outlined in reference 4. The generalized forces are evaluated.by integrating by parts
the integrals which contain 9<p/9x. The integrals are then evaluated by using the mid-
point rule with the same elements used for the evaluation of $. (See ref. iO.)

... " i ;'

NUMERICAL RESULTS

Numerical results, obtained with the computer program SUSSA ACTS, for steady
and oscillatory flows are presented in reference 10. These include the analysis of con-
vergence, new results for supersonic delta wings, and the evaluation of generalized forces,
which are presented in this paper along with some preliminary results for complex fre-
quencies. Additional results are given in reference 10.

The analysis of convergence is presented in figures 1 to 6. For all the cases pre-
sented in these figures, previously obtained numerical results indicate'good agreement
with the experimental results of reference 11; such comparisons are presented in refer-
ence 4 and are not repeated herein. Steady-state flows are considered in figures 1 and 2
for subsonic (M = 0.24) and supersonic (M = 1.3) flow, respectively. Both figures show
the distribution of the potential along the midsection of the wing (y = 0) for T = 0.05 and
a = 0° (thickness problem). The thickness problem was chosen because its convergence
rate is lower than the one of the lifting problem (ref. 3). The number of elements.of the
diaphragm, for figure 2, is NQ = 3NX. Next consider the oscillatory flows. Wings (with
T = 0.01 and a = 0°) oscillating in bending mode, i.e., - .

z = 0.18043 2y/b + 1.70255 2y/b - 1.13688 2y/b + 6.25387 2y/b (45)

are considered in figures 3, 4, and 5 for subsonic flow (M = 0.24) with k = u>c/2Uoo = 0.47.
These figures show the values of C£ as a function of x/c at 2y/b = 0.1328. In fig-
ures 3 and 4 the analysis of convergence with respect to the wake elements is presented.
In both figures,, Nx = Ny = 7. This is largely sufficient for convergence (fig. 5). In fig-
ure 3, the length of the wake is kept constant, LU//C = 4, and the number of elements of
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the wake in the flow direction is increased (NW = 5, 10, 20, 30, and 40V The number of

elements of the wake in y-direction is the same as on the wing Ny = 7. The results indi-
cate that Nyj = 40 is largely sufficient for convergence. This corresponds to a wake
element of length Axw = O.ic, which is the value used in figure 4 where Axw is kept:

" / - . . W

constant and the number of elements is increased (Nw = 5, 10, 20, 30, .and 401 so that the

total wake length is increased (l^/c = 0.5, 1, 2, 3, 4V The above results indicate that

NW = 30 with Lw/c = 3.5 are largely sufficient for convergence. These values are

used in figure 5, where the analysis of convergence in terms of the number of elements
on the wing (Nx = Ny = 5, 6, 7j is presented. Next consider the supersonic oscillatory

flow. Convergence for a wing (with T = 0.01 and a = 0°) in bending mode, given by
equation (45), is considered in figure 6 for supersonic flow (M = 1.3) with k = wc/2Uoo =
0.10. The figure shows the value of

. ; (46)

as a function of x/c at 2y/b = 0.5 for Nx = Ny = 5, 6, 7. The number of elements on
the diaphragm is ND •= 3NX. The analysis of convergence with respect to ND is now .
under investigation and is not presented herein. All these results indicate that the rate
of convergence. is very high and that Nx = Ny = 6 (i.e., 144 elements over the whole
wing) are sufficient for convergence, at least for the problems considered here.

Next, some new results obtained for supersonic delta wings are presented. Two
possible, types of element grids are depicted in figure 7. The one shown in figure 7(a)
was used in reference 4. However, for supersonic delta wings, .the flow is conical ,
(ref. 12). Therefore, the element grid shown in figure 7(b) appears to be the more .
natural one. It may be worth noting that the use of this grid implies the use of a com-
pletely general quadrilateral element. This grid was used to obtain the results presented
in figures 8 and 9 for subsonic and supersonic leading edges, i.e., for B/tan A = 0.833
and 1.2, respectively, where A is the leading-edge angle. The results of figure 8.are
obtained for Nx = Ny = 7, r = 0, and by using a diaphragm to separate the upper from
the lower side. The number of elements on the diaphragm is ND = 7 x 3 . The results
of figure 9 were obtained for Nx = 8, Ny = 12, T = 0, and using only the upper side.
For both figures, the results are compared with the exact analytical solution given, for
instance, in reference 12. The comparison indicates that the results are in good agree-
ment for the subsonic leading edge and in excellent agreement (with relative errors below
10~5;) for the supersonic leading edge.

Next,. consider the evaluation 'of the lift coefficient CL and the moment coefficient
CM (with respect to the axis x = XM\. The results are presented in figures 10 to 16.
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Figure 10 presents the lift coefficient per. unit angle of attack CLa as a function of
the aspect ratio for a delta wing in steady subsonic flow, for M = 0. The results are
obtained for r = 0.001 and Nx = Ny = 7 .and are in good agreement with the lifting-
surface results presented in reference 13. Lift and moment coefficients CL and C^
as functions of the reduced frequency k, for M = 0, are presented in figures 11 and 12,
respectively, for a delta wing with AR = 4 oscillating in pitch around the axis xm =
XM = c/2' Tne Pitch mode is z = x - xm. The results are obtained for T = 0.005, •
NX = 10, and Ny = 6. The number of elements of the wake in the direction of the flow is
Ny = 20 and the wake length is Ly/ = 2c. Similarly, figures 13 and 14 give the values
of CL and CM /with XM = c/4j as a function of k for M = 0, for a rectangular

wing with AR = 2 oscillating in plunge as z = ceiu)t. The results are obtained for
r = 0.001, Nx = 10, Ny = 6, Nw = 20, and Ly^/e = 2. The influence of the Mach
number M is indicated in figures 14 and 15 where CL and CM are given as func-

tions of M for k =.!' for a rectangular wing with AR = 2 ' oscillating in pitch as
z = (x - xm)eiwt around the axis x = xm = XM = c/2. The results are obtained with
T = 0.001, Nx = 10, and Ny = 6. For subsonic flows NW = 20 and Lw/c = 2, whereas

for supersonic flows NQ = 10 x 3. The results of figures 11 to 16 are in good agreement
with the ones of reference 14. . .

Next some recent complex-frequency results are presented in figure 17 for sub-
sonic flow. The problem is the same as the one of figure 5, i.e., a biconvex rectangular
wing with AR = 3 oscillating in bending mode. (See eq. (45).) The results are obtained
for r = 0.01, a = 0°, M = 0.24, Nx = Ny = 7, Nw = 30, and'• Lw = 3.5c; The values
of the complex frequency s = SR + iSj. are such that SR/SJ = -0.2, 0, and 0.2 while
Sj = kM/0 corresponds to k = 0.47. This yields • s = -0.023 + iO.115, iO.115, and -

0.023. + 10.115. , .

. Next preliminary supersonic complex-frequency results are presented in figure 18
for the same problem of figure 6, i.e., a biconvex rectangular wing with AR = 3 oscil-
lating in bending mode. The values of C^, presented as functions of x/c at

2y/b = 0.1328, are shown in figure 18. The results are obtained.for r = 0.01, a = 0°,
M = 1.3, Nx = Ny = 7, and Nj) = 7 x 3. The values of s correspond to SR/SJ =-0.2,

0, and 0.2 and k = 0.1, i.e., s =-0.0314 + iO.157,10.157, and 0.0314 + iO.157. Con-
vergence analyses for complex-frequency results are now under investigation.

It may be worth mentioning the computer time used by the program SUSSA ACTS.
This is given in table I for steady (real-variable coefficients) and unsteady (complex-
variable coefficients) subsonic and supersonic flows in terms of the total number of ele-
ments on the wing NELEM = 4NxNy. All the results are obtained by taking advantage of
the symmetry (or antisymmetry) in y- and z-directions. The wake for the subsonic flow
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TABLE I.- COMPUTER TIME FOR SUSSA ACTS (ON IBM 370/145)

NELEM

4 x 4 x 4

4 x 5 x 5

4 x 6 x 6

4 x 7 x 7

Computer time, sec, for -?,, ... /

Subsonic flow

Steady

29

70

143

268

Unsteady

161

324

543

928

Supersonic flow

Steady

8

15

29

54

Unsteady

21

38

65

119

has NVV = 1 for steady and NW = 30 for unsteady flows. The diaphragm for super-
sonic flow has NJJ = 9. The computer times are expressed in seconds and were obtained
on an IBM 370/145 computer of the Boston University Computing Center. It may be worth
noting that the computer times for unsteady supersonic flows are remarkably low. Also,
it should be noted that, once the results for one reduced frequency have been obtained,
results for additional frequencies require minimal additional time (essentially the time
for the matrix inversion). .,

Finally, it may be noted that for steady (real-variable coefficients) flows the mem-
ory requirement is approximately given by

= 950° + 18N EQN + EQNN (47)

where N^Qp^g is the number of words, whereas NEQN is the number of equations.

Similarly, for unsteady (complex-variable coefficients) flows the memory requirement is
approximately given by

%ORDS = 12 50° + 22NEQN + 2NEQN (48)

In addition, the geometry preprocessor for wing-body configurations requires 4500 words.

COMMENTS

A general theory for indicial compressible potential aerodynamics has been pre-
sented. The motion is assumed to consist of small perturbations (starting at time t = 0)
around a steady-state constant-velocity motion. In this case, the relationship between the

1087



velocity potential and the normal wash is given by an integral operator in space and a
differential-delay operator in time. Using the finite-element- method to solve the spacial
problem, one is left with a differential-delay system in time.- This can be solved step by
step in the time domain or by using the Laplace transform and thus obtaining the matrix
transfer function for frequency-domain analysis. ' "•'"•'-'

The formulation presented in this paper represents a considerable improvement with
respect to the state of the art since complex configurations could be analyzed only for
steady and oscillatory flows (see for instance, refs. 3 and 4) while unsteady flows could
be analyzed only for simple configurations such as zero-thickness wings. With this
method, the analysis of unsteady flow around complex configurations is consistent with
the control-theory analysis. Furthermore, note that the linear equations of flight dynam-
ics imply the limitation of small perturbations around a steady-state motion, usually
constant-speed horizontal flight. The indicial aerodynamics analysis presented herein ,
does not require any additional limitation and therefore is the most general formulation
within the framework of linear flight dynamics analysis.

In addition, it should be noted that the increase in generality of the formulation is
obtained at no additional increase in computational complexity. For, if simple oscillatory
problems are considered, the only advantage is to replace s with iO (refs. 3 and 4)
with no particular computational saving.

Another advantage of the present approach is that the dependence.of the matrix

upon the complex frequency s is given in a very simple explicit analytic form.

This is a considerable computational advantage, since once the frequency-independent
coefficients B-n, C-h, D-h, F. , G. , S^, 0-n, and Q. have been evaluated (and

these are necessary even for the evaluation of the potential at one single reduced fre-
quency), little additional time (essentially the time for the inversion of one matrix) is
necessary to obtain the results at different values of s. Also advantage can be taken of

the analytic dependence upon s to obtain approximate expressions for the matrix

For instance, at low frequencies, a Taylor's series expansion for equations (27) and (39)
could be used.

It is essential to note the difference between this method and the classical approach
for unsteady (oscillatory) aerodynamics. In the latter case the solution is assumed to be
oscillatory i.e., of the type e^TJ and then the problem is solved in space. Here the
space-discretization precedes the time-frequency transformation. _ This inversion of the
time and space solutions might appear to be irrelevant, but is not. For, in the classical
formulation the convergence of the space solution is analyzed on the time-transformed
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unknown which,is highly oscillating in space. On the other.hand, here the finite-element
method is applied to the untransformed equation, where the unknown is smooth and therer
fore fewer elements are required for convergence. The transform applies to the discrete
system and therefore high-frequency components do not involve" a change in the numb'er" Sf
elements. This question is analyzed in more detail in reference 8, where the Laplace
transform is used first and then the transformed equation is solved by finite elements.
This process yields

. • " . . . : -1-1 . - . • . -

w- (49)

where

B

B
Jp =p.* ]

277

p*=p.

(50)
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Equation (49) should be compared to equation (27).. Note that the integrals in equation (50)
are not frequency independent and therefore a large number of elements are required for
convergence. On the other hand, the integrals in equation (18) are frequency independent
and the convergence may be evaluated on the time-domain solution. •

Another advantage of the present approach is the already mentioned possibility of
truncating the wake at finite distance if the analysis is limited to T = Tmax (since

A$n = 0 for T < Tmax < nnV This eliminates the problem of convergence as the length

of the wake goes to infinity. Other questions which have not been discussed here are the
Kutta condition and the role of the diaphragms in supersonic flow. These points are
analyzed in references 3 and 4 for a zeroth-order finite-element solution (i.e., potential
<£ and normal wash * constant within each element). Further investigations for higher
order solutions are now under way.

Furthermore, the computer program SUSSA ACTS is general since it applies to
subsonic and supersonic, steady, oscillatory, and fully unsteady flows around arbitrarily
complex aircraft configurations. 5 Also, the use of the hyperboloidal elements makes the
program extremely flexible: for instance, the finite-element grid for the aerodynamic
analysis may coincide with the structural one. Furthermore, the program is simple to
use, since the only input for subsonic flow is the geometry of the aircraft (in terms of the
Cartesian components of the corners of the elements) and the location of the trailing edge
(the straight-vortex-line wake is automatically generated). For supersonic flow, the
program makes use of diaphragms. However, preliminary results presented in refer-
ence 10 indicate that for certain cases (such as a conical body) the use of the diaphragm
is not necessary. Further analysis of this point is now underway. Finally, the program
is accurate and fast. This is essentially due to the high rate of convergence of the
method. It may be worth noting that no special technique (such as approximate evalua-
tion of the integrals for distant elements) has been introduced yet in order to minimize
the computer time. Some of these techniques are now under investigation.

FUTURE RESEARCH

It should'be rioted that although SUSSA ACTS is very general, additional work
remains to be done. In addition to the previously mentioned current developments, items
now under investigation include the evaluation of the pressure distribution by finite-
element (instead of finite-difference) method, the evaluation of the generalized forces for
arbitrary three-dimensional mode shapes (integrating directly on the pressure coeffi-
cient), the use of special-purpose eleme'nts (such as hinge elements for control surfaces),
and the effect of the deformation of the wake. In addition, a new program which uses

5Results for wing-body configurations are .presented in reference 4.
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first-order shape functions for $ and * is now being developed. Good results have

been obtained vising simple rectangular elements. Also nonlinear effects (transonic flow)
are now under investigation. Finally, applications to flutter and flight mechanics are now
being considered.

CONCLUDING REMARKS

In conclusion, a new approach for small-perturbation indicial aerodynamics has
been presented. Taking full advantage of the finite-element method and the operational
calculus the problem is simplified considerably and the relationship between potential
velocity and normal wash is reduced to a system of algebraic equations with simple
explicit dependence of the coefficients upon the complex frequency s. The zeroth-order
formulation is embedded in the computer program SUSS A ACTS which is general, flexible,
simple to use, accurate, and fast. Numerical results are in good agreement with exist-
ing ones.
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Figure 1.- Potential distribution as a function of x/c for Nx = Ny = 5, 6, and 7 .for
; rectangular wing with biconvex section in steady subsonic flow, y = 0; AR = 3;
y=0.05; M = 0.24; a = 0°. '.'. "'"'"" " """' * - " • ' - ' • - ' ' . . - - *
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Figure 2.- Potential distribution as a function of x/c for Nx = Ny = 5, 6, and 7 for

rectangular wing with biconvex section in steady supersonic flow, y = 0; AR = 3;
T = 0.05; M=1.3; a = 0°; ND = 3NX.
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-0.2

Figxire 3.- Lift-distribution coefficient as a function of x/c for rectangular wing with
biconvex section oscillating in bending mode in subsonic flow. 2y/b = 0.1328;
AR = 3; T = 0.01; M = 0.24; a = 0°; k = 0.47; l^ = 4c; Nx = Ny = 7.
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. . . . . . . , . . ,
Figure 4.- Lift-distribution coefficient as a functipn,pf. x/c for r,ectangular wing with

.biconvex section oscillating in bending mode in subsonic flow.... 2y/b =,0.^1328; ,
AR = 3; r = 0.01; M = 0.24; a = 0°; k = 0.47; Axw = 0.1; Nx = Ny = 7.
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Figure 5.- lift-distribution coefficient as a function of x/c for Nx = Ny = 5, 6, and 7
for rectangular wing with biconvex section oscillating in bending mode in subsonic
flow. 2y/b = 0.1328; AR = 3; T = 0.01; M = 0.24; a = 0°; k = 0.47; N^ = 30;

3.5c.
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Figure 6.- Distribution of $ = $einMX as a function of x/c for Nx = Ny = 5, 6, and 7
for rectangular wing with biconvex section oscillating in bending mode in supersonic
flow. 2y/b = 0.5; AR = 3; T = 0.01; M = 1.3; k = 0.1; a = 0°; ND = 3NX.
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(a) Used in reference 4.

/7J V\\
(b) Used in this paper.

Figure 7.- Types of element grids for delta wings.
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10 EXACT SOLUTION

O PRESENT METHOD

0.2 0.8 1.00.4 0.6

. . . yB/x t a n A

Figure 8.- Lift-distribution coefficient per unit . a for delta wing with subsonic leading
edge in steady supersonic flow. B/tan A = 0.833; T = 0; Nx = Ny = 7. Comparison
with exact conical-flow solution of reference 12.
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EXACT SOLUTION

O PRESENT METHOD
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yB/x fan A

Figure 9.- Lift-distribution coefficient per'unit a for delta wing with supersonic lead-
ing; edge"in steady supersonic flow. B/tan A = 1.2;- r = 0; Nx = 8; Ny = 12. Com-
parison with exact conical-flow solution of reference 12.
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Figure 10.- Lift coefficient per unit at as a function of aspect ratio AR for delta wing
in steady subsonic flow. T = 0.001; M = 0; Nx = Ny = 7. Comparison with lifting-
surface theory of reference 13.
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Figure 11.- Lift coefficient as a function of k for delta wing oscillating in pitch.
AR = 4; r = 0.005; M = 0; Nx = 10; Ny = 6; NW = 20; LW/C = 2. Comparison
with results of reference 14.
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Figure 12.- Moment coefficient as a function of k for delta wing oscillating in pitch.
_AR = 4; T = 0.005; M = 0; Nx = 10; Ny = 6; Nw = 20; LW = 2c. Comparison with
results of reference 14.
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Figure 13.- Lift coefficient as a function of k for rectangular wing oscillating in plunge.
AB = 2; T = 0.001; M = 0; Nx = 10; Ny = 6; Nw = 20; Lyy = 2c. Comparison with
results of reference 14.
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Figure 14.- Moment coefficient as a function of k for rectangular wing oscillating in
plunge. AR = 2; T = 0.001; M = 0; Nx = 10; Ny = 6; Nw = 20; Lw = 2c. Com-
parison with results of reference 14.
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Figure 15.- lift coefficient as a function of M for rectangular wing oscillating in pitch.
AR = 2; T = 0.001;, k = l ; Nx = 10; Ny = 6; Nw = 20; 1̂ /0 = 2;. ND = 30. Com-
parison with results of reference 14. ' . * •.. ,
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Figure 16.- Moment coefficient as a function of M for rectangular wing oscillating in
pitch. AR = 2; T = 0.001; k = 1; Nx = 10; Ny = 6; Nw = 20; Lw/c = 2; ND = 30.
Comparison with results of reference 14.
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A $ = 0.023 + 10.115

V s=-0.023 + 10.115

Figure 17.- Complex-frequency analysis of lift-distribution coefficient as a function of
x/c for rectangular wing with biconvex section oscillating in bending mode in sub-
sonic Qow. 2y/b = 0.1328; AR = 3; T = 0.01; M = 0.24; a = 0°; Nx = Ny = 7;
Nw = 30; Lw/c = 3.5.
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A s = 0.0314+iO.157

V s = -0.0314 +iO. 157

Figure 18.- Complex-frequency analysis of lift-distribution coefficient as a function of
x/c for rectangular wing with biconvex section oscillating in bending mode in super-
sonic flow. 2y/b.= 0.1328; AR = 3; T = 0.01; M = 1.3; a = 0°; Nx = Ny = 7;

= 21. -
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THREE-DIMENSIONAL, SHOCK-ON-SHOCK INTERACTION PROBLEM*

By Paul Kutler
NASA Ames Research Center

and

Leonidas Sakell
Martin Marietta Aerospace, Orlando Division

SUMMARY

The unsteady, three-dimensional flow field resulting from the interac-
tion of a plane shock with a cone-shaped vehicle traveling supersonically is
determined using a second-order, shock-capturing, finite-difference approach.
The time-dependent, inviscid gas dynamic equations are transformed to include
the self-similar property of the flow, to align various coordinate surfaces
with known shock waves, and to cluster points in the vicinity of the inter-
section of the transmitted incident shock and the surface of the vehicle.
The governing partial differential equations in conservation-law form are
then solved iteratively using MacCormack's algorithm.

The computer simulation of this problem, compared with its experimental
counterpart, is relatively easy to model and results in a complete descrip-
tion of the flow field including the peak surface pressure. The numerical
solution with its complicated wave structure compares favorably with avail- •
able Schlieren photographs, arid the predicted peak surface pressures obtained
are shown to agree better with the experimental data than existing ',
approximate theories.

INTRODUCTION

For over a decade, experimentalists and theoreticians have studied the
flow field generated by the interaction of an incident shock wave (e.g., that
generated by a nuclear explosion) with a vehicle traveling at supersonic
speeds (see Fig. l(a)). In the past, a great deal of attention.focused on
determining the strong-blast-induced transient pulse produced at the surface
of the vehicle because of the belief that the forces generated might be
structurally damaging. Recently, however, a new.question-has emerged con-
cerning weak incident shocks (PS/PI < 2); i.e., can such an encounter induce
high-frequency disturbances capable of destroying the internal structure or
appended equipment? The purpose of this paper is to compute the flow field
generated by such an encounter and thus predict the resulting transient sur-
face pressures required by the designer to determine the structural and
vibrational responses of the vehicle.

Presented as Paper 75-46 at the AIAA 13th Aerospace Sciences Meeting,
Pasadena, Calif., January 20-22, 1975.
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A typical flow field resulting from the interaction of a planar shock at
Mach number M^ and inclination A, and a pointed cone with half-angle o '• "1
at Mach number Mv and angle .of attack 'a is shown in Fig. l(b).' It'' • ' *
consists of a multitude of shock waves and slip surfaces which' interact' to •";i-
yield a rather complicated three-dimensional, unsteady flow field. ' To the '•"•
right of the incident shock, there exists a conical flow field generated by
the vehicle in the free stream or preblast conditions, while to the left of
the indicated sonic line there exists a second conical flow field generated
by the body traveling in the postblast environment. Both conical flow ';'
solutions can be generated from existing three-.dimensional, supersonic, : .
steady flow computer .codes.1 The'region between these two flows which con-'
tains the intricate shock structure is the crux of the present problem and is
determined here. . • •>

The region of the shock-on-shock flow field of most interest to the
.vehicle designer .is where the transmitted incident shock strikes the body,
for it .is the circumferential variation of the .flow variables behind this,
impingement line/that can generate the undesirable forces. The transmitted
shock at the body, depending on its inclination, can transit from a Mach
reflection on, the lower surface or leeward side to a regular reflection .on
the top surface or windward side, or result in a Mach reflection entirely
around the body. Most of the interest and recent experimental testing cen-
ters around the incident shock, inclination angle that yields transition f r'om •
regular to Mach reflection in the windward plane. This encounter angle is
believed to .result in the largest or "peak" surface pressure. Therefore,
only values of the incident shock inclination near transition are considered
here; thus such possibilities as the broadside encounter are-ruled but.

In the past, there have been numerous theoretical attempts (refs. 1' to 9)
to obtain solution's for the three-dimensional, .shock-on-shock (TDSOS)-
problem, some "of which have resulted in computer programs (refs. 6, 9 to 14).
This paper does not try to summarize them by commenting on the relative
merits of shortcomings of each, rather -the reader is referred to papers by
Aiello (ref. 15), and Kutler, Sakell, and Aiello (ref. 9) for brief summaries
of some of the existing theories. In general,-, most of the early theories
required assumptions regarding the position and structure of the existing
shock waves"for their model. Consequently, an incorrect assumption of the
shock structure.cpuld invalidate-the resulting,theory. A big disadvantage of
the approximate techniques that exist'today for solving the TDSOS problem is
that,. in/most '.of "them, both the "'radial and circumferential gradients''of 'the
flow field are neglected. These gradients affect the'positioh and in-
clination of the transmitted incident shock as.it strikes the body and can
therefore gravely affect shock transition and .the: predicted peak'surface ;
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pressure. Compared to available experimental data, all of the approximate
theories grossly over-predict the value of the peak surface pressure. This
over-prediction generated concern from the missile maker and le<i to' a rather ^
exhaustive and expensive experimental study.

There have been many experimental investigations (refs. 16 to 22) of the
TDSOS problem in the past resulting in some very good Schlieren photographs
of the interaction shock structure and surface pressure distributions. The
most recent experimental testing (refs. 23 and 24) was performed at Holloman
Air Force Base by using a rocket-propelled sled. The earlier studies involved
relatively .strong incident shocks while the latest tests dealt mainly with
the weaker blast waves because of their greater probability of occurrence.
The numerical results presented later are compared with both the earlier and
most recent experimental data.

The approach used here to solve the TDSOS problem parallels that of the
two-dimensional procedure (ref. 9) in which the shock-capturing technique '
(SCT) was employed. The self-similarity of the problem, which results from
the absence of a characteristic length associated with the planar incident
shock or the vehicle itself, is used to transform the three-dimensional
unsteady problem to an equivalent steady flow problem. The resulting set of
partial differential equations is of mixed elliptic-hyperbolic type, but is
made totally hyperbolic by reintroducing the unsteady term. With correct
application of the appropriate boundary conditions, the governing equations
can be solved iteratively as a mixed initial boundary value problem using
existing explicit, finite-difference algorithms.

The TDSOS procedure developed here properly accounts for both the radial
and circumferential gradients generated by the conical flow solutions and
results in a complete description of the entire flow field including the
shock structure and surface pressure distribution. Unlike the experimental
counterpart, a typical numerical solution is quite inexpensive and requires
approximately 18 min of CDC 7600 computer time.

•:; GOVERNING EQUATIONS

In extending the two-dimensional problem (ref. 9) to three dimensions,
a cylindrical coordinate system (t,z,r,<(>) is selected with the origin
located at the vertex of the cone and <f> measured from the lower'plane of
symmetry (see Fig. 2). The inclination X of the incident shock is
measured with respect to a plane perpendicular to the axis of the cone.
In following the idea of aligning the coordinates with the position of
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shock waves (refs. 25 and 9) to reduce the postcursor and precursor oscilla-
tions associated with the shock-capturing technique, an independent variable
transformation is performed.. The -longitudinal coordinate - z is .transformed
? = £(t,z,r,<j>) so that the resulting constant c. planes are parallel to
and moving in the direction of the planar incident shock, while the radial,
coordinate r is transformed n = n(t,z,r,<J>) to normalize the distance be-
tween the body and an outer boundary. The outer boundary is chosen so that
in the two regions of known conical flow, namely, near the right- and left-
hand end planes, it is a conical surface. Between these two regions, and in
each meridional plane, the outer boundary is composed of. a cubic .polynomial
that approximately-parallels the peripheral shock. In addition to the
shock-alignment transformations, the transformed longitudinal coordinate £.
is transformed y = y(O to cluster points (ref. 26) near the impingement- ..
point on .the-body of the transmitted incident shock since the flow in this
region is of paramount importance. Thus, including the' self-similar
property of the flow, the resulting independent variable transformation from
(t,z,r,<j>) tO'(T,y,n,C) ' . space i s . . . .

;y =

•CD.

where

- [z -

C /'
-Fl t (eg - 1]

[TTTTT^
ax

11.14



.r,*) = zmt - r cos <J> tan X
(equation of planes parallel to incident shock)

X = incident shock -inclination (see Fig. 2)

zm = velocity of left-hand boundary of computational
volume = .zmin/t (see Eq. (5)) ;

£c = value of £. about which points are to be clustered

maxiroum value of- t, . :

B = clustering parameter; concentration of points increases with 3

= z tan a (equation of the body)

a = cone half-angle

5 = equation of the outer boundary (discussed in the next section)
»• "

Applying this transformation to the three-dimensional, time-dependent Euler
equations yields the following partial differential equation in conservation-
law form: , , . .

UT •+ Ey + Fn + G^: + H = 0 -; (2)

where

U=U*

F = ntu* + nzE* + nrF*
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and

U* =

P

pu

pv

pw

e

•

u c = ,

V =<

. H

5c

\

?t > -(im +

t, - i / t - : -
Cr > (cos «(>

, E* =

G * ' 7
c

pu

p+ pu2

puv
puw

(e ••• p) u

pw

puw

pvw

p + pw2

(e +p)w

pv

piiv

. F* = p* P v 2

pvw

• • le + P) v

pv

puv

, H* = I. p( v 2. w 2)

2pvw

_(e+p)v_

Cmax slnh -8C .
/e - Q\

t ,\l/2 (8 °J

81+ [(C/C - l)sinh 8C]2|
I C 1

i (e - o)
-•(C/r - l)sinh2 8C

(t> »> m

{ oi • - ̂  u/
1+ [U/Cc-l)sinh 8C]ZJ

0 (8 = 0)

0/t" ct.' -'i/f
' • • ' ' • ? . ' • . /

cz = o

tan X)/t ; Cr • 0
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r = -r(sin <)> tan X)/t £, = Num'

nz = -rb -'n(rob ' rb )/Crob " V nz = 'Num
Z • Z • Z . Z

n • . . :

nr = l/Oob - rb) V = Num

-• n ' -
'V - n' = Num ;

'* . . . . n

( ' •' '
Num implies that; the partial derivative must be obtained numerically since
the function rob(t,z,(j)) is not known analytically.' .The calculation of the
partial derivatives of r^ are discussed in the next section.

In Eq. (2), p represents the pressure; p-, the density; u, v, and w,
the velocity components in the z, r, and <|> directions; and e, the total
energy per unit volume. The pressure, density, and velocity are related to •
the energy for an ideal gas by the following equation: • •'

e = p/(y - 1) + p(u2 + v2'+ w2)/2 (3)

The transformed,- time-dependent Euler equations are hyperbolic with
respect to T and can be solved in an iterative fashion (e.g., at T = 1.0)
using an explicit, finite-difference scheme. . Because of the self-similar
transformation, the': UT term in EqV (2) approaches zerp as the integration
proceeds with respect to T and results in a converged solution for large
T or after a large number of iterations .at . T = 1.0. ;

BOUNDARY AND INITIAL CONDITIONS

The transformation given by Eq. (1) results in the computational grid
shown in Fig. 3. At.the extremities of this computational volume, the
correct boundary conditions must be applied. On the surface of the cone, the
tangency condition is satisfied by using an Euler predictor/modified Euler
corrector with one-sided differences in the n-direction and imposing the
condition v = u tan a after the corrector. Since the numerical technique
is iterative with respect to the independent variable of integration, and we
are only interested in the converged solution and not the transient, the body
boundary condition is accurately simulated (refs. 9 and 27) by following this
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procedure. At the 0° and 180° planes of symmetry, the "reflection
principle" is applied using the conservative variables. Rather than use
image planes to implement this boundary condition, the finite-difference
scheme is modified (discussed briefly in the next section).

It is important to ensure that the permeable boundaries of the computa-
tional volume be hyperbolic (see ref. 25), i.e., the flow through these
boundaries must be supersonic with respect to the self-similar coordinates.
If this condition is satisfied, and the flow variables along such
boundaries are known, then the associated grid points can be initialized
using the known flow quantities and held fixed during the entire integration
procedure. For the three-dimensional problem, this requires that zm^n
(the distance along the z axis to the interaction of the left-hand
boundary plane at t = 1) lie to the left of the sonic line, zmax lie to
the right of the incident shock, and the outer boundary encompass the
peripheral shock structure (Fig. 3). The position of zm^n, zmax, and the
outer boundary depend on the conical flow at the end planes.

To determine the flow at the right- and left-hand boundaries (regions 2
and 4, respectively, in Fig. 2), an existing three-dimensional, supersonic
flow field code (ref. 28) (TDSCT) was employed. Given the vehicle Mach
number Mv, angle of attack a, cone half-angle a, and ratio of specific
heats Y, the TDSCT program, which treats the bow shock as a sharp dis-
continuity, is used to generate the conical flow field at the right-hand
boundary. In addition, given the incident shock Mach number M^ and its
inclination V, the conditions behind the incident shock or the new free
stream conditions M3 and a3 can easily be found using the normal shock =
relations:

q^ = M^a^; velocity of incident shock with respect to still air

qi2 = ̂ ll1 "C(-Y " 1)Mi2 + 2]/t(Y * l)Mi2] I ̂ velocity of air .
behind incident shock with respect to still air

PS = PI(Y + i)M^2 I(Y - i)M^2 + 2]
p3 = t), F2vM^ - fv - 111/fv + 11 . / (4)

.= /YP3/P3

The velocity of the gas in region 3, which -is a function of the velocity in
region 1, is given in Table 1. The Mach number and flow direction are given
b y • ' • . , . . . .

and

M3 =

cx3 =
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These conditions are then used by the TDSCT code to generate the conical flow
field at the left-hand boundary.

For the positive values of A considered, z
m^n (which must lie to the

left of the sonic line) is determined, by -the flow at the body'in the 180°' -' v

plane, and its location can be found from

zmin < <\ - a4b
)(1" tan ° tan \

where q^ is the velocity and a, is the speed of sound at the body in
b b ' '

that plane. The location of zmax depends on the position of the incident
shock at time t = 1. The distance Zis (Fig. 3) is given by

zis = qis cos K/cos x

where qis is given in Table 1 and K = A + tan"1(uis/w. ). Since z^s is
known, zmax is selected to ensure that there is a sufficient number of
longitudinal grid points to capture the Mach stem in the 0° plane.

The data describing the two conical flow solutions generated by the
TDSCT program, in addition to the state variables, include the shock .position
rs and the two shock slopes 8rs/3z and '3rs/3<J>, .which are used in defining
the outer boundary. The position of the outer boundary near the end planes,
is chosen so that in both the meridional and longitudinal directions there is
an equal number of grid points between the conical bow shocks and it,": thus
imposing a condition that rol>^Tob = rs<|/rs!

In the longitudinal direction near the end planes, the outer boundary is
composed of conical rays from the vertex and cubic polynomials in between
(Fig. 3). In the 0° plane, for example, the outer boundary is composed of a
conical ray that extends from zmin to zcbi. followed by a cubic
polynomial to zĉ £, and finally another conical ray to zmax. At zcbi and
zcbf> both rojj and rojj are continuous. Only the four constants zcfciz
and zcb£ for the 0° plane and zcti and zctf for the 180° plane need be

specified. A simple linear interpolation between the bottom and top values
is used for the analogous parameters in the remaining meridional planes. In
some of the examples presented later, zctf and zcbi were set equal to
Zis based on the shock patterns of previously computed test cases.

Equation (2) requires that rQb , ro^ , and
 rob.i. ^e ̂ nown- For the

t . z <J> .
conical portion of the outer boundary, these functions are easily determined
from the known shape of the conical bow shocks (rot, = 0). However, it is

slightly more difficult to determine these functions for the nonconical
portion.
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In a- given meridional plane, the cubic can be written as

. f(O = a

where ' .
Cj = value of £ for z^ '

,C2 = value of C for

and

a = rob1
/t

b = r, /(l + r, cos <(> tan X)' = fob ob Cizi zi . ••: ..--. l,

x =.

d = 2(y - x)/(C2 -

C = X -
-' -J- •' i, i • - . " - . '

The quantities rob and rob are given by

and :

rob = tfcc_/(l - tfc?r) "•:.-... :- " C9)ODz > z ?- . .

where f . = 9f/3? and ''ct','4Z, and' c;̂
1 are defined in Eq. (2)/; ! .•

Since the circumferential variation of the quantities a, b, c, and d
in Eq. (7) is not known, Yob* must be computed numerically. This is easily

' - . T • »

accomplished using the following expression and noting that robA is zero at
the planes of symmetry: , . .. . • . . ; . .

: ;:''"'•/"•" '(10)
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~ h ,  ~ q .  (10). rob and . .  az/ac' . are evaluated numerically using ,a second- 
t s 

order, central-difference formula. 

. With the computational volume established and the geometrical deriva- 
tives defined, the flow variables at the nodes can be initialized. Grid 
points that fall in region 1, i.e., between the original bow shock and the 
incident shock, are assigned values equal to the original free stream. For 
the cases considered here, pl and PI are set equal to 1.0, which implies 

. . 
that ql = M,,G The individual velocity components for region 1 as a 

function of a and $I are given in Table 2. The conditions in region 3, 
i.e., behind the incident shock and above tte new bow shock, are given by 
Eq. (4), while the velocity components of q3 are also presented in Table 2. 
Between ti, , and below the original bow shock, the right-side 
conical flow v:~:eSm~egion 2) are assigned, while between Zmin and Zis, 
and below the new bow shock, the left-side conical flow values (region 4) are 
assigned. 

To initiate the calculation, the integration stepsize At must be 
specified. Using a one-dimensional, amplification matrix, stability 
analysis (ref. 29) a governing stepsize for AT relative to the p ,  n, and 6 
directions can be found as follows: 

where CN is the Courant number and is usually set equal to 1.0. For the 
calculation t o  be stable, the minimum of the stepsizes in Eqs. (11) is used: 

During a typical calculation, AT is recomputed every 50 iterations, and it 
is generally Eq. (llb) evaluated at left-hand plane at the top (( = 180°] of 
the outer boundary that governs the stepsize. 



FINITE-DIFFERENCE ALGORITHM

Equation (2) is solved iteratively at time T = 1.0 using the second-
order, honcentered, finite-difference scheme devised by MacCormack (ref. 30),
It has been demonstrated (refs. 9, 27, 31, and 32)--that this scheme can
accurately determine the correct strength and location of all 'disconr
tiriuities in the -flow as well as the continuous regions. The version" of. - . •
MacCormack's scheme'used here as applied to Eq. (2) is - '' ' . -. * .•. . -

AT
Av (Ei+l,j,k' " Ei,j,k)

n _ AAT i,j,k . , . (I3a)

2i,j,k i,j,

where

'>' . nH
» iAV» JAn, kA?)

Ei i k = E(Ui i k' nAT' UlJ' JAn»l>J,lv 1, J ,K

,iAy,- jAn, kAnJ, etc.

The term Dn . v is a fourth-order smoothing term in the y and n direc-
•*•» J » , •.

tions (which does not affect the accuracy of the algorithm) and is given by
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where dy and d-^ are constants that control the degree of smoothing and
and are usually assigned values on the order of 0.01. The intervals Ay,
An, and A£ depend on the number of grid points selected in each direction,
and the integration stepsize AT is defined in Eq. (12).

At the planes of symmetry, special differences for the Gr term of

Eq. (2) are required to apply the reflection principle since an image plane
is not used. The terms Gj, 62, 63, and 65 in Eq. (2) are odd functions
with respect to the planes of symmetry while G^ is an even function. In
the predictor Eq. (13a) at $' = 180° (k = KM in Fig. 3), the forward dif- •
ference of Gr, therefore, is replaced by

; ' . "V - f? CGi,j,KM-l * GM,KM) f°r Gl> -G2> G3' a«d G5

a n d , - . . . . - .• '

In the corrector Eq. (13b) at 4> = 0°(k = 1) , and the backward difference of
Ge is replaced by

• '. . . .i' for °i- G2- G'- "*
and . " • ' '

The geometric derivatives that are set equal to Num in Eq. (2) must be
evaluated numerically for reasons explained earlier. To dp this, the
following second-order, finite-difference formula is used:

8A
37= C£l

where
el = -3, e2 = 4, e3 = -l; forward one-sided difference

cl = 1, e2 = 6, e3 = -1; central difference

e = 3, e2 = -4, e3 = 1; backward one-sided difference
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NUMERICAL RESULTS

The experience gained in developing the two-dimensional shock-on-shock,'
flow field code (ref. 9) was invaluable and enabled a quick transition from
an interactive graphics code to a completely automated program for the three-
dimensional problem. During the course of the two-dimensional study, it was
realized that the computing time for the TDSOS problem would be lengthy. The
initial calculations bore this out. The computational grid for a typical
TDSOS case consisted of 46 points in the longitudinal (p) direction, 30
points in the radial (n) direction (8 of which were between the conical
shocks and the outer boundary), and 10 points in the meridional (£)
direction. A maximum of 500 iterations for the 13,800 points was required to
obtain a converged solution. The computing was carried out on a CDC 7600 and
required about 1 hr and 48 min of CPU time using the "initial coding."

The "initial coding" was a direct, logical extension of the FORTRAN pro-
grams that had been written for a serial machine (such .as the IBM 360/67) to .
compute the two-dimensional problem. During the development of the TDSOS ',
program, it was recognized that the CDC 7600 has hardware, capabilities that
can, if properly exercised by the software, take advantage of a high degree
of both pipelining1 and overlapping.1 The critical part of the code,,there-
fore, was rewritten, taking extensive advantage of this capability.
Essentially, this revision consisted of two parts; first, a reorganization of
the calculations so that vector operations could be identified, and, second,
the introduction of a machine coded subroutine library (referred to as QUICK)
that optimizes the computing of vector arithmetic. The result of the revised
coding was to drastically reduce the computing time by a factor of 6 so that
a typical TDSOS calculation now takes about 18 min. A report outlining the.
details of QUICK is in preparation.

The results generated by the TDSOS computer code yield data that
describe the entire flow field. However, the distribution of the surface
flow variables in the vicinity of the impinging shock (or where the peak
pressure occurs) contain minor oscillations, characteristic of the shock-
capturing technique. Thus, to improve the prediction of the>peak surface
pressure from these data and at the same time check the TDSOS numerical
results, a simple analytic procedure was developed to: calculate the- local
flow at the transmitted shock impingement points. .This supplemental cal-
culation is performed in both the leeward plane . ($•= 0°), where for the en-
counter angles considered, only Mach reflection can occur, and the windward
plane, where either regular or Mach reflection of the transmitted incident
shock can occur.' , .

pipelining, it is meant, for example, that an adding unit can.be working
on several add operations at the same time.. By overlapping, it is meant that
an adding unit, a multiplying unit, and an incrementing unit can, all be
operating independently and simultaneously; .
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The shock impingement points (z/t)j_, labeled R and M in Fig. 4 are
determined from the numerical solution. The velocity of the impingement
point with respect to the surface of. the cone is then;given by "•' .A/-'>•**'

. . qi = (z/t)i/cos a

Knowing this velocity, the right-side conical flow solution (region 2), and
whether a Mach or regular reflection occurs (which can be determined for the
most .part from .flow field contour plots), the post impingement flow can be
determined.

For Mach reflection, the Rankine-Hugoriiot relations for a normal shock
are applied to easily obtain the postimpingement flow variables. For regular
reflection, the inclination of the transmitted shock 6a in Fig. 4 is re- "
quired and can be measured from the computer-generated contour plots. 'In '
combination with the regular shock reflection relations, it is used to de-
termine the flow behind and the inclination 6fc of the reflected transmitted
shock. This simple analytic calculation can thus be used to define the peak
pressure at the surface of the vehicle. . • .

To verify the TDSOS numerical procedure, one of the head-on encounters
experimentally tested by Merritt- and Aronson (ref. 20) was modeled, namely,
Mv = 3.10 and M^ = 1.39. The uniform preblast and postblast conditions re-
quired to generate the conical" flow, end-plane solutions are given in
Table 3; In Fig. 5, the numerical results^in the form of. a pressure contour
plot are superimposed on a- Schlieren photograph of the model during its- . -
flight. The agreement of the^computed and-observed shock structure is very r
good. An advantage of the numerical solution is that it can focus on the
flow in a given meridional plane, whereas the experiment that includes both
background and foreground flow cannot. Thus the structure of the experi- . .
mental transmitted incident shock in Fig. 5 is lost, but can be observed
from the numerical solution. ; .

The surface pressure distribution for the numerical solution of this ,
case and two others (see Table 3) for which experiments have been per- . .
formed (ref. 22) is shown in Fig. 6. The numerical data points are plotted :
to indicate the degree of clustering used and the amplitude of the -postcursor.
and precursor oscillations associated with the SCT. All three cases resulted
in a Mach reflection of the transmitted incident shock, and the
analytically determined postimpingement pressures or, in this case, peak
pressures"are shown and agree well with" the numerical data. .-•.-•

A comparison of the peak surface pressures determined from the TDSOS
code, experiment (ref. 22), and an approximate theory (ref. 20) is shown in
Fig. 7. The approximate theory assumed that the axial location of the
impingement point of the transmitted shock is the same as that of the inter-
section of the incident shock and original bow shock. This information is
then used in conjunction with the normal shock relations to calculate the
peak pressure'. The agreement, as shown in Fig. 7, between this theory and
theTDSOS results, is good mainly because the approximate theory's-underlying
assumption regarding the impingement point location is very good.
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The latest experiment (see ref. 23) to be performed on this problem
involved an 11.2° half-angle cone traveling at Mach 5 and was to have been
struck by a Mach 1.23 (p3/pi = 1.6) incident shock at encounter angles near
the critical angle which results in transition from Mach to regular reflec-
tion of the transmitted shock. An effort was made to predict some of the
flow fields prior to the actual experiment, and, toward this end, several
numerical solutions were obtained. The specific encounter angles, including
the post-blast, uniform flow conditions, are given in Table 3.

A sequence of density contour plots typical of the solutions obtained is
shown in Fig. 8 for the X = 24° encounter. The coalescence of constant
density lines, indicative of a discontinuity, depicts a wave pattern in the ,
<|> = 0° plane similar to that obtained, for the internal corner flow problem.
(ref. 27), i.e., the existence of two. triple points .joined by a corner
shock (also equivalent to the single tangent model of Smyrl (ref. 1)).
Emanating from both triple points are slip surfaces, shown as a weak
coalescence of lines, that eventually strike the body. The transmitted
incident shock is curved (concave with respect .to the vertex of the cone) due
to the gradients in the radial direction and strikes the body perpendicu-
larly. The flow in the region downstream of the transmitted shock is
compressed and, therefore, the peak pressure in this plane does not occur
directly behind the shock but farther downstream. In the <(> = 80° plane, the
transmitted shock becomes convex, and compression waves begin to originate
from the most curved region of the shock. With increasing <J>, these
compression waves coalesce and result in a "X-shock" formation. As <)> in-
creases further, the small Mach stem of the X-shock disappears and the
transmitted incident shock, which is again concave, reflects regularly from
the surface of the cone. .

Pressure contours of the flow in the windward and leeward planes for
the remaining encounter angles are shown in Fig.. 9. For X = 0°, 10°, and
19°, Mach reflection of the transmitted shock in the windward .plane occurs,
while for X = 22°, 24°, 32°, and 40°, regular reflection occurs. Using only
the contour plots and for encounter angles near transition, it is difficult
to determine whether Mach or regular reflection occurs. But in combination
with the analytic technique described at the beginning of this section, the
guesswork is minimized.

Plots of the surface pressure distribution in the 0° and 18.0° planes
are shown in Fig. 10 for Mach reflection and Fig. 11 for regular reflection.;
The individual points are not plotted, but the degree of clustering (see
Fig. 6) is the same for all cases (£ = 5). The postimpingement pressures '
calculated from the analytic technique described earlier.faired in nicely
with the numerical data, and the peak pressures in the windward plane are
summarized in Table 4. Note that the peak pressure in the leeward plane
does not occur directly behind the impinging shock wave but is actually
equal to the quasisteady conical value. For the Mach reflection cases, the
pressure spike is much thinner than for the regular reflection cases
(compare Figs. 10 and 11). . .
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A comparison of the numerically predicted peak pressure as a function
of the encounter angle X with three approximate theories ((1) PRIMUS
(ref. 8) - Picatinny Arsenal, (2) MDAC. >(ref. 6) - McDonnell Douglas Astrô ;:-
nautics Co., and (3) MMC (see ref. 10) - Martin Marietta Corporation) and
experimental data is shown in Fig. 12. All three theories overpredict the
maximum peak surface pressure compared to the numerical results and the ex-
perimental data. The encounter angle for transition from Mach to regular re-
flection of the transmitted incident shock is different for each solution,
and it is difficult to determine from the experimental data what should be
the correct value of A. Both the first and second series of Holloman sled
test data are shown in this figure and appear to fall in the regular re-
flection regime (based on the numerical results). The three points plotted
for each encounter angle of the 1974 data represent pressure data from
probes at three different axial locations and are somewhat indicative of the
experimental scatter.

The last sequence of sled tests at Holloman (December, 1974, January.
1975) were concerned with angle-of-attack effects.. Prior to these tests
numerical solutions for a Mach 5 cone with a half-angle of 11.2° and at -5°
angle of attack were obtained for the three encounter angles of 18°, 22°, and
31° that were to be used in the experiment. The results of these calcula-
tions are shown in Figs. 13 and 14. Figure 13 shows the shock structure in
the 0° and 180° planes for the three encounter angles. Mach reflection of
the transmitted incident occurred for X = 18° and 22° while regular re-
flection occurred for X = 31°. Fig. 14 shows a pressure and 'density
contour plot of <J> = 140° for the X = 18° encounter. A small Mach stem
exists near the body, and a comparison of the two plots reveals a slip
surface emanating from the triple point of the "x - shock." The surface
pressure distribution in the 0° and 180° planes for all three encounter
angles is shown in Fig. 15. The effect of angle of attack is to yield a
maximum peak pressure of more than twice that of the zero angle of attack
case and also to increase the encounter angle for transition from Mach to
regular reflection.

CONCLUDING REMARKS

The procedure developed to model the three-dimensional, unsteady, shock-
on-shock problem accurately predicts the complicated interactive flow field,
including the structure of the resulting shock pattern and the variation of
the surface flow variables. The results obtained verify the early models
for the shock structure suggested by Smyrl as did later experiments.
Predicted values of the peak pressure in the windward plane for various en-
counter angles agree fairly well with existing experimental results and, in
conjunction with the remaining flow field data, should provide the vehicle
.designer with an abundance of information. Finally, it is believed that,
based on the results of these numerical solutions and the latest experi-
mental data, the concern originally generated by the large peak pressures
predicted by approximate techniques is somewhat unwarranted.
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Table 1 Cartesian velocity components (see Fig. 2)
of regions 1 and 3, and the^incident shock with
respect to the cone (q. =u.i +w.i )

J J x J z

2_ _ "j wj •. .
1 qjSin a qjcos a

3 q^in a -q. sin X q^os a +q. cos X
2 • 12

q.sin a -q. sin X q.cos a +q. cos X
1 11 11

is

Table 2 Cylindrical velocity components of regions
3 with respect to the cone

(q. = U.iz

Uj

1 q cos a -q, sin a cos <J> q. sin a sin

3 q. cos «3 -q3 sin a3 cos <>» q3 sin a3 sin



Table 3 Uniform flow conditions in regions 1 and 3
for computational cases

MV = M, .,

. 3.10 0.0 9

3.10 0.0 9

3.12 0.0 9

5.00 0.0 11

a Mi X

.0 1.3? 0.0

.0 1.61 0.0

.0 2.07 0.0

.2 1.23 0.0

10.0
t "

. 19.0

22.0

24.0

32.0

40.0

Table 4 Peak surface pressure:
a = 11.2° and M^ = 1.230563; $

X Pp/Pl

Mach reflection:

0.0 4.61

10.0 5.91

19.0 7.72

,(z/t)i ea

7.337

7.546

7.806

M3

3.27484

3.32252

3.36277

4.99344

4.98882

4.97685

4.97125

4.96709

4.94703

4.92180

Mv = 5,
= 180°,

6b

°3

0.0

0.0

0.0

.0.0

-0.64850 .;,

-1.21885

-1.40404

-1.52577 -
f

-1.99609

-2.43389

a = 0°,
t = 1.0

\

Regular reflection:

22.0 6.85

•: 24.0 6.66

32.0 6.57

40.0 6.55

7.913 45.3

7.999 43.5

8.398 36.5

8.929 30.0

54.3

48.2

34.8

26.4

0.99758

1 . 10434

1.45522

1.87248
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(a) Preinteraction.
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Figure 1.- Preinteraction and postinteraction wave patterns for the
three-dimensional shock-on-shock problem.
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Figure 2.- Coordinate system.
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Figure 3.- Computational volume.
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Figure 4.- Analytic calculation for regular or Mach reflection of
transmitted incident shock at the body.

1.1-33



Figure 5.- Comparison of numerical solution with experiment for head-on
encounter, M = 3.1, ct = 0°, a = 9°, M. = 1.39, X = 0°.
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Figure 6.- Surface pressure distribution for head-on encounters;
' MV = 3.1, a = Q°, a = 9°, A = 0*. '
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Figure 7.- Variation of peak surface pressure with incident shock Mach
number for head-on encounters; M =3.1, <x=0°, o = 9°, X = 0°.
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Figure 8.- Density contours in all meridional computational planes for an
oblique encounter; My = 5.0, a = 0°, a = 11.2°, Mi = 1.23, X = 24°.

(d) X = 22d

(b) \ = 10°

(c) X = 19°.

(e) A = 32

(f) X = 40°.

Figure 9.- Pressure contours of windward and leeward computational planes
for oblique encounters; Mv = 5.0, a = 0°, a = 11.2°, M^ = 1.23.-
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Figure 10.- Surface pressure distribution in leeward (<f> = 0°) and
windward ($ = 180°) planes (Mach reflection); My = 5, a = 0°,
o = 11.2°, MI = 1.23056 (p.5/Pi = 1.6), t = 1.0.
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Figure 11.- Surface pressure distribution in leeward (<J> = 0°) and
windward (<|> = 180°) planes (Regular reflection); My = 5, o = 0°,
a = 11.2°, Mi = 1.23056 (Pj/Pj = 1-6), t = 1.0.
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(a) X -' 18°

(b) X = 220

(c) X = 31°.

Figure 13.- Shock structure in windward and leeward planes;
My = 5, a = 11.2°, a = -5°, Mj = 1.54.
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(a) Density contour.

(b) Pressure contour.
Figure 14.- Typical density and pressure contours of a meridional

computational plane; Mv = 5, a = -5°, a =11 .2° , M^ = 1.54,
X = 18°, <(. = 140°.
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COMPARISONS OF THEORETICAL AND EXPERIMENTAL

PRESSURE DISTRIBUTIONS ON AN ARROW-WING

CONFIGURATION AT TRANSONIC SPEEDS* .

By Marjorie E. Manro, Edward N. Tinoco,
Boeing Commercial Airplane Company

Percy J. Bobbitt,
NASA Langley Research Center

and John T. Rogers
Boeing Commercial Airplane Company

SUMMARY

A wind-tunnel test of an arrow-wing—body configuration employing both a twisted
and a flat wing, as well as a variety of leading- and trailing-edge flap deflections, has
been conducted to provide an experimental data base for comparison with theoretical
methods. The purpose .of these comparisons was to delineate conditions under which the
theoretical predictions are valid for aeroel' . c calculations and to explore the use of
empirical methods to correct the theoretical methods where theory is deficient. Test-
theory comparisons of detailed pressure distributions are made using current state-of-
the-art linear and separated flow computer programs. In addition, the results of attempt-
ing to make empirical corrections to the theoretical methods and of using two-dimensional
separation criteria to predict flow separation are shown.

INTRODUCTION

For the design of large flexible aircraft, accurate analytical techniques are required
for the prediction of aerodynamic load distributions including the effects of aeroelasticity.
The problem of accurate load prediction becomes particularly acute when critical design
conditions occur in the transonic speed regime. In this region, at typical design angles of
attack and control deflections, the predictions are clouded by mixed flow, embedded shocks,
separation, and vortex flow. The degree to which the intelligent application of the best
state-of-the-art theoretical techniques or a combination of theory and experiment can
account 'for these flow conditions is known in only a few circumstances. Clearly, if we

Work supported by NASA Langley Contract NAS 1-12875 and by the Independent
Research and Development Program of the Boeing Company.
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are to continue to improve the accuracy of our predictive techniques as well as quantify
their limitations, detailed comparisons of theoretical and experimental pressures on
"typical" configurations of interest must be made on a continuing basis.

In the design process, pressure data obtained from wind-tunnel tests of a rigid
model having a single wing shape (with twist and camber) are translated by means of an
aeroelastic solution to the load distributions for the elastically deformed airplane. In
this solution, equations that relate the changes in local pressure to changes in structural
deformation are used. For typical high aspect ratio configurations at subsonic speeds,
methods of incorporating experimental data in the elastic solution are well developed and
have been substantiated by flight tests. However, for typical low aspect ratio (supersonic)
configurations and/or transonic flight conditions where various nonlinear phenomena
become important, no satisfactory methods of correcting the aeroelastic solutions with
experimental data from rigid models have been developed. Until a validated analytical
or empirical approach has been developed, the need for expensive and time-consuming
wind-tunnel test programs simulating each flight design condition on the flexible air-
plane will remain.

The purpose of this paper is to report on the results of a comprehensive study car-
ried out to define the ability of current state-of-the-art linear and separated flow tech-
niques to predict detailed pressures over a highly swept arrow-wing configuration with
flat and twisted wings. Comparisons will be shown of theoretical and experimental pres-
sures for both the flat and twisted wings as well as for the incremental pressure changes
due to twist. The latter is of interest since this calculation is similar to that required to
correct basic rigid model wind-tunnel results for aeroelastic effects on the full-scale
airplane. Results will also be shown in which empirical corrections were made to the
elements of the'aerodynamic influence matrix in an attempt to improve correlation with
experimental data. Finally, results of attempts to determine if flow separation can be
predicted by applying two-dimensional separation criteria will be shown.

SYMBOLS

b wing span

c chord length - . .

c reference chord

CL lift coefficient

Cj^j pitching-moment coefficient
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normal-force coefficient

Cn section normal-force coefficient

pressure coefficient

net (lifting) pressure coefficient

9AC

M Ma.cn number

t thickness

x,y,z orthogonal coordinates

a angle of attack

6f flap deflection

THEORETICAL METHODS

The theoretical calculations performed for this study are based on inviscid theories
for both attached and detached flows. The arrow-wing—body model analyzed features a
highly swept thin wing and a body of high slenderness ratio (fig. 1). These characteristics
lend themselves to minimizing the formation of strong shock waves and subsequent shock-
induced separations. On the other hand, the highly swept thin wing also promotes early
flow separation and subsequent vortex buildup along the wing leading edge. This separated
flow rolls up and forms a spiral vortex which strongly influences the wing pressure distri-
bution at angles of attack greater than about 4°.

For the configuration used in this study the attached flow theories can be expected to
yield good, agreement with experiment only at low angles of attack. The dominance of the
leading-edge vortex flow suggests that detached flow theories may provide a more ade-
quate representation. Although these theories are not as well developed in terms of the
generalities of geometry they can handle, they will hopefully be able to more closely pre-
dict loading trends at the higher angles of attack. The effects of flap deflection on flow
separation will be discussed in a later section of this paper.
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Attached Flow Theories

Theoretical predictions of pressure distributions based on attached potential flow
will utilize primarily the unified subsonic/supersonic panel technique of FLEXSTAB, ;.
which was developed by Boeing under NASA Ames sponsorship.1 (See refs. 1 and 2.) The
FLEXSTAB system of digital computer programs uses linear theories to evaluate static.
and dynamic stability, inertial and aerodynamic loading, and elastic deformations of air-
craft configurations. The aerodynamic representation used in the FLEXSTAB system is
based on the constant pressure panel method developed by Woodward (refs. 3 and 4) to
solve the linearized potential flow equations for supersonic and subsonic speeds. The
results may be used at transonic speeds, recognizing that the nonlinear terms of the tran-
sonic flow equations are neglected. The usual small perturbation.assumptions are made.
The severity of the above limitations is a function of the configuration and the flight
conditions. .

In the FLEXSTAB system the flow about a configuration is simulated by a three-
dimensional array of singularities. Each singularity is a solution to the governing poten-
tial flow equation. The singularities are placed on a mean surface instead of the actual .
configuration surface. The boundary condition that the flow is tangent to the surf ace" is .
satisfied at a discrete set of points on the mean surface. This results in a linear set of
equations which may be solved to yield the singularity strengths necessary to satisfy the ;

specified boundary conditions. From knowledge of these singularity strengths, the veloc-
ities, pressures, and aerodynamic loads on the configuration may be calculated. , .

The distribution of singularities employed in the analysis of this configuration is
shown in figure 2. Line sources and 'doublets are distributed along the X-axis of the body
to simulate its thickness and lifting effects. Source panels are placed in the plane of the
wing to simulate its thickness. To account for the wing lifting effects and interference
effects between the wing and body, constant pressure vortex panels are placed in the plane
of the wing and on a shell around the body. This "interference" shell serves to cancel the
normal velocity components on the body induced by the wing.

At subsonic Mach numbers, 50 line singularities, 168 interference panels, and
160 wing panels are used to represent the .configuration. For the very low supersonic
Mach numbers, the number of interference panels had'to be greatly increased (to 330) in
order to overcome instabilities associated with the solution. At higher supersonic Mach <
numbers the subsonic arrangement could again be used. For the wing, panel edges were
chosen to coincide with flap hinge lines, and the flap midspan break. The resulting panel
arrangement has panels of nearly equal width and, in the chordwise direction, panel edges
are at constant percent chord with closer spacing at the leading edge and the, hinge lines.

The Ames program has been modified by Boeing to provide calculations of upper,
and lower surface pressures. This modification has not as yet been incorporated into the
NASA version.1 '
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The same wing paneling arrangement was used at all Mach numbers. Because of the
linearized boundary conditions employed by the method, flap deflections were treated as
boundary .condition changes and did not require any repaneling... ;r. . • --i.i_ -

The second approach^ to solve attached flow problems employs the general method
of Rubbert and Saaris (refs. 5, 6, and 7) for the numerical solution of nonplanar, three-
dimensional boundary-value problems. The method employs a panel solution to the exact
incompressible potential flow equation (Laplace's equation) satisfying boundary conditions
on the actual configuration surface. Compressibility effects are approximated by the
Gothert rule. The method is incorporated into Boeing computer program TEA-230. The
program is subject to the same limitations (inviscid, attached flow) as the linearized
FLEXSTAB solution and it is further limited to the subsonic Mach numbers. However,
it is not encumbered by the small perturbation approximation and is capable of treating
problems of far more detail and generality than the linearized theories.

The paneling scheme used for the TEA-230 representation of the arrow-wing—body
configuration without flap deflections is shown in figure 3. Eight hundred thirteen source
panels were placed on the configuration surface, arranged to provide good over-all aero-
dynamic properties. Omitted from the figure are the internal and trailing linearly varying
vortex panels, which were arranged in the manner discussed in reference 6. There was
assumed to be no aft body vortex shedding or separation, so the circulation about the wing
at the root carried through the fuselage with undiminished strength. A typical TEA-230
paneling scheme for the configuration with deflected flaps is shown in figure 4. The actual
deflected geometry was paneled, with additional singularities being placed near the flap
hinge line. Each flap deflection required different paneling. A total of 1106 singularities
were used to analyze the flaps up configuration and 1150 singularities were required with
the flaps deflected.

Detached Flow Theories

A promising new method still in the early stages of development was used to calcu-
late the effects of the leading-edge spiral vortex. This three-dimensional vortex method
of Weber, Brune, Johnson, Lu, and Rubbert (ref. 8) is capable of predicting forces,
moments, and detailed surface pressures on thin, sharp-edged wings of rather arbitrary
planform. The method can be applied to general three-dimensional (nonconical) wing
configurations. The wing geometry is arbitrary in the sense that leading and trailing
edges may be curved or. kinked. The method employs an inviscid flow model in which the
wing, the rolled-up vortex sheets, and the wake are represented by piecewise quadratic
doublet distributions. The Kutta condition is imposed and satisfied along all .wing edges.

^This work done by R. M. Thomas under sponsorship of the Independent Research
and Development Program of the Boeing Commercial Airplane Company.
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Strength of the singularity distribution as well as shape and position of the vortex spirals
are computed in iterative fashion starting with an assumed initial sheet geometry.

The developmental computer program used for these calculations is still rather
restricted in its capabilities. Some planform restrictions still exist and the wing thick-
ness, camber, and twist effects cannot be analyzed yet. The simplified paneling scheme
shown in figure 5 was the best available representation of this configuration. Thirty pan-
els were used to describe the wing, 54 panels to describe the rolled-up vortex, and 14 pan-
els to describe the wake.

The leading-edge suction analogy developed by E. C. Polhamus of NASA Langley
Research Center (refs. 9 and 10) is an alternate way to obtain the vortex lift. This method
is illustrated in figure 6. Lifting-surf ace theory treats the flow as remaining attached
when passing around the leading edge. This results in a force at the leading edge acting
in the plane of the wing (the leading-edge suction). In practice, as previously mentioned,
the flow separates from the leading edge, vortices form above the wing, and reattachment
occurs inboard of the leading edge. The Polhamus leading-edge suction analogy assumes -
that the force on the wing required to make the flow over the primary vortex attach to the
upper surface of the wing is essentially the same as the leading-edge suction force
required to maintain attached flow around; the leading edge as predicted by potential flow
theory. This force is the vortex lift produced on the wing. The total lift is calculated as
the sum of potential lift plus the vortex lift. The actual calculation prpcedure consists of
three parts: . . ,

Calculate the potential lift distribution by assuming attached flow and using lifting
surface theory (FLEXSTAB in this case)

Calculate the leading-edge suction force from the potential flow lifting pressure
distribution

Add the vortex lift obtained by rotating the leading-edge suction force normal to the
plane of the wing

Since the solution is based on lifting surface theory, trailing edge and Mach number
effects are automatically included.. Comparisons made in references 9, 10, 11, 12, and 13
verify that this approach is able to predict lift and drag of wings with sharp leading edges
at both supersonic and subsonic speeds. However, these results have not previously been
verified for wing-body configurations nor does the method give any information regarding
spanwise lift distribution.

Computing Resources

A summary of the computing statistics for the computer programs just described is
given in table 1. The statistics are for analysis on the Boeing Computer Services
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CDC 6600's operating under the KRONOS 2.0 system. The programs use an overlay
structure to reduce the central memory size requirements and require several million
words of peripheral disk storage. The central processor unit (CPU) times given are for
the analysis of one geometry-flight condition. Both TEA-230 and FLEXSTAB have an
analysis recycling capability which increases their efficiency in analyzing multiple con-
ditions at a given Mach number. The 3-D Vortex Program is in an early developmental
stage. No attempt has yet been made to optimize its algorithms to improve its computive
efficiency. The leading-edge suction analogy calculations were made using small com-
puter programs (requiring less than 10 CPU seconds) which used as input the results of
the potential flow solution from the FLEXSTAB analysis.

MODEL DESCRIPTION AND EXPERIMENTAL RESULTS

The configuration selected to obtain experimental pressure data is a highly swept,
thin wing on a slender body. The planform and basic geometry of the model are shown
in figure 7. Two complete wings were constructed, one with no camber or twist, and one
with no camber but a spanwise twist variation. (See fig. 8.) Both wings were designed
with a full-span, 25 percent chord, trailing-edge flap with brackets to allow streamwise
deflections of ±4.1°, ±8.3°, ±17.7°, and ±30.2°, as well as 0°. The flat wing was provided
with a removable leading-edge segment (15 percent of streamwise chord). This leading
edge was used in the undeflected position and also drooped 5.1° and 12.8°. An additional
leading-edge segment for the flat wing was constructed with a sharp leading edge to exam-
ine the effects of leading-edge shape. Figure 9 shows the basic round leading edge and
the sharp leading edge superimposed.

The 217 pressure orifices on the wing were equally divided into seven streamwise
sections on the left wing. (See fig. 10.) The chordwise distribution is also shown. The
body orifices were arranged in five streamwise rows of fifteen orifices each. An addi-
tional eight orifices in the area of the wing-body junction made a total of 83 orifices on
the left side of the body. See figure 10 for orifice location.

The model was constructed of steel to minimize aeroelastic deflections. To ensure
close control of the model contours, the GCS (geometry control system) computerized
lofting program was used to provide data for machining the model components using
numerically controlled operations.

This sting mounted model was tested in the Boeing Transonic Wind Tunnel in June
1974. This is a continuous flow, closed circuit, atmospheric facility with a 12.5-percent
porosity test section measuring 8 by 12 by 14.5 feet. A photograph of the model installed
in the test section is shown in figure 1. Seven Mach numbers were tested from 0.40 to
1.11, with angle of attack varying from -8° to +16°. The major configurations tested are
shown in table 2. The leading and trailing edges were split at 0.57 wing semispan and
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some combinations of inboard or outboard leading-edge deflections with inboard or out-
board trailing-edge deflections were also tested.

A comprehensive report of the experimental data will be reported as part of NASA
contract NAS 1-12875. A sample of the experimental data characterizing the type of flow
experienced on the model is shown in figures 11 to 14. A series of isobar plots for three
angles of attack at Mach 0.40 are shown in each figure. This configuration develops a
spiral vortex off the leading edge at relatively low angles of attack. Figure 11 shows
upper surface isobars for the round leading-edge flat wing. Evidence of the vortex for-
mation is first seen at an angle of attack of 4° and is clearly evident at 8°. The progres-
sion of this vortex with angle of attack is influenced by both leading-edge geometry and
wing twist.

In figure 12, isobars are shown for the sharp leading-edge flat wing. The formation
of the vortex is more evident at both 4° and 8° than was seen for the round leading edge.
This phenomenon is less evident at the higher Mach numbers. Figure 13 illustrates the
effects of twist on this wing. The formation of the vortex is delayed to an angle of attack
of nearly 8°. Since the local angles of attack for the twisted wing are less than that of the
flat wing, this behavior is expected. Figure 14 shows the lower surface isobar patterns
which are typical of all three configurations at positive angles of attack.

TEST-THEORY COMPARISONS '

The success of any theory must ultimately be measured by its ability to accurately
predict experimental results. With this idea in mind, a series of comparisons of theo-
retical and experimental data has been made for the arrow-wing—body configuration just
described. The theoretical results were derived from the analytical techniques previously
discussed. Results of these comparisons will be presented first for the attached flow
theories.

The configuration was analyzed over a Mach number range from 0.40 to l.il using
the FLEXSTAB system and at Mach numbers of 0.40 and 0.85 with the TEA-230 program.
Both the flat and twisted wing configurations were analyzed, including the effect of deflect-
ing flaps. .In order to get an idea of the gross aerodynamic properties, a comparison of
experimental and theoretical normal-force slope and aerodynamic center over a range of
Mach numbers is shown in figure 15. The results of the calculations show generally good
agreement with experiment throughout the Mach number range. However, some discrep-
ancies are apparent. More detailed comparisons of surface pressures on the wing and
body are required to further evaluate the adequacy of these theoretical solutions.

A comparison of experimental and theoretical surface pressures on the flat-wing
configuration is shown in figures 16, 17, and 18 for a series of Mach numbers. Data are
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presented at a low angle of attack where the leading-edge vortex effects are minimal.
Wing surface pressures at three wing stations for a Mach number of 0.40 are shown in
figure 16. Generally good-agreement with experimental results was obtained by the use-
of either theory.

The TEA-230 results show better agreement with the experimental data near the
leading edge than the FLEXSTAB results which exhibit the typical linear theory leading^
edge singularity. Figure 17 shows very similar comparisons for a Mach number of 0.85.
The comparison of surface pressures at Mach 1.05 (fig. 18) between FLEXSTAB and
experiment is not as good as at the subsonic Mach numbers. There is a definite shift of
the surface pressure level between the theoretical and experimental distributions. How-
ever, the theoretical lifting (net) pressure distribution agrees well with the experimental
distribution except at the leading edge. The discrepancy in the levels of the surface pres-
sure distributions could be"due to the inability of the linear theory to properly predict the
symmetric or thickness part of the surface pressures at this transonic'Mach number. It
is this component of the theoretical solution which establishes the level of the surface
pressures. It is also conceivable that this discrepancy could be due to wind-tunnel inter-
ference at this Mach number.

Comparisons at a higher angle of attack are shown in figures 19 and 20. Only the
comparisons at Mach 0.85 and Mach 1.05 are shown since the Mach 0.40 results are
essentially identical to those at Mach 0.85. The theoretical pressure distribution com-
pares very well with the experimental data at the most inboard wing section (2y/b = 0.09).
Proceeding outboard, the formation of the leading-edge vortex becomes quite evident.
Neither the FLEXSTAB nor the TEA-230 results compare well with the experimental data
at the midspan (2y/b = 0.50) and the outboard (2y/b = 0.93) stations. The presence of the
leading-edge vortex has completely changed the nature of the flow over most of the wing.
Neither attached potential flow theoretical method can predict the experimental results.

Spanwise load distribution comparisons are shown in figure 21. The theoretical
methods tend to agree with the experimental results on the inboard 40 percent of the wing.
Outboard of this section, the presence of the leading-edge vortex is quite evident with the
peak in the loading occurring at 65 percent semispan. As the chordwise pressure distri-
butions indicated, there is poor agreement between theoretical and experimental span
loads in this region.

The effects of wing twist are shown in figure 22. The results shown are for Mach
0.85, other Mach numbers being similar. Surface pressures are compared at a moderate
angle of attack. Both theories compare well with the experimental data, with differences
between the two theories and experiment mainly limited to the wing leading edge. The
wing twist suppresses the formation of the leading-edge vortex at this angle of attack
allowing potential flow to exist over the wing. At higher angles of attack the vortex again
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forms, resulting in test-theory comparisons similar to those on the flat wing shown in
figures 19 and 20.

The effects of trailing-edge flap deflection are shown in figures 23 and 24. Surface
pressure comparisons for the flat-wing configuration with a flap deflection of 8.3° are
presented. Results are for zero angle of attack and Mach numbers of 0.40 and 1.05, Mach
0.85 being very similar to the 0.40 results. In figure 23, for Mach 0.40, the TEA-230
results agree well with the experimental data except on the flap at the inboard station
(2y/b = 0.09). The FLEXSTAB results agree well ahead of the flap hinge line, but as is
typical of linear theory ' erpredict the pressures on the flap. The experimental surface
pressures indicate flow separation on the most inboard section of the flap. The TEA-230
results show a loss of lift in this section. Both phenomena appear to be due to the unport-
ing (exposing to the free stream) of the inboard edge of the flap when the flaps are
deflected down. This induces flow separation in the real flow and leads to a loss in lift
in the TEA-230 potential flow solution. No such.loss occurs in the FLEXSTAB solution
since as the geometry is linearized there is no unporting of the flap inside edge.

Evident in the experimental data in figure 23 is the formation of a leading-edge
vortex near the outboard wing station (2y/b = 0.93). Although the wing is at zero angle of
attack, the circulation induced by the flap deflection is sufficient to cause separation on
the outboard leading edge. Evidence of the vortex is also seen in figure 24 in the Mach
1.05 results, where the correlation is even worse than at the lower Mach numbers. Wing
span loading is compared in figure 25. The TEA-230 results agree well with experiment
at Mach 0.40, although the loss of lift in the TEA-230 solution on the inboard flap edge is
evident. The FLEXSTAB results grossly overpredict the flap effectiveness.

Results for a greater flap deflection (17.7°) are shown in figures 26 and 27 fr Mach
numbers 0.85 and 1.05. The correlation of theory with experiment is poor. The)
flow separation along the entire flap and the strength and extent of the leading-* jrtex
are greater.

The effects of leading-edge shape are shown in figure 28. Comparisons are shown
between TEA-230 results and experimental data for both the sharp and round leading
edges. FLEXSTAB results were not available for this comparison. At the low angle of
attack shown (a = 2.1°), the theoretical results compare well with experiment in predict-
ing the surface pressure distribution measured on the two leading edges. At the higher
angle of attack (a = 7.9°), some vortex flow is starting to form at the wing station shown.
It is evident at this station that the vortex is more pronounced for the sharp leading edge
than the round. The effects of the leading-edge shape on the experimental pressures can
be seen better in the isobar plots previously shown in figures 11 and 12.

The preceding comparisons have shown that the attached potential flow theories are
only able to predict experimental pressures well for this configuration over a limited
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range of angle of attack and flap-deflection conditions. The effects of Mach number do
not appear to significantly alter the results on this configuration. The test-theory com-
parisons at Mach 1.05 were generally as good as those at the subsonic Mach numbers.
There were no large differences between the TEA-230 and the FLEXSTAB results ih-cbm-
parison with experiment. TEA-230 with its on-the-surf ace paneling and boundary condi-
tions .did predict more closely the correct pressures near the wing leading edge and on
the deflected flaps than did the linearized FLEXSTAB. For configuration development at
subsonic speeds the TEA-230 method is.preferred over the FLEXSTAB method because
of its ability to better predict detailed surface pressures. At subcritical speeds on a
configuration with a thicker wing or a wing in the presence of interference from under-
wing stores or nacelles, the TEA-230 surface pressure results would be significantly
better than those of a linearized method.

For calculating load distributions, the FLEXSTAB method is generally as adequate
as the TEA-230 method and is easier to implement. It is also applicable at supersonic
speeds and includes the required aeroelastic solution.

Since it is evident that the flow on the model is dominated by a separated leading-
edge vortex at all but a limited range of angles of attack and that the attached potential
flow theories can not adequately predict the effects of the vortex, comparisons were made
with two separated flow theories. Results of the 3-D vortex program of Weber, et-al.,
are compared with experimental data in figures 29, 30, and 31 for nominal angles of attack
of 8°, 12°, and 16°. Also shown in these figures are results from the attached flow
FLEXSTAB program. Because of the sparsity of wing panels in the theoretical 3-D vor-
tex solution compared to the number of pressure taps for the wind-tunnel model, the 3-D
vortex results are indicated by symbols while the experimental data (which was interpo-
lated to the same stations as the theoretical results) is designated by a solid line. The
FLEXSTAB results are indicated by a dashed line.

The comparison between the experimental and the 3-D vortex results is surprisingly
good for those stations ahead of the apex of the wing trailing edge, particularly consider-
ing the absence of the body in the theoretical model and the sparsity of the paneling defi-
nition. The attached flow results from the FLEXSTAB program, show little resemblance
to either the 3-D vortex program results or the experimental data. The 3-D vortex
method predicts the approximate location and magnitude in the peak of the lifting pressure
distribution, except at the two stations behind the trailing-edge apex. The cause of the
discrepancies is unknown but could be caused in part by the crude geometric representa-
tion which neglects both the body and the streamwise wing tip. Also, compressibility is
not accounted for in the present 3-D vortex computer program, while the experimental
data are for Mach number 0.40. Nevertheless, the results are encouraging and correla-
tion should improve as the method is further developed.

1151



The leading-edge suction analogy of Polhamus *."?„" adapted for use with the
FLEXSTAB program for calculation of lift, pitching moment, and longitudinal load distri-
bution. The arrow-wing—body model was analyzed for four wing configurations; the flat
wing, the twisted wing, and the flat wing with 5.1° and 12.8° leading-edge flap deflection.
Results were available for this paper only for Mach 0.85. Detailed results of the com-
plete study being done by R. M. Kulfan, Boeing Commercial Airplane Company, under
contract NAS 1-12875 are unpublished at this time.

Comparisons of the predicted lift and pitching moment with experimental data are
shown in figures 32 to 35 for the four wing configurations analyzed. Adding the vortex
lift to the potential solution has the effect of overpredicting the experimental results.
This could be due to the fact that the theory has been developed for sharp, flat wings while
the experimental data are from a wing-body model whose wing has a finite leading-edge
radius. The correlation with pitching moments could be improved by adding the viscous
cross-flow forces on the forebody of the model which will make the pitching moment more
positive without significantly affecting the lift.

Longitudinal load distributions for test and theory are compared in figures 36 to 39
for nominal angles of attack of 4° and 12°. Load distributions shown are for the wing
only; the load distribution over the body is not included. At the low angles of attack, the
contribution of the leading-edge suction to lift is negligible. At the higher angle of attack
the addition of the vortex lift to the attached potential flow calculations improves the cor-
relation between the predicted and measured results. Some major discrepancies still "
exist. The reasons for these are presently unknown.

While this method can be quite useful in calculating general aerodynamic stability
characteristics, it lacks the capability to provide the detailed chordwise section loading .
required for design. The 3-D vortex method is capable of providing such pressure dis-_
tributions but still needs much development. .

EMPIRICAL CORRECTIONS

The comparisons of the preceding section shpw that there are many conditions where
the available theories do not give adequate results for detail configuration design. In
practice, theory is used mainly to increment wind-tunnel data from a rigid model to
account for the elastic effects of the actual configuration airframe. The aeroelastic solu-
tion provides the means for translating the aerodynamic load distributions obtained from
wind-tunnel tests on a single shape to that on the elastically deformed airplane. Equa-
tions that relate the changes in local aerodynamic pressure to changes in structural
deformations are used. It is desirable to introduce aerodynamic corrections based on
experimental data which would improve the accuracy of the theoretical, estimate of elastic
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increments. The range and scope of these corrections vary greatly in complexity and for
low aspect ratio configurations are not well understood.

The simplest type of elastic correction is to scale experimental aerodynamic
parameters by the ratio of theoretically calculated elastic to rigid values of the param-
eter in question. This scheme has limited value for structural design because it does not
provide adequate load distribution detail. A very successful method which has been well
developed for high aspect ratio surfaces at subsonic speeds has been to scale wing section
characteristics along the span of the wing. Ideally, a method to correct low aspect ratio
aerodynamics should influence both chordwise and spanwise loading.

. .Since low aspect ratio aerodynamic methods used for elastic predictions are based
on some sort of aerodynamic influence coefficient (AIC) matrix, a method which modifies
elements of the AIC matrix should prove useful. However, in such a matrix correction
scheme there are always more unknown correction factors than equations available,
requiring a number of assumptions to obtain a solution. Several schemes which have
been used for matrix corrections are summarized in table 3.

The three schemes shown in table 3 which require knowledge of the variation of
experimental lifting pressure with angle of attack have been attempted for this configura-
tion. Figure 40 illustrates the typical variation of lifting pressure (lower surface pres-
sure minus upper surface pressure) with angle of attack at two locations on the wing.
Note, that at the inboard location the lifting pressure ACp varies quite linearly with
angle of attack a. At the outboard location, the variation of ACp with a is extremely
nonlinear because of the inward movement of the core of the leading-edge vortex as angle
of attack is increased. This nonlinearity makes correcting the matrix a very difficult
task since the nature of an AIC matrix is to predict a linear variation of lifting pressure
with incidence. The correction schemes considered only correct the slope of the
ACp - a curve and the manner in which different elements of the matrix influence each
other.

The experimental data were linearized around zero angle of attack. This procedure
becomes somewhat arbitrary at the outboard sections because of the nonlinearity of the
data. Data from the flat-wing configuration, without flap deflection, were used. Figure 41
illustrates the variation of the ratio of experimental to theoretical ACpa slopes on the
flat-wing configuration. These ratios are shown as contours. Note that the experimental
slopes are higher than the theoretical slopes near the leading edge (except for the first
2 percent chord) and much lower than the theoretical slopes near the trailing edge. Cor-
rection factors based on the row, column, and product correction schemes (see table 3)
were calculated from these data. AIC matrices modified by these factors were used in
the FLEXSTAB system in an attempt to improve the prediction of the effects of twist and
flap deflection. One could consider these shapes as having been due to elastic changes.
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A comparison of experimental data, theoretical results, and corrected theoretical
results is shown in figure 42. Lifting pressure distribution on the flat-wing configura-
tion at a small angle of attack is shown. On a rigid wing without camber, twist, or nap
deflection, all three corrector schemes yield identical results. The uncorrected theory
compares well with the experimental data except at the leading edge. The effect of
empirical corrections applied to the AIC matrix has been to improve the theoretical cor-
relation at the leading and trailing edges of the wing at this very small angle of attack. A
similar comparison is shown for the twisted-wing configuration in figure 43. Here the
corrector schemes do yield different, though similar, results. The differences between
the corrector schemes are most evident at the wing leading edge, there is little differ-
ence between the row and product corrector schemes but the column corrector scheme
tends to show some overshoot at the leading edge. This tendency would be aggravated on
an elastic wing because of the resulting elastic deflections.

In the two preceding examples the basic theory was in good agreement with the
experimental data. The application of either the row or product corrector scheme fur-
ther improved the correlation with the experimental data. The next example (fig. 44)
shows a comparison of lifting pressure distribution on the flat-wing configuration at an
angle of attack of 8°. Unlike the favorable comparison shown in figure 42 for the same
configuration at an angle of attack of 2°, very poor agreement between the theory and the
experimental data is now seen. The corrector schemes offer no improvement since they
are only capable of making linear corrections. The flow at this angle of attack is domi-
nated by a detached leading-edge vortex which results in a very nonlinear variation of
ACp with a. The appropriate flow phenomena must be correctly modeled in the theoret-
ical solution before empirical corrections can yield significant improvements.

Comparisons are shown for the flat wing with the trailing-edge deflected in figure 45
and the flat wing with leading-edge deflected in figure 46. The corrected matrix results
improve upon the uncorrected theory but still leave some discrepancy. The area of
greatest error in the theoretical results is at the flap hinge line. The logarithmic singu-
larity which occurs in the theoretical solution is not a characteristic of the real flow solu-
tion. The present corrector methods do nothing to eliminate this singularity. For this
configuration the corrector schemes appear to improve the prediction of flap loads'and
hinge moments.

From these results it is difficult to determine whether one method is superior to
the others. It may in fact be impossible to choose between these or similar AIC correc-
tion schemes with rigid comparisons. All the methods correct the AIC matrix to give a
required ACp slope which may match experimental results only over a limited range.
The methods differ mainly on how the corrections are distributed within the aerodynamic
matrix. A flexible solution in which there is coupling between the loads and the resultant
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elastic rotations would reveal greater differences-between the methods but little experi-
mental data exist for this type of comparison.

As previously stated, in practice theoretical results are used mainly to correct
experimental data from a rigid wind-tunnel model for the effects of the elastic deforma-
tion of the flight airframe. Empirical corrections are introduced to improve the accuracy
of these theoretical increments. An example of'this procedure is shown in figure 47 for
Mach 0.85 and an angle of attack of 8°. Here we have taken experimental data for the flat
wing (rigid model) and have added to them a theoretically calculated increment due to the
known twist of the model (supposed elastic deformation). The result is compared to the
twisted-wing data at the same angle of attack (deformed airframe). As shown in figure 47
there are significant differences between the flat-wing data theoretically corrected for
twist, and the twisted-wing results at the outboard stations. This is because the twist
has changed the location and strength of the leading-edge vortex. The theoretical correc-
tions are linear and work only on those cases where the actual flow changes are also
linear. This example is indicative of the type of problems which must be overcome
before a reliable prediction scheme for aerodynamic increments due to elasticity is
available. Improper accounting for aeroelastic effects because of uncertainties in the
•theoretical methods may result in understrength or overweight designs. In addition,.the
correct prediction of loads and the resultant structural deformation are essential to the
determination of aircraft stability and control characteristics. These results indicate
that the use of empirical corrections in the aeroelastic solution to calculate flexible air-
plane loads is extremely risky, and much research is necessary to develop a practical
method of using such corrections.

FLOW SEPARATION DUE TO CONTROL DEFLECTION

Another type of flow separation phenomenon in addition to the separated leading-
edge vortex is that due to control surface deflection. The ability to be able to predict the
onset of flow separation and hopefully the resultant pressure distribution is very impor-
tant in estimation of control effectiveness and hinge moments. An attempt was made to
determine if flow separation due to trailing-edge control deflection could be predicted by
applying two-dimensional separation criteria to theoretical pressure distributions
obtained from FLEXSTAB. .

A computer program developed by Boeing (TEA-200) was used to predict separation.
This program calculates boundary-layer growth by solving the boundary-layer equations
using the Nash-Hicks momentum integral (ref. 14). Separation occurs at the point where
the local skin friction becomes zero. This method is applicable to subsonic compressible
flow without shock waves. For the Mach numbers covered by this test (M less than 1.15),
the hinge line and trailing edge are always subsonic.
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Several difficulties arise when one attempts to use surface pressures from
FLEXSTAB in boundary-layer calculations. Pressure gradients are poorly defined by
the limited number of points available, particularly near the hinge line. A closed form
solution would have a singularity at the hinge line because of the discontinuity in camber-
line slope which occurs at this point. In addition, the FLEXSTAB data exhibit small
oscillations which appear to be inherent in the solution.

To avoid these problems, a curve was fitted to the points using a least squares
technique. The singularity at the hinge line was smoothed out over a distance of 1 per-
cent chord. This approximates the effect of a more realistic representation of the mean
line which would be curved over a distance roughly equal to the local thickness ("0.9 per-
cent), rather than being discontinuous at the hinge line.

Figures 48 to 50 show comparisons of theoretical.and measured surface pressure
distributions at Mach 0.85 for three spanwise stations. Predicted separation points are .,
also given. The pressure distributions vary little with Mach number, so that .conclusions
based on Mach 0.85 data should be valid throughout the range of Mach numbers tested.
The investigation was carried out at zero incidence to minimize the effects of the vortex
flow from the leading edge". As previously shown in figures 16 to 18, and again seen in
these figures, good agreement between measured and predicted surface pressures occurs
for the flat wing, 6F = 0°.

Consider first the lower (compression) surface. Near the side of the body (fig. 48),
separation is first predicted just ahead of the hinge line at 6'j. = 17.7°. However, aft of
the hinge line, significant differences between measured and predicted pressures occur
even at 6p = 4.1°. Surface pressure increases with-control deflection, but at a rate
much lower than predicted. The discrepancy between theory and experiment becomes -
greater at the outboard stations. Near the wing tip (fig. 50), experimental lower surface
pressure is almost constant and independent of control deflection for deflection greater

, than 6p- = 4.1°. It is probable that the flow near the wing tip is dominated by a thick
boundary layer, flowing spanwise from the wing root. Two-dimensional separation crir ;
teria therefore cannot be expected to provide any useful information. '

Oh the upper surface, agreement is quite good for control deflections which do not
produce regions of local supersonic flow (Cp < -0.3]. At larger control deflections, the

flow becomes locally supersonic and the high negative pressures predicted at the hinge
line and wing leading edge do not occur. There is evidence of shock waves behind the
hinge line. (See fig. 49, 6p = 17.7° and 30.2°, for example.) Two-dimensional criteria
predict separation close to the trailing edge and only at the largest control deflection,
when the theoretical predictions are already invalid because the local flow has become
supersonic. No attempt was made to predict leading-edge separation because the linear-
ized aerodynamic representation of FLEXSTAB is poor at the leading edge. However, the
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experimental data (for example, fig. 50, 6p = 17.7° and 30.2°) suggest that at large flap
deflections, the circulation induced by the flaps causes a vortex to form at the leading

- .. •* . . . - . - . / • • •, *<* • , - ' " * ' - • ->- -' --i'-v .in*'
edge, even when the wing angle of attack is zero. •

. ' • • ; " _ I " - •

It is concluded that two-dimensional criteria are of no value when applied to highly
swept wings such as the present model. This is true even at the wing root, where the
flow is most nearly two-dimensional. Using the TEA-230 surface pressures for the
boundary-layer analysis could have improved separation predictions somewhat, particu-
larly on the lower surface. But without an adequate three-dimensional boundary-layer
method available, it is doubtful that useful results could be achieved:

CONCLUDING REMARKS

It has been shown that the attached potential'flow methods can yield good.agreement
with experimental data for this type of configuration only over a limited range of conditions
at low angles of attack. These analyses are generally adequate for the evaluation of a .
configuration at Ig (load factor one) conditions. At critical structural and control design
conditions whiclvusually involve large angles of attack and/or large control surface.,
deflections, the attached flow theories are completely inadequate.. Attempts to introduce,
empirical corrections to improve this situation have been unsatisfactory. .Comparisons ;;
with detached flow theories have shown that these methods predict the general aerody-
namic loading trends with angle of attack on this configuration, but are not capable of
predicting the detailed pressure, distributions required for general wing-body
configurations. .,. -

Two-dimensional separation criteria have been shown to be of no value in predicting
the onset of flow separation on highly swept, wings-, such as the present arrow-wing—body
model. The development and implementation;of a general three-dimensional boundary-
layer method is'needed. 'It is evident that the theoretical tools necessary to predict crit-
ical design conditions on low aspect ratio configurations which are dominated by nonlinear
flow phenomena are lacking. Empirical methods to improve this capability are also lack-
ing. Much research in developing the theoretical and empirical techniques is still neces-
sary before confidence can be acquired in the prediction of aerodynamic loads on highly
swept, low aspect ratio, flexible airplanes.
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TABLE 1.- COMPUTER RESOURCES REQUIRED FOR THEORETICAL ANALYSIS11

PROGRAM

TEA-230

FLEXSTAB

3-D VORTEX

LEADING-
EDGE
SUCTION
ANALOGY

NO. OF
SINGULAR-
ITIES

1150

378
540

• 98
98

CPU"
TIME
(SEC)

3700

2900
4700

850
1300

CENTRAL
MEMORY
(WORDS)

140K8

160K,
i60K8

120K8
120K8

REMARKS

SUBSONIC CASE
LOW SUPERSONIC
PANELING

11 ITERATIONS
21 ITERATIONS

COST DEPENDENT ON SOURCE OF POTENTIAL FLOW SOLUTION

RESOURCES FOR BOEING COMPUTER SERVICES
CDC 6600 OPERATING ON KRONOS 2.0.
TIMES BASED ON SOLUTION FOR ONE CONDITION, TEA-230 AND FLEXSTAB HAVE
A RECYCLING CAPABILITY WHICH CAN GREATLY REDUCE THE COST OF ADDITIONAL
CONDITIONS.

TABLE 2.- TEST CONFIGURATIONS

WING

ROUND LEADING-EDGE
FLAT WING

SHARP LEADING-EDGE
FLAT WING

ROUND LEADING-EDGE
TWISTED WING

TRAILING
EDGE

FLAT

TWISTED

FLAT

TWISTED

LEADING EDGE
DEFLECTION
(DEGREES)

0

5.1, 12.8

0

0

0

TRAILING EDGE
DEFLECTION

(DEGREES)

0; + 4.1, + 8.3, + 17.7,
± 30.2

0, + 4.1, ± 8.3, + 17.7

0, + 4.1, ± 8.3, ± 17.7

0

0, + 4.1, + 8.3, + 17.7,
+30.2
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TABLE 3.- EXPERIMENTAL CORRECTIONS TO AERODYNAMIC

INFLUENCE COEFFICIENT (AIC) MATRIX

Genera) problem

Types of simplified
method!

ScaTIng

Row correction

Column correction

Product correction .

dP1
~to • CnAn + C^j + .... + C,NA1N

dP2

Ifa- = C21A21 + C21A22 + • • • • + C2NA2N

dPN

-£T = CN1AN1 + CN2AN2 + • • ; • + CNNANN

Equations

-^ - CA 1 1+CA, 2 + .... + CA1N

dP2
-gjf = CA21+CA22 + .... + CA2N

-g£ = CAN, + CAN 2+.. . . + CANN

•5? =C1A11+C1A12+--" + C1A1N

^ = CjA21 + C2A22 + .... + C2A2N

dJT • CNAN1+CNAN2 + - - - - + CNANN

"ST .- C,A1,+C2A12-l-.... + CNA1N

-£ = C, A21 + C2A22 +.... + CNA2N

dPN
-jf • C,AN1+C2AN2 + .... + CNANN -

^- -'c,2A11+C1C2A12 + -"- + C1CNA1N !

dP2 -
-£T °C2C1A21+C2 A22 + -" +C2CNA2N i

«

oPN 2

da = CNC1AN1 * CNC2AN2 * * CN ANN!

• N equations available
n

• N* unknowns

4 Assumptions are necessary to solve

Assumptions

Distribution is correct,
magnitude may be in error;
equal correction at all
panels

Equal corrections apply
to loads induced on
panel j by both local
and remote points

Equal corrections apply
to loads induced by
panel j on both local
and remote points

Correction applied to
both local and remote
points proportional to
product of local factors

Type of solution

C| (experimental)
r : ^*

Ci (analytical)

Separate linear equations

m-@H
v(sy|A

Simultaneous linear equations

m-Hfl
H-H"£]

Simultaneous nonlinear equations

Iterative solution

anahrtically derived coefficients of the AIC matrix,
effect of panel k on panel j. L/q per radian

-JL. experimental panel load coefficient, area

a

C

• panel angle qf attack, radians

• correction factors

1161



Figure 1.- Wind-tunnel pressure model for theory validation.
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Figure 2.- FLEX.ST&K paneling scheme.

Figure 3.- TEA-230 paneling scheme. Flat wing.
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Figure 4.- TEA-230 paneling scheme. Trailing-edge flaps deflected.

VORTEX PANELING

ACTUAL TIP

Figure 5.- 3-D vortex program paneling scheme.

LEADING*DGE SUCTION

ATTACHED FLOW

VORTEX LIFT

VORTEX FLOW

Figure 6.- Leading-edge suction analogy.
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Figure 7.- Arrow-wing'—body planform and basic geometry.
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Figure 8.- Wing twist distribution. (Positive twist is leading edge up.)

0.15c

Figure 9.- Round and sharp leading edges.
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Typical Wing Section

(Max |= 3.3%)

Typical Body Stations

Figure 10.- Pressure orifice locations.

a=4°

1166

Figure 11.- Upper surface isobars. Flat wing;
round leading edge; M = 0.40.



0=2° a =8°

Figure 12.- Upper surface isobars. Flat wing;
sharp leading edge; M = 0.40.

<»=2' a =4

Figure 13.- Upper surface isobars. Twisted wing;
round leading edge; M = 0.40.
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a = 2° 0=40 a = 8°

Figure 14.- Lower surface isobars. Typical; M = 0.40.
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Figure 15.- Normal-force slope and aerodynamic center.
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Figure 16.- Surface pressure distributions. Flat wing; a = 2°; M = 0.40.
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Figure 17.- Surface pressure distributions. Flat wing; a = 2°; M = 0.85.

1169



FLEXSTAB

1.00

Figure 18.- Surface pressure distributions. Flat wing; a = 2°; M = 1.05.

FLEXSTAB
TEA230

.40 1.00

Figure 19.- Surface pressure distributions. Flat wing; a =8°; M - 0.85,
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Figure 20.- Surface pressure distributions. Flat wing; ot «» 8°; ' M = 1.05,
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Figure 21.- ̂ pan load distributions. Flat wing; M - 0.40, 0.85, and 1.05.

1171



.40

FLEXSTAB
TEA-230
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Figure 22.- Surface pressure distributions, .Twisted wing; a = 4°; M » 0.85.
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Figure 23.- Surface pressure distributions. Flat wing;

trailing-edge 6_ = 8.3°; a = 0°; M = 0.40.
r

1172



FLEXSTAB

1.00

Figure 24.- Surface pressure distributions. Flat wing;

SF
trailing-edge 6 = 8.3°; a - 0°; M = 1.05.
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Figure 25.- Span load distributions. Flat wing; trailing-edge 6

a = 0°; M = 0.40, 0.85, and 1.05.
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Figure 26.- Surface pressure distributions. Flat wing;

trailing-edge 6 = 17.7°; a = 0°; M = 0.85.
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Figure 27.- Surface pressure distributions. Flat wing;

trailing-edge 6 =17.7°; a = 0°; M = 1.05.
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Figure 28.- Surface pressure distributions. Flat wing; sharp and round
leading edges; M = 0.85; 2y/b = 0.35.
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Figure 29.- Net pressure distributions. 3-D vortex
program; a = 8.0°; M = 0.40.
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Figure 30.- Net pressure distributions. 3-D vortex

program; a = 11.9°; M = 0.40.
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.Figure 31.- Net pressure distributions. 3~D vortex

program; a = 15'. 8°; M = 0.40,
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Figure 32.- Lift and pitching-moment coefficients. Leading-edge
suction analogy; flat wing; M » 0.85.
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Figure 33.- Lift and pitching-moment coefficients. Leading-edge
suction analogy; twisted wing; M - 0.85.
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Figure 36.- Longitudinal load distribution. Leading-edge suction analogy;
flat wing; M = 0.85.

TOTAL LIFT

-VORTEX LIFT ,,

20 40 60 80 100 120 140 160 '180 200

MODEL STATION - CM

'"•"'• '''''•' '" ' .''' " s - - "•••"" > ' . . . • • " • > • • • - . • - •- >,;....
Figure 37.- Longitudinal load distribution. Leading-edge suction analogy;

twisted wing; M = 0.85.
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Figure 38.- Longitudinal load distribution. Leading-edge suction analogy;
leading-edge 6p - 5.1 ; M - 0.85.
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Figure 39.- Longitudinal load distribution. Leading-edge suction analogy;
leading-edge 6p - 12.8 ; M • 0.85.
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Figure 42.- Corrected theoretical results. Flat wing; a = 2°; M - 0.85.
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Figure 43.- Corrected theoretical results. Twisted wing; a = 2°; M = 0.85.
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Figure 44.- Corrected theoretical results. Flat wing; a = 8°; M = 0.85.
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Figure 45.- Corrected theoretical results. Flat wing; trailing-edge
a = 0°; M = 0.85.
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Figure 46.- Corrected theoretical results. Flat wing;

leading-edge 6_. - 5.1°; a = 0°; M = 0.85.!"f
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Figure 47.- Pseudo aeroelastic predictions, a = 8°; M = 0,85,
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Figure 48.- Flow separation at trailing-edge flaps. Flat wing;
a - 0 ; M « 0.85; 2y/b - 0.22.
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Figure 49.- Flow separation at trailing-edge flaps. Flat wing;
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NUMERICAL MODELING OF TUNNEL-WALL AND BODY-SHAPE EFFECTS

ON TRANSONIC FLOW OVER FINITE LIFTING WINGS

By Perry A. Newman and E. B. Klunker
NASA Langley Research Center

SUMMARY

Preliminary computational results have been obtained for two problems relating to
interference effects in transonic flow over finite lifting wings. The first is concerned
with the numerical modeling of the flow about a three-dimensional wing configuration
within a wind tunnel and the second is concerned with calculating favorable interference
effects produced by the body of a wing-body configuration. For both problems, the cal-
culations are based upon a small disturbance potential equation which is solved using a
relaxation technique. A number of tunnel-wall boundary conditions are simulated and a
comparison is made with experimental data.

INTRODUCTION

Numerical techniques for the computation of the inviscid potential flow about two-
dimensional airfoils and bodies of revolution have attained a high state of development.
For transonic flows, the relaxation algorithm has generally been used and the method has
been adapted to both the full potential and small disturbance equation formulations. The
success of these applications has led to the development of programs for more complex
boundary-value problems such as flow about multiple airfoils, flow within bounded streams,
and flow about some simple three-dimensional configurations. These latter developments
have generally been based upon a small disturbance potential equation which both simpli-
fies the calculations and minimizes the computer requirements. Three-dimensional
results have been given for lifting wings (refs. 1 to 9) and also for wing-cylinder combi-
nations (refs. 4, 8, and 10) which simulate some of the wing-body interference effects. In
addition, some calculated results for the tunnel-wall problem have been given for two-
dimensional (refs. 11 and 12) and axisymmetric (refs. 13 and 14) transonic flows.

The present paper presents some computational results for two transonic flow prob-
lems. The first is concerned with the numerical modeling of the flow about a three-
dimensional wing configuration within a wind tunnel and the second is concerned with cal-
culating favorable interference effects produced by the body of a wing-body configuration.
For both problems, the calculations are based upon a small disturbance potential equation.
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A number of tunnel-wall boundary conditions are simulated and some comparison is made
with experimental data. Questions concerning the adequacy of the tunnel-wall modeling
for ventilated walls are not addressed here — resolution of these questions requires more
detailed experimental and numerical studies.

GENERAL METHOD

The basic Murman.and Cole transonic relaxation technique (ref. 15) has been applied
to successively more complex configurations and equations and a summary of its develop-
ment is given in a recent review article (ref. 16). A variation of this technique is used
herein to compute the flow about two three-dimensional configurations.

Governing Equations ; "

The equation for the pertubation velocity potential q> used is

where M is the free -stream Mach number, p = 1 - M, y is the ratio of specific
heats, and x,y,z are Cartesian coordinates. The term containing y^1*?*^ has been
retained (ref. 10) to better approximate the critical speed where the equation changes type
from elliptic to hyperbolic.

The flow tangency condition on the wing is approximated by

for • x,y on the wing planform where z = f(x,y) is the equation of the wing surface and
a is the angle of attack. ;

The boundary condition on the trailing vortex sheet, assumed to lie in the z = 0
plane, is

<p(x,y,0+) - <p(x,y,0-) = T(y) (3),

for x,y on the sheet. Note that the circulation F(y) at each spanwise station y is
determined as part of the solution by requiring the Kutta condition to be satisfied at the
trailing edge of the wing section. If, however, the lift is specified, the distribution T(y)
may be obtained in some other way and the Kutta condition generally will not be satisfied
if the angle of incidence a is also specified.

Far from the wing, the stream velocity is taken to be alined with the tunnel or
cylindrical -body axis; thus, the streamwise perturbation velocity <p_ vanishes as

X ,

1190



x — ±«>. At each of these limits, the differential equation (1) reduces to the two-
dimensional Laplace equation. For a flow with, lift, the jump condition, equation (3),
must be enforced on the slit at the trailing vortex sheet.

Stability Considerations

Jameson (refs. 6 and 7) has shown that since line relaxation is not fully implicit in
a three-dimensional problem, one must be careful in constructing the finite-difference
operator which is used at supersonic points if it is to be iteratively stable. Note, however,
that block relaxation of an entire plane normal to the flow direction would be. Jameson's
analysis of equation (1) would indicate that (1) the relaxation factor at supersonic points
should be exactly 1.0, and (2) some old values of q> should be used in the three-point
backward difference for (p^ (thus implicitly introducing some <pxi where t is an
artificial time). Both of these aspects have been included in the present algorithm. In
fact, explicit addition of even more (px^ at supersonic points has been found to stabilize
some calculations. At computational grid points where the flow is subsonic, one generally
tries to overrelax the solution. Since the coefficient of cp^^ in equation (1) vanishes as
the local Mach number — 1 whereas those of <£>„„ and (pzz do not, switching the value
of the relaxation factor between subsonic and supersonic points which are adjacent to one
another in either the y- or z-direction can produce a spurious (p correction. This phe-
nomenon is observed when the sonic or shock surface is not normal to the flow direction.
Therefore the relaxation factor is set equal to 1 for the contributions from (pyy and
(pzz; only the contribution from (p^ is overrelaxed (or underrelaxed). Perturbations
during a calculation caused by shock-wave movement, circulation adjustments, boundary
updates, and so forth may trigger instabilities which can sometimes be damped by reduc-
ing the subsonic relaxation factor or increasing the explicit c/?x^ at supersonic points (or
both). The present algorithm monitors the maximum <p correction, and if it increases
for too many cycles, the relaxation factor is automatically reduced or additional (px^ is
introduced at supersonic points.

TUNNEL-WALL PROBLEM

Several recent papers have included tunnel-wall boundary conditions in nonlinear
transonic relaxation computations for two-dimensional (refs. 11 and 12) and axisymmetric
problems (refs. 13 and 14). The present extension to a three-dimensional problem has
incorporated some of the ideas expressed in these references. The problem considered •
is that of a rectangular planform wing with an arbitrary airfoil section mounted in a rec -
tangular cross-section wind tunnel as depicted in figure 1.
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Computational Considerations

Tunnel -wall boundary conditions. - The boundary condition used to model the tunnel
walls is the integrated form of the generalized linear homogeneous condition as given in
reference 17 with an inhomogeneous term added to account for integration constants and
physical effects such as CD # 0 in the plenum or contoured walls (unpublished notes of
Richard W. Barnwell, Langley Research Center). This condition-is

Atf>n + B<px + Ccp + D = 0 . . (4)

and the conventional linear wall conditions are obtained as

Open jet: A = C = D = 0, B*0

Straight solid: B = C = D = 0, A * 0

(5)

Porous: C = D = 0, B/A is porosity or restriction parameter

Slotted: B = D = 0, C/A is slot geometry parameter

. Several points should be made concerning the tunnel-wall boundary condition.
First, it is considered to be an average relationship between various local inviscid flow
properties which applies near the wall rather than on it. Second, in an iterative finite-
difference calculation there is a great deal of flexibility regarding the form of the bound-
ary condition itself since (a) it need not even have a functional form (i.e., could be meas-
ured flow properties) much less be linear; (b) the parameters in it can vary with local
tunnel geometry or local flow conditions; and (c) it is restricted, however, in that the
relaxation calculation must be stable. Third, the porosity and slot geometry parameters
must be determined experimentally. The consensus now seems to be that these param-
eters are dependent on local flow conditions near the tunnel wall which for transonic
flows are influenced not only by the tunnel operating conditions but also by the test .
configuration.

-Geometry and coordinates.-.Calculations have been made on a nonuniform three-
dimensional Cartesian grid. Figure 2 shows a plane section normal to the wing leading
edge (i.e., containing the tunnel axis) and figure 3 shows a plane section normal to the
free stream (i.e., the tunnel cross section). The rectangular wing dimensions and tunnel-
wall locations indicated in these figures are those corresponding to the wall-interference
model of reference 18 (subsequently called the. AEDC model) in the AEDC Aerodynamic
Wind Tunnel (4T). These were chosen for the present study since experimental data had
been taken on the model in both the AEDC Tunnel 4T and the AEDC Propulsion Wind
Tunnel (16T) specifically to investigate three-dimensional wall interference in a variable-
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porosity transonic tunnel (ref. 18). The AEDC model has a rectangular wing with a chord
of 22.8 centimeters (9 inches) and a span of 81.3 centimeters (32 inches); that is, aspect
ratio £1 =3.56. The airfoil section is an NACA 63A006. The AEDC Tunnel 4T has a
square cross section 122 x 122-centimeters (48 .X:,48 inches), and the ratio of total ̂ tunnel,
height to wing chord is h/c =5 .3 for this model.

The grid used for most of the calculations presented here was 48 x 20 x 26 in the
streamwise, spanwise, and wing normal directions, respectively. Upper and lower tunnel
walls are located at grid planes 24 and 3 in the wing normal mesh while the root symmetry
plane and tunnel side wall are at grid planes 2 and 15 in the spanwise mesh. It can be seen
that there is a high concentration of grid lines near the wing plane and over the wing chord.
In the streamwise direction, the grid extends from x/c ~ -17 upstream to x/c ~ +7
downstream of the wing. Boundary conditions appropriate to |x| = °o have been applied
on these planes which are located at finite values of x.

The grid within the tunnel was not changed for the comparisons made in this paper;
free-air results were obtained with additional points outside the boundaries. An analytic
stretching was used in the wing normal direction so that |z| = <x> was mapped into a finite
domain. In the spanwise direction, the grid extended to y/c -4.1 for the free-air
results; the boundary condition appropriate to y = <» was applied on this plane.

Stability with tunnel-wall boundary condition.- The tunnel-wall boundary condition,
equation (4), was imposed on the finite-difference calculation as follows:

(1) The open-jet condition, <px = 0, requires <p = Constant on the boundary. This
was implemented as the Dirichlet condition <p = 0 with equation (1) being satisfied at all
interior points in the relaxation cycles.

(2) For all other conditions a false point behind the tunnel-wall boundary was intro-
duced and the value of y> associated with it was determined by requiring the central dif-
ference expression for <pn at the wall point to be given by equation (4). All the false
points are updated (by point relaxation) each iteration cycle after line relaxation of equa-
tion (1) throughout the entire field (interior and wall-boundary points).

It was found that the stability of the iterative calculation was adversely affected by
inclusion of the tunnel-wall boundary as in (2) in the preceding paragraph. The present
results were obtained with the calculation stabilized by, first, underrelaxing the update of
<p at false points behind the wall and, in some cases, the solution <p at all subsonic points
and, second, holding <p = 0 at all false points for the first few iteration cycles («30) and
slowly, over the next few cycles (30), introducing the value required by equation (4). It
appears that the solution near or at the side wall is most sensitive; this may be due to
having the 'column of updated points in the line-relaxation algorithm parallel to the side
wall. Thus, at the side wall, every point in the column is in contact with a false point. In
two-dimensional and axisymmetric problems the tunnel-wall boundary condition is in '

/
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contact with only the end points of the column, as is the case for the upper and lower wall
conditions in the present calculation. There are a number of ways to introduce the wall
condition, equation (4) (for example, refs. 11 to 14), which should be investigated since the
present approach may not be the most efficient. This point is discussed in reference 19
where yet another means of incorporating equation (4) is given.

Results
- . - * '

Computational results for the wing of the AEDC model (ref. 18) are given for several
of the conventional linear tunnel-wall boundary conditions. These are preliminary results
from a new program and have been generated on a grid which is coarse by two-dimensional
flow standards but typical of those for three-dimensional problems. They serve to indicate
the feasibility of including tunnel-wall effects in three-dimensional transonic calculations
and provide an initial estimate of the magnitude of the effects. •

Porous wall study.- The AEDC model is a full-span model with a rectangular plan-
form wing centrally mounted on a sting body. (See ref. 18.) Experimental streamwise
pressure distributions were measured on the upper and lower wing surfaces at the mid-
semispan position and also on the windward and leeward sides of the sting body. In this
section, computed streamwise pressure distributions for free-air, open-jet, solid-wall,
and porous-wall boundary conditions are compared with one another at two different Mach
numbers. .

Figure 4 shows the chordwise wing-surface pressure distributions at the midsemi-
span location for a free-stream Mach number of 0.88 and 3° incidence. This is a tran-
sonic flow and the sonic value of pressure coefficient Cp is indicated by the long tick
mark on the ordinate. For this Mach number, the most'noticeable effect, due to the tunnel
walls, at the model location is a shift in the position of the shock wave on the wing upper
surface. The key identifies the several results; in places where the differences are neg-
ligible, such as on the lower surface in this case, only a single curve is shown.

As indicated in equation (5) the ratio of coefficients B/A is a porosity parameter
which is seen from equation (4) to be proportional to 97nA>x- The symbol P is used
for JB/AJ. Porosity values P vary between 0 and °° with 0 corresponding to the solid
wall and «> the open jet.

Streamwise tunnel-wall pressure distributions in the wing root plane on both the
upper and lower walls are shown in figure 5 for the flow conditions of figure 4; however,
the Cp scale in figure 5 is smaller by a factor of 8. The insert shows the location on
the walls where the pressures are calculated. Those appropriate to the upper wall gener-
ally lie above the axis (Cp - 0), whereas those for the lower wall lie below the axis. The
distributions are similar but the differences are felt to be significant and measurable.
The open-jet condition is Cp = 0 on the boundary and is given by the Cp axis. The
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solid wall results show the largest departures from Cp = 0. Two porous wall results are
shown: One in which the porosity was the same constant value (P = 0.65) at all points on
all walls and the other in which the porosity differed for local inflow to fo = 0.65) and
outflow from (Po= 0.22) the test section. (See-ref. 12 for some discussion of this matter.)
Where outflow occurs (i.e., below the wing where Cp > o), a difference can be seen in the
wall pressure levels for different P values. These three-dimensional results at the
wing root plane exhibit the qualitative behavior of the two-dimensional experimental wall
pressures (i.e., near the wall) presented in reference 15.

At a higher Mach number, the tunnel-wall effects are more pronounced. Figure 6
shows the chordwise wing pressure distributions at the midsemispan location for a free-
stream Mach number of 0.93. Results for tunnel-wall boundary conditions similar to
those of figure 4 are shown here; there are now noticeable differences in the location of
the shock on the lower surface and the pressure levels on both surfaces. A larger spread
in the location of the shock on the upper surface is also observed. In this case the flow
fields are a good bit different. An indication can be seen in figure 7 which shows the
pressure distribution on the upper and lower tunnel walls. The sonic value of Cp is
denoted by the tick mark on the ordinate. For straight solid tunnel walls the supersonic
bubble extends all the way to the upper wall and is terminated by a shock wave positioned
on the wall above the trailing edge of the wing. A porous-wall computation is also shown
in figure 7 and it is seen that the flow on the upper wall is everywhere subsonic. Thus
the porosity has provided some relief so that the shock does not extend all the way from
the model to the upper tunnel wall. More will be said about this case in the last section
where results are also given for other tunnel boundary conditions.

Comparison with AEDC data.- The AEDC data shown in figures 8 and 9 and compared
with the present calculations were taken as part of an experimental study but were not
included in the final report (ref. 18); they were made available by,T. W. Binion, Jr., in
order to assess the transonic effects. Experimental data were taken in both the AEDC
Tunnel 16T and AEDC Tunnel 4T. The Tunnel 16T data were assumed to be relatively
interference free (at Mach numbers below 1) and free-air results are compared with them.
The tunnel-wall boundary condition for the calculations corresponding to the Tunnel 4T
data shown was taken as a porous wall with P = 0.65.

. In comparing free-air results from the earlier versions of the present program with
experimental data, it was found that two effects generally had to be accounted for. First,
a small disturbance, equation and linearized boundary conditions have been used without
incorporating a transonic scaling of the variables. A number of such scalings have been
proposed and used since there is not a unique one. Differences result from an empirical
determination.of arbitrary functions of the Mach number in order to more nearly approxi-
mate the critical speed and a shockless flow condition, or an experimental result (for
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example, ref. 20). In the present work, a different approach is taken: simply adjust the
input Mach number in the small disturbance solution until the resulting pressure distri-
butions (shock locations) coincide with a full-equation solution result for a comparable
wing configuration and flow condition. Second, viscous effects at the trailing edge modify
the flow there so that imposing the Kutta condition in the calculation does not result in the
experimentally measured lift. In two-dimensional flows, this viscous lift deficit can be
approximated, in cases where there is not a large amount of separation, by imposing the
experimental value of lift on the calculation. (See ref. 21.) For three-dimensional flows,
one needs a spanwise distribution or values of lift at a number of sections in order to say
that the lift has been matched. Since the experimental wing pressure data taken on the
AEDC model were for only one station located at the midsemispan, the lift has been
matched by renormalizing the spanwise circulation distribution (obtained by imposing the
Kutta condition) so that the experimental section lift is matched at the midsemispan
section.

- Figure 8 shows comparisons of three different free-air results with AEDC experi-
mental results from Tunnel 16T. The experimental conditions were M = 0.896 and
a'= 2.92° with a tunnel-wall open ratio r of 6 percent. Present calculations at these
conditions with the Kutta condition imposed are seen to produce results where the lift is
too large and, on the upper wing surface, the flow is not fully expanded and the shock wave
is too far downstream. Matching the lift as indicated moves the shock closer to the exper-
imental result. Adjustment of the Mach number so as to approximately aline the computed
and experimental shocks on the upper surface produces fairly good agreement. As stated
before, this shift in Mach number is to compensate for the small disturbance equation and
linearized boundary condition and should not be construed as an indication that the experi-
mental Mach number is that uncertain. It should be noted that the shift in shock wave
location due to these two effects is comparable with that due to the tunnel-wall effects as

" ' '• '"*-/''shown in figure 4 for the same flow conditions. ~"^v/

The Mach number shift determined for the free-air calculation is used in the tunnel-
wall simulation. A comparison with the AEDC Tunnel 4T experimental results is shown
in figure 91 The experimental conditions were M = 0.900- and a•= 2.86° with r =. 5%.
The present calculations with porous walls (P = 0.65), lift matched, and Mach number .
shifted (M = 0.88) are shown as the solid curve. The agreement is similar to that shown
for the free -air results in figure 8. Calculations with a more refined grid would likely
improve the agreement near the shocks. At higher Mach numbers the tunnel-wall effects
are. more pronounced, but the experimental data appear to have much more separation
around the wing trailing edge.

Other wall conditions.- In figures 6 and 7 it was seen that for straight solid tunnel
walls the flow at M = 0.93 has a supersonic bubble terminated by a shock wave which
extended from the wing surface to the upper tunnel wall. The supersonic flow and its
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terminating shock did not extend to the tunnel wall for the porous-wall boundary condition
result; this indicates that some relief was provided. The generalized wall boundary con-
ditions given by equation (4) will approximate other wall conditions which should also
provide relief for. this case.... - ... ... , .- - . -

The integrated form of the linear slptted-wall boundary condition has been used in
calculations where all walls are slotted as well as where only the upper and lower walls
are slotted with the side wall solid. Results at the midsemispan section on the wing sur-
face are shown in figures 10 and 11 for these two conditions. These results are compared
with the results for free-air, solid-wall, and open-jet conditions; about all that can be said
is that the trends are similar to those for the porous wall shown in figure 6. The slot
geometry parameter S is the ratio |C/A| of equations (4) and (5).

Contoured solid walls have also been proposed to reduce the tunnel-wall interference.
The contouring was done only on the upper and lower tunnel walls; the side walls were left
straight. The walls were contoured by calculating the normal disturbance velocity cpz

at the wall location from a free-air solution and using it as the wall slope -D/A in the
tunnel-wall boundary condition, equations (4) and (5). Sample results for. this calculation
are shown in figure. 12 and compared with the free-air, straight solid-wall, and open-jet
conditions. Again these wing pressure results are similar to those shown for porous and
slotted walls. • • • - . -

Differences due to the various wall boundary conditions show up throughout the flow
field. These are compared on the upper and lower tunnel walls in figure 13. The curves
from figure 7 as well as the free-air result at the wall location are also included. Six
curves identified in the key are shown for the upper wall and the sonic value of Cp is
denoted by the long tick mark on the ordinate. It is seen that the choked condition above
the wing which occurs for the straight solid tunnel-wall condition is relieved when linear
porous, slotted, or contoured solid tunnel-wall conditions are included. These tunnel-wall
results are all qualitatively like the free-air results at this Mach number; perhaps the
slotted condition has more nearly the same shape. Only three curves are shown for the
lower wall; these bracket the others. The shapes of the Cp distributions on the lower
wall are very much alike; small differences are observed in the mean levels of . Cp.

Tunnel side-wall pressure distributions in the wing plane are shown for the same six
wall conditions in figure 14. For a rectangular planform wing, which spans two-thirds of
the tunnel width, the supersonic bubble extends to the side wall in those cases where it is
modeled as straight and solid. Again the ventilated side-wall conditions generate results
qualitatively like the free-air results. No calculations have been made for a contoured
side wall; however, it is not expected to cause difficulty.
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BODY CONTOURING PROBLEM

Three-dimensional transonic flow calculations for wing cylinder combinations have
been reported recently in references 4 ,8 , and 10. Results in reference 4 were for a non-
lifting flow but included Mach 1 ruling of the cylindrical body whereas those presented in
references 8 and 10 were for flows with lift about cylindrical bodies. The present work
is an extension of the approach outlined in reference 10.

Computational Considerations

A schematic of the simple configuration considered is shown as figure 15. It is a
rectangular planform wing centrally mounted on an infinite cylinder. To make a smoothly
contoured body, with contouring proportional to a Mach 1 ruling in the region of the wing,
it is necessary to extend the body contouring both upstream and downstream of the wing.
For the present results, the contouring was done from 1/2 chord before the leading edge
to 1/2 chord behind the trailing edge as follows:

(1) The axisymmetric volume removal at the wing position is proportional to the
chordwise change in wing volume.

(2) At the leading and trailing edges the rate at which the body radius changes is
required to be smooth and to produce a smooth volume change.

(3) The rate of change in the body radius decays linearly to zero at 1/2 chord before
the leading edge and behind the trailing edge.

Calculations have been made only for axisymmetric body contouring; however, the method
is not restricted to that case.

A Joukowski transformation in planes normal to the cylinder axis

R2

a •= CTJ + ^- x = Xj CTJ = yj + iZj a = y + iz (6)

2 2 9 /(where R is a constant) maps the circular cross section yR + ZR = R (y = YD,
z =;ZR denotes y,z on R) and the plane z = 0 for |y| 1 R onto the plane, Zj = 0.
If the body radius does not differ appreciably from R, then the boundary condition of
zero normal velocity on both the wing and body can be enforced on the plane Zj = 0. The
computational coordinate mesh fai,yi,?i) is rectangular so that the wing-cylinder problem
in this formulation is very much like the wing-alone problem. Figure 16 depicts a portion
of the cross-flow plane computational grid (plotted on physical space) near the wing-
cylinder configuration. .
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The flow tangency condition for a body of revolution is approximated by

• (7)

where R is the radius of the reference cylinder surface (the Joukowski constant), the
subscripts R denote that the boundary condition is evaluated on the reference surface,
and rQ is the local body radius. In terms of the computational- x-^y^Zj coordinates,
equation (7) is

- (a)

y-o /
where sin Q - -j±. Additional terms involving dro/d0 must be included in equations (7)
and (8) for bodies of noncircular cross section. The singularities at yR = 0 (6 = 0)vin
the transformation occur at the wing-cylinder junctions. The computational grid points*
straddle such a point in both the y«- and z< -directions so that the equations are not differ-
enced, through this singularity.

Results

The calculations for a rectangular wing serve to demonstrate the feasibility of
computing body contouring effects. The wing aspect ratio is 4, the airfoil section is para-
bolic with a thickness ratio of 0.05, and the cylinder radius is 1/2 chord.. Sample .wing
pressure distributions at about the 70 -percent semispan station for both upper and lower
wing surfaces are shown in figure 17. The stream Mach number is 0.9 and the wing is
at 1° incidence; this produces a supercritical flow. Results for the circular cylindrical
body are shown by the open symbols. It. can be seen that shock waves appear on both the
upper and lower wing surfaces. When the cylindrical body is contoured by removing
2.25 times the wing volume, very subsonic like pressure distributions are obtained. These
results are shown by the + and x symbols. -There is a region of slightly supersonic flow
but these results do not appear to contain a shock wave. The relatively large volume
ratio, 2.25, is accounted for by the fact that the way in which the body contouring was done
resulted in a large volume removal both upstream and downstream of the wing. Compar-
able results could likely be obtained with less volume removal by altering the contouring.
Pressure distributions at two locations on the body are shown in figure 18 for the same
case. The sketch shows the body locations above (upper) and below (lower) the wing plane
where the streamwise distributions apply. For the cylindrical body results there is an
expansion both above and below the wing around the wing position. The body contouring
produces a compression which alleviates it, not only on the body but over the entire wing
span. Recall that the wing results shown in figure 17 were at the 70-percent semispan
location; at inboard locations the effect is even greater.
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The effect of body contouring on pressure drag is shown in figure 19. Results are
given for both lifting and nonlifting conditions. Pressure drags for the entire configura-
tions are normalized in terms of that for the wing-cylinder at 1° incidence. They are
shown as a function of volume removed normalized by the wing volume. It is seen that
there is:a drag reduction up to a point and then an increasing trend begins. Results shown
in figures 17 and 18 were for the removed volume ratio equals 2.25 which is near the min-
imum in the drag curve. The nearly constant drag difference between the a - 0° and
a = 1° cases is essentially that due to lift.

The spanwise distribution of pressure drag for the wing with cylindrical body
(circles) is compared with that obtained for the contoured body (diamonds) in figure 20.
The contoured body is that producing the minimum drag and the curves have been nor-
malized so that the integrated drag is that given in figure 19. It is seen that the pressure
drag reduction on the wing due to the absence of shocks is much greater than the increase
on the body due to the contouring.

CONCLUDING REMARKS

.• The results presented herein suggest that similar computations for a wider class of
configurations are feasible. These results were generated on a mesh of about 25.000 grid
points. For a tunnel-wall case, about 160000g storage and 1/2 hour CPU time was
required on a Control Data 6600 computer system (with run compiler). The body con-
touring studies required about ISOOOOg storage and about 10 to 15 minutes CPU time per
case. Thus, the entire computer resources have not yet been exhausted.

The results for tunnel-wall modeling demonstrate that various conventional tunnel-
wall boundary conditions can be incorporated in numerical computations. Such modeling
should be useful in assessing interference effects and as an aid in the design of wind tun-
nels. .The computational method approximates the tunnel-wall boundary conditions only
in an average sense. Both experimental results and numerical computations are required
to determine a satisfactory method for approximating these complex boundaries.

The present results for simple configurations indicate that body contouring effects
can be obtained numerically. The present technique is not limited to axisymmetric con-
touring such as demonstrated by these results. Thus, one should be able to examine some
body interference effects in the preliminary design stage.
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Figure 1.- Schematic of rectangular planform wing
in rectangular-cross-section tunnel.
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Figure 2.- Computational grid in plane normal to wing leading edge.
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Figure 3.- Computational grid in plane normal to free stream.
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Figure 4.- Wing-surface pressure distributions at mid7

semispan section. NACA 63A006 airfoil; /R = 3i56;
M = 0.88; a - 3°; porous wall comparison.
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Figure 5.- Tunnel-wall pressure distributions in wing root plane. NACA 63A006 airfoil;
JR = 3.56; M = 0.88; a = 3°; h/c = 5.3.
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Figure 6.- Wing-surface pressure distributions at mid-
semispan section. NACA 63A006 airfoil; 1R = 3.56;
M = 0.93; a = 2.76°; porous wall comparison.
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Figure 7.- Tunnel-wall pressure distributions in wing root plane. NACA 63A006 airfoil;
• " . • • ' < • ' • - • ' . " • ft. = 3:.56; M = 0.93; a = 2.76°; h/c = 5.3.
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Figure 8.- Comparison of computed and experimental wing-surface pressure distribu-
tions at midsemispan section. NACA 63A006 airfoil; • • JR = 3.56.
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Figure 9.- Comparison of computed and experimental wing-surface pressure distribu-
tions at midsemispan section. NACA 63A006 airfoil; -JR = 3.56; h/c = 5.3.
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Figure 10.- Wing-surface pressure distributions at mid-
, semispan section. NACA 63A006 airfoil; /R = 3.56;

M = 0.93; a = 2.76°; slotted wall comparison.
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Figure 11.- Wing-surface pressure distributions at midsemispan
section. NACA 63A006 airfoil; JR = 3.35; M = 0.93;
a = 2.76°; slotted upper and lower wall comparison.
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Figure 12.- Wing-surface pressure distributions at mid-
. . semispan section. NACA 63A006 airfoil; Al = 3.56; ;.!.

M = 0.93;. a. = 2.76°; contoured wall comparison.
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Figure 13.- Tunnel-wall pressure distributions in wing root plane. NACA 63A006 airfoil;
£1 = 3.56; M = 0.93; a = 2.76°; h/c = 5.3.
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Figure 14.- Tunnel side-wall pressure distributions in wing plane. NACA 63A006 airfoil;
m. = 3.56; M = 0.93; a = 2.76°; h/c = 5.3. I
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Figure 15.- Schematic of wing-body configuration with body contouring.

Figure 16.- Schematic of cross-flow plane computational grid.
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Figure 17.- Wing-surface pressure distributions. 5-percent-thick parabolic-arc airfoil;

/R = 4; M = 0.9; a = 1°.
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Figure 18.- Body-surface pressure distributions. 5-percent-thick parabolic-arc airfoil;

&= 4; M = 0.9; a = 1°.
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Figure 19.- Effect of body contouring on pressure drag. 5-percent-thick

parabolic-arc airfoil; JR = 4; M = 0.9.
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Figure 20.- Spanwise section drag distribution. 5-per cent-thick parabolic-arc airfoil;

fR = 4; M = 0.9; a = 1°.
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COMPARISONS OF COMPUTED AND EXPERIMENTAL PRESSURES FOR TRANSONIC FLOWS

ABOUT ISOLATED WINGS AND WING-FUSELAGE CONFIGURATIONS

By F. R. -Bailey
-: . NASA Ames Research Center

and

W. F. Ballhaus
U.S. Army Air Mobility R&D Laboratory

INTRODUCTION

Most modern aircraft achieve optimum cruise performance and maneuvera-
"bility when flying at high subsonic Mach numbers in the transonic regime. In
this Mach number range, there exist in the flow field local regions of super-
sonic flow which are usually terminated by weak embedded shock waves. These
mixed subsonic-supersonic flows are extremely sensitive to the shape of
internal boundaries. For this reason aircraft performance depends strongly
on aircraft configuration. The configuration design process requires para-
metric variation of the numerous geometrical variables that describe the
shape of the aircraft, a procedure that is expensive to implement entirely by
experiment. This fact has resulted in a significant effort to develop theo-
retical transonic flow analysis methods.

:*'•>' ' ' • • ' • ' . ,
These theoretical techniques can be divided into two categories: (1)

analytical methods and (2) numerical methods. The analytical approach is
limited, in the general case, to linear theory, while most transonic flows of
interest are governed by nonlinear equations of motion. The numerical .
approach, however, has no such limitation.. .-•'*;•:•

The present work describes a relaxation procedure for solving the tran-
sonic small disturbance equation for flows about wings and wing-fuselage
combinations. The numerical method is based on the well-known relaxation
method of Murman and Cole' (ref. 1) and is a continuation of the work given
by Ballhaus and Bailey (refs. 2 and 3; see also ref. 4). The small distur-
bance formulation is chosen because of the relatively simple manner in which
the wing boundary condition is imposed. All the transonic relaxation methods
for wings that have been developed to date (refs. 2 to 10)'are based on the
small disturbance approach, with the exception of Jameson's (ref. 11) method
for yawed wings. In the present method, solutions are obtained over a se-
quence of successively refined computational grids with the final result ob-
tained for a grid with about 10^ points. The solution process requires about
5 to 15 min of run time on a Control Data Corporation (CDC) 7600 computer.

An.early version of the isolated wing code was released to aircraft and
research companies in 1974. Since that time, in a contracted effort with
LTV Aerospace Corporation, the input, setup, and output have been streamlined
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and adapted more toward the needs of the aircraft designer. The code has
been documented and adapted for use on the CDC 6600 computer (ref. 12).
The solution process has also been revised to decrease computer run time and
to allow, as an option, either conservative or nonconservative differencing.
The use of conservative differencing ensures that captured shock waves
satisfy the shock conditions contained in the inviscid governing equation.
Such is not the case for nonconservative differencing which, coincidentally,
captures shock waves that agree better with experimentally measured shock :
waves which, of course, are affected by viscosity. (See ref. 13, fig. 6.)
Computed surface pressures for both conservative and nonconservative differ-
encing are compared with experimental pressures in the section on results.

Finally, the method has been extended for the treatment of wings mounted
on finite length fuselages. Results, both conservative and nonconservative,
are compared with experimental data for two such nonlifting configurations.

FINITE-DIFFERENCE APPROXIMATIONS

Governing. Equation
'* - '-• • • . • ' . .

The approximate* equation and boundary conditions for transonic flow over
slender body, thin wing configurations, such as shown in figure 1, are
derived from transonic small disturbance theory under the assumptions of
small flow deflections and a free-stream Mach number near unity. The govern-
ing equation is . '

= 0 (1)

where <f> is the disturbance velocity potential, M^ is the freer-stream Mach
number, and y is the ratio of specific heats. The parameter n reflects
the nonuniquehess of equation (1), and it can be adjusted to better approxi-
mate the exact sonic pressure coefficient. For example, see reference 14.

Murman'(ref. 15) has shown that the shock jump relation implied by equa-
tion (1) is contained in the difference approximations if they are written in
conservation form. That is, mass fluxes at cell boundaries interior to the
computation mesh cancel identically. The present conservative finite dif-
ference equation is derived by applying the divergence theorem to the integral
of equation (l)(the transonic approximation to mass conservation) over an
elemental, rectangular, computation volume or cell as shown in figure 2.
Define the mass flux as

' *= f *X + g*y + hlZ

- [u - T®)*x-^>c*e ix + kl Vk R <«•
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Applying the divergence theorem to the .volume integral and dividing by, the
cell volume results in the difference expression

i+l/2>jtk , (

*i+l/2 xi-l/2! '- y
, t

hl,jtk-l/2

j+1/2 yj-l/2 Zk+l/2 zk-l/2

for the point (x.,y.,z ). If the velocities are defined by1 J K - -. .

. ...- • ' • ( * > . •.*i+i»'3>fc.3-%.i;>.t.t' - .
x i+1/2,j,k Xjl1 Xj

(3)

, etc.

the finite difference approximations to the fluxes are

• J^k

1 -Ji--L/2,j,

> (4)

'i,j+1/2,k (5)

(6)

which, when substituted into equation (3) and factored, give the final dif- I
ference approximation
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where
• " • • • ' . n ;
(1 - M2)., . . - 1 - M2 - (y + 1) M" if?4>

ij'k " - 2lV

[0 for (1 -M2) > 0

The switching parameter Ui,j,k gives the flux in the x-directlon by a cen-
tral difference operator in elliptic regions (Pi-ifj,k

 = 0» W± j fc = 0) an<^
by a central operator shifted upstream one mesh point in hyperbolic regions
(Hi-l̂ jjk = 1, W± j,k = 1) and thereby prevents upstream signal propagation.
For evenly spaced meshes equation (7) is formally second order accurate in
elliptic regions and first order in hyperbolic regions.

In addition to the elliptic and hyperbolic operators, equation (7) also
contains the parabolic (v±-i j k = 0» I1! j k= ^ an<* shock point
(Pj.-l 1 k ° ^»' wi .j- k *" ^^ operators and) for evenly spaced meshes, is the
three-aimensional equivalent of Murman's fully conservative relaxation (FCR)
method (ref. 15). In the unequally spaced mesh case (both two and three
dimensions), however, the first term of equation (7) differs by a factor of
*i — xi-2- — - in hyperbolic regions because the mesh cells are centered about

the point (i,j,k) in all flow regions. Consistency of the difference approxi-
mation is demonstrated for smoothly varying meshes by the expansion

xi - xi-2 •• . :

-
_ _

where C(x) is the inverse of the implied stretching function, that is, A£..-
is uniform, and the primes denote derivatives.

A majority of 2-D transonic calculations and all reported 3-D calcula-
tions have been performed by use of nonconservative relaxation (NCR) methods.
In -the absence of viscosity corrections, the NCR solutions generally agree
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better with experimental pressure measurements than the FCR results. This is ;
because mass sources result from the failure of the NCR methods to cancel :,
fluxes at shock points, where x-differences shift from upwind to centered
(ref. 15). The source strengths do not vanish with vanishing mesh spacing,
and they reduce the computed shock strengths to values nearly equal to those,"
obtained experimentally, which are, of course, weakened by the interaction ofr
the shock and boundary layer.

\
Two NCR methods are contained in equation (7). . The first, that due to

Murman and Cole (ref. 1), is obtained by setting

•1 ̂ 1 T K ^ ^ l f
•*• •L9j»R- -"-jjj1^

except at the expansion sonic line, and the second, that due to Garabedian and
Korn (ref. 16), is obtained by setting ' ._.

fu - *£;

Wing Boundary Conditions

For a wing whose surface is given by f(x,y,z) = 0 and which is at angle
of attack a,., the linearized boundary condition is

- : - f + (<J> + o)f . = 0 '.'". . (13)
X • Z Z -' • '

' c .. < . '
This equation is applied on the wing mean plane midway between mesh planes by
expressing the vertical derivative at the mesh plane adjacent to the upper :
surface as

/ Yv 2 I 4>i i k+1 — ^i T k f/fv\ 1)U } =~ { iyJ?**1 iiizi + |_i) +a( (14a)v zz;i,j,k . zk+i - zk-i;l Zk+i - zk ;[\f«./u - J(_., ;.
and the lower surface as .

_0 'l$1 4 lr ~ $4 4 U_1 l/f«\ II .

(14b)

The Kutta condition requires that the pressure (<(>x) be continuous at the
trailing edge. This fixes the.section circulation T^, which is equal to the
difference in potential at the section trailing edge linearly extrapolated
from points above and below. The potential jumps are convected downstream
along straight lines to form the trailing-vortex sheet, across which both
pressure and downwash (<J>Z) are continuous. The potential jump through the
sheet is taken into account in the <^^ difference formula at the plane
above by replacing ^i^j^-l with "^i j f k-1

 + rj .and'at the plane below'by
replacing 'J'i.j.k+l with 4>i,j,k+l — r j. Note that no points lie on the
sheet, as in the original method (ref. 2). The present technique simplifies
the coding with no significant loss in accuracy.
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Fuselage Boundary Condition
*

In the present method the fuselage is treated in a rectangular mesh sys-
tem. A similar two-dimensional procedure, which appears to be extendable to
three dimensions, has been demonstrated for subsonic flow in reference 17. In
the-present method a simplified approach suggested by Allen Chen of the Boeing
Co. is used in which the mesh is constructed so that points lie reasonably
close to the fuselage surface, such as shown in figure 3. Points may lie
either inside or outside the fuselage boundary. For a configuration
described by f(x,y,z) = 0, the small-disturbance boundary condition becomes

f + < J > f + < } > f =0 (15)
x y y z z

By substituting three point-extrapolated differences at the boundary point
i,j,k (for the upper surface, say) of the form

-,j,k = Al *itj'k + ̂  *i'3-1»k + ̂  *4»J-2»k <16a>

and

î.j.k = Bl'*i.J'k + BZ VJ'1*-1 + *3 ̂.J.*-2 <16b>

into equation (15), the expression for the boundary potential is found as

i,:J,k-

' • • ' - . - . ; F a r Field

The condition applied at the outer boundary of the computational domain
is given by the superposition of the asymptotic far-field solutions for .wings
derived by Klunker (ref. 18), and bodies of revolution derived by Krupp and
Murman (ref. 19). At the downstream boundary, however, the lift contribution
is obtained by the numerical solution to the cross-flow equation.

Nonrectangular Wing Transformation

'The isqlated wing code treats a swept and tapered wing by mapping the
wing into a rectangle by the transformation

'

z

y <18)
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where XLE anc^ XTE are fc^e x~coor<iinates of the leading and trailing edges.
The divergence form of equation (1) becomes

r ' ' , h , J
*l + 5 (S*C + *n)

• X I t

The conservative difference approximation of equation (19) is derived in the
manner previously outlined and is given as

)(i-M2)

i-l 1 k ~ i-l 1 k —i l.j.k i l.j.k x C . - j . k x 5 1.3/2fj,k

(ft

(20)
- ' " . "

where

_ 1 [ *i+l.j+l.k~*i+l..1-l.k , ̂i.j+l.k'^i.j-Ukl et<.

j,k 2L Vi~Vi Vi ~ nj-i J'
Note that equation (20) maintains the proper domain of dependence in hyper-
bolic regions by upwind differencing only the contribution from the
x-direction (i.e., terms multiplied by (1 — Mi j fc) and Vi-l,-]^) wnile the
others remain centrally differenced.

In transformed coordinates the wing surface and vortex sheet conditions
are unaltered. However, the boundary condition at the wing root becomes

1219



and is substituted into equation (20) at the root.

Relaxation. Scheme

The solution of the difference equations is obtained by a vertical-
column relaxation scheme. A number of variations of the method have been
coded, and in what follows, we outline the scheme that we believe has the
best stability properties.

Following Jameson (ref. 20), the iterations are viewed as steps in '
pseudo-time. The combination of new (4>+) and old (<J>) values in the dif-
ference operators is chosen so that the related time-dependent equation
represents a properly posed problem whose steady-state solution approaches
that of the steady equation. In addition, the linearized algorithm is
required to satisfy the von Neumann stability criterion.

For ease of discussion, consider an evenly spaced rectangular mesh with
M+l = xi + Ax, etc. The relaxation equation for elliptic regions.
and U i - i k = 0) is written

(22)

where ' 'u is an bverrelaxation parameter (1 < u < 2) and M^ j ̂  is evalu-
ated from old values. Note that only the contribution from tne'x-direction
Is overrelaxed. This avoids an abrupt change in the diagonal term as the
solution crosses the sonic surface suggested by J. C. South and P. A. Newman
of the Langley Research Center. .. .

In hyperbolic regions the relaxation equation is

»i,j,k
)'/(ax>
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It is of interest to look at the equivalent time -dependent .equation

(M2 - 1)<J) -$ -> +"2(M2 - 1) 7- 4 fc + 7- <J> =0 (24)rxx ryy Yzz • . • Ax xt Ay Yyt v , '

inferred from equation (23). It can be shown that the condition

must hold for x to be the hyperbolic marching direction. To keep x the
marching direction and to improve stability near sonic points, it may be
necessary to add to equation (23) the quantity .

where

-.-• tx- *« = '(*i,j,k-
and e is a chosen parameter.

RESULTS

In this section we discuss comparisons between present computed results,
other theoretical solutions, and experimental data. Before beginning, how-
ever, we wish to point out the difficulties associated with comparing com-
puted solutions with experiment. It is well known that viscous effects play
a large role in determining surface pressure distributions in many transonic
flows. This is particularly true in lifting cases (ref. 21) and when embedded
shock waves, occur. .(See ref. 13, fig. -6.) Since the present method is entirely
inviscid, considerable disagreement with data is encountered where viscous .
effects are significant. Furthermore, wind-tunnel results are often affected
by interference from the tunnel walls. Although attempts are made to correct
for interference effects, the corrected free-stream Mach number and angle of
attack do not always closely correspond to. free-air values. Also, as the
free-stream Mach number approaches one, the wall effects on the sonic bubble '
and shock locations become even more significant and difficult to assess.

Violation of the small-disturbance assumption can also cause significant
departures from the correct inviscid free-air solution. The assumption of
small flow deflection is seriously violated near blunt leading edges and at
high angles of attack. Thus, errone.ous results can be obtained in the
leading-edge region. Also, the small-disturbance theory predicts shock pres-
sure jumps.. that become significantly stronger than the Rankine-Hugoniot value
as the shock Mach number increases past about 1.3. Finally, the predictions
for oblique shock waves also depart significantly from the exact values for
shock wave angles in excess of about 20° (ref. 13).
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We begin by considering comparisons for two isolated wings. The first,
shown in figure 4, is for computed and experimental pressures furnished by
M. G. Hall of the RAE on the RAE Wing C at M = 0.95 and a = 0° which was
tested in the RAE 8 ft x 6 ft transonic tunnel "at Re-.= 1.4 * 106. The
computed results, which were obtained on a 51 * 34x48 °(x,y,z) grid, show
generally good agreement with the experimental pressures, with some overex-
pansion near the leading edge at the root. The NCR and FCR solutions were-
virtually the same because of the absence of shock waves.

The second comparison, in figures 5 and 6, is for the ONERA M6 wing.
The experimental data were obtained in the ONERA S2 transonic tunnel at Rg- *
2.5 x 106 (ref. 22). Computations were performed on a sequence of three
grids (35x20x24, 45x23x30, 66x37x32), using both the NCR and FCR
methods, and required approximately 5 CPU minutes on the CDC 7600 computer
utilizing the RUN 76 compiler. Figure 5 shows comparisons between the
computed and measured pressures for M = .84 and a = 3*. The NCR results are
very similar to those reported in reference 5. The FCR method predicts a
slightly downstream shift in shock location, as expected from Murman's two-
dimensional computations (ref. 15). Although the experimental pressures show
evidence of both a forward and an aft shock wave, the calculations show clear
evidence of only the aft shock. This is not surprising, because it has been
shown in reference 13 that the small-disturbance equation (used here and in
ref. 5) is a poor approximation to the full potential equation for shocks with
sweep angles greater than about 20°. The experimental forward shock is swept
at about 36° over most of its length. The agreement claimed in reference 5
between computed and experimental forward shock locations is not evident in
the comparison of experimental and computed section pressures. It appears
that the small-disturbance approach can, however; be modified to properly
treat swept shock waves by retaining two additional terms in the governing
equation. (See ref. 13.) Work in this area is currently being pursued.

Figure 6 shows pressure comparisons for M = .92 and a =3°. Here the-
aft shock prediction from the FCR method is significantly downstream of that
predicted by the NCR method. The NCR result, with the weaker shock; gener-
ally agrees better with the data but is still in serious disagreement..
Neither method captures the forward shock, which is clearly evident in the
experimental data at the three outboard span stations. The disagreement in
upper surface, aft shock, and lower surface shock locations can probably be
attributed primarily to the decrease in wing lift caused by trailing-edge
viscous effects. This moves the upper shock upstream and the lower one
downstream. "•''• ' . < • • . . . , • .,»,-, .,,,-, ;.t ..

We now turn bur attention to comparisons of computed and experimental
pressures for a parabolic-arc body with sting, shown in figure 7, and wing-
fuselage configurations, shown in figures 8 to 10. The present results are
obtained by use of equation (17) as the body boundary condition. Figure 7
shows pressures at the body surface and in the flow field at two body
diameters from the centerline for M^ = .99. Good agreement is shown between
the present NCR calculation (41x 40 x'AO), an axisymmetric NCR calculation
(ref. 23), and measured pressures (ref. 24). The x-mesh spacing used in the
present calculation is 2.5 times coarser than that used in the axisymmetric
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one, and accounts for the difference in shock resolution. The discrepan-
cies in the pressures are primarily attributed to the mesh coarseness and the
lack of boundary definition near the body nose. Figure 8 compares NCR, FCR,
linear theory-(ref. 25)', and experimental^ pressures (ref. 25) for a Sears-
Haack fuselage rectangular-wing combination at M^ = .90 and a = 0°. The
data were obtained in the AEDC 16 ft wind tunnel at Re- = 3.0 * 106 (ref. 26)
The present results were obtained on a 57 x 35 x 30 grid.0 The pressure plots
at the top of the body show that the present results overexpand near the nose
compared with linear theory, as was noted in the previous example. As usual,
the FCR-predicted shock location is aft of the NCR prediction, whereas linear
theory shows no shock. Comparison with experiment is good although the
sparseness .of the data points precludes the accurate determination of the
experimental shock location. A comparison is also shown at mid semispan.
The interesting result here is that the experimental shock location is down-
stream of the computed locations. In figure 9 the mid-semispan solution is
compared with an isolated wing calculation (ref. 25) from the Jameson 3-D
program and data. The present results and those of Jameson compare favorably,
particularly when the coarseness of the mesh used in the present calculation
is considered. The disagreement between the computations and experiment does
not appear to be caused by viscous effects, which generally move shocks
upstream in such nonlifting cases. More likely the disagreement is caused by
the test Mach number being slightly higher than .90.

Finally, figure 10 compares NCR calculated and experimental pressures
for a swept wing-fuselage configuration at M = .93 and a = 0°. The computed
results were obtained using, a.Cartesian grid (81 x 59 x 27) for the wing as
well as:the fuselage. The first x-mesh point at the wing leading edge was
fixed at 2.5 percent chord with 23 mesh points along the root chord and 11
along the tip chord, distributed according to the methods used in references
3 and 5. The uncorrected experimental data were obtained in the Langley
8-ft tunnel (solid wall) at Rej = 2.0X 106 (ref. 27). The agreement with
experiment on the fuselage centerlirie and the two inboard panels is good. In
the computed results, the wing root shock propagates laterally to y/b = .60,
but the experimental shock dissipates before reaching this point. The source
of the disagreement is not clear but perhaps is a viscous effect.

Clearly, the computed results lack sufficient leading-edge expansion at
the outboard span stations y/b = .80 and y/b = .95, an effect that is
caused by the coarse x mesh (about 12 points per chord) there. The Carte-
sian grid approach requires too many mesh points to obtain the required
resolution near the leading edge. The calculation should be improved sig-
nificantly by the use of the planform transformation, which was described
previously .in the treatment of isolated wings.

CONCLUDING REMARKS

A relaxation method has been developed which allows as an option either
fully conservative (FCR) or nonconservative (NCR) differencing. The three-
dimensional FCR and NCR solutions exhibit properties similar to those
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reported by Murman for two-dimensional flow. That is, for weak shock waves
there is little difference; as the shock strength increases, the FCR shock
wave becomes stronger than the NCR shock wave and, consequently, is located
further downstream. The NCR solutions correlate better with experimental
pressures, but it is anticipated that the FCR method will prove superior when
viscous effects are properly accounted for.

Clearly, the present solutions do not agree well with data in all cases,
particularly when (1) there is extensive separation either at the shock or
trailing edge, and when (2) there are highly swept shock waves embedded in
the flow. The treatment of highly swept shocks should be improved by
retaining two additional terms in the governing equation, as suggested in
reference 13, or by solution of the full potential equations.

In flows about wing-fuselage configurations, the basic idea is to. treat
the fuselage with accuracy sufficient to obtain its effect on the wing with-
out the use of complicated fuselage transformations. The present results are
encouraging and felt to be quite good when the simple boundary approximations
used are considered. The extension to lifting wing-fuselage configurations,
is straightforward and work in this area is being pursued.
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Figure 1.— Coordinate system.
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Figure 2.- Computational volume. Figure 3.- Body boundary points.
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Figure 4.- Comparison of computed and experimental pressure coefficients Cp
for the RAE wing C. Moo = 0.95; a = 0°; TR denotes taper ratio; and
AR denotes aspect ratio.
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Figure 5.- Comparison of computed and experimental (ref. 22) pressure coef-
ficients Cp for the ONERA M6 wing. MCO = 0.84; a = 3°.
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Figure 6.- Comparison of computed and experimental (ref. 22) pressure coefr
ficients Cp for the ONERA M6 wing, M^ = 0,92; a = 3°,
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Figure 7.- Comparison with computed .(ref. 23) and experimental (ref. 24)
pressure coefficients Cp for a parabolic arc of revolution. Fineness
ratio, 10; M^, = 0.99.
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Figure 8.- Comparison with computed (ref. 25) and experimental (ref. 26)
pressure coefficients Cp for a rectangular-wing—fuselage configura-
tion. M = 0.90; a = 0°.

-.6

-.4

-.2

cP o *

.4

NACA 63A006 SECTION

10

o COMPUTED SOLUTIONS °
FULL POTENTIAL ISOLATED WING

O SMALL DISTURBANCE,WING-FUSELAGE,NCR

EXPERIMENT, WING FUSELAGE
A UPPER SURFACE
V LOWER SURFACE

Figure 9.- Comparison of computed small disturbance and full potential
(ref. 25) pressure coefficients Cp with experiment (ref. 26) at mid-
semispan location.
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Figure 10.- Comparison of computed and experimental (ref. 27) pressure coef-
ficients Cp for swept-wing—fuselage configuration. M^ = 0.93; a = 0°.
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AXISYMMETRIC TRANSONIC FLOW INCLUDING WIND-TUNNEL WALL EFFECTS

By Jerry C. South, Jr., and James D. Keller
NASA Langley Research Center

SUMMARY

A method is presented for obtaining numerical solutions to the problem of transonic
flow past axisymmetric bodies in a wind tunnel. Parabolic coordinates are sheared and
stretched so that the flow region between the body and the tunnel wall is mapped onto a
rectangular computational plane. A finite-difference analog of the exact compressible
potential equation is solved with a column iteration scheme which uses Jameson's rotated
retarded differences in supersonic regions and central differences in subsonic regions.
The flow tangency condition at the surface is enforced by a "dummy-point" method, and
the wind-tunnel wall boundary condition is satisfied by a one-sided difference method.
Solutions are obtained for a supercritical body of revolution and compared with previous
calculations by RAXBOD, a program developed by South and Jameson for bodies in free
air, and with experiments. The present results are not as accurate as the RAXBOD
results for the same number of mesh points, and convergence is slow on the fine mesh.
The method appears to work very well, however, for two-dimensional symmetric airfoils.

INTRODUCTION

Rapid progress has been made in the calculation of transonic flows through the use
of iterative finite-difference schemes for the nonlinear potential equation. South and
Jameson (ref. 1) have already developed a successful method for obtaining numerical solu-
tions to axisymmetric transonic flow past blunt bodies of revolution in free air, using the
full potential equation and exact boundary conditions. The method incorporates Jameson's
"rotated" difference scheme (ref. 2) and is capable of treating both subsonic and super-
sonic free streams. The computer program that uses the method is called "RAXBOD,"
and is referred to by that name herein. .

To support the effort at Langley Research Center in developing a new high Reynolds
number transonic research tunnel, it was decided to extend the capability of RAXBOD to
include wind-tunnel wall boundary conditions. The present paper reports progress in that
direction. Described in the following sections are the coordinate systems that were con-
sidered, the boundary conditions, and finally some numerical results.
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SYMBOLS

A,B,C,D coefficients of the potential equation in computational coordinates

a local speed of sound

aj.ag^g coefficients of the general wind-tunnel wall boundary condition

c a constant in the function

F . transformation function X =

G . transformation function Y = G(£,TJ)

H defined by equation (15)

1/2
h scale factor, (|^ +. 7/2)

i ; slot parameter ,

M Mach number

q total velocity

R -residual

r radial distance from axis .

S value of parabolic coordinate TJ on body (a function of 4)

U,V velocity components in direction of unsheared parabolic coordinates
and TJ, respectively

U
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g coefficients of transformed wall boundary condition

w part of function G(£,?7)

X,Y computational coordinates

x,y Cartesian coordinates

Yx = rj - S(«)

z auxiliary stretching function in G(|,TJ)

a exponent in equation (10)

y ratio of specific heats

mesh size in computational space

change in <p for current iteration

^,TJ iirisheared parabolic coordinates
s

<p disturbance velocity potential function

w relaxation factor
v , . . . . »

Subscripts:

i,j mesh indices

JB value of j at body

JW value of j at wall

N • derivative normal to local streamline direction

S derivative along local streamline direction

1235



w at tunnel wall

0 0 free stream . . . . . - , . . . ,

Variable subscripts such as x, y, £, TJ, X, Y, S, and N indicate partial
2

derivatives; for example, cpt = £. Primes denote differentiation with respect to |
S"/ 9? at]

whereas a superscript + denotes a new value from the current iteration.

ANALYSIS

The coordinate system used in RAXBOD is a body-oriented one in the nose region,
back to the first horizontal tangent; a "sheared" cylindrical system is used aft of that
point. Hence, bodies with slope discontinuities in the forebody region are hot correctly

'.

treated; gaps appear in the coordinate system, as shown in figure 1 where the RAXBOD
coordinates are drawn for a Titan-Centaur-Viking launch shroud.

To improve this situation, it was decided to adapt .sheared parabolic coordinates to
the general axisymmetric problem. The parabolic coordinates have been used already
by Jameson (ref. 3) for the wing problem, and they have the versatile capability of treating
both blunt and pointed bodies. That is, for a blunt body, the singular point of the square-
root transformation can be fixed inside the nose (about one-half of the nose radius for
nearly parabolic noses is best), and for pointed bodies, the singular point is placed at the
apex. The £,TJ parabolic coordinates are related to the x,y Cartesian coordinates as
follows: .

x - x 0 + iy = i(| + iTj)2 (1)

where xo is the location of the singular point on the x-axis. A subsequent shearing to
fit the body and a stretching to map the infinite region to a finite domain complete the
transformation for free-air calculations. More details are given later. An example of
the sheared parabolic coordinates for a pointed body is pictured in figure 2. Note that
slope discontinuities do not leave gaps in the mesh.

Mapping the Wind-Tunnel Wall

It is desirable, although not necessary, to map boundary surfaces (including infinity,
.where appropriate) onto coordinate surfaces. When this is done, the differential equation
becomes more complicated, but the application of the boundary conditions is considerably
simplified. The basic idea in the present problem is to modify the sheared parabolic
coordinates so that in a rectangular, computational X,Y plane, the wind-tunnel wall
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coincides with Y = 1, the body with Y = 0, the stagnation streamline with X = 0, and
downstream infinity with X = 1. A simple procedure exists which can incorporate the
wind-tunnel wall into any of the mappings ordinarily used to map the infinite domain onto
a finite rectangle for free-air calculations; This procedure specialized for:the parabolic
coordinates is as follows: First the relation between the computational coordinate Y,
and the sheared parabolic coordinate, Yj = f] - S(£), is chosen, where Yj = 0 on the •
body surface. For example, one transformation that has been used is

Yj = z tan ^ (2)

where z is a parameter which controls the step size near the body, and can be made a
function of . £, so that the step size near the body can be better controlled as the distance
from the nose increases. The inclusion of a variable parameter z(|) is necessary for
axisymmetric flows, since the parabolic coordinates tend to spread rapidly near the body
tail, and the r~l axisymmetric term in the differential equation is poorly approximated
in the mesh cell nearest the surface unless the radial spreading is controlled. This fea-
ture was not evident in the two- and three-dimensional wing calculations by Jameson
(ref. 3). An example of the type of function used for z is

z =

where a and b are constants. This function is even in £ at £ = 0, behaves like £~1
for large £, and thus "causes the lines Y = Constant to approach horizontal lines of finite
height as £ — °°. The larger b is, the smaller the normal mesh near the body tail will
be.

Second, to incorporate the wind-tunnel wall in the transformation, replace Y by
wY in the relation between Y and Yj; for example, equation (2) becomes

•; . . (3)

The equation for w(£) is obtained by setting Y = 1 and Yj = TJW - S and solving
for w] for example,

w = •=

where, for a straight wall at y = yw = Constant, the parabolic coordinate rjw is obtained
from equation (1) as

"
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Note that the free-air mapping is recovered when yw ~ °°, for then from equations (5)
and (4), w —1 for all £ (0 ^ £ < « > ) . Note also that the simple transformation equa-
tions (3) to (5) accomplish the desired goal; that is, the wind-tunnel wall coincides with '
Y=l and the body with"' Y'= 0. ' ''• f ' i::> • • - ' -

A picture of the mesh is shown in figure 3 for a wind-tunnel wall height of one body
length and the tangent stretching that has served as an example.. It can be seen that the
Y = Constant lines intersect the forward axis and the wall at angles which become pro-
gressively more acute upstream. To avoid possible instability along the forward axis,
X = 0, some study was made to see what could be done to produce orthogonal intersections
there.

At the axis X = 0, the slope of a line for Y = Constant is given by

dx ~ Gt

where, in general,

Y = G(|,i7) . (7)

Hence, orthogonality at the axis requires

G^ = 0 (X = 0) (8)

If z is even near X = 0, then the requirement (eq. (8)) can be met if

v^ = 0 (X = 0) (9)

From equations (4) and (5) it can be seen that the tangent stretching, as presented, does
not satisfy w> = 0. One way to force Wt = 0 in the tangent stretching is to use a quad"
ratic relation for the intermediate variable Yj_; that is, let Yj = (77 - S)^. This result
is shown in figure 4, where the lines Y = Constant are orthogonal to the axis, but now
the step, size next to the body is too large. .

It happens that the family of algebraic stretch functions . ,

7 7 - 3 = ZWY (10)
(l - w^Y^)

satisfies the requirements very well. The relation between rj and Y is linear near
Y = 0, and for 0 < a < 1, w* = 0 and hence orthogonality at the axis is obtained. In the
present work, equation (10) is used with a = i. Figure 5 illustrates this transformation.

It
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There still remains the problem of nonorthogonal intersections at the wind-tunnel
wall. Transformations certainly exist which have orthogonal intersections at both the
axis and wall, but the ones considered do not seem to have a reasonable distribution of
mesh points. One such transformation is pictured in figure 6; this mesh is clearly unsuit-
able for the present problem. At any rate, it was found that the nonorthogonal intersec-
tions at the wall caused no difficulty with the treatment of the boundary condition there,
which is discussed later.

Equations

The partial differential equation for the disturbance velocity potential in parabolic
coordinates can be written as follows:

(a2 - U2)<^ - 2UV^n + (a2 - V2)^ = H . (11)

where

U = h'1^ + |\ (12)

V = If1^ - TJ) (13)

h2 = |2 + 7?2 . (14)

H - U2 - V2 - (u2 + vV^U + W) - a2h + X (15)

a2 = a2 - 21ll(u2
 + V2) ; (16)

a2 = 1 + - ?- - (17)

-

=
(y -

After transforming from the parabolic coordinates £ and TJ to the computational
coordinates X and Y, as discussed previously, where

(18)
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equation (11) becomes

= D

where the coefficients A, B, C, and D are complicated functions of £, 77,
<py, U, V, Ft, Ft t , Gt, Gfj, Gt t , Gt-, and G^. Details are given in appendix A.

At mesh points where the flow is subsonic, central difference operators are used to
approximate all the derivatives in equation (19); thus second- order truncation errors
occur at such points. As in references l>to 3, the "rotated" difference scheme is applied
to the principal part (second derivatives) of equation (19) at locally supersonic points.
That is, the equation is rearranged to identify, the terms contributing to <pgg and 9 ,̂'
the derivatives along and normal to the local streamline, respectively. For convenience,
this rearrangement is given in appendix B. The terms contributing to <pgg are upwind-
differenced, to first- order accuracy, and all the terms contributing to (p-^ are central-
differenced, with second-order accuracy. As discussed in references 1 to 3, special care
is required in choosing the mix between "old" and "new" values of <py at the various
mesh points in the computational molecule; otherwise instability can result on fine meshes.
Appendix C describes the difference equations, the mix of old and new values of <p. . , the
solution algorithm, and the convergence criterion.

, • r-

Boundary Conditions

In this section the boundary conditions and their numerical implementation are
described.

Body surface.- At the 'body surface, the flow tangency condition must be imposed

,V = S'U " (20)

where the prime indicates differentiation with respect to £. (Recall that S(£) is the
value of the parabolic rj- coordinate along the body surface.) Substitution of equations (12)
and (13) and the transformation equations given in appendix A into equation (20) gives

In deriving equation (21), the facts that Y = 0 on the surface and that F is a function
of £ alone have been used.

To impose the boundary condition (eq. (21)) on the numerical solution, a line of
"dummy"points inside the body surface is generated in the computational plane, as illus-
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trated at the top of figure 7. The value of (<PY)jB is obtaine<^ by evaluating the right-
hand, side of equation (21) by use of a central difference for #>x with old values for ^y.
The differential equation is solved at the surface point just as any other, interior point on.
the column; after the column is updated, before proceeding to the next column, the dummy
point <Pjft+i is updated as shown in figure 7 by using the new value for <PJB_I just
off the surface.

It should be noted here that in transonic flows with embedded shocks, better results
are obtained when the differential equation is solved at the surface; the reason seems to
be the singularity that occurs.at the foot of the shock — a result of the interaction between
the flow equations and the tangency condition at a curved surface, first discovered by
Emmons (ref. 4). In earlier work by the authors, a second-order-accurate extrapolated
boundary condition was used, similar to that used by Steger and Lomax (ref. 5); that is,
the value of <?TR at the surface was obtained by extrapolating the exterior flow field
to satisfy the tangency condition only. The results of this approach were good in the
absence of shock waves, but deteriorated rapidly as surface curvature and shock strength
increased. For the extreme case of a transonic circular cylinder, the present dummy-
point procedure gave much improved results near the shock and converged faster too.

Upstream and downstream infinity.- Upstream infinity corresponds to a single point
in the computational plane: X = 0, Y = 1. At that point, <p = 0. Downstream infinity
is located at the boundary X = 1 (0 £ Y ^ 1) and there <p is set equal to 0 also, although
it has not been analytically proved that this boundary condition is correct for all wind-
tunnel wall boundary conditions. It is correct for free air, for the porous and slotted
wall, and for the open jet; it is also used in the present work for the solid wall, even
though Murman obtains a nonzero result for <p at downstream infinity for the solid-wall
case in planar flow. (See ref. 6.) Nevertheless, imposing tp = 0 there produces cor-

f

rect numerical behavior of the derivatives, ^ and <py> and the fl°w returns smoothly
to a uniform, parallel state which is the real requirement. Certainly, further study of
this point is needed in the solid-wall case.

Wind-tunnel wall.- At the wind-tunnel wall, Y = 1, the open-jet, solid, porous, or
ideal slotted-wall boundary conditions which are in current use can be represented by the
equation

aj<? + a2<?x * a3(py =0 (22)

where x and y are Cartesian coordinates. Transformation of equation (22) to the
computational coordinates gives

<?Y = Wl(p + W2c?x (23)
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where

W3

W3
(25)

W3 = a3

The dummy-point method cannot be used here, because the functions Wj and
become unbounded as £ — 0 (upstream infinity), and instability will result. The
unboundedness of W^ and W2 is a direct result of the increasing nonorthogonality
of the lines X = Constant at the wall as X = 0 is approached. It is suggested that
even in Cartesian coordinates, if the coefficients in the boundary condition were such that
a3 were smaller in magnitude than a.± or a2, stability problems would occur. In the
case of large porosity, for example, where |a2| > |a3|, the tangential derivative is domi-
nant, and generating dummy points with a <pv-extrapolation tends to become ill-conditioned.

Instead of the dummy-point method, <p was calculated at the wall by using one-
sided derivatives for <p-£ and <py in equation (23) and solving for <Pjyf, as shown in
figure 7. By design, the coefficients of V^i j^ an<* Vi JW+1 are always less than
unity for all known models of the wind-tunnel wall; this method is found to be stable in
practice. "

. . . ' ' • t

RESULTS AND DISCUSSION

' The present method has-been applied to a supercritical body of revolution which is
designated D-l in reference 7. Figure 8 shows the pressure distribution on this body at
a Mach number of 0.991 for the free-air boundary condition (which was actually computed
by setting the potential function to zero at a distance of about 50 body lengths above the
body). Also shown in figure 8 are the results from the RAXBOD program for free air and
the experimental results from the Langley 8-foot transonic pressure tunnel. It can be,
seen that the free-air results from the present program are not the same as the free-air
results from the RAXBOD program in the region of the shock wave and the rear stagnation
point. It is felt that these differences are caused by the fact that:the truncation error in
supersonic zones, formally of first order, is larger for the rotated difference scheme with
the parabolic coordinates than the error of the rotated scheme with the RAXBOD coordi-
nates. The RAXBOD coordinates are nearly cylindrical and well alined with the flow in |
the large supersonic zone over the body, and they remain so to infinity. When the flow is
alined with the coordinates, the rotated scheme recovers the second-order-accurate,
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central-difference approximation for <?YY' althougn tne retarded (p^-difference
remains first order. For slender axisymmetric bodies near Mach 1, the supersonic
zones extend to great lateral distances, where the coordinates are stretching out rapidly
to infinity; it appears to be important to have a nearly second-order-accurate <PyY~
difference approximation in such cases. Unfortunately, the parabolic coordinates, and
their modifications as used here, begin to incline upstream at distances very close to the
body, and hence they are not well alined with the flow in much of the supersonic zone
where shock formation is occurring and where the mesh size is rapidly growing.

Further mesh refinement, at least in the Y-direction, would undoubtedly improve
the present results, but it would be impractical to do so; the convergence rate is painfully
slow on very fine meshes, as discussed in appendix C, and would require about 20 000 mesh
points - a number which approaches some of the coarse-grid three-dimensional calcula-
tions.' Figure 9(a) illustrates the convergence of the surface pressures with decreasing
mesh size; results are shown for the three mesh refinements (25, x 23, 49 x 45, and
97 x 89, the normal (AY) mesh being given second). The results in the nose region and
in the subsonic portions of the flow are good, but the important region near the shock is
still not accurate enough on the "fine" 97 x 89 mesh. RAXBOD, on the other hand, gives
results very close to those shown here on its medium 49 x 49 mesh. Figure 9(b) shows
the sonic lines obtained for each of the three meshes. The significant change in the. extent
and shape of the supersonic zone, as the mesh is refined, is evident. Also shown is the
sonic line obtained by RAXBOD with 97 x 97 mesh. As in the case of the surface pres-
sures, this RAXBOD result differs little from the RAXBOD results for the 49 x 49 mesh.

Despite the difficulty in obtaining accurate free-air results by use of the parabolic
coordinates, it is still possible to compare the effects of different tunnel-wall boundary
conditions. In fact, some of the problems with truncation error are likely to be alleviated
somewhat for the tunnel case, since the grid is fairly compact in the supersonic zone
between the body and the wall. It might be expected that the results for the body in the
tunnel are more accurate, relatively, than.the free-air calculations, if only for the reason
that the normal grid does not stretch out rapidly.

Results for various wind-tunnel wall boundary conditions and a "fine" 97 x 89 mesh
are shown in figures 10 to 12. In each of these figures, the wind-tunnel wall is located
1.78 body lengths away from the axis. This location for the wind-tunnel wall makes the
cross-sectional area of the tunnel equivalent to that for the experimental data. The exper-
iment, however, was performed in a tunnel with a square cross section which was slotted
on the top and bottom walls and had solid side walls. Figure 10(a) shows the pressure-
distribution results for the open-jet boundary condition (<p = 0) applied at the wall location.
It can be seen that the open-jet results show even less indication of a shock wave on the
aft part of the body than in the free-air case. Figure 10(b) compares the open-jet and
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free-air sonic lines. Figure ll(a) shows the pressure-distribution results for a solid-
wall boundary condition (<py = 0). In this case the shock wave is located farther aft than
the experimental shock. Figure 11 (b) compares the solid-wall and free-air sonic lines.
Figure I2(a) shows the pressure-distribution results for the ideal slotted-wall boundary
condition (<p + £^> = 0) where the slot parameter. S. has been computed by the method of
Chen and Mears (ref. 8) byx using a 3-percent open ratio, since the experiment was run
in a tunnel with approximately 6-percent open ratio on the top and bottom walls, but with ....
solid side walls. It can be seen that the shock location agrees well with the experiment. -
When the method of Davis and Moore (ref. 9) is used to compute the slot parameter S.
for use in the ideal slotted wall boundary condition, $. is about 10 times smaller than
the Chen and Mears value. The agreement is not as good; the theoretical results seem
to correspond to a more "open" tunnel boundary condition.

Figure 13(a) shows the free-air pressure distribution results for a Mach number
of 1.011, and figure 13(b) compares the sonic lines of the present method and RAXBOD.
At this Mach number the present method and the RAXBOD program disagree even more
than at the lower Mach number of figures 9 to 12 (M,*, = 0.991). This result is in line
with the contention that the more supersonic points there are in the disturbed part of the
flow, the larger will be the truncation errors in the rotated difference scheme with the
parabolic coordinates. The results are worst just in the neighborhood of the aft shock; .
they are so poor that it would be meaningless to attempt to show the effects of the various
wall boundary conditions. For the sake of checking the stability of the numerical proce-
dure for supersonic free streams, however, the case for the slotted wall with the Chen
and Mears slot parameter was calculated. The calculation was stable and-essentially
duplicated the free-air results, for whatever they are worth.

The relatively poor accuracy of the present method (compared with RAXBOD tot
the same number of mesh points) created another problem, namely, slow convergence, as
discussed in appendix C. It appears that to converge the solution of the difference equa-
tion within the accuracy>of the truncation error, the present column-iterative method will
be very expensive. For example, operating in a mesh-halving mode as described in ref-
erence 1, it has been found that converged solutions on each mesh were about 10 times
as expensive as the previous coarser mesh. It is likely that a convergence-acceleration '
method, such as developed by Hafez and Cheng (ref. 10), or possibly a "direct-solver"
approach, such as presented in this conference by Martin (ref. 11), may be far superior
to the present column-iteration method, at.least for the meshes with 5000 to 10 000 points.

Although the present program was written for axisymmetric flow, the axisymmetric
term can be omitted to compute symmetric (nonlifting) two-dimensional (2-D) flow. This
was done as a partial debug check to compare with Antony Jameson's unpublished, two-
dimensional airfoil program which uses parabolic coordinates. The meshes of both
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programs were duplicated very closely, and the results compared perfectly for both sub-
critical and supercritical free-air cases; even the convergence histories were identical,
the location and magnitude of the maximum residual agreeing at each iteration.

The results for two-dimensional supercritical flow, with characteristically smaller
supersonic zones, are considered to be good. The present method seems to work well for
the various wind-tunnel wall boundary conditions, as can be seen.in figure 14, which shows
an NACA 0012 airfoil at zero incidence at M^ = 0.8. The qualitative behavior of the
solution is correct; that is, the shock position for the open-jet and solid-wall tunnel bound-
ary conditions is, respectively, upstream and downstream from that of the free-air calcu-
lation. The slotted-wall simulations are also shown with the slot parameter S. given for
a 6-percent open'ratio by both the theories of references 8 and 9; the free-air results fall
between the two slotted wall results.

The calculations were compared with several experimental results for the NACA 0012
and MOO = 0.8, with Reynolds numbers of about 3 x 106 to 4 x 106. In all cases, the
experimental shock location was closest to that for the open-jet calculation. Thus there,
is a disagreement between the experimental results and the computed inviscid results for
the ideal slotted-wall boundary condition. To determine the effect of viscosity on the
shock location, a transonic, viscous, analysis program (ref. 12) was used to calculate this
case with a Reynolds number of 3.5 x 10^. It was found that the difference in shock loca-
tion between the inviscid free-air case and the viscous case was about 2^ percent chord,

tt

or about the same as the difference between the open-jet boundary condition and the slotted-
wall boundary condition by using a 6-percent open ratio and the method of reference 9 to
compute the slot parameter £. It is felt that if the effects of viscosity were included in
the present method, all the shock locations would be shifted forward and the calculation
using the slotted-wall boundary condition would agree closely with the experiment. If the
present method is extended to include lift and boundary-layer effects as in references 12
and 13, it should provide a powerful analysis tool for simulating a general two-dimensional
airfoil in a wind tunnel. It appears that Kacprzynski (ref. 14) has developed a method for
the conformal-mapping, "circle-plane" type of transonic airfoil analysis program whereby
the wind-tunnel wall is included in the final transformation, as in the present paper. He
gave no details of the numerical technique or the behavior of the coordinates in the phys-
ical plane, and he did not mention any numerical stability problems. He does, however,
mention the added difficulty of including a boundary-layer interaction, because it is very
costly to update the mapping function to account for the change in displacement thickness
for each inviscid/viscous iteration cycle. Since the parabolic coordinates have a simple,
closed-form relation with the Cartesian coordinates, it would seem that the present
approach should be very efficient for the viscous/inviscid interaction problem.
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CONCLUDING REMARKS

The use of parabolic-coordinates with Jameson's rotated difference scheme for
axisymmetric transonic flow does not produce results as accurate as those obtained by
RAXBOD, which uses coordinates that are nearly cylindrical and alined with the flow in
most of the embedded supersonic zone above the body. The present.method for mapping
the body and the wind-tunnel wall to coordinate surfaces, coupled with a "dummy-point"
method for enforcing flow tangency at the body and a one-sided difference method for the
wind-tunnel wall boundary condition, is a good approach; it can be adapted to the RAXBOD
type of coordinates.

The relatively poor accuracy of the present method creates a problem with slow
convergence. It is likely that a convergence-acceleration method or possibly a direct-
solver approach may be far superior to the present column-iteration method.

To end up on a pleasant note, the present method seems to work very well for
two-dimensional symmetric flows, and it can be easily extended to lifting flows with
viscous/inviscid boundary-layer interaction, since the relation between Cartesian and
parabolic coordinates is so simple.
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APPENDIX A

TRANSFORMATION OF THE'POTENTIAL EQUATION ' •""

The potential equation in parabolic coordinates is transformed to the computational
plane as follows, starting from equations '(18): • - ' ' < • •

(Al)

(A2)

(A4)

Substitution of equations (A3) to (A5) into equation (11) gives equation (19), with '

A = (a2 - U2)F| (A6)

B = 2Fj(a2 - U2)c^ - UVCJ (A7)

C = (a2 - U2)c2 - 2UVG|G7? + (a2 - V2JG2 (A8)

D = H - (a2 - U 2 ) F ( p x - (a2 - U2)c - 2UVG + (a2 - V ^ G l ^ (A9)

where H is given by equation (15).

The functions which are used for F(£) consist of two cubics joined together from
the nose to a location specified as an input parameter (usually the region of the body tail),
followed by an algebraic stretching to downstream infinity like that in the "normal" direc-
tion; for example,

(A10)

where ^ is the value of the parabolic coordinate at the specified junction between the
cubics and the square-root transformation, and c is a parameter needed to insure con-
tinuity of Ft. Note that 4 — °° as X — 1. It is straightforward to differentiate the
function F to obtain Ft and Ftt. For example, by starting from equation (A10),
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APPENDIX A - Continued

3/2

and

in the region

X 2 s X ^ l . (A13)

where X2 is the value of the computational coordinate at £ = !„. The expressions for
• Ft and Ft* in the region 0 sX sX2 are similarly obtained by differentiating the

cubic polynomials, and will not be written here.

The derivatives of Y = G(|,TJ) are more complicated and are given as follows,
starting from equation (10), for a = i:

It

Let

1' ' - T = \/l - w2Y2 (A14)

Then

' = £ (A15)

z*

Also,let

T! = ̂  ,. . (A17)

T2 = T (A18>

Then

G — Q*rf~* V IT1 i r P r P « i f A 1 (^fc = o U« - x l l j + l 2 l l . ^Aiy;

„ • (A20)
^ •/ 'I'l I •" ^ \ • I I.
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APPENDIX A ± Concluded

+ T2(l - 3w2Y2|G| + (T2 - 2^JY + T2y(T2 - f\ + 2T2ww'Y3

(A21)

Recall that primes denote differentiation with respect to |. s

1249



APPENDIX B

CANONICAL FORM FOR EQUATION (19)

The first step in deriving the rotated difference scheme is to rearrange the prin-
cipal part of equation (19) to simulate derivatives <pgg and <Pf^, along and normal to
the local flow direction. The appropriate grouping of terms is thus

(Bl)

(B2)

where

U = UG,, - VG^ (B3)

(B4)

q - ]/V2 + V2 (B5)

Then the canonical form for equation (19) can be written as

(a2 - q2)<pss + a2<^NN = D (B6)

where D is given by equation (A9). It is important to note that substitution of equa-
tions (Bl) to (B5) into equation (B6) gives equation (19).
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APPENDIX C

DIFFERENCE EQUATIONS AND ITERATION ALGORITHM .

The potential equation (19) or (B6) is solved by a type- dependent, column- iteration,
finite- difference scheme as in references 1 to 3. At each mesh point, the velocity com-
ponents are calculated by using the equations

hU = F.£<px + Gfc^y + £ (Cl)

. o . hV = G - T] , (C2)

where central differences are used for <px and <py> with values of <p^ from the pre-
vious iteration cycle. The speed of sound is then calculated from equation (16), and the
appropriate difference equations are used, depending on whether the flow is locally sub-
sonic or supersonic, as follows:

Subsonic Points

The difference equations at subsonic points are

-l J

(C4)

l (C6)

(C7)

In this appendix a "+" superscript denotes values of <p from the current iteration
cycle whereas no superscript denotes values of cp from the previous cycle. The index i
increases with increasing X, and the index j decreases with increasing Y. An over-
relaxation factor CD has been introduced at the central point in equation (C5), but not in
equation (C7). This procedure is another idea of Antony Jameson and is designed to
promote a continuous iteration matrix across the sonic line. If the three <p values in

procedure was designed for the older, nonrotated difference scheme, but it
works as well in the rotated scheme whenever a^ - U^ is small along the sonic line.
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APPENDIX. C -.Continued -,.

equation (C7) are also overrelaxed, the coefficients of the iteration matrix will indeed
have a jump across the sonic line in most situations. It should be pointed out that a
Garabedian- style estimate (ref. 15) has been made of the convergence rate of a similar
procedure applied to a column- relaxation solution for Laplace's equation. The results
indicate that in the limit of small mesh size, the convergence rate is unaffected by whether
the three values of <p on the column are overrelaxed.

It should also be pointed out that the "new" value from the previous columns <p?_. .
in the difference expression for <?x is used. A linear stability analysis of the procedure
applied to Laplace's equation on a variable mesh shows that the amplification factor can
be greater than unity if an "old" value is used there, and the instability cannot be con-
trolled by decreasing u>. This result is interesting in that stability is usually dominated
by the highest order derivatives as the mesh size tends to zero; in the present case, the
overrelaxation process causes the lowest order contributions of (p-^g and <px to be of
the same order. Use of the new value <Pjti j in equation (C3) produces conditional sta-
bility; that is, the amplification factor will be less than unity for a sufficiently small
positive u>. ,

Supersonic Points

At supersonic points, the difference equations and the mix of old and new values
of <p are arranged according to the rules set down in reference 2. Both central and
upwind differences are used, depending on whether they appear in <p-^ or <pgg, as
given in appendix B, as follows:

Derivatives in ^ j - - The derivatives appearing in the expression for

(eq. (B2)) are approximated by central Differences. .For <?XY and <PyY' equ^tions

and (C 7) are used, but for

, « + <-i,i :•• (C8)

i s used. ' • • ,;.. • • • • . . • • ' . • . - - • . - . . . - . . ' . • • . . . . • - ,

Derivatives in <?gg.- The derivatives in the expression for <pgg (eq. (Bl)) are

approximated by first -order -accurate upwind differences. The differencing is carried
out in the quadrant containing the tail of the velocity vector as explained in references 1
and 2. The difference expressions are given as follows for the situation where the velocity
component normal to a line Y = Constant, V, given in equation (B4), is negative:
" • . t.

+ +*- <C9)
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APPENDIX' C - Continued

= >.. - 2f +• + ̂  - 4 .̂! +. <^u ' ; '• (CIO)

Y /' /.: .;;
When V > 6, the quadrant is switched, and appropriate changes are made in <j£Vv and

: - r * . ' . • • : - ,/ » • " . . • . . - ^, x • • . •:

* The ^uantities ^Y and ^ are eva^uated as stated for equations (Cl) and (C2).

Added damping.- At supersonic points, an added damping term may be needed as
described in detail by Jameson in reference 2, F,or the coordinates, this term is propor-
tional to ..... . ;

[ ' ' . ' • . (C12)

where V and q are given by equations (B4) and (B5), and T represents the iteration
number as a third space-like variable. The derivatives in equation (C12) are given in
finite- difference form as

j-l; <Vl - «>« + "

Equation (C 14) is given for the case V < 0. Note that the damping term <pgT vanishes;
as the solution converges; that is, -. ~

1 <PS T-Q Kr^ij)' (C15)

The unknown ratio AX/AT is absorbed in a constant in the actual computer program. ;

; . Solution of the Difference Equations '
' " ' ' • • • ' ^ ' • ^

I, The difference equations given in this appendix are written as a tridiagonal system
on each column i = Constant; the "unknowns are ,the corrections,

(C16)
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APPENDIX C - Continued

and the system on each column is in the form

= Ry ' ' (C17)

The ay, by, and Cy are the tridiagonal coefficients, and it is easy to construct them
by collecting terms in the difference equations given here. By design, diagonal dominance
exists, that is,

M> hi + N (C18)

to guarantee stability of the solution of the equations on the column. The expression for
Ry is the "residual" /although it contains a mix of old and new values of <p^\; its value
at a local mesh point is close to the local error in satisfying the difference equations.
The exact solution of the difference equations corresponds to

Ry = 0 (C19)

for all i and j. , .

The equations are solved by advancing from one column to the next, starting at the
stagnation line and proceeding to the last column ahead of downstream infinity; thus one
iteration cycle is completed. Iterations are continued until convergence is achieved, as
described next. ; -

Convergence

In practice, of course, only an approximate solution to the equations can be obtained,
so the iteration is stopped when ••-

maxlRjil <e . (C20)
y | 1 J | . . . . • • • - . .

where e is some preassigned convergence criterion. Now the difference equations have
a formal truncation error at'a'local mesh point of order (AX) at subsonic points, and
of order AX at supersonic points. Theoretically, e should be small enough to insure
that for a given mesh, the difference equations will be solved within the accuracy .of the
truncation error. This is a very stringent criterion; the implication is that, .in the pres-
ent case, e should be something like , • , - : / . - • -

e = Constant x| (AX)1+(T (C21)
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APPENDIX C - Concluded

where a is between 0 and 1, depending on how many supersonic points there are in the
flow field. Many researchers have written their programs so that the difference equations

2. iv are the samehave been multiplied through by (AX) ; then max A(p.. and max RH
ij I m ij «

order of magnitude. In that case, the exponent in equation (C21) should be 3. + a; that is,

max
ij

Constant x (AX)3 +a (C22)

Some very crude estimates of the number of cycles to reach a given convergence criterion
can be made, and they are very discouraging. For example, if equation (C22) must be
satisfied, and if the asymptotic convergence rate estimated for successive overrelaxation
for Laplace's equation (ref. 15) is assumed

max (C23)

where n is the number of iterations and X is a constant, then the number of cycles to
converge n^x is proportional to

. .
Part of the present procedure is operation in a mesh-halving mode, as described in ref-
erence 1. By using the quantity (eq. (C24)), the ratio of the number of cycles to conver-
gence between mesh halvings can be estimated as

. L
(C25)

A typical sequence of three meshes would have AX = 0.04, 0.02, and 0.01, respectively;
in this case, the ratio given by equation (C25) is about 2.4 between adjacent meshes- Since
each mesh refinement has 4 times as many points as the previous mesh, calculation to.
convergence on the refined mesh may be 10 times as expensive as on the previous mesh.
Of course, the whole idea of mesh halving is to try to reduce the estimate given by the
expression (eq. (C24)) by providing better initial conditions for the new (finer) mesh. K
the truncation error is large, however, it appears that the initial conditions provided by
the coarser mesh are not close enough to the finer- mesh solution to be much help. In the
present program, the expense factor of 10 for each mesh refinement is about right.
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Figure 1.- Body normal coordinates for Titan-Centaur launch shroud.

Figure 2. - Sheared parabolic coordinates for ogive/cylinder/boattail
with simulated wake.
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Figure 6.- Computational grid. £ = \/l - e~z.
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BODY SURFACE: <p . = .0 =£> $y =J,(X),+ B?(X)
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Figure 7. - Boundary conditions.
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Experiment (81 TPT) .".' ,"
RAXBOD (free air)
Present method (free air)

Figure 8.- Pressure distribution for SCBR at M*, = 0.991.
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(b) Sonic line shape.

Figure 9.-SCBR at Moo = 0.991 with different grids and free air.

1262



-.4

-.2

0

.2

V4

.6

.8

.1.0

1.2

Experiment (81 TPT)
RAX BOD (free air)

—+— Present method (open jet)

(a) Pressure distribution.

LOCATION OF OPEN JET
BOUNDARY CONDITION

RAXBOD (FREE AIR)
PRESENT METHOD (OPEN JET)

(b) Sonic line shape.

Figure 10.- SCBR at MM = 0.991 using open-jet boundary condition for present method.
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Experiment (81 TPT)
RAXBOD (free air) l

—+_ present method (solid wall)

(a) Pressure distribution.

Figure ll.^'SCBR at

•TUNNEL WALL

— RAXBOD (FREE AIR)
PRESENT METHOD (SOLID WALL)

(b) Sonic line shape.

= 0.991 using solid-wall boundary conditions
for present method.
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(b) Sonic line shape.

Figure 12.- SCBR at M^, » 0.991 using slotted-wall boundary conditions
for present method.
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Figure 13.- SCBR at M^ * 1.011.
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Figure 14.- Pressure distribution on NACA 0012 airfoil at M*, = 0.8.
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COMPUTATIONAL TRANSONICS

By Paul R. Garabedian
New York University

SUMMARY

The purpose of this paper is to survey computational flow research supported by the
National Aeronautics and Space Administration at the Energy Research & Development ".
Administration Mathematics and Computing Laboratory of New York University on the
analysis and design of supercritical wing sections. The computer programs to be . .' .
described have important applications in the study of flight of modern aircraft at tran-
sonic speeds. Both two- and three-dimensional motio'hs of a compressible fluid are con-
sidered, but the effect of changes in entropy across shock waves is neglected so that a
velocity potential <p can be used. However, viscosity will be taken into account by
introducing a semiempirical turbulent-boundary-layer correction. Good simulation of
physically observed flows has been achieved, including an adequate prediction of the drag.

SYMBOLS

c speed of sound

CD drag coefficient

CL lift coefficient

f map function

g arbitrary analytic function

H shape factor

L quasi-linear differential operator

M local Mach number

p pressure
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q speed

s arc length

t artificial time parameter

u,v velocity components

x,y coordinates in physical plane

coordinates at mesh points

Xj coordinates in plane or space

AXJ mesh size

Oj,/3 relaxation coefficients

y ratio of specific heats

6 displacement thickness

fijfc Kronecker delta

0 momentum thickness

A+,A_ slopes of characteristics

|,T; complex characteristic coordinates

f,77 complex conjugates of £,77

£0 point corresponding to trailing edge

T skin friction

<f> velocity potential
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Subscripts:

j,k indices of coordinates

CalComp symbols:

Cp pressure coefficient -

M*N dimensions of mesh '

M local Mach number

NCY number of artificial time cycles

ALP angle of attack a

CL lift coefficient

CD drag coefficient

R Reynolds number

Ml inlet Mach number

M2 outlet Mach number

DEL TH turning angle

G/C gap-chord ratio -.:

ANALYSIS : • ' - ' •

The partial differential equation for the velocity potential $ can be derived from
a variational principle asserting that the integral over the flow field of the pressure PJ
considered to be a function of the speed q = |v$|, is stationary in its dependence on 0.
One application of the variational principle is to a nonlinear treatment of the vortex sheet
trailing behind a wing in space of three dimensions. Another application is to the formu-
lation of a finite-element method for wing-body combinations. Here it will suffice to
state the equation for 0 in the quasi-linear form
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where 6jk is the Kronecker delta and c is the speed of sound, which is related,to q
by Bernoulli's law ;

+ c
 7 = Constant

y - 1

The normal derivative of3 0 is set equal to zero at the boundary of the flow.

A finite-difference scheme for the transonic flow problem must include artificial
viscosity terms to define the weak shock waves that occur. Moreover, the difference
equations must be solved by a relaxation procedure that is best analyzed by thinking of
.0 as a function of an artificial time parameter t indicating the stage of the iteration.
The process that has been programmed at New York University can be described in
broad outline by writing down, rather than actual finite-difference equations, the time-
dependent partial differential equation

L[01 = S AXJ min(l-M2,0)I0X.|0xt T— 0x^Xi, + ^ ^l^xit + 00t
I ' ' J I ••* OXi J it J1

for 0, where M = q/c is the local Mach number. A second-order accurate central
difference approximation of the quasi-linear differential operator L on the left is used.
The first block of terms on the right, whose difference approximation has to be retarded
appropriately in the direction of the "flow, represents an anisotropic artificial viscosity
proportional to the mesh sizes AXJ. The second block of terms on the right controls the
iterative scheme by means of coefficients ou and ft that are chosen to optimize the
rate of convergence to a steady solution. The scheme as a whole has an invariance under
transformation of the coordinates which enables one to implement it in curvilinear sys-
tems adapted tO:the geometry of specific models arising in practice. (See refs. 1 and 2.)

• " The finite-difference scheme determining 0 that has been presented is similar, to
the method of Murman and Cole (ref. 3) for transonic flow computations. In particular,
since the divergence form of the equation for 0 is not used, the shock condition speci-
fying conservation of mass becomes lost except to the extent that it is enforcedly exter-
nal boundary conditions. However, because of the central difference approximation of L,
it is easy to 'arrive at the numerical equivalent of a conservation form of the equation.
To that end one has only to bring the differential operator 8/9xj appearing'in the artifi-
cial viscosity out in front of the factors like 1 - M2 involving first derivatives of 0 to
obtain ". • •- ,
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This equation is found to give better resolution of the shock jump at the expense of larger
truncation errors elsewhere in the flow field (ref. 4).

For the problem of boundary-layer — shock-wave interaction, it is more realistic to
ignore the divergence form and return to the first version of "the finite -difference scheme
because, in practice, the speed behind a weak normal shock wave in a thick turbulent
boundary layer tends to become barely subcritical, a property shared by the shocks cal-
culated by using the first method. For the boundary -layer analysis, which has only been
completed for two-dimensional flow around an airfoil, the displacement thickness 6 = H0
is computed by inserting semiempirical formulas of Nash and Macdonald (ref. 5) for the
shape factor H and the skin friction r into von Karman's integral equation

'q dx .

for the momentum thickness Q. The flqw calculation and the turbulent boundary- layer
correction are iterated together in turn. The main difficulty lies in the numerical treat-
ment of the Kutta condition at the trailing edge of the wing section, which involves too
much intricate mathematical detail to discuss here (ref. 1).

It is possible to arrive at second-order accurate expressions for the artificial vis-
cosity required in transonic flow computations (ref. 6). These ideas are of questionable
value for use with the method of Murman and Cole because of nonuniqueness associated
with the failure of the shock conditions. However, they have proved to be more success-
ful for the conservation form of the equation for 0, where additional truncation error
also makes them more of a necessity. Perhaps the most fruitful problem for higher-
order accurate procedures, though, will be that of three-dimensional flow past an oblique
wing on which the shocks tend to become smeared numerically when the speed behind
them remains supersonic. •

Computations from the code for analysis of the two-dimensional transonic flow past
an airfoil with a turbulent-boundary-layer correction have been compared extensively with
test data (ref. 1). The simulation of wind-tunnel pressure distributions is excellent for
given free- stream Mach number and lift coefficient. Drag creep can be .estimated ade-
quately, although drag rise is predicted too early, with an increment in Mach number of
the same order of magnitude as wall-effect corrections. As an example , of the results
obtained, figure 1 displays a comparison of the theoretical pressure distribution on
Whitcomb's earliest supercritical wing section with recently declassified experimental
data at an off -de sign condition with unusually large values of the lift and drag coefficients
(CL = 1.3 and CD = 0.06). (See ref. 7.) The success of the calculation is striking.

Two-dimensional computation of transonic flow seems by now to have reached a
level of advancement where it has become as useful a tool as wind-tunnel testing. It
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would be desirable to achieve the same goal for three-dimensional flow past models of
an airplane. Some of the mathematical techniques required for such an analysis have
been indicated herein. So far in practice only the case of an isolated oblique wing has
been treated numerically. The results compare favorably with experimental data col-
lected by R. T. Jones in his research on an oblique-wing transonic transport (ref s. 1
and 8).

DESIGN
i

Wind-tunnel tests have shown that it is feasible to design high-performance super-
critical wing sections by solving mathematically the inverse problem of shaping an airfoil
so that the transonic flow over it becomes shockless at specified conditions. The con-
struction of shockless flows is most effectively carried out by means of a hodograph
method based on complex characteristics (ref. 6). For practical applications it is essen-
tial to combine the method with a reliable turbulent-boundary-layer correction so as to
completely suppress separation and any loss of lift associated with it.

The idea of the supercritical wing can be used to improve the performance of com-
pressor blades. The computer program for calculating shockless flows by the method of
complex characteristics has been extended to the model of a two-dimensional cascade of
transonic airfoils (ref. 9). Preliminary estimates indicate that supercritical blades can
achieve the same compression as standard subcritical blades for significantly greater
gap-chord ratios. This means that the loss coefficient might be reduced by as much as
20 percent in the high compressor of a jet engine through the introduction of shockless
transonic blades. There are plans for a test of this concept in the cascade wind tunnel
of United Aircraft Corporation.

It is helpful to review the mathematical highlights of the design program in the con-
text of both isolated airfoils and cascades. The partial differential equation for a veloc-
ity potential 0 has characteristics which are solutions of the ordinary differential
equation ,

(c2 _ u2)dy2 + 2uv dy dx -f- (c2 - v2)dx2 = 0

where u and v are the velocity components. Consequently, the equations of motion
reduce to the canonical system
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in terms of characteristic coordinates | and 77, where

_ uv ± ic2 /I - M2 .
± 5 5 -

- . - • • - C * - U " • • • . • • • • •

Let the solution be continued analytically into the complex domain so that £ and 77
become two independent complex variables. The equations for u and v can be inte-
grated in the closed form

= - W =. log

1 - M2 + ie = log f (77)

where f is an arbitrary analytic function and qeie = u + iv.

To calculate x and y, appropriate paths of integration are laid down in the com-
plex £-plane and ?7-plane. Then, for each pair of paths a stable finite-difference scheme
of the form

y3 + X+x3 = yi

y3 + X_x3 = y2

is applied to solve a characteristic initial value problem with conjugate data

This procedure transforms the arbitrary analytic function g of the complex variable. £
into a solution of the nonlinear equations of gas dynamics. The answer has the symmetry
property

showing that the real physical plane corresponds to points with £ = T). The method also
serves to generate the right singularities in the hodograph plane to associate with the flow
at infinity for an isolated airfoil or a cascade (refs. 6 and 9).

There is only one independent analytic function in the representation of the general
solution of the partial differential equation for the velocity potential 0. Hence, for any

-given flow, there exists a relationship between the functions f and g. However, the
roles of the two functions are quite different in the numerical construction of shockless
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airfoils. The function f may provide a conformal mapping of some canonical domain
such as the unit circle | £ | < 1 onto the usually unknown image of the flow in the modi-:
fied hodograph plane.. On the other hand, g can be viewed as serving to fulfill boundary
conditions through the solution of an interpolation problem. It has been possible to gen-
erate a large collection of supercritical wing sections by using a quadratic polynomial
for f that leads to a univalent correspondence between points in the physical plane and
points in the £-plane (refs. 1 and 6). However, for airfoils with more camber, such as
those in a cascade of compressor or turbine blades, additional branch points occur in
the mapping to the hodograph plane and it becomes necessary to make more sophisticated
choices of f (ref. 10). A compressor blade that turns the flow through an angle of 29°
is displayed in figure 2 which was reproduced from reference 9. For this blade it was
helpful to use for f a cubic that accounted for an auxiliary branch point appearing just
inside the lower surface of the profile.

The design program is so efficient computationally that it has been tempting to
resolve the conflicts between various physical requirements on a desired airfoil by trial
and error. A more systematic approach is now under investigation in which the flow
region will be mapped onto the unit circle in the £-plane, where the analytic functions
log f and g will be represented by power series. Trigonometric interpolation at
equally spaced nodes on the circle can be used to implement this idea numerically. In
particular, the sonic locus M = 1, which is a singularity for the determination of g,
can be circumvented by integrating in the complex domain over disjoint paths consisting
of radial segments and circular arcs. The new approach has the advantage of eliminating
the issue of choosing many inscrutable mathematical parameters in favor of deciding on
a prescription for the speed q as a function of the arc length s along the profile being
designed.

A problem where the specific analytic behavior of the functions f and g becomes
important is the suppression of boundary-layer separation at the rear of the airfoil. For
a supercritical wing section, the speed at the trailing edge must be rather large so as not
to compare too unfavorably with speeds prevailing in the supersonic zone. One answer to
the problem is to introduce heavy aft loading (ref. 7). To avoid separation, the adverse
pressure gradient on the upper surface must remain bounded. On the other hand, an
Infinite positive gradient of the speed q is needed at the trailing edge of the lower sur-
face to provide the desired aft loading. Therefore, in the hodograph plane the profile
should become tangent to a level curve of q on the upper surface, but not on the lower
surface, at the point £0 corresponding to the trailing edge. One way to achieve such a
profile is to include in the map function f a fractional power (% - £o)

6 with 0 < € < 1.
Figure 2 shows the kind of pressure distribution that is under discussion. An airfoil
incorporating some of these ideas has been tested by the Grumman Aerospace Corporation
with considerable success.
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There is under way a fairly extensive program of testing shockless airfoils
designed by the method of complex characteristics! A new test is planned at the National
Aeronautical Establishment in Ottawa, which has been the most prolific source of experi-
mental data for comparison with the transonic flow computations described herein. In
addition to the work by the United Aircraft Corporation and the Grumman Aerospace
Corporation that has been mentioned, three-dimensional experiments will be conducted
at the NASA Ames Research Center on a Boeing model of Jones's transonic transport
furnished with an oblique supercritical wing designed at New York University. To jus-
tify the major mathematical effort that has been invested, it would be gratifying if one
of the shockless airfoils were ultimately to find its way onto a prototype airplane to be
flight tested.
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APPROXIMATE METHOD FOR CALCULATING TRANSONIC FLOW

ABOUT LIFTING WING-BODY COMBINATIONS

By Richard W. Barnwell
NASA Langley Research Center

SUMMARY

A fast approximate method is described for calculating transonic flow about lifting
configurations with swept leading edges and aspect ratios of order 1 at angles of attack of
the order of the equivalent-body thickness-length ratio. The method accounts for shock
waves, leading-edge separation, and wind-tunnel wall effects and is applicable throughout
the Mach number range from zero to low supersonic.

INTRODUCTION

The results of the analytical treatments of Barnwell (refs. 1 and 2) and Cheng and
Hafez (ref. 3) are used to reduce the problem of transonic flow about lifting wing-body
combinations with aspect ratios of order one at angles of attack of the order of the body
thickness-length ratio to several simpler two-variable problems. As indicated in fig-
ure 1, this approach has been used successfully in previous studies of transonic flow past
slender bodies at angles of attack of the order of the body thickness-length ratio (ref. 4).
and wing-body combinations with aspect ratios of order one at angles of attack of the
order of the wing thickness-chord ratio (refs. 5 and 6, for example). A more general
requirement for the angle-of-attack range for the latter problem which accounts for flat-
plate wings is that it be of the order of the square rpot of the equivalent-body thickness-
length ratio.

The analysis given in references 1, 2, and 3, which was performed with the method
of matched asymptotic expansions, can be used to reduce the problem of three-
dimensional transonic flow past lifting wing-body combinations to two simpler problems.
The first of these problems involves the determination of the basic lift solution by one of
several approximate methods. This solution is of first order in sin a where a is the
angle of attack. The second problem is concerned with obtaining the solution to a coupled
lift and thickness potential of second order in sin a and the equivalent-body thickness-
length ratio. The approximate governing equation for the second-order lift and thickness
potential has derivatives with respect to only two independent variables and can be calcu-
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lated numerically with the two-variable form of the method of relaxation developed by
Murman and Cole (ref. 7).

SYMBOLS

B constant in equation (26)

b semispan

CL lift coefficient

Cp pressure coefficient , .

C* sonic pressure coefficient

f(x) lift distribution function for attached flow given by equations (8) and (13)

fv(x) lift distribution function due to leading-edge vortex given by equation (16)
- . - ' . ' . \ ' . . . . " ' ' ' • . - '

I characteristic length in x-direction, configuration length unless otherwise
noted

MOO •; free-stream Mach number

P coefficient for porous-wall boundary condition (see eq. (24))

R distance defined by equation (10)

r radial coordinate

rt)(x) local body radius

Seff effective cross-sectional area of lifting configuration given by equation (26)

Sref reference area for lift coefficient

u,v,w body-oriented perturbation velocity components In axial-, radial-, and cross-
flow directions, respectively
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x coordinate in streamwise direction

y coordinate in spanwise direction

yg(x) planform shape

z coordinate in vertical direction

a angle of attack

ft = \/M! - 1

ratio of specific heats

quantity defined by equation (25),

6 body-oriented polar angle

u> wind-oriented polar angle

K • coefficient for slotted-wall boundary condition (see eq. (23))

A function defined by equation (20) -

\ function defined by equation (21) or (22)

$0 . potential defined by equation (18)

<f>a linear lift potential

<p perturbation velocity potential - - .

<"0>^1»^2 coefficients of Fourier components of <p (see eq. (5))

v| Laplace operator in cross-flow plane defined by equation (3)
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Subscripts:

eb equivalent body .

i beneath wing

max maximum value -

te trailing edge

u above wing

v vortex

Primes denote differentiation with respect to x. A bar over a symbol denotes
transformation in cross-flow plane defined by equations (14). A tilde (~) over a symbol
denotes transformation in cross -flow plane defined by equation (15).

DESCRIPTION OF METHOD

The coordinate systems which are used are depicted in figure 2. These coordinate
systems are wind -oriented with the X-axis in the streamwise direction and the Z-axls in
the vertical direction. The cylindrical polar system x,r,o> is used to compute the
second-order coupled lift and thickness potential.

In the present method wing -body combinations are approximated with combinations
composed of bodies of revolution with the equivalent -body area distribution and a flat-
plate wing. Velocity components and lengths are made nondimensional with the magni-
tude of the free-stream velocity and the configuration length, respectively. The method
is restricted to configurations with swept leading edges. The planform shape Is speci-
fied with the function y2(x).

N

Let ^(x,r,o)) be the small -disturbance perturbation velocity potential and 0a

be the linear lift potential. It is shown in references 1 and 2 that for transonic flow <p
and (pa are governed by the equations

(!)

and .

v20a = 0 (2)
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respectively, where M^, and y are the free-stream Mach number and the ratio of -
specific heats, respectively, and where v| is the two-dimensional Laplace operator in
the cross-flow plane which can be written in the forms ' - ' • - • •

_ . o 9 9 - 99 fl 1 3 1 A A A

Solutions to equation (2) are called slender-wing solutions and are applicable if the span-
length ratio is small or, as in the present case, if M^ is near 1. More generally,
the lift potential 0a satisfies the equation ;

-v20a = 0 (4)

The present method consists of first determining the potential </>a by analytical
or numerical methods, and then using the known solution for (f>a and equation (1) to
obtain an approximate, two -variable equation for <p which is solved numerically with .. .
the method of relaxation. The method can be applied in the Mach number range from
zero to the supersonic value at which the wing leading edge becomes sonic.

In this paper both attached and separated leading-edge flows are considered.
Three different methods for determining <j>-a are employed depending on the Mach num-
ber. First consider the transonic regime where equation (2) applies and slender wing
theory i s applicable. v . . - - - - . • • • • . ? .

From equations (1) and (2) and the boundary condition for flow in free air, it can be
shown with the method of matched asymptotic expansions (refs. 1, 2, and 3) that the solu-
tion for <p' arid (pa for points near the configuration but beyond the wing tip where*
r > y are'of the form •

> + <?2(x,r) cos 2o> + . . . , . (5)

and

where "' ' • '
" • . •*

^l(x,r) = sin a f(x)l (6)

and '

«?2(x,r) = sin2 ak±l f'(x) f"(x) - I f(x) f '(x) -L~| (7)
' " '
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The primes in equation (7) denote differentiation with respect to x. The potential
<PQ(X,T) in equation (5) cannot be completely determined with the method of matched
asymptotic expansions. It should be noted that the term <?% cos 2(t> in equation (5)

A

results because of the presence of the nonlinear term -2- — £ in equation (1) and is9x ax
significant only at transonic speeds.

For attached flow the function f (x) in equations (6) and (7) is written as

f(x)=|<l
rb(x)
y2(x) '} (8)

where rb(x) is the body radius. This function gives the lift accumulated from the con-
figuration nose to the axial station x.

It is shown in reference 2 that at large distances from the configuration, the poten-
tial <? should be written as

<pj(x,r) = sin a

where

R = (l -

(9)

(10)

f(x) =
f(D

for MOO < 1 and as

<?i(x,r) = sin a ^—
(x -

where

/3 = \JMl - 1

on the interval 0 £ x - /3r ̂  1 for
< 1, the function ^2 varies as

(x<0)

/3r
(ID

> 1. In this paper it is assumed that for

(12)

For MOO > 1, equation (7) is used in the region r < S x S 1. Outside this region
is made to vanish.
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For Mach numbers appreciably less than 1, solutions to equation (4) for 0a are
obtained with the approximate method of Lawrence and Flax (ref. 8) for wing-body con-
figurations. This method, which is an extension of that of Lawrence (ref. 9) for wings
alone, and which is applicable to configurations with straight trailing edges and aspect
ratios oif order one, obtains a solution directly for the lift distribution function f(x).
This solution satisfies the trailing-edge Kutta condition to lowest order whereas the
slender-wing solution given by equation (8) does not. The terms in equations (6), (7), (9),
(11), and (13) which depend on f(x) and its derivatives are evaluated with this solution.
It can be shown from the results of references 8 and 9 that the function f(x) is obtained
from the values of the potential (f>a on the upper and lower surfaces of the wing, which
are designated as 4>a u and 0a £> respectively, by the equation

(13)
y = 0

where the transformed coordinates y,z are related to the physical cpbrdinates y
and z by the equations

r2
y = y|

z = z 1 +

(14)

Approximate values for the potential 4>a on *^e configuration .surface are obtained in
this paper from equation (13) and the assumption that the spanwise variation of 4>a is
proportional to that obtained from slender-wing theory.

For supersonic attached flow an approximate solution is obtained with the quasi-
conical method of Carafoli (ref. 10) for flow past wings with subsonic leading edges.
First the transformation given by equation (14) is applied. It should be noted that this
transformation maps the body surface r = ^(x) to the vertical plane y = 0 so that
methods for flow past wings alone can be applied in the transformed space. Then the
quasi-conical approximation for the potential <pa in the transformed space is deter-
mined. The function f(x) is then obtained by numerical integration of equation (13).
It is assumed in the present paper that the wing leading edge is subsonic. It should be
noted that the leading edge of a wing-body becomes supersonic at/the wing-body junction
at a much lower Mach number than simple sweep theory indicates because of the influ-
ence of the body.
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Both Lawrence and Flax theory for subsonic flow and quasi -conical theory for -
supersonic flow reduce to slender-wing theory for M^ = 1. As a result, the linear lift
approximation used in this paper varies uniformly throughout the transonic regime.

As mentioned previously, the present method can account for separation at the wing
leading edge. As an example, the case of separated leading-edge flow over a delta wing-
is illustrated in figure 3. Several methods have been developed for calculating this type"
of flow, some of which are depicted in figure 3. In all these methods the linear lift
potential (f>a is assumed to be composed of two components, one of which is the same
as the attached-flow potentials previously discussed, and one which accounts for the flow
due to the vortex. The Brown and Michael vortex-flow model (ref. 11) consists of a vor-
tex core and vorticity feeding sheet located at each wing tip. ^The strength of the vortex
core is adjusted so that the wing-tip singularity on the attached-flow solution is canceled.
The Smith model (ref. 12) includes several sections of the vortex sheet as well as the
vortex core and vorticity feeding sheet. For both these methods, it is assumed that
the flow is governed by equation (2), the Laplace equation in the cross-flow plane, so that
the solutions are of the slender-wing type. Although this type of solution describes the
flow associated with the vortex fairly accurately, it does not provide a good estimate of
the attached flow except for Mach numbers near 1.

In this paper the Brown and Michael method is modified for free-stream Mach num-
bers appreciably different from 1 so that, as indicated in figure 3, the vortex poten-
tial is governed by equation (2) and the attached-flow potential is governed by equation (4).
It should be noted that this method has also been used by Sacks, Lundberg, and Hanson
(ref. 13) for subsonic flow. In addition, these authors have combined a preliminary ver-
sion of the Smith vortex-flow model, the model of Mangier and Smith (ref. 14), wjth the
subsonic attached-flow theory of Lawrence. In the present paper, the modified;Br;own
and Michael model, rather than the modified Smith model, is used because of its simpli-
city and speed of implementation. . ,

In the process of determining the vortex-flow potential, the configuration; cross ;
section in each cross-flow plane is mapped to a vertical slit with equation (14) and the
additional transformation •

~ \/2v = 2-s.y 2
/_ 0 ^O

(y - z

[
/_ 0 _O

(y - z

-?i)2H

-2\2

•y|) H

H 4y2z2

K 4y2z2

"2 - z2 - y|!
1/2

1/2:
(15)
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where

H the. location of the vortex core in the transform plane is designated as
tribution of the vortex flow to the linear lift distribution function is

z^, the con-

fv(x) = y2(x) + z2(x) (16)

For separated leading-edge flow, fv(x) must be added to the function given in equa-
tion (8) or (13).

Once the linear lift potential 0a has been obtained, the nonlinear potential <p
can be calculated. In the present approximate method, it is assumed that the dependence
of <p on u at points beyond the wing tip where r > y2(x) is. given by equation (5).
When this equation is substituted into equation (1), the approximate two -variable equation

l - M l)M2 2
ax

22 + 1 f£ = -yViCx, r) sin « + 4?2(x,r) cos 2 J .
ar2 r 8r r2L J

2M2 f(x) f'(x) 1- (17)

is obtained. At points inside the wing tip where r < y2(x), it is assumed that the velocity
potential <p can be approximated as :

where $o(
x»r) is assumed to be averaged over the region above the wing (0 i w ̂  IT) or

beneath the wing (0 5 u> 5 -TT) depending upon whether the sign of the computational
u>-plane is positive or negative. If the computational o>-plane is the wing plane where
(i) = 0, $0(

x,r) has two values, one above and one beneath the wing. The governing equa-
tion for $0(

x»r) is obtained from equations (1), (2) or (4), and (18), and an approximate
form of the linear lift potential <t>a. This approximate form is simply the one-term
expansion of 4>a about the configuration axis. The equation which governs 3>o(

x>r) is

*o 1 a (^ -2- rr 9r\ = T: sin a (19)

where

A = 1 - M^ - (Y + 1)M|, <$0 ± sin a

I
(20)
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and where. . .

\ = A (21)

if $a is governed by equation (2) and

\ = A - (l - M£) ... (22)

if 0a is governed by equation (4). The upper and lower signs in equations (19) and (20)
apply above and beneath the wing, respectively, and the prime denotes differentiation with
respect to x.

The boundary condition at the configuration axis is '

-; Limitfr-^2) = rb(x) r/(x)
r-0 V 9r/

As stated previously, the present method can accpunt.for the presence of solid, slotted,
and porous tunnel walls. For slotted and porous walls the boundary conditions are

(23)

and

0(0 -r* 3(0 I \ /— . v

TT- = -p 7T- (r " rwall) (24)9r 3x wo~ij./ • - \ /

respectively, where K and P are constants which depend on the wall characteristics.
(See ref. 15.) For solid walls the derivative 3<p/3r vanishes.

Equations (17) and (19) can be solved in a plane of constant o> with a two-variable
successive line overrelaxation procedure. Separate solutions must be performed in
each w-plane where results are desired. The procedure which is used in this paper is
similar to that used by Bailey (ref. 16) except that the shock difference operator devel-
oped by Murman (ref. 17) is included. This operator tends to predict the jump condition
at strong shock waves more accurately than previous operators. A detailed description
of the present relaxation procedure is given in reference 2.

• For free-stream Mach numbers below 1, the trailing-edge Kutta condition must
be satisfied at least approximately in order for the solutions to be physically realistic.

'For a configuration with a straight trailing edge located at x = xte, this condition can be
expressed as

^(xfg+Ax^+O) - (?(xte+Ax,y, -0) = <p(xte,y,+0) - <?(xte,y,-0)

where Ax is the mesh spacing for the x-coordinate and z = ±0 designates the upper
and lower surfaces of the wing and trailing-vortex sheet. For shockless flow which is
attached at the leading edge, this condition is enforced automatically if $a is obtained
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from the theory of Lawrence and Flax. If <f>a is obtained from slender -wing theory; '
the condition is met for shockless attached leading-edge flow by requiring that the
derivative y« approach zero at the trailing edge of the wing. It can be shown that if
the flow at the leading edge is separated, the contribution of the leading -edge vortex sys
tem to the derivative <£# on the inboard portion of the wing is of the form

« -+ sin a \(~2 , s2V
a - ± - —KYv + zw -

Of course, equation (25) is not valid on the outboard portion of the wing near the vortex.
If the computational plane is the wing plane where w = 0, partial account of the effect of
shock waves and leading-edge separation on the Kutta condition is taken by imposing the
condition

xte

The subscripts u and S. designate values on the upper and lower surfaces of the wing
and vortex sheet. This additional adjustment for the Kutta condition is not made for com-
putational planes other than the wing plane.

The pressure coefficients which are presented in this paper were calculated in
terms of body-oriented coordinates. If the body-oriented velocity components in the
axial-, radial-, and cross-flow directions are u, v, and w, respectively, the pressure
coefficient is written to second order as

= -2[u + sin a(v sin 9 + w cos 0)1 -

where 0 is zero in the wing plane and positive above the wing. It is well known that the
pressure coefficients obtained with slender-wing techniques for the upper and lower sur-
faces of the trailing vortex sheet do not agree if r^ does not vanish aft of the trailing
edge of the wing. However, the differences are small if rt,/y2 « 1. In this paper these
differences are shown when they occur.

NONLINEAR EFFECT OF LIFT

It is well known that the effect of thickness is to deflect streamlines outward from
the configuration. It can be shown that for near-sonic flow, lift can also have this effect
in addition to the usual downwash effect. The manner in which lift causes this outward
deflection is shown in figure 4. The cross-sectional area of stream tubes is minimum
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where the flow is sonic. The effect of lift is to increase the velocity in the stream tubes
above the wing, and decrease the velocity in the stream tubes beneath the wing. For con-
figurations traveling at transonic speeds, both the increase and decrease are deviations
from near-sonic flow. Thus the cross sections of practically all the stream tubes about
the body increase so that the streamlines are deflected outward more than they would be
by thickness effects alone. It should be noted that this phenomenon does not occur for
completely subsonic or completely supersonic flow, where an increase in stream-tube
size on one side of the wing is compensated by a decrease on the other.

From the analytical results of references 1 and 2, it can be shown that the effective
cross-sectional area Seff of a lifting wing-body combination with an aspect ratio of
order one traveling at transonic speed is

^2 1
Seff = T \4;r dx

(26)

where reb is the radius of the equivalent body and Sref is the reference area for the
lift coefficient. The analysis indicates that the constant B is related to the maximum
radius of the equivalent body refc max> the semispan b, and the length scale in the
x-direction I by the equation

B = loge ( *2 } '(27)
\breb,max/

No information about I can be obtained from the analysis other than the initial assump-
tions that it is of the same general order of magnitude as b and is much larger than
reb max- Although it was assumed in references 1 and 2 that I was the configuration
length, it would probably be more realistic to assume that I is the length of the lifting
region.

In view of the uncertainty in the identity of I, it may be preferable to obtain the
constant B from experiment rather than from equation (27). This might be accom-
plished by placing the model in a solid-wall wind tunnel at the zero-lift condition:and at
a subsonic Mach number somewhat below that required to choke the tunnel. The lift on
the model would then be increased until the tunnel becomes choked. The maximum effec-
tive cross-sectional area of the model Seff max is simply the area required to choke
the tunnel, which is known as a function of Mach number. The constant B could then be
determined from equation (26) with the derivative dCL/dx evaluated either experimen-
tally or'analytically. •••'..'-.
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RESULTS

The results of the present method for incompressible, attached flow past a wing-
body: combination are compared with those of a standard linear panel method (ref. 18) in
figure 5. The linear lift potential is obtained from the theory of Lawrence and Flax.
The configuration which is shown on the left side of the figure is composed of an ogive -
cylinder-ogive body and a flat-plate wing with a leading-edge sweep of 45°. The length
of each ogive is one-quarter of the body length. The results for the body pressure dis-
tribution in the wing plane, that is, the pressure distribution along the intersection of the
body surface and the wing plane, are compared on the right. In the region of the wing,
the results shown are those for the root-chord pressure distribution. It is seen that the
results of the two methods are in fair agreement. '

In figure 6 the results of the two methods are compared for supersonic attached
flow. The linear lift potential is obtained from quasi-conical theory. The shock wave
and sonic-line locations as predicted by the present method are shown on the left side of
the figure. It is seen that there is a slightly detached bow shock, a tail shock which
intersects the body just upstream of the rear apex, a weak shock in the vicinity of the
wing, and small pockets of subsonic flow at the ends of the body. The results for the,
body pressure distribution in the wing plane are compared on the right side of the figure.
It-is seen that there is good agreement in the vicinity of the wing. There is some dis-
agreement on the forebody where the flow is transonic and hence where linear methods
tend to be inaccurate. The ability of the present method to calculate transonic flow over
slender bodies has been demonstrated by Bailey (ref. 16) and Barnwell (ref. 2). The dis-
agreement in the results for the afterbody is not fully understood. It has been observed
that the results of the present method sometimes deteriorate in regions where the body
curvature increases instantaneously. It should be noted that this configuration with dis-
continuous changes in body curvature was chosen because of the requirement for the lin-
ear method that the body radius must be constant in the region of the wing.

An example of the type of results which the present method can provide for tran-
sonic flow past wing-body combinations is given in figure 7. The free-stream Mach
number is 0.98, and the angle of attack is 6°. Slender-wing theory is used to determine
the linear lift potential. The configuration is composed of a parabolic-arc-of-revolution
body with a fineness ratio of 10 and a flat-plate wing with a strake. The shock-wave and
sonic-line, locations in the wing plane are shown on the left side of the figure. Note that
there are two pockets of supersonic flow. The first pocket is initiated by the expansion
around the forebody and is terminated by a small shock near the beginning of the apparent
bump due to lift. (See eq. (26).) The second pocket is initiated by the expansion around
the apparent bump due to lift and is terminated with a shock near the trailing edge of the
wing. The pressure distribution is shown at the right. It can be seen that there are
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shocks both above and beneath the wing, and that the strength of the shock above the wing
is much greater than that of the shock beneath the wing.

The results of the present method for the dependence of the lift coefficient CL on
the angle of attack a for separated flow past a delta wing are compared in figure 8 with
experiment and the results of other methods. The comparisons for low-speed flow are
presented on the left side of the figure. The experimental data are those of Peckham
(ref. 19). It is seen that the results of both Brown and Michael (ref. 11) and Smith
(ref. 12) overpredict the data, the latter being more accurate than the former, and that
the results of the suction analogy of Polhamus (ref. 20) are essentially in agreement with
the data. It is also seen that the results of the present method overpredict the data to
about the same degree as those of Smith. The suction analogy was not employed in the
present method because the spanwise effects of vorticity cannot be determined with it.
Results for supersonic flow with M*, = 1.96 are shown on the right side of the figure.
The experimental data are those of Hill (ref. 21). It is seen that the trends for super-
sonic flow are the same as those for low-speed flow. The suet ion-analogy results for
supersonic flow were obtained from reference 22.

The effects of leading-edge separation on transonic flow past a lifting wing-body are
shown in figure 9. In this figure the results for attached and separated flow past a wing-
body combination with Moo = 0.98 and or = 6° are compared. On the left side of the
figure it can be seen that the only effect of leading-edge separation on the shock-wave and
sonic-line locations in the wing plane is the slight backward shift of the rear shock toward
the trailing edge of the wing. The body-surface pressure distributions in the wing plane
are compared on theQight side of the figure. It is seen that separation affects the pres-
sure distribution considerably both above and beneath the wing.

The results for transonic flow past a lifting configuration in free air and in a slotted
tunnel are compared in figure 10. The Mach number and angle of attack are M^, = 0.98
and a = 12°, respectively. The slotted-tunnel case is for a configuration with a span of
1.524 m (60 in.) in an axisymmetric model of the Ames 14-foot transonic wind tunnel.
Since this is an almost square tunnel with evenly spaced slots on all four walls, it can be
approximated reasonably well in this manner. The results show that the outer part of the
supersonic region is truncated by the tunnel wall and that the effect of the wall is to shift
the shock forward.

The effects of a solid tunnel wall on the shock-wave and sonic-line locations in the
wing plane for slightly supersonic flow past a lifting wing-body combination are shown in
figure 11. The Mach number and angle of attack are M^ = 1.02 and a = 10°, respec-
tively. The results for free air are shown on the left, and those for flow in the tunnel are
shown at the right. It is seen that the bow shock is reflected at the tunnel wall and that
the reflected shock intersects the aft shock in such a manner that the subsonic pocket at
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the rear of the configuration is enlarged considerably. The location of the reflected
shock in the region of the intersection is not shown because of the difficulty in locating
weak oblique shock waves.

* '- "'^ CONCLUDING REMARKS ~

An approximate method for calculating transonic flow about wing-body combinations
at angles of attack of the order of the body thickness ratio has been presented. The
region of applicability of the method extends from the supersonic Mach number at which
the leading edge is sonic to zero. The method accounts for shock waves, leading-edge
separation, and wind-tunnel wall effects and is computationally efficient. None of the
computations presented in this paper required more than 4 minutes of CPU time on the
CDC 6600 computer.
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Figure 1.- Past and present applications of slender-wing and slender-body theory.
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Figure, 2.- Coordinate system.
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Figure 3.- Models for leading -edge separation.
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Figure 4.- Outward displacement of streamlines by both lift and thickness effects

at transonic speeds.
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Figure 5. - Comparison of methods for subsonic flow. M^ = 0; a = 4°.
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Figure 6.- Comparison of methods for supersonic flow. M^ = 1.1; a = 2°.
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Figure 7.-Wing-plane results for transonic flow. M^ = 0.98; a = 6°.
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Figure 8. - Leading-edge separation for delta wing with aspect ratio of one.

1301



SHOCK-WAVE AND SONIC-LINE
LOCATIONS

BODY PRESSURE DISTRIBUTION
IN WING PLANE

SEPARATED FLOW
— ATTACHED FLOW

LEEWARD
~5|~

Figure 9.-Effect of leading-edge separation. Moo = 0.98; a = 6°.
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RECENT ADVANCES AND CONCEPTS IN UNSTEADY

AERODYNAMIC THEORY

By Samuel R. Bland
NASA Langley Research Center

SUMMARY

A survey of recent activity in unsteady aerodynamics is given with results taken
from recent research sponsored by the Langley Research Center. The applicability of
potential theory is illustrated for subsonic, transonic, and supersonic flows. The point
of view is that of the aeroelastician, who is concerned chiefly with small amplitude har-
monic motion. In the important area of transonic flow, the wide variety of current activ-
ities is described. The need for efficient approximate solutions, for high-quality bench-
mark solutions, and for reliable experimental data is pointed out.

INTRODUCTION

Historically, much of the interest in unsteady aerodynamic theory has been prompted
by attempts to understand and predict flutter phenomena. Flutter is a self-excited aero-
elastic instability in which aerodynamic, elastic, and inertia forces are coupled together
(ref. 1, pp. 7-8). In flutter analysis, one is interested in the stability of infinitesimal
oscillations of the structure. For this reason, the unsteady aerodynamicist is chiefly
concerned with small amplitude harmonic motion. Since aircraft flutter problems gener-
ally are most severe at transonic speeds, the analyst must deal with this inherently diffi-
cult speed regime.

This paper provides a brief survey of recent research in unsteady aerodynamics.
Although the results shown are taken from work performed for the Langley Research
Center within the last 3 years, reference to other research is included. Since nearly
all the work discussed depends on solution of the small disturbance potential equations,
the paper first gives an outline of this theory. Results from linear lifting-surface theory
for subsonic and supersonic flow are then presented. Currently, a variety of solutions to
the unsteady transonic flow problem are under active development; this work is described
in some detail. There is included in the paper some discussion of research which does
not involve the potential flow formulation. The paper concludes with some comments on
the current state of unsteady aerodynamic theory.
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SYMBOLS

an pressure series coefficients (eq. (26))

B function describing body surface (eq. (3))

Cp pressure coefficient

Cp steady flow part of Cp .

Cp unsteady flow part of Cp

Cp complex amplitude of Cp (eq. (19))

c chord . .

f steady flow part of h

g unsteady flow part of h

g complex amplitude of g (eq. (18))

h , • function describing body surface (eq. (6))

K kernel function (eq. (25))

k reduced frequency, oi/U

I reference length • ~ • •

M local Mach number

Moo free -stream Mach number

N collocation order (eq. (26))

Ap lifting pressure difference
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q dynamic pressure

s semispan

t time

U free-stream velocity

w vertical downwash velocity

x,y,z Cartesian coordinates, x positive downstream

y ratio of specific heats

0n pressure series functions (eq. (26))

4,77 dummy x,y variables (eqs. (25) and (26))

$ perturbation velocity potential

0 steady flow part of * :

4> unsteady flow part of $ . .

<t> complex amplitude of 0

U) circular frequency of oscillation

Subscripts:

T substantial time derivative, U-1( )t + ()x

x,y,z,t denotes differentiation

POTENTIAL THEORY

As is the case with steady flow, potential theory finds wide application in the anal-
ysis of unsteady flow. References 1 and 2 provide exhaustive treatments of the linearized
theory of unsteady potential flow. Reference 3 presents the small perturbation equations
for the nonlinear transonic flow. The results of such an analysis are briefly summarized
below.
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In terms of the potential for perturbations about a flow in the x-direction, the com-
plete unsteady perturbation potential equation is

i f • . - • . : _ ' • . , • - • • • . ' •

M«2v2$ - $TT = [(x - !)v2$ + 2v* • v]$T + |[(y - l)v2* + v* • vj(v$)2 (1)

where the substantial time derivative is indicated by - ' . . . . - '

()T = U-J(,) t + ()x . . . . . ' . ' . . , ' ' , . ,'.' (2V

An alternate formulation employing local Mach number M rather than free -stream
Mach number M^ is possible. The boundary condition for tangential flow on the sur-
face of a body B is

BT + V$ • VB = 0 (on B(x,y,z,t) = 0) t :(3)

In addition, a suitable boundary condition on the wake and the requirement for outgoing
waves at infinity are imposed. The expression for the pressure coefficient is

- ( y - l ) M 2
y/(y-i)\

*T
 + ^V*)ZI> I . •(*)

The small perturbation assumption may now be imposed to eliminate most of the
nonlinear terms. Equation (1) becomes

xM2

;"u" = 0 (5)

The nonlinear terms $x and $t are retained because for transonic flow they are of
the same order as 1 - M^. The boundary condition on the body whose surface is speci-
fied by

z = h(x,y,z,t) (6)

is

*z = hx + U-1ht • - • • ' ' (on z = 0) (7)

and the pressure coefficient becomes < . . . . . . - . . - •

Cp= ^(^x + U-1^) ,; (8)

The linear forms of these equations are consistent with the nonlinear equation (5).

In order to separate the unsteady from the steady flow effects the potential is writ-
ten as the sum of steady and unsteady parts .

*(x,y,z,t) = <Mx,y,z) + <£(x,y,z,t) . , (9)
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The position of the body surface is represented in a similar fashion as

h(x,y,z,t) = f(x,y,z) + g(x,y,z,t) ^ (10)

The assumption is made that the unsteady terms 0 and . g are much smaller than the
steady terms 0 and f. The result of using equations (9) and (10) in equations (5) to (8)
is a partial separation of the steady and unsteady flow effects. One obtains the usual
small perturbation equation for the mean steady flow • *

- (y + I j M x x + 4>yy + <t>zz = 0 . ... (11)

with boundary condition

; ... 0Z = fx (on z = 0) (12)

and steady pressure coefficient : , . ,

Cp=-20x (13)

The equations for the unsteady flow are

2 2[ i
I - M| . . (y + DM! 4>xJ ̂  + ̂ ^ + 0zz . 2

= 0 (14)

with boundary condition

• 0z = gx + U-1gt .. . . (on z = 0) (15)

and unsteady pressure coefficient

Cp = -2(£x + U-1^) ' (16)

The unsteady potential equation (14) is a linear equation for <£. However, the equation
has nonconstant coefficients which depend on the mean steady flow field <f>. In particular,
note that the type of equation (14) is the same as that of equation (11); that is, the unsteady
flow problem is elliptic (subsonic) or hyperbolic (supersonic) at a point in accordance
with the character of the mean steady flow at that point.

Since 'most .applications of unsteady aerodynamics are concerned with harmonic
motion, it is useful to eliminate the time variable in equations (14) to (16) by setting

' (17)

g(x,y,z,t) = g(x,y,z)eiwt (18)
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Cp(x,y,z,t) = Qp(x,y,z)e1^ • ., . (19)
** • .

Note that the amplitudes of the quantities on the right-hand side of these equations are
complex. In terms of the reduced frequency k = wZ/U where I is a reference length,
equations (14) to (16) become

- (y + D M ^ ^ x x + ?yy + 0ZZ - i2M,k0x + M|k20 . (y .

(20)

with boundary condition

(on z = 0) (21)

and unsteady pressure coefficient

Cp = -2(0X + ik0) (22)

in which the reference length I was assumed to be equal to 1. It is important to note
that the assumption of simple harmonic motion is useful only because the equations for
!j> is linear. •

Two further simplifications of equation (20) may be possible. If the free -stream
Mach number is not close to 1, the product terms are small and may be neglected to
obtain the usual constant coefficient equation for unsteady subsonic or supersonic flow

= 0 . (23).

Equation (23) implies that the local Mach number equals the free -stream Mach number.
The second simplification of equation (20) is the linearized transonic flow equation (ref. 4)

0yy + ^zz - i2M|k0x + M^k2^ = 0 (24)

which may be used for relatively high reduced frequencies k, namely, for k » |l - M|
where M is the local Mach number. Note that equation (24) is of parabolic type. Many
solutions of equation (24) may be found in reference 4. .

APPLICATIONS OF POTENTIAL THEORY

In this section of the paper, some recent results obtained through the use of poten-
tial theory are described. Separate subsections treat subsonic, supersonic, and transonic
flow. . Comparisons between theory and experiment are of two kinds. Where possible,
measured and calculated pressures are shown. However, there is a dearth of recent
experimental pressure data, especially at transonic speeds. The other kind of compari-
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son involves flutter speeds. This comparison is less direct in that it involves factors in
addition to the aerodynamics, namely, stiffness and mass characteristics of the surface.

. . " V* - ' •'. x*

.-,;,..- . .' ... . -. . - ^ <• . ''• • • : • ' - - I - / . ' " -' • ' " - • •

Subsonic Lifting Surface Theory

In the case of subsonic flow, equation (23) may be solved by a superposition of
elementary solutions, or by integral transform methods, to produce the downwash inte-
gral equation (ref. 5)

which relates the known downwash velocity on the surface to the unknown lifting pressure
distribution. The kernel function K is defined by a singular integral. The integration
region S includes only the wing surface. The two solution methods in widespread use
are described in the following subsections.

Doublet lattice method. - The doublet lattice method was first reported in refer-
ence 6. Subsequent refinements are given in references 7 and 8. In this procedure the
lifting surfaces and bodies are covered with trapezoidal boxes as shown at the right in
figure 1. Potential doublets are placed on the quarter -chord line of each box. The
doublet strengths are determined by satisfying the known downwash condition at the box
three -quarter -chord points. In addition, source singularities are placed along the center
line of each body.

The results of a flutter calculation for the space shuttle vehicle are also shown in
figure 1. These results are taken from reference 9. The experimental flutter speeds
were1 obtained in the Langley 26 -inch'transonic tunnel for a series of nominally identical
models. The agreement at Moo = 0.65 is good; the discrepancies at the higher speeds
may be attributed to increasing wing -body interactions at transonic speeds. This partic-
ular result gives an indication of the kinds of complex configurations which may be
treated with current subsonic theory. - - .

Kernel function method.- The kernel function method (ref. 10) for the solution of the
integral equation (25) proceeds as follows. The urikriown pressure' distribution is
expanded in a series of known functions 9n with unknown coefficients an such as

-rfntt.!). .. . , . - C M ) .
n=0

The functions • 0n are chosen to satisfy the known edge conditions on the lifting surface
(e.g., the Kutta condition at the trailing edge). ' . : - . -
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Equation (26) is substituted into equation (25) and the integration performed for a
set of N points (xi,yi) at which the downwash is known from the boundary condition.
The resulting set of N simultaneous linear equations is then solved for the coefficients

an-

Two recent applications of the subsonic kernel function method are shown in fig-
ures 2 and 3. The result in figure 2 gives the real part of the lifting pressure for a wing
with an oscillating control surface, reported in reference 11. (Also, see ref. 12.) The
method used treats the control surface edge singularities meticulously. The experi-
mental data are from reference 13. The agreement is excellent except near the control
edges - the analysis treats the edge gaps as sealed. Note also the singularity in the
pressure at the leading edge which arises in the small disturbance linear theory;

A comparison of calculated and measured flutter speeds for a thin, sharp-edged
wing with two simulated engine nacelles is shown in figure 3. The experimental data,
taken from reference 14, were obtained in the Langley transonic dynamics tunnel. The
dimension shown is for the "large" wing; the "small" wings were about half the size of
the large wing. In an attempt to remove the scatter in the data caused by model differ-
ences, the data for the small wings have been adjusted so that the flutter speeds for all
three wings agree at M^ = 0.665. The unpublished calculations were made by Robert M.
Bennett of the Langley Research Center. These calculations used measured vibration
data for the first nine elastic modes of the large,wing. The collocation order was N = 64.
The agreement between the measured and calculated results for this wing is excellent,
even at M«> = 0.907. These subsonic theory calculations were made up to Moo = 0.99,
well within the range where transonic flow effects are important. Such good agreement at
transonic speeds would not normally be expected. • .

Supersonic Lifting Surface Theory

Although no results for supersonic flow are given herein, a brief outline of current
methods is included in this section.

As in subsonic flow, equation (23) may be solved to yield an integral equation of the
same form as equation (25). Recent work with this supersonic kernel function method of
solution is reported in references 15 to 17.

For a planform with supersonic leading edge, a direct solution for the velocity
potential as an integral transform of the downwash is possible. (See, e.g., ref. 18.) This
technique is also applicable to a wing with subsonic leading edge by using Evvard's con-
cept of adding a diaphragm of zero pressure difference to the wing. The Mach box meth-
ods of references 19 to 21 are implementations of this approach. The triangular element
method of reference 22'is a recent development which avoids the Mach box problems of
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fitting a swept wing with a grid of rectangular boxes and changing box shape with Mach
number. 7

Recently, the method of reference 22 has been recast to use the integrated potential
formulation of reference 23. This new implementation, which avoids the use of diaphragm
regions, is reported in reference 24.

Transonic Theory
f.

Currently, there is a great deal of research, using a wide variety of methods, being
conducted on the unsteady transonic flow problem. The success occurring with steady
flow solutions, the rapid increase in computer power, and the criticality of transonic
aeroelastic problems have combined to encourage this development. In this section of
the paper, many of these new developments are briefly described, and some results are
given.

Local linearization method.- The local linearization method of Spreiter has been
applied to the two-dimensional oscillating airfoil in reference 25. In this method, a form
of equation (20) is solved as follows. First, the location of the sonic point is determined
from the steady flow solution. Second, the nonconstant coefficients are replaced by dif-
ferent constants on the subsonic and supersonic portions of the surface. Third, the
resulting simpler problem is solved for ^(x,y) as a function of these constants. Fourth,
<^)xx(x,0) is evaluated on the airfoil surface. Fifth, the constants are replaced by the
functions they represent. Finally, the equation is integrated twice numerically to obtain
the potential on the surface.

Calculations for a 6-percent-thick parabolic arc airfoil oscillating in plunge for
Moo = 1.0 are shown in figure 4. At the higher frequency, this nonlinear theory agrees
quite well with the linear theory which assumes constant Mach 1 flow over the surface.
At the lower frequency, the effect of thickness on the local Mach number produces signif-
icant differences between the linear and nonlinear results. This conclusion is consistent
with the use of equation (24) at high frequencies.

A similar method to the one described in this section is reported in reference 26.

Layered medium analysis. - The layered medium theory (ref. 27) uses linear
unsteady flow solutions separately for the subsonic and supersonic regions on an airfoil
in supercritical flow. These solutions are coupled together by conditions on the sonic
line and shock wave. The nonuniform flow within the supercritical region is approxi-
mated by dividing this region into several horizontal layers, within each of which the
supersonic Mach number is constant. The vortex sheets separating these layers give
rise to acoustic impedance changes which can result in pressure disturbances being
reflected back onto the airfoil surface. No calculated results are available.
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Finite -difference solution of parabolic equation.- The finite -difference analysis of
references 28 and 29 is based upon the following approximation to equation (14):

*xA-0 <27>

Equation (27), which is of parabolic type, may be used when the local Mach number is
close to 1. In reference 28, a three-dimensional difference method is used to solve this
equation for the harmonic motion case. Coordinate transformations are used to develop
a computationally efficient grid. The parabolic character of the equation allows a
marching technique to be used in the downstream x -direction. The method does not
account for shock waves on the surface and permits no upstream propagation of
disturbances.

Coordinate transformation based on local Mach number. - In the method of refer -
ence 30, equation (14) is approximated by

0 (28)

in which the nonconstant coefficients of equation (14) have been expressed in terms of
local Mach number M. With the assumption of harmonic motion, this equation is also
of parabolic type and is therefore subject to limitations similar to those of the preceding
method. Given the local steady Mach number distribution M(x,y) or pressure distri-
bution Cp(x,y) the coordinate transformation

y = yM(x,y) (29)

z = zM(x,y) (30)

is used in equation (28) to obtain

. yy + ^zz - i 2 k x + ^0 = 0 (31)

which is the linearized transonic flow equation (24) for M«> = 1 in the transformed coor-
dinates x,y,z. This transformation has the effect of distorting the original planform into
a different planform in a uniform Mach 1 flow. Therefore, any method for solving the
linearized transonic flow equation (24) may be used in this transformed space. The
sonic -box method of reference 31 was used in references 30 and 32.

A flutter calculation (from ref. 32) using the method of local Mach number trans-
formation is given in figure 5. The delta wing shown has an elliptical cross section in
the spanwise direction. Flutter speed ratio is plotted as a function of wing thickness
ratio. The detrimental effect of wing thickness on the flutter speed is due solely to the
thickness effect in the aerodynamics.

1314



Mixed flow analysis. - The method of references 33 to 35 may be used for multiple

lifting surfaces in mixed subsonic-supersonic flow. The wing is divided into subsurfaces
on which the flow is either subsonic or supersonic. Either subsonic or supersonic kernel
function aerodynamics, as appropriate, is used on each- subsurface. In addition, the local
Mach number is used at each point. This method requires this mean (steady flow) local
Mach number as input from another source. A recent refinement (ref. 35) is the inclusion
of a doublet singularity to represent the unsteady flow shock condition.

Measured and calculated pressure distributions for an oscillating wing are shown
in figure 6. The calculations are from reference 35; the measurements, from refer-
ence 36. The local Mach number distribution, shown for a section near midchord, was
used as input; the supersonic kernel function was employed ahead of the shock and the
subsonic kernel function aft of the shock. The uniform flow calculation was carried out
with the subsonic kernel function at M«j = 0.997. The mixed flow calculation, which
includes the shock condition, provides somewhat better agreement with experiment.

Finite-difference analysis.- The finite-difference solution for steady transonic flow
(ref. 37) has been extended in references 3 and 38 to provide a solution of equation (20)
for two-dimensional flow. A similar analysis is reported in reference 39.

The finite-difference solution uses a rectangular mesh of points as indicated in
figure 7. The mean steady flow problem (eq. (11)) is solved first on the same mesh to
provide the nonconstant coefficient data for the unsteady problem (eq. (20)). The mesh
employs a nonuniform spacing which clusters grid points near the airfoil edges. The
far-field boundary conditions are determined from an application of Green's theorem in
a manner similar to that of reference 40. It was found that using a condition on the
potential 0 on the upper and lower boundaries and a condition on the pressure 0X + ik<£
on the up- and down-stream boundaries gave better results.

A result for an NACA 64A006 airfoil with an oscillating quarter-chord flap is shown
in figure 8. The experimental pressure data are taken from reference 41. The calcula-
tion shown differs somewhat from the result for this case in figure 12 of reference 3.
The calculation herein was made recently by the Boeing Company under NASA contract.
At this supercritical Moo = 0.85, a shock wave is located near midchord. The second
pressure peak is caused by the downwash discontinuity at the hingeline of the flap. In
general, the agreement between theory and experiment is qualitatively good.

Reference 3 contains the analysis for the three-dimensional finite-difference solu-
tion for a swept, finite wing. A computer program for the wing case has been developed
recently by the Boeing Company.

Finite-element analysis. - Finite-element methods are widely used in structural
analysis, for which the governing equations are elliptic. Such methods offer promise for
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solving aerodynamic problems with fewer elements than the number of points required in
a finite-difference analysis. Recent applications of the method to the oscillating airfoil
are reported in references 42 and 43. . . . - . ,

. . Unified Methods

The implementations of-potential theory .described up to this point are .each tailored
to a specific Mach number range. There is a need for a unified approach to the subsonic^
supersonic, and, if possible, transonic speed regimes. The introduction of aeroelastic
calculations into NASTRAN (ref. 44) and other large computing programs and the trend
towards automated design have emphasized this need. Currently, there is research
underway in several aerospace companies to develop panel methods for supersonic flow
which are compatible with the doublet lattice scheme for subsonic flow. Several of these
efforts are reported in references 45 and 46. Within the present state of the art, the
aeroelastic addition to NASTRAN has had to use different paneling methods for subsonic
(doublet:lattice) and supersonic (Mach box) flow. . . .

'- The method of references 47 to 51, described in reference 52, is a notable success
in providing a unified method. This analysis uses a Green's function procedure with a
general quadrilateral paneling scheme on both lifting surfaces and bodies. Wing thickness
is taken into account routinely. A time-dependent, as opposed to harmonic, formulation
has also been developed.

NONPOTENTIAL FLOW

No attempt is made in this paper to give a complete survey of nonpotential flow
analyses for the unsteady flow problem. However, several items are cited to give an .

'indication of the possibilities. •

Solutions of the inviscid, time-dependent Euler equations provide a needed check oh
the accuracy and limitations of potential theory, particularly at transonic speeds. Sev-
eral groups are actively pursuing this approach using numerical integration in time of the
finite-difference form of the Euler equations. References 53 and 54 represent one such
approach. Another analysis of this type is reported in references '55 la 57. Results" are
given for pitch oscillations at several frequencies for an NACA 64A410 airfoil at
Moo = 0.72. ' ' '"' '"' '

The work of references 58 and 59 represents one attempt to include viscous effects
in the analysis of the oscillating airfoil. A finite-element method is used to solve the
Navier-Stokes equations for incompressible flow. Results are given for an oscillating
NACA 0012 airfoil at a Reynolds number of 103 in reference 58.
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CONCLUDING REMARKS
f

This paper has presented a survey of recent research in theoretical unsteady aero-
dynamics, primarily from the point of view of the aeroelastician concerned with fixed -
wing aircraft. The problems of rotor aerodynamics, hypersonic flow, and vortex flows
have not been addressed. Within this limited scope, several conclusions may:be made as
follows:•- :-• " - " . • • • , - • ' - ; . • ;i • . • •- •• - , - • , , . . , ;• <

1. Potential theory can provide excellent results, at least for subsonic and super-
sonic flow.

... 2. Good results fr.om potential theory depend on a careful implementation of the
particular solution procedure employed.

3. The transonic problem is receiving the emphasis it warrants and progress is>. -. .
being made. . : . ,. . . .

4. There is a strong need for benchmark solutions of the complete inviscid equa- '
tions with which to assess the limitations of potential flow analyses, particularly in tran-
sonic flow. . . • . ...

5. The requirement in flutter-analysis to perform many aerodynamic calculations
leads to a need for approximate methods whose limitations are known.

6. Current interest in active control of aeroelastic response has pointed out a need
for time-dependent, as opposed to frequency-dependent, aerodynamics and an increasing
need to include separated flow effects.

. An indication.of the.importance of'careful implementation of a solution method may
be seen from the following typical computing times and storage requirements to perform
a subsonic calculation for one Mach number and frequency on the Control Data (CDC) 6600
computer system: (1) kernel function, 24 seconds, 16000s storage; (2) kernel function,
196 seconds, esOOOg storage; (3) doublet lattice, 84 seconds, TOOOOg storage. Program
(1) is highly optimized for a planar wing; program (2) includes sophisticated treatment of
control surfaces; program (3) has the capability of treating nonplariar wing-body problems.
By .w.aypqf ..comparison, a finite-difference calculation of the potential flow for the two- •
dimensional oscillating airfoil requires several minutes. A benchmark solution of the'
time-dependent Euler equations for the airfoil-can require as much as 7 hours on
CDC 7600.

In addition to the need for benchmark analytical results, there is a need for accu-
rate surface, pressure measurements on both two- and three-dimensional configurations.
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REACTING NONEQUILIBRIUM FLOW AROUND THE SPACE SHUTTLE

USING A TIME-SPLIT METHOD

By Arthur W. Rizzi and Harry E. Bailey

NASA Ames Research Center

INTRODUCTION

A detailed knowledge of the fluid and chemical phenomena that occur in
air flowing around a vehicle traveling at a supersonic velocity and high alti-
tude is of prime interest to the vehicle designer for the prediction of heat-
transfer rates, boundary-layer effects, and'aerodynamic loads acting on the
aircraft. For moderate supersonic velocities and altitudes, the air flow
remains in chemical equilibrium. The designer then need only be concerned
with the fluid properties about the vehicle, and these can be determined by
numerical simulation of the governing gasdynamic equations as well as wind-
tunnel testing of appropriately scaled models. Several reliable numerical pro-
cedures for solving these equations have already been presented (refs, 1 to 3).
For hypersonic velocities at high altitudes, however, in addition to a knowl-
edge of the fluid particle path, its speed, and other flow properties, the
designer must also reckon with the complex chemical processes that can occur
among the constituents within the particle when thrown out of equilibrium by
high temperature. If the time to return to equilibrium is comparable with the
time it takes for the particle to pass through the field, the flow is then in
a state of chemical nonequilibrium. When such nonequilibrium phenomena become
important, the flow can no longer be scaled; thus, full-size testing which no
present-day wind tunnel can handle is required., The designer must therefore
turn to a theoretical description of these flow fields.

In the hypersonic flight regime, for example, a diatomic gas passing
through a shock wave is compressed and most of the kinetic energy available in
the free stream is converted to thermal energy sufficiently high to cause dis-
sociation. Generally, the translational and rotational contributions to the
internal energy of the gas return to equilibrium values .in the time of a few
molecular collisions whereas the vibrational and dissociative contributions
adjust much more slowly. A detailed description of the nonequilibrium relaxa-
tion zone for a mixture of reacting diatomic gases (such as air) involves a
complex system of coupled chemical reactions and fluid flow relations. The
analysis of this problem in any detail, consequently, can only be carried out
by solving numerically on a large computer the equations that govern the
phenomena.

Several numerical methods (ref. 4) have been developed which calculate
only the supersonic portion of the flow field about a vehicle. All these
methods, however, require as input conditions the flow properties in the
transonic region around the nose of the body. Such a requirement has gener-
ated renewed interest in reacting blunt-body methods, particularly ones that
will handle complicated three-dimensional geometries at very high angles of
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attack, which can occur, for example, on a space shuttle. It appears that
existing blunt-body programs currently available (notably that of Li (ref. 5))
cannot without significant modification handle flows about three-dimensional
bodies at large incidence angles. This paper presents an efficient numerical
'procedure for calculating the flow of an air mixture of chemically reacting
nonequilibrium gases past a three-dimensional body by use of the time- •
splitting, finite-volume method introduced by MacCormack and Paullay (ref. 6)
and extended by Rizzi and Inouye (ref. 3). Diffusion, heat conduction, and
viscous effects are not considered in the analysis. • • '

MATHEMATICAL FORMULATION

The formulation of flow problems including chemical reactions depends on
general concepts from three areas' essential to the studv of reacting mixtures:
chemi'cal kinetics, thermodynamics, and gasdynamics. Useful ideas from each of
these fields which are essential for the subject treated here are outlined
briefly by generally following the presentation of Li (ref. 7) and Ooulard
(ref. 8) in their excellent review papers.

Chemical Kinetics

The description of high-temperature air flow past a vehicle involves not
only the calculation of the bulk flow properties of every fluid element but
also the chemical phenomena each of the individual gas species comprising the
mixture are subjected to"within the element. The problem is complex, .and one
must devise a molecular model sophisticated enough' to represent the compli-
cated forces at play between interacting atoms and-molecules but simple enough
to permit their numerical integration in the theory. '

The chemical kinetics of air mainly involves the interplay of about 20
different chemical components entering into over 100 possible reactions. For-
tunately, most of these redactions involve only chemical traces "(refs. 9 and
10) and the list of components can be realistically reduced to 5 species - 02,
N2> N, 0, and NO - entering in 6 thermally significant reactions:

02 + M J 0 + '0 + M

N2 + M £ N + N + M

NO + M J N + 0 + M ' •

'' 0 + N2•£ NO + N

• • ' - ' N + 0 2 J NO + 0

' ' N2 + 02 £ 2ND

where M is any other molecule involved in the reaction and serves to absorb
any excess energy in the collision process.
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. Fundamental .Thermodynamic Equation

The thermodynamic state.of a gaseous mixture of N component gases among
which chemical reactions may occur is completely specified by N+2 independent
variables. A study of thermodynamics, (ref. 11) shows that other relations can
be found that define a new set of variables, each as a function of the .N+2
independent variables. A fundamental thermodynamic equation (ref. 11) is any
equation relating these new variables.to the N+2 independent ones. For
instance, let p, p, and e denote pressure, density, and specific internal
energy of the mixture and let c* represent the mass fraction Pg/p of the
N species (£ = 1, . . ., N); then the functional relation

p = p(p,e,c£) (1)

is a fundamental thermodynamic equation. The independent variables p, e, and
c. completely determine the thermodynamic state of the gaseous system.. In a
similar analysis, the functional form of the frozen isentrooic. speed, of sound
a can be derived as • • • . . •

a -' (3p/3p) " (2)
°'C£

where s is the specific entropy and the subscripts indicate which of the
variables are held constant.

- Continuum Equations for Reacting Gases

Kinetic theory provides a microscopic formulation of gasdynamics speci-
fied by molecular distribution functions for each species in the system.
These equations can be interpreted as the microscopic equations of motion. We
are, however, concerned, with gas flows in which the characteristic length is
much larger than the mean free path of the molecules. For such flows, a
microscopically formulated problem must be coupled into an equivalent system
of differential equations governing the macroscopic flow variables. The ther-
mal properties of the mixture are then determined in principle for any given
thermodynamic state (i.e., for given concentrations, energy, and density). In
gasdynamics, the state of each fluid particle is in turn completely specified,
by the requirement that mass, momentum, and energy are conserved throughout
the flow and along its time and space boundaries. The complete formulation of^
conservation for a reacting mixture of N reacting species is thus made of
N+6 coupled nonlinear partial differential equations of contiiiuunTmechanics
including mass conservation for the N species, momentum and energy conserva-
tion, and equation of state. The solution to these continuum equations of
motion consists of N+6 variables and yields the composition, density, veloc-
ity, and thermal state of the system at every point of the flow.

The complete system of equations that describe the inviscid, adiabatic,
and nondiffusive flow of a mixture of reacting gases in chemical nonequilib-
rium is well known (refs. 7 and 8). The macroscopic chemical kinetic equation
for each of the N species is written

^ + div pc£q = Ojl U'= 1,' . :--., N) (3a)
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where q represents the macroscopic velocity of the mixture, a,, denotes the
chemical source function of species fc, that is, the mass rate of production
of species £ per unit volume by chemical reactions. By definition, the rela-

N
tion c = 1 holds. The continuity equation for the mixture is

£=1 ' .

|f + div pq = 0 (3b)
ot

and the momentum equation takes the form

|^ pq + div(pqq + pi) = 0 (3c)

where I 'is the identity tensor. Finally, the energy equation may be written

||+ div[(e+p)q] = 0 (3d)

where the total energy per unit volume of the mixture is e = p[e+(l/2)q2J .
The system is completed by an equation of state (1) relating pressure to inter-
nal energy, density, and species concentration, the explicit form of which is
presented later.

A suitable expression for a? is obtained by use of concepts of chemical
kinetics in the following section. At this point, note that the fluid and
thermodynamic state of the gaseous system can be determined completely from
the calculation of p, c , q, p, and e satisfying the system of equations (3)
under specific boundary and initial conditions for a given problem.

Specification of Chemical Source Function

Suppose that the mixture consists of Na separate atomic species (A^ ,
A2, . . . » % ) plus Nm separate molecular species (A^ , A^ .....

3. 3. . ,
AM ,M ) . The molecules are formed from combinations among the Na different

3. in.
species of atoms. The total number of chemical species is N = Na + Nm cap-
able of undergoing iV° elementary chemical reactions. For the rth chemical
reaction, one may write the chemical equation

H K.(r) N '
reactants VM V_/ products

"™"

(r) * (r)"
where vj and vn are stoichiometric coefficients of reactants and prod-

ucts giving the number of moles reacting, while K^ and K are the for-

ward and reverse specific reaction rate constants for the rth reaction. The
net rate of progress in the forward direction of the rth reaction is then
expressed as -
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R(r) _
.(r)"

(4b)

£=1 £=1

where fAol ~ Pcs,/̂ £ ^s the molar concentration of the £ species and M is
the molecular weight of A . Since the rth reaction yields
(rV (rVv - v moles of A , the corresponding mass rate production of A is
£ £ x x .

(r) ^
It follows that the net mass rate of production of A in all Nm reactions

i s . " ' . . . . N m

ajr) (4d)
r=i

Combining equations (4b) to (4d) yields

where

and

E î (V̂ '-v̂_(r) L ̂  I
r=l

N N .-n
x=l

KM , [r)

(4e)

(4f)

.(r) _
M \)M n uv

r M M7

(r)
The characteristic reaction time for the rth reaction T has the
dimension of time.

(4g)

If the rth reaction is at equilibrium, it follows from equation (4e)
that

f[
£=1

v(r)'.v(r)"
£ £

and from equation (4f) that
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and thus one obtains •"' f \<< f \*

f 0 0

Vr) = -^-= ~[J [A 1 ' " : ( A h ) '
e Kr «.= ! S

which is the condition of chemical equilibrium of the rth reaction and

KC 'is the corresponding equilibrium constant. From statistical thermody-

namic principles (ref. i2),..Kc .can be expressed as a function ,of .temperature.

. Equation of State. ;, , . , . . ' . . ,. .

For all calculations.presented here, we have adopted the .same gas model
used by Davy and Reinhardt (ref. A), namely, a mixture of pure air assumed to
remain translationally and rotationally fully equilibrated while the vibra-
tional mode is, kept in a half excited state. The five component species are
thermally perfect gases in thermal equilibrium.

In nonequilibrium flows, it is convenient to represent .equilibrium quan-
tities with subscript e and nonequilibrium ones with primes (ref. 13). For
the gas model assumed here, the specific internal energy of the mixture is
expressed as '

e = e + e' (5a)
e

where
N^—^ n '

and e. represents the heat evolved in the formation of species I per unit
X* i .

mass. These last two equations can be combined and solved for p to yield
the explicit form of the equation of state (1): .

• ' . . . • • ' • / N :, \ - . • ' ' " ' . ' . '
• . • .. p = (Y-i)p[c - E c

ne!P -.'•.-.. <5c)
£-.1 -.

where the ratio of specific heats y is .

•'". '- . ; ""'. 4(co2
 + % .

3(C02
 + CN2

 + CNO> + 2 (C0



Furthermore, an expression for temperature T can be derived as

N (5e)

pR
£=1 .<w

with R being the universal gas constant (ergs/mole-K).

NUMERICAL FORMULATION

Riazi and Inouye (ref. 3) and.. MacCormack et al. (ref. 14) have presented
a numerical procedure for blunt-body flow of a perfect gas based on transform-
ing the differential governing equations to an integral formulation. The
integral form is exactly equivalent to the differential representation but is
shown by Rizzi et al. (ref. 15) to be more convenient computationally. Its
principal advantage is, however, 'that arbitrarily shaped meshes may be used
to fit irregular boundaries and to map asymmetric flow regions without the
need for determining a suitable analytic coordinate transformation.

The governing differential equations (3) written in vector integral
conservation-law form (see fig. 1) are - .

"Jjjv(t)
U dvol +fl

J7s
H ds = (6)

where U is a column vector and H is a second-order flux tensor whose column
elements are three-dimensional flux vectors defined as

U

p
pu

pv

pw

e

H(U)

pc£q

Pi
puq+pix

-»• /<.
pvq-fpi

pwq+piz

(e+p)q

for flow velocity <J, total energy e per unit volume,, and momentum flux com-
posed of components taken along the unit vector directions ix, iv, and iz of
a rectangular Cartesian coordinate system x,y,z. The velocity referenced to '
this frame is q = ulx + vlv + wiz. The unit vector T\ is the direction of
the outer normal to the surface and H • n indicates the vector dot product
of each column element of H with n, the result of which is a column vector.
This equation, integrated over the surface S enclosing the fluid volume V
in a four-dimensional space consisting of three geometric dimensions and time
t expresses the conservation of each species as well as total mass, momentum,
and energy within that volume.
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Difference Equations

Finite-difference approximations to the gasdynamic conservation laws are
used to advance the flow in time from specified initial data. These finite-
difference operators are constructed .in this section to solve equation (6) for
computational cells like the one depicted in figure 2. HacCormack and Paullay
(ref. 6), MacCormack and Warming (ref. 16), arid Rizzi and Inouye (ref. 3) have
shown how these operators can be obtained by splitting a conventional finite-
difference method. The resulting operators, essentially one-dimensional, are
then arranged in sequences so that equation (6) is approximated to second-
order accuracy.

Even though equation (6) is the unsteady equation for reacting flow and a
mesh that moves in time with the motion of-the.bow shock is quite .useful, our
discussion of- the splitting, procedure will be clearer if we temporarily assume
in this section that the mesh is fixed in time and that the species production
term n is zero. If the solution is known at time t inside the topological
hexahedron i,j,k depicted in figure 2 with volume vol . , and bounded by

i > J »k • .
the six sides S., S , S , S , S,, S,, then it can be determined at time

t + At from the following time-split difference equations:

-n+1/3 _ TTn At /un •* . T.n ^
vol . .

\ (7a)

^

, .+ .,j,k vol V i,j,k l+i i-l,J,k
1» J ,K- '

> (7b)

..n+2/3 _ lLn+1/3 . TTn+2/3 At /-n+2/3 -± • fin+2/3 •£ v~l
U t ™ *t\" I U « ^r U . ™ "~"~"-«-i™""̂ "*"<^^~ I £i • ^ -y* £j • O » I I

1 1 If X I "I "1 if "I i If ITrt 1 V T -t" 1 T If "I ^H n T If T / I^••Jj1^ e - \ . ^ - t J t K - • L »J» K voj.. . , N i-ri,j,K. i-t-i I,J,K. i/ /
* • • 1»J»K- ; , J

^+1 = ^+2/3 _ At : (un+2/3 . $ + B
n-*:2/3 f -<

1 - 4 \f -f A 1* "\Tf\ 1 \ ^ ^ If If ̂ kl ^ 1 If •» 1• I * » ^* * I » "• v f i. , , » *\ J. K i * tVi r^ i^ j. j. • i • r^ JL,j, ,j, i)j)k ,j, ,j,

•' ' ' • V (7c)

. ̂  4. fin+1Sk+l +Hi,j,k

where subscripts i, j, and k refer to,the geometrical location of the cell
n

and the superscripts refer to times t = ̂  At where At is the time step or
1

increment that the solution is advanced during each cycle of the above three
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equations. The mean values U. . , of the flow variables in the cell at time
t are defined by , X»J» K

fff
JJj

U dvol
vol (t) . ; .

^> - - - (8)
dvol b

vol. . , (t) -

where vol. . ,(t) is the small but finite volume of the cell at that time
1 n n

step and, finally, .H . , = H(U. . , ) . This set of equations can be written
1 » J » K ! » J » K • • • • ' • .

more conveniently in operator notation. Let L^(At) denote the operation per-
formed by the set of equations (7a) ̂in advancing the solution from

Let L (At) and L (At) be similarly defined by the next two sets. 1

The condition on At necessary for the stability of the above method is
that the numerical domain of dependence must include all the physical one.
Stability conditions can be determined analytically for each operator. For
Lx(At),

vol-- ii - > ! (9a)

For L (At),

and for L (At),

vol
At ^ min > ,. '' \ (9b)
y

vol.
At <; min — - - - ̂ ui - : - J (9c)

These requirements, again necessary for convergence, are the one-dimensional
CFL conditions. Thus, the sequence of operators Lz(At)Ly(At)Lx(At) repre-
senting equations (6) can advance the numerical solution from

U? to U?+l , and is stable if
K

At < min(At ,At ,At ) - (9d)
X y Z

1335



Unfortunately, the sequence is only of first-order accuracy because of the
noncommutativity of Lz(At), Ly(At), and Lz(At). However, the component operar
tors can be arranged in a symmetric sequence that can be shown to be second
order accurate. . For example, if the order of the three sets of equations (7)
is reversed for each new n, the following symmetric sequence results:

L (At)L (At)L (At)L (At)L (At)L (At) . (10)
x y z z y x

that can advance the solution from U? . , to U? . . with second-orderi,i,k i,J,kaccuracy. . . - . / - " . . .

, This sequence approximates equation (6) if the production term n were
identically zero. For nonequilibrium flow, however, this term must be intro-
duced into the spatial operators (7)., and equation (7a) would then have the
form1 . . .

-= u . - . (H . fr • !_,, + 11. . , . - 1 - n) ,V i,j,k ' j+1 i,j-l,k- j /
» J ».K • • .

n - .vol

irt-1,/3 _ - l T n , ~n+l/3 • AT • /fTn+1/3
Ui,j,k - 2[Ui,j,k + Ui,j,k - vol. VHi,j+i,

^. 1tJtK

and the other two operators would remain unchanged.

Although .the production term, £2 is too complex for stability criteria on
AT to be determined analytically, some empirical conditions derived from .con-
sideration, of the chemical relaxation time have been proposed. Anderson (ref.
17) suggested AT < O.l|3ao/9c^| for a binary reacting mixture whereas Li (ref.
5) found AT < 0.1 minlu/fij to be a satisfactory stability criterion. We

a • ' . ' • , "
have adopted a different empirical condition and simply set AT = 0.2At; this
has proven to be appropriate for the calculations presented here.

All these empirical. stability criteria indicate that AT « At, which
means that , the chemical reactions severely restrict the numerical step size
and require prohibitively large computer times. Li circumvents this restric-
tion by introducing two .different time increments - one for the fluid dynami-
cal processes and .the. other for the chemical reactions. • While decreasing the
computation time, .this action seems -theoretically unsound because now the •
macroscopic flow properties are inconsistent with, the microscopic chemical'
ones; that is;- the .bulk flow is at a dif ferent:.time level than the chemical
properties are. . . • :•. .. .....

A more logical way of proceeding is to split the production term from the
spatial terms and apply the chemical kinetic operator L (AT) :

6 = AT/2At
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repeatedly for each cell i,j,k' until the sum of successive time steps ^ AT-'
equals the final time level t at which the bulk flow properties will be
advanced by the end of the sequence. 'For example, if the flow operators (7)
have a time step of At and the chemical kinetic one of- AT, then the sequence

• ' ' t •

. 1/6
II. . . = L (At)L (At)L (At), fp L (At)L (At)L (At)L (At)u? . , (11) /I » J > K x y z . g=i c z y x i j j j K

approximates the governing equation (6). to second-order accuracy. Splitting
in this manner then requires only the chemical operator to proceed at the smal-
ler time step while allowing the flow operators to continue at the faster rate
and to. remain idle until Lc "catches up" to the same time level. The-advan-
tage is a reduction in computer 'time while-maintaining a consistent time level
for both the fluid and chemical phenomena.

This feature of the splitting concept is illustrated with an 'explicit LC
operator, but the advantage remains essentially the same if Lc is implicit.
Our experience with an implicit LC is that the allowable AT isj larger than
the explicit one, but each cycle of it requires more computer time\ so that the
net effect is about equal computation time required for either the\implicit
or explicit operator. ; " .

.Computational Cell Network

To 'apply this finite-difference technique to blunt-^body problems, the
flow field is divided into small topological hexahedra by>a construction based
on the following use of a circular cone. A series of nested and 'arbitrarily
positioned conical surfaces depicted in figure 3 and filling a given space is
built up by varying each of the parameters governing the three aspects of :

general motion. Translation of the cone is accounted for by the location x
of its apex along the body axis, rotation by the angle i|) between its. axis
and the free stream, and, lastly, dilatation by its vertex angle ' to. Each of
these surfaces is then intersected by a plane rotated about the cone axis in
specified, angular increments. These intersections are straight lines or rays
that delineate a system of contiguous pyramidal columns (fig. 4). All that is
needed to specify the: ray i,k are its two angles 6. . and <J>. ,'. made with .1 • • 1 j K. * 1 j 1C l

the z and x axes and its intersection X.^ with the body axis. • The columns,
then, are partitioned into small'hexahedra by a third sequence of'surfaces
that coincide with the body and bow shock and divide the distance 5 along
each ray between the body and shock into J segments of any given interval.-
The partitioning is such that the innermost layer of cells lies on the body
and the outermost in the shock layer is alined with the shock surface. The
cells compose a nonorthogonal mesh network floating in time and always exactly
fills the time-dependent shock layer. The other boundaries are the pitch
plane of symmetry and a downstream boundary immersed in supersonic flow. This
mesh (fig. 4) is quite general and permits a very wide range of body shapes
and computational spaces to be studied.
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Moving Mesh

In the section on difference equations, we assumed that the mesh was sta-
tionary, but for blunt-body flows it is advantageous to adjust the mesh in
time to the motion of the bow shock. For flows containing shock waves, vari-
ous authors (refs. 3, 14, and 16) have shown that accurate .calculations in the.
vicinity of the discontinuity can be obtained by keeping the mesh alined with
the shock. Otherwise, the numerical solution will be smeared across the shock,
rather than having a sharp jump, and will contain oscillations.

Equation (6) and its corresponding difference equations (7) must now be
modified to take into account the effect of the moving mesh because, if volume
V(t) now varies with time, the condition

_
dt JJf. **»i-JJ IF

incorporated in the difference equations (7) is no longer valid. The expres-
sion appropriate for a time-dependent region of space is the generalized form
of Leibnitz's rule (ref. 18):

1 1 j U dvol = ffj j^ U dvol + (jj) UX • n ds

•̂ v(t) •'•"v(t) -"s(t)
~ 1 1 U dvol = ^ U dvol + () UX • n ds (12)

v(t) -"s(t)

where S(t) is the. time changing surface enclosing the region V(t) and A is.
the velocity of any element n ds of the surface S(t).

For this case, the difference operators (7) can be thought of as adjust-
ing the solution to the movement of the fluid through a fixed mesh. The dif-
ference operators now to be defined adjust the solution because of the move-
ment of the mesh through the frozen fluid. Thus the dynamics of the flow
problem are split into six operators: the dynamics of the three spatial coor-
dinate mesh- directions and the dynamics induced in each of these directions by
the moving coordinate mesh. .

For simplicity, consider the case where only one family of mesh surfaces
moves with time, that is, A is the velocity of one side of the hexahedron and
its two adjoining sides are stationary (fig. 5). An explicit operator
L , (At) that accounts for the effect of ̂ he moving mesh to second-order
mesh
accuracy is

of ; . = u . — — u . • + u .
i,j,k i,j,k n

At /,~Tn+l t * . frn+1 tTn+l 1 Ln . ~n+l A
U,k = 2 K.j.k + Ui,j,k - —n

L
i,j,k

(13)
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which, in operator notation, is more conveniently expressed as

. = L .(At)'U? . ," " * '' (14)i,j,k mesh- ' i,j,k v

This operator is driven by the mesh velocity in steps of At. For the veloci-
ties of .the interior mesh surfaces, a variety of .appropriate values can be
assigned whereas on .the boundaries they are determined by the flow. At the
body they must be zero everywhere and at the bow wave they must equal the
local shock velocity. A scheme for calculating them at the bow wave is
presented in the following paragraph. The operator I^gg^CAt), unlike Lx,

Ly, and Lz, commutes with all operators and can be placed anywhere in an
operator sequence for second-order accuracy. For stability, the condition
on Atmesh is

At . . < min { i-ziz£l (15)
mesh * - - '

which prohibits extreme movements of the mesh. This criterion will always be
less restrictive than the'conditions (9) provided .that the mesh velocity T
is less than the signal propagation speed; that is, ̂  • S < |q •• S|-+ aS.

The shock wave is treated as an interior feature of the flow field, and
no special attention is given to it in the difference operators Lx, Lv, and
Lz. On every iteration, the mesh is adjusted to maintain alinement with the
shock because the conservation form of the difference operators will then
implicitly satisfy the Rankine-Hugoniot shock-wave relations and accurately
determine the solution in the vicinity of the shock (refs. 3 and 14).

To maintain alinement, the mesh surface coincident with the shock must
move with the unsteady shock itself. The velocity of each cell segment of
this mesh surface (fig. 6) is obtained by solving for the shock-wave velocity
Xs simultaneously from the jump relations for a moving discontinuity and one
local characteristic relation, valid in the plane defined by the free-stream
\ and the shock normal direction T\S. The solution is carried out by itera-
tion for As, the pressure ps at the shock, and the velocity q = q* • n
just behind and normal to the shock: s

•
(m) I I (m-l) n("-l>\

ps 2 \fs + "char )

Moving discontinuity relations
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p \/ = pA + pta.(q - q ) Characteristic relationrchar rA A A n n»
; S . A : • -

(m+1) _ 1 (m) (m) ,
Ps - I (ps + Pchar)

The velocity component along the shock normal direction ng ' and located at
point A is denoted by q = q. • r\ . It and other values of the flow prop-J r \ . A s i r

/V

erties at point A can be obtained by interpolating data at mesh cells behind
the shock, and those with subscript °° are obtained from the free-stream con-
ditions. The shock-mesh surface is then moved by use of the shock-wave
velocities calculated for each segment by the following procedure. The
four rays comprising the four edges 'of each cell hexahedron that intersect
the shock surface are fixed in time, and the hew' shock position on &adh
ray is determined by integrating

where <Wn- *> is the simple average of the projectionsl'onto the ray' i,k
•"•'»£ av ' ' • . -.--,.

of the velocities of the four shock segments adjacent to the ray. As . time .
proceeds, the. cells distend and distort .within pyramidal columns bounded by.
the fixed rays.

Initial and Boundary Conditions .. • .

Because the governing equations are hyperbolic, and the subsonic region Is
bounded by supersonic flow, the time-dependent method is well posed as an
initial-boundary-value problem. To commence the calculation, a complete ini-
tial' field must be. specified at all points, but' It can1 be quite approximate
(ref. 3 ) . • • . . . .

- ' • ' ' ' , ' • - > ' ' • .

'For the 'inviscid. calculations presented here, three distinct types of
boundaries are encountered at the edges of the overall mesh .- .entrance, exit.,
and streamline boundaries. Along the entrance boundary, the dependent vari-
ables • U are held constant at their supersonic free-stream values, while at the
exit they are* calculated by use of one-sided differences. Across cell faces •
coincident with a streamline boundary, such as an impervio,us body, no transport

iMore explicitly, the projection is the shock velocity W. , correspond-
•. . • . . , x» .

ing to \s but in the direction of the i,k ray so that W , = X /cos R
' - / , . ' . ' ' * " 1 j K . • S

where 3 is the angle between the ,normal .n 'and the i,k. ray.
S
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is allowed. The only variable actually needed at such a cell face is the
pressure, which can be expressed in terms of the interior mesh values of pres-
sure and the derivative of pressure normal to the face. This derivative
9p/9nL j is obtained from the momentum equation normal to a streamline:'body

9p_
9n body

p(u2F +v2F +w2F +2uvF +2uwF +2vwF )(F2+F2+F2) 1

xx yy zz xy xz yz . x y z

where the body is the surface F(x,y,z) = 0 and the subscripts indicate par-
tial differentiation with respect to that variable.

RESULTS

To illustrate the capability of this method, results from the computation
of reacting air flow about a general body traveling at 6.54 km/sec and.30°
angle of attack are presented. The ambient free-stream pressure is
p = 106 dynes/cm2 while the temperature is T = 236 K. The body is a smooth
three-dimensional configuration that closely resembles the proposed design
plan for the nose of the space shuttle and is described by a series of third-'
degree polynomials in plan and profile views and ellipses in cross section.
The mesh employed for the calculations consisted of 15 cells down the body in
the latitudinal direction, 17 around the body in the meridional direction, and
9 across the shock layer. The computation time needed for this solution was
over 1 hour on the CDC 7600 computer and required 300 time-step iterations.

The bow shock in the plane of symmetry displayed in figure 7 indicates
the smooth nature of the shock surface. The solid dots denote the corners of
each mesh cell and illustrate the asymmetry with respect to the stagnation
region that the nonorthogonal mesh network is capable of handling. Such a
capability is very useful at high angles of attack where one wants to exclude
from the computations as much of the supersonic flow on the leeward side as
possible while including, of course, all of the subsonic region on the wind-
ward side. Excluding as much supersonic flow as possible greatly reduces the
number of time iterations required for the steady state. Figure 7 also pre-
sents the variation of density between the body and bow shock along the line
£ and characterizes the sharp compression at the shock and the smooth non"-
oscillatory variation behind it that the mesh-alining procedure produces.

A plot of the shock-standoff distance zs (z = zg at x = 0) is given in
figure 8 as a function of the step number n and shows a monotonic approach
to steady state after about 180 steps;- Some unsteadiness may still appear to
be present after 300 steps, but a check on the conservation of total enthalpy,
an expression independent of the calculations and thus a valid indicator of
overall error, shows that total enthalpy is constant to within less than 1
percent. Furthermore, flow properties on each successive step are now chang-
ing by an even lesser degree, and on this basis the solution of. 300 steps
is deemed to be at steady state for all practical purposes.
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In figure 9 the variation of the species concentrations along the z
axis between the body .and shock is presented and indicates how the mixture of
N2 and 02 for air immediately begins to dissociate on passing through the bow
shock. This dissociation leads to the formation of atomic nitrogen N and
oxygen 0 that increases to a maximum concentration at the body and a small
amount of nitric oxide NO that is most abundant right behind the shock. All
these results are consistent with the expected physical and chemical phenomena.

Figure 10 illustrates the variation of Mach number along the intersection
of the body.surface and the symmetry plane where the angle 6 is measured
from the z axis. On the leeward side, it 'increases monotonically from a
small value near the axis to well over 1.6 at the downstream edge; on the
windward side, it steadily increases with 6 until about 0 = 60°, at which
point the flow undergoes a small recompression (see ref. 3) that lowers the
Mach number for a small distance after which it then increases rapidly to
above 2 at 6 = 100°.

CONCLUDING REMARKS

The present numerical method accurately calculates three-dimensional
reacting gas flow by use of a procedure that has been shown to be very effi-
cient. The flow-field geometry and physics determine the computational
mesh which is generally nonorthogonal, and the integral form of the dif-
ference procedure handles the required nonorthogonal mesh with less compu-
tation time than the equivalent differential form. The splitting techniques
employed are, beneficial because they allow larger time steps than .nonsplit
ones and, more importantly, split-difference operators can be arranged to form
efficient sequences in which some operators appear less often than others.
This is particularly useful for handling the chemical kinetic* equations
because of the large difference between fluid and chemical step size. In the
difference operators presented, no special treatment is given to the shock
wave unlike Other difference schemes that accurately calculate shock waves in
the interior of the mesh by testing for the shock's presence and treating it
with special" routines. The present shock-wave treatment by mesh alinement is
done by an operator split from the flow operators and is applied only as often
as required by the movement of the shock wave.
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Figure 3.- Mesh geometry determined by series of nested cones.
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Figure 4.- Partitioning of the shock layer into finite volumes.
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Surface S;(t) at time t

Figure 5.- Time-changing volume cell i, j, k.
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Figure 6.- Geometry for shock velocity evaluation.
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Figure 9.- Variation of the five species concentration in
axis for flow in figure 7.
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COMPUTATION OF SHUTTLE NONEQUILIBRIUM FLOW

FIELDS ON A PARALLEL PROCESSOR

By W. C. Davy and W. A. Reinhardt

NASA Ames Research Center

ABSTRACT

A finite difference computational procedure is described for calculating
hypersonic, three-dimensional, chemically reacting, inviscid flow about Space
Shuttle Orbiter wing-body configurations. The governing set of partial differ-
ential equations are integrated by combining explicit and implicit numerical
methods. The outer shock wave is treated as a sharp boundary of the perturbed
flow region and embedded surfaces of discontinuity are "captured." The
methodology by which the procedure was adapted for the ILLIAC IV parallel pro-
cessing computer and the CFD programming language are described. Convenient
procedures leading to rapid program development are covered. Results are pre-
sented which are among the first to come from the ILLIAC IV.

INTRODUCTION

The advent of the new generation of very fast, special purpose, vector
computers with large core storage (e.g., IBM 360/195, ILLIAC IV, CDC 7600, and
CDC STAR) has made feasible the numerical simulation of complicated three-
dimensional flow fields that can contain an intricate array of embedded dis-
continuities such as shock- or contact-surfaces. Also, these computers have
necessitated the development of new programming languages to insure the generr
ation of particularly efficient computer codes that take advantage of special
hardware features such as "pipeline" or "parallelism" (CDC 7600, CDC STAR, and
ILLIAC IV). This paper discusses the use of CFD language (ref. 1) programs in
numerically simulating chemically-reacting, inviscid, hypersonic flow about
Shuttle Orbiter design configurations. The results shown are among the first
to come off the ILLIAC IV computer.

Several methods for numerically simulating a supersonic or hypersonic
flow field for either perfect gas or equilibrium air are described in the
literature (refs. 2, 3, 4). Some of these programs have been applied to var-
ious design versions of the Shuttle Orbiter with the goal of providing pressure
and velocity data that might lead to design refinements. However, during the
early portion of a typical entry trajectory for the Shuttle, where Mach numbers
are greater than 20, it has been estimated (refs. 5, 6) that significant effects
due to chemical reactions in the shock layer are to be expected. Among these
are the changes in the temperature and species composition of the gas near the
body, which are expected to have pronounced effects on energy and mass trans-
port phenomena. The material surface activity in the environment of high

1351



temperature and large nascent oxygen concentration necessitates a more com-
plete understanding of chemical nonequilibrium flows. Rakich and Park (ref. 6)
have described chemical nonequilibrium flow results obtained from a solution
based on method-of-characteristics (MOC). .jhe MOC approach, however, is not ̂
readily adaptable to complex shapes, such as bodies with wings. This paper
introduces results for typical Shuttle entry conditions obtained from a shock-
capturing (SC) method of solving the gas dynamic equations. Such methods have
been researched for several years, in particular, by members of the staff at
NASA Ames Research .Center, where, there exists,a large reservoir of relevant
knowledge and experience. " "' " '*' '• ~ 7

The basic method in many respects parallels that described in reference 2.
The flow in the subsonic region about the blunt nose of a hypersonic spacecraft
(or supersonic aircraft) is calculated by the methods described in references 7
and 8 which yield results on a plane normal to the^body axis. With these
results as initial data,' this "computational" plane is then "marched" stepwise
to the end of the body. The outer, or bow, shock wave, which separates the
perturbed flow from the free stream, is treated as '.a sharp boundary. Embedded
surfaces of discontinuity, whether shock waves or contact, are "captured" by
the numerical method. Flow tangency on the body surface is satisfied by use of
a scheme similar to that of Abbett (ref. ;9), except that constant entropy, as a
condition on the body stream-surface, is not explicitly imposed. Entropy pro-
duction, caused by chemical relaxation, is allowed; isentropic flow in the body
stream-surface is then a byproduct of such limiting phenomena as either "frozen"
or equilibrium flow. The numerical algorithm by which the chemical relaxation
effects are computed is briefly discussed in this paper.

The computation of chemically-reacting, three-dimensional flows, -even with
the simplest chemical models, seriously strains the capability of other than
the new generation of vector computers. ' As mentioned earlier, these computers
achieve their efficiency principally through special hardware features.(paral-
lelism or pipeline); but to take greatest advantage of.their computational
efficiency requires programming in a vector language. A particularly easily
learned language, for programmers experienced with FORTRAN, is CFD (ref. 1).
This language, developed within the Computational Fluid Dynamics Branch at
NASA Ames Research Center, leads through the use of translators and compilers
to very efficient code for both the ILLIAC IV .parallel computer and the
CDC 7600 pipeline computer. Also described in this paper is the modus operand!
by which the same CFD Shuttle code is run on a variety of computers so that
the best features of each computer can be effectively utilized.
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.' . . " BASIC EQUATIONS

The conservation of mass and momenta in a steady inviscid three-
dimensional flow may be written in cylindrical coordinates as follows:

(1)

where B, F, G, and H are four component vectors defined'by

B -

pu

p + pu2

puv

puw

.
G = -r

* =

pw

pwu

pwv

p -1- pw2

pv

pvu

p + pv2

pvw

H = —
r

pv

pvu

P(v2 - w2)

2pvw

In these equations p and p are conventional symbols for pressure and density,
and u, .v, and w are the three velocity components corresponding to the
coordinate directions z, r, and <J>, respectively. In addition to these four
flow equations we have the species conservation given .byl ., .

(V • 7)y = R(T, p, (2)

where Y is tne s-dlmensioned vector,

origin of these equations, as well as explicit representations for
the production term R, can be traced in sources such as references 10 and 11.
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and s denotes the number of species in the flowing mixture. The quantities
YI are the species concentrations in units of moles per unit mass, and &
denotes the species production term in [YI] units per unit time. In cylindri-
cal coordinates the convective or "material" operator is given by

v . v = u — + v —+ - —V V u 3z V 3r r 8<j>

''Equations (1) arid (2) are s+4 partial differential equations that govern
the behavior of the s+5 variables p, p, u, v, w, and Y^. These equations are
completed by introducing the integrated form.of -energy conservation to obtain
the adiabatic flow, or caloric state, equation given by . ,-

Ht = constant

= h + V2/2

where Ht is the total enthalpy, h = YP/P(Y - 1) + ^Yjhj is. the static
enthalpy, V is the magnitude of the velocity vector, h£ are the chemical
heats of formation (see table 3), and Y (without subscript) is the specific
heat ratio, defined as the ratio of the specific heat at constant pressure to
the specific heat at constant volume (see appendix). More specifically,
equation (3) follows by neglecting viscous and nonadiabatic energy dissipation
effects and by assuming that the molecular vibrational energy* 'can be approxi-
mated by the Lighthill model, where the vibrational states are assumed half-
excited (ref. 6). The above set of equations is nearly complete except that
the production terms, R in equation (2), contain rate constant parameters
that depend on temperature. The system is completed by introducing the thermal
equation of state, given by :, , '

s
T = p/pR0 £ Y± • . . ' - . . . (*)

1-1
v , t

where Ro is the universal gas constant (RQ = 8.31434xl07 erg (g mole)"1 K"1).
Atom conservation is satisfied by equations (2) and is not further introduced
to reduce the rank of the system to be integrated. Two advantages follow from
this procedure: the equations lend themselves more readily to vector-matrix
formalism, and atom conservation can be used to estimate the extent of numeri-
cal integration errors.

Except for the addition of species conservation, equations (2), the above
equations are analogous to those described in the paper by Kutler, Reinhardt,
and Warming (ref. 2). In similar manner, the body geometry and the outer or
peripheral shock surfaces, displayed in figure 1, can be represented by
functions of the form
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Ls rs(z,<f>;Yco)

(5a)

(5b)

where is obtained by evaluating the equations defining the body surface
described in reference 2, and rs is determined during the course of the
numerical computation by following a method parallel to that described in
reference 2. Equation (5a) is independent of the. state of the mixture; equa-
tion (5b) depends only on the specific heat ratio of the mixture at the peri-
pheral shock, and since it is assumed that the species concentrations are
"frozen" (constant) across the. shock wave, the y at the shock Is that of the
free stream. Using the procedure defined for obtaining equations (5) , the
radial coordinate is normalized to allow for a reclustering of mesh points in
the meridional direction in similar manner to reference 2 (cf . fig1. 2) by
introducing the independent variable transformations given by

z = z

5(z,r,<|>) - (r - rb)/(rg -

n(<|>) = ir {B + sinh

I + (e& - l)*0/ir

•'Ife-1)51"1-'"']}/8
B(3,<|>0) = 0.5 £n

1 + - l)<f>0/ir

(6)

where 3'and <|>o are arbitrary parameters that control the degree and location
of clustering. No clustering occurs when 3 is zero. As 3 increases, the
degree of clustering increases with the greatest density of points appearing:
about the ray defined by the angle <f>0.

Application of the independent variable transformation relations, defined
above, into equations (1) and (2) yields

TT "*" TT + TIT + H = 0 (7a)

(7b)
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where

E = E

P = 5

a n d . ' • • " • • • • ; ' ; •
V W• - ? . - : • . . « . .! . a = s + - e + —. z u r ur

b = —ur

The transform derivatives are given by

rb + ^rs - rb J

z z z

C - !
(rs -

(*/4.0)sinh(B)/B

- l)sinh(B)]2 + 1

r - r,s b
Z Z

.rg - r,

, sinh(B) sinhfng/TT - B]\ ) = . ^ f •—r
* n *o 1 + 8inh2[ne/ir - B]
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These relations follow conventional notation, where

8r, 8rb . _ s
. rb ~ 9z .' . ,rs ~ 8zz • z

8r, 3r

The finite difference analogue of equations (7) is integrated with respect
to the hyperbolic coordinate z to calculate values of the conservative vec-
tor E. Within each integration step,, however, values of the physical variables
p, p, u, v,, w, and YI are also required. These are obtained by solving the
set of equations represented by the vectors E. and Y- This "decoding" pro-
cedure parallels that described in reference 2. Let e^ denote the components
of the vector E; the velocity components v and w are easily found and are
given b y . . . _ , . , . ; ,*,>•

, v =63/6^ (10a)

w = ̂ /ej (lOb)

By substituting these relations into that for total enthalpy, equation (3), and
by using ej and e2 to eliminate the variable dependence of p and p, we
obtain

o(u) = u'2/2 + h+fpCuJ.pCu)] - to/2 = 0 . (11)

where

p(u) = e2 - e:u

p(u) = el/u ;

2(Ht - SV^ - (e3/el>2 -0)

Notice that the chemical enthalpy is not included in the special static
enthalpy relation h+ defined above. An advantage of assuming half -excited
vibration (Lighthill model) , where the vibrational energy is proportional to
temperature, rather than adopting equilibrated internal molecular vibration,
is that the decoding process is greatly simplified. We can decode explicitly
to obtain
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u =
Y +

-|l/2

It can be shown that decoding also yields explicit relations in the more com-
plex models where the vibrational energy is assumed in nonequilibrium (refs. 10,
11, 12), or when vibration-dissociation coupling is considered (refs. 13, 14),
but not when equilibrium is considered (ref. ,2). It is not expected that the
inclusion of the more complex models would greatly alter the overall charac-
teristics of the computed flows, but may only affect locally small regions of
the flow. Their inclusion is certainly not warranted in context with the
relatively simple chemical model that is considered in this paper, and dis-
cussed in the next section.

CHEMICAL MODEL .

The set of chemical reactions considered are the three dissociation reac-
tions and the two bimolecular exchange reactions involving five species given
in table 1.

TABLE 1.- CHEMICAL MODEL

i

1

2

3

4

5

Chemical

°2 J

N 2H

NO H

°2J

N2 J

h M J

h M J

h M t

h N £

I- 0 J

equation

20 H

2N H

N +

NO -

NO -

h M

1- M

0 +

h 0

h N -

M .

In reactions 1-3, the symbol M is the "third body" collision partner that
can be any of the five species in the mixture.

Table 2, lists the rate and equilibrium constant data for the five reac-
tions shown in table 1, as well as the collisipnal efficiencies which depend
on the kind of "third body." The equilibrium constant is used to find the
reverse rate constant from the expression kr = kf /KJ_, where kf and k

are the forward and reverse rate constants and K-J/ is the equilibrium constant
for the ith reaction. The dissociation rate constants in the table have units

. q

, while the equilibrium constants have units mol cm"3.
O i l

cm mol sec-

Table 3 provides heats-of-formation data in several basic units which are
required in equation (3) .
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TABLE 2A.- FORWARD RATE EXPRESSIONS

kf - eATB exp(-C/T)

Reaction

. 1
2

• 3
4
5

A

2.75 E+19
3.70 E+21
2.30 E+17
1.01 E+10
7.60 E+13

B

-1.0
-1.6
-0.5
1.0
0.0

&'C "•• ••'•'

59 750
113 200
74 900
3 386
38 000

e • ."•• -
Molecules
M=02,N2,NO

1
1
1

—-

Atoms
M=0,N

3
3
2

—-

Ref.

15
16
16
17.
16

Note: e is collisional efficiency factor.

TABLE 2B.- EQUILIBRIUM CONSTANTS3

/£ a. \
<± = exp £ B T - 6 /T

VA-O /

i

1
2
3

i =1, 2, 3 .

Bi*

2.6807 1.7379 E-4
2.6408 1.2990 E-4
1.2777 9.9571 E-5

-3.0429 E-8
-1.7172 E-8
-1.5647 E-8

1.2237 E-12
8.0627 E-13
7.0075 E-13

9i

59,364
113,260
75,518

aThese constants were obtained by least squares fitting of equilibrium
constant data obtained from a computer program that evaluates partition func-
tions based on spectroscopic data.

TABLE 3.- HEATS-OF-FORMATION SPECIFIED IN SEVERAL BASIC UNITS

Species

°2
N2
NO

0

N

Heats-of -formation, h°

Cal/Mol

0

0

2.1810x10'*

5.8990X101*

1.1250xl05

Ergs/Mol

0

0

9.1254xlOn

2.4681xl012

4.7070xl012

K

0

0

10 975

. 29 684

56 611
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The chemical reaction system defined above is considered important'in non-
equilibrium studies involving spacecraft entry from near Earth orbits. With "
these .reactions, the effects of chemical nonequilibrium on entry dynamics and
on the thermal and chemical environment near the spacecraft's surface can be
accurately calculated. Such results are in demand by vehicle designers to .pre-
dict, 'in particular, surface heating rates and chemical corrosion effects on
the surface materials of vehicles. The effect.of gas ionization on these esti-
' mates is-not expected to be significant, although data on the ion.sheath
occurring in the shock layer can be important in communication studies -(e.g.,
the communication "blackout" problem). The algorithm discussed in this paper,
as well as the computer code itself, readily permits for a generalization of
the chemistry model; but these nonequilibrium flow simulations use about four
times as much computer time as do"perfeet gas'("frozen" chemistry) calcula-
tions. Hence, complicating the chemical model is not desirable for preliminary
investigations, while the computer program is in early stages of development.

FINITE DIFFERENCE EQUATIONS.

The fluid-flow equations, equations (7a), are.approximated by use of
MacCormack's second-order, predictor-corrector method.

The numerical algorithm can be written as

-nK*,j = E
n AAz ------- 1 n

- Az" " H

+ AE1

m . (12a)

_n+l
E*,l

- Az

where

_n • •»/ n .
B. . = E(z , *An ,

» » *An.'JA5)

n« • — x*." . . . . .
». I " F(B , z , + Az , *An ,
* » J * » J ' • ____

etc. ' ~
n .-Az
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-The argument E* j in -the.,latter .,.t;wo .expressions implies the "decode" .process
of solving equation (11) to ,obtain the physical variables. The terms

im.r
are fourth-order damping terms introduced to minimize

m,r
nonlinear instabilities (ref. 18). The increments A£ and An are the mesh
spacings iri the radial and meridional directions, and Azn is the "marching
step-size" between the n-1 and nth computational planes (see appendix). The
damping terms, depending on whether damping is applied in the meridional and/or
radial directions, are given by . . . . . . . . ,... ,

- - /p + 2P - + P
m - v

AE,L - 2E*.i (13b)

where L = n or n+1, £ = 0 or 1, and jj = j or j+1, depending on whether
the above formulas apply for the predictor step, equation (12a), or for the
corrector step, equation (12b). The asterisk is introduced to reveal the
"Processing Element" (PE) vector alignment on the ILLIAC IV. the above equa-
tions are somewhat similar to those given in reference 2, except for the addi-
tion of the damping terms and the parallel solution of the above equations.
That is to say, they are solved simultaneously insofar as the Processing Ele-
ments (asterisk) are concerned. The subscripts *+l and *-l respectively
label the variables as those to the right and left of the reference PE, .
labeled *, and the subscript j denotes the array location within the respec-
tive PE.

The above equations advance the solution everywhere within the region
2 «£ * £ Nn and 2 S j i Nj- - 1 where N^ and NF are the number of meridional
and radial node points, respectively (cf. fig. 2).

On the boundaries, that is, on the body surface (j=l, 2 < * < N n J a s
well as on the shock-wave surface (j =N^, 2 < * < Nn\, different numerical
algorithms are required. The state of the ILLIAC IV 'is also altered. This is
accomplished by setting "MODE," which is nothing more than turning off the
appropriate processing elements during the small amount of time that boundary
points are computed. MODE setting permits considerable program flexibility on.
the parallel processing ILLIAC IV.

On the body surface, inviscid boundary conditions are applied where the
flow is required to be tangent to the body surface. The flow at the shock-
wave boundary is based on the Rankine-Hugoniot conditions. At the shock wave
it is assumed that chemical relaxation cannot occur within the few mean-free-
path lengths that define the viscous shock-wave thickness; hence, the species
are set equal to their free-stream values. The flow across a shock-wave
boundary, therefore, behaves as a perfect gas, and it follows that the procedure
described in reference 2 for a perfect gas can also be extended to reacting
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flow. The method is based on the scheme by Thomas e£ al . , reference 19, which
yields shock-wave slope from a set of predictor-corrector formulas derived from
the Rankine-Hugoniot conditions. These formulas depend upon the downstream
pressure, ?2» being known, and this is found by integrating the fluid-flow and
nonequilibrium equations, equations (7).

Application of flow tangency as a boundary condition on the body surface
is complicated by the requirement that the flow within the body stream surface
may not necessarily be isentropic because of entropy production resulting from
chemical nonequilibrium. However, advantage can be taken of the fact that the
nonequilibrium flow can be isentropically turned at a point. A procedure simi-
lar to that of Abbett (ref . 9) can be used. For three-dimensional flow the
procedure parallels that described in the paper by Kutler, Reinhardt, and
Warming (ref. 2), except that density is found by evaluating

P2 " (Pi/P2>
1/Y pi

where the ratio Pi/P2 *s the ratio of 'pressures before (p̂ ) and after (p2>
a Prandtl-Meyer expansion or compression involving an angle ±A6 , and y is
the isentropic exponent that is unchanged by these effects (see appendix) .
The quantity y " is a variable, however, that can be different at each point
on the body surface from one plane to the next.

The species equations (7b) are solved by way of a modified form of the
Crank-Nicolson differencing method. The derivation is not given here.
Approximation of the species-continuity equations by a Crank-Nicolson method
leads to the predictor-corrector form given by

— — ~n+l / \ ~n+l / \
n+i Az n / n n \ Az hn I n n 1Vj A? a*,j^Y*,j+i " Y*,jy " An ;*,jy*+i,j.~ Y*,jy

~ n+l

u
.

n *,3 *,j

A~n+ln+l .n+l \ ^ A£_ n
un+l *,j
*,3
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Where J^ . is a Jacobian matrix, the elements of which are derivatives of the
production terms with respect to the species variables, that is,

(15)

and I Nis the identity matrix. The notation has been defined earlier; the
subscript and superscripts denote the same^meaning as used for the flow equa-
tions. The tilde over the interval size, Az, signifies that the chemical
step-size can be different from that for the flow'(described in the appendix).
Depending on transients in the species variables, several steps governed by
accuracy may be required to advance the species equations within the step
size dictated by fluid-flow stability considerations (see the appendix).

CFD PROGRAMMING

General Features

The method described in the foregoing sections was coded in CFD language
for the ILLIAC IV parallel processing computer. This language, described in
reference 1, is a vector, FORTRAN-like language, which was developed within
the Computational Fluid Dynamics (CFD) Branch at NASA Ames Research Center.
Several worthwhile features characterize CFD. First, users familiar with
FORTRAN find the transition to CFD easy. Second, once programs are coded in
CFD, translators and compilers exist that generate FORTRAN code for serial
computers or relocatable machine language code for the ILLIAC IV. Third, the
architecture of the ILLIAC is not hidden from the programmer (cf. fig. 1,
ref. 1) and this permits the programmer to produce efficient machine language
code. Finally, since CFD is a vector language, translators can be designed to
generate efficient code for vector computers such as the CDC 7600, and this
effort is currently underway.

The CFD programmer who understands FORTRAN needs only a very basic under-
standing of the ILLIAC hardware (ref. 1), that is, the Control Unit (CU), the
Processing Elements (PE's), and the Main Memory (MM) which is the disk area.
The few non-FORTRAN CFD instructions are easily understood. The programmer
can then concentrate on the logic of the numerical method without being
encumbered with the language.

The CFDX translator, which generates the FORTRAN language code for serial
computers, was designed to simulate accurately the parallelism. This trans-
lator can be exploited to great advantage. The ILLIAC program can be initially
simulated on a .serial machine. Thereby,.considerable use can be made of the
debugging aids already developed over the years that serial computers have
been in use. The dynamic dumping and interactive graphic capabilities avail-
able at Ames Research Center have been utilized to great advantage. In fact,
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with very few exceptions, it was possible to verify the entire program, con-
sisting of some 30 subprograms, on this Ames IBM 360/67 system.

The vector features of CFD led to the development of a new translator,
CFDX7600, that produces highly efficient FORTRAN code for the CDC 7600.- This
is accomplished by the translator insertion of "speedie" subprograms that take
advantage of the "pipeline" capabilities of the CDC 7600 to process a selected
set of arithmetic-vector operations. By hand coding "speedie" subroutines .
into the Shuttle program described here, it was possible to achieve a nearly -
threefold decrease in computer" run time per integration step when compared to;"
the standard FORTRAN compiled code.

This discussion has alluded to running on at least three separate types \-
of •'computers, IBM 360/67, ILLIAC IV, and CDC 7600. In fact, this is the •'-•< -
usual modus operand!. This multiple computer operation is illustrated in
figure 3. Note that the complete cycle of program execution inay be categorized
in several phases, that is, language processing, program as well as initial "''
data transmission, data generation, and data reduction. The translators and
compilers nave already been described. The value of the combined IBM-360/67-
ILLIAC IV loop has been touched upon for program checkout. The pair"of com-
puters is connected within a network, known as the ARPA network, and data
transmission is nearly automatic. The CDC 7600 used heretofore is located
about 60 miles away in Berkeley and is connected via a Remote Job Entry (RJE)
unit. Program and data transmission is by cards or tape. In the near future
Ames will have installed a CDC 7600 which will not be within the network, but
will be geographically more accessible. The dashed-line within the figure
denotes that the CDC 7600 is not electrically connected within a loop.

As the performance of the ILLIAC IV improves, and the Ames CDC 7600
becomes available, the use of graphics, shown at the bottom of figure 3, will
have even increasing value. The scheme outlined will permit rapid data
processing to minimize the need for hard copy output. (In fact, the contours
described later are reproduced Polaroid photos of an IBM 2250 CRT display.)

Special Features

' The program described has been run on the ILLIAC-IV almost from the time
when users were first allowed access to the machine. At that time it was :

difficult to identify faults originating in the hardware from those due to
software. In the intervening time the performance of the machine and the
accessing network has improved greatly. During this time," however, a trouble-
some problem from the users' point of view was occasional errors arising from
intermittent failure of one or more of the 64 PE's. Such errors propagated to
affect eventually the data in-all the PE's. A strategy was developed to guard
against such problems by internally checking the data after each 'integration
step. Within the CFD program, the 64 PE's are divided into one, two, or three
sectors. The three-sector division is illustrated in figure 4'. By setting
identical initial conditions in each of the' sectors, and by appropriately
setting MODE, briefly described earlier, so that the correct PE's are activated
while boundary conditions are computed, it is possible to solve the same prob-
lem redundantly in each of the sectors. The results can be compared at the
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end of each step to detect PE failure. In fact, it has been possible with
this stratagem to identify particularly troublesome units. If data differ in
only.one of the three sectors, the data from this sector are replaced (identi-
cal failure.in two sectors is highly improbable) and the integration is con-
tinued. If^all three sectors differ, the'data are recomputed 'from the previous
step. If failures occur too often within a step, the program automatically
exits. The two sector option allows for greater meridional resolution
(32 meridional planes compared to 21), while still allowing for internal check-
ing. The single sector option, which can include simultaneous computation in ..
all PE's, allows for maximum radial resolution, and is.also the option exercised
in the CFD code when used on serial and "pipeline" computers where multiple
sector operation has no advantage. The stratagem of using multiple sectors can
be used to great advantage when parameter studies are desired, but with sacri-
fice in the-degree of resolution (i.e., with less than 32 planes rather than
.possibly 64) for the meridional direction. For example, two separate trajec-
tory points could, in principle,, be simultaneously computed on the ILLIAC_IV
at a cost of about one-quarter of that required to obtain the 64-plane, maximum
resolution. The program would require minor modification since its current
design allows only for the simultaneous solution of redundant problems.

RESULTS AND CONCLUSIONS

A typical shuttle trajectory point has been studied to demonstrate the
viability of method, CFD language, and parallel processing. The freer-stream
conditions, which correspond to a point on the Shuttle reentry trajectory at
an altitude of about 65.5 km and a Mach number of 21.7, are as follows:

2
p^ (pressure) = 106.2 dynes/cm
p" (density) = 1.566 x io~7 g/cm3

V (velocity) = 6.544 km/sec
o (angle-of-attack) = 30°

The initial conditions (i.e.',' starting solution) were obtained by first solving
the unsteady fluid-flow and species conservation equations (ref. 7) to obtain
data on a conical data plane which encompasses the subsonic regime of the. oncom-
ing stream. This cone was then expanded to reach congruence with a plane nor-
mal to the axis by application of the method (see ref. 8). The data on
this plane then served as initial conditions for the results described here.
The body configuration is based on the Shuttle Orbiter 147 design and has the
general attributes of the vehicle shown in figure 1. The planform, which
includes the double delta wing, is accurately represented. It was considered
worthwhile, at least during the early stages of program development, to sacri-
fice a degree of geometrical accuracy in describing the cross section to mini-,
mize difficulties caused by other problems. That is, among the many problems
confronting the new procedure, it was desired to avoid possible flow overex-
pansion about regions of large curvature. The windward^ side is relatively
accurately represented, while the lee-side profile roughly approximates "a
separation bubble." The numerical algorithm is, however, not limited to such
shapes.
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The results of the calculation, which were obtained via the ARPA network •
from the ILLIAC IV parallel processing computer, are given in figures 5 to 8. -•"

Figure 5 shows computed atomic oxygen and temperature radial profiles
from both the windward and leeward symmetry planes. Also shown are comparisons
with available results obtained by different computational methods. Results •
are plotted from method-of-characteristics (ref. 6) and from a finite-volume
method (see ref. 8). Comparisons with flow quantities (not shown) were'
fairly precise (<1.Q percent), while greater deviations were observed for the '
concentration variables (<8 percent). Agreement is considered excellent. The
chemical model was the same for all the methods compared.

The qualitative behavior of the profiles shown in figure 5 compare with
similar data given in reference 6. The temperature decay from 7000 K to
5500 K on*the windward plane is caused by chemical relaxation effects. In
this region, almost 100 percent "oxygen and 15 percent nitrogen (not shown)
dissociation occurs. Effects resulting from the large angle of attack are
observed by comparing windward and leeward symmetry plane data. The tempera-
tures are generally higher on the windward side where the shock wave is very
strong. The chemical relaxation zone also occurs closer to the peripheral
shock wave. A temperature maximum appears on the lee side. This maximum, in
effect, separates regions of the lee-side flow where different effects are
important. The decreasing temperature observed in the direction of the body
is caused by chemical relaxation (cf. atomic oxygen profile), while the
decreasing temperature in the direction of the peripheral shock is a result of
the "expansion fan" caused by the decreasing curvature away from the flow on
the lee side.

Contour plots at two axial stations are shown in figures 6 to 8,
inclusive. In all these figures the body and shock are described by the -inner
and outer curves, respectively, which are not necessarily contours. As men-
tioned earlier the concentrations are constant across the shock (i.e.,
"frozen"); hence, the species concentrations outside the first contour, for
those presented here (0, N, NO), can be considered very small. In figures 6,
atomic oxygen is shown. The qualitative behavior of atomic oxygen described
in the preceding paragraph is also visible here. The relaxation zone, where
the profiles lie close together, shifts from near the shock wave on the wind-
ward side to about midway between shock and body on the lee side. Figures 6a
and 6b, when compared, show changing effects as the computational planes are
marched down the body. The body shape changes to the extent that the windward
surface flattens and the transition between bottom and side (chime line)
becomes more distinct. Not displayed in these figures is the changing scale
as the perturbed flow region expands (cf. fig. 1). The contours are obtained
from,a CRT device where, to maintain maximum display resolution, it was worth-
while to keep the size of the shock envelope constant.

In figures 7 and 8 contours are given for atomic nitrogen and nitric oxide.
The underlying mechanisms that govern contour shapes are more complex for
these species. In the case of oxygen, chemical dissociation (reaction 1 in
table 1) principally governs the observed effects. For-nitrogen and nitric oxide,

1366



however, the bimolecular exchange reactions (1=4 and 5 in table 1) are also
very important and greatly complicate a description. The effect of cross-flow
is also evidenced in these figures (cf. figs. 7a and 7b as well as 8a and 8b).
The most noteworthy phenomenon is the NO overshoot shown in figures,8. Evi-
dence of overshoots are" the closed elliptical contours on the lee side of the
bottom edge.

In conclusion, it has been found that the ILLIAC IV is not difficult to
program.using CFD. Furthermore, the ILLIAC IV can be effectively used to
simulate the complicated, chemically-reacting, three-dimensional, flow prob-
lems. The use of CFD as a programming language has a number of distinct advan-
tages of which the most prominent are its FORTRAN similarity and its relaxation
of machine dependence.

The tools now developed as described in this paper will be used in subse-
quent investigations to study more complex and accurate body configurations and
to study the effects of other chemical phenomena such as communications
"blackout" during reentry.
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APPENDIX

COMPUTATION OF THE STABILITY CONDITION FOR THE COMBINED SET OF

FLUID-FLOW AND SPECIES-CONSERVATION EQUATIONS

It is:necessary to use as large a step size as possible commensurate with
stability bounds to insure efficient use of the computer, which at the same
time insures that the finite difference method is in some sense compatible
with the method of characteristics (ref.. 20). The stability bounds can be
found by using amplification matrix theory (ref. 21) that requires evaluation
of the eigenvalues of the coefficient-matrices of the combined set of fluid-
flow and species-conservation equations. The coefficient matrices are readily.,
found from equations (1) and (2) in the nbnconservative form

P

P

u

v

w
+ B = 0

These matrices are denoted by Ar and A$ corresponding, respectively, to the
r and <J> derivatives and B is the matrix of inhomogenous terms. The A
matrices can be evaluated and their eigenvalues determined, although the alge-
bra is tedious. The eigenvalues are given by

M M ± e
u v uv

'1,2

. _ = M /M
,4,5 v u

. M M ± B
<f> u w uw~

0, . c = M /M3,4,5 w' u
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where the superscript denotes the respective matrix from which the eigenvalues
are obtained, and

. • • u '•' v * w •''
M ,M ,M- = — , — , ~^-
u* v w af

 af raf

g = /M2 - 1u u

M2 _
UV U V

»- M2 - 1 . .
UW U W . - . - - . . ,

In the'above equations the speed of sound is the "frozen" value given by

.* = ̂

where the subscripts denote that the entropy and species concentrations are
kept constant in the differentiation. Formally, the above relation is
equivalent to

a2. = YP/P

where

Y = Cp/Cv

depends on the "frozen" representations for the specific heats at constant
pressure and constant volume. These relations are given, respectively, by

CP =

pi

(If).
v,Y±

Vi
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where Cp and Cy are molar heat capacities. By comparison with the eigen-

values given in reference 22, it can be seen that the same result can be
obtained by following the recipe implied in various references (such as
refs. 10 and 11), where perfect gas fluid-flow quantities carry over to
nonequilibrium flow by interchanging "frozen" flow representations with those
for a perfect gas (e.g., y, cp, cv).

The eigenvalues given by the above set of equations apply specifically to
the cylindrical coordinate system governing equations (1) and (2). The
coefficient matrix of the transformed equations, equations (7), can be found,
and the corresponding eigenvalues are given by

where

af = E -»j,f,5 r

[M M ± B InH u w uwj 9

M n,
-2J
M
u

•A = c M + C.M^r v 4> w

and the derivatives £ , £,, and ru are given by equation (9). The following

are now defined, a£ = Maxf a^J) and an = Max( a1? J; that is, these quantities

are the largest of all those computed on a plane . It then follows that

where f is an arbitrary constant, which usually is set to 0.9. The intervals
A£ and An depend on the radial mesh spacing. The actual value of the step
size, Az, used is the smaller of either (Az)£ or (Az)n.
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*'•• "/FLOW FIELD:AND; HEATING ONi'THE- . '.;

WINDWARD SIDE OF THE SPACE SHUTTLE ORBITER .

,By'\j'ohn; y. Rakich and Eva B. Pegot .- :

'.:'f'~. • \\ .NASA Ames.Research Center .

SUMMARY

A numerical procedure for predicting the surface heating to the space
shuttle orbiter is described and compared with wind-tunnel test data. The
procedure, which is based on the axisymmetric analog, consists of calculating
the surface streamline metric (or streamline divergence) using exact inviscid
flow field solutions, and applying the metric with two-dimensional heating
and boundary-layer analyses. This approach yields the dominant, or zero-
order, three-dimensional heating rates to general body shapes, such as the
shuttle orbiter. Two-dimensional boundary-layer methods, which include
complex nonequilibrium chemical reactions, can thus be readily utilized to
predict three-dimensional effects.

The numerical results are .compared with experimental .results for a 30°
angle of attack and excellent agreement is obtained for the windward center-
line heating rate and for one outboard''station at 20 percent of the span.
However, more comparisons are needed on the wing surface, especially in the .
region downstream of bow shock impingement, before the method can be fully
justified. . ... . .. • - "

INTRODUCTION

The space shuttle is expected to make its first orbital flight near the
end of this decade, and it will encounter a heating environment that cannot
be completely simulated by any current ground-based test facility. The
environment will encompass laminar and turbulent flow regimes and a non-
equilibrium dissociated-gas envelope which creates uncertainty about the
surface heating and oxidation rates. Therefore it is imperative that
advanced computational techniques and computers be applied to predicting the
flight environment as completely as is technically possible. To this end, a
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procedure is described for the prediction of" the flight environment and
surface heating of the shuttle.

Several computer codes have been developed at Ames Research Center and
elsewhere for calculating the inviscid blunt nose and supersonic afterbody
flows for the shuttle (refs. 1 to 6). Each of these programs requires large -
computer storage and execution time. Two or three separate codes may be
required to calculate the complete subsonic-supersonic flow. Therefore it.is
usually necessary to store the inviscid solution for later coupling with a. • . ,
viscous boundary-layer code, which gives the surface heat-transfer rates and
other surface conditions. To be precise, one should perform a three-
dimensional boundary-layer calculation and determine the coupling of the
viscous and inviscid flows (boundary-layer displacement effects). However,
three-dimensional boundary-layer methods were not well developed at the time
this study was started, and the consideration of boundary-layer displacement
is, as yet, too involved in three-dimensional flows. Therefore, in the
present work we have adopted the approach of DeJarnette and Hamilton, (ref. 7),
which employs a quasi-3-D boundary-layer calculation along the inviscid
streamlines, that is, the axisymmetric analog (ref. 8). To apply the axi-
symmetric analog, a two-dimensional boundary-layer calculation is performed
with the axisymmetric radius replaced by the actual metric (streamline
divergence) of the three-dimensional inviscid surface streamlines. In con-
trast with previous work which employed Newtonian streamlines (ref. 7), the
present method uses the exact inviscid streamlines. This method is applied
to the shuttle body shape in the present paper, and the predicted heat-
transfer rates are compared with experimental results.

STREAMLINE METRIC

In the present application of the axisymmetric analog, we make use of
exact inviscid flow field solutions, which are stored on magnetic tape or
disk and are available for computer processing. Since the inviscid solution
is usually specified on a cylindrical coordinate system (xj r, $)j it is
necessary to set up the equations for the streamlines, and the streamline
metric, in terms of these coordinates. This analysis was presented in
reference 9, so only an outline is given here. ...

Let s, n, t be dimensional distances in orthogonal streamline
coordinates, where s is along a streamline, n is normal and t tangent '
to the body surface (fig. ix)f. Let e, n» T be generalized streamline
coordinates, related to si -ii, t by the following differential relations

ds = h d£ , dn = h dn , dt = h dt
' *"" . •!• •£- 0

The component h is the "streamline metric" used in the axisymmetric
O ••

analog. Since h and h are not needed, we will for brevity adopt the

notation
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h3 = h (2)

We consider the streamline locus to be given in terms of its circumferential
position, $, as a function of axial distance, x, and streamline parameter,
T. In general, one can write

* = * (X.T) (3)

It is usually convenient to define T = $ at x = x so that for a given *
equation (3) defines a streamline path.

Now if we define

and .

* •'(£) ««
X

where the subscripts indicate the variable to be held constant, it is shown in
reference 9 that

•G(x,«) =̂ - (5)

and
-1/2

Here, (u, v, w) are the velocity components along .(x, r, *) , and V is the
velocity magnitude.

V = (u2 + v2 + w2)1/2 ' ' .. ' (7)

From equations (4a) and (5), one gets

3»

Also, it is shown in reference 9 that

ir>\ /-N-uX
(9)
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Given the inviscid •velocity field V(x, r, *) , and -the body shape r(x,*),
one can numerically integrate equations (8) and (9) by means of elementary
numerical methods. . '

The initial conditions depend on the nature of the stagnation point flow
tial conditions at x = XQ are

and h = r' (10)

field. For a spherical nose, the initial conditions at x = XQ are

where rQ = ro(xQ, $Q) is any point on the sphere, and r'Q is the radial

distance'' to the point in a wind-axis coordinate system. . Specif ically;
for * •••= 0 • • ... : • • . ... . . -

= T cos a - (X - O sin a (11)

where IL, is the spherical nose radius and a is the angle of attack.

Symmetry conditions at $ = 0, ir, for zero yaw, require that F . be
even and G an odd function of $. (See eqs. (6) and (8).)

HEATING AND BOUNDARY-LAYER SOLUTION

Having determined the streamline metric, one can use it with the "
equations for axisymmetric two-dimensional flow to obtain heating rate
predictions. This approach gives the dpminant three-dimensional effects,
and, accordingly, is called a quasi-three-dimensional method. The method
is applied with both approximate solutions and detailed nonsimilar boundary-
layer calculations.

Lees Heating Theory

In 1956, Lees (ref . 10) obtained an approximate expression for the
heating rate of blunt bodies. This approximation, which is based on laminar
boundary-layer similarity theory, simply requires an integration along a
streamline to calculate the heating distribution. The equation given in •
reference 10 is

where q is the heating rate, p is the pressure, u the velocity, the
subscript o refers to the stagnation point and e to the boundary-layer edge.
In the present application, r is replaced with the metric . h, and the
integration is performed along the three-dimensional inviscid streamlines.
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We note that equation (.12) applies to cold walls, that is, T . ,,/Twall total
small. Also, observe that equation (12) is independent of the Reynolds --• - •'•
number, and that it can be evaluated.in terms of the inviscid flow solution
alone. This is due to the fact that the heating rate is expressed as a
ratio; the stagnation heating does, of .course, depend on Reynolds number. For
like equations that can be used to treat, turbulent flows, the reader should
consult reference 7.

Boundary Layer Solution

For a detailed nonsimilar analysis, use is made of the integral matrix .
(BLIMP) code described in reference 11. This code has been recently modified ;i
to accept input data on magnetic tape, and this version is called AMBL. The
AMBL version also includes finite-rate chemical reactions as described in
reference 12. Thus, the quasi-three-dimensional approach allows the
possibility of simulating the chemical reactions occurring at flight condi-
tions. In contrast, complete three-dimensional boundary-layer solutions
with nonequilibrium'chemical reactions have not yet been obtained.

METDAT PROGRAM

A FORTRAN program has been written to (a) read the inviscid flow data
from a magnetic storage device, (b) calculate the streamline metric and
approximate heating, and (c) store data required by the boundary-layer pro-
gram. (See fig. 2.) The subroutine that calculates the streamline metric is
called METDAT. The main control program that takes care of data input/output
is called CHAOS. A flow chart' for CHAOS is provided in appendix A. Also
included in the programs are subroutines for plotting the surface streamlines
and other results generated. Some of these computer plots are shown in the
next section for a typical case. Appendix B contains a description of the
data cards and input data definitions which are needed to run the program.

RESULTS AND COMPARISON WITH EXPERIMENT ;

In order to verify the described methods; a test case has been run at
wind-tunnel conditions of M = 7.3 and 30° angle of attack, for which data -
are available. Although the shape used for the calculations is called the
shuttle orbiter 147 configuration, the experiment was performed with the
140B configuration. However, the windward surfaces of the two configurations
are nearly identical and may be considered equivalent for present purposes.
The wind-tunnel experiments were performed in the Ames 3.5-foot hypersonic
wind tunnel by James W. Cummings of Rockwell International and William K.
Lockman of Ames Research Center.
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Numerical results for the inviscid surface streamlines are shown in
figure 3, superimposed on the plan view of the shuttle orbiter configuration.
These inviscid flow field results .were obtained with a method-of-
charact eristics program (ref . 6) and did not include the outer wing part of
the configuration. Accordingly, the streamlines are stopped roughly along the
right running characteristic emanating from the wing root. It is known that a
secondary shock is generated at the wing root, and special methods are needed
to calculate that region of flow. The shock-capturing technique has been
successfully applied' to the wing but those results have not yet been employed
in the present metric program. It is expected that this will be accomplished
shortly.

Figures 4 and 5 show the surface pressure and streamline metric for the
same' streamlines as figure 3. The streamlines are numbered to identify the
various curves. Note that there is a rapid drop in pressure as each stream-:
line moves off the windward surface and around the chine, or maximum body
span, while the metric tends to be a maximum on the chine. The metric, h,
reaches values comparable in magnitude with the body length L in regions
where the local radius, r, is only 15 percent of L.

The heating rate distribution, calculated with Lees' theory (eq. 12) is
shown in figure 6 for each streamline as numbered. The heating rate peaks as
the streamline passes the chine because the increase in the metric there
overpowers the decrease in pressure.

' . \

In figure 7, the heating rate predictions are compared with the experi-
ment for the windward center line and for two constant span locations,
y/y = 0.2 and 0.3. The results from a detailed boundary-layer calculation

are shown as a dashed line and there is very little difference from the Lees
theory. The agreement of the approximate theory is attributed to the cold
wall (T ii/T't -, = .26) and perfect gas conditions. For a hot wall, or for

nonequilibrium flow conditions, it is expected that the boundary- layer
solution would be required for an accurate prediction. The agreement between
theory and experiment is excellent except on the centerline between
x/L =0.1 and 0.2, and along y/y =0.3 beyond x/L = 0.5. The latter

region is most probably influenced by the wing, which was neglected in the
present calculations. The disagreement on y/y = 0 may be a result of

IH3.X

the quasi-3-D approximation. This conclusion is based on the work of
Fannelop (ref. 13), who studied three-dimensional boundary layers by formal
series expansions, with the axisymmetric analog as the zero order approxima-
tion. In applications to a blunt cone, he showed (fig. 9 of ref. 13) that
the first-order three-dimensional effect is to reduce the heating rate in the
region behind the blunt nose. Still, the difference in the present applica-
tion is not large for the region shown in figure 7, and the quasi-3-D
approach seems well justified. We note, however, that more' comparison with
experiments is needed in the outboard portion of the wing before use of the
method can be fully justified. It is in this region that streamline
curvature effects, neglected in the present approximation, may become
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dominant. Also, the bow shock-impinges on the wing shock, and causes large
disturbances which may invalidate the, present approximations.

CONCLUDING REMARKS

Even though three-dimensional inviscid flow computations for simple ...
shapes have been available for nearly a decade, the combination of inviscid
and viscous flow codes has progressed slowly. This may be due partially to
the complexity of matching viscous and inviscid flows, and partially to the
unavailability of three-dimensional flow computations. The present work
seeks to eliminate these problems by extracting three-dimensional predictions,
from available two-dimensional boundary-layer codes. This permits one to
include complex physical phenomena, such as nonequilibrium dissociation
reactions, sooner than would be possible with fully three-dimensional methods,
The reason for doing this is to predict the heating of the space shuttle for
flight conditions, and to do so at an early enough date to affect the heat-
shield design.

A comparison of the present techniques with wind-tunnel test data
suggests that the method does an adequate job on, and just outboard of, the
windward plane of symmetry. However, the flow field on the outboard part of
the wing surface is more highly three-dimensional, and the present methods
may not do as well there. Preliminary calculations for an earlier version of
the shuttle indicate that the present technique might work well for the
entire wing, except at the leading edge and in the regions of shock impinge-
ment. Additional work is needed, and is in progress, to establish the
limitations of the method for predicting the heating to the complete windward
surface of the shuttle. ' •
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APPENDIX A.. .

FLOW CHART AND DESCRIPTION OF SUBROUTINES

PROGRAM CHAOS

INPUT DATA &
SETUP INITIAL
ARRAYS

i

• \

Nl = 1
r

SUBROUTINE SCDAT
INPUT SCT CODE . '
DATA; '''•'"' l "•'"• '

,00 LOOP ON
JTOTAL

Nl = 2
1 r ' '• ' .-'

SUBROUTINE MCDAT
INPUT MOC CODE
DATA

JSTART < JTOTAL

MODIFIES DATA
TO MATCH NUMBER

'OF POINTS AND
STRETCHING READ
FROM TAPE

SUBROUTINE METDAT
COMPUTE STREAMLINE
AND STREAMLINE
METRIC

SUBROUTINE CHPLT

PREPARATION OF
DATA FOR PLOTTING

SUBROUTINE BLDAT
WRITING DATA FOR
AMBL BOUNDARY
LAYER PROGRAM

JSTART =

JTOTAL

SUBROUTINE PRNPLT
PREPARATION OF
DATA FOR PRINTER
PLOT
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APPENDIX B

CARD INPUT DATA DEFINITIONS

CARD INPUT DECK

CARD

1
2
3
4
5
6
7
8
9
10
11i2a:
13
14
15
13Â
14A
ISA
13B

16
17
18
19
20
21

FORMAT

(13)
(313)
(213)
(213)
(213)
(213)
(313)

(2F10.3)
(2F10.3)
(3F10.3)
(3F10.3)
(3F10.3)
(313)
(213)
(213)
(313)
(213)
(213)

*

(A30)
(A30)
(13)

(8(I3.7X))
(13)

(8F10.4)

.INPUT PARAMETER

JTOTAL :
NMTAPE,NSTAPE,DIMENSION
NI,IOUT
NPHI.NREC
IN(5),IN(6) ,
JJR.NPSASF
NPRINT,NPLOT,NPUNCH
PSCALE.PHIMAX
ALPHA,SCALE
FS(13),FS(3),FS(2)
FS(5),FS(6),FS(8) :

(PHIAO(J),CDEL(J),CEX(J),J-l,NPHI)
NMTAPE,NSTAPE,DIMENSION
NI.IOUT
NPHI.NREC
NMTAPE,NSTAPE,DIMENSION
NI.IOUT
NPHI.NREC

HEAD1 .
HEAD 2
NUM
(J1(J),J=1,NUM)
NO
(ZL(J),J-1,NO)

cards are read.

Cycle back to card 13 as many times as required for ENREC = JTOTAL - 4
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DATA DEFINITIONS

NAME

ALPHA

CD EL

CEX

DIMENSION

FS(2)

FS(3)

FS(5) .!

FS(6)

FS(8)

FS(13)

HEAD1

HEAD 2

IN(5)

IN(6)

IOUT

JKJ)

JJR

TYPICAL
VALUE

30.

0.0

0.0

17

1716,. r.

1.4 ••'*

1.4

'SHUTTLE 147'

'PERFECT GAS'

0

DESCRIPTION

FS(1) Angle of attack (deg.)

•Cl = Boundary-layer thickness
parameter for delta = C1*S**C2

C2 = Boundary-layer thickness
parameter for delta = C1*S**C2

Index giving array size for input data
read in MCDAT

Gas constant

Gamma, specific heat ratio

PINF, free-stream pressure, psf

RHOINF, free-stream density, slug/ft3

VINF, free-stream, velocity, fps '..,

Gamma-INF, free-stream specific heat ;

ratio

Plot heading

Plot heading ,

Gas type index, 0 for perfect, and
-1 for equilibrium gas, and 1 for
nonequilibrium ,

Gas file number for equilibrium gas,
2 for air

Output control index for boundary
layer data

Array of station numbers for heat
transfer crossplots, Jmax 20

0 Number, of points above the body.,
surface used for edge conditions
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DATA DEFINITIONS (cont.)

NAME
TYPICAL
VALUE DESCRIPTION

JTOTAL

NI

NMTAPE--

NO

NPHI

NPLOT

100

19

0

Total number of points to be calcu- ,.,,
lated, four plus the number read from'
various tape files

Index to control type of input data,
1 for SCDAT and 2 for MCDAT data .

Number assigned to the tape drive for
input data from MCDAT .

Total number of interpolated stations •
at constant span locations, ZL

Number of streamlines

Index to control type of data plotted.,
0 = no plot, 1 = print plot only,
2 = print plot, calcomp,
3 = print plot, calcomp with dash
lines, 4 = print plot, calcomp, data
printout, 5 = contour plot

NPRINT 0 for debug print, 1 for standard,
and 2 for special print in CHAOS

NPSASF

NPUNCH

0

NREC

NSTAPE

NUM 10

0 to fill Newtonian streamlines to.
stag point, and 1 to start directly
from input data

Index to control output for boundary
layer program data, 0 = no output,
1 = write tape 10, 2 = write tape 10,
and punch cards

Number of records of data to be read
in for the present file on tape drive
NMTAPE

.Number assigned to the tape drive for
input from SCDAT

Number of values for Jl
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DATA DEFINITIONS (cont.)

NAME TYPICAL
VALUE

DESCRIPTION

PHIAO

PHIMAX 90.

Initial circumferential position of
streamlines, deg. from leeward

Value of * for terminating plots of
streamlines

PSCALE
f

SCALE

2L

Used for scaling of length dimensions
for plotting

Used for scaling boundary-layer data;
not used now

Location for interpolated data at
constant span, number of values *» NO
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.STREAMLINE

Figure 1.- Coordinates.

INVISCID FLOW CODES

DETERMINE SUBSONIC AND SUPERSONIC

FLOW REGIONS

TAPE/DISK
INTERFACED

METDAT 3-D STREAMLINE CODE

CALCULATE STREAMLINE METRIC

AND APPROXIMATE HEATING RATES

AMBL 2-D BOUNDARY LAYER CODE

SOLVE QUASI 3-D BOUNDARY

LAYER EQUATIONS

Figure 2.- Combined inviscid-viscous codes for flow field and heating
analys is.
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Figure 3.- Windward surface streamlines for shuttle 147 configuration;
Alpha = 30°, Mach number = 7.3, perfect gas.
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Windward surface pressure for shuttle 147 configuration;
Alpha = 30°, Mach number = 7.3, perfect gas.
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Figure 5.- Surface streamline metric for shuttle 147 configuration;
Alpha = 30°, Mach number = 7.3, perfect gas.
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Figure 6.- Surface heating rate for shuttle 147 configuration;
Alpha =30°, Mach number = 7.3, perfect gas.
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Figure 7.- Comparison of calculated and experimental surface heating rate
for shuttle 147 configuration. Alpha = 30°; Mach number =7.3; perfect
gas; q = 2.57watts/cm2; Tw/Tt = 0.26; Re = 1.7 x 106.
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SCALING OF ORBITER AEROTHERMODYNAMIC DATA

THROUGH NUMERICAL PLOW FIELD SIMULATIONS

By W. D. Goodrich,

NASA Lyndon B. Johnson Space Center

C. P. Li, C. K. Houston, R. M. Meyers, and L. Olmedo

Lockheed Electronics Company

SUMMARY

Aerothermodynamic data are presented for computer-aided numerical simu-
lations of three-dimensional inviscid, Newtonian, and fully viscous flow
fields around an analytical description of the Space Shuttle Orbiter geometry
at 30 degrees angle-of-attack. These data were, generated for "both typical
hypersonic wind tunnel conditions (M^ = 8, Re^ L = 106, To = 725K) and flight
conditions associated with peak laminar heating encountered during Orbiter
atmospheric entry (Altitude = 61 km, Velocity = 6.08 km/sec). Aerothermodynamic
data obtained in hypersonic wind tunnels are used to verify the wind tunnel
computations. Heat transfer scaling factors derived from these three-dimen-
sional flow field computations are compared to scaling factors derived from
two-dimensional-based flow field theories and scaling practices. Observa-
tions and conclusions are made .regarding uncertainties in extrapolating heat
transfer data from wind tunnel to flight conditions. Additional observations
are made concerning "user-sensitivity" or "grid-induced" flow field uncer-
tainties associated with using these computer codes.

INTRODUCTION

The Orbiter aerothermodynamic environment experienced during entry,
particularly the surface heat transfer rates and distribution, strongly
influence vehicle structural and thermal protection system (TPS) design.
Specifically, heat transfer rates and integrated heat loads play a major
role in TPS material selection, insulation thickness, and resultant system
weight. Similarly, uncertainties in heating rates and loads lead to poten-
tial uncertainties in the TPS design, which often lead to a conservative
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design. Conversely, reduced uncertainties can potentially lead to reduced
conservatism and, in this case, could lead to reduced TPS insulation thick-
ness and weight. . : I.

Currently, a well defined range of uncertainties associated with
predicting the Orbiter flight heating environment does not exist, except for
a few two-dimensional heating methodologies, which have been calibrated with
wind tunnel data and extrapolated to flight conditions. These two-dimen-
sional methodologies have been "three-dimensionalized" for selected Orbiter
body points with an empirically generated boundary layer length and diver-
gence calibration factor. This factor, of course, guarantees agreement
between wind tunnel heating data (within the uncertainty of the measurements)
and two-dimensional-based heating methodologies for all calibrated body
points at all calibrating wind tunnel conditions. However, no guarantees
exist for flows outside of the calibration range (i.e., flight conditions).

The' objective of the current study is to assess, the applicability of , v
these-"three-dimensionalized" methodologies at flight conditions. More .
.complete three-dimensional.flow field simulation techniques will be used in
making this assessment. •

SYMBOLS

(Ĝ ) . surface friction coefficient in axial direction.,

(C..,) . surface friction coefficient in. circumferential direction.
* .• • ' • • . ' " • ' . -

Cp . local pressure coefficient . .

Cp)0 . stagnation point pressure coefficient

h local heat transfer coefficient .

h f stagnation point heat transfer coefficient on a reference
. " . sphere (.30.U meter, radius) ,

h ' . heat transfer sealing factor =„ (h/nref)FLT/(
n/nref^

L Orbiter length (full scale length =32.8 meters) .

M . : free-stream Mach number . . .
oo •' •

Re . . free-stream Reynolds number based on Orbiter length

To stagnation temperature

X, Y, Z coordinate system defined in figure 1

« Orbiter angle-of-attack
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Subscripts:

FLT refers to flight conditions

WT refers to wind tunnel conditions

APPROACH

Scaling Philosophy - The basic hypothesis used in scaling heat transfer
data from hypersonic wind tunnels to hypersonic flight conditions relies on
the ability to predict, or model, local flow properties at both of"these
conditions. Obviously,-if all local flow properties at flight conditions-
could be simultaneously simulated in a wind tunnel,'scaling and flow field- •.
simulation technology would not be required. However, this -is not the case
for Orbiter entry conditions. Test, facilities which are capable of provid-
ing enthalpies comparable to flight enthalpies are incapable of providing
local Mach number and Reynolds number simulations, and vice versa.

A relatively simple scaling method which utilized the behavior of a
predictable reference flow field (i.e., sphere) was developed for and applied
to the Apollo Spacecraft in ref. 1. Basically, local flow conditions (and
therefore heating) on the Apollo were assumed to vary like the flow (and
heating rates) at the stagnation point of a sphere. Since the stagnation
point heating on a sphere can be readily predicted at both wind tunnel and
flight conditions by the method of ref. 2, Apollo flight heating rates could
be predicted if the Apollo flow field behaved like that for a sphere. - This .
behavior was verified in ref. 3 for the blunt face of the Apollo spacecraft
within the accuracy of flight pressure and heat transfer measurements.

This basic procedure of normalizing local heating rates to the stagna-
tion point heating rate on a reference sphere is currently being used to
non-dimensionalize Shuttle Orbiter wind tunnel data. However, data have
been presented in ref. U which show that the local windward surface flow on
the Orbiter behaves more like a tangent cone than a sphere. Therefore, for
scaling purposes, local heating rates are currently extrapolated to flight
using simple two-dimensional flow field models (e.g., tangent cone, tangent
wedge, cylinder, etc.) coupled to simple heat transfer prediction methods
(e.g., Eckert reference enthalphy, etc.). However, these flow models have,
to be calibrated, or "three-dimensionalized", with wind tunnel data. In.
addition, calibration constants derived from this process are assumed to
remain constant when these flow models are applied to flight conditions.
Verification of this assumption requires either flight data.or. some form of .
reliable flight predictions.

Computational Methods - With the aid of three-dimensional flow field
methods, an assessment of this assumption can be made without.flight data
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measurements. Basically, three-dimensional viscous flows at both, wind
tunnel and flight conditions can potentially be computed using the' numerical
flow simulation code described by Li in ref. 5. This code was developed to
solve the Navier-Stokes equations by the time-dependent method. However,
vast computer resources are required to apply this code to large three-
dimensional flow fields. Therefore, for this study, this code was only used
to simulate the viscous flow field, around the relatively small nose-canopy
region of the Orbiter (see figure-l).

. -For a relatively economical description of the complete Orbiter flow
field, inviscid computations were employed, .since spatial resolution
requirements, and therefore computer size, were minimized. Local inviscid
flow conditions can be used to establish surface streamlines and local edge
conditions necessary-for making boundary layer computations. In this study,
the three-dimensional time-dependent inviscid version of the code described
in ref. 5 .was used .to start the three-dimensional inviscid code of ref. 6.
Data from these flow fields were used to calculate streamline and metric
coefficient data by the method outlined in ref. 7. The two-dimensional
boundary layer solution procedure described in ref. 8 was used .to predict
surface heating along streamlines through the use of the axisymmetric .
analogue developed in ref. 9.

. The sensitivity of local heating rates to changes in local inviscid
flow .conditions was assessed with Newtonian flow theory. Using Newtonian
theory to describe local pressures, streamline lengths, and metric coeffi-
cients, local boundary layer edge conditions were specified by two methods:
(l) isentrbpic expansions using Newtonian pressures and normal shock
entropy and (2) non-isentropic expansions using Newtonian pressures and
local parallel shock entropies. These two limiting cases produced reason-
able extremes in local boundary layer edge conditions. These conditions in .
turn were used to predict extremes in heat transfer rates for a given
pressure .level. .

RESULTS OF WIND TUNNEL FLOW FIELD COMPUTATIONS

Using the .previously described computational methods, flow field data
were computed in the shock.layer around an analytical description of the -
Orbiter geometry at 30 degrees angle-of-attack. The objectives of these V
wind tunnel.computations were: (l) to establish that the three-dimensional
codes could produce reasonably accurate flow field results by direct
comparison to wind tunnel data and (2) to provide a computed flow field data
base which could be used (along with flight_computations) in forming three-
dimensional heat transfer scaling factors, h. These scaling factors, formed
by non-dimensionalizing local heat transfer coefficient ratios obtained at
flight conditions, (h/hrê )W,T, to local heat transfer coefficients obtained
at wind tunnel conditions,' (h/href)yr> provide the basic data necessary for
assessing the scaling factors derived from two-dimensional flow methods.
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Both two-dimensional and three-dimensional scaling factors' were used to
establish the computed data base necessary for predicting uncertainties in
flight heating rates due to extrapolation methods.

Orbiter 'Geometry "- The "Orbiter" geometry"'used for-making these three- ;

dimensional flow computations is shown in figure 1. Geometry data from the
Rockwell -lhO-E Orbiter configuration were used to "guage" or calibrate the
analytical description of Orbiter configuration. Details of data require-
ments and analytical curves used for this procedure are presented in ref. 6.
Reasonably fine details of the basic geometric characteristics, suitable for
making flow field computations, were maintained on both the windward and
leeward surfaces. . •

Computed Shock Envelope - Figure 2 shows both the computed shock
envelope and measured shock location for the Orbiter at 30 degrees angle-
of-attack. Experimental shock locations were established from both
schlieren photographs and pitot pressure data taken in AEDC-Tunnel B.
Measured and computed shock locations and shape are in excellent agreement
along the windward pitch plane and in very good agreement along the leeward
pitch plane. These data were computed using the three-dimensional inviscid
codes described previously.

Computed Surface Pressures - Surface pressures were computed over the
entire Orbiter surface up to an axial station of X/L = 0.8. Both Newtonian
flow theory and the inviscid flow codes were used for making these computa-
tions. Comparisons of these data with experimental data obtained in the
NASA/ARC 3.5-foot wind tunnel are shown in figure 3.

Figure 3a depicts computed and measured pressure coefficients along the
windward centerline as a function of axial station, X/L. Except in the.
vicinity of X/L =0.1, where.the measurements are consistently higher than
the predictions, the data are comparable. Also, note that the measured data
and three-dimensional computations are slightly, but consistently, higher
than the Newtonian predictions.

Figure 3b presents -a comparison of computed and measured pressure data
along the leeward surface centerline from the nose to a point just down-
.stream of the canopy. (Along the pitch plane, the canopy windshield starts
at X/L = 0.15 and ends at X/L "= O.l8.) The computed data obtained from the
time-dependent Navier-Stokes equations were very erratic along the cowling
but * remained very stable along the canopy windshield. However,-for clarity,
only a smoothed version of these data are presented. This erratic behavior
of'the computed data can possibly be attributed to either numerical insta-
bilities or perhaps an unstable flow process associated with incipient
separation of at least one component of the flow. (Evidence of a partial
flow separation will be shown later.) However, an indepth assessment of
this phenomenon has not been made. -

Pressure data along the cowling obtained using the inviscid codes are -
in very good agreement with the measured data. This is an indication that,
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for these flov conditions, viscous forces play a minor role in establishing
the pressures in this particular region of the flow field. In addition, the
peak canopy pressure can be approximated at wind tunnel conditions with
modified Newtonian theory by assuming that the canopy is exposed directly '"'-
to the free-stream-flow. This implies that the canopy is only marginally
shrouded by the nose, even though geometric data indicate that it is"
totally shaded when the Orbiter is at 30 degrees angle-of-attack'. The
Newtonian peak pressure is also in good agreement with the peak pressure
obtained from the inviscid'computation. '•"• ••--•••• • " •- -•••-•' :.":...•'

Figure 3c depicts the circumferential distribution of both measured and
predicted pressure data around the fuselage cross•section.at station
X/L = 0.1. Measured data on the windward centerline'are approximately 20 per-
cent higher at this station than the data generated using either the inviscid"
flow or-Newtonian computation. As the flow expands around-'the "cross section,
the, measured data exhibit an overexpansion and drop to about"50 percent of •
the predicted levels and then return to the predicted levels. 'This depar-
ture from the predictions is not unexpected, since the-predicted pressures-
were'obtained from inviscid computations.. Also, note that the side of the
Orbiter at this '-station still "sees" the free-stream flow since the :
Newtonian values of Cp/Cp 0 are greater than zero.

Figure 3d, which shows pressure distributions for the. Orbiter' cross
section'located at X/L = O.k, illustrates'a-similar trend-between the
measured and predicted data. Newtonian theory predicts these pressures
about as well as the inviscid computations, even on the Orbiter leeward •
surface. This is, of course, fortuitous, since neitherctheory contains the,
physical considerations necessary to simulate_fully separated'flow fields.'

Computed'Heating Rates - Using the three-dimensional codes described
previously, heat transfer coefficients were computed for most of the wind- .
ward" surface and for the leeward surface to X/L = 0.2. These, predictions* •-
are compared to experimental data in figure U. All local heat transfer
coefficients have been normalized to the reference sphere .stagnation point .
heat transfer coefficient, href. Figure ha presents these data for the
windward'"surf ace centerline. -The measured data and the inviscid/boundary- -
layer predictions'are seen to1 be in excellent agreement. .The.detailed ••, '
agreement of measurements and predictions can be seen at X/L = 0.3, where
both sets of •'data increase" in the axial direction at about the same rate. :
On the other hand,' the data'derived using Newtp'nian/boundary-layer flow .-
field result's, "do"'not reproduce the - trend of the: data at' 'X/i/ =£'0v3 ."'''* Thas"-"'f'•''•"''
disparity possibly illustrates-a global influence'of the geometry on-the :

flow field-"arid;-heat transfer calculations.. Consider that since Newtonian "•
flows are'sensitive"only to local geometric shapes, Newtonian flow pressures'
and heating predictions should be proportional "to- local geometric changes. •••
This was indeed the behavior of the Newtonian data. Contrary to this . '
behavior, the,three-dimensional shock layer computations apparently produced
a local flow environment which was influenced by more than just the local
surface shape. This disparity'is illustrated in both the- heat transfer and
the pressure -data. " - - ' • ' '
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Figure Vb presents heat transfer coefficient data computed using the
time-dependent Navier-Stokes equations. As previously indicated, these
computations, produced erratic data on the leeward surface which had to be'
smoothed, for -"clarity. 'In" addition-, the ""heat'''transfer :data also had 'to be""
normalized to the inviscid/boundary-layer heating predictions on the wind-
ward centerline in order to predict reasonable magnitudes of heat transfer
coefficients. Thus, with proper care, the Navier-Stokes.data can be used tp .
approximate both the magnitude and general distribution of.the. measured, data.

The sensitivity of the data to local flow field changes is illustrated by
the variation in measured heating with free-stream Mach number. These varia-
tions in flow conditions produce large changes in local heating, which tax both
the measurement techniques and computational procedures. With the grid size
shown in this figure, an amazing level of spatial resolution is maintained
within the computed data. In addition, large variations in the predicted
data were also noted when results from a computation made using one grid size
were compared to the same computation made using a different grid size. This
effect certainly needs more investigation before reliable three-dimensional
Navier-Stokes computations can be made.

Figure Uc presents distributions of computed heat transfer coefficient
data for the fuselage,cross section at X/L = 0.1. The predictions basically
agree with the measured data along the windward surface (note that in this
figure, the Navier-Stokes results were normalized to the normal-shock-
entropy Newtonian/boundary-layer predictions on the windward centerline)..
The Navier-Stokes predictions made using a relatively coarse finite-differ-^
ence grid were confirmed by the measured data on the leeward side of the
cross section. However, the peaks in the measured heat transfer data near
the windward surface "chine-line" could not be accurately predicted.
Additional computations using approximately six times more grid points (for
a total of 21,000 grid points) produced better, but much more costly, data
predictions. ,

The inviscid/boundary-layer computations also underpredicted the measured
peaks in heating. Again, the sensitivity of heating to local flow conditions,
as shown by the measured data, could be partly responsible for these differ-
ences. Apparently, accurate simulations of local flow conditions are very
demanding in this region of the flow field. Despite a small transverse
pressure gradient in the region of the peak heating, the measured heating
increased by approximately kO percent. A combination of longitudinal
pressure gradients and boundary-layer spreading could be responsible for
this peak. (Note that the current streamline spreading factors 'are derived
from Newtonian and inviscid flows, which ignore viscous influences on boun-
dary-layer spreading.) Obviously, additional study is required to properly
evaluate this flow. .

Similar heat transfer coefficient data are shown in figure ltd for
X/L = O.k. The Newtonian/boundary-layer predictions are shown to under-
predict the measurements along the centerline and overpredict the data near
the fuselage leading edge. These same observations were made concerning the
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pressure data. .The inviscid/boundary-layer predictions show much better
agreement with the measured data" on the'fuselage centerline. Comparable
predictions near, the "chine-line" were hot available in time for this study.
The large difference between the predicted' and measured.data near the lead-
ing edge, or "chine-line", points to the existance of a rather, complex flow
behavior which certainly cannot be predicted with Newtonian theory alone.
Again, additional simulations are required to help identify the nature of -
the flow near the "chine-line". - -

Separated Flow Results in Canopy Region - Figure 5 depicts predicted
separated flow regions on an oil flow photograph taken in a Mach eight flow
in Tunnel-B at AEDC. Areas of total-flow separation are evident on either
side of the pitch plane, starting well upstream of the canopy. Surface
shear data obtained from the time-dependent Navier-Stoke's computations
accurately predict the line of separation (zero transverse shear) for the •
transverse component of the boundary-layer flow. This separation process
produces a screw-vortex which is carried downstream'by the longitudinal-
component of the flow field velocity. These computations also predict a
line of separation for the axial component of flow which differs from the
oil flow photograph primarily near the pitch plane. The flow field computa-
tions predict a very thin separation bubble ahead of the canopy which cannot
be seen in the photograph. This flow phenomenon is qualitatively correct
for flows with lower Reynolds numbers. Again, numerical finite difference '
grid size may be responsible for this behavior in the computer flow field.
A systematic study using finer finite-difference grids which are spaced
according to flow field gradients is required for better simulations of •''
these flows. However, the qualitative nature of these flows can be des- .
cribed using current flow field simulation methods. *

HEAT TRANSFER SCALING FACTORS

Three-dimensional heat transfer scaling factors, h, which effectively
illustrate "changes experienced by.normalized heat transfer coefficients,
h/href, upon extrapolation from wind tunnel to flight, conditions, were
generated for limited regions of the Orbiter surface. This process
required that flow fields and heating rates be calculated around the
Orbiter at both wind tunnel and flight'conditions. For the purposes of
this study, one wind tunnel (M,,, = 8, Re00<jJ_= 10̂ , To = T2'5K) and one flight
condition (Altitude = 61 km, Velocity = 6.08 km/sec) were selected -to ':'••'•••
represent typical Orbiter test and flight conditions associated with laminar
hypersonic flow fields. "

In addition to the scaling factors for three-dimensional flows, two
sets of two-dimensional scaling factors were developed along the windward
surface centerline at the same free-stream conditions used for the three-
dimensional flow fields. These factors were developed using data generated
from the fully viscous shock layer (FVSL) computer code described in ref. 10
and the generally available tangent-cone/Eckert-reference-enthalpy method.
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Studies conducted in ref. 11 indicated.that scaling, factors derived using
tangent-wedge theory produced comparable results (within 5 percent at these
flow conditions) with either totally equilibrium air or perfect gas thermo-
dynamics. ..Computations,made using- the-/methp.dof ref ..,.10. with.both, perfect. .1.
gas and reacting air basically support this result. Therefore,.scaling
factors"derived from the axisymmetric FVSL code using perfect gas relations
will be presented as these data were readily available for this study. (These
data were generated by Virginia Polytechnic Institute and State University as
part of NASA/JSC Contract NAS 9-12630.) Since scaling factors using equilibrium
air and tangent-cone/Eckert theory are relatively easy to compute, equilibrium
air results are shown for "this flow field model (unpublished data).

Figure 6a illustrates the range of scaling factors obtained using both
two- and three-dimensional flow field methods for the Orbiter windward
centerline. Generally, the following observations can be made: (l) for
points downstream of the stagnation region, wind tunnel heating factor data,
h/href, must be increased when extrapolated to flight to properly account
for changes in local flow field conditions, (2) Newtonian/boundary-layer
flow fields, generated using both normal- and parallel-shock entropies,
produce heat transfer scaling factors-(and, consequently, heat transfer
rates) which envelope the factors from all of the other methods that were
considered in this study, (3) the maximum uncertainty in heating due to .••:
extrapolation using these methods is less than 60 percent, (U) data obtained
using both the three-dimensional inviscid/bouhdary-layer method with equili-
brium 'air and the axisymmetric FVSL method with perfect gas approach the
equilibrium-air tangent-cone data at large values of X/L (i.e., X/L > 0.5),
and (5) tangent-cone derived scaling factors provide.a reasonable approxima-
tion (maximum differences of roughly 15 percent) of the three-dimensional
inviscid/boundary-layer derived scaling factors. These results indicate that
simple tangent-cone/Eckert theory, which has been "three-dimensionalized"
with wind tunnel heating rate measurements, can be used to accurately
predict the Orbiter centerline heating environment at flight conditions.

The picture is not quite as clear when the off-centerline heating
environment is considered. Figure 6b shows distribution of scaling factors
around the fuselage cross section at X/L = 0.1. These results'indicate
that the Orbiter "chine-line" heating rate predictions at flight conditions
are extremely sensitive to the prediction method used. The two Newtonian/
boundary-layer methods, indicate that wind tunnel derived heating factors,
h/href, should be increased from 10 to 60 .percent at flight conditions.
However, the factors derived from simulations using the time-dependent
solution to the Navier-Stokes equations tell a radically different story.
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These results indicate that wind tunnel heating factors have to be increased
from 100 to 200 percent when extrapolated to. flight conditions. These are
very preliminary results, however, and their accuracy must still be ques-
tioned. They are shown only as an indication of current efforts aimed,at
developing and applying fully viscous three-dimensional flow.field methods.
Therefore, conclusions concerning applications of these results .to the
design of the Orbiter will not be addressed. .

OBSERVATIONS AND CONCLUSIONS

The paramount information gained from this study will be divided into
two basic catagories: (l) 'computed results applicable to Orbiter design and
(2) qualitative observations concerned with the "user-sensitivity" associated
with the numerical code used for this study.

Within the scope of this study, the following conclusions can be drawn
with regard to predicting the Orbiter aerothermodynamic environment at
flight conditions:

1. Two-dimensional tangent-cone flow field theory used in conjunction
with the Eckert-reference-enthalpy heating correlation and "three dimen-
sionalized" with wind tunnel heating measurements can be used to accurately
predict the Orbiter windward centerline laminar heating environment.

2. Flight heating rates obtained using Newtonian flow fields with
normal-shock and parallel-shock entropy predict, respectively, the lower and
upper limits of flight heating rates along the Orbiter windward centerlines.

3. Either tangent-cone theory or the axisymmetric fully viscous shock
layer theory can be used with perfect gas thermodynamics to predict the
Orbiter.windward centerline heating environment with reasonable accuracy..

U. The three-dimensional inviscid flow field codes.coupled to boundary-
layer codes as described herein provided the best overall description of the
Orbiter windward centerline flow field and heating rates. . .

The following observations are made regarding the "user sensitivity" of.
the numerical codes employed in this study: . .

1. Results from three-dimensional inviscid computations proved to be
sensitive to finite-difference grid spacing .in such a way that as grid
spacing decreased, probability of successful computations- decreased.

2. Results from the three-dimensional time-dependent Navier-Stokes
code are extremely sensitive to grid spacing; unfortunately, useful data
relating restrictions on grid spacing to probability of successful computa-
tions were not developed during this study.
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. • 3.-- Multiple code interfaces required in using the inviscid/streamline/
boundary-layer codes can be difficult.for the novice.

•. j-- •(
These factors discourage' the-application-of current three-dimensional

codes as a-general "design tool"." However, the potential benefits of three-
dimensional flow field simulations:, coupled with a need for more exact design
tools, suggests a'need for automating more of the"current functions performed
by the user (namely, grid selection). These changes, coupled with the
impending availability of the new fourth generation computers, would
certainly promote more wide-spread application of these codes for design
purposes.
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3-D INVISCID COMPUTATIONS •

. .s 5 NAVIER-STOKES COMPUTATIONS

Figure 1.- Shuttle Orbiter configuration and regions of flow field computations,
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Figure 2.- Comparison of measured and computed shock envelope,
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(a) Windward surface centerline. (b) Leeward surface centerlihe.
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(c) Transverse section, X/L = 0.1. (d),Transverse section, X/L = 0.4.

Figure 3«- Comparison of measured and computed pressure coefficients'. '
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UNPUBLISHED DATA:

O AEDC- B, M, = 7.9 )

a=30°
3-0 INVISCID/B. L.

0.04

NEWTONIAN/B. L. (N. 5. ENTROPY)

O UNPUBLISHED DATA • - „,
AEDC- TUNNEL B ., U'0>

M, = 7.9, Re, L = 1 * 10 . h
- ' href

0.02

I ' l l ) 0

0 - ' AEDC - F, M, = 12 J H. L ~ 1 « 10°
2 CALSPAN 96-INCH, M, =7^21 "

8

? 5 o

> R '' V°X4J • P '* a»

AXIAL GRID SPACING— |aX|— * _S/ '
1 I I i I

0.05 0.1 0.15 0.2 0.2

(a) Windward surface centerline. (b) Leeward surface centerline.
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•i = 30-
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(c) Transverse section, X/L = 0,1. (d) Transverse section, X/L = 0.4,

Figure 4.- Comparison of measured and computed heat transfer coefficients.
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Figure 5,- Comparison of measured and computed separation lines.
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(a) Windward surface centerline. (b) Transverse section, X/L = 0.1.

Figure 6.- "Magnitude of heat transfer scaling factors.
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COMPUTATION OF HIGH-SPEEDJNVISCID FLOWS

ABOUT REAL CONFIGURATIONS*

By Frank Marconi, Larry Yaeger,
Grumman Aerospace Corporation

and

H. Harris Hamilton
NASA Lahgley Research Center

SUMMARY

A numerical procedure for computing the three-dimensional inviscid flow about
complex geometries is described. A second-order accurate finite-difference marching
technique is used to integrate Euler's equations. ^Analytic conformal mappings are
employed to develop a computational grid. All shocks in the flow field are treated
explicitly as discontinuities satisfying the Rankine-Hugoniot jump conditions. Computa-
tional difficulties associated with blunt-nose entropy layers are avoided by explicitly fol-
lowing a stream surface located at the layer's outer edge and disallowing numerical
derivatives of certain flow variables across this surface. Equilibrium air thermody-
namics are included using curve fits of Mollier charts. A computer code which utilizes
these computational procedures and a geometry package which simplifies the description
of complex vehicles have been developed. This code has been used extensively to com-,
pute flow fields about a variety of complex vehicles and results are presented herein.
Agreement with experimental data is shown to be good.

INTRODUCTION

Most of the flow-field data necessary in the development of high-speed vehicles
have been obtained through wind-tunnel tests which are expensive, slow, and some-
times inadequate. The accurate and efficient calculation of the three-dimensional
super/hypersonic flow about these vehicles would be very useful in supplementing these
test programs. Techniques for calculating these flow fields are currently available, of
course, but previous codes have not had so wide a range of applicability in terms of
Mach number, angle of attack, and vehicle geometry as the technique described herein.
Specific examples are small perturbation techniques (accurate for slender bodies at low

This research was performed under Contract No. NAS 1-11525, NASA Langley
Research Center.
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supersonic Mach numbers) and Newtonian theory (reliable at large Mach numbers). In
addition, some of these techniques cannot be used to obtain the. details of the flow.field
throughout the shock layer.

The present technique has been used successfully to predict (ref. 1):

(1) Inlet flow fields

(2) Heat transfer rates (i.e., as input for a boundary calculation) ,, ;

(3) Aerodynamic load distributions, as well as total forces

In order to simplify the definition of three-dimensional geometries, a modeling
package has been developed by Vachris and Yaeger (ref. 2). The numerical scheme
used to compute the flow field has been inspired by Moretti (refs. 3 to 9) and follows a
number of basic guidelines:

(1) Conf ormal mappings are used to develop a computational gridi

(2) A second-order accurate finite-difference marching technique (satisfying the
CFL stability condition of ref. 10) is used to numerically integrate the governing partial
differential equations.

(3) All shock waves in the flow field are computed explicitly, and the Rankine-
Hugoniot conditions are satisfied across them.

(4) The intersection of two "same-family" shocks is computed explicitly.

(5) The flow field at sharp-leading-edge wing tips is computed using a local two-
dimensional wedge solution.

(6) The body boundary condition is satisfied by recasting the equations of motion
according to the concept of characteristics (ref. 11). .

(7) The edge of the entropy layer on blunt-nose vehicles is followed from its origin
at the bow shock, and derivatives of certain flow variables are not allowed across it.

(8) Real gas effects (equilibrium or frozen air) are included by using curve fits of
Mollier charts.

The only limitation inherent in this formulation of the problem is that the velocity
in the marching direction (fig. 1) must be supersonic at each point in the flow field. The
flow over the nose of blunted bodies is computed using a time-dependent transonic com-
putational procedure developed by Moretti and Bleich (ref. 12).

With the code developed using these procedures, the inviscid flow about a wide
variety of vehicles (fig. 1) can be computed. Calculated results are presented which are
indicative of the variety of complex flow fields for which this code may be used, and
these results are compared with experimental data.
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SYMBOLS

B(0, g) body definition in the mapped space (r = B(0,g|))

04(0, g) radial boundary definition in mapped space

Cp specific heat at constant pressure

cv specific heat at constant volume

CL lift coefficient

Cp pressure coefficient

G physical space (eq. (1) and fig. 5) .

hi(r, 3')- . circumferential boundary definition in the mapped space (0 = hi(r,;g))

1C number of circumferential regions in cross section

i ,j ,k Cartesian unit vectors (fig. 4)

I,J,K unit vectors associated with intrinsic shock coordinate system

LC total number of radial regions in cross section

M . Mach number; also mesh point counter in circumferential direction (fig. 9)

** ~ •

MC(I) total number of mesh points in circumferential region I (fig^. 9)

MM mesh point counter in circumferential regions (fig. 9) • '
• ' .£ . . •

N mesh point counter in radial direction (fig. 9) '
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NC(L) total number of mesh points in radial region L (fig. 9)

NN mesh point counter in radial regions (fig. 9)

p dimensional pressure

r,0,0 mapped coordinates (fig. 6)

r',0',z' coordinates used in geometry interrogation (fig. 2(c))

RJJ nose radius .

s dimensional entropy; also surface distance (fig. 3)

S nondimensional entropy, (s - Soo)/cVjoo ,

T temperature (eq. (6), ideal gas)

u,v,w Cartesian velocity components (fig. 4)

Wi,W2,W3,W4,W5 intermediate mapped spaces (eq. (1) and fig. 5)

x,y,z Cartesian coordinates (fig. 4)

X,Y,Z computational space coordinates (fig. 8) ;

a angle of attack '.••'• l

y ratio of specific heats (ideal gas), Cp oo/cv,«>

£ mapped space (eq. (1) and fig. 5) . .;;, -

A wing sweep angle

|,TJ,W intrinsic coordinates used in shock computation (figs. 11, 14, and 15).

p dimensional density
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0 circumferential angle (fig. 27)

Superscripts:

unit vector

predicted value; also intrinsic variable

Subscripts: .

1 counter for regions or boundaries in circumferential direction

$. counter for regions or boundaries in radial direction

00 free-stream conditions

Coordinate subscripts indicate differentiation with respect to the .coordinate.

ANALYSIS OF METHOD

Geometry Description

"QUICK," a highly general and user-oriented three-dimensional geometry system,
was developed in conjunction with the present flow-field effort by Vachris and Yaeger
(ref. 2). This code allows a user to model a complex vehicle geometry in a quick,
straightforward fashion.

QUICK consists of a group of initial defining and logical checkout routines, which
sets up a mathematical model of the geometry from user input data, and a second group
of interrogating routines, which examines the model and extracts the desired information.
This interrogation section of QUICK, along with the mathematical model of the geometry,
is incorporated directly into the present flow-field ,code (or any other code requiring a
three-dimensional geometry description).

Basically, QUICK uses input data in the form of a logical word description of cross-
sectional shapes (not actual sizes) and hangs these shapes on a frame created from sized
numerical input of a few key control points described in segments over the length of the
vehicle in a Cartesian coordinate (x,y,z) system; see figure 2. At no point in the proce-
dure does a user have to generate any curve coefficients, and of course, continuities
and/or discontinuities may be rigorously enforced.
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; The geometry model generated by QUICK from the user's input is interrogated in
a cylindrical polar coordinate (r',0',z') system (fig. 2(c)). Derivatives as well as coor-
dinate positions are computed analytically; there are no splines or polynomial curve fits
which can generate instabilities in a flow-field computation.

Computational Frame

The definition of a computational grid is a very important step when attempting to .
compute the flow about complex vehicle geometries. In the chosen coordinate system,
the body and all shocks should be defined as single-valued functions. Grid points must.,
•be concentrated in regions where gradients are large or truncation error could destroy
a calculation. Figure 3 shows the sharp peaks in pressure that occur near wing, tips; if
mesh points were not concentrated near the tip, these calculations could not be made.
The .transformations and their derivatives involved in defining .a computational grid must
be evaluated at each mesh point; therefore, it is important that these transformation's be
kept as simple as possible to avoid prohibitively large computational time.

••• Three coordinate systems or spaces are referred to in this paper: a physical
space (x,y,z), a mapped space (r,0,g), and a computational space (X,Y,Z). The physical
coordinate system is Cartesian and defines the three velocity components (u,v,w) .used in
the computation (fig. 4). The governing equations are written in the physical space, and
then all derivatives are transformed into the computational space where the mesh points
are at even intervals AX, AY, and AZ.

The computation proceeds by marching in the z -direction (fig. 4) so that data ,
on a plane with z = Constant are used to predict the flow field at z + Az. Each. 1 :

g, = Constant plane in the mapped space is developed by coriformally mapping the geo-.:
metrical cross section in the physical plane (z = Constant) onto a "near" circle. :The"
following series of mappings are used to develop each near circle: ; •

. , Y=ret f . ' •; • • " ' • ' (la)

W4 = W3 + IA (le)
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(Ig)

= x + i y - . . - - . . . . . . .

Figure 5 shows the transformation of the cross section from the physical plane (G)
to the mapped plane (£)• The coefficients A, B, C, D, E, and F are all functions
of z and depend upon parameters of the cross section in the physical space (yB, xs,
xt,-' :B2, and yp, fig..5). These coefficients are analytic functions of the. parameters and
are evaluated simply and automatically from the geometry definition. The singularities
of these mappings are placed inside the body so that they do not affect the flow -field : com-
putation. As a result of using these- mappings, mesh points at even intervals of .9 in the
mapped plane are concentrated in regions of .large curvature in the physical plane. (fig. .6,).

Equations (1) give x = f(r,0,'g) and y = f(r,'0,g); z = g completes the definition
of the transformation. All the derivatives of this transformation are analytically obtain-
able, and the transformation is analytically invertible. This system of mappings has • !

been applied to a wide variety of geometries with successful results. Considerable work
is being done to develop mappings that can map totally arbitrary cross sections into cir-
cles or.; near circles (ref. 13). These transformations offer a greater flexibility than
those used herein, but they also would require an increase in computational time. r -

The body is defined in the mapped space as r = B(0,g). Shocks imbedded in the
flow are computed as internarbbuhdaries in each cross section. ' The bow shock extends:

from the bottom symmetry plane to the top, but wing, tail, 'or canopy shocks do not. For
the latter types of shocks the internal boundary must be completed using an "extension
surface".'7.. In figure 7, a wing shock (solid line) is shown with an extension surface
(dashed line) completing the internal boundary from the "end shock points" to the top
and bottom symmetry planes. The Rankine-Hugoniot conditions .are satisfied across the
shock portion of these boundaries and flow -field information passes unaffected across the
remainder. These surfaces are defined in the mapped space as r = c^(0,^) with ft = 1
corresponding to the body (cj(0,g) = B(0,g)) and i = LC + 1 corresponding to the bow
shock. A similar procedure is followed in the circumferential direction, for cross -
flow shocks. These surfaces are defined in the mapped space using the relationship
9 . = h^(r, g). Now, i = 1 is the bottom symmetry plane (hj = -T/2), i = 1C + 1 is the
top symmetry plane (hjc+i = ^/2), and 1 < i < 1C + 1 are cross -flow shocks and sur-
faces. The computational space is defined by normalizing the radial and circumferential
directions in the mapped space:
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Z = 3 (2c)

where
p- -i

(3)

(4)

x=o

and

Hl(X,Z) = hi[r(X,Y,Z),3(Z)]
Y=0

Using this transformation each cross section is divided into 1C x LC regions,
bounded by internal surfaces. Figure 8 shows a z = 3 = Z = Constant plane in the
physical, mapped, and computational spaces with a tail shock, wing shock, and two cross -
flow shocks as internal boundaries. Figure 9 shows the region and mesh point notation >
used. Note that the internal boundaries have double mesh points on them (NN =.NC(1),
MM = MC(i)); flow variables satisfy the Rankine-Hugoniot jump conditions across the por-
tions of these internal boundaries which are shocks.

To evaluate the derivatives of this final transformation is a straightforward pro-
cess. One singularity of this transformation occurs when C^ = C^i or H^ = H^+j,
that is, when shocks intersect. This problem is handled simply by an analytic shock
intersection calculation. Another singularity occurs when a cross -flow shock and a
wing -type, shock become parallel. This difficulty has been overcome by using a cross -
flow -type surface to adjust the mesh, but it seems that the only sure cure would be to
allow shocks to "float" between mesh points (ref. 3). ' " " ' ' ' \

. . . Integration of Euler's Equations ,,„

In the physical space (x,y,z), Euler's equations are: - • .

wPz + ywz = -(uPx + vPy + yux + yvy) ' (5a)

wuz = -(uux + vuy + TPX) , (5b)

wyz = -fuvx + Wy + TPy) (5c)

TP2; + WWZ = -(UWX + VWy) ' (5d)

wSz = -(uSx + vSy) (5e)

where all velocities are nondimensionalized with respect to y^p^/p^, P = In (p/p^), and
S = As/cV)00 (entropy). For an ideal gas the equation of state is ,

+ t ' (6)
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where

Now, transforming all derivatives to the computational space, equations (5) adopt
the following general form:

where f is the vector (P, u, v, w, S); [A] and [B] are matrices depending on u,
v, w, T, and the derivatives of the transformation; and fx, fy, and t% are deriva-
tives with respect to X, Y, and Z, respectively.

To integrate this set of equations, a modified form of the MacCormack (ref. 14)
two-level finite -difference scheme is used. In the predictor step, the MacCormack
scheme proceeds as follows: .

fz (Z0) = [A(Z0)]fx(Z0) + [B(Z0)]fY(Z0) "I

. > • (8)
. . f = f ( Z 0 ) + f z ( Z 0 ) A Z J

with the derivatives fx and fy taken one-sided in increasing X and Y. At the body
and on the low-pressure side of shocks, these derivatives are taken away from the bound-
ary. Here f represents the predicted values of the dependent variables. After this
step all the dependent variables are updated to their predicted values, the independent
variables are updated to their values at Zo + AZ, and all variables are set equal across
the extensions of shocks, i.e., portions of internal boundaries that are not shock points

(f [N,MC(1)] =f[N,l+MC(l)] and f [NC(1),M] =f[l+NC(l),M], fig. 9J. Then the corrector

step proceeds as follows:

[BJfv<- -I I

The derivatives fx and fy are taken one-sided in decreasing X and Y, and
finally all variables are updated to their values at Zo + AZ fbut now f[N,l+MC(l)l =

f[N,MC(l)] and f[NC(l)+l,M] = f[NC(l),M], fig. 9J.

The step size AZ satisfies the CFL stability condition (ref. 10) using the char-
acteristics in the Y,Z and X,Z planes.

1419



Two modifications of the MacCprmack scheme .are used. .The first is used only to
handle blunt-nose entropy layer and is discussed subsequently. The second is used in all
cases and is sometimes called windward differencing. In equations (5b), (5c), and (5e),
the derivatives u^, vjj, S^, uy, vy, and Sy are taken one-sided in the direction
from which the velocity vector came (fig. 10) for both steps of the MacCormack .scheme.
If the flow-direction angles .%• or j3y (fig. 10) are small then the direction of the
derivative is changed between steps. Equations (5b), (5c), and (5e) express the variation
of u, v, and S along streamlines, so windward differencing maintains the physical
concept of domain of influence.

< Through numerica^experimentation, this integration scheme has been found to,
introduce a truncation error of the form ...

where x is a. length in the physical plane. In a region where 9 f / 8 x is large) the
cohformal mappings tend to assure that AX* — 0, while keeping the total number of mesh
points to a minimum.

Shock Treatment

Most of the current three-dimensional inviscid supersonic flow calculations avoid
computing shocks (or at least imbedded shocks) as discontinuities. Instead, the discon-
tinuities caused by shock waves are spread out over a number of mesh intervals. Some
difficulties associated with those techniques are pointed out by Moretti in references 3
and 7. The usual arguments cited against computing sriocks explicitly are that such a
method is too complex in three-dimensional calculations, has limited capability in han-
dling- shock intersections, and has difficulties predicting the formation of imbedded shocks
(refs. 15 and 16). The following text outlines techniques which have been successfully
applied for computing shocks off the body, detecting shocks imbeddedrin the flow field,
computing shock intersections, and computing sharp leading-edge shocks attached,to the
body. Computed results for complex shock patterns and interactions are presented

jsubsequently. J - " • .>.•••-•• ' • - •••,v- '-- : ' --- ' , ; • . • • . " • - . . • . . • . - • • . • - . • ' • • • . - . - , • ' ; v > . . • . . -

The low-pressure side of imbedded shocks are computed in the same way .as inte-
rior points with the derivatives normal to the shocks taken one-sided into the low-
pressure region.

To compute the high-pressure side of shocks, an intrinsic coordinate system (£,77, w)
With unit vectors I,, J, and K is used which is fixed to the shock point at Zo + AZ.
The unit vector I is the normal to the shock, K = (f x ky|f x k[ (k is the unit vector
in the marching direction), and J = I x K. The system of equations to be solved includes
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the Rankihe-Hugoniot jump conditions and the compatibility relation on the characteristic
reaching the shock in the £,w plane (fig. 11): This calculation requires iteration which
proceeds as follows for "wing-type" shocks: guess c^ . (C4 0 is computed using
finite differences and the shock location at Zo + AZ); then compute the difference in
pressure predicted by the jump condition and the compatibility condition. The procedure
is continued until this difference vanishes. Cross-flow shocks are computed in a simi.-'
lar mariner.

Shocks imbedded in the flow field are detected by monitoring the pressure distrU
butions in the X-direction for wing-type shocks and in the Y-direction for cross-flow
shocks. Here the fact that the body in the mapped space is a near circle is exploited.
Wing-type shocks develop as compressions predominantly in the X (or radial) direction
and cross-flow shocks develop as compressions in the Y (or 9) direction. This fact
simplifies both the detection and the explicit computation of these imbedded shocks.

Figure 12 shows the pressure at the four mesh points adjacent to a maximum pres-
sure gradient. In practice, a shock is inserted when a third-order curve fitted through
these points predicts an infinite PX (Py ^or cross-flow shock). Reference 7 demon-
strates a number of techniques for detecting shocks including this one. The shock detec-
tion and insertion needs no user intervention (in the code that has been developed) except
for the specification (as input) of two axial stations, between which the code tests for the
formation of a shock. This wassdone primarily to minimize running times.

When the distance between two shocks becomes small compared with the total
shock layer at some value of Y = Yo (fig. 13), the shocks are considered to have inter-
sected. A two-dimensional same-family shock intersection calculation is performed in
the plane containing the normal to the outside shock and the marching direction (fig. 14).
The conditions behind the outside shock are set equal to those of the resulting shock and
the contact surface is neglected (fig. 14).

, . Sharp leading-edge shocks are computed using the two-dimensional .wedge calcula-
tion in .the plane normal to the wing (or tail) leading edge. This calculation assumes the
shock to be attached to the wing leading edge and uses a centered expansion fan if the
velocity vector must be turned in an expanding direction to satisfy the body boundary .con-
dition at the leading edge. Figures 15(a) and 15(b) show the mesh point locations on a
sharp leading-edge wing and figure 15(c) shows the local coordinate system used.

Body Point Calculation

The boundary condition at the vehicle surface is U = 0, where U is the velocity
normal to the body. The entropy at the body is computed as it is at any other mesh point.
At the body the coefficient of S^ vanishes, so that this derivative does not affect the
calculation of entropy on the body.
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To compute the body pressure, the continuity and three momentum equations are .
combined with the body boundary condition to write a compatibility equation along the .
characteristic (in the X,Z plane) reaching the wall from the flow field (ref. 11).

The cross-flow velocity is computed using the cross-flow momentum equation.
The total velocity is computed using the integrated energy equation (total enthalpy equals
constant). Finally the body boundary condition enables one to compute the three velocity
components u, v, and w.

Blunt-Nose Entropy Layers

On blunt-nose bodies, as the computation proceeds downstream, the entropy gradi-
ent normal to the body becomes very large (near the surface). Streamlines that cross a
weaker bow shock, and therefore have low entropies, approach the body which is wetted
by the stagnation streamline, and therefore has a very large entropy. Figure 16 shows
the entropy distributions plotted as a function of the normalized radial coordinates in the
bottom symmetry plane of two different bodies (cone and shuttle orbiter). The three
velocity components u, v, and w have similar distributions showing large gradients,
whereas the pressure gradients remain small. This phenomenon can create numerical
difficulties as the "edge" of this layer (defined by the *'ed points in fig. 16) approaches
the body! A technique proposed by Moretti and Pandolfi (refs. 8 and 9) is used to handle
this problem. In essence this technique disallows radial derivatives across the edge of
the entropy layer for the flow variables (u, v, w, and S) which have large gradients
across it.

The entropy minimum (or plateau depending on the body geometry) is detected as it
is generated at the bow shock, in each circumferential plane, and followed from that point
on. The locus of all these points (one in each Y = Constant plane) forms a stream sur-
face which, of course, always contains the same streamlines. In figure 17 this surface
is shown (dashed lines) at several cross sections. This surface is not a coordinate line
in the computational plane so that it "floats" between mesh points (fig. 18(a)). The
dependent variables on this surface are computed in a manner similar to that used on
the body. The pressure and the streamline slope in the X,Z plane are interpolated on
this surface (from the adjacent mesh'points), since their gradients across this surface
are small. When a point on this surface is between two mesh points N and N +1
(fig. 18(b)), instead of taking differences between N and N + 1, differences are taken
between N and * or N + 1 and *. When the *'ed point becomes very close to the
mesh point N (fig. 18(c)), the flow variables at N are set equal to those computed at
the *'ed point. ' ''•

When the distance between the body and this entropy layer surface becomes'a small
percentage of the total shock layer at some value of Y (figs. 17(c) and 17(d)),:the values
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of S, u,. v, and w are changed from their previous body values to their values just
outside the entropy layer. In some calculations the axial Mach number on the body may
be approaching unity (because of the high body entropy), whereas the axial Mach number-
outside the entropy layer remains supersonic. In these cases the calculation could not
be continued if the.body entropy were not chahged.; - • • . - • • - -" ' • ' "*•"

Real Gas Effects

Curve fits of Mollier charts (ref. 17) have been substituted for the ideal gas equa-
tion of state (eq. (6)) in the case of equilibrium air'. The modifications to our computa-/
tional procedures are minor but the running time for a typical case increases by 30 per-
cent. Flow fields can also be computed which start near the vehicle nose in equilibrium
but suddenly freeze (with an equivalent y) at a given axial station.

RESULTS

During the course of this work the flow fields about a large number of geometries
have.been studied. This has been done (1) to be sure that the numerical techniques used
worked for all these configurations, (2) to compare the results with existing data, and
(3) to study flow-field phenomenon which can't be studied through other means. In this
section some of the results of these calculations are discussed.

Figure 19 shows the surface streamlines and pressure distribution on an 80° slab
delta wing at 30° angle of attack (M^ = 9.6). At this high angle of attack the cross-flow
velocity expands around the wing tip and becomes supersonic on the lee side. This
velocity component must vanish at the leeward symmetry plane and therefore a cross-
flow shock (fig. 19(a)) is generated. The strength of this shock at the body is demon-
strated by the streamline deflection across it. Figure 19(b) shows an axial and circum-
ferential surface pressure distribution compared with experimental data (ref. 18). The
jump in pressure (circumferential distribution) at about 0 = 170° is due to the cross--
flow shock. The calculation of this flow from a starting plane (Z/Rjj ~ 0.8J to the end
(Z/RN = 15) took about 15 minutes on the IBM 370/168 computer.

Figures 20, 21, 22, and 23 all describe the-flow about an early version of a shuttle
orbiter configuration flying at an angle of attack of 30° for M^ = 26.1. The calculation
was performed for an ideal gas, y = 1.12. Figure 20 shows the top and side views of the
shocks and body; figure 21 shows the cross-sectional views. The shock pattern in this .,
calculation is quite complex: a strake shock is generated at Z ~ 380 and intersects the
bow shock at Z « 440, a. cross-flow shock is generated starting at Z « 550, and a wing
shock starts at Z ~ 800 and intersects the bow shock at Z = 850. Figure 22 shows the
surface pressure variation with surface distance around the vehicle at several cross-
sectional stations. Between Z = 800 and Z = 850 there is a large pressure raise
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(fig. 22(b)) due to the beginning of the wing. The large peak in pressure at Z = 850
could not be computed without concentrating grid points in the wing tip region. Near
Z = 850 the wing shock intersects the bow shock and causes an expansion fan which
reduces the pressure (at the wing tip) further downstream. This phenomenon can be
observed up to Z = 1050; whereas the peak pressure remains unchanged, the expansion
moves toward the windward symmetry plane. The drop in the peak pressure between
Z = 1050 and Z = 1100 is due to the wing tip turning parallel to the flow. Figure 23
shows the radial entropy distribution at three circumferential positions (X is the nor-
malized radial coordinate). In these figures the thinning of the entropy layer is shown.
This calculation (from Z = 50 to Z = 1280) took approximately 1.5 hours on the
IBM 370/168 using a maximum of 20 x 30 grid points.

Figure 24 shows the surface pressure distribution in the windward symmetry plane
on the forward portion of the 089-B shuttle orbiter. The calculations were perfprmed
using equilibrium air thermodynamics (at an altitude of 74 820 m (215 000 ft)) and ideal
gases at Y = 1.12 and 1.4. In each case the Mach number was 26.1 and the angle of
attack was 30°. The trends in the y = 1.12 and real gas cases look very similar while
in the y = 1.4 • calculation the recompression (after the nose expansion) seems weaker.
In the real gas calculation the computer running time was increased by approximately
30 percent. Figure 25 shows the surface streamlines on the 089-B shuttle orbiter.

The windward symmetry plane surface pressure distributions on a modified ver-
sion of the current 140-C space shuttle orbiter are'shown'in figure 26 for Moo » 10.29,
y = 1.4, and a = 20° and 25°. The vehicle was modified for the computations'by increas-
ing the wing sweep from 45° to 55° (fig. 26) to avoid subsonic axial Mach numbers near
the wing tip which would occur for this value of y. This modification has little effect on
the windward symmetry plane pressure distributions. The calculated results are. com-
pared with experimental data (unpublished) obtained at Ames Research Center. The
agreement is very good except near the trailing edge. The underprediction near-the
trailing edge is due to a mismatch in lower surface slope (of approximately 5°) between
the experimental and numerical geometry models. . . t . . - . , .

The circumferential pressure distribution for this configuration at Z/L = 0.3' is
compared with experimental data in figure 27, where L is the total length of the con-
figuration. Again the agreement is very good. These calculations required approxi-
mately 1 hour of computing time on the CDC 6600 using a maximum of 15x32 grid
points.

Another complex shock pattern is shown in.figure 28. The vehicle is a fighter air-
craft and the flight conditions are M^, = 2.5 and a = 6°. In this flow field there was a

. . ' ' ' ' ' - . ' - •

canopy shock, a wing shock, and an additional shock due to a recompression after the
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canopy. Figure 28(c) shows a series of crossrsectional views in which the intersection
of the canopy and bow shocks is evident. This calculation demonstrated that flow fields-
containing multiple imbedded shocks in a cross section'can be computed treating all
shocks explicitly. . ' . .
- > , . • < - , . . • -:•: - .- - '/-•• - ' . - • • .-; , . ; • - • . ' • < • • - ' • • = / ' , - • • • . - . . - • - : • . , - ...-:•:>:•.

Figure 29 compares the computed and experimental surface pressures on this vehi-
cle (Moo = 2.2 and a = 5° and 10°). The experiment was run by Grumman Aerospace
Corp. at Ames Research Center and the data are unpublished. This calculation (from
Z = 0 to Z = 45) took about 1 hour on the IBM 370/168 computer using a 24 x 29 grid in
each cross section.

Figure 30 shows the inlet flow field for a supersonic fighter configuration. The,
axial station shown corresponds to the inlet forward lip station, so that this is the flow
field ingested by the inlet. The maximum difference between calculation and experiment
is less than 3 percent. The experimental data were obtained from reference 19 and the
calculation took approximately 30 minutes on the IBM 370/165 with a 25 x 30 grid.

; Figure 31 shows surface pressure distributions on the X-15 aircraft top and bottom
symmetry planes. In figure 31(a) the flight Mach number is 6 and in figure 3,1 (b) the
Mach number is 4. The comparison with the experimental data is good. The deviation
from the experimental results near the vehicle nose is due to the starting solution which
was used .(i.e., a conical flow solution was used to start the calculation).

Figure 32 shows a sample^ of the type of sharp-leading-edge wing configuration ,
which can,be computed. The figure shows the computed shock pattern with the .bow
shock intersecting the wing shock. , . .

Shown in figure 33 is another complex shock pattern. The vehicle is a hypersonic
research aircraft (HSRA) configuration and the flight conditions are M^, = 6, y = 1.2,
and a = 0°!; As shown in the figure the canopy shock is generated ahead of Z ='36 and
is intersecting the bow shock at Z = 60. A shock wave is generated by the vertical tail
ahead of Z = 50. Figure 34 shows a lift curve for the HSRA vehicle. Both the experi-
mental and Newtonian flow results were supplied by Lewis Clark of Langley Research
Center. . The figure shows that both the Newtonian calculation (with viscous effects
included) and the present one compute lift accurately. The calculation of the.HSRA flow
field (Moo = 6 and a = 0°) took 1 hour on the IBM 370/168 computer using a 25.x 30 grid.

CONCLUDING REMARKS

The numerical techniques which have been presented here can be used to compute
"• * > . •

inviscid flow fields accurately and efficiently with reasonable running times oh current
day computers. The code which has been developed is a useful tool for studying three-
dimensional flow field effects and can aid in the development of high-speed vehicles.
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In order to gain flexibility in terms of even more complex geometries (such as
configurations with tip fins, engine pods mounted on wings, etc.), a mapping must be
developed which can transform these geometry cross sections into "near" circles effi-
ciently. The computational techniques used can be modified to handle at least small
pockets of subsonic axial Mach number. In order to compute flows with more complex
shock patterns, imbedded shocks should be allowed to "float" between grid points to
avoid difficulties sometimes encountered when using shocks as internal computational
boundaries.
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Figure 2V- QUICK geometry modeling procedure.
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Figure 6.- Body mesh point distribution.
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Figure 13.- Shock intersection.
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Figure 16.- Entropy distribution.requiring special treatment.
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Figure 17.- Entropy layer surface in the physical plane.
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Figure 18.- Entropy layer surface in the computational plane.
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Figure 19.- Slab delta wing streamlines and surface pressure.
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Figure 20.- 089-B shuttle orbiter shock patterns,

Z = 50.45 Z= 100.30 Z= 150.16 . Z = 200.04 Z = 250.84 Z= 301.58

Z = 350.70 Z = 401.05 Z = 452.02 Z = 501.73 Z = 550.74

Figure 21.- 089-B orbiter cross-sectional shock patterns.
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Figure 21.- Concluded.
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Figure 22.- 089-B orbiter surface pressure.
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Figure 23.- 089-B orbiter entropy distribution.
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Figure 24.- 089-B arbiter windward plane surface pressure.
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Figure 25.- 089-B orbiter surface streamlines.

1445



M00= 10.29 7=1.4

.4

.2

A=55°

- z

.2 .4 .6
Z/L

.8 1.0

Figure 26.- Windward symmetry plane distribution, modified 140-C
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Figure 27.- Circumferential pressure distribution, modified 140-C
shuttle orbiter.
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Figure 28.- Air.craft configuration shock pattern.
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Figure 28.- Concluded.
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.Figure 32.- Sharp-leading-edge wing configuration shock pattern.
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Figure 33.- Hypersonic transport shock patterns.
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Figure 33.- Concluded.
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NUMERICAL COMPUTATION OF VISCOUS BLUNT BODY FLOWS

WITH A PLANAR IMPINGING SHOCK*

By Terry L. Hoist, John C. Tannehill,
Iowa State University

and

John V. Rakich
NASA Ames Research Center

SUMMARY

Two-dimensional and three-dimensional viscous blunt body flows with planar
impinging shocks are computed using an explicit, time-dependent, finite-difference
method to solve the complete set of Navier-Stokes equations. The bow shock is treated
as a discontinuity, while all interior shock layer details, such as shear layers, shock
waves, j ets, and the wall boundary layer, are automatically captured in the solution.
•Numerical results are presented for cases in which planar shock waves of different
strengths and orientations are allowed to impinge on the flow field surrounding an infinite
cylinder with resultant two-dimensional and three-dimensional shock interference pat-
terns. The numerical results are compared with experimental results.

INTRODUCTION

An extraneous shock wave impinging on a blunt body in a hypersonic flow has been
observed to greatly increase both the heat-transfer rate and pressure near the impinge-
ment point (refs. 1 and 2). Flow fields of this type may occur on hypersonic vehicles
such as the Space Shuttle.

The intense heating and high pressures occur over a small region where a distur-
bance, originating at the intersection of the impinging shock and bow shock, strikes the
body. The disturbance may be a free shear layer, a supersonic jet, or a shock wave
depending on the strength and location of the impinging shock and the shape of the body.
Edney (ref. 1) has described six different types of shock interference patterns which can
occur.

*Work sponsored by NASA Ames Grant NCR 16-002-038 and the Engineering
Research Institute, Iowa State University.
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In the present study, both two- and three-dimensional shock impingement flow
fields have been numerically computed. In these computations, the impinging shock is
planar and intersects the bow shock surrounding an infinite cylinder (fig. 1). In the two-
dimensional case, the intersection line is parallel with the axis of the cylinder (z-axis)
and, consequently, the flow in each z-plane is identical. This configuration can occur in
hypersonic inlets. In the three-dimensional case, the intersection line is curved and is
not parallel with the cylinder axis. This configuration can occur when the bow shock
from the nose of a vehicle strikes the wing-leading-edge bow shock. ;

The numerical results of this study were computed by using a time-dependent,
finite-difference method to solve the complete set of Navier-Stokes equations for a lam-
inar, compressible flow. The time-dependent approach was chosen because a subsonic
region exists in the two-dimensional case and may exist in the three-dimensional case.
Since the governing time-dependent equations remain a hyperbolic-parabolic set for both
subsonic and supersonic flows, all cases can be solved as an initial-value problem where
the steady-state solution is approached asymptotically with time.

SYMBOLS

. e specific internal energy • • - ;. . ..

E ' total energy ' • • . ' ., - .

k coefficient o f thermal conductivity : - . • • - . -

M Mach number • '

p pressure ' • ' . - • • • •

Pr Prandtl number - - • • " - ••• •

q heat flux ,

qr,q0,qz , heat flux components . - - , „ •

. " . - • + • i' ( • ' ' '

T,d,z cylindrical coordinates

rjj body radius

rs shock radius . .
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Rerj Reynolds number based on cylinder diameter .

t time .

T temperature .

^Tf^Q^z velocity components

0 stretching parameter •

y •'• ratio of specific heats . .

.;* - •

A sweep angle . •

\i coefficient of viscosity
t .

p density •.

T« shear stress tensor -

Subscripts:

cyl swept infinite cylinder value

stag no impingement stagnation value

w wall value

00 free-stream condition

GOVERNING EQUATIONS

The equations governing the flow of a compressible, viscous fluid in the absence of
body forces and electromagnetic effects can be written in the following weak conservation-
law form using three-dimensional cylindrical coordinates:

a u + 9 F + 9g + aH + D = o '' (1)at ar 80 9z • . '
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where

P

pur

(2a)

pur

- Trr

- Trz

(p-f E)ur - rrrur - Tr0u0 - Trzuz + qr

(2b)

puru<j -

(2c)

puz

- Trz

PU0UZ -

pU Z
2 +p - TZZ

- rrzur. -

(2d)

D =

0

0

<2e)
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E = p e +
ur (2f)

The Navier-Stokes expressions for the components of the shear stress tensor and
heat flux vector have been used in this study and are given by ...

- M

« aurerr = 2 —-11 9r

ezz)

ezz)

ezz)

= r9r =

rrz = rzr =

T0z =

9U .Hfi
r

_ I 8uz
602 ~ IT r IT

(3a)

9T

az

(3b)

For the two-dimensional problem, the crossflow (z-component) terms are omitted.
*• * '

To complete this set of equations the perfect gas equation of state is used. In addi-
tion, Sutherland's equation and a constant Prandtl number assumption are used to com-
pute coefficients of viscosity fi and thermal conductivity k.

Equation (1) is transformed from the physical domain (r,0,z,t) intp the computa-
tional domain (x,y,z,t) by the following independent variable transformation:

x =

y = 0

z = z

t = t

- r
rs -

(4)
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This transformation maps the z-plane between the bow shock and the blunt body into a
rectangular region and stretches the radial distribution of grid points according to the
function f. The function f chosen for all cases considered herein is given by (ref. 3)

/ / 3 + a \ ' • ' . . - . .
~)

(5)

Equation (5) refines the grid near the body and thus permits better boundary-layer reso-
lution. The parameter /3 controls the amount of refinement and has a practical range
between 1 and 2 with the smaller values giving larger amounts of refinement.

NUMERICAL METHOD

Finite-Difference Scheme

Equation (1) is solved by MacCormack's explicit finite-difference method (ref. 4).
This method is composed of a predictor-cor rector sequence which is second-order
accurate in both space and time. For this method to remain stable the allowable time
step is limited by the CFL condition. To insure numerical stability in regions of large
gradients, a fourth-order smoothing term (ref. 3) is applied in each spatial direction for
both the predictor and corrector steps. .

Boundary. Conditions

Two-dimensional. - The wall boundary conditions are determined by specifying an "
isothermal wall, a zero normal pressure gradient, and the no-slip condition. The bow
shock forms one boundary of the computational region and its location at each time step
is determined by using a predictor-corrector method (ref. 3). Flow variables at the row
of grid points just inside the bow shock are obtained by applying the exact shock jump
relations (Rankine-Hugoniot equations). The impinging shock is.introduced at the bow
shock by discontihuously changing the free-stream conditions across the intersection
point. • ' • ' . • - . ; .

The tangential outflow boundaries, both top and bottom, are treated with second-
order extrapolations. These boundary conditions are stable provided the outflow Mach
number in the inviscid region of the shock layer is supersonic.

Three -dimensional. - The boundary conditions for the three -dimensional case are
identical with those of the two-dimensional case with the following exceptions. The geom-
etry in the three-dimensional case permits a plane of symmetry to be assumed along
the stagnation line across which reflective boundary conditions are used. The flow con-
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ditions at the inflow plane in the crossflow direction are held equal for all time to the
conditions from a swept infinite cylinder solution calculated prior to the shock impinge
ment solution. The flow conditions at the outflow boundary are determined by using a.
zeroth-order .extrapolation in. the crossflow direction. „-.

RESULTS

Two-Dimensional Case

Two-dimensional shock impingement results were computed with the following
free -stream conditions:

= 4.6 p^ = 14.93 N/m2

10 00° T°o = 167 K°o

Pr = 0.72 y = 1.4
' m>

The cylinder had a diameter of 0.3048 m and a constant wall temperature of 556 K. The
free -stream Mach number and impinging shock angles were chosen to correspond with
the. three-dimensional tests of Edney (ref. 1) in which planar shocks were allowed to
impinge upon a hemisphere.

The undisturbed blunt body flow field was computed first and the resulting solution
was used as the initial condition for the shock impingement computations. Wall pres-
sures and heat -transfer rates from this undisturbed case compared very well with inde-
pendent results (ref. 3).

Two two-dimensional shock impingement cases are presented herein with identical
intersection positions (0 = 9°) but with different impinging shock strengths. In the first
case, the impinging shock made an angle of 16.1° with the free-stream velocity vector.
The pressure ratio across this impinging shock was 1.73 with a flow deflection angle of
5°. The results of this computation are shown in figure 2 as a set of Mach number con-
tours which were drawn by a computer plotter in Mach number increments of 0.05. A
strong shear layer emanates from the intersection point and makes a tangential approach
to the body surface.. This shear layer causes moderate increases in heat transfer and
wall pressure in the vicinity of the attachment point. The lower sonic line position
remains essentially unchanged from the no -impingement case while the upper sonic line
position is changed considerably. The new upper sonic line emanates from the intersec-
tion point and follows the shear layer to the body.

In the second case, the impinging shock made an angle of 20.9° with the free -stream
velocity vector. The pressure ratio across this impinging shock was 2.98 with a flow
deflection angle of 10°. The results of this computation are shown in figure 3 as a set of
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Mach number contours drawn with the same Mach number increments as in figure 2. • "
The bow shock distinctly shows a "double kink." A strong shear layer emanates from •
the intersection point (first kink) and strikes the body. An imbedded supersonic region
exists between the shear layer and a shock .emanating from the second kink in the bow
shock. The stagnation point has-been shifted approximately 45° around the cylinder by
the impingement. ,At this new stagnation point occur the large increases in heat flux and
wall pressure. The shock, impingement also-causes the bow shock standoff distance ,
below the intersection point to increase dramatically.

Figure 4 is a schlieren photograph of the corresponding three-dimensional test of
Edney. :A qualitative comparison of the two-dimensional numerical results and three-
dimensional experimental results shows the same general features: (1) "double-kinked",
bow shock, (2) shear layer emanating from the first kink and striking the body, and (3) an
imbedded shock emanating from the second kink in the bow shock. This good agreement
gives credibility to the numerical computation. . .

•-.. Comparisons of the wall pressures and heat-transfer rates before and after shock
impingement are shown in figures 5 and 6 for the 20.9° shock impingement case. Both
curves represent numerical results as no experimental data were available for this set of
conditions. The increases in wall pressure and heat transfer rate were both approxi-
mately 2.2 times greater than the no-impingement stagnation point values.

Three-Dimensional Case

The preliminary three-dimensional solution presented in this paper was computed
with the following free-stream conditions:

MOO = 5.94 . Poo = 559.1 N/m2

ReDoo=18000 Too = 59.6 K

: .'.Pr =,0.72. : y = 1.4

. . . .A.= 25.00 • • ' . : • • • - . . . - . ,

The cylinder was O.r025 m in diameter and had a constant wall,temperature of 394 K.
The free-stream conditions (except for Rerj> ), impinging shock angle, and sweep angle
were all chosen to agree with the experiment of Keyes.and Hains (ref. 2). The free-
stream viscosity was chosen to be an order of magnitude larger than in the experiment,
thus making the Reynolds number 10 times smaller; this was done to physically thicken
the boundary layer and make1 its resolution possible with fewer grid points.

At the start of the shock impingement computation, the flow variables in'all
z-planes were set equal to a previously computed swept infinite cylinder solution. Then,
except for the flow variables at the inflow plane which were held fixed, the flow variables
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in all other planes were allowed to change during the computation under the influence of.
the impinging shock.

A comparison of the stagnation plane shock shapes is shown in figure 7. The
results of Keyes and Hains were obtained by allowing a planar,"'impinging shock .to strike
the shock layer on a finite swept cylinder. The intersection point along the stagnation •
plane was only 3 cm downstream from one end of the cylinder. The shock standoff dis-
tance for the initial numerical z-plane is therefore considerably different from the cor-
responding value of the experimental results. When these curves are examined in light
of this difference, the comparison seems quite good. „ .

A comparison of the stagnation line wall pressures is shown in figure 8. The gen-
eral trend of the comparison is reasonable. However, the peak value in the experiment
tal curve, which is caused by a boundary-layer interaction with a transmitted shock, is;

not reproduced in the numerical results. A small peak does occur in the numerical :

results but differs slightly in position from the experimental peak. :

A comparison of the stagnation line heat-transfer rates is presented in figure 9.
A peak in the heating rate is measured for both the numerical and experimental results
although the positions and heights of the peaks are not in good agreement. The coarse
grid, numerical smoothing, and increased physical viscosity probably all contribute to
the poor resolution of the transmitted shock and, therefore, to the poor agreement.
Future investigations will either remove or improve these limitations.

For this preliminary three-dimensional solution, a coarse 21 x 21 x 41 grid was
used which requires 90405 words of array storage. The total program storage (program
and array storage) was 120000 words. The execution time on a CDC 7600 computer was
47 min.

CONCLUDING REMARKS

Both two-dimensional and three-dimensional shock impingement flow fields have
been computed by using a time-dependent finite-difference procedure to solve the com-
plete set of Navier-Stokes equations. Good qualitative, comparisons were obtained
between the two-dimensional numerical results and corresponding three-dimensional .
experimental results. The three-dimensional numerical result was obtained with a
coarse mesh, approximate inflow conditions, and a reduced Reynolds number, resulting
in only a qualitative comparison with a corresponding three-dimensional experiment.
Future computations will either remove or improve these limitations and approxima-
tions. Although the three-dimensional result is preliminary, it does demonstrate the
feasibility of such a calculation with present day computers.
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