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Abstract 

6.5 Propellers of Minimum Induced Loss, 

and Water Tunnel Tests of Such a Propeller 

E. E. Larrabee 
Massachusetts Institute of Technology 

The fundamental vortex theory for a single rotation propeller with a 

finite number of blades is reviewed. The theory leads to the specification of a 

radial distribution of bound circulation on each blade for minimum induced loss, 

analogous to the elliptic spanwise distribution of bound circulation on a wing for 

minimum induced drag. A propeller designed in accord with this theory has been 

tested in the water tunne I at M .1. T • IS Marine Hydrodynamics Laboratory where it 

exhibited high efficiency in spite of localized cavitating flow. A knowledge of 

the flow field for an optimum propeller is of value to the airframe designer seeking 

to maximize the performance of the airplane-propeller combination. 

Figure 1 presents the geometry of the force and velocity components a550- . 

ciated with the operation of a representative blade element. The fluid velocity W 

at the blade element is made up of the flight, or advance velocity, V, the 

rotational velocity, Qr, and the induced, or "inflow" velocity wi. The induced 

velocity is customarily resolved into an axial component aV and a rotational 

component alQr. The elementary force dF is resolved into lift and drag components 

dL and dO where the angle ~, defined as tan- 1 (ccVcR,)' is an angle determined by 

blade profile characteristics in two dimensional flow at the appropriate Reynolds 

number, as in lifting line theory. 
The blade element efficiency is given by 

- -. ---

n _ VdT _ V 
element - ndQ - nr 

and since 

tan $i 
V (l+a) 

= Qr(I-a') 
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dF cos (Pi +e:) 
ciF sin ( (Pi +e:) 
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while 

sin (¢. + £) 
tan (¢. +£) = ~ 

~ cos (¢. + e:) 
~ 

it follows that 

tan ¢. 
n = 1 I-a' 
element tan {¢. +d x l+a = nprofile x 

ninduced ~ 

In this discussion I will be mainly concerned with the "induced" efficiency 

(l-a l )/(l+a). 

Figure 2 presents the geometry of the velocity field in the propeller slip

stream. An elementary helical vortex filament is convected normal to itself with 

velocity w by the induced velocities of all the vortex filaments lying in the 

approximately helicoidal vortex sheets trailed by each of the propeller blades. 

The vortex velocity w, which is the same as the local slipstream velocity, may be 

resolved into axial and rotational (or "tangential") velocity components Wa and 

Wt, respectively. 

If the filament helix angle is <p, the filament will appear to move with an 

axial velocity v', which might be due either to real axial velocity wa or to real 

rotational velocity Wt (like the rotating stripes on a barber pole); but since it is a 

vortex filament, and can only move normal to itself, 

3 

4 

5 

W t = v' cos <p sin ¢ 6 

Figure 3 presents the so called "Iightly loaded" propeller relations between 

velocities We and Wt in the slipstream at radius r and the corresponding inflow 

velocity components aV and a1nr at the propeller disc. Since the propeller is 

lightly loaded, the trailing vortex helix angle <p in the slipstream at radius r is 

indistinguishable from the angle tan -1 (V /n r) at the propeller blade element at the 

same radius. Following, momentum theory the inflow velocities are taken as half 

theJr valu~s in the developed slipstream: 

1 wI' ,...2 2 
a = _ ~ = (~)~U~r~~ 

2 V 2 v n2r2+v2 

1 Vi V2 

= 2 (V-) ( 2 2 2' 
n r +V 
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The induced efficiency of a blade element 

l-a l _ 1 _ 1 
ninduced = ~ = l+a'+a - 1 v' 

1+2"(;;-) 
9 

may thus be expressed in terms of the apparent axial velocity of the slipstream, Vi, 

which up to now has been considered to be an arbitrary function of r. Betz showed 

in 1919 that n. d d for the propeller as a whole is maximized if nit In uce e emen 

is the some for all blade elements, that is, if vl/V is independent of r. If Vi is 

independent of r, all vortex filaments in a hel icoidal vorte.x sheet appear to move 

axially as a rigid surface, although this is not actually the case, since Wa and Wt 

are given by eqs. 5 and 6. 

Since circulation cannot be added to the flow in the sl ipstream, it follows 

that the ci rculation within a slipstream tube of radius r 

r = 2TIrw 
t 

10 

must comprise the total circulation of the helical vortex filaments trailed by each of 

the B blades of the propeller, an amount equal to the total bound vorticity at the 

radius r. The bound vorticity on each blade at radius r is then 

or 

r(r) = 

Bnr(r) 
21TVV' 

where x :: Qr/v. 

= 
2 x 

x 2+1 

2n Vv l 

= B-n 
11 

110 

Since, B, n, 2rr, V, and Vi are all constants for a minimum induced loss 

propeller, Bnr(r)/21/Vv' = x2/(x2+1), can be regarded as a normalized form for the 

bound circulation, r (r), expressed as a function of the normalized radial coordinate, 

x= nr/V. Alternatively, the quantity x2/(x2+1), which is also equal to cos2 4>, 

may be regarded as the ratio of the axial velocity in the slipstream to the apparent 

velocity, wa/v'. Figure 4 presents the normalized radial circulation distribution 

{or the walv' ratio} as a function of the normalized radial coordinate, x. The 

ratio of the rotational velocity in the slipstream to the apparent velocity Wt/Vl, 

equal to x/{i+ 1), is given for comparison. It is seen that single rotation pro

pellers of minimum induced loss inevitably have appreciable slipstream swirl ne9r 
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the center of the slipstream where ¢ is larQei the swirl anQle in airplane 

coordinates being given approxi,~tely by tan -l[w!(V+wa )]. 

Strictly speaking, eqns. 7-11a apply to a propeller with so many blades 

that the spacing between the individual vortex sheets in the sl ipstream is smcill 

compared to r, called the B+ro case. Since actual propellers have a small number 

of blades and may operate at large helix angles, which also tends to increase the 

spacing between vortex sheets (note that n f'l = tan 4>/tan (¢j+E') is maximized pro Ie 
when 4> i = IT/4 - E'/2), it is necessary to account for the reduction in the average 

rotational velocity between vortex sheets in the developed slipstream (compared to 

the Vi cos Ql sin <P value at the sheets themselves) when calculating the circulation. 

Figure 5 shows Prandtl's approximate solution to this problem. He assumed 

that the How near the edges of the helicoidal vortex sheets in the slipstream is like 

the two dimensional flow near the edges of a semi-infinite array of flat plates 

moving with velocity v. The average velocity of the fl uid between the plates is 

given by the fraction F = (2/rr )cos-l e -f times v, where f = 'T1'(t,;/s) is a dimension

less measure of the distance £. from the edge of the plates spaced a distance s apart. 

The corresponding edge distance function for the hel icoidal vortex sheets is 

f 
- B(l-Ax)/~ 
- 2;\ 12 

where'\ = v/n R is an advance ratio based on the flight velocity V and the rota-

tional tip speed r2R. The quantity F is interpreted as the ratio of the average 

rotational velocity in the slipstream at radius r to the rotational velocity near ·the 

sheets, v'sin¢cosQl, or, what is the same thing, the ratio of the baund circulation 

at radius r for a propeller with a finite number of blades to the corresponding 

circulation for B+cx>. 

Figure 6 presents representative examples of the radial distribution of bound 

circulation for a minimum induced loss three blade propeller operating at two 

advance ratios, ,\ = 1/5 and ,\ = 2/3, corresponding to climbing and cruising 

fl ight conditions, respectively, where F has been calculated according to Prandtl's 

rule. These optimum radial circulation distributions for propeller blades loaded so 

as to produce constant apparent velocity of the helicoidal vortex sheets in the 

slipstream, independent of the radius, correspond to the elliptic spanwise distribu

tion of circulation for a wing, loaded so as to produce constant downwash velocity 

at the trailing vortex sheet in the wing wake, independent of a spanwise coordinate. 

• 

• 

Although an untwisted wing of elliptic planform gives an elliptic spanwise • 
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circulation distribution for all angles of attack within the linear range of section 

lift coefficient versus angle of attock, there is no corresponding propeller blade 

planform that gives the optimum radial circulation distribution for all advance 

ratios. Figure 8 presents plots of (n/ITV I )ccQ, versus ,\x = r/R for three bladed 

propellers of minimum induced loss operating at the two advance ratios given on 

Figure 7. If the section lift coefficient, cQ,' is considered constant for all values 

of rlR, the curves may be interpreted as plots of the optimum radial chord distribu

tion. It is seen that a propeller optimized for a low advance ratio needs blades with 

a wide chord inboard where the airspeed is low, and a narrow chord outboard where 

the airspeed is high. A propeller optimized for !arge advance ratios, on the other 

hand, will require a more elliptic distribution of chord since the blade element air

speeds are not so strongly dependent on the radial coordinate. In any event, it is 

seen that a propeller can only be optimized at one advance ratio and that a general 

theory of non-optimum propellers will be required to calculate propeller performance 

away from the design point. 

A traditional method for doing this was developed by Glauert. In his 

scheme the differential increases in axial and rotational momentum in an annular 

element of slipstream of radius r and width dr are set equal separately to the thrust 

and torque components of the airload acting on each of the B blade elements, thus: 

and 

where 

dT or = 2~prV(1+a)2aV = 

1 dQ r dr = 2~prV (l+a) 2a I rn 

Cx = cQ,sin~i + cdcos<P i 

Equations 13 and 14 are adapted for calculation by solving 13 for a and 14 for ai, 

where 0' is the local sol idity, Bc/2~r: 
a a C 

a+I = y 

a' 
l-a' = 

4 . 2 
s~n <Pi 

a C 
x 

4 sin<j>. cos<t>. 
~ ~ 
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An iterative procedure is employed at each of several blade radial stations 

whereby blade element angles of ottack are assumed giving CX, and cd (airfoil 

propert ies), 

and finally 

~. ; a-a (8 is the blade angle), 
1. 

Cy and Cx (eqs. :3 and I6), 

a and a' (eqs. IJa and I4a), 

for each assumed value of a. The iteration is terminated when ~i = 8-a = 
tan -1 (~ )(~,) and the converged values of C and C are then suitably integrated 

~N 1-0 . Y x 

radially to yield the propeller thrust and torque (or power). 

Equations 13 and 14 depend on the absence of radial flow in the slipstream, 

the very thing that Prandtl's vortex sheet spacing correction was intended to account 

for in the case of a propeller operating with minimum induced loss. Glauert in his 

article in Durand's "Aerodynamic Theory" (1934) suggested modifying Eqs. 13a and 

14a to read 

a' 
I-a' = 

aC x 
4 sin~. cos~.F 

1. 1. 

13b 

14b 

(there is a misprint in the book whereby the quantity F appears in the numerator of 

the right hand side of eqns. 13b and 14b instead of the denominator). Goldstein, 

in his doctor's thesis (published as "On the Vortex Theory of Screw Propellers" in 

the Proceedings of the Royal Society (A) 123, 440 1929) refined Prandtl's value for 

F by considering the flow about moving helicoidal surfaces of B sheets per turn 

rather than an array of moving flat plates. F. N. Lock proposed an alternative 

scheme based on Goldstein's values for F (Lock calls them £, sometimes read 

"kappa") in which the momentum balance of eqn$ 13 and 14 is abandoned and the 

inflow velocity, Wi, (Fig. 1) is considered to be normal to the resultant velocity 

at the blade element, W. The inflow velocity, in turn, is considered to be half 

the deve loped sl ipstream ve loc ity increment, w, given by a form of eq. 10: 

Br(r} = 2nr(w sin~}F lOb 
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Lock's procedure would be identical to Glauert's modified scheme if the blade 

elements had no drag. Theodorsen introduced a correction to Lock's procedure to 

allow for slipstream contraction; he also verified Goldstein's F values by rheo

electric analog computation, and extended them to the case of intersecting hel j

coidal vortex sheets, as would be trailed by a counterrotating propeller. Lock's 

method has recently been reviewed by Pauling (liThe Effech of Uncertainties on 

Predicting Rotor and Propeller Performance", Pennsylvania State University report 

PSU AERSP 75-3) who wrote a digital computer program to carry out a version of 

Lock's procedure with several optional features, including a slipstream contraction 

effect. I personally am bothered by the fact that all of these non-optimum propeller 

theories depend on Prandtl or Goldstein F values, which are calculated on the 

assomption of trailing vortex sheet geometry appropriate to a propeller of minimum 

induced loss. The procedures are analogous to an approximate lifting line wing 

theory in which the two dimensional lift on a chordwise element is corrected by 

[1-(2y/b)2] 1;2 to account for three dimensional flow effects. 

Figure 9 presents a marvelous smoke flow visualization photograph of the 

operation of a two bladed propeller obtained by Prof. F. N. Brown at Notre Dame • 

The helicoidal vortex sheets are seen to roll up rather rapidly as they are left behind 

in the slipstream by the propeller blades, exactly in the way that the trailing vortex 

sheet left behind a wing does. The picture suggests that the propeller is not 

optimally loaded because there is perhaps not enough axial motion of the inboard 

portions of the trailing vortex sheets--although this is difficult to judge, because 

the sheet is marked by smoke particle's which have both rotational as well as axial 

velocities, while the "apparent" v' of the theory specifies the motion of the heli

coidal surfaces post a fixed point; for example, the "apparent" axial velocity v' 

component due to "barber pole" helix rotation, v'bp = wttan¢" does not show in 

the picture. 

I will conclude this presentation of propeller theory with the observation 

that the propeller equivalent of lifting line theory does not exist, and that all 

propeller computation procedures contain some element of empiricism. Helicopter 

aerodynamicists have had some success in the application of machine based discrete 

vortex models to the prediction of rotor characteristics; see for example Landgrebe's 

"The Wake Geometry of a Hovering Hel icopter Rotor and its Influence on Rotor 

Performance" (Journal of the American Helicopter Society, Vol 17, no. 4, October 

1972), but in my opinion work still needs to be done • 
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Figure 10 shows a research propeller constructed at M.l. T. for testing in 

the water tunnel of the Marine Hydrodynamic Laboratory. The propeller was designed 

to have two blades of a minimum induced loss geometry appropriate in an application 

to a direct drive 1700cc Volkswagen engine installation which develops 47 hp at 

3800 rpm at sea level. The full scale propeller would have a diameter of 50 inches 

and be optimized at 120 mph, giving an advance ratio J = V/nD = 0.667 

(A= 0.212). The model propeller had a diameter of 12 inches and was constructed 

so it could be tested either in a four blade or a two blade version, since additional 

blades could be readily made once the milling machine cam had been constructed 

to make one blade. 

Figure 11 shows the propeller operating near its design advance ratio in the 

water tunnel at a pressure low enough to cause appreciable cavitation over the 

outer quarter of the blades. Note that the propeller is tested in a pusher configura

tion with the shaft extending upstream into the tunnel stilling section, and with a 

spinner fitted downstream to preserve good flow at the inboard blade stations. The 

compound helical character of the cavitation marked tip vortex core is noteworthy. 

Figure 12, finally, presents the measured characteristics of this propeller 

as tested in the water tunnel at a loading high enough to produce light cavitation. 

The effects of cavitation are seen in the upward bulge and the downward dip of the 

torque and thrust curves, respectively. The peak efficiency of 8SOAl, obtained at 

an advance ratio, J = 0.8, is the highest ever measured in this tunnel. 

It is hoped that this paper will encourage general aviation aerodynam~cists 

to seek propeller geometries better suited to the operation cJ their own airplanes 

than the compromise production propellers available as off-the-shelf items. It 

should be borne in mind that the interference flows produced at the propeller by a 

large fuselage downstream need to be taken into account in the design of an actual 

propeller, and that efficient propellers inevitably create large slipstream swirl 

components on the fuselage nose and flanks which should be considered in the design 

of engine air inlets, carburetor air scoops, exhaust stacks, landing gear struts, and 

even door handles. 
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