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ABSTRACT 

The cha~ged pa~ticles considered in this paper are scattered by 

random fields while they propagate along the diverging lines of force 

of a spatially inhomogeneous guiding field. Their longitudinal transport 

is desc~ibed in terms of the eigenfunctions of a Sturm-Liouville operator 

which incorporates the effect of adiabatic focusing along with that of 

scatte~ing. The ~elaxation times and characteristic velocities, which 

,appear in this matrix formulation of the transpo~t p~oblem, are graphed and 

tabulated. The particle density that results from a localized impulsive 

injection is evaluated as a function of space and time for two different 

regimes. In the first ~egime, where focusing is relatively weak, a 

diffusive mode of propagation is dominant, but coherent modes are also 

present, and they become prominent as the intensity of focusing increases. 

In the second regime, where focusing is strong, diffusion does not occur, 

and the propagation is purely coherent. This supercoherent mode corresponds 

exactly to the so-called scatter-free p~opagation of kilovolt solar flare 

electrons. Moreover, diffusive propagation in the first regime offers an 

explanation of several poorly understood aspects of solar cosmic-ray events. 

On a larger scale, focused t~ansport provides an interpretation of many 

observed characteristics of extragala<.:tic radio sources. 

Subject headings: cosmic rays: general - hydromagnetics 
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I. INTRODUCTION 

The diffusion equation underlies much extsting work on solar and 

galactic cosmic-rays. However, if particle propagation takes place along a 

diverging guirling field under the influence of adiabatic focllsing, the 

diffusive idealization is valid only if the mean free path for scattering 

in random fields is small compared to both the scale length for spatial 

variations of the density and the scale length for spatial variations of 

the guiding field. Ti.ts paper describes the deviations from diffusive 

behavior that occur when neither of these conditions is satisfied. This 

formulation of transport theory is mathematically similar to the approach 

that I took in three previous papers (Earl 1973, Paper I, 1974a, Paper II 

and 1974b, Paper III). Consequently, these papers and the equations therein 

will be designated below by their roman numerals. Most of these references 

are to Paper II which analyzed a coherent mode which is qualitatively similar 

to the supercoherent mode that occurs when adiabatic focusing is sufficiently 

intense. The systematic effect of focusing considered here is completely 

different from the stochastic effect considered by Goldstein,Klimas and 

Sandri (1975), which arises from small scale divergences of the random field. 

In §II, the transport problem is formulated in terms of eigenfunctions 

of an operator which incorporates both scattering by random fields and focusing 

by a spatially inhomogeneous guiding field. The behavior of these eigen-

functions is described in §III. Focused diffusion, a transitional mode 

which spans the gap between the purely diffusive transport that occurs when 

focusing is weak and the purely coherent transport that occurs when focusing 

is strong, is discussed in §IV. The supercoherent mode is introduced in §V. 
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Thus, the theory developed in these sections not only identifies and describes 

a novel mode of particle propagation but also establishes its relationship to 

'\ diffusion. 
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The existence of pronounced coherent effects opens up many possibilities 

for the interpretation of astrophysical phenomena. These possibilities are 

explored in an interplanetary context in §VI where the so-called scatter-

free pro~agation of solar flare electrons is explained and where several 

pc~rly understood aspects of solar cosmic-ray events are interpreted. In 

§VlI, the structure of extragalactic radio sources is explained in terms of 

focused transport. Here, the transport phenomena introduced in this paper 
• 

give rise not only to the twin lobes of radio emission, which are a basic 

feature of these sources, but also to many other details of their morphology. 

". 
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II. MATRIX FORMULATION OF TRANSPORT THEORY 

The particle distribution function f{~, z, t} evolves according to 

the equation 

(1) 

in which the effect of adiabatic focusing is represented by the second 

term on the right hand side (Roelof 1969), which involves the scale 

length L for spatial variations of the guiding field, 

1 1 aB - a __ _ 

L B az (2) 

In equation (1), z is distance parallel to the mean field, u is 

the cosine of the pitch angle, V is particle velocity, and t is time. 

The Fokker-Planck coefficient for pitch angle scattering will be des-

cribed by 

(3) 

in which q is the spectral index of the power law that gives the mean 

square amplitude of field fluctuations at wave number k within an 

interval dk, Qxx(kO/k)q dk, in terms of the spectral density ~ at a 

reflirence wave number k
O

• Here, the parameter A, 

(4) 

can be expressed in terms of the particle rigidity R, velocity V, and 

Larmor radius rL and the spectral parameters Qxx' q, and kO (Jokipii 

1966). Although the validity of the quasilinear approach that underlies 

equation (4) has been questioned, this simple relationship is invoked 

here for purposes of illustration with the understanding that the 

• 
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numerical values of certain parameters, which are expressed below not 

only as functions of q and A but also in general terms, may have to be 

revised when a consensus is reached on the correct treatment of pitch 

angle scattering. Such a revision would not affect the qualitative 

validity of the conclusions reached here. 

The assumption that L is constant, which will be adopted through-

out this paper, greatly simplifies the analysis that follows, but as 

long ~.s L does not change much within one scattering length, it does 

not Significantly limit the applicability of the results. This assump-

tion implies that the guiding field decreases exponentially, which means 

that its lines of force diverge from one another as z increases. Because 

of this divergence, the lateral area over which particles are spread 

increases with z, for particle transport perpendicular to the field lines 

proceeds relatively slowly. Consequently, the normalization that 

corresponds to a fixed total nu~ber of particles is 

1 
N =o 2 

+1 +"" 

f f -1 _00 

z/L e fill, z, t} 
+"" 

d~ dz = f 
-~ 

in which the exponential factor takes into account this variation in 

the area over which the isotropic density FO is spread. 

(5) 

When equation (1) is integrated over u from -1 to +1, the scattering 

term contributes nothing because ¢ vanishes at both limits, while the 

focusing term can be integrated by parts to yield 

where S is the streaming flux defined by 

+1 
S - (V/2) f llf dll • 

-1 

(6) 

(7) 

l 
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Because the expression in square brackets is the divergence operator 

(Roelof 1969), equation (6) expresses an important and familiar equality 

between the temporal rate of change of the density FO and the negative 

divergence of the flux. 

Papers I, II, and III invoked expansions of f in terms of eigen-

functions of the scattering operator which appears as the first term on 

the right hand Side of equation (1). To describe the effects of focusing, 

this paper invokes eigenfunctions of a very siadlar operator which also 

includes the focusing term. Thus, the focusing eigenfunctions QK{~}' 

which are defined in the same spirit as the scattering eigenfunctions 

~{~}, satisfy the following equation: 

v 
- (1 -
L 

o dQK 2 
II~) - + - Q 
" d' ° K ~ K 

= 0 (8) 

where the eigenvalue (2/oK) , which replaces the scattering eigenvalue 

(2/TK), describes the temporal decay of an anisotropy proportional to 

QK' Equation (8) can also be written in the form 

d -G -e 
d~ 

dQ 
$ -.! + L e -G Q = 0 

d~ OK K 

where the function G{~} which appears in the exponential. 

v 
= -

L 

~ 1_\12 V ~2-q 
" ${\I} d\l = AI. (2-q) , 

(9) 

(10) 

is the same as the one defined by equation (III-32) except for a scale 

factor (IlL). The important parameter (vIAl.), which is the ratio of the 

scattering length (VIA) to the scale L of guiding field variations, 

characterizes the intensity of focusing. The following boundary condi-

tion, which is to be imposed at ~ a +1 and at ~ = -1, completes the 

specification of the eigenfunctions and ensures that they are well behaved: 

HIIij[ 
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(11) 

In the limit L + ~, QK = ~, but, in contrast to the situation 

discussed previously, where even numbered ~ were even functions of ~ 

and odd numbered ~ were odd functions., the QK have no special symmetry 

when L is finite. In its usual sense as a description of spatial 

symmetry, the word parity is obviously inappropriate here. Nevertheless, 

this word will be used below in its mathematical sense to designate 

whether the indices of eigenfunctions are odd or even. 

Because equal ion (9) has the form prescribed by Sturm-Liouville 

theory, the functions QK form an orthogonal set in terms of which the 

distribution function can be expressed as a series expansion 

where the factor ~ defined by 

L= (r+l e-G Q 2 dlJ)~ 
~ 'J -1 K 

(12) 

(13) 

converts QK into a normalized eigenfunction and where the coefficients 

fK are given by 

(14) 

In equations (13) and (14), which typify the integrals that occur when 

orthogonality is invoked, exp{-G} is a weighting function which emphasizes 

the contribution from the region lJ < 0 where the odd function G is 

negative. This asymmetry, which becomes very pronounced when (VIAL) is 

large, makes focused transport qualitatively different from rectilinear 

transport. 
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When e~uation (12) is substituted in equation (1), orthogonality 

implies that the coefficients fK are described by a set of 

differential e~uations the first four of which are 

at 
+U -.!!= 

00 az 

af2 f2 ai2 
at + 02 + U22 -az- = -

af3 f3 af 3 --+-+U --= at 03 33 az 
afO 

- U --03 az 

where the characteristic velocities, 

j +1 -G 
U JK = UKJ = Vd JdK Ile QJ QK dll 

-1 

(15) 

(16) 

(17) 

(18) 

(19) 

play the role of matrix elements that couple the temporal evolution of 

the coefficients to their gradients. This matrix formulation of trans-

port theory is analogous to that derived previously (see eq. [11-10) ,-

[11-13), but it differs in that each coefficient is coupled to its own 

gradient through the diagonal velocity elements U
KK 

which appear on' the 

left hand sides of equations (15) - (18). Moreover, the source terms 

on the right hand sides of these equations embody coupling between 

coefficients of similar parity that did not appear in previous papers 

where the characteristic velocities corresponding to U
02 

and U
13 

were 

zero. However, in the limit L ~~, the matrix elements that couple 

coefficients of opposite parity, U
01

' U
03

' U12 , and U23 ' reduce to the 

same characteristic velocities, VOl' V03 ' V12 , and V23 , that appeared in 

Paper II. 

( '1' nil ... A 
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The ft.'st eigenfunction, Q = constant, is an isotropic component 
o 

which satisfies equation (8) provided that the relaxation time a is 
o 

infinite, Because all of the higher order ei~£nfunctions are orthogonal 

to Qo ' they must satisfy 

f +l G 
e - Q

K 
d~ = 

-1 
o , (20) 

but this condition does not imply that the isotropic density associated 

with the higher-order eigenfunctions is zero, for this weighted integral 

is not the same as the unweighted average that gives the density, More 

specifically, the density is given by 

where 

F D o f
+l 

~ f 
-1 

is the average density associated with Q
K

, 

equation (7), the flux is 

where the velocity V
K 

defined by 

characterizes the flux associated with Q
K

, 

(21) 

(22) 

Similarly, according to 

(24) 

Because the expressions for 

density and flux involve all components, the situation is different from 

that in unfocused transport where the density is identical to the 

isotropic component and where, consequently, the lowest-order matrix 

equation is also the flux equation, Instead, the derivative (aFo/at) 

tha,t appears in the flux equation (eq, [6]) must be calculated by 

l' , ., # q 
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summing the quantities < QK > (afK/3t) predicted by the matrix equations 

(eqs. [IS] - [18]). In the resulting expression, 

aFo ---at ... ] 

the sums within square brackets reduce to 

= ~V d 1.1
1lQ 

K -1 K 

(25) 

(26) 

which is an identity that follows from equation (24) when the integrand 

IlQ
K 

is expanded in an eigenfunction series with the aid of equations (14) 

and (19). A second identity, which relates VK to the relaxa-

tion time oK' 

(27) 

follows from 

f
+l 

V JJQK 
-1 

dJJ = V1.1 
dJJ = - - (1 -

2 -1 

L f+1 G jV -G - a G'e dv e QK K -1 -1 

L j+1 
dJJ = - Q 

OK -1 K 
dJJ (28) 

in which the first equality results from an integration by parts, the 

second from the following substitutions (see eqs. [9] and [10]): 



1 
. I ~ 

11 

dQK 2eG II 

11 -G 
QK dll <jI--~-- e 

dll OK 

dG G' V 1 _ \1 2 - .. = -
dll L <jI{II} 

and the third from a further integration by parts. When these identities 

are invoked in equation (25), it reduces to ~he flux equation, for the 

gradient terms sum to (as/az) while thp. « QK> fK/oK) terms sum to (S/L). 

If some of the matrix equations are left out of this summation, the flux 

equation is not satisfied. Consequently, when the integral specified by 

equation (5) is performed upon the solutions of a truncated set of 

matrix equations, the resulting total number of particles changes with 

time. Although this deviation from proper normalization is disconcerting, 

it has minor significance as long as the real temporal evolution is 

rapid compared to the ~elatively slow decay artificially introduced by 

truncation. 
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III. FOCUSING EIGENFUNCTIONS AND EIGENVALUES 

Focusing eigenfunctions are analogous to the familiar orthogonal 

functions that occur in classical and q~antum physics. In particular, 

when q • 1 and (ViAL) • 0, they reduce to Legendre polynomials. But 

it is only in such exceptional. cases that analytical methods yi~ld closed 

expressions for eigenvalues-and characteristic velocities. In general, 

these parameters must be evaluated numerh"lly. There is n:) ~:;,ed to 

present here the lengthy details of this evaluation, for the Unal results 

are sufficient ~o specify completely the matrix formulation of transport 

theory. Nevertheless, it is appropriate to outline briefly the method 

that gave these results. It was basically the iterative method of 

Stodola and Vianello (Hildebrand 1949, Chap. 5) supplemented by the 

procedures described by Boul.iciis and Ruggiero (1944) for determining 

higher order eigenfunctions. For each value of q, scattering eigenfunctions 

for (viAL) = 0 were calculated by iteration starting with the approximate 

eigenfunctions derived in Paper 11-;11 " ,e initial trial functions. 

Then (ViAL) was incremented in small At each step, new eigen-

functions were calculated using the eigenfunctions from the previous step 

as initial trial functions. The main objective of this section is to 

present graphs that show how these eigenfunctions and the parameters 

derived from them as specified in §II depend upon q and A. 

For weak focusing, a workable alternative to numerical methods is 

to treat the focusing term as a perturbation who"" effect can be 

approximated with the aid of standard quantum mechanical perturbation 

formulae. In a preliminary version of this paper, perturbations of the 

approximate scattering eigenfunctions given-in Paper II were evaluated 

1 
1 
: 
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with the aid of second-order theory. Although most of the results in 

§IV were first obtained through this procedure, it was eventually 

abandoned, because an intractable divergence of the perturbation expansions <.; 

made it impossible to analyze the strong focusing limit discussed in §V. 

But, in the course of this exercise, several useful relationships were 

discovered. Although the perturbation approach will not be pursued, it 

does confirm the fundamental validity of these identities, which appea'. 

here as numerical coincidences. 

In the discussion that follows, three specific values of the spectral 

index are given special emphasis. The first, q = 1.0, corresponds to 

the isotropic scattering considered in classical transport theory. Thus, 

the results obtained for this index illustrate the effect of focusing upon 

classical rectilinear transport. The second index, q = 1.5, approximates 

that observed for magnetic fluctuations in space. Thus, the predictions 

obtained for this index apply to the interplanetary propagation of solar 

and galactic cosmic-rays. The third value, q = 1.9, corresponds to very 

anisotropic scattering. In this situation, the eigenfunctions can be 

evaluated numerically, but they are qualitatively similar to those for 

q > 2, where the evaluation is complicated by the divergent behavior of 

the function G defined by equation (10). Thus, the results obtained for 

this index indicate how focusing affects the coherent regime discussed 

in Paper II. 

The effect of fOCUSing, for q = 1.5, is illustrated in Figure 1 

where the focusing eigenfunctions for (ViAL) = 1 are compared with 

the scattering eigenfunctions. 1"e latter functions, at the left, exhibit 

two qualities which also characterize Legendre polynomials. (See Abramo-
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witz and Stegun, 1964, Fig. 22.8.) First, the number of zeros between 

~ - -1 and ~ A +1 is equal to the index. Second, Rl and R3 , whose indices 

are odd numbers, are odd functions of ~, while RO and R2 , whose indices 

are even, are even functions. Because the first of these features is a 

consequence of general theorems ( Courant and Hilbert, 1953, Ch. 6.), it also 

appears in the focusing eigenfunctions, at the right, where the zeros are shifted 

slightly toward smaller values of ~ but where their number is unchanged. 

The second symmetry, which is a characteristic of rectilinear transport, 

is less fundamental. Thus, the focusing eigenfunctions display a 

prominent asymmetry such that their absolute magnitude is generally 

larger when :1 > 0 than it is when ~ < O. This asymmetry becomes very 

pronounced for large values of (VIAL) where all eigenfunctions are small 

except in the vicinity of ~ = +1 where they are large and positive. 

Within the scope of this paper, a comparison of observational details 

with theory is not possible. Nevertheless, it is worth noting here the 

striking similarity of the Q
l 

anisotropy in Figure 1 to the angular 

distributions reported for solar protons and electrons by Nielsen, 

Pomerantz and West (1975). 

In Figure 2, eigenvalue spectra are plotted as functions of (VIAL) 

for the three spectral indices mentioned above. In all cases, the 

deviation of the eigenvalue (2/Ao
K

) from its unperturbed value (2/ATK) 

increases quadratically with small values of the parameter (VIAL) and 

linearly with large values. For q = 1.5 and q = 1.9, this linear 

increase of (2/A0
1

) and (2/A0
2

) is such that these eigenvalues differ by 

a small and nearly constant s~paration, but for q = 1.0, the increase is 

such that they become eq~al at (VIAL) = 11.5. This degeneracy disappears 

" 
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at q • 1.2. On the other hand, when focusing is absent, the spectrum for q - 1.9 

foreshadows the degenerate behavior that appears when q > 2, for (2/Aol) is nearly 

equal to zero and (2/A0 2) is nearly equal to (2/Aa 3). Because this convergence does 

Dot occur when (VIAL) > 0, it can be inferred that focusing removes the 

degeneracies, discussed in Paper II, that characterize the coherent 

regime. This inference was confirmed at q = 2.0 by a detailed analysis 

which also showed that the dependence of (2/AOl ) upon (VIAL) is purely 

linear. A tende,ncy toward this disappearance of the quadratic regime 

is evident in Figure 2. Similarly, in the strong focusing limit, the 

existence of a quadratic regime affects the intercept of the linear 

relationship but not the slope. Thus, in this limit where (VIAL) -> "', 

the eigenvalues vary as (21o) a (V/L). They do not depend sensitively 

upon the parameters q and A which describe scattering. 

Figure 3 shows how the four velocities that have finite values in 

the absence of focusing, U01 ' U03 ' U12 and U23 , depend upon (VIAL). In 

all cases, they approach zero in the strong focusing limit. For 

sufficiently anisotropic scattering, exemplified by the curves for q = 1.5 

and q = 1.9 at the right, this approach takes the form of a monotonic 

decrease with (VIAL) which sets in at smaller values of this parameter 

and becomes more precipitous as q increases. For isotropic scattering, 

illustrated by the curve for q = 1.0 at the left, the velocities U01 and 

U23 decrease monotonically, but U
03 

and U
12 

go through maxima and minima 

before decreasing. 

The six characteristic velocities that vanish l~hen focusing is 

absent are shown in Figure 4. For weak isotropic scattering, they 

exhibit the intricate behavior shown at the left by the curve for q = 1, 

. iJA Mil 
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but as (VIAL) + ~, U
OO

' U
ll 

and U33 decrease slowly toward large negative 

values. Similarly, U
13 

and U
02 

increase from small negative values toward 

zero, while U22 becomes large and positive. When the scattering becomes 

anisotropic, this complicated and unsymmetrical pattern simplifies drama-

tically a8 is illustrated at the right by the curves for q = 1.5 and 1.9. 

Here, the velocities that couple coefficients of odd parity to themselves, 

Ull and U
33

, and to each other, U
13

, are positive and relatively large, 

while the velociti.es that couple those of even parity to themselves, U
OO 

and U22 ' and to each other, U02 ' are negative and relatively large. This 

pattern gives rise to the supercoherent modes discussed in §V. In the 

strong-focusing limit, the coupling between coefficients of opposite parity, 

which causeF diffusive effects, becomes weak for anisotropic scattering. 

This absence of coupling has a quantitative reality that cannot be 

adequately described by the graphical representation in figures 2 and 3. 

For example, when q = 1.S and (VIAL) = 6, U
23

' which is the largest of the 

velocities that couple unl!ke parities, is only 6% of U02 ' which is the 

smallest of those that couple like parities. When (VIAL) = 10, this ratio 

decreases to 0.1%. 

Table 1 gives numerical values of the three eigenvalues and ten 

characteristic velocities. From these entries, all of the parameters 

defined below can be calculated. 

, 4'['"'. .' k. 'Wi 
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IV, FOCUSED DIFFUSION 

In the weak focusing regime, which coincides approximately with the 

quadratic regime of Figure 2, all of the characteristic velocities are 

large enough to be significant, but the higher-order relaxation times are 

much smaller than °1 , Under these circumstances, as was discussed in 

Paper I, the coefficients f2 and f3' which are approximately proportional 

to 02 and °3 , playa relatively minor role, Consequently, focused 

diffusion, 'which is the fundamental mode that occurs here, can 

be discussed in terms of a truncated set of matrix equations in 

which the two lowest order coefficients, fa and f l , are retained in 

equations (15) and (16), but the small coefficients of higher order 

eigenfunctions are neglected, These equations, which are 

(29) 

(30) 

involve three velocities, UOO ' UOl ' and Ull ' and one relaxation time °1,' 

In the discussion that follows, they will be solved with the aid of the 

methods invoked in Paper II, However, it is worth considering first the 

result of eliminating fl from equations (29) and (30) 

2 
il fa Uoo -----
ilzilt 

(31) 

in which the left hand side is the telegrapher's equation (eq, [11-35]). 

The terms on the right hand side, which embody the effect of focusing, 

vanish when L ~~, Thus, in this limit, the solutions given below reduce to 

.; I "' q 

t .1 
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the well known results discussed in Paper II-§III. 

To obtain these solutions, it is appropriate to express both fO and 

fl as Fourier integrals over wavenumber " 

'*'" +co 

f ) b:z + iwt {} f {in + iwt fO{z,t} = dK "'{" e , fl z,t = d" a d e 
_m _CD 

in which, by virtue of equations (29) and (30), the amplitudes", and B 

must sat is fy 

U
Ol 

t< B = 0 

Because these are linear homogeneous equations, tha two frequencies for 

which they have a solution must satisfy a quadratic equation, 

which states that the determinant of the c,oefficients vanishes. These 

frequencies, w+ and .1_, which can be written in the form 

w± = (i/o.) + Vc" ± iV.[K1
2 

- (" - i"2)21~ 
where 

a. = 201 

V. E [U01
2 + \(UOO - Ull)21~ 

Vc = - ~(UOO + Ull) 

UOI 
"1 = --"-"'-2=- , 

201 V. 

U
11 

- UOO 
"2 - 2 

401 V. 

(32) 

(33) 

(34) 

(36) 

(37) 

(38) 

(39) 

(40) 

(4l) 

t r 
·1 
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correspond to normal modes for which the ratio (B/a) 

does not change with time. 

The general solution can be expressed as a linear combination of 

these modes that satisfies appropriate initial conditions. Two factors 

complicate its specification. In the first place, the isotropic density 

iw t 
«QO)a_ +(Ql) B_)e -

(42) 

which is what experiments measure, should be described rather than the 

individual components fO and fl. In the second place, the initial aniso

tropy must be more carefully treated in focused transport, where it has 

an important effect upon the evolution of the density, than in purely 

diffusive transport, where it has a minimal effect. The solutions given 

below describe how the density depends upon space and time after the 

injection of a localized pulse with a finite initial velocity. In this 

situation, the injection velocity specifies the initial anisotropy in a 

physically meaningful way. 

The initial conditions that correspond to such an injection at t = 0, 

z = 0, of a pulse moving in the +z direction with a velocity V
t 

are first 

(43) 

in which 6{z} is the Dirac delta function, and second 

in which the exponential factor is necessary for proper normalization and 

which is equivalent to 

" .J .. 

• 



\ 
'I 

____ 1 

: .-

20 

(44) 

The linear combination of modes that matches these conditions must satisfy 

two equations involving the amplitudes a+, a_, B+ and B_, 

(45) 

and 

[w+ + Vt(K - ilL») [<QO)a+ +<Q1)B+) 

+ [w_ + Vt(K - ilL») [(QO)a_ +<Q1)B_) = 0, (46) 

which correspond respectively to the first and second conditions. When 

the solution of these equations 1s substituted in equation (42), FO 1s 

gtven by iw t iw t 
[ +V (K - i/L»)e - - [w_ + V ... (K - i/L»)e + N ..... 

F a..J!. / dK o 211 
-'" 

iKZ w+ .,. , 
e 

w - w + -

which is similar in form to equation (1I-47). 

With the aid of equation (36), this expression can be rewritten as 

(t/a.) - K (z + V t)} [L + V ... (o: -!) + 
2 c a. ,2 L 

P{ z, t} 

in which the propagation function P is defined by 

exp{V.t(K/ 
p{z,t,} 1 =--

21fi /

+i'" 
ds exp{-s(z + V t)} 

-i'" c 

» 0 

(48) 

(47) 

where s = - io: - "2 1s the Laplace transform variable invoked by Abr~owitz 

-, 
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and Stegun (1964, eq. [29.3.92). Near the origin, P behaves as a 

modified Bessel function, but it jumps to zero at two discontinuities ,one 

of which moves in the +z direction with velocity 

V+ - V. - Vc (50) 

while the other moves in the -z direction with velocity 

(51) 

At the discontinuities, the numerical value of P remains constant at 

unity. Between them, it grows monotonically with time to form a bell 

shaped spstial profile whose peak moves in the -z direction with velocity 

V. Thus, the phenomena predicted by equation (48) are qualitatively c 

similar to those discussed in Paper II-§III. More specifically, the 

spatial and temporal derivatives of the step discontinuities in P give 

rise to 0 functions which represent two localized pulses moving in 

opposite directions. Initially, these coherent disturbances contain all 

of the particles injected, but as trajectories are scattered, the number 

of particles in an extended wake, which is spread continuously between 

the pulses, grows larger. This wake, which arises from the continuous 

portion of P, develops into a moving Gaussian analogous to the familiar 

diffusive profile. 

Because of the artifact mentioned above, equation (47) is not 

properly normalized to a constant total number of particles. Thus, when 

the integration specified by equation (5) is performed, the integral 

over z gives a delta function in K, o{i/Ll, which immediately leads to 

w+{i/Lleiw-{i/Llt _ w_{i/LleiW+{i/Llt 
(52) 

w+{i/Ll - w_{i/Ll 

.; " 
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Because equation (36) specifies that the frequencies ~+{i/L} and ~_{i/L} 

are both positive imaginary numbers, this expression represents a sum of 

two exponentials decaying with different time constants. Similar sums 

arise in the radioactive decay of genetically related nuclides and in the 

fragmentation of cosmic-rays, but in contrast to these situations where 

the initial nu~er of secondary particles is zero, the coefficients in 

equation (52) are such that the initial slope is zero. Consequently, 

there is a brief period after injection during which the normalization 

integral is virtually constant. Then, it decays at an exponential rate 

corresponding to ~_{i/L} which is the smaller frequency. Figure 5 shows 

how the ratio "1 ",_{ilL} of this rate to the rate l/vl , which characterizes 

the overall evolution of the distribution function, depends upon (VIAL). 

In all cases, the normalization failure is insignificant in the weak 

focusing limit where this ratio varies as (V/AL)4. In the case of 

isotropic scattering, q = 1, the normalization failure becomes intolerable 

in the strong focusing limit where the ratio approaches unity. In the 

case of &nisotro~ic scattering, on the other hand, the normalization 

failure is not very important, for the maximum relative decay rates are 

only 8% and 5% at q = 1.5 and q = 1.9, respectively. However, even these 

small deviations from proper normalization can lead to significant effects 

..... ""',! 

at long times after the injection. Thus when t » l/w_{i/Ll and also when the 

scattering is isotropic and focusing is intense, the solutions given here 

are not accurate. Under these circumstances, higher-order components, 

such as f2 and f3' should be taken into account. 

The average density (F 0) is defined as an unweighted integral of 

FO over z. In this integration of equation (47), the factor exp{~/Ll does 

:t 
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not appear, and the delta function becomes 5{0} which leads to 

(53) 

The average density is proportional to the numbe' of particles injected, 

but it also depends upon initial conditions and time. The latter depend-

ences are not surprising, because the local density depends, as a result 

of guiding field convergence, not only upon the number of particles 

present but also upon where they are located. For isotropic injection, 

V
t 

= 0, the average density is the same as if focusing were absent. This 

average density also occurs just after injection with a finite velocity, 

but the transient component decays with time constant a
l 

to give at 

equilibrium an enhanced density for V t < 0 and a reduced density for V t > O. 

An interesting example of this behavior is the case Vt = (L/al ) in which 

the average density decays to zero. 

In Paper II, the density fO was expressed as the following weighted 

+ -sum of two elementary disturbances fO and fO associated, respectively, 

with coherent pulses moving in the +z and -z directions: 

where 

2 k 
- z ) o} ] , 

(54) 
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which is equation (II-51) repeated to facilitate comparison. The 

analogous result obtained from equations (48) and (49) is 

+ 
FO{z,t,V

t
} ~ ~[l + (Vc + Vt)/V.)FO + ~[l - (Vc + Vt)/V.)FO-

where 

+ -1 __ [ 1- + V K + V
t

(K
2 

- -Ll )] IO{y) 
2V. 0. c 2 

and where y is the argument of the Bessel function that appears in 

equation (49). The rectilinear transport described by the first of 

these expressions differs from the focused transport describp-d by the 

second in the following respects: 

(1) The weighting factors ~[l t (V + V.)/V.) are such that the c T 

+ contribution of FO vanishes when V
t 

= V+ while that of FO vanishes when 

+ -Vt = - V_. The corresponding disappearance of fO and fO occurs at equal 

positive and negative velocities, Vt = ± VOl. However, in all cases, if 

the injection '"elocity coincides with the velocity of either coherent 

pulse, th~il e;,,, oth,er pulse is absent. 

(2) In addition to a temporal dependence similar to that in 

equation (54), the e>:?,'nential factor in equation (55) also embodies a 

spatial dependence such that the pulse moving in the -z direction is 

enhanced relative to the one moving in the +z direction. 

(3) + In contrast to fO and fo- which are independent of the 

injection velocity, the elementary disturbances FO+ and FO depend 

::; 
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explicitly upon Vt through the factor multiplying the 10 component of 

the wake. 

(4) In the arguments of the Bessel functions and in the factor 

DlUltiplying the II component, the parameter (1/2T
l

VOl) that appears in 

equation (54) is replaced by Kl in equation (55). 

'1 

Because of its complexity, the implications of equation (55) are 

best dis'cussed, as is done below, in terms of limi ting cases for which 

a simplification occurs. To give perspective on these illustrations, 

figure 6 shows how the velocities of the coherent pulses depend upon 

(VIAL). When the scattering is anisotropic, as it is at q m 1.5 and 

q • 1.9, V is slightly larger than V+' and in the strong focusing 

limit, both velocities increase slowly with (VIAL). However, when q = I, 

the coherent velocities diverge, for V_ increases as before while V+ 

continues to decrease with (VIAL). Perturbation theory led to the 

identity KZ = (1/2L). The approximate validity of this relationship is 

demonstrated, for q = 1.5 and q = .1.9, in figure 7 where the product 

ZK 2L lies within a few percent of unity over a wide range of (VIAL). 

The dotted curve, which refers to the co-ordinate scale at the right, 

shows that the relationship is also valid within + 20% for q = 1.0 

provided that (VIAL) < 5. 

The Gaussian limit of equation (54) applies when VOlt » Izl and 

t/2Tl »L Under these circumstances, in which the Bessel functions 

~.-; 
approach their asymptotic form exp{y}/(2rry)", the square rooe appearing 

in their arguments can be expanded with the aid of the binomial theorem 

to yield 
2 

FO exp{- z 14Dt} 
1 

2(1!Dt)'1i 
(56) 
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Which is the familiar Green's function for one dimensional diffusion from 

an impulsive injection at t = 0 localized at z = 0, and which involves the 

2 
coefficient of diffusion 0 ~ T1

V01 
(See eq. [11-43) for a more direct 

derivation of this expression.) Similarly, when V*t » \z + V t\ and 
c 

K1V.t » 1, and if the second terms 1n the asymptotic expansions of 10 

and 11 (Abram~itz and Stegun, 1964, eq. [9.7.1) are also taken into 

account, equation (55) reduces to 

where 

t Tt 
exp{- + -

T /J t 

2 I (z + Vllt - A) I 
'" 2 A} [ _ex_p~_-__ 4_D..::.:_t __ --,-_] 

2(1TD
U
t) , 

is an important new parameter that I call the coefficient of focused 

diffusion, where 

is the velocity with which the peak of the bracketed Gaussian moves in 

the -z direction, and where 

1 (V. - U01)2 
- .. 
Til 

describes an exponential growth that does not occur in the absence of 

focusing. Similarly, the factor 

c -
2 2 

v. + !,;(Uoo 
+---

- U1l
2

) + '"V+ (Un 

U01V. 

depends upon Vt and deviates from the value of unity that it has in 

equation (56). 

(58) 

(59) 

(60) 

(61) 

-! 
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(62) 

represents a small displacement of the z co-ordinate which arises because 

injection occurs, in effect, over the distance covered by the 

initial pulse before it decays rather than strictly at z = O. The time 

Tt' given by 

(63) 

characterizes a small correction which depends upon the injection velocity 

but which becomes negligible as t increases. These two corrections arise 

from the second terms mentioned above. Although they do have a minor 

effect upon rectilinear transport, they do not appear in the standard 

Gaussian approximation wh~re isotropic injection is implicitly assumed. 

They were taken into account here in an attempt to improve the accuracy of 

the Gaussian representation, but for many purposes they can be neglected. 

Equations (57)-(60) have three implications which mean that focused 

diffusion is strikingly different from ordinary diffusion. In the first 

place, the pOint of maximum density, which occurs at z = A - VUt where 

the argument of the Gaussian function is zero, moves in the -z direction 

with velocity VO' In ordinary diffusion, the Gaussian remains centered 

at z = A. In the second place, the coefficient DU is substantially 

larger than D whenever (VIAL) is large. In the third place, th~ factor 

C exp{t/TO} multiplying the Gaussian not only depends upon the injection 

velocity V., but also increases exponentially with time. 
T 
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To provide a reference to ordinary diffusion against whLch these 

im?lications can be compared, figure 8a, at the left, shows ~rofiles of 

density vs z, for q m 1. 5, at the instant t = (lOlA) =:: 4Tl fol.'.owing an 

injection with V~ = + VOL' The wake calculated from equstion (54), which 

is rigorously exact and which is shown as a solid line, ~~~?$ discontinuously 

to zero at z - ± VOlt. Because the velocities at ~~jection are collimated 

in the +z direction, the wake peaks at a point, z =:: VOLT 1 m ~, to the 

right of the point of injection. Following a s'~ggestion made in 

Paper II, the coherent disturbance (dotted curve) is represented here by 

a Gaussian whose width (OKt)~ is characterized by a coefficient of 

dispersion OK = (0/20). Within the region where the density in the wake 

is finite, the dashed line, which represents the Gaussian predicted by 

equation (57) for L = ~, provides a fairly accurate description of the 

actual wake. Near the maximum, the two curves are nearly coincident, but 

the Gaussian is about 25% too low at z = + VOlt where the asymptotic 

expressions for the Bessel functions ar~ not accurate. For \z\ > VOlt, 

the Gaussian gives a finite density which misrepresents the actual value 

of Zero. Nevertheless, the contribution of this incorrect prediction to 

the total area under the dashed curve compensates for the underestimated 

density in the range \z \ < VOlt in such a way that the area under the 

Gaussian is the same as that under the exact profile. Thus, in the case 

of ordinary diffusion, the Gaussian approximation is correctly normalized. 

For injection toward the left with V+ = - VOL' the profile is the mirror 

image obtained by reflecting around z = 0 the profile for V+ = + VOL' 

In figure 8b, profiles are shown for focused diffusion with (VIAL) = 

1.0, q - 1.5, t - (lOlA) and V
t 

= + V+ = O.549V. Because these profiles, 
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at the center, refer to the same time and to nearly the same positive 

injection velocity as those for ordinary diffusion, at the left where 

Vt • VOl· 0.563V, the qualitative differences that are immediately 

apparent must be attributed to focusing. Even though the injection is 

toward the +z direction, the wake is largest near the discontinuity at 

z - - V t. Near the other discontinuity at z = + V+t, the density in 

the wake is relatively small. Consequently, the coherent pulse, which 

is represented as before by a Gaussian plotted as a dotted line, seems 

insignificant even though it contains 53% of the inJected particles. 

Because the velocity Vo = l.081V is greater than V_ = 0.63lV, the 

Gaussian peak lies far to the left of V t. Consequently, the density 

2 predicted by equation (57) (dashed line, for which DU = l.07(V fA) -

l.34D) decreases monotonically with increasing z from its maximum 

value at - V t. This decrease does not reproduce the exact prediction 

of equation (55) (solid line) which exhibits a maximum just to the 

right of - V_to Nevertheless, the largest difference between solid and 

dashed curves is only 6%. It is apparent in figure 8b, where the 

vertical scale is expanded by a factor of 3 over that in figure 8a, 

.AI 

that the density in the wake for focused diffusion with positive inject-

ion velocities is much smaller than that for ordinary diffusion. 

In figure 8c, which refers to the same conditions as figure 8b 

except that the injection velocity is negative, V
t 

= - V_, the exact 

profile (solid line) decreases monotonically from its maximum at 

z = - V t. The wake, which is plotted on a vertical scale reduced 

relative to that of figure 8b by a factor of 10 and relative to that 

of figure 8a by a factor of 3.33, is much larger than the wake associated 

.J., 
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with ordinary diffusion or with focused diffusion after injection 

toward diverging guiding fields. The coherent pulse (dotted line). 

which is 313 times larger than the one in figure 8b, is a prominent 

feature of the density profile. but it contains only .12% of the injected 

particles. The Gaussian approximation (dashed line) peaks well to the 

left of z = ~ V t. It approximates the solid profile with a 

maximum deviation of 22%. 

Because the bracketed expression in equation (57) has the form of 

a normalized Gaussian. the expression multiplying it represents the 

total area cnder the approximate profile from z = - m to z = + ~. 

Obviously, from figures 8b and 8c. this area has no straightforward 

relationship to the area under the exact profile. for most of it lies 

near the peak in a region where the density actually is zero. Con-

sequently, the expression multiplying the brackets should be regarded 

as one which gives an accurate approximation and not as a normalization 

parameter. 

The tendency of the Gaussian peak to outrun the discontinuity 

moving in the -z direction must disappear when focusing is very weak. 

for the unfocused Gaussian is stationary. This ~isappearance is 

illustrated in figure 6 where the dot ted Ill.. . .. ,' ::esenting V # crosses 

the solid line representing V_ at a value of (vIAL) below which focused 

diffusion is governed by the extreme weak focusing limit discussed in 

the next paragraph. Evidently, this value becomes small as q ., 2. 

To interpret solar particle events, many authors have assumed that 

interplanetary propagation is governed by the diffusion equation for 
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spherical geometry. In the present context, this equation corresponds 

to the result of substituting into equation (6) a first-order approxi-

mation to the flux,S = - D(aFO/az), (see Paper III) to yield a diffusion 

equation 

aFo 
--= 
az 

With the aid of the transformation 

W = z + (D/L)t , 

equation (64) can be put in a form, 

, 

whose solution, 

exP{ - w2/4Dd 

2 (llDt)lo 
= N o 

exp{ 

(64) 

(65) 

[z + (D/L)t]2/4Dt ) 
(66) 

is a Gaussian similar to the one in equation (57) except that D appears 

in the place of DU. Equation (66) does not take into account the 

quantitative difference between these coefficients, it does not include 

the exponential growth that occurs when focusing is intense, and it does 

not describe either the prominent coherent pulses or the pronounced 

dependence upon 1-" :tion velocity that characterize focused diffusion. 

Because these considerations also apply to the diffusion equation for 

spherical geometry. existing work on interplanetary diffusion should be 

re-examined from a point of view which correctly incorporates the effect 

of focusing. 

The limit K1v.t ~ 0 is a simple case that illustrates the transition 

from focused diffusion to supercoherent propagation but that does not 
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depend upon the detailed properties of Bessel functions. In this 

special case, where 10 = 1 and 11 = 0, equation (55) reduces to 

FO{Z,t} a NO exp{ - (t/a.) - K2 (Z + VC t )} [ !;[l + (Vc + Vt)/V.)o{z - V.t} 

1 [1 (V t - Vc)]TI 
+ ~[l - (Vc + Vt)/V.)o{z + V_t} + 2V. a. - 2L n (67) 

in which the -identity K2 = (l/2L) has been invoked. Here, the coherent 

6 functions are weighted as before, and the wake spread between them 

depends upon z and t only through the exponential multiplying the 

brackets. In the diffusive regime, the Gaussian form reached by the 

wake is virtually independent of conditions at injection, but in the 

relatively strongly focused regime exemplified by equation (67), the 

wake depends critically upon V7• In particular, if V
t 

= V+ and 

L = ~ a.(V. - 2Vc)' the wake is completely absent, and there is only 

one coherent pulse. It moves toward regions of reduced guiding field 

while its a~litude decreases as exp{ - (z/L)}. Because the exponential 

factor appearing in equation \5) compensates for this decrease in 

densIty, the total number of particles in the pulse is constant. On 

the other hand, if V+ = - V_, there is one coherent pulse moving with 

constant amplitude into stronger guiding fields. There is also a 

substantial wake whose density decreases exponentially with distance 

away from the pulse. In this situation, according to equation (5), the 

number of particles in the pulse decreases exponentially with time, but 

this decrease is accompanied by a growth of the number in the wake 

such that the total remains constant. 

As was discussEd in Paper II-§lll, the first of these examples 

embodies the most pronounced alignment in the +z direction of particle 
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velocities at injection that can be adequately treated in a description 

which invokes only the two components fO and fl' In this situation, 

the wake is insignificant and nearly all of the injected particles 

remain in a coherent pulse whose amplitude decreases rapidly as a result 

of the geometrical divergence of field lines but very slowly as a result 

of scattering. Qualitatively, this stability of the number of particles 

within a bunch whose velocities are collimated along the guiding field 

occurs because the rate at which they are realigned by adiabatic 

focusing exceeds the rate at which they are scattered. In the second 

example, on the other hand, the same effect works in the opposite 

direction, for focusing aids scattering by rapidly removing particles 

from a bunch whose velocities are aligned in the -z direction. In spite 

of this rapid reduction in the number of particles, the density within 

the bunch remains stable, because particles moving in this direction 

converge together laterally along with the guiding lines of force. 

Because particles removed from the pulses constitute the s.ource of the 

wake, the above considerations also explain why the wake associated 

with an injection toward stronger gUiding fields is more pronounced 

than the one associated with an injection toward weaker fields. 
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11 • THE SUPERCOHERENT MODE 

The discussion in §IV outlined the changes which occur as the intensity 

of focusing is increased while other conditions are unchanged. In the weak 

focusing limit described by equation (66), where the scattering length (VIA) 

ie much smaller than L, the Gaussian profile of ordinary diffusion drifts 

slowly into str~nger guiding fields. In focused diffusion described by 

equation (57), where (VIA) ~ L, the drift velocity exceeds the particle 

velocity, the diffusive wake,which is no longer a bell shaped Gaussian,is 

dependent upon conditions at injection, and the coherent disturbances are 

very prominent. In the strongly focused regime described by equation (67), 

where (VIA) ~ L, coherent effects dominate and the wake is insignificant. 

In the supercoherent mode to be discussed in this section, which occurs 

when (VIA) » L, the tendency of fOCUSing to enhance coherent transport and 

to suppress diffusive transport reaches a limit in which the wake is 

completely absent and particle propagation is coherent. The word super-

coherent is appropriate here because transport phenomena in this regime are 

analogous to those in the superfluid and superconductive states. Unlike 

these states, the supercoherent mode does not appear at a discontinuous phase 

transition. However, the supercoherent transition does occur very abruptly 

with the disappearance of the velocities in figures 3b and 3c which embody 

the coupling between coefficients of opposite parity that leads to diffusive 

effects. 

Because the three negative velocities in figures 4b and 4c display almost 

the same pattern as the three positive velocities, it might be expected that 

a second supercoherent mode would propagate in the direction opposite to the 

one that actually does propagate in the +z direction. In fact, the second 

mode decays rapidly and leaves its particles in an extended wake. 1~e 

• 
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reason for this decay can be seen in equation (25) where the expression 

within square brackets that multiplies (afO/az) must vanish according to 

equation (26). But the terms proportional to UOI and U
03 

are small when 

(ViAL) is large, while those proportional to UOO and U
02 

are large and 

negative. ConsequentlY,because the truncated form of this expression takes 

on negative values instead of the required value Vo • 0, the flux equation 

is not even approximately satisfied when fO and f2 are finite. Thus, a 

mode that propagates coherently in the -z direction can be constructed as 

a linear combination of QO and Q2' but it can not be properly normalized. 

In this situation, which involves strongly focused disturbances that move 

in the -z direction, a perturbation approach analogous to that employed in 

Paper III is more appropriate than the method of eigenfunctions. Such an 

approach cannot be pursued here, but its qualitative effect can be judged 

in Figure Bc where dispersive effects would mix together the triangular 

wake and the coherent pulse to give a broad disturbance propagating quasi-

coherently in the -z direction with an effective velocity of UOO ' I call 

this the pseudodiffusive mode. 

Only a few of the positive terms that appear inside the bracketed 

expressions multiplying (afl/oz) and (of
2

/az) in equation (25) are needed 

to approximate VI and V
3

• Consequently, an accurately normalized super

coherent mode can be constructed as a linear combination of Ql and Q3' 

Because these eigenfunctions are not coupled to Q
O 

and Q2' only the two 

odd transport equations are required to describe this mode. This simp1ifi-

cation is similar to the one that appeared in Paper II-§IV where the purely 

coherent modes that occur when q > 2 were discussed in· terms of two transport 

equati~ns. However, these modes, which arise because pitch angle scattering is 

very weak near ~ = 0, are physic.ally di fferent from the supercoherent mode. 
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which occurs because the tendency of focusing to align particle velocities 

overcomes the tendency of scattering to make them isotropic. 

The equations which describe the supercoherent mode were obtained from 

equations (16) and (18) by neglecting the small gradient terms in U01' U
03

' 

U
12 

and U
23 

while retaining the large ones in U
13

, U11 and U
33

• They are, 

af
1 af1 f1 af

3 (68) at + U11 
--+-- U13 az az 01 

(69) 

Because their form is very similar to that of equations (29) and (30), 

there is no need to derive in detail the solutions discussed below, for 

each step corresponds exactly to a step taken in §IV to derive solutions 

for focused diffusion. Thus, the frequencies <"+ and" can be obtained by 

substituting into equation (36) the following expressi~ns: 

201 03 
0. ::. + 

01 °3 
(70) 

(71) 

v = - ~(U + U
13

) 
c 11 

(72) 

U
13 1 1 

"1 =-- (- --) , 
2V 2 °3 0 1 

* 

(73) 

" -2 
(74) 

Because the parameters that specify w+ and w_ are the same as those that 

appear in equation (55), these redefinitions determine completely the 

exact solutions that apply in the supercoherent regime. 

If these frequencies are substituted in equation (52), it predicts truly 

minuscule deviations from proper normalization. In contrast, the frequencies 

that apply to the mode that propagates in the -z direction, which follow 

from two transport equations obtained from equations (15) and (17), 
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= - (75) 

(76) 

lead to an extremely rapid decay of the normalization integral. This 

analysis establishes the positive-velocity supercoherent mode as a unique 

and fundamental feature of strongly focused transport. 

In spite of the mathematical identity embodied in equations (70)-(74), 

supercoherent propagation is different from focused diffusion. In the 

latter regime, where V c is small and V. is large, the bell shaped profile 

of the propagation function drifts slowly in the -z direction while the 

discontinuities move rapidly in opposite directions. This configuration 

leads to the diffusive evolution of a wake spread between two coherent 

pulses. In the former region, where Vc is large and V. is small, both 

discontinuities of the propagation function move in the +z direction, and 

the bell shaped profile spread between them also moves in the same direction 

with an intermediate velocity. This configuration leads to the unidirectional 

propagation of localized disturbances. The veloci ty V 0 f the leading 
a 

discontinuity ahead of which there are no particles is given by 

Va = ~(UII + U13) + V. ' (77) 

while the velocity \' of the trailing discontinuity behind which there are 
b 

no particles is given by 

(78) 

If the injection velocity V ~ is positive and if it lies between V 
a 

and Vb' 

the density profile is given by equation (55). This rigorous solution 

includes a coherent disturbance associated with each discontinuity, but 
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these higher-order pulses, which are analogous to those discussed in 

Paper II-§IV, rapidly become insignificant compared to the continuous 

profile. The breadth of this profile can be determined from figure 9 

where the velocities of its boundaries, Va and Vb' are plotted against 

(VIAL) for q .. 1.5 and q • 1.9. If Vt > Va' e'iuation (55) does not hold. 

because eigenfunctions above Q
3 

must be included in a proper description 

of the strong anisotropies implied by this initial condition. However. 

these anisotropies decay rapidly to leave a situation similar to the one 

that follows the injection of a pulse with velocity V. Because the same 
a 

consideration also applies to the strongly anisotropic injection of solar 

particles, profiles calculated with V
t 

= Va are most appropriate for 

comparison with observations. If Vt < Vb' the supercoherent disturbance. 

which is very similar to the one that follows injection with V7 = Vb' is 

accompanied by a broad pseudodiffusive wake moving in the -z direction. 

The proper description of this disturbance also invol.ves eigenfunctions 

above Q3' but negative or small positive injection velocities do not 

correspond to solar injection. Thus, for virtually all plausible initial 

conditions, the supercoherent profile can be accurately described by 

1 

substituting the parameters defined by equations (70)-(74) in equation (55). 

The Gaussian limit of this solution, which applies when V.t » Iz - Vctl , 

is 

(79) 

where 

(80) 
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is the coefficient of supercoherent dispersIon which plays much the same 

role as the coefficient of dispersion D. defined in Paper II-§IV, where 

~2 V. V. 
V§ - - V -;- V. a ~(l + U--) U1l + ~(l - U- ) 

c 1 13 13 
(81) 

is the supercoherent velocity with which the peak of the Gaussian moves in 

the +z direction, and where 

1 ,1 ---- (82) 

describes an exponential decay of the amplitude. The factor 

(°1 + °3 )v. 2 2 2 4°1 °3 
V 2 

l~(Ull - l,Vt 
* 

1 
+ - U33 ) Ull - U33 

+ 
L 

1 [ °1 - °3 01 - °3 
C • - 1 + 

2 
V. U13 

embodies the dependence of the supercoherent Gaussian upon injection velocity. 

The offset is given by 

A = (84) 

The correction characterized by T~ is negligible. 

,In figure 9a, the dotted line which represents V§ for q = 1.5 almost 

coincides with the dashed line which \'epresents V+. In figure 9b. where 

q = 1.9, this coincidence is ~~arly exact, but, for clarity, only the dotted 

1 

(83) 

line is s~~~. This means that the supercnherent Gaussian moves with virtually 

the same velocity as the coherent delta fu~.ction of focused diffusion. In 

Paper II-§IV, the coherent Gaussians, whi~h had th~ same velocity as the 

coherent delta functions, embodied an ~mproved representation of coherent 

disturbances in which dispersion was included. Similarly, it appears here 

that the consideration of higher-order eigenfunctions leads to an improved 

representation which embodies the dispersive eVOlution of the supercoherent 
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disturbance. To carry this line of reasoning one step further, if the super-

coherent puls~ is equivalent to the delta function in equation (67), then the 

wake predicted the!'e should give a reasonable estimate of the small dtffu:;ive 

wake that remains in the supercoherent regime. 

These points are illustrated in figure 10 where a super coherent pulse 

for q ~ 1.5, (VIAL) = 5, V. = V •. 8V and t = (2/A) is shown by a solid line, 
. ,a 

which represents the exact solution, and by a dotted line, which represents 

the Gaussian approximation. Associated with this pulse is a wake predicted 

by equation (67) which is also shown as a solid line. ~ecause K2 is negative, 

exp{ - K2 z} increases with z. Because of this weighting, the supercoherent 

velocity V) is only slightly less than the velocity Va of the leading dis

continuity, and the profi~e drops to zero just in front of its peak. Con-
l-, 

sequently, the Gaussian width (D§t)' overestimates the actual width. However, 

this complication does not occur when t + 00. The same weighting effect,which 

puts the Gaussian peak in a region where the asymptotic representation of the 

Bessel functions is not accurate, underlies the ~ 15% difference by which the 

exact and approximate peaks are separated in figure 10. 

In figure 10, the dashed wake and Gaussian pulse are those of figure 8b with 

their horizontal scale transformed in such a way that this profile for focused 

diffusion corresponds to the same time and to the same value of L as the 

supercoherent profile, but to scattering 5 times more intense. This change in 

A, which goes across the supercoherent transition, leads to a dramatic increase 

in the magnitude of the wake relative to that of the pulse. However, the 

dotted supercoherent Gaussian has about the same shape as the dashed coherent 

one. More quantitatively, the effect of increasing (VIAL) from 1 to 5 is to 

reduce the coefficient of dispersion from a virtually unfocused value 
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D. - .0405 (V2/A) to the supercoherent value D§ = .0123 (V2/A). This 

reduction by a factor of 3.3 is slightly overcompensated by the factor of 5 

decrease in A, but the supercoherent Gaussian is not perceptably wider because 

the width, at a given time, has a ~_,ak square-root dependence upon the 

coefficient of dispersion. 

The Gaussian supercoherent pulse embodies an equilibrium pitch angle 

distribution in which the opposing effects of scattering and focusing balance. 

B.,cause of the collimation produced by focusing, stochastic variations in the 

pitch angle of an individual particle average to give a net velocity which 

is finite and approximately equal to that of the other particles in the bunch. 

Statistical fluctuations in this averaging of random velocities give rise to 

dispersion. This section has put this physical picture on a rigorous basis. 
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VI. INTERPLANETARY PROPAGATION OF ENERGETIC PARTICLES 

Twenty years ago, Meyer, Parker and Simpson (1956) concluded that 

diffusion could explain the temporal profile of solar cosmic-ray intensity 

on 23 February 1956. Subsequent investigations have confirmed the basically 

diffusive nature of particle propagation in interplanetary space, but they 

have also uncovered many effects that can not be understood in terms of 

pure diffusion. The objective of this section is to show that several of 

these unexplained features arise as natural consequences of ad'abatic 

focusing in the spiral interplanetary field. Because the present theory 

takes into account neither perpendicular diffusion nor convenction, it 

would be premature to attempt a quantitative comparison of observed and 

predicted solar event profiles. Instead, the discussion that follows gives 

a qualitative interpretation of prompt events in which these relatively slow 

processes play a minor role compared to rapid propagation along field lines 

that trace out a reasonably direct connection between the Earth and a flare 

on the western limb of the Sun. Focusing must have important effects in 

cosmic-ray modulation, but this steady state phenomenon, in which convection 

plays a crucial role, also lies beyond the scope of the present discussion. 

One of the most striking and least understood aspects of interplanetary 

physics is the "scatter-free" propagation of kilovolt flare electrons in 
J 

which an impulsive burst of particles, usuP~ly followed by a slowly decaying 

tail, arrives at Earth with an average velocity parallel to the field of 

~O.8V (Lin 1974). From observations of Type III radio noise generated by 

this bunch ot electrons, Lin, Evans, and Fainberg (1973) have demonstrated 
lc~ 

, 
~ •• 

f 
~ 

~ 

~I " 

" 

that it travels ~1.2 AU along a sriral field line. Although this phenomenon 

corresponds to the coherent mode discussed in Paper II, there are two dis-

crepancies which make untenable an interpretation based'upon this agreement. 
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In the first place, the predicted velocity is closer to 50% of the particle 

velocity than it is to 80%. In the second place, developments in scattering 

theory subsequent to Paper II indicate that scatterir.g near ~ = 0 is not 

weak enough> to allow the purely coherent mode to persist (Jones, Kaiser and 

Birmingham 1973, Volk 1973, Owens 1974). These discrepancies do not apply 

to the super coherent mode, for it occurs even in the presence of scattering 

at II - 0, and its velocity is close to the observed one. Thus. we can 

interpret "scatter-free" events as supercoherent bunches which propagate with 

very little dispersion in the strongly diverging fields near the sun. In 

this situation, the parameter (VIAL) is not constant, for the scale length 

of the interplanetary field is approximately (r/2) where r is the distance 

to the sun. Moreover, the radial dependence of (VIA) undoubtedly leads to 

additional variations of the focusing parameter. If (VIAL) lies above the 

supercoherent transition, these variations merely cause the supercoherent 

velocity to change without affecting the basic nature of the mode. This 

decrease in parallel velocity corresponds exactly to the "deceleration" of 

the Type III exciter reported by Evans, Fainberg and Stone (1973). However, 

it occurs because the pitch angle distribution of particles with a given speed 

becomes broader as focusing decreases, and not because the speed of an 

individual particle changes. Thus, the observed transit time, which represents 

an average Over a gradual decrease in velocity, corresponds to a velocity 

larger than the local one. However, this enhancement should be small, 

because regions where the velocity is slow are more heavily weighted than 

are those where it is fast. Most supercoherent events involve electrons, 

but they can also involve protons. An example is the event on 24 March 1966 

(McCracken, Rao and Bukata 1967). 

Within the same framework, the properties of· two other types of solar 

burst, reviewed by Kundu (1965), can be understood. The U-type bursts, in 
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which an ascending frequency branch appears after the descending branch of 

a Type III burst, are interpreted in terms of closed magnetic lines along 

which the electron bunch returns toward the sun after moving up from the 

flare site. The "shortness" of the ascending branch compared to the 

descending one can be explained in terms of the greater dispersion of a bunch 

moving pseudodiffusively down into converging lines relative to that of a 

bunch moving supercoherently upward. The V-type bursts, in which a T)'pe III 

burst is followed by a brief period of broad-band continuum radiation, can 

be explained as synchrJtron radiation from a nearly isotropic cloud of 

electrons which forms after the bunch passes through the super coherent 

transition. This phenomenon is very similar to those discussed below at 

greater length. 

The chief objection to this interpretation is that the values of (V/AL) 

calculated for electrons from observations of interplanetary field fluctuations 

lie below the supercoherent transition. Thus, in the example discussed in 

Paper II and presented there as figure 6, where 38 KeV electrons were 

scattered by fluctuations for which P 
xx 

-4 2 . -1 
=6.3xlO y Hz atf

O
=O.5Hz 

and for whi~h q = 1.9, the focusing parameter is (2V/Ar) = 0.022 which is 

well below the value (V/AL) ~ 0.5 required, in figure 3c, for supercoherent 

propagation. Within the framework of current theories which predict tha: 

pitch angle scattering increases with decreasing rigidity, this objection .dn 

not be overcome. However, there are compelling intuitive reasons to expe~t 

a regime where low rigidity particles follow adiabatically the stochastic ..:ancierinc: 

of magnetic lines of force with very little scattering relative to the local 

field direction. The correspondence between the "scatter-free" and super-

coherent effects can be regarded as empirical proof of the existence of such 

a regime where scattering decreases with ~ecreasing rigidity as it merges 
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into the Alfvenic idealization. Consequently, more theoretical effort should 

be devoted to exploring the low rigidity limit of pitch angle scattering. 

Less effort should be devoted to analyzing the detailed dependp.nce of ~ upon 

~, for most of the special significance of weak scattering near ~ = a 

disappears in the present context where focusing moves particles rapidly 

through this region. 

There,is a localized region in which the nature of interplanetary 

propagation changes from supercoherent to diffusive, for the focusing parameter 

must eventually pass through the supercoherent transition by virtue of its 

inverse dependence upon r. In this situation, shown schematically in 

figure II, solar particles propagate supercoherently to a fairly abrupt 

transition (wiggly line) beyond which focused diffusion occurs. In effect, 

the injection of particles into this region of focused diffusion is highly 

anisotropic and occurs far from the sun. Thus, because Vt = V§ ~ V+, the 

density profile can be described by the function Fa + given by equatio'n (55) 

with the origin, z = a and t = a, chosen to be the place and time at which 

the supercoherent pulse hits the transition. 

A well known prediction of the telegrapher's equation is that, within 2 

mean free paths of an impulsive injection, the temporal profile has an 

abrupt onset followed by a monotonic decay. At larger distances, the profile 

exhibits a relatively gradual increase from onset to a broad maximum which 

is followed by a monotonic decrease. Similarly, there is a certain distance 

from the point of injection within which the maximum density predicted by 

+ Fa {z, t} occurs at onset and beyond which it occurs after onset. This 

distance za is given by the positive root of the following quadratic equation: 

1 ' 

f 

z 2 -[_2~ (L + Ie V.) 1 a (V ) - 0. 2 
Kl * 

z -a [( 1 )(1,) V_V.K1
2
] 

0.' + 1C 2Vc 0. + 1C 2V. - 2 = 0, 

(85) 
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Because 'its coefficients are complicated, the implications of this equation 

are best illustrated by quoting the numerical result Zo • 35.8 (VIA) obtained 

for q - 1.5 and (ViAL) a 1, which is the case illustrated in figure 8. This 

distance is 6.3 times larger than 2 mean free paths. Thus, a basic effect 

of focusing is to enlarge the spatial region within which temporal profiles 

have abrupt onsets. 

The region of focused diffusion can be divided by the dashed line in 

figure 11, which is located at a distance Zo beyond the supercoherent 

transition, into two zones in which flare profiles are qualitatively 

different. The location of Earth relative to the wiggly and dashed dividing 

lines in figure 11 depends upon the intensity of interplanetary magnetic 

fluctuations and upon the velocity and rigidity of the particles being 

observed. Consequently, the nature of observed flare profiles is expected 

to show considerable variability from day to day, and, at a given time, it 

may not be the same for all particle species. 

In the zone between the dashed and wiggly lines, dispersive effects 

broaden the coherent pulse and smear out the discontinuous onset of the wake. 

Consequently, the temporal profile exhibit,; a fairly abrupt onset whose 

duration corresponds to the width of the coherent Gaussian. Then, the intensity 

decays monotonically from its maximum. Many authors have assumed that the 

interplanetary diffusion coefficient is the one which appears in the diffusive 

Gaussian that best fits the profile observed during a given event. But, if 

this procedure is applied to an abrupt-onset event, the coefficient of dis-

persion is obtained instead of the coefficient of diffusion. (See Paper II, 

eq. [94).) This misidentification explains why the coefficient of diffusion 

aeems to be paradoxically small when the overall behavior of the profile 

corresponds to large mean free paths. 
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Abrupt-onset flare profiles are very commonly observed not only for the 

low-energy solar protons and electrons recorded by satellite monitors but a1.80 

for the high energy nuclei sensed by ground level neutron monitors. Their 

high probability of occurence is inconsistent with a purely diffusive picture, 

because the 2 mean free path zone where they are expected is narrow and lies 

close to the sun. Because focusing widens this zone and moves the point of 

injection outward toward Earth, the frequent occurence of abrupt-onset profiles 

is a natural feature of the configuration shown in figure 11. To describe in 

detail the strong initial anisotropies of such events (McCracken 1962, 

McCracken, Rao and Bukata 1967), it is necessary to evaluate the individual 

components fO and fl whose separate behavior differs from that of the linear 

combination specified by equation (42). This calculation can not be under-

taken here, but the enhancement of coherent effects caused by focusing means 

that anisotropies persist for much longer times than they would in the absence 

of focusing. On many occasions, the initial anisotropy disappears sUddenly 

about an hour after onset. This phenomenon can be understood from figure 11 

as the arrival of a disturbance propagating pseudodiffusively back toward 

the sun from distant regions of weak focusing where scattering finally succeeds 

in making the distribution function isotropic. 

Beyond the dashed line where maximum intensity occurs after onset, flare 

profiles resemble those of classical diffusion. If a diffusive Gaussian 

is blindly fitted to one of these profiles, which are described by equation (57), 

the best fit occurs, not for the coefficient of ordinary diffusion D, but 

instead for the coefficient of focused diffusion DU' Because Dn > D, this 

misidentification can lead to an overestimate of D. Moreover, in 

determining the distance to be invol:ed in the fitting procedure, both the 

distance to the supercoherent transition and the offset A should be subtracted 
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from the Sun to Earth distanr~. If these corrections are not subtracted, 

then D, is underestimated. 

In the late stages of many flare events, the decay takes on an exponential 

character which differs from the temporal power law predicted by diffusion 

but which can be explained by postulating a free-escape boundary far from the 

Sun (Meyer, Parker and Simpson 1956). Such an exponential decay appears as 

an inherent characteristic of focused diffusion. Its relaxation time T., 

derived from equation (57), is given by 

2 
1 Vn 1 -=----
T. 4DI/ T /J 

(86) 

This time decreases from its infinite unfocused value to approach T* ~ 20
1 

in the strong focusing limit. Because typically observed r.elaxation times 

of many hours are much greater than any plausible value of 0
1

, the rate of 

exponential decay must be controlled by weakly focused diffusion in the 

outer solar system. An accurate description of this regime would take into 

account the radial variation of the focusing parameter. This can not be done 

here, but it seems reasonable to expect that a region of uniform density would 

be set up in the inner solar system through the rapid equalization of density 

inhomogeneities by coherent effects. Farther out, gradients would develop in 

a region of weakly focused diffusion through which particles escape at a 

rate leading to a slow exponential decay. 

The Jovian electron bursts recorded on Pioneer 10 result from the inward 

propagation of low ~igidity particles along interplanetary fields (Chenette, 

et al. 1974, Teegarden, et al. 1974, Smith, et al. 1975). The supercoherent 

mode does not apply here, but quasi-coherent propagation into converging fields 

is predicted by equation (57), for relatively weak focusing, and by the 

pseudodiffusive idealization, for strong focusing. The .brief duration and 
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10 hr modulation of the Jovian bursts can be explained in terms of these 

modes, but they are difficult to reconcile with pure diffusion. Outside 

Jupiter, electrons might propagate supercoherently. Here, the intensity of 

Jovian bursts would decay more rapidly with distance than it does inside, but 

their temporal fine structure would be better preserved. Observations of 
.. 

these effects could confirm the asymmetrical nature of focused transport. 

Several poorly understood interplanetary phenomena correspond to 

predicted features of focused transport. However, the current status of pitch 

angle scattering theory at low rigidities does not allow these features to be 

quantitatively related to the observed intensity of interplanetary magnetic 

fluctuations. In particular, a weak scattering regime at l~w ri~!dities is 

indicated not only by supercoherent electron events but also by the findings 

of Bryant, et al. (1965) in which profiles for proton events were dependent 

upon the distance travelled Vt but were independent of rigidity. Such 

behavior can occur only if A is a linear function of Valone, which means 

that (V / AL) is independent of both velocity and rigidity. Thus, the 

observations suggest that a broad region of rigidity-independent scattering 

lies between the low-rigidity regime, where scattering at a given velocity 

increases with rigidity, and the high-rigidity regime, where it decreases. 

The transport theory developed in this paper sidesteps these ambiguities and 

goes directly to the macroscopic description of density profiles in space 

and time. These profiles depend ultimately upon only three parameters, q 

which characterizes the anisotropy of scattering, A which characterizes 

the intensity of scattering, and L which characterizes the intensity of 

focusing. Until an improved description of pitch angle scattering comes forth, 

attempts to relate observed profiles to these parameters may be worthwhile. 
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VII. THE STRUCTURE OF EXTRAGALACTIC RADIO SOURCES 

Double radio sources, between which there is usually found an 

optical galaxy, are among the largest and most energetic phenomella of 

astrophysics. In spite of the detsiled knowledge of their structure 

(Mackay 1971, Fomalont 1969) made available by recent advances in inter-

ferometry (Ryle 1975), there is still no generally accepted explanation 

of these remarkable objects. The interpretation put forth in this section, 

which adopts a widely held view that the radiating electrona gain their 

energy within the central galaxy, describes the symmetrical transport of 

these electrons to great distances from this source and the subsequent 

evolution of the clouds they form there, but it does not attempt to describe 

their acceleration. This interpretation rests on the assumption that a large 

scale magnetic field, which threads through the galaxy, extends far into 

intergalactic space to form a diverging guiding field along which focused 

transport occurs. Here, the basic morphology of the double sources arises, 

in much the same way as in interplanetary propagation, when two bunches of 

electrons move rapidly out in opposite directions to supercoherent transitions 

where they form relatively long lasting clouds which constitute the actual 

radio sources. On the time scale implied by the large separation of the 

clouds from the central source, the Compton-synchrotron mechanism of energy 

loss plays an important role which will be mentioned below but which cannot 

be treated in detail. 

The chief objection to this interpretation is that the strong anisotropy 

of the supercoherent mode might be rapidly attenuated by the collective 

effects reviewed by Wentzel (1974). However, the conventional view, that· 

these wave effects limit streaming velocities to the Alfven velocity,applies 

to steady state conditions. In the absence of reliable knolwedge of the inter-

galactic medium and in view of the slow growth of waves, there is no reason to 
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believe that scattering could be significantly enhanced during the brief 

period in which a supercoherent pulse sweeps over a given volume of the 

medium. In any case, as was documented above, the supercoherent mode can 

persist in the presence of scattering, including that generated by the 

particles themselves through collective effects. The interplanetary analogy 

may be relevant here, for Jovian bursts do persist while generating waves 

(Smith et al. 1975). 
r 

Underlying the striking symmetry of double sources is the symmetry of 

the guiding field, which arises because Maxwell's equations guarantee that 

as ~ny lines of force diverge out from a local condensation as converge 

into it. For example, if intergalactic currents are absent, the field would 

take on a dipolar character, and, if the central galaxy is surrounded by an 

expanding medium, the field would develop a radial pattern analogous to that 

of the interplanetary field. Within these bilateral configurations, 

electrons propagate and radiate in similar magnetic environments on 

opposite sides of the source. No matter bow the electrons are accelerated, 

acattering within the central galaxy, which makes them isotropic there, 

ensures that the two bunches contain equal numbers of electrons. When these 

bunches hit the supercoherent transitions, particles are rapidly scattered 

into two clouds. Because these clouds contain equal numbers of isotropically 

distributed electrons and because their diffusive evolution is slight during 

the time required for light to travel between them, the two lobes of the 

radio source appear to have nearly the same luminosity regardless of the 

angle between their axis and the line of sight. The axis is perpendicular 

to the E vector of the polarized emission from the clouds. These predicted 

i symmetries are the same as those observed by Macdonald" Kenderine and Neville 

i I 
(1968), who found that the intensity ratios of double, sources in the 3C catalog 

are strongly clustered near unity and that the polarization are strongly 
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clustered around the direction perpendicular to the axis. However, Mitton 

(1972) subsequently found that the latter correlation is l~ss pronounced 

than it had seemed. 

Within this picture, minor deviations from symmetry, which appear in 

many sources,are possible. For example, large scale shearing motions of 

the intergalactic medium could displace the supercoherent transitions, 

which def~ne the two lobes, in different directions along the field line 

through the central source. This apparent longitudinal displacement of 

the galaxy from the center of the axis joining the lobes could be accompanied 

by a lateral disp lacement perpendic'Jlar to the axis and by unequal emission 

from the lobes. Similar distorti0"d could arise from the uniform motion of 

a rotating galaxy through the intergalactic medium. Another class of 

deviations from the canonical pattern, which obviously fits into the picture 

given here, involves emission from the central galaxy. 

The spatial profil.e of synchrotron emissi.vity, which underlies observed 

maps of radio ir:tensity, is not the same as the profile of electron density 

F
O

' for it also depends upon B. More specifically, the emissivity is given 

by 

-0.8 
v (87) 

where Y is the electron spectral index and where the second equality gives 

the dependence expected for a typical radio spectral index of 0.8. In the 

present context, where the theory does not consider perpendicular transport 

and where existing maps do not always resolve structure perpendicular to 

the axis, the most appropriate quantity for comparison with observations is 

the axial profile of power emitted per unit distance parallel to the field. 

From the emissivity given above and from the relationship nO ~ (FO/B), it 

follows that this quantity is given by 

(dP/dz) ~ nO B~(Y+l) v~~(y-l) ~ FO B~(y-l) -\(y-l) F BO. 8 
v ;:::: 0 

-0.8 
v (88) 
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where nO is the number of particles per "nit distance. In the theory 

discussed above. where B depends expone!ltially upon z, this equation leads 

to a weighting 

(dP/dz) ~ FO exp{ -~(y-l)(z/L») ~ FO exp{ -0.8 z/Ll (89) 

which displaces the radio profile toward the galaxy relative to the density 

profile. Because of this weighting, most of the radio emission comes from 

a tiny fraction of the electrons which are nearest the galaxy in relatively 

strong fields. Moreover, i~ focused diffusion, the Gaussian peak of the 

radio profile moves toward stronger field~with 3 velocity given by 

(90) 

Thus, if a series of discrete explosions occurs in the central galaxy, 

clouds from earlier events drift inward where they 

appear as weak secondary lobes lying on the axis betweer. the intense lobes 

from later events. The following double sources with well marked lobes each 

resolved into a close pair have been reported by Macdonald et.al.(1968): 

3r.33.1, 3C46, 3C61.1, 3C184.l, and 3C234. These authors also report that, 

in all these cases, the innermost members are weaker than the outermost. 

If the explosions occur frequently or if the acceleration is continuous, 

electrons drifting inward form a continuous bridge between the lobes. 

Clearcut examples of this behavior are 3C46, 3C274.1, 3C284, 3C430 and 3C452, 

but more or less continuous emission along the axis is seen in many extra-

galactic sources. Because the Compton/synchrotron mechanism has more time 

to act on the electrons in these inner components_ their radio spectrum is 

expected to be steeper than that of the outer lobes. This prediction is in 

accord with the finding of Macdonald et al. (1968) that the emission from 

between the main components has a steeper spectrum than the source as a whole. 

Radio trails (Wellington, Hiley and van der Laan 1973, Hiley 1973) are 

believed to delineate magnetic fields dragged out behind as the central galaxy 
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moves through a stationary medium. In this magnetospheric configuration 

(Jaffe and Perola 1973), the velocity of the galaxy may exceed the velocity, 

defined by equation (90), with Wh1Ch the radio Gaussian c!.rifts fOl'Ward. 

Consequently, electron clouds from successive explosions are strung out in 

a trail behind the primary lobes which form, as before, at supercoherent 

transitions moving with the galaxy. This interpretation predicts that 

the radio emissi~n from the tail decreases in intensity systematically with 

dista~c2 from the galaxy while its spectral slope increases. These are the 

effects found by Miley (1973) in 3C129 aud NGC 1265. 

Except for the effects interpreted above in terms of ageing and except 

for the flat spectra of central components, which can be similarly inter-

preted, the structure of radio sources is not strongly dependent upon 

frequency (Macdonald et al.1968, Mackay 1969). This ir.dication that the 

electron spectral index is uniform means that intergalactic propagation is 

not strongl'! dependent upon rigidity. The Same conclusion was reached 

above in n'gard to interplanetary propagation. 

The time required for electron bunches to reach the supercoherent 

transitions is smaller than that required for the clouds to dissipate. 

Consequently, the probability of observing a double source in its supercoherent 

phase is small. Nevertheless, among the many sources that have been studied, 

it is reasonable to expect that a few are currently in this phase. Such 

sources would appear as two relatively compact radio lobes moving apart with 

a velocity slightly less than twice the speed of light. This superluminous 

velocity of recession is only a little smaller than the velocity found in 

3C279 and is the same as that found in 3C2~3 by Cohen, et al. (1971, see also 

Whitney, et al. 1971.) Because projection effects lead to an overestimate 

j 
j 

of the velocity of recession when the axis is not perpendicular to the 

observer's line of sight, the predicted velocity seems to be in good ,,·'t'ee-
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ment with those observed in these two quasars. 

Compton/synchrotron energy loss during the supercohe.rent phase sets 

an upper limit on the size of radio sources. More specifically, the 

maximum distance z in Kpc at which an electron can arrive with energy E max 

in GeV is 

= .94 x 105 
= 2.1 x 105 (B"') '2 z max [W + .0369 < B2) 1 E W + .0369 < B2) 

(91) 

where W is the photon energy density in eV cm-3 and < B2) is the mean 

square magnetic field in microgauss (~G) averaged over the pitch angle 

distribution and over the distance travelled by the electron at V ~ c. 

The expression following the second eGuality, whose form is convenient for 

the analysis of radio data, refers to electrons whose maximum radio 

emission in a field B in ~G occurs at frequency v in MHz. If this formula 

is applied to the radio galaxies observed at v = 5000 MHz by Branson et al. 

(1971) and by Pooley and Henbest (1974), who invoked equipartition to deduce 

magnetic fields that c~n be used to approximate < B2) , the calculated values 

of z lie comfortably above the observed semi-major axes by factors of 4 
max 

to 10. Similarly, in the extreme case of 3C236, which was studied at 

v = 612 11Hz by Willis, Strom and Wilson (1974), where B ~ 0.6 microgauss 

and where the electron lifetime is set by the microwave background (W ~ 0.38 eV 

-3 cm ) rather than by the synchrotron effect, z = 16.7 Mpc, which is somewhat 
max 

larger than the distance of 2.8 Mpc between the outer lobes of this giant 

object and the central galaxy. In these examples, energy loss may be 

significant during the evolution of the clouds, but it is insignificant during 

the supercoherent phase. 

In ~onCrast, for the compact outer lobes of Cygnus A (Hargrave and Ryle 

1974), where B ~ 290 ~G and v = 5000 MHz, z = 16.3 Kpc, which is sub-
max 

stantially smaller than the 100 Kpc separation of these components 
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from the central galaxy. On the basis of arguments similar to those 

underlying this estimate, these authors reached an equivalent conclusion 

that the synchrotron lifetime of the electrons in these lobes is less than 

the time required for light to reach them for the central galaxy. 

Several considerations soften the impact of this conclusion. To 

obtain more accurate values of z than the crude estimates obtained above 
max 

by substituting in equation (61) the square of the equipartition field, a 

2 proper evaluation of < B ) should take into account not only the collimated 

angular distribution of the supercoherent mode, but also the decrease of B 

with distance from the centt'al galaxy. It is possible that the reduction 

in <B2) arising from the first of these effects significantly outweighs the 

enhancement arising from the second. Of greater significance is the 

possibility that the electron energy density is actually larger than the 

magnetic energy density, for the transient evolution of electron bunches 

and clouds can be controlled by fields weaker than the minimum field 

required for steady state confinement. For the supercoherent phase, this 

possibility seems especially plausible not only because the lateral pressure, 

which tends to disrupt the guiding field, is much smaller for a collimated 

bunch of particles than for an isotropic cloud but also because it is exerted, 

at a given point, for a shorter period of time. Thus, it seems appropriate 

to assume that the compact components are emitted by electrons that have just 

formed superdense clouds after propagating supercoherently across Cygnus A 

in a field of 120 ~G corresponding to equipartition within the extended 

components. In this situation, z = 61.2 Kpc, which is slightly smaller 
max 

than the actual separation of 100 Kpc, but which could probably be made 

consistent by invoking a more accurate value of < B2) and by taking int::. account 

the possibility that equipartition does not apply to the extended components. 

These arguments shaw that energy loss significantly affects the propagation 
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of electrons in Cygnus A and suggests that the pressure exerted by 

particles may affect the large-scale configuration of the magnetic field. 

If a substantial flux of nuclei accompanies the pure flux of electrons 

assumed above, the latter suggestion becomes conclusive. Thus, outward 

particle pressure, which straightens the lines of force, may underlie 

the well known tendency for the structure of powerful sources like Cygnus A 

to be si~pler and more regular than that of weaker sources whose field 

configurations are more easily influenced by motions of the intergalactic 

medium. 

The model of extragalactic radio sources developed here is similar 

to previous interpretations, reviewed by Longair, Ryle and Scheuer (1973), 

which assume that relativistic particles carry energy from the central 

galaxy to the radio lobes. Unlike these interpretations, which invoke 

local acceleration within the lobes, the radio waves are emitted here 

by the same electrons that transport the energy. Fundamental characteristics 

of this transport, which takes place in the same magnetic fields that are 

required to explain the synchrotron emission, give rise to the basic 

morphology of radio sources. Specifically, the emission is confined to 

an axis because electrons propagate parallel to the magnetic field more 

readily than perpendicular to it. Symmetrical lobes appear on this axis 

because electrons are deposited at the supercoherent transitions far from 

the central galaxy where they propagate diffusively. The slow drift 

velocities which characterize this propagation explain the secondary 

structure between the main lobes and establish a relationship between double 

sources and radio trail galaxies. The supercoherent propagation by which 

electrons reach the lobes proceeds at super luminous velocities of recession 

comparable to those observed in some quasars. Thus, focused transport gives 

rise to the radio source structures that are summarized in figure 12. 

Except for relatively slow changes which may occur in powerful sources due 
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to particle pressure, only static magnetic fields are involved. Con-

sequently, the adiabatic energy losses that embarra$s interpretations 

in which electrons are transported within expanding clouds of thermal 

plasma do not occur in the present model. Finally, the basic features 

of focused transport are confirmed by interplanetary observations. In 

retrospect, it seems surprising that the relationship between the 

scatter-free propagation of solar electrons and the intergalactic 
. 

transport of radio emitting electrons had not been recognized. 
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FIGURE CAPTIONS 

Figure 1. The scattering eigenfunctions at the left, which were 

defined in Paper II, are symmetrical functions of u. In contrast, the 

focusing eigenfunctions at the right are asymmetrical. 

Fig~re 2. The focusing eigenvalues increase monotonically with (VIAL). 

Figure 3. The four characteristic velocities that reduce in the 

absence of focusing to the finite velocities defined in Paper II all 

vanish when focusing becomes intense. This absence of coupling between 

eigenfunctions of opposite parity leads to supercoherent propagation. 

Figure 4. For isotropic scattering, q = I, the six characteristic 

velocities that vanish when focusing is absent display a complicated 

dependence upon (VIAL). When the scattering is anisotropic, as it is at 

q = 1.S and q = 1.9, this intricate pattern is dramatically simplified. 

Figure 5. This graph shows that the artificial decay associated 

with the truncated set of equations that describe focused diffusion plays 

an unimportant role in the overall evolution of the distribution function. 

Figure 6. The coherent velocities, V+ and V_, that appear in focused 

diffusion are not strongly dependent on (VIAL). 

Figure 7. This graph shows that K2 ~ (1/2L). 

Figure 8. Density profiles which compare ordinary diffusion (a) to 

focused diffusion with positive injection velocity (b) and to focused 

diffusion with negative injection velocity (c). 

Figure 9. The velocities that describe the supercoherent mode are 

plotted as functions of (VIAL). 

Figure 10. A supercoherent density profile is compared to the 

corresponding profile for focused diffusion. 

Figure 11. Schematic diagram of the sclar neighborhood showing three 

regions ·,n which there appear qualitatively different solar event profiles. 
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Figure 12. An atlas of radio sour.ce configurations that can be 

explained in terms of ideas presented in this paper: (a) two symmetrical lobes 

of emission on opposite sides of the central galaxy, (b) two secondary 

lobea between the primary lobes, (c) a succession of lobes deployed 

behind a moving galaxy,and (d) two compact lobes moving away from the central 

galaxy with velocities slightly less than that of light. 
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&~ V ..L _ 2_ _2 _ U
OO 

U
01 

U
02 

U
03 Un U

12 
U13 U22 U23 Un 

til 
q 

AI. 1."1 I."z 1."3 v v v v V v V V v V 

1.0 0.0 2.00 6.03 12.01 .onoo .57B] .0000 .0000 .0000 .5153 .0000 .0000 .5090 .0000 
1.0 2.20 6.17 12.14 ". ]U9 .5211 -.0696 .0046 .1836 .5094 -.0202 .04]9 .SOIS .02]8 !r Z.O 2.80 6.59 12.55 -.51M3 .4006 -.1143 .0150 .2866 .499) -.0]58 .0810 .50ll .0467 Pi 3.0 3.79 7.29 13.22 -. b 72) .2879 -.1 J14 .02')2 .3117 .4967 -.0461 .1073 .4956 .061S 
4.0 5.13 8.24 14.19 -.nlo .2070 -.1304 .0320 .3012 .5068 -.0531 .1226 .484] .0856 is 5.0 6.81 9.41 15.46 -.HODl .1545 -.12n7 .0]44 .2712 .530] -.0588 .1307 .4611 .10ll 

E 6.0 8.76 10.8] 11.06 -.BIl4 · 1221 -. 1077 .tH H .2283 .56h'l -.06,8 .1406 .440] .1147 
7.0 10.89 12.41 19.06 -. BS 72 .103'6 -.0'H5 .O!9i .1632 .6118 -.0766 .lbB4 .4000 .1259 
8.0 !l.U 14.13 21. 51 -.8750 .09 J9 -.07K4 .02"]6 .0559 .6,41 -.0922 .2181 .3449 .1))9 : 9.0 15.36 1S.94 24.45 -.8889 .0899 -.{lulO .OISO -.1l10 .61>45 -.1101 .3107 .2794 .!l68 

10.0 17.56 17 .83 27.89 -.9000 .v8HO -.0447 .UlJ4 -.3212 .6046 -.1242 .5>17 .2129 .1321 ~ 
1.5 0.0 .80 4.41 7.05 .OUUO .5626 .0000 .1218 .uooo .4109 .0000 .0000 .5120 .0000 

I 0.5 .93 4.53 7.14 -. )5'6 .4€dO -.tun .1192 .3087 • JflbJ .0591 -.0588 .5059 .0830 
1.0 1.32 4.84 7.41 -.S'it.4 • 2'} 16 -.lXf,1 .lor17 .4721 .11h7 • HISS -.11n8 .4855 .lh98 
1.5 I. 92 5. J4 7.92 - .flltH) .16(10 -.2115 .O"/'J5 • SloMO .2H19 .I,):!O -.22]4 .4414 .2636 
2.0 2.66 5.99 8.64 -.7012 .0911 -.21 J9 .(J'j79 • ")9Hl .2215 .1877 -.3258 .37)8 .]563 
2.5 3.49 6.72 9.59 -.7J17 .04H9 -.2058 .0'181 .641t .lb37 .210] -.4157 .2841 .4124 

~ ].0 4. J7 1. 5 I 10.16 -.lbS9 .02')7 -. PJ"J) .0229 .b7H'j .1105 .2178 -.47q] .19,2 .4832 
].5 5.28 8. Jl 12.09 -.1l\H9 .Ul ]2 -.1l'J9 .0129 .7105 .0700 .2142 -.520] .1244 .51H 
4.0 6.21 9.11 13.54 -.KOHO .Ou67 -.1671 .0070 .1'!80 .042' .2049 -.5487 .0754 .5334 

I 4.5 7.16 10.03 15.08 -.6240 .00")4 -.1555 . on "!7 .7b16 .0249 .1934 -.5115 .0442 .5487 
5.0 8.ll 10.92 16.b8 -.fn78 .0(11 7 -.1451 .0020 .1823 .0144 .IRI5 -.5919 .0253 .5626 

1.9 0.00 . 11 J.21 3.b6 .0000 .51 JM .ool)n • ;..'')49 .OQ()O .) 11 5 .0000 .0000 .4SS9 .0000 
0.25 .18 ].52 ].85 -.5"]" J • ]()94 -.2'73 .09!.4 • S,10 .1210 .2542 -. )724 .2556 .3847 
O. SO .51 3.9'1 4.40 -.5915 .0119 -.2h':'4 ,01')8 .5',18 .0224 07.701 -.4479 .0548 .4610 
0.75 .91 4. Jl S.ot. -.6211 .001 J -.2';2') .nOlO .57H9 .0011 .2629 -.4S60 .0080 .4777 
1.00 1. 26 4.74 5.70 -. b5 7J .UOOI -.240J .00U2 .&024 .0004 .2547 -.46]9 .0010 .4852 
\.25 I.b4 5. II 6.40 -.b812 -.221i8 .62.(.4 .2465 -.4135 .0001 .4927 
1. SO 2.0J 5.61 7.11 -.1057 -.2179 .6450 .2]84 -.4844 .5002 
\. 75 2.44 6.06 '7.85 -.7253 -.2018 .6641 . n04 -.4959 .5077 
2.00 2.85 6.51 8.60 -.1425 -.1984 .6819 .2226 -.5078 .5151 
2.25 3.2" 6.98 9. ]8 -.1571 - .189 I .6""4 .2150 -.5199 .5226 
2.50 ].12 7.45 10.11 -.771l -.1817 .711b .2075 -.5 lI8 .5299 
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