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Seabrook, Maryland 

SUMMARY 

A set of initial Cartesian coordinates, which are free of ambiguities and resonance singularities, 
is developed to  study satellite mission requirements and dispersions over long lifetimes. 

The method outlined herein possesses two distinct advantages over most other averaging pro- 
cedures. First, the averaging is carried out numerically using Gaussian quadratures, thus 
avoiding tedious expansions and the resulting resonances for critical inclinations. etc. 
Secondly, by using the initial rectangular Cartesian coordinates, conventional, existing 
acceleration perturbation routines can be absorbed into the program without further mod- 
ifications, thus making the method easily adaptable to  the addition of new perturbation 
effects. 

The averaged nonlinear differential equations are integrated by means of a Runge Kutta 
method. A typical step size of several orbits permits rapid integraticn of long lifetime 
orbits in a short computing time. 

INTRODUCTION 

Several sets of averaged elements (Lorell, 1970; Broucke and Cefola, 1972; Uphoff. 1973) 
are in use for satellite lifetime studies. These usually suffer from ambiguities and resonance 
singularities for low inclinations, Gear circular orbit, near polar orbits, critical inclination 
resonances, and such. Moreover, it is necessary to  develop the perturbation representations 
in these element coordinate systems, which often requires ingenuity and is difficult in a p  
plication. The Cartesian coordinates have been extensively utilized and routines are avail- 
able to numerically generate most of the significant perturbations. The initial conditions 
of the Cartesian solution of the classical two-body problem have been developed for variation 
of parameters (Pines, 1961. Christensen, 1970; Codal and Johansen, 1968), but has not 
found wide application. With the advent of averaging as a tool for eliminating long tedious 
numerical integrations in computing solutions, this study was undertaken to  reestablish the 
initial Cartesian coordinates as a useful set of parameters for orbital analysis. 
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THE INITIAL CONDITION CARTESIAN ELEMENTS 

The equations of motion of the satellite in the planetary reference frdme are given by 

(1 )  

where F repiesents the perturbation forces other than the central attraction of the principal 
body. 

The initial Cartesian coordinate parameters which describe the motion are given in terms 9 f  

R 

r 3  
R z - p - t F  

the position and velocity vectors in Cartesian coordinates by 

Ro=-ktfi( 

where f, g, g, fare given as functions of the difference in eccentric anom&.], 8, BS 

41 - cos e) 
f = I -  

IO 

1 

P 
g =-(I& s i n e - d a ( 1 - c o s e ) )  

. 6 sin e 
f =,-- 

a( 1 - cos 0) 

r 
g = I -  

The relationship of the time increment to 8, in the absence of perturbations, is given by a 
form of Kepler’s equation 
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The differential equations for the variation of R, and R,, under the action of F are generated 
in Pines ( 1  961) from the conditions that 

d 
- R = O  
dr 

and 

d .  
- R = F  
dr 

Thus. we have 

- d k, = - i 7 R + f 7 R + f F  
dr 

Following Godel and Johansen (1968), we choose for the perturbation equation of the 
difference in eccentric anomaly, 8 

e r = o  (7) 

This serves to  eliminate mixed secular terms (see Christensen, 1970) from the perturbation 
derivatives of f, g, i, g, that arise in Pines (1961) where the time from the initial time was 
assumed unperturbed, 

d 

dr  
- ( t  - t , )=O 

We can replace the vectors R, R from (6) using the inverse of (2) 

R = f R ,  t g R ,  

R=h, t g R o  
(9) 
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An important stability cotidition on (9a) is derived. We have 

fg -gf = 1 (10) 

It follows from the perturbation derivative of (10) that 

Thus the coefficient of R, in the d /d r  R, expression is the negative of the coefficient of 
R, in the d/dT R, expression in Equations (9a). This will reduce the computing work in 
the averaging process. 

Since the perturbation of the transit time is not zero, we require a differential equation for 
the time. Using (3). (4), and (S), we obtain the perturbation differential equations for the 
time, 

r 

2 f i  
(e -sin e) t - sin e - 

where 

a7 = 2  a’ R * F  

The perturbation derivatives of f ,  g, f ,  and g are given below: 

( 1  2a) 
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where 
,&sin e d 

(dl  + - 
2a a7) ( 1 ,?a) 

(ro) l=(l  -cosO)ar - - 
4 

We now proceed to the averaged differential equaiions. 

THE AVERAGED EQUATIONS OF MOTION 

The principle here is to replace the nonlinear differential equatioirs for Ko(r) and RO(r) by 
their average value over a single period of the reference orbit as defined by RO(rr ) and 
ko (rl ). 

Let the period of I -creme orbit be T ( T ~  ), then for 

T T 
2 2 

-- ( T 1 ) 9 T 9 - ( r l )  

doa( 1 - cos 8 )  
t - t l = r - r l =  - a 3 P ( ~ - s i n 8 ) t r o a ’ ~ s i n ~ +  -- 

fi ‘ I  fi 

Thus, 

1 
dr 2n 2r / n L ( g g l - g l g ) d O - -  a 2n ln - a gFdO 

-n 

- d -  ( t - t , j=  - ln:(t - t o ) l d 8  
dr 2n 

-n 

1 os 



whae 
r '0 d0 

V% 

-- - i - c ~ s e + - ~ ~ e +  - h e  
a a 

Equation ( 1 5 )  could be integrated analytically, using Farrier ser:es in 8.  However. this 
would require a representation of F in d and greatly burden the introduction of  additcor 
pertirrbations Moreover, mathematical resmances would appear and require special 

5 .  

11 

techniques for each resonant term. In this, we fellow the lead of Uphoff ( 1973) and adapt 
Gaussian quadnturer s the technique for evaluating the integrals 

We note that F is a vector in three space, and recalling (1  l) ,  we need to evaluate only 10 
integrals The average equations become: 

d -  - - -  
-% = a , R o + ~ R o + C  
dr 

- -  - d 2  Ro =a3R0 - -a lRo +F 
ds 

d - (t - t o ) = ]  +a, 
ds  

where 
-I 

a, = 2n 1 L(fgr- fgr)d9 a 
--I 
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t 16a) 
(con t .I 

- -  
To obtain the averaged F, G vectors. it is necessary t o  specify the perturbations For the 
purpose of this study, we consider accelerations due to tesseral and ZOMI harmonics for a 
rotating planet, third body forces, such as the sun and moon, and drag. The detailed 
equations are given in Appendix A. It should be noted that where F is a function of R, 
R and t, for the purposes of averaging, these functions are given by the two body equations 
and Kepler’s equation given in ( 1  f a )  through (17d) referenced to  the T time at the midpoint. 

We now consider the numerical integration of the averaged equations. We propose to use 
a Runge Kutta method with a z step equal t o  several periods. It must be borne in mind that 
the time variable is T and not time. For each evaluation of the seven derivatives $ ( 1  6), 
at a specific T time, ii, we must carry out the averaging procedure. Using Ro(ri) Ro(ri) as 
the reference orbit, we compute the 10 integrals given by (16a).  

The Runge Kutta solution will produce R,,(T), R,(T) and (t - to) (7). To compute an 
ephemeris of the state, R (t) and R (t), we proceed as fo:lows: 

Let the period of the Eo(?), k0(r)  orbit be T (T ) ,  

- 

Let N be the integer part of T/T (T), and 8 is given by, 

Using Newtcn’s method, solve Kepler’s equation for u 

d , 4 l  - COS (I) 
am (u - s m  u) t roa’P sin (I + 

6 
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For any position in the N + 1 revolution. where the incremental eccentric anomaly, 6 .  lies 
between 0 and In. 

Let 
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APPENDIX .4 

We consider several typical perturbations. 

Tcsseral and Zonal Harmonics. 
Let the central body rotate about its polar axis. I; (1) with a tiniforin angular mte o. I f  tlic 
inertial Cartesian coordinates of the vehicle is R. then the unit vector t o  the vehicle in plsnet 
fixed coordinates is given by. 

- R  
u = k i t ) . -  

r 

- R  
s = i ( t ) * -  

r 

where i ( t )  ani! j ( t )  are orthogonal reference axes fixed i n  the rotating body equation. 
perpendicular t o  the polar axis I; (t). expresstd in the inertial Cartesian system of the 
vehicle. 

Fo!lowing Pines. (1973). the accclerstion in the inertial system is Siven by 

F ,  =a,i(t)+a,j(t)+a,k(t)+a, - R(t)  
r 

(A.1) 

(A.2) 

Foi the purpose of completeness. we list the ai coefficients for J, . J ,  . J, . C,,  . and S,, . 

/.a:. I S ( - l  t 14u2 - 2 1  L?) 
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pat: IS 

r4 
a4(Ct2. S t 2 )  = - - (C,(SZ - w 2 )  t ' s w  S,) 

Third Body Acceleration. 
Let the gravitational mass zoefftcient of third body be ui. Let the ephemeris of the third 
body, Rc,(t), be given with respect t o  the central planet. about which the vehicle is orbiting. 
then the indirect acceleration is given by 

where 

Atmospheric Drag. 
Let p be the air density, given as a function of the vehicle position, R ,  and the time, t.  The 
drag acceleration is given by 

v c,s 
R 

I 

2 m 
F 3 = - - p \ ' R , t )  - 

(A.6) 
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where 
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NONLINEAR COUNTER EXAMPLE FOR BATCH 
AND EXTENDED SEQUENTIAL ESHMATION ALGORITHMS 

B. T. Fang 
Wolf Research and Development Corporation 

Riverdale, Maryland 

A simple nonlinear example is presented which shows the well-known iterated batch least- 
squares and extended sequential estimation algorithms may converge to different estimates. 
For this example one may even say the extended sequential algorithm converges to the 
“wrong” value. 
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ORBIT DETERMINATION IN THE PRESENCE OF 
UNCERTAIN ATMOSPHERIC DRAG 

B. Tapley, D. Dowd, and B. Schutz 
University of Texas 

Austin, Texas 

Uncertainties in the knowledge of the atmospheric density in the associated drag parameter 
constitute one of the primary limitations on the accuracy on which the orbits of near earth 
satellites can be determined and predicted. In most orbit determination programs, the effect 
of uncertainties in atmospheric drag are determined by adopting a standard atmosphere and 
estimating the drag parameters, 0 C,, A + m. 

However, for most missions, C, and A vary and the standard atmosphere will contain errors. 
Each of these factors will lead t o  errors in the orbit determination and prediction operation. 
In this presentation, an apprach for estimating the drag parameter, the effective satellite 
cross sectional area in the atmospheric density simultaneously with the satellite state, is 
described. 
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