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Induced Drag Reduction Devices
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Summary

Analytical studies have been conducted to examine the feasibility of

utilizing wing tip turbines to remove swirl from the wing trailing vortex, and

hence reduce the potential for upset of following aircraft. Energy recovery from

tile turbines is also analyzed. A computer routine has been developed to permit

rapid parametric studies of various tip turbine designs.

The studies show that the optimum turbine is a non-rotating set of vanes

which reduce swirl and recover energy in the form of reduced overall configuration

induced drag. A specific case study indicates a 23% reduction in induced drag for

a rectangular wing of aspect ratio 5.33, operated ata llft coefficient at 1.0.

Introduction

The problems associated with the operation of small aircraft in the vortex

wake of a large aircraft are well documented (Figures 1 and 2 and reference 1).

Many solutions to reducing vortex induced angles have been proposed and tested.

Most of these however, are achieved at the expense of added drag and hence

increased fuel consumption and noise. The present research was undertaken to

study the feasibility of a rather novel scheme for diffusing wing tip vortlclty, and

at the same time recovering energy from the vortex wake.

At least two similar techniques have been tested. The flow straighteners

designed by Uzel and Marchman (ref. 2) and the "winglets" developed by Whitcomb

(ref. 3).

The present study is concerned with evaluation of a wind turbine mounted

in the center of the _/ing tip vortex core (Figure 3). The turbine is designed to re-

move the swirl component of velocity from the tip vortex, and to provide rotating

shaft torque for conversion to propulsive or stored energy.

Ana lytl cal Method

The vortex core is modeled as shown in Figure 4 based upon Reference 4.

The turbine is analyzed using the blade element theory of Reference 5. Basic blade
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element velocities and angles are shown in Figure 5. Since the function of the

turbine is to reduce upset severity the blade is designed to remove the total swirl

velocity at each radial station. This constrains the local induced angle to a value

of one-half the local swirl angle, since half the downwash takes place downstream

from the blade element.

It should be noted from the velocity vector diagram that not only is it

possible to obtain a torque-producing force, but it is also possible to obtain a

direct thrust force component which would appear as a reduced induced drag. The

effect has been demonstrated by Whitcomb's winglets, but evidently the effectiveness

of wlnglets in reducing vortex upset has not been evaluated. Uzel and Marchman

evaluated fixed wingtip flow straighteners to reduce the vortex upset hazard, but

their design evidently utilizes sharp-edged uncambered sections which cannot

recover the leading section force which would produce thrust.

A computer program was developed to evaluate proposed designs in the

present study. A simplified flow chart of the computational algorithm is shown in

Figure 6. For simplicity, turbines utilizing constant chord blades were analyzed.

The program was designed to adjust blade chord until the maximum angle of attack

encountered along the span is between 14.5 ° and 15°. The effect of the constraint

is to have a design near maximum unstalled llft coefficient condition, in order to

minimize wetted area drag. Computer studies were made at a cost of less than $1

per configuration. Design conditions are given in Table 1.

Table 1. Design Conditions

Lift Coefficient

Aspect Ratio

Planform

Core radius

Maximum swirl velocity

Vane section drag coefficlent

1.0

5.33

Rectangular

.01 (Span)

.8 (Flight speed)

0.010

Results

Results of the parametric studies of shaft power output as a function of rpm

and diameter are shown in Figure 7. These data show that shaft power increases

with diameter, and that rpm for maximum shaft power decreases as diameter is

increased. Theoretical upper power limit occurs when shaft power equals wing

induced power. Figure 8 presents net power, which is shaft power minus or plus the
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drag or thrust power, including bladesectiondrag effects. Thesedata represent
a realistic accounting sinceblade sectiondrageffectsare included. For the values

chosen for this study, a maximum net return of 35% of induced power is achieved

for turbine diameters of 32 and 64 vortex core diameters. Thus turbine diameter

ratios greater than 32 provide no added benefit. The most intriguing result, however,

is that the optimum rpm is zerol
1

From a practical point of view, these results show that for virtually any

turbine diameter, the net power recovery is nearly optimum at zero rpm. Since the

shaft power is zero under such conditions, it follows that the significant task of the

tip-turbine blades is to recover thrust directly. While designs involving blade

diameters ratios of 32 do not seem practical, designs with diameter ratios in the

range of 2 to 8 may be quite feasible.

An additional computer run was made with zero rpm, turbine diameter

ratio equal to 8, and vane section drag coefficient increased from 0.010 to 0.013.

All other parameters were retained as given in Table 1. This run showed that an

induced power recovery at 23% was possible. This is believed to be a very realistic

set of design conditions.

Blade twist distributions for selected configurations are shown in Figure 9.

These results indicate that twist requirements pose no extreme fabrication problems.

Concludl ng Remarks

The present analysis has many limitations. Some of these are described and

discussed below:

1. Vortex core rollup is not complete one chord behind the trailing edge.

Therefore the assumed vortex velocity model is only approximate.

2. The present analysis does not account for mutual aerodynamic interference

between the vanes and the wing. The vane llft will certainly produce induced

velocities which will influence the main wing llft and hence vortex distribution. A

more sophisticated analysis would include mathematical modeling of main wing and

tlp-vane vortex.

3. The present analysis does not account for off-optlmum performance. It

is reasonable to expect that operation at lower wing lift coefficient will adversely

influence performance, since blade twist will no longer be optimum. The design

criteria should protect against stalling of the vanes under such conditions, however.

4. The effect of the tip vanes is to replace a single concentrated vortex

with a series of vortices emanating from the vane tips. No analysis has been made
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of the trajectory of this new vortex system. If the new vortices coalesce, it is

possible that the upset hazard to following aircraft might not be reduced.

Concl usions

1. Feasibility studies indicate that tip mounted multi-vane turbines can

recover energy from awi ng vortex wake, whi le slmultaneously reduci ng the vortex

swirl and presumably the upset hazard to following aircraft.

2. The studies show that a non-rotatlng array of vanes properly twisted

will provide maximum net energy recovery, in the form of vane thrust.

3. Practical designs from the present study should be evaluated by wind

tunnel tests to determine actual performance gains, as well as penalties for off-

design operation.
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Figure 1. Vortex Upset Problem

Figure 2. Wing Wake Velocities
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Figure 3. Wing-Tip Devices

208



o

,3

o

0

0

0
OB
4--"

..Q
OD

"4--
V)

lm
r_

On
u
0

X
G)

.4--
t_

0

Im
12.

2¢?



\

V_c_aC;_w I

I_l_,IQ ? ;&-_.l,,

sec.'_,b_ ,..s,.,.l'_4 "_,'_

Figure 5. Blade Element Velocities and Forces
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Figure 6. Tip Turbine Design Computer Program
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Figure 7. Shaft Power Ratio
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Figure 8. Net Power Ratio
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