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SUMMARY

A method is presented for determining the free vibration characteristics
of a rotating blade having nonuniform spanwise properties and cantilever
boundary conditions. The equations which govern the coupled tlapwise, chord-
wise, and torsional motion of such a blade are solved using an integrating
matrix met'.... By expressing the equations of motion in matrix notation,
utilizing the integrating matrix as an operator, and applying the boundary
conditions, the equations are formulated into an eigenvalue problem whose
solutions may be determined by conventional methods. Computed results are

compared with experimental data.
INTRODUCTION

Natural vibration characteristics of rotating blades are of fundamental
importance from the viewpoint of flying qualities, blade life, vibration

levels, and stability. Helicopters, propellers, and turbines may have serius
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resonant vibration problems when the excitation frequencies are equal to some
multiple of the rotational speed. To insure that conditions susceptible to
resonance do not exist within the range of operating speeds, it is necessary
that the natural frequencies be determined accurately. Also, the natural
modes, because of their orthogonality relationships, are often used in forced
response and stability calculations.

This paper formulates a numerical solution of the natural vibration fre-
quencies and mode shapes of rotating nonuniform blades. This problem has
been treated analytically in a very complete development by Houbolt and
Brooks.l However, very few results are presented, and they are for special
cases of limited interest. Numerous other studiese-lh have investigated
various facets of the problem using a variety of numerical solution methods.
Generally, these studies may be classified as investigations of a subset of
the governing equations derived in Reference 1. The present analysis employs
the governing equations derived in Reference 1. The integrating matrix as
developed by HunterlO is the basis for the present method of solution. The
integrating matrix is a means of numerically integrating a function that is
expressed in terms of the values of the function at inc ements of the inde-
pendent variable. It is derived by expressing the .ntegrand as a polynomial
in the form of Newton's forward-difference interpolation formula.

The equations of motion which are lineir homogeneous equations having
variable coefficients are expressed in matrix form using the integrsting
matrix. The boundary ccnditions are applied end the resulting matrix equa-
tions expressed in standard eigenvalue form. Solutions to this eigenvalue
problem may be obtainea by conventional methods. In developing the solution,

all functions are in effect represented by seventh-degree polynomials at the



boundaries as well as elsewhere on the beam. Since the polynomials approxi-
mate the functions very accurately, the integration of these polynomial
representations yield extremely small errors.10 The method is appealing be-
caure the numerical solution may be formulated quickly from the governing

equations and may be easily programmed for computations by a digital computer.
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SYMBOLS

Blade section constants

Young's modulus of elasticity

Ratio of tip to roct bending modulus

Distance between mass and elastic axis, positive when mass
axis lies ahead of elastic axis

Distance between area centrnid of tensile member and elastic
axis, positive for centroid forward

Shear modulus of elasticity

Cross-section area moments of inertia

Torsional stiffness constant

Polar radius of gyration of cross-sectional area effective .1
carrying tension

Polar radius of gyratign of cross-sectional mass about elastic
)

axis (km2 = km 2 + km
1k 2

Mass radii of gyration about major neutral axis and abcout an
axis perpendicular to chord through the elastic axis,
respectively

Resultant moments in y - and z - directions, respectively

Mass per unit length

Ratio of tip to root mass

Number of blade stations

Resultant cross-sectional torque about elastic axio
Blade radius

= R
Blade tension, T = f T s e
X
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Cross-sectional shears in y- and z-directions

Lateral displacements of beam, in plane of rotation and normal
to plane, respectively

Vibration amplitude of v and w, respectively

Coordinate system which rotates with blade such that x-axis
falls slong initial or undeformed position of elastic axis

Radial position at which applied loadings are assumed to acti

Blade angle prior - any deformation, positive when leading
edge is up

Eigenvalue

Total torsional deflection, ¢ = ¢9 + ¢, or eigenvector

Elastic torsional deflection, positive when leading edge is up
Steady-state twist (Appendix B)

Vibration amplitude of ¢

Rotor angular velocity

Natural frequency of vibration

Primes denote derivatives with respect to x; dots denote derivatives with
respect to time

Matrix notation:

[ ]
L
{}
[l
[1]

Square matrix
Diagonal matrix
Column matrix
Inverted matrix

Unit or identity matrix



EQUATIONS OF MOTION

The beam considered in the present analysis is shown in Figure 1. This
case represents the coupled bending and torsion of a twisted rotating beam where
the elastic axis, mass axis, and tension axis are not necessarily coincident.
The free vibration equations of motion for combined bending and torsion are

derived in Appendix A in t'e form

(EI cms2 o+ E12 8in® o)w" » (EI2 - EIl) cos 6 sin 6 v" - E828'¢' sin 6

1

R
=i T8 ¢ cos 6 + sz {mn[w(n) - w(x)] + men ¢ cos 6} dn
X

R
= -f (mw + med cos 8) (n - x)dn (1a)
x

" 2 2 no_ow Tht
(EI‘,2 - EIl) cos O sin 6 w" + (EIl sin® 06 + E12 cos” B)v EB, B8'¢' cos B

AR
+ Te_ ¢ sin 0 + ﬂ"_/; {m[xv(n) - nv(x)] - men¢ sin €} dn

= _fa (55 =ma 51558) 1(n s eyan (1b)
X

2

R
[6J + Tk “ + EB, (6')219" - EB, 8' (v" cos 8 + w" sin 6) +f Te (v" sin 6
a

X

" 2 g 2 2
- w" cos 8) dn + Q [mev sin 6 + m (km -k )¢ cos 26
x 2 1

- men (v' sin 8 - w' cos 0)] dn=-j-ﬂ [me(w cos 6 - v sin 0)
x

+ ;m km2] an (1e)
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where the variation of the axial tensile force is given by
T +m Q2x =0 (2)
Also, v, w, and ¢ are the edgewise, flapwise, and torsional displacements,
respectively. The principal assumptions used in deriving this system of
equations are briefly outlined:
(a) The beam is attached to a rigid hub and rotating at constant speed.
(b) The beam elasticity is adequately described by the conventional
bending and torsion characteristics described in Reference 1. Furthermore,
shear deformaetion and rotery inertia are assumed to be negligible.
(¢c) The elastic axis of the undeformed beam is e straight line.
(d) The pitch axis is coincident with the elastic axis of the undeformed
bean.
(e) The beam ic assumed to have zero precone and prelag.
(f) The cross section is symmetric about the major principal axis.
(g) Cyclic pitch is negligible.
For the present analysis, cantilever-free boundary conditions are assumed.
Thus, displacements and slopes are zero at the root:
v(0,t) = w(0,t) = ¢(0,t) = v'(0,t) = w'(0,t) = ¢'(0,t) = 0 (3)
also, moments and shears are zerc at the tip:

Q(R,t) = My(a,t‘ = Mz(a,t) = Vy(R,t) = VZ(R,t) =0 (4)

The integrals in Equation (1) may be evaluated by using a matrix operator [L]

defined as
b4

i
‘/” f(x) ax{ = [L]{f} (5)

5)

R R R R TR R
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Thus, the premultiplication by [L] of a column matrix of the function f(x)
yields the integration of f(x) from X tox,. The (n + 1) matrix [L] is
given by HLnterlo for polynomials of degi'ees one to seven. For the present
analysis, a seventh degree polynomial approximation is used. The matrix

[L] avoids solving a set of cimultanecus equationa since it jmrlicitly contains
the polynomial coefficients at each station. By expressing the equations of
motion in matrix notation, utilizing the integrating metrix as an uvperator, and
applying the boundary conditions, the equations are formulated into an eigen-

value problem whose solutions may be determined by conventional methods.

The following relationships ere valid at each spanwise station:

X

v'(w,t) = v'(0,t) *;/r v"(x,t) dx; v(x,t) = v(0,t) +J/rx v'(0,t) dx (6a)
0 0
x
w'(x,t) = w'(0,t) +f0 w'(x,t) dx; w(x,t) = w(0,t) +/.x w'(w,t) dx (6b)
G

9({x,t) = ¢(0,t) +'/-Ox ¢'(x,t) dx (6c)

Applying the boundary conditions given by Equation (3) to Equation (6) and
using Equation (5) yields

PPt o 2 "
[r] {v'} = [F]° {v"}

{v'} = [F]{v"}, {v}

(w'} = [Fl{w"}; {w} = [F]{w'} = [F]° {¥")

{¢} = [F]{¢'}

where [F] = [1] [L] [11. The first element in the above column vectors is the

corresponding quantity at the tip. Assuming simple harmonic motion



——y

s n

B

B

iﬁ-ﬁ?“' -

9

wix,t) = #(x)e¥t, v(x,t) = F(x)e?¥t, O(x,t) = ¥(x)e ®

and applying the matrix operator [L] to Equation (1) yields

[61{¢} = wP[H){®) (7a)
where
;,ll‘
{¢} = ;ll
¢|
and
G G G _] H H H
lw lv l¢ 1w 1v l¢
(G] = |G G G ; [H] =|H H H
2w 2v 2¢ 2w 2v 2¢
G G G H H H
v 3y 3¢ 3y 3y 3¢
| 8| 5 J

Equation (7a) may be expressed in standard eiger—-alue form as
Ao} = [D] {#} (Tb)
Where [D] = [G]-l [H]. Solutions of Equation (7b) define the natural fre-

quencies and associated modal vectors. The first element in the above matrices

corresponds to a tip value. In order to satisfy the tip boundary conditions,
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the 1, n+ 1, and 2n + 1 rows and columns of the dynamic matrix (D] are de-

leted.

The partitions of [G] and [H] are (n + 1) matrices defined as fullows:
2

[GJ ] = EEIl cos® 0 # EL. sin® 8] + 92 [P3(mx)[F]2

w

[}

2

t(EI2 - EIl) cos 6 sin 6]
- ﬂalL]l‘ea cos GJEPE(mx)J + QE[L]tmex cos 0J[F] - EEBE 8' sin 6]
t(E12 - EIl) cos 6 sin 64
PET, sin? 0 + ET, cos” €] - 4 (¢ )(m] [FI? + fPlp,(mx)] (F)°
2 & 2 2 2 1
0 [L][‘ea sin BJPP2(mx)J + Q° [L]lme sin 8)[F]° - Q°[L]fmex sin 68J[F]

- PE82 8' cos 6]

- 0° tp,(mx)ite, cos 6J(F] + 0° [L]fmex cos 6J(F] - [EB, 6' sin 6]
o tp,(mx)lte, sin OJ[F] - 0% IxJ[L)ime sin 6[F] - fB, 0' cos 0]
tesd + BB (6*)%] + 0° i 2JtP, (mx)] 4+ 0° [L]h(kie . kf‘l) cos 26J[F]
(e, tmd(F]°

(0]

[L]tme cos 8J[F]°

[o]

(P, 1[m](F)?
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- [L][me sin Fi][F]2
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]

3\'
[H1¢] = [Pll fme cos 6][F]
[H2¢] = - [Pllrme sin 6J[F]
(i, ] = [L)bmk2Y(F)

¢
where

[P1] = [L]fx] - [xJ[L]

fPe(f)J = dieg [L]{r}

[P3(f)] = [L]ffY - rP2(f)J

(r] = [2}{L]{2]

The m:ial deflections are determined from the eigenvectors of Equation (7b) as

[ : A

=
&)

n

t

<i
|
=
—
W
<!
(4]

Y
<

(F]

Solutions of Equation (7b) are obtained by using the QR transformation

method. Tne dynamic matrix [D] is reduced to upper Hessenberg form by ele-

mentary similarity transformations. 13,.15

Aty (e i

The similarity transformations,

known as QR transformations, of Francis are used iteratively
to reduce the matrix to an upper triangular form. The eignevectors correspording

to the real eignevalues are computed by using the inverse interation method of

Wielandt (as discussed in Ref. 18).
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NUMERICAL EXAMPLES

The results of two free vibration problems are presented to give an
indication of the azcuracy of the present method of analysis and to show tue
effects of the variation of certain parameters. The numerical examples con-
sidered are a typical propeller blade and a tapered beam having lateral dis-
placements in only one direction. To verify the applicebility of the equaticns
of motion to a practical problem, the natural vibration frequencies of the
propeller blade were determined numerically and compared with experimental
data. 'The computed results for the tapered beam are compared with exact and

approximate solutions.

Tapered Beams

The free vibraticn characteristics of linearly tapered beams having
lateral displacements in one direction are presented to substantiate the
accuracy of the solution method. Table 1 gives the comparison of computed
and exact-soluw'lon bending imodes of a nonrotating uniform beam at zero
pitch. Table 2 gives a comparison of bending frequencies of linearly
tapered beams at zero pitch. The nonrotating uniform beam results correspond
to the exact values frcm Reference 19. The approximate Rayleigh-Southwell
method presented in Reference 20 is used to estimate frequencies of the
linearly tapered beams. The computed frequencies of the linearly tapered

heams are in excellent agreement with the Rayleigh~Southwell method.
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Propeller B3lade

The propeller blade selected for analysis is the WADC 5-5 scale model
of Reference 21. This blade was chosen since this reference gives a struc-
tural description sufficient for the numerical solution as well as experi-
mental data for the natural vitration frequencies. The b?:ide is in effect
cantilevered at 0.1016 meters from the center of rotation and the tip of
the blade is at a radius of 0.6096 meters. In the experimental program,
tests were conducted for various pitch angles. The pitch settings were
defined hy the values of 6 as measured at x = 0.75R where R is the
radius from the center of rotation to the tip of the blade.

In order to compare numerical results with test data, solutiors were
computed for cases corresponding to the pitch settings and rotational speeds
of the experimental investigation. Numerical solutions were obtained by
using 11 stetions, which correspond to ten 0.0508 meter intervals, to describe
the cross-sectional properties of the propelle:r blade. Physical propertics
of the WADC S-5 blade, a3 given in Reference 21, are presented in Table 3.
Additional sectional properties needed for this analysis were estimated
by assuming an elliptical cross section. These estimated physical properties
are presented in Table k.

The experimentally and analytically determined free vibration frequen-
cies are given in Figures 2 and 3. Figure 2 illustrated the comparison for
the first and second bending frequencies. Figure 3 shows the comparison for
the first torsion frequency. The computed results of Figure 3 were obtained
by using the nonlinear twist analysis of Appendix B. Figure 4 illustrates

the effect of steady-state twist on the first torsion natural frequency.

| ol ol ‘O
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Experimental “orsion 1requencies are compared with the nonlinear analysis of
Appendix B and the linear analysis given by the uncoupled form of Equation
(1c). Table 5 gives the percent error associated with each analysis. A
comparison of the modal displacements is not possible since the mode shapes

were not determined in the experimental investigation.



CONCLUDING REMARKS

A numerical method for determiiing the free vibration characteristics
of a rotating cantilevered blade having nonuniform spanwise properties is.
presented. By expressing the equations of motion in matrix notation,
vtilizing the integrating matrix as an operator, and applying the boundary
conditions, tne equations are formulated into an eigenvalue problem whose
solutions may then be determined by conventional methods Computed results
were compared with experimental and analytical data. The comparison indicates

that the method of solution yields very accurate results.
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APPENDIX A

EQUATIONS OF MOTION

The equstions of motion for combined bending and torsion are obtained
by application of the theory developed by Houbolt and Brooks.l This case
represents the coupled bending and torsion of a twisted rotating beam where
the elastic axis, mass axis, and tension axis are not necessarily coincident.
Figure 5 depicts the position of the elastic axis as a space curve. The
applied loadings are shown acting at a radial distance (n) from the axis
of rotation. The bending moments pronduced by these loadings at a radial

position (x) are

R
MY = _x[ {-Px[w(n) - wix)] + Pz[n -x) + qy} an (Ala)
d/'R (n) (x) :
M=x \rﬂ -vx]+Py[n-x]+q_z}dn (Alb)

R
M, = _[ { L) - w(x)) 2L~ (v(n) - v(x)) 2] - p [(wln) - ¥(x))

X

- (m-x )+ p [(v(n) - v(x) - (n-x) ]

9x (Alc)

Vv
% [qx % qy ax ig ax } an
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For the present analysis, blade elasticity may be adequately described
by the conventional bending end torsion characteristics developed in
Reference 1. Thus, the clastic restoring moments at an arbitrary radial

position (x) are
2 2 " - "
My = (EIlcos 0 + EIesin 8)w" + (312 LIl)sin B cos 6 v (A2a)
1 L}
- (Tea + EB29 ¢ ) sin 6 - Tea ¢ cos 6

M (EI, 8in°0 + EI,, cos® g)v" + (EI2 - EI.) sin 6 cos 6 w"

2 i
LI |
- ('I'ea + E32 O ¢ ) cos 6 + Tea $ sin € (A2v)
% 2 112 : HETRE s
M, [GT + Tk +EBl(B )°] ¢ + Tk ° 6
(A2c)
1
- EB, 6 (v" cos 8 + W' sin 0)
Equation (Alc) may be writter as
BMt
— =T e it o ' W
% de s am VTR s Moe S (A3)

substituting Equations (A2a) and (A2b) and neglecting products of elastic

deflections yields

oM
—t=_ - vi-qw +Te v
x > 1y 4, a

" sin 6 - Te&w" cos O (AL)

e A G B R 8 AR e, e e e

s
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Combining Equations (Al), (A2), (A4) and substituting the applied loadings

given by Equation (21) of Reference 1 yields
(EI c052 6 + EI sine g)w" + (EI. - EI.) cos 6 sin 8 v"
1 2 2 At
2 7 {anlw(n) - w(x))
- E32 0'¢' sin 6 - Tea $ cos B + §
x

R
+ men ¢ cos 8} dn = - f (mw + med cos 6) (n - x)an
X

(E12 - EIl)cos 0 sin 6 w" + (EIl sin2 ® + RT_ cos B)v" = EB2 0'd9' cos O

2

5 R
+ Te_ ¢ sin 8 +Q f {m[xv(n) = nv(x)] - men¢ sin 8} dn (ASb)
X

=l fR (mV - med sin 8) (n - x)dn
X

R
[GT + '.I.'l'.a‘2 + EB (B')2]¢‘ - EB, B' (v" cos 8 + w' sin 0) +f Te, (v" sin 8
x

R
- w" cos @) dn + Q° f [mev sin 6 + m (km 2 k 2)¢ cos 20
x 2 2}

R
- men (v' sin 6 - w' cos 8)] dn = -f [me(w cos 8 — v sin 8)
X

2

+
¢m k ] an
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APPENDIX B

STEADY-STATE TWIST OF ROTATING BLADES

Equation (1, is valid for small displacements from the undeformed configu-
ration of the nonrotating blade. The angle 6 at any radial station x,
defines the orientation of the najor principal axis relative to the plane of
rotation. Thus, the local orientation of the nonrotating blade includes
pitch and pretwist. However, the local orientation of a blade segment
may be modified due to the presence of rotation. This effect is defined as
"steady-state" twist and is a function of blade characteristics and rotatiocnal
speed.

An approximate estimate of the steady-state twist may be obtained by
assuming that blade torsional response is uncoupled. The uncoupled linear
torsional restoring moment is given by

M, = [GJ + Tke

1 2 1 2 L]
: -+ BB (6')7]0' + Tk © (B1)

Equation (Bl) is valid for v=w =0, and ¢ a small angle. However, the
presence of steady-state twist may invalidate the assumpticn of small angular
displacement from the undeformed position. The equivalent form of Equation
(Bl) for v = w= 0, and large angular displacement is (see Appendix A,

Ref. 1)

- 12 S 1H
Mt {GJ + EBl[(B )< + < 8'd" +

n |-

(021301 + Tk® (8" + o') (B2)

where ¢ is the sum of the steady-state twist, ¢O, and the torsional elestic

deformation ¢.
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o(x,t) = ¢,(x) + ¢(x,t) (B3)
Using Equation (B2) the uncoupled torsional equation is

{w+z%uwﬂ+§ew-+§wwﬁn'+m§m'+w)

Yo [ ane 4o Bfiorain
+ = m(k_ © - k_°) sin 2(06 + ¢) dn + mk~ ¢ dn = 0 (BL)
2 m m m
X 2 1 X
Substituting :Zquation (B3) into Equation (Bl4) and setting all periurbation
quantities equal to zero ylelds the equilibrium equation
{GJ + EBl[(e‘)2 + % 6'¢

' L )2 ' e \ E
a2 (¢o) ]}¢0 + Tk (8" + ¢o)

a8 R 2 >
+-2—f mk “ -k )sin2(6+¢ )dn=0 (B5)
) m, m, o

Substituting Equation (B3) into Equation (B4), subtracting the equilibrium
equation and discarding higher order products of perturbation quantities,
yields the perturbation equation.

2 '2 AT ; l2 L]
{cJ + Tk_ + EBI[(G )= +:30'¢! + = (¢:)°1}¢

R
+ 92 f m(km2 - kme )d cos 2(6 + ¢o) dn + f

X 2 1 X

R 5
mk ¢dn=0 (B6)

The steady-state twist ¢o is determined by iteration from Equation (BS).
This value is used to determine the coefficients of Equation (B6) which is

solved for the uncoupled torsional frequencies.
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GENDING FREQUENCIES OF LINEARLY TAPERED BLADES, 6 = O.
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