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Introduction

Before I start to describe the drag clean-up work in the Langley full-scale

tunnel, let me recognize the pre-eminent work in the drag field. The late Sighard

F. Hoerner in his book Fluld-Dynamic Drag (Ref. 1) has done a wonderful job of

pulling together, organizing, and summarizing the vast and fragmented knowledge of

aerodynamic drag. His book is the Bible on the subject. Tile book is vastly detailed

in its presentation and references, and is about all one would need to work the drag

problem for general aviation airplanes other than those that are pushing the drag-rise

Mach number. Such hlgh-speed aircraft are particularly subject to compressibility

and interference problems which will be addressed by Mr. Thomas C. Kelly in his

paper for the wing-drag session of this workshop.

It should be noted that Hoerner's book is not a "how-to" book. it does not set

forth a design procedure. Any sensible aerodynamicist knows that airplanes are not

designed for low drag alone. They must be designed to do their job (accommodate

people, etc.); they must be designed for practical, economical manufacture; and they

must be designed with enough sex appeal to sell. So Hoerner's book, in effect, tells

how to get to the ideal shape, and the drag price for departing from that ideal shape.

Thus it gives the drag information needed for trades of performance versus other

requirements.

Potential in Drag Clean-Up

Now to get to _ specific subject of this paper--the drag clean-up work in the

full-scale tunnel. This work was done between 1935 and 1945 on W. W. I[ fighters

and light bombers; so there is reason to question haw applicable it is to today's general

aviation airplanes. If it is applicable at all, it is obviously most applicable to the

propeller powered airplanes. Since I am not very well acquainted with general aviation

airplanes, [ started out by making a few calculations that would let me see in terms of

size, shape, and drag how some of today's general aviation airplanes compare with the

small military airplanes that were the subject of the drag clean-up work.
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Figure 1 presents a tabulation which resulted from these calculations. Here are

compared certain characteristics of early W. W. II fighters and today's light twin

general aviation aircraft. The figures given in each column are averages for five air-

craft. These aircraft did not differ from the mean by more than +-15 percent in any

item. The W. W. II fighters selected were the cleaner of the 23 aircraft for which

results are summarized in references 2 and 3. There are the P-40, P-41, P-51, P-63,

and F4F. They are early models, if not prototypes, of these aircraft as can be inferred

from the low gross weight. The light twins are those for which drag could be calculated

from information given in a recent issue of Jane's All The World's Aircraft--that is,

aircraft for which maximum speed was quoted at sea level or within the range of

altitude for which supercharged engines were flat-rated. The calculated characteristics

of the light twins are therefore no better than the information in "Jane's" or assumptions

of 80 percent propulsive efficiency and 80 percent span efficiency factor with regard to

drag due to llft.

Now let us trace through the figures and see what we can conclude. The two

classes of airplanes have very nearly the same span and length. The light t_vins have

20 percent less wing area and 10 percent more wetted area, which factors would tend

to cause their drag coefficient to be 30 percent higher than that of the fighters. On

the other hand, they have only about one-half as much engine to cool which tends to

offset one-third to one-half this difference. So, for equal aerodynamic cleanness we

might expect the light twins to have 10 to 20 percent higher drag than the fighters.

The figures show that the value of C D (drag coefficient at zero lift) for the present
o

light twins is indeed slightly higher than that of the fighters as received at the full-

scale tunnel before the drag clean-up. Actually since the value of CDo for the light

twins is only 10 percent higher than that of the fighters (as received), it would seem

that they were slightly cleaner. (Before we go further, note that the measured values

of C D for the fighters have been corrected for Reynolds number effects from the 80
o

mph speed at which the tests were run to the 200 mph speed of the light twins.)

Let us continue by running down the rest of the drag figures for the fighters

as received. The friction drag coefficient is that calculated on the basis of the

wetted area t body and airfoil thickness, and a fully turbulent boundary layer. The

cooling and parasite drag values are specifically those of the P-41 which will be

discussed later. The figures for the cleaned up fighters show marked reductions in

cooling and parasite drag. These reductions were achieved by reasonable changes

which could be made on a practical operating airplane. The friction drag could not

be reduced without impractical surface smoothing. But there was a substantial

reduction in total CDo.
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For the present light twins, the friction drag was calculated and was larger than

t_at of the fighters because of the greater wetted area and because of the smaller wing

area used as a reference. The cooling and parasite drag could not be separated. The

last column indicates what the potential for drag clean-up might be. On the basis of

the cleaned-up fighter data, the parasite drag might be similar to that of the fighter,

the cooling power of the engines of only one-half the total power might be only one-

half as great; and the total C D might be reduced from 0.0255 to 0.0195. This is a
o

13 percent reduction which would result in a 4 percent increase in speed, or a 13 per-

cent increase in range or reduction in fuel consumption at the same speed.

The foregoing figures are admittedly very rough, but they indicate enough

potential for drag reduction to warrant pursuing the subject. Another conclusion that

might be inferred from the drag figures for the light twin is that parasite drag can

hardly be respons|ble for the high drag over and above friction drag; so there must be

very substantial gains to be made in cooling drag.

Full-Scale Tunnel Tests

The remainder of this paper will examine some of the principal items in the

W. W. I1 airplane drag clean-up work which accounted for considerable amounts of

excess drag. And by the way, I have gone over general aviation aircraft in the

NASA hangars, and at our local airport, and have found all of these items on current

general aviation aircraft--not all on any one aircraft, of course. The total of all of

them would make the value of CDo of the average light twin of Figure 1, 30 percent
higher than that shown.

Drag Clean-Up Tests of a Representative Airplane

The procedure in the full-scale tunnel tests was to remove all the protuberances

from the airplane, to seal all openings, and to fair obvious sources of drag such as a

blunt sealed radial engine cowling. The drag of this sealed and faired airplane was

measured and if there was any reason to suspect that it was unduly high, the trouble

spots were sought with tufts, surface pressure data, and wake surveys and were then

refaired to give a good basic shape. Such a sealed and faired condition for the XP-41

airplane is indicated in Figure 2.

As the seals and fairings associated with the powerplant installation were re-

moved one-by-one, the drag of the following items was identified as show in Figure

3, the drag values being given in percent of the drag of the airplane in the sealed and

faired condition:
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Open engine cowling engine and exit

to permit cooling air flow

Unfalred carburetor alrscoop

Cooling airflow through accessory compartment

Projecting exhause stacts and open hole

through which they project

I ntercool er

Oil cooler

18.6%

3.6%

3.0%

3.6%

6.6%

10.2%

The total drag of these items associated with the power plant installation increased

the drag 45.6 percent above that for the sealed and faired condition.

The drag for the addltlonal features required to bring the airplane to

service condition are shown in Figure 4 by the underlined numbers:

Removing seals from gaps in cowling flaps

Opening case and link ejector chute

Opening seals around landing gear doors

Sanded walkway

Radio aerials

Guns and blast tubes

5.4%

1.8%

1.2%

4.2%

4.8%

1.8%

The total drag of this group of protrusion, roughness, and leakage items equals 19.2

percent of the drag for the sealed and faired condition.

Look at what has happened to the clean airplane we started with! In order to

make it useful we have increased its drag nearly 65 percent mostly by adding items

that by themselves do not appear particularly large.

All of this drag, however, is not necessary. Additional tests and careful

analysis showed that the drag of the power plant items could be reduced to 26.6 per-

cent and the drag of the roughness and leakage items could be reduced to 2.5 percent,

thus saving nearly 36 percent of the drag of the basic condition.

It is particularly important to note that in general those items have drags of only

a few percent each. Yet, when taken altogether, they add up to an impressive total.

We started with an airplane in Figure 1 that was exceptionally clean and in bringing

it to a usable configuration unnecessary drag was added along with the drag associated

with the necessary functions. The message here would seem to be that there is a lot

to be gained from attention to details in aerodynamic design.

Design Features Contributing to Excessive Drag

The following selected examples illustrate some of the design features in which

lack of attention to detail led to excessive drag.
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Cooling drag - The first principles of reducing cooling drag are: do not take

in too much air, keep the internal flow passages clean, and dump the air tangential to

the surface in a streamwise direction. But look, in Figure 5, at what a difference

details can make. An exhaust collect or ring, cowling-flap actuating linkage, and

a sharp lip just inside the cowling flap outlet caused an increase in drag coefficient

of 0.0007 which is 5 percent as great as the friction drag of the entire airplane.

Variable cowling outlet flaps are, of course, used to reduce cooling drag in

high speed conditions; but look, in Figure 6, at what leakage through joints in the flaps

can do if they are not sealed. High pressure air from inside the cowling squirts out normal

to the stream causing an increase in drag of 4 percent of the airplane friction drag for

this case. Such cowling leakage was a very common cause of excessive drag in the

Wo_'ld War II airplane as received at the full-scale tunnel. It could probably be more

properly classified as leakage drag than cooling drag, but in this paper | have chosen

in most cases to relate leakage drag to the functional item with which it is associated.

Engine exhaust stacks - It would seem that exhaust stacks if properly recessed

or faired and turned rearward would cause virtually no external drag, but improper

treatment of exhaust stacks can result in large amounts of drag as shown in Figure 7.

The installation shown at the top of the figure appears very similar to the treatment of

the e_aust nozzles of turboprop engines in some of today's general aviation airplanes;

and it caused an increase in drag corresponding to 16 percent of the friction drag of

the entire airplane. The installation shown at the bottom of the figure does not pro-

trude into the stream, but caused a drag increase of 8 percent of the friction drag because

the exhaust gases and the cooling air coming out the hole around the exhaust stacks

were ejected almost normal to the alrstream.

It is also evident from such installations that designers sometimes fail to take

advantage of the considerable thrust the exhaust gases can affort if directed rearward.

I do not have data for today's general aviation engines, but based on the exhaust gas

thrust per horsepower of World War [I fighter engines, I would expect the thrust

coefficient (q..-_-) of the average light twin of Figure 1 to be 0.0026 at full power

and a speed of 200 knots. This is enough thrust to offset 15 percent of the friction

drag of the airplane.

Landing gears - Even retractable landing gears can have considerable drag

if not properly treated. Figure 8 shows that the fully faired landing gear shown at the

top of the figure had a drag of 7 percent of the friction drag when the seals over the

joints were removed. This drag was caused by air leakage through the I/8-inch cracks

around the coverplate. Removal of the rear door to expose half the wheel resulted in
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an additional small (2 percent CDf ) increase in drag. This result, that failure to seal

the landing gear doors caused considerable drag, was found repeatedly in the drag

clean-up tests.

Control surface gaps - Figure 9 indicates that tail surface gaps can Cause an

increase in drag of about 5 percent of the friction drag--and it would seem thatthe

ailerons could cause an additional 2- to 3-percent increase. Such control surface

drag can result from several sources. Air can leak through unsealed gaps from the high

pressure side of the surface to the low pressure side where it can exhaust normally to the

stream as a let spoiler. The base drag of the blunt rear of the fin or stabilizer can cause

considerable drag, bath directlyas base drag and additionally, by pumping air through

the airframe if there are lightening holes in the rear spar. Hoerner indicates that such

base drag can be reduced markedly, in fact the drag of the entire tail can be reduced

nearly 20 percent by reducing the thickness of the airfoil at the blunt base of the fixed

surface about 10 percent so that it is thinner than the maximum thickness of the control

surface.

Irregularities and leakage - Figure 10 shows the results of irregularities and

leakage in one small area of a wing which had a fold joint and a number of access

panels. Probably very few general aviation airplanes have features corresponding to the

wlng-fold joint, but the total number of doors and access panels might be even larger

than for this case. In any event, most drag of this type can be eliminated by better

fitting and by elimination of air leakage.

Walkways - Figure 11 shows the drag coefficient of a sanded walkway to be

0.0010, or 8 percent as great as the friction drag. This is an extreme case because

the walkway protruded about 1/4-inch above the wing surface. But, even for more

representative cases, the walkway drag was two-thirds this great.

Conclusions

It would seem that two general conclusions might be drawn from the foregoing

analysis and examples.

1. There is probably considerable possibility for marked reductions in the

cooling drag of general aviation airplanes with reciprocating engines.

2. Careful attention to detail design and fabrication can result in substantial

reductions in drag.
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