General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CR-137773

REPORT NO. CASD-NAS-75-004 CONTRACT NAS 2-8272

(NASA-CR-137773) FUTURE PAYLOAD TECHNOLOGY REQUIREMENTS STUDY Final Report (General Dynamics/Convair) 508 p HC \$12.75 CSCL 228 N76-11217

Unclas G3/18 01627

FUTURE PAYLOAD TECHNOLOGY REQUIREMENTS STUDY

FINAL REPORT

June 1975

GENERAL DYNAMICS Convair Division

FOREWORD

The Future Payload Technology Requirements Study was conducted from June 1974 to January 1975 by Convair Division of General Dynamics with support from Rockwell International Space Division and General Electric Space Division. The Future Payload Technology Requirements Study team operated under the direction of the Systems Studies Division at the Ames Research Center headed by Alfred M. Worden. Larry R. Alton, in the Space Applications Branch of the ARC/SSD, was the Technical Monitor of the study. The study was funded by Code RX, Study and Analysis Office, NASA Headquarters, under the cognizance of Stanley R. Sadin. The study was under the guidance and review of the NASA/OAST Payload Technology Panel, Alfred M. Worden, Chairman. NASA HQ, NASA Centers and a large number of manufacturers/users provided significant advice, consultation, data, and critique in support of the task reported herein, as identified in the final report.

The results of this study effort are combined in two volumes, a summary report and a final report. The summary report volume contains an overview of study objectives, methods, and results. The final report volume, in addition, contains a detailed description of the technology requirements. These documents are identified as CASD-NAS-75-002 (summary report), and CASD-NAS-75-004 (final report).

ACKNOWLEDGEMENTS

Technical support for this technology study was provided by more than 200 individuals in the National Aeronautics and Space Administration and in the outside scientific and engineering community, who are listed in Appendixes A and B.

If one should attempt to identify the most important aspect of the NASA participation, it would be our discussions of the topics with them in their work and study areas during early and mid-study periods. The assistance in making these arrangements provided by members of the NASA-OAST payload technology panel was most helpful.

Later on in the study, the written critiques of the further defined technology requirement, by NASA as well as the manufacturer, research organization, and university personnel were most helpful in improving the credibility of this work.

We are indebted to all who gave time, talent, and energy to the work of the Future Payload Technology Requirements Study.

H. M. Ikerd Manager Future Payload Technology Requirements Study (714) 277-8900, Extension 2472

L. R. Alton NASA Technical Monitor (415) 965-5898

iv

TABLE OF CONTENTS

Section			Page
1	INTRODU	CTION AND SUMMARY	1-1
	1.2 1.2.1 1.2.2 1.2.3	SCOPE SUMMARY Study Approach and Participating Contributors Terminology Used in Results Study Results Summary STUDY TEAM	1-1 1-2 1-2 1-5 1-6 1-6
2	OBJECTI	VES AND RELATIONSHIP TO NASA PROGRAMS	2-1
3	METHOD	OF APPROACH	3-1
4	RESULTS		4-1
	4.2 4.3	STATE-OF-THE-ART LEVEL TIME FACTOR IN TECHNOLOGY ADVANCEMENT LISTING OF REQUIRED TECHNOLOGY ADVANCEMENTS	4-1 4-4 4-4
		DATA PROVIDED ON EACH TECHNOLOGY ITEM	4-4 4-7
5	CONCLUS	IONS	5-1
6	RECOMM	ENDED FUTURE EFFORT	6-1
7	DEFINITIO	ON OF TECHNOLOGY REQUIREMENTS	7-1
8	REFEREN	ICES	8-1
Appendix			

А	NASA AND JPL CONTACTS	A-1
в	MANUFACTURER/LABORATORY AND UNIVERSITY	
	PARTICIPANTS	B-1

LIST OF FIGURES

Figure		Page
1	Study Approach	1-3
2	Study Participants	1-4
3	Summary Results	1-7
4	Study Responsibility	1-7
5	Payload Advanced Technology Analysis Flow/Schedule	3~1
6	Geographic Distribution of Participants	3-3
7	State of Art Levels	4-2
8	Technology Items Summarized by Steps in State-of-Art Level	4-3
9	Technology Need Date and Rate of Advancement Required	4-5
10	Definition of a Technology	4-13
11	Instructions for "Definition of Technology Requirements"	7-7

LIST OF TABLES

Table		Page
1	Level of State-of-Art Definition	1-5
2	Technology Items by Benefiting Discipline	4-6
3	List of Required Technology Advancement Items	4-8
4	SPDA Automated Payloads	7-2
5	SPDA Sortie Payloads	7 - 4
6	Categories of Advanced Technology Requirements	7-6
7	Accounting of Technology Item Sequence Numbers Not	
	Appearing in Definition of Requirements	7-10
8	List of Symbols Used in the Definition Forms	7-11
9	Location of "Definition of Technology Requirement" by Category	7-11

INTRODUCTION AND SUMMARY

The overall objective of the Future Payload Technology Study was the identification and description of technology items that must be advanced beyond the current state of the art in order for early shuttle-era NASA payloads to meet their currently defined objectives. The purpose has been to provide data that will effectively assist the NASA payload technology planning and budgeting effort. The payloads selected for this study were those included in the 1973 Payload Model, which NASA scheduled for delivery by the Space Transportation System in 1980s. Emphasis was on those payloads scheduled for flight in the early to mid 1980s.

1.1 SCOPE

The purview of the study team's activity consisted of the definition of technology advances needed for an overall mission model standpoint as well as those for individual payloads. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives.

In the interest of obtaining commonality of requirements, it appeared most useful to structure the study according to technology categories rather than in terms of individual payloads. The study was carried out within the classifications of the following categories:

Collectors	Environmental Protection
Sensors	Cryogenic Control
Generators	GN&C
Systems	Propulsion
Special Devices	Attitude Control/Measurement
Inertial/Electromechanical	TT&C/Data
Life Sciences	Electrical Power
Contamination	Instrument Electronics
Structural and Spacecraft Mechanical	Software
Environmental Control	

Some applications and desirable characteristics of equipment, particularly sensors, are in the classified literature as are some current state-of-the-art data. However, this study was restricted to the open literature and unclassified knowledge.

The team planned its activity to ascertain the best available and most credible information that will effectively assist the NASA technology effort in closing the gap between the current state of the art and the required state of the art for each item within the technology categories. For each of these items it was attempted to determine:

- a. Advancement required based on payload objective.
- b. Current state of the art as it relates to the advancement required.
- c. Description of technology relating to the critical parameters.
- d. Degree of benefit to the payloads.
- e. Acceptable technology maturity, advancement, or confidence demonstration.
- f. Potential problems, options, and alternatives.
- g. Technology requirement schedule to support need date.
- h. Expected advancement in the state of the art by the need date, if NASA expends no special effort beyond currently planned level on that specific technology item.

1.2 SUMMARY

1.2.1 <u>STUDY APPROACH AND PARTICIPATING CONTRIBUTORS</u>. The Future Payload Technology Requirements Study was performed in four steps extending over a period of eight months (Figure 1). The study began with an analysis of the NASA paylog s for the 1980s to identify payload performance parameters and characteristics catimated to be beyond the current state of the art. These requirements were identified primarily by analysis of the NASA Space Transportation System Payload Data and Analysis (SPDA) data for those automated and sortie payloads planned for flight during the first five years of shuttle operation. The results were reviewed at NASA Headquarters for appropriateness of requirements.

The second step transformed these performance requirements into common technology advancements, which were reviewed with technology specialists at NASA Centers.

During the third step, major revisions were made based on visits to the centers. These revised technology requirements were then mailed back to appropriate personnel at NASA Headquarters and centers and to user/manufacturers for their review and critique.

In step four, appropriate comments obtained from these activities were incorporated into the technology requirement and submitted to NASA/ARC for review and approval.

Because of the nature of the task – the assessment of technology requirements versus the current state of the art – this study necessitated the direct involvement of a large number of NASA and other technical personnel. The study team was under the guidance and review of the NASA/OAST Payload Technology Panel and was monitored and directed by NASA Ames Research Center. The team obtained payload performance

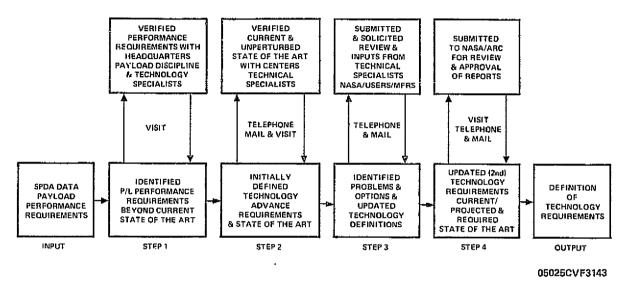


Figure 1. Study Approach

requirements from 15 payload working group discipline spec alists located at NASA Headquarters (Figure 2). The technology state-of-the-art review, across all 19 of the technology categories, was supported by a good cross section of 156 specialists as indicated for the NASA Headquarters, NASA Centers, and the Jet Propulsion Laboratory.

The remaining 51 contributors consisted of university, observatory, research organization, and manufacturer technical personnel. The written response received from 51 of these latter groups represents a 54 percent return on the solicitations. Even though there was no similar data available on this type of review, the response has been very gratifying to the study team. The split between research organizations and manufacturers was somewhat arbitrary, but it was made primarily on the basis as to whether the establishments' major effort was known or judged to be research or manufacturing. Of course, it is recognized that all manufacturers capable of participating in this type of effort are conducting research in the area reviewed.

All personnel represented as contributors in Figure 2 are identified in Appendixes A and B by name, address, and item or subject to which they made a notable contribution.

The results represent a consensus on these technology requirements because of the large participation and review by NASA Headquarters scientific working groups and technology specialists, NASA Centers, JPL, universities, research organizations, manufacturers, and the NASA/OAST Payload Technology Panel.

ARC OAST PAYLOAD TECHNOLOGY PANEL	PAYLOAD PERFORMANCE REQUIREMENTS REVIEWED FOR 12 DISCIPLINES								
STUDY TEAM GD, RI, GE	NASA HEADQUARTERS PAYLOAD WORKING GROUP DISCIPLINES	HE ASTROPHYSICS		SPACE TECHNOLOGY PLANETARY COMM/NAV LUNAR					
	CONTRIBUTORS: 15								

TECHNOLOGY CATEGORY	но	GSFC	LARC	MSFC	JSC	JPL	ARC	LERC	WFC	UNIV/ OBSERV	RESEARCH ORG	MFR	
1. COLLECTORS	X	х	X	X		x	x			X		x	1
2. SENSORS	X	X	X	X	X	X	X	Х		X	Х	X	2
3. GENERATORS	X	X	X		X		X					Х	3
4. SYSTEMS	X	X			X	X	X		X			X	4
5. SPECIAL DEVICES	X	X		X		X	X	X		Х		X	5
6. INERTAL/ELECTROMECHANICAL	X	X		1								X	6
7. LIFE SCIENCES	X			Х	X		X						7
8. CONTAMINATION	X	Х		X			х					Х	8
9. STRUCTURAL & S/C MECHANICAL	Х	Х	х	x		Х	X			X		X	9
10. ENVIRONMENTAL CONTROL	X	Х	Х	х	Х	Х	X				x	X	10
11. ENVIRONMENTAL PROTECTION	X		X		!	х	X				X		11
12. CRYOGENIC CONTROL	X	Х		Х	X	:	X			X	X	X	12
13. GN&C	X		X				X	X			X	X	13
14. PROPULSION	X	x	X				Х	X			X	х	14
15. ATTITUDE CONTROL/MEASUREMENT	X	x	X	х		Х	X				Х	X	15
16. TT&C/DATA	X	Х			1	х	X				X	54	16
17. ELECTRICAL POWER	X	X			<u> </u>	X	X	X					17
18. INSTRUMENT ELECTRONICS	X	X			X		X			Х	X		18
19. SOFTWARE	X	х				X_	X			X		Х	19
NUMBER OF CONTRIBUTORS:	12	37	21	17	12	18	24	14	1	6	12	33	
NUMBER OF CONTRIBUTORS.					T	OTAL	.: 156			TOTALIST			
<u>, a na haran ana ana ana ana ana ana ana ana ana</u>										9	19	67	
				NG	s, SUL	ICE II	O BY	MAIL:			TOTAL:94		

05025CVF3144

Figure 2. Study Participants

1.2.2 <u>TERMINOLOGY USED IN RESULTS</u>. To provide uniformity of terminology and consistency of results within the study and to obtain definitions of what constitutes a satisfactory technology advance, the level of maturity of the state of the art was indicated by ten levels. ... e levels were derived as a tobl for this study and are somewhat arbitrary, but they are judged to have broad application. It appeared that a set with finer structured steps would not improve its utility for this study. The levels are listed in Table 1. Ascending numerical values or levels were assigned to provide a common reference and to facilitate identification and use of the levels. In the application of this scale it should be recognized that the difficulty in going from one step to another will depend on the specific item as well as which step is being made; however, the scale is useful in highlighting the overall technology gaps. These levels of the state of the art were used to assess three areas that are keys to the defined technology requirement. These are:

- a. <u>Current State of the Art</u>: To what level has the technology which more nearly fits the requirement been carried to date.
- b. <u>Unperturbed Advancement</u>: To what level is the technology expected to be by need date if NASA expends no special effort in this area beyond current plans.
 - . (Some technologies are expected to be advanced by industry or other agencies.)
- c. <u>Required Advancement</u>: To what level must the technology be carried to make it acceptable for its intended use or ready for commitment to a program.

LEVEL	LEVEL DEFINITION	GENERAL AREA
1	BASIC PHENOMENA OBSERVED & REPORTED	
2	THEORY FORMULATED TO DESCRIBE PHENOMENA	
3	THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL	THEORETICAL & LABORATORY
4	PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED; e.g., MATERIAL & COMPONENT	
5	COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN LABORATORY	J
6	MODEL TESTED IN AIRCRAFT ENVIRONMENT	1
7	MODEL TESTED IN SPACE ENVIRONMENT	
8	NEW CAPABILITY DERIVED FROM AN OPERATIONAL MODEL (A LESSER MODEL OPERATING IN SPACE)	PROTOTYPE & OPERATIONAL MODELS
9	RELIABILITY UPGRADING OF AN OPERATIONAL MODEL	
10	LIFETIME EXTENSION OF AN OPERATIONAL MODEL	}

Table 1. Level of State-of-Art Definition

05025CVF3145

1.2.3 <u>STUDY RESULTS SUMMARY</u>. A summary of the findings of this study in terms of the levels of technology just described is presented graphically in Figure 3. The state-of-the-art level versus cumulative percent of technology items is shown in Figure 3a. The lower curve gives the current level of the state of the art, while the middle curve indicates the additional expected normal advance by currently planned effort. The larger advance, which must be provided by NASA, is indicated by the separation between the center curve and the upper curve, or levels to which the technology is required to be advanced if the payloads are to perform their expected missions. Since each curve is independently cumulated, the level of advance for an individual item is not identifiable in this graph; but the area between the respective curves is indicative of the relative magnitude of the required effort. The upper curve shows that only about 22 percent of the technology items can be satisfied in the laboratory, level 5, and be ready for application or commitment to a program, whereas the remainder require some type of demonstration in an aircraft environment (level 6 or higher).

The second set of curves (Figure 3b) presents the number of steps of advancement between current and required versus cumulative percent, as well as that between unperturbed and required advancement. There is a small but significant difference between the two. Here the differences were taken before calculation of percentage. The upper two curves show the overall magnitude of the advance required. For the current to required, 34 percent of the items require only one step, whereas the upper 3 percent require five steps, and the average number of steps for all the items is 2.2. For the unperturbed to required, the average number of steps is 1.75.

The lower curve provides insight into how fast the technology must be advanced. It was derived by ratioing the number of steps to the number of years beginning in 1975 and counting up to the year in which the technology will be needed to support the payload development for flight in the early 1980s. A rate of one or more levels per year is considered critical and occurs for about 20 percent of the items.

The degree of difficulty in advancing the state of the art will depend not only on the number of levels to be advanced but where in the chain of advancement one is operating; and probably more importantly, it will depend on the specific item itself. In any event, since the unperturbed advance falls short of the required advance in 84 out of the 91 items, NASA should provide the major effort for the technology required of the payloads, otherwise the project schedule may be unduly delayed, cost increased, or the planned research may fail.

1.3 STUDY TEAM

The study was performed under the guidance and review of the NASA/OAST Payload Technology Panel and administered by Ames Research Center as indicated in Figure 4. The study was conducted by a contractor team led by Convair Division of General Dynamics and supported by Rockwell International Space Division and General Electric Space Division, with each team member having specific areas of responsibility related to their technology expertise.

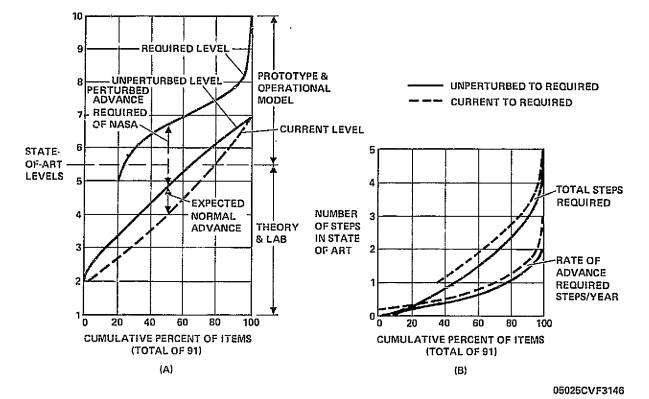


Figure 3. Summary Results

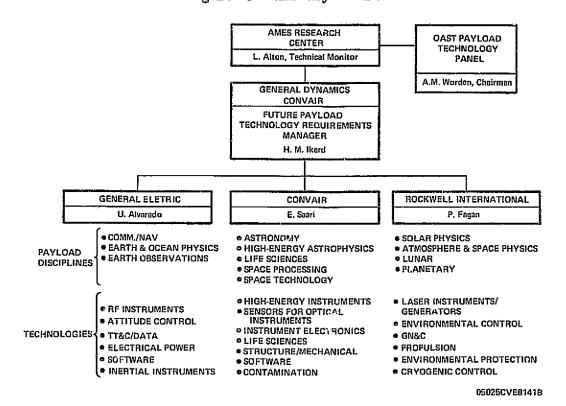


Figure 4. Study Responsibility

1 - 7

The responsibility for determining payload performance or characteristic parameters estimated to be beyond the current state of the art was assigned among the 12 payload disciplines used in the NASA SPDA activity. This allowed maximum use to be made of the team members' knowledge of the payload requirements gained from prior participation in the SPDA activity.

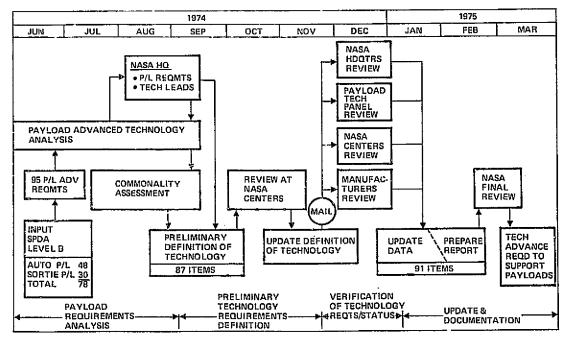
The responsibility for defining the advancement of the technology required to provide the payload performance was also assigned to technology specialists so that a solution or concept found for a requirement in one discipline could then be applied in others as appropriate. This approach allowed ready identification of commonality of requirements, thus minimizing the number of technology items to be defined.

OBJECTIVES AND RELATIONSHIP TO NASA PROGRAMS

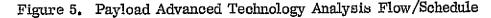
The objectives of the Future Payload Technology Requirements Study were to: 1) analyze the NASA payloads listed in the NASA 1973 Payload Model - with emphasis on those for the first five years of STS operation - to determine their performance or characteristic parameters estimated to be beyond the current state of the art, 2) define the technology advances required for these payloads to accomplish their objectives, and 3) identify the characteristics of these technology advances that will effectively assist the NASA technology effort.

A required technology advancement for purposes of this study is defined as any technology effort required to bring a concept through the feasibility and practicability determination phase (i. e., experimental laboratory or space environment demonstration) to the point at which the concept could confidently be included in the design of a new project and successfully pass full-scale prototype tests with low risk.

NASA is developing the Space Transportation System and the Spacelab, which will support the scientific and applications payloads analyzed in this study. Any payload performance that must be extended beyond that which is currently available needs to be accomplished within the appropriate time frame afforded by the STS/Spacelab schedules. An additional and important aspect is that the results of this study will be useful to NASA in its search for technology commonality in the Space Transportation System, Space Lab, and Payload Programs.


METHOD OF APPROACH

The approach used in this study was aimed at producing the most credible results possible. The nature of the task — assessment of technology requirements versus current state of the art — necessitated involving directly a large number of NASA and user/manufacturer technical personnel.


The Future Payload Technology Requirements analysis was performed in four main steps, time phased over a span of approximately eight months (Figure 5). These steps are:

- a. Payload requirements analysis.
- b. Preliminary technology requirements definition.
- c. Verification of technology requirements/status.
- d. Data update and documentation.

First, the payload advancement requirements were developed primarily by reviewing the July 1974 Level B SPDA data for Automated and Sortie payloads, which are those to be supported by the Space Transportation System during its first five years of operation. The data was screened for areas of payload performance requirements that were indicated to be beyond the current state of the art. The data was consolidated and

03035CVE8137

augmented by the contractor Payload Specialists. The Payload Technology Panel was briefed on the findings at the first progress review in mid August 1974.

These interim findings were presented and discussed with individual discipline specialists and subsystem and technology specialists at NASA Headquarters during the same visit. The discussions concerned:

- a. Early study results feedback and comments on these firdings.
- b. Other technology requirements additional items of concern or need as seen by the specialists.
- c. Contacts at NASA Centers other specialists who are knowledgeable in the area and could be of assistance in confirming state of the art.

An assessment of the commonality of these payload performance requirements was made, and preliminary technology advances (87 items) required to support these payload requirements were identified.

During the early part of the second step a first version of the technology definitions, based on the payload requirements, was made to obtain an understanding of the technology advances required and how they would relate to the state of the art. These technology findings were forwarded to previously identified knowledgeable specialists at the NASA Centers and JPL a few days before the visit. Visits were planned and scheduled as to date and hour, then confirmed or revised by telephone. Each item was reviewed on a one-for-one basis with the specialists during the visits. The discussions usually lasted from one to three hours and involved from two to six persons. Major topics discussed were: current state of the art versus requirements, expected advances, foreseen problems, and current or planned research work going on in the field. This collected data and information were used as the basis for revising the technology items and determining sources of information outside NASA.

The third and major step was that of updating the technology requirement definition, including the identification of options, potential problems, and technology schedule estimates. These revised technology definitions were mailed to NASA technology and discipline specialists for their review to verify that their applicable inputs had been properly interpreted and incorporated. A similar mailing was conducted with universities, manufacturers, and research organizations to obtain their review and critique of state-of-the-art assessment, options, potential problems, and technology schedule.

In the case of NASA, selected items, as well as supporting or related items, were sent to those who had previously contributed to them. For the other groups; e.g., manufacturers/users, interest was established or confirmed by telephone in most cases. The fourth step consisted of incorporating all appropriate revisions suggested by the results of the previous step and preparing the summary and final reports.

In summary, the inputs have included verbal and written comments and data from NASA Headquarters, NASA Centers, Jet Propulsion Laboratory, and one university, University of California at Berkeley, to which a visit was made. Written comments and supporting data and references were received from the other contributors. The participants' major contributions have been as follows:

NASA Headquarters: Review and verification of payload performance requirements and identification of cognizant technology specialists at the centers.

NASA Centers: Review and verification of the state of the art of technology items and identification of planned programs.

Universities, Research Organizations, and Manufacturers: Review of the current state of the art, technology problems/options, unperturbed technology advancement, and technology advancement schedule.

All participants in this study are identified in Appendixes A and B. Their distribution by technology category was given in Figure 2, and their geographic distribution is indicated in Figure 6.

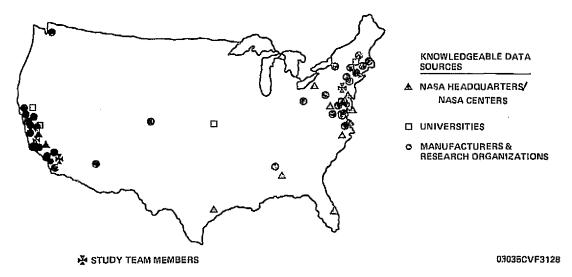
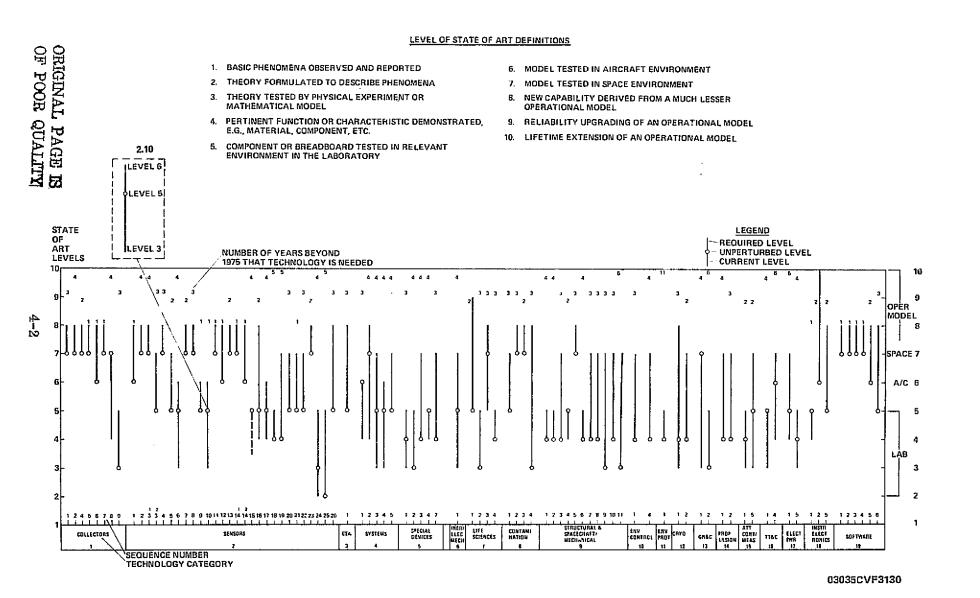


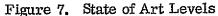
Figure 6. Geographic Distribution of Participants

SECTION 4 RESULTS

The overall results of this study show that a large number of technology items require advancement and that NASA will be required to provide most of this advancement. These items are identified and their state-of-the-art levels along with need dates documented. The type of detail data provided by this study is described below.

4.1 STATE-OF-THE-ART LEVEL

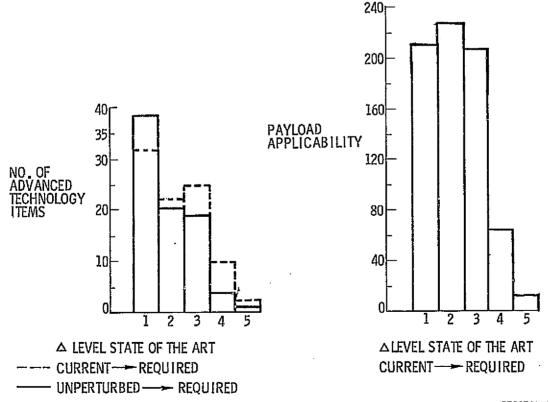

The levels of the state of the art for the technology items are summarized graphically in Figure 7 for overall visibility. The ordinate indicates the various technology levels. The items represented by individual vertical lines are in numerical sequence within a technology category. The lower end of the line indicates the current level of the state of the art, while the upper end indicates the level to which it has been estimated that the technology should be advanced to meet the intended application (see legend in Figure 7).


The circle on the line indicates the unperturbed level or expected normal advancement by the time the item is needed. Since NASA must provide the main advancement beyond the unperturbed level, this level becomes the significant reference point. Some steps may be bypassed or not required in a specific item. Detail planning of the technology development would indicate what should be done.

The length of the line is indicative of the magnitude of the task required to advance that particular item from the current or the unperturbed level, as the case may be. For example, the sensor item 2.10, which is a VIS-IR luminescence mapper, (see insert in Figure 7) requires level 6; i.e., a demonstration in an aircraft environment. It is indicated to be at the current level of 3 but is expected to be advanced to level 5 or be demonstrated in the laboratory by the technology need date, estimated to be 1976. One additional step, from level 5 to level 6, is necessary to bring the item to required maturity level, which is flight test in an aircraft before commitment.

For a second example, even if the line is short, which is the case of item 1.1 (the large gamma ray survey instrument), a problem of advancement may be significant. The sensitivity and spatial resolution is to be advanced in this requirement. An increase in area by a factor of 130 is indicated for this instrument, and at the same time it must maintain high efficiency and energy resolution. A similar but much smaller in-strument has been operated in space. The extrapolation of its performance to the level of this new requirement is judged to be a major technology problem.

When the need date is imposed on the number of steps and a rate of advancement number of steps per year is determined, the problem in the first case, sensor item 2.10, is seen to be very critical if the unperturbed level should remain at the current level. A rate of



3 steps per year is required, counting from 1975. However, the rate does become more reasonable, or one step per year, if the unperturbed level is used as the reference. The number of years from 1975 to the need date of the technology is indicated by the numbers 1 to 11 along the upper part of the chart.

The number of steps in change of level of the state of the art shown for each item in Figure 7 is used to summarize the number of items by level, as given in Figure 8. The chart on the left shows that more than one-half of the items require an advance-ment of more than one magnitude level. The magnitude of the problem is indicated, but the criticality – discussed in the next section – is dependent also on the time factor.

The second chart in Figure 8 shows how the payload population, to which the technologies will benefit, fits into the picture. Its shape is substantially the same as that of the other chart, which tends to show that the number of technology items in the respective steps is proportional to the number of payloads that benefit from them. In other words, the technology advancement required is fairly well distributed throughout the payloads reviewed for applicability.

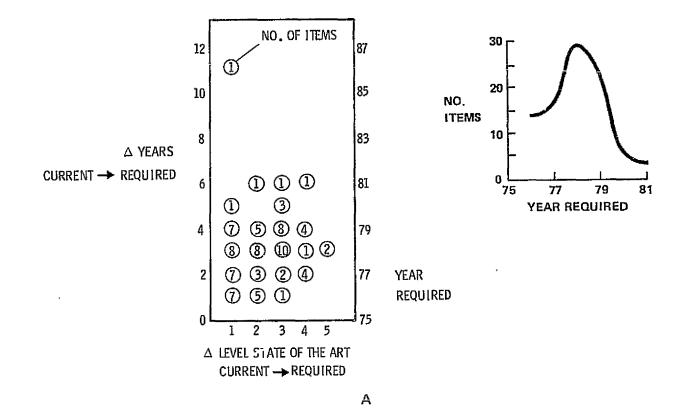
05025CVF3147

Figure 8. Technology Items Summarized by Steps in State-of-Art Level

4.2 TIME FACTOR IN TECHNOLOGY ADVANCEMENT

The previous section discussed magnitude of technology advancement; however, the time to make the advancement can be critical when the rate exceeds approximately one step per year.

The three-dimensional histogram in Figure 9a shows the number of technology items for the various delta levels of the state of the art and the year in which the technology is needed. Most of the items are required to be satisfied within the first four years and are fairly well distributed. For example, approximately one-fourth of the items become due each year. There is a flat peak of 29 items in the third year. Items that fall near the lower right corner of the chart have the potential of requiring the most and immediate attention.


The chart in Figure 9b shows how the items vary with rate of advancement. Technology items considered critical are identified by numbers and descriptive titles. For example item 2.21, which is large electrographic camera, is beneficial to astronomy payloads. The required resolution and field size is a factor of two better than current technology in the laboratory, which is level 5. The technology advancement could be satisfactorily demonstrated on a rocket flight, a level 7, which is testing in the space environment. The need date for this demonstration is 1976; therefore the required rate is two steps per year. The currently planned effort is not expected to move the technology beyond the current level of 5; therefore NASA must provide a substantial effort at a fairly high rate.

A second example is item 8.4, which has to do with development of techniques and/or equipment contamination avoidance. This technology is required in 1978; it has been carried only to level 3 and needs to be demonstrated on the initial shuttle test flights, then finally tested on selected optical model telescope payloads on shuttle sortie missions. The required rate of advancement is 1.6 steps per year. Here again, no one is expected to make appreciable advancement with this item outside NASA. It could be beneficial to all optical type payloads.

4.3 LISTING OF REQUIRED TECHNOLOGY ADVANCEMENTS

Certain payloads in the various scientific and applications disciplines have been identified as benefitting from advancements of the specific technology. The technology items are identified by decimal numbers, which are entered in the applicable discipline column in Table 2. The number preceding the decimal point denotes the technology category, while that following indicates the item sequence in that category. The commonality of application is indicated by the appearance of a particular item number in more than one discipline column.

Of the total 91 items, almost one-third are in the sensor category. This may not be surprising since almost all payloads have some type of sensor (or detector), and the

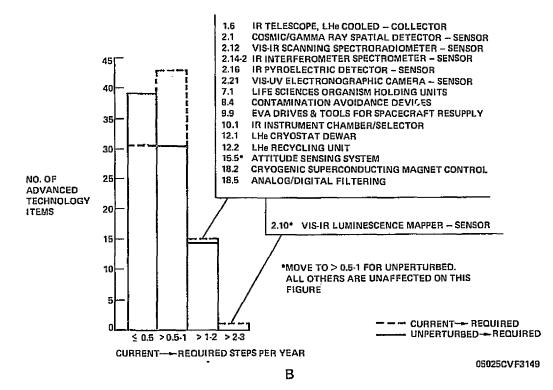


Figure 9. Technology Need Date and Rate of Advancement Required

Table 2. Technology Items by Benefiting Discipline

í.

	· · · · · · · · · · · · · · · · · · ·	DISCIPLINE												
	TECHNOLOGY CATEGORY	No. of Items In Category	(economic and a seconomic and a	Allen Lines	Control of the second s	4000 Minosopher	Participant of the second	Autra Cours	Sales Pre-	Life on	Stores Permission	A.	to solution to sol	
1.	Collectors	ß	1.4,1.5,1.6	1.1,1.2			1,9	1,7,1.9			1.9		1.8	f
2.	Sensors	! [2.7,2.14-1,2.6 2.14-2,2.19, 2.20,2.21,2.22,	2,3-2,2.4,2.5,	2. 7, 2, 22	2.22	2.8,2.9,2.10, 2,13,2.13,2.17, 2.22,2.23	2, 9, 2, 13, 2, 16, 2, 22, 2, 18	2,25	3.18	2,11,2.24, 2,25	2.15, 2.22	2.18	2, 22
3.	Generators	1											3,1	
4.	Systems	5				4.5		4.3,4.4		:	4.1	4.2		
5.	Special Devices	5			5.7		5.7	5.7	5.1, 5.2			5.3	5.4	, J
6.	Inertial/Electromechanical	1		1				6.1	9,2					
7.	Life Sciences	4								7.1,7.2				
8.	Contamination	4	8.1,6.2,8.3,8.4	6.1							8.1.8.2,8.3, 8.4			
9.	Structural & Spicecraft Mechanical	111		9, 3, 9, 6, 9, 7, 9, 8, 9, 9, 9, 10, 9, 11				9.7,9.8,9.9, 9,10,9,11			9,1	9,5	9.2,9.7,9.8, 9,9,9,10,9.11	
10.	Environmental Control	2	10.1					l.			10.4			
11.	Environmental Protection	1										11.1		
12.	Cryogenic Control	2	12,2	12,2		12.1					12,1			
13.	GN&C	2										13.1, 13.2		13.2
14.	Propulsion	2										14.1	14,2	
15.	Attitude Control/Measurement	2	15.1	15.1			15,5							
16.	TT&C/Data	2	16.4				16.4					16.1		
17.	Electrical Power	2		1		17,5	17.1	17,1					17.1,17.5	
19,	Instrument Electronics	3	[18.1,18.2	18.1	1		18.5				(Í	
10.	Software (Total number of items - 91)		19.1,19.3,19.4, 19.5	19,1,19,3,19,4, 19,5	19.1,19.4,19.5		19.1,19.2,19.3, 19.5,19.6	19,1,19,2, 19,5,19,6	19,1	19.1	19,1	19.1	19.1	19,1

4-6

ORIGINAL PAGE IS OF POOR QUALITY spectrum of measurement is quite varied from sensor to sensor, whereas in the solution of a technology problem in a category such as TT&C, electrical power or instrument electronics can apply to a variety of payloads or even to disciplines.

The technology requirement items are fairly well distributed throughout the disciplines. The specific technology items applicable to each discipline and the payloads within the discipline have been identified.

Table 3 shows the list of the technology items, along with the state-of-the-art levels, need dates, and applicable number of payloads for each item that were used in the analysis and discussions in the preceding sections. Important data included are the differences in levels between the current state of the art and the required state of the art and the technology need dates. As pointed out in the summary, the degree of difficulty in advancing the state of the art will depend not only on the number of levels to be advanced but where in the chain of advancement one is operating, and probably more importantly it will depend on the specific item itself. In any event, since the unperturbed advance falls short of the required advance in 84 out of the 91 items, NASA should provide the major effort for the technology required payloads, otherwise project schedules may be unduly delayed, costs increased, or the planned research may fail.

4.4 DATA PROVIDED ON EACH TECHNOLOGY ITEM

The data provided for each technology item are given in a three-page format. The requirements are stated, state of the art indicated, options and problems identified, and finally a schedule to close the technology gap is shown. The structure of the data form, an example, and a description of content are shown in Figure 10.

	[S	tate of .	Art	No. of		1 7	
Category Application	Technology† Assignment	ltem No.	Technology Item		Unper- turbed		Levels C-R	Nceci Date	No. of P/L	Remarks '
COLLECTORS					-					
Gamma Ray	С	1.1	Large Gamma Ray Survey Instrument — Sensitivity	7	7	8	1	78	2	Area Increased by Factor of x 130
X-Ray	с	1.2	X-Ray Telescope Sensitivity, Spatial Resolution, FOV	7	7	8	1	79	3	Area Increased by Factor of x 120
UV·IR	C	1.4	Large UV-IR Telescope Optics - Figure, Efficiency	7	7	8	1	77	5	Stray Light Control
IR	С	1.5	Infrared Telescopes – Improved Sensitivity, Minimized Local Flux	7	7	8	1	76	5	Benefits most IR Payloads
IR	С	1.6	LHe Cooled Telescope – Extended Design Lifetime	6	6	8	2	76	1	Minimize Local Flux and Cryogen Usege
IR	C	1.7	IR Scanner/Radiometer – Improved Temperature Measurement Accuracy	7	7	8	1	77	1	IFOV vs. Collector Area
VIS-IR	с	1.8	Laser Optical System - Alignment	4	7	7	3	79	1	Several Additional Lase Experiments Planned
Microwave	GE	1.9	Large Microwave Antenna Arrays — Alignment, Flatness	3	3	6	2	78	5	Dimensional Stability vs. Environment
SENSOR\$			-							
Cosmic Ray	с	2.1	Cosmic/Gemma Ray Spatial Detectors — Resolution, Stability	6	6	8	2	76	4	Dimensional Stability
X-Ray	C	2.2	X-Ray Transmission Grating – Dimensional Stability	7	7	8	1	79	6	Survive Launch and Orbital Environments
Х-Яау	С	2.3-1	X-Ray Maximum Sensitivity Detector – Sensitivity, Charged Particle Rejection	7	7	8	1	79	4	Closad Cycle Cryogenic Cooling System

Table 3. List of Required Technology Advancement Items

† C - Convair, GE - General Electric, RI - Rockwell International

				5	tate of A	TT _	No. of			
Category Application	Technology† Assignment	Item No.		Cur- rent	Unper- turbed		Levais C→R	Need Date	No. of P/L	Remarks
SENSORS (Co	ntd)									
X·Ray	С	2.3-2	X-Ray Polarimetor – Sonsitivity, Dimensional Stability	5	5	7	2	78	4	Crystal Slah Tharmal & Dimensional Control
X-Ray	С	2.4	X-Ray Proportional Counter — Spectral, Spatial & Temporal Resolution	7	7	8	1	78	4	Wire Grid vs. Solid Stat Arrays
X-Ray	с	2.5	Modulation Collimated Scintillation Counters – Spatial Resolution	5	5	7	2	77	2	Machanical Modulation
X-Ray	GE	2,6	X-Ray Converter/Intensifier -	3	5	7	4	79	1	Desire 108 Picture
			Increased Resolution, Veriable FOV							Elaments/Frame Resolution
UV	C	2.7	Echelle Spectrograph — Increased Sensitivity & Spectral Resolution	7	7	8	1	77	5	Structural Stability, Stray Light Control
VIS-IR	C	2,8	VIS-IR Mapper/Sensor Assy Improved Accuracy, Resol., IFOV	7	7	8	1	78	4	Mechanically Scanned vs. Static Matrices
VIS-IR	C	2.9	Themetic Mapper – improved Registration Accuracy	5	6	6	1	76	4	Improvement Factor X 10
VIS-IR	C	2.10	VIS-IR Luminescence Meoper – Improved Spectral Resolution	3	5	6	3	76	1	Datection within Fraunhofar Lines Spectral Bands
VIS-IR	C	2,11	VIS-IR Mapper for Coastal Zone Oreanography – Accuracy, Resolution, IFOV	7	7	8	1	76	1	Multispectral Line Scanners
VIS-IR	C	2.12	Scanning Spactroradiomatar — Improva Accuracy, Reduca IFOV	6	8	8	2	76	2	Multispectral Redio- metric Messurements

† C – Convair, GE – General Electric, RI – Rockwell International

ORIGINAL PAGE IS OF POOR QUALITY

1

4--8

				5	tete of i	Art	No. of				
Category Application	Technology† Assignment		Technology item		Unper- turbed		Levels C-+R	Need Date	No. of P/L	Remarks	
SENSORS (Cor	ntd)										
VIS-IR	С	2,13	Ocean Scanning Spectrophotom- eter – Improve Accuracy, Reduce IFOV	7	7	8	1	77	2	Multiband Rediometric Measurements	
IR	С	2.14-1	IR Photometer — Select Yarious Nerrow Bands in 2-1000 m Range	7	7	8	1	76	3	Compatible with Cryo- ganically Cooled Telescopes	
IR	C	2.14-2	IR Interferomoter Spectrometer – Increased Spectral Range & Resolving Power	6	6	8	2	76	5	Thermal Control in 1.5K-2K Range	
IR	RI	2.15	IR Interferometer Spectrometer – Reduced Redistion Effects	•	•	5	-	79	1	Operate in supiter Rediation Environment	
IR	С	2.16	Pyroelectric Detector – Increased Detectivity Without Cryo Cooling	4	5	8	4	77	4	Attempt Room Temper- ature Operation	
Microwave	GĔ	2.17	Soil Moisture Sensor – Develop All-Weather Capability	4	5	6	2	79	2	Active and/or Passive Microwave Techniques	
Microwave	GE	2.18	Range and Range Rate Sansing – Improved Performance, Reduced Size and Weight	4	4	5	1	80	2	Performance Insprove- ment Factor x 10	
VIS·UV	С	2.19	High Resolution Photon Counting Detector – Improved Resolution and Dynamic Range	4	4	7	3	80	4	Better Match of Electronic Imaging Device Capa- bility to Optics	
VIS-UV	с	2.20	VIS-UV Polarimeter – Improved Sensitivity and Resolution	5	5	7	2	78	2	Multapectral Band Measurements	

Table 3. List of Required Technology Advancement Items, (Contd)

*There is some DOD activity

† C - Convair, GE - General Electric, RI - Rockwell International

				S	tate of	Art	No. of			
Category Application	Technology† Assignment		Technology Item		Unper- turbed		Levels CR		No. of P/L	Remarks
SENSORS (Con	nd}									
VIS·UV	С	2.21	Electronographic Camera - Higher Sensitivity, Improved Resolution	5	5	7	2	76	4	Large Area, Large Angle, Noiseless Gain
IR-XUV	C	2.22	Universal Filters – Arjustable Band Pass and Wavelength	5	5	7	2	78	52	Permits High Accuracy Filter Photometry & Broad Application
IR-VIS	C	2.23	Advanced Atmospheric Sensors Group — Intproved Accuracy, Selectivity and Resolution	7	7	8	1	77	3	Measura Atmospheric Pollutants and Natural Constituents
Gravity Measurement	GË	2.24	G-Jitter Determination Develop Measurement Instrumentation	2	3	5	3	79	12	Define Shuttle and Spacelat Operating Environment
Mass Measurement	GE	2.25	Mass Maasurament — Develop Device for Use in Zero G	2	2	5	3	80	2	High Accuracy and Very Small Masses Involved
Relativity	RI	2.26	Precession Gyro — High Accuracy Readout	5	5	Ŀ	3	78	1	Related to Relativity Theory
GENERATORS	3									
Lasar Comm.	RI	3.1	Lasèrs	5	5	8	3	78	1	Leser Diode Pumping for Nd:YAG Leser Communication
SYSTEMS										
IR	RI	4.1	LIDAR System – Davelop Space Qualified System	4	6	6	2	78	1	Cloud Measurements, Aerosol Analysis
IR	81	4,2	Nephelometer — Analysis of Planetary Atmosphere	4	7	8	4	79	4	Operate in Plenetary Environment
Microwava	GE	4.3	Synthetic Aperture Radar – Multifrequency, Wideband	3	5	7	4	79	1	Need Onboard Compensa- tion for Doppler Effect

† C - Convair, GE - General Electric, RI - Rockwell International

ORIGINAL PAGE IS OF POOR QUALITY

Table 2. List of Required Technology Advancement Items, (Contd)

Category Application	Technology† Assignment	ltem No.	Technology Item	Cur	tate of Unper- turbed	T	No. of Lovels C-R	Need Date	No. of P/L	Bamarks
SVSTEMS (Cor	ntd)	1		I	1	t			L	
Microwave	GE	4.4	Wave Height Altimeter – Improve Mussurement Precision	3	5	6	3	79	١	Desire All-Weather Capability
Radio	GE	4.6	Transmitter/Coupler System – High Power Xmission — Short Antenna — Ret Wave Length	5	5	7	2	79	1	Automatic Antenna Tuning Devices Required
SPECIAL DEV	ICES		•							
Liquid & Solid	GE	5.1	Levitation Unit – Provide Position & Temperature Control	3	4	5	2	78	3	Space Processing in Micro-Gravity
Bio & Organic	GE	5.2	Electrophoretic Column/Fractional Collecting System – Fluid Handling Techniques	3	3	5	2	79	2	Reduced Wall Contami- nation Necessary
Encke Particles	RI	5.3	Solids Analysis Packaga – Chemical Analysis of Comet Tail	4	4	7	3	79	2	Measure Small Atomic Mass Units
Radio	GE	5.4	High Power, High Efficiency Transmitter – Communications	4	5	6	1	79	1	Circumvent Plesma Effects
Service	С	5.7	Self Aligning Multipin Electrical Connector Assembly	4	4	7	3	78	9	For resupply & Refurbishment
INERTIAL/EL	ECTROMECH	ANICA	L							
Gravity	GE	6.1	Accelerometer for Gravity Measurements	3	5	7	4	79	1	Improve Sensitivity Factor x 10 ³
LIFE SCIENCE	S									
Biological	С	7.1	Life Sciences Organisn. Holding Units — Development	5	5	9	4	77	2	Environmental Control, Waste Management, Data Interface

† C - Convair, GE - General Electric, RI - Rockwell International

		-		5	State of	Art	No. of			
Category Application	Technology† Assignment		Technology Item		Unper- turbed		Levals C-+R	Need Date	No. of P/L	Remarks
LIFE SCIENCE	S (Contd)									
Bio-Functional	С	7.2	Bioresearch Centrifuge Development	3	3	5	2	78	1	
Electro-Mech	С	7.3	Teleoparator Subsystems — Development	5	7	8	3	78	1	Video Displays, Manip- ulators, End Effectors
Biological	C	7.4	Surgery in Space-Zero G Techniques	4	4	5	1	78	2	Tool & Instrument Rete tion, Fluid Confinement
CONTAMINAT	ION									
Optical Br Plasma	С	8.1	Active Cleaner - Optical Surfaces	5	5	7	2	80	9	Extend Useful Life Space Optics
IR-X-Ray	С	8.2	Advanced Contamination Monitors Develop Instrumentation Set for Telescope Internal Monitoring	7	7	8	1	78	9	Sensitivity Improvement Factor x 10
IR•X•Ray	С	8.3	Contamination Process Mechanisms - Better Understanding	7	7	8	1	77	9	Theoretical Models, Lab & Space Experiments
IR-X-Ray	C	8.4	Contamination Avoidance Davices - Development of Techniques & Equip	3	3	8	5	78	9	Improved Protective Measures
STRUCTURAL	& SPACECR/	AFT M	ECHANICAL							
Plasma & Fields	C	9.1	Instrument Boora, 50m — Alignment and Pointing Accuracy	4	4	5	1	79	5	Dynamic Response, Thermal Effects, Retractability
Free Flyers	С	9.2	Paylood Spacecraft Structure Weight Reduction	4	4	5	1	79	14	Critical for Geosynch Payloads
Cosmic & Gamma Ray	С	9.3	Protective Shell/Cover – Environmental Control	4	4	7	3	78	7	Thermal & Material Protection Without Degrading Signal

† C - Convair, GE - General Electric, RI - Rockwell International

	T	[<u> </u>	itate of	-	No. of			
Category Application	Technology† Assignment	No.	Technology Item		Unpe- turbo J		Levels C-+R	Need Date	No. of P/L	Remarks
STRUCTURAL	& SPACECRA	AFT M	ECHANICAL (Contd)							
(R-UV	С	9,4	Metering Structure, Solar Tele- scopes — Reduce Thermal Sensitivity	4	5	5	1	77	3	Dimensional Stability
Planetary	С	9.5	Entry Probe Low Weight Heat Shield Technology	7	7	8	1	78	3	Planetary Entry, Large ∆V
X-Ray	с	2.6	Instrument Mount/Selector – X-Ray Detectors	4	4	5	1	79	3	High Dimensional Accuracy vs. Space Environment
Service	¢ ·	9.7	Module Resupply Machanism	4	4	7	3	78	22	In – orbit refurbish/ resupply spacecraft
Service	С	9 .8	Spacecraft Docking/ Deployment & Rotention Mechanism	4	4	7	3	78	22	To launch or retrieve S/C while in orbit
Service	С	9.9	EVA Eqpt & Tools for Oper, Repair & Serv of S/C	3	3	7	4	78	22	To resupply and Refurbish S/C in orbit
Service	с	9.10	Remote Manipulator System End Effector Mechanism – Shuttle	4	4	7	3	78	22	To launch or retrieve or refurbish S/C in orbit
			to Spacecraft							
Service	С	9.11	Spacecraft to Tug Docking Mechanisms	3	3	7	4	81	14	Resupply & refurbish Spacecraft in Geosynch orbit
ENVIRONMEN	ITAL CONTR	OL								
IR	RI	10.1	Chamber/Selector – IR Instruments	4	4	7	3	78	5	Operate at Cryogenic Temperaturos at Minimum Losses & Local Flux
CO2 Descrption	RI	10.4	Zero Gravity Steam Generator – Development	4	4	7	3	79	1	Engineering Model Exists

Table 3. List of Required Technology Advancement Items, (Contd)

C - Convair, GE - General Electric, RI - Rockwell International

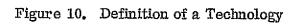
•

				S	tate of	Art	No. of	Need Date	1 7	
Category	Technologyt				Unper		Level		No. of	
Application	Assignment	No.	Technology Item	rent	rent turbed	Reqd	ú+R		P/L	Remarks
ENVIRONMEN	TA'. PROTEC	TION								
Planetary	RI	11.1	Structural/Mechanism — Thermal and Pressure Protection for Payload Instruments	4	4	5 .	1	. 86	1	Venusian Surface Environment
CRYOGENIC C	ONTROL									
Supercon- duction	Ri	12,1	Liquid Helium Cryostat Dewar — Develop Flight Weight Unit	3	4	8	5	78	٦	LHe (1.6K) required for Precision Gyro Cooling
IR (Long Mission)	. RI	12.2	Liquid Helium Recycling Unit — Develop Low Power, Long Life Unit	4	4	7	3	77	9	Three Systems Under Consideration
GUIDANCE, N	AVIGATION	& CON	TROL							
Planetary	RI	13.1	Long Term Guidance for Low Thrust Technology	3	7	7	4	79	4	Advanced Laser Gyros, Star Trackers, Software
Planetory	RI	13.2	Structures/Mechanism – Automatic & Remote Docking (Return)	3	3	5	2	81	1	Orbital Randezvous Required Controling Back Contamination
PROPULSION										
Planetary	Ri	14.1	Solar Electric Propulsion Stage – Development of Long Life Thrusters and Power Processor	4	4	7	3	79	4	High Impulse Required for Planetary Mission
Station Keeping	Ri	14.2	ion Engine Propulsion Subsystem — Develop Long Lifetime (10 years) Components	4	4	7	3	78	1	Long Life Station- keeping Thrusters
ATTITUDE CO	INTROL/MEA	SURE	MENT							
Astronomy & Physics	GE	15.1	Tracker/Field Monitor Assy Improved Sensitivity, Accuracy and Stability	3	4	5	2	77	18	Standerd Fine Tracker & Correlated Field Monitor
Earth Rosources	GE	15.6	Advanced Attitude Sensing System — Increased Accuracy	3	6	7	4	77	9	Accuracy Improvement Factor x 10

* C - Convair, GE - General Electric, RI - Rockwell International

ORIGINIAL PAGE IS

Table 3. List of Required Technology Advancement Items, (Contd)


	1			S	iate of a	Art	No. of			
Category Application	Technology1 Assignment	Item No.	Technology Item		Unper- turbed		Levels C-R	Need Date	No. of P/L	Remarks
TLM, TRACKI	NG & COMMA	ND								
Planetary	GE	16.1	Data Transmission System for Planetary Entry Probe-to-Bus Data Link	3	5	5	2	79	3	Stringent Size, Weight & Power Constraints
Monitor & Control	GE	16,4	Memory Unit for On-Orbit Functions Develop Small, High Cepacity Unit	4	6	7	3	81	3	Hapid Access & Large Memory
ELECTRICAL	POWER									
Planetary & Earth Appl.	GE	17.1	High Voltage Solar Array — Develop Low Weight, High Reliability Components	4	5	7	3	80	14	High Voltage Switching Devices Required
Plasma & Earth Appl.	GE	17.5	High Energy Density Battery – Develop Lightweight, Long Life Battery	3	4	5	2	79	14	Desire Power Density Improvement Factor x 2.5
INSTRUMENT	ELECTRONIC	cs								
High Energy	С	18.1	Subnanosecond Pulse Measurement & Correlation Detection	4	5	5	1	76	4	Time Interval Resolution Improvement Factor x 100
Cosmic Ray	C	18.2	Cryogenic Superconducting Magnet Control – Reduce Charge/Discharge Time	6	6	10	4	77	3	Minimize Lost Time in 7-day Flight
Gravity	С	18.5	Analog/Digital Filtering Increase to 19-bit Accuracy for Gravity Gradiometer	5	5	8	3	77	1	Minimize Error, Curve Fit

C - Convair, GE - General Electric, RI - Rockwell International

	T			S	tate of a	Art	No. of			
Category Application	Technology† A.signment		Technology Item		Unper- turbed		Levels C≁R	Need Date	No. of P/L	Remarks
SOFTWARE										
All Disciplines	с	19.1	Onboard Software Programs – Develop Low Cost Software for P/L, Operations	4	7	8	4	76	80	Cost Reduction Factor
EO&OP Discipline	С	19.2	Software for GN&C – Support High Accuracy Experiment Pointing	7	7	8	1	76	4	Better Accuracy
Astr & High Energy	С	19.3	Software for Attitude Control — Experiment Sensor Pointing	7	7	В	1	78	10	Better Accuracy & Filtering
Astr, HE & Solar Phy	C	19.4	Software for Expariment Control, Monitoring, Data Processing and Data Quality Control	7	7	8	1	78	6	Low Cost Compact Multichannel Exp. Correlation
All Disciplines	GE	19.5	Onboard Processing of Data for Payload Experiment/Operations	6	6	8	2	77	92	User Compatible On- Board Oato Processing
All Disciplines	GE	19.6	Data Retrieval and Ground Based Transformation and Distribution	5	5	8	3	78	58	Ground Based Quick Access Data Processing (User Compatibility)

+ C - Convair, GE - General Electric, RI - Rockwell International

Rev. 15 Nov. 1	074	
DEFINITION OF TECHNOLOGY REQUIREMENT NO. C. 1.1]	CONTENT OF FORM
1. TECHNOLOGY REQUIREMENT (TITLE), MINY THE NUT PAGE I OF 3		CONTENTOFFORM
Sensitivity, spatial resolution, conversion efficiency, energy resolution.		
2. TECHNOLOGY CATEGORY: <u>Collector</u> 3. OBJECTIVE/ADVANCEMENT ILEQUIRED: <u>Separativity of 10⁻⁸ cholosifem²/amp, and</u>		- PERFORMANCE REQUIRED OF EQUIPMENT
 OBJECTIVE/ADVANCEMENT INEQUIRED: <u>Statistical of the interference of the </u>		OR PROCESS
conversion efficiency 50% or better, energy resolution 10%.		
4. CURRENT STATE OF ART: Current state-of-art 10" interima/am2/sec. activacelles		- CURRENT PERFORMANCE THAT CAN BE RE-
area 1 m ² , angular resolution 1' in balloon filth), 1/16m ² in space flight to date.	<u></u>	LATED TO THAT REQUIRED
5. DESCRIPTION OF TECHNOLOGY - The large gamma ray survey instrument will	-	
probably use detectors in spatial measurement compatible layers (laminates) to convert		- RELATIONSHIP BETWEEN REQUIRED & CUR-
incident gamma ray energy in the range 20 in 10 ⁶ MoV to positron-electron pairs. Sobse- quent layers of detectors can use charged particle detectors to resolve lower energy com-		RENT STATE OF THE ART
potents. Detectors that work in the pair production region have distinct advantages such a		
the fact that each photon transfers must of its energy to an electron-positron pair and the electron-positron pair preserves the direction information of the photon fairly well. To		_ RATIONALE FOR SELECTING PARAMETERS
J data, the troical generation between the pairs in $M_{\odot} C^2/E_{\rm data}$ (should 3 deg. at 100 Mg)	a	THAT DROVE TECHNOLOGY & BENEFITTING
The scassi angular resolution will be limited by the multiplatestering of the electron- positron peirs (i deg. achieved to date). Rejection of charged particles flux is important	31x. 13 Nov. 1974	PAYLOADS OF DISCIPLINES
since number of obarged particles duting part of observation orbit may exceed the gamma	10.000	
TAY FIRE UP to 1000 UNCO. P/L REQUIREMENTS BASED ON: PRE-A. A. 1 1 6. RATIONALE AND ANALYSIS:	PAGE 2 OF 1	WHAT IS TO BE DONE TO DEMONSTRATE
a. Trades to effective area, sensitivity/unit area, energy resolution, angular sensitivity,		THAT TECHNOLOGY HAS BEEN ADVANCED
field of view, and degree of rejection of charged particles lead to a compromise. Com ponents involved include a surrounding (usually) plastic solutillator which provides and provides and the solution of the	our high - ay gamm.	SATISFACTORILY FOR INCLUSION IN PRO-
Colocidence Action a contenter satisface must produce a removation report of	The second se	GRAM
cause pair production, intermediate surdwiches or spatial detectors for tract location and energy discriminators at the bottors to measure energy of incident photons (or con-	3 consists of a spark	GRAW
popepts at lower energies). Discrimination data are recorded to identify charged par-	noer japa are used	
particles, or nestral primaries as well as gamma rays where apti-coincidence mathod fait. Auxiltary measurements of shower development, accordary containment, and re-	ac acteolistor. Vo to	- HOW PAYLOAD IS AFFECTED BY VARIATION
sponse of anticolocidence grand counters enable estimates of what fraction of output is due to freak events.	HAMICTO & CRACO DE-	IN CRITICAL PARAMETERS & POTENTIAL
b. Two phylosels IIE-10-8 (1981), High Energy Camina Ray Servey and HE-05-A, Large	C uses this success	PROBLEMS IN ADVANCING STATE OF THE
Righ Energy Observatory A (Gamma Ray), 1086, here 'it from development of capability c. The instrument will perform in sortio and automated missions to give a full sky survey		ART
with a sensitivity and resolution a factor of 10 better than previously accomplished.	11175 Max entities 20	
(Final Report, High Energy Astrophysics Working Group Report, May 1973). d. Smaller gamma ray instruments (OSO iii Gamma Ray Detector, Cornell Colversity)	e-bra spark chamber	ALTERNATIVE TECHNOLOGIES THAT MAY
photocraphic snark chamber telescope for balloon use, and the Goddard Digitized Spar	and atability affect	BE APPLICABLE - ANOTHER WAY THAT
Chamber Gamma Ray Telescope updicate current state-of-art (10 ⁻⁵ to 10 ⁻⁷ photos/cu see). When 10 ⁻⁵ obtions/cm/see sensitivity with tim ² effective area has been achiever		MAY BE ACCEPTABLE
(b) 10 ⁻¹ pre-tony/provides constrainty with the "circuit real and a summary (by 1981), above cochaplegy requirements is suitained. Thering to a subunit sortie fit, is expected prior to tonger term automated flight. TO BE CARRIED TO LEVEL 8	It compromise va	
9. POTENTIAL ALTERNATIVES: Track measuring devices cost		LIST OF ON-GOING OR PLANNED TECHNOLO-
for material with resistive reasons or in terms of differences in it being considered in lieu of spark chambers with arrays of photoms	me to locate an event are	GY PROGRAMS THAT ARE CLOSELY RE-
photographic cameras. Spatial detection can be improved by use	a large number of this	LATED TO THE TECHNOLOGY & EXPECTED
plates, however, energy resolution can be improved by long hears gether in the desired area array. Each heargonal segment could	anal segments glued to- ls 87 bb 83 90 31	UNPERTURBED LEVEL
multiplier.		
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY AI BTOP W74-78649 (183-45-57), Gamma Ray Astronomy, Albert 	WARCEMENT:	
b. RTDP W74-70650 (185-46-57), Gamma Ray Astronomy, C. R.	Fichtel (301) 262-6281.	OTHER TECHNOLOGY ADVANCES NECES-
 RTOP W79-10651 (189-46-54), Astrophysical Investigations on Albert G. Opp (202) 755-3665. 	the Space shuttle.	SARY TO SUCCESS OF STATED REQUIRE-
d. RTOP 7/74-652 (188-64-64), Stutile Definition Spulles for High		MENT
	ERTURBED LEVEL I	
11. RELATED TECHNOLOGY REQUIREMENTS:		NEED DATE OF TECHNOLOGY TO SUPPORT
 C-29, C-93 Protective shell/cover to easile holding of interes of a selected temperature between 265% and 305%, cleanlines 	s to class 1000, press-	FLIGHT SCHEDULE
uritation to one simosphere, minimum gamma ray attenuation minimum protective shell secondaries, $Z < 20$.		
minument proverney about secondaries, 2 < 20.		- PAYLOAD LAUNCH DATES - NO. LAUNCHES
TECHNOLOGY NEED BATH		- LIST OF DATA SOURCES
NUMBER OF LAUNCHES		and at synthese and a second
14 REFERENCES		
a. Summarized NASA Payload Dear	rintion	05035CVF3129
inty 1374, pages 106-100		

ORIGINAL PAGE IS OF YOOR QUALITY

CONCLUSIONS

Much fundamental understanding of the payload requirements in the scientific and applications disciplines and the technology advancements required to meet these requirements exists respectively within the NASA scientific and technology community. This study has tended to bring into focus and compare, on a one-to-one basis, the requirement versus state of the art.

A large gap exists between the performance requirement and current state of the art for many of the payloads. The scaling laws to make logical extensions are not always understood and require revision as the technology advances. Therefore, the precision of prediction is diminished as the ratio of improvement increases, which is one to two orders of magnitude in the case of some collectors and sensors. There will be an advancement toward closing this gap, but unless NASA provides the resources for it, the advancement will not be sufficient by a large margin. Only 8 percent of the defined technology items will be ready when needed unless NASA provides the major effort for the required technology.

Some technologies require large improvement over that which exist today, some require several levels of advancement, and most are required to be advanced to the required level within the next three to four years to support the NASA payload mission schedule. The time rate of advancement is critical for about one-fifth of the technology items.

The payloads in the second five years of the shuttle era will be more advanced than those planned for the first five years. The study emphasis was on those payloads planned for the first five years whose performance data available for review was defined to level B detail, while the more advanced payloads were defined only to level A. However, the performance requirements of these later payloads are sufficiently well understood to warrant initiation of their review and analysis to ensure that the technology advancements identified here and the subsequent operation of their benefiting payloads do indeed lead to the planning of a technology program that is timely and continuous.

RECOMMENDED FUTURE EFFORT

Five areas of future work based on the findings of this study are indicated.

- a. A direct and logical next step is the development of technology program planning requirements such as the estimate of cost, schedule, and technical benefit of the technology advancement and the selection of the optimum technology advancement approach.
- b. NASA is continuing to review and update its payload definitions and performance requirements, therefore the technology advancement requirements should be updated in consonance with that activity. The methodology has been proofed during this study.
- c. The definition of software has advanced technology requirements, since software has potential for impact on cost and performance with broad applicability. Software is crucial to basic payload performance.
- d. The definition of data processing and distribution technology advancement requirements is important, because the payloads generate an enormous quantity of data. The value of a payload is related to the quantity of information acquired and the timely use of that information. This technology has broad application in that it covers all disciplines and payloads.
- e. The assessment of perturbed versus unperturbed technology should be made. Such investigation would determine if any tangible penalties — such as increased payload cost, number of flights, or reduced mission effectiveness — can be identified that are attributed to not achieving the required performance level.

DEFINITION OF TECHNOLOGY REQUIREMENTS

The payload advanced technology requirements defined in this section were developed primarily by reviewing the July 1974 Level B Space Transportation S stem Payload Data and Analysis (SPDA) data for both Automated and Sortie payloads. The payloads are listed in Tables 4 and 5. The data was screened for areas of technology advancement indicated to be beyond the cur rent state of the art and judged to be required to meet the payload performance requirements. The data was consolidated and augmented by the payload specialists and reported to the NASA Payload Technology Panel at the first progress review in the working paper "Payload Advanced Technology Requirements", Report No. ATR-WP-001, dated 20 August 1974.

The technology advancement required to meet the payload performance requirement has been sorted and assembled by category (e.g., sensors, collectors) as indicated in Table 6. Two preliminary versions of these requirements were contained in working paper reports "Definition of Technology Requirements", Report No. ATR-WP-003, dated 31 October 1974, and "Future Payload Technology Requirements Study", Report No. ATR-WP-004, dated 6 December 1974. The estimates of each technology item identified have been documented on a basic three-page form with additional continuation sheets as required. The current state of the art is indicated for each item, the requirement stated, alternatives and problems identified and, finally, a schedule to close the technology gap is shown. The format and instructions for filling out the form are shown in Figure 11.

Certain payloads in the various scientific and applications disciplines have been identified as benefiting from advancements of the specific technology. The technology items were identified to the applicable disciplines in Table 2, page 4–6.

The technology requirements as defined in this study are presented in the forms that follow. The letter or letters preceding the item number have significance only in that they identify the study team member responsible for that item. Through the process of combining one or more items with another, or dropping some because the investigations show that the requirements were within the state of the art, a few gaps in the numerical sequence will be observed. Table 7 identifies the disposition of the missing items.

The symbols used in the definition forms are given in Table 8. The technology definition forms by category versus page location is given in Table 9 on page 7-11.

Table 4. SPDA Automated Payloads

ATMOSPHERIC & SPACE PHYSICS

* AP-01-A --

Note: Number in title is payload code number used in October 1973 NASA Payload Model.

ASTRONOMY

*AS-01-A -

* AS-02-A EXTRA CORONAL LYMAN ALPHA EXP (AST-1) _ * AP-02-A _ MEDIUM ALTITUDE EXPLORER (PHY-1) * AS-03-A – COSMIC BACKGROUND EXPLORER (AST-1) * AP-03-A _ HIGH ALTITUDE EXPLORER (PHY-1) AS-05-A -ADVANCED RADIO EXPLORER (AST-1) AS-07-A -3.0M AMBIENT TEMPERATURE IR TELESCOPE (NEW) AS-11-A -1.5M IR TELESCOPE (NEW) AS-13-A -UV SURVEY TELESCOPE (NEW) AS-14-A 1.0M UV-OPTICAL TELESCOPE (AST-8) _ AS-16-A -LARGE RADIO OBSERVATORY ARRAY (AST-8) AS-17-A -**30M IR INTERFEROMETER (NEW)** HIGH ENERGY ASTROPHYSICS *HE-01-A -LARGE X-RAY TELESCOPE FACILITY (AST-9) *HE-03-A -EXTENDED X-RAY SURVEY (AST-5) **HIGH LATITUDE COSMIC RAY SURVEY (AST-5)** HE-05-A -*HE-07-A --SMALL HIGH ENERGY SATELLITE (PAY-1) *HE-08-A -LARGE HIGH ENERGY OBSERVATORY A (AST-5) *HE-09-A -LARGE HIGH ENERGY OBSERVATORY B (AST-4) HE-10-A -LARGE HIGH ENERGY OBSERVATORY C (AST-5) *HE-11-A -LARGE HIGH ENERGY OBSERVATORY D (AST-9) HE-12-A -COSMIC RAY LABORATORY (PHY-5) SOLAR PHYSICS SD-02-A -LARGE SOLAR OBSERVATORY (AST-2) * SO-03-A -SOLAR MAXIMUM SATELLITE (AST-3)

*REQUIREMENTS DEFINED TO LEVEL B (48 PAYLOADS)

LARGE SPACE TELESCOPE (AST-6)

* AP-04-A	_	GRAVITY & RELATIVITY SATELLITE - LEO (PHY-2)
* AP-05-A	_	ENVIRONMENTAL PERTURBATION SATELLITE-
		MISSION A (PHY-3)
AP-06-A		GRAVITY & RELATIVITY SATELLITE-SOLAR (PHY-2)
AP-07-A	-	ENVIRONMENTAL PERTURBATION SATELLITE-
		MISSION B (PHY-3)
AP-08-A	-	HELIOCENTRIC & INTERSTELLAR SPACECRAFT
		(PHY-4)
EARTH OBS	ERVA	TIONS
E0-07-A		ADVANCED SYNCHRONOUS METEOROLOGICAL
		SATELLITE (EO·7)
* EO-08-A	-	EARTH OBSERVATORY SATELLITE (EO-3)
*EO-09-A		SYNCHRONOUS EARTH OBSERVATORY
		SATELLITE (EO-4)
*E0-10-A	-	APPLICATIONS EXPLORER (SPECIAL-PURPOSE
		SATELLITE (EO-5)
*E0-12-A	-	TIROS 'O' (EO-6)
* EO-56-A	-	ENVIRONMENTAL MONITORING SATELLITE (NN/D-8)
*E0-57-A		FOREIGN SYNCHRONOUS METEOROLOGICAL
		SATELLITE (NN/D-9)
*E0-58-A	-	GEOSYNCHRONOUS OPERATIONAL
		METEOROLOGICAL SATELLITE (NN/D-10)
EO-59-A	-	GEOSYNCHRONOUS EARTH RESOURCES SATELLITE
		(NN/D-12)

UPPER ATMOSPHERE EXPLORER (PHY-1)

- *EO-61-A EARTH RESOURCE SURVEY OPERATIONAL SATELLITE (NN/D-11)
- FOREIGN SYNCHRONOUS EARTH OBSERVATORY EO-62-A SATELLITE (NN/D-13)

Table 4. SPDA Automated Payloads (Cont'd)

EARTH & OCEAN PHYSICS

7-3

PLANETARY

31 SHUTTLE DELIVERED P/L 50 Shuttle + Tug Delivered P/L

* OP-01-A	_	GEOPAUSE (EOP-4)	* PL-01-A	_	MARS SURFACE SAMPLE RETURN (PL-7)
* OP-02-A	_	GRAVITY GRADIOMETER (EOP-5)	PL-02-A		MARS SATELLITE SAMPLE RETURN (PL-8)
* OP-03-A	_	MINI-LAGEOS (EOP-6)	* PL-03-A		PIONEER VENUS MULTIPROBE (PL-10)
* 0P-04-A	_	GRAVSAT (EOP-7)	PL-07-A		VENUS RADAR MAPPER (PL-11)
* 0P-05-A		VECTOR MAGNETOMETER SATELLITE (EOP-8)	PL-08-A		VENUS BUOYANCY PROBE (PL-12)
* OP-06-A	-	MAGNETIC FIELD MONITOR SATELLITE (EOP-9)	PL-09-A	_	MERCURY ORBITER (PL-13)
* OP-07-A	_	SEASAT -B (EOP-3)	PL-10-A		VENUS LARGE LANDER (PL-14)
0P-51-A	_	GLOBAL EARTH & OCEAN MONITOR SYSTEM (NN/D-14)	* PL-11-A	-	PIONEER SATURN/URANUS FLYBY (PL-18)
			* PL-12-A	-	MARINER JUPITER ORBITER (PL-19)
SPACE PRO	CESSII	NG	*PL-13-A	-	PIONEER JUPITER PROBE (PL-20)
* SP-01-A	_	SPACE PROCESSING FREE FLYER (NEW)	PL-14-A	_	SATURN ORBITER (PL·21)
01-01-74	_		PL-15-A	-	URANUS PROBE/NEPTUNE FLYBY (PL-22)
LIFE SCIEN	CES		PL-16-A	•***	GANYMEDE ORBITER/LANDER (PL-23)
			* PL-18-A		ENCKE RENDEZVOUS (PL-26)
*ls-02-a	-	BIOMEDICAL EXPERIMENT SCIENTIFIC SATELLITE (LS-1)	PL-19-A	-	HALLEY COMET FLYBY (PL-27)
SPACE TECH	เพกเม	nev	PL-20-A	-	ASTEROID RENDEZVOUS (PL-28)
			* PL-22-A		PIONEER SATURN PROBE (PL-17)
*ST-01-A	-	LONG DURATION EXPLOSURE FACILITY (ST-1)			
			LUNAR		
COMMUNIC	ATIOP	NS/NAVIGATION			
			*LU-01-A		LUNAR ORBITER (LUN-2)
* CN-51-A		INTELSAT (NN/D-1)	LU-02-A		LUNAR ROVER (LUN-3)
* CN-52-A	-	U.S. DOMSAT 'A' (NN/D-2)	LU-03-A	_	LUNAR HALO SATELLITE (LUN-4)
* CN-53-A	-	U.S. DOMSAT 'B' (NN/D-2)	L.U-04-A	_	LUNAR SAMPLE RETURN (LUN-5)
* CN-54-A		DISASTER WARNING SATELLITE (NN/D-3)			
* CN-55-A		TRAFFIC MANAGEMENT SATELLITE (NN/D-4)			
* CN-56-A	-	FOREIGN COMMUNICATIONS SATELLITE (NN/D-5)			
* CN-58-A	-	U.S. DOMSAT 'C' (NN/D-2)			
CN-59-A	-	COMMUNICATIONS R&D/PROTOTYPE SATELLITE (NN/D-6)			

CN-60-A – FOREIGN COMMUNICATIONS SATELLITE B (NN/D-5)

*REQUIREMENTS DEFINED TO LEVEL B (48 PAYLOADS)

Table 5. SPDA Sortie Payloads

ASTRONOMY

*AS-01-S		1.5M CRYOGENICALLY-COOLED IR TELESCOPE
*AS-03-S	_	DEEP SKY UV SURVEY TELESCOPE
*AS-04-S	-	1M DIFFRACTION LIMITED UV OPTICAL TELESCOPE
* AS-05-S	_	VERY WIDE FIELD GALACTIC CAMERA
AS-06-S		CALIBRATION OF ASTRONOMICAL FLUXES
AS-07-S		COMETARY STIMULATION
AS-08-S	_	MULTIPURPOSE 0.5M TELESCOPE
AS-09-S		30M IR INTERFEROMETER
AS-10-S	_	ADV. XUV TELESCOPE
AS-11-S	_	POLARIMETRIC EXPERIMENTS
AS-12-S	_	METEOROID SIMULATION
AS-13-S	_	SOLAR VARIATION PHOTOMETER
AS-14-S	_	1.0M UNCOOLED IR TELESCOPE
*AS-15-S		3.0M AMBIENT TEMP. IR TELESCOPE
AS-18-S	_	1.5 KM IR INTERFEROMETER
AS-19-S		SELECTED AREA DEEP SKY SURVEY
		TELESCOPE
AS-20-S		2.5M CRYOGENICALLY COOLED IR
		TELESCOPE
AS-31-S		COMBINED AS-01, -03, -04, -05-S
AS-41-S		SCHWARTZSCHILD CAMERA
AS-42-S	_	FAR UV ELECTRONOGRAPHIC SCHMIDT
		CAMERA/SPECTROGRAPH
AS-43-S	_	UCB BLACK BRANT PAYLOAD
AS-44-S		XUV CONCENTRATOR/DETECTOR
AS-45-S	-	PROPORTIONAL COUNTER ARRAY
AS-46-S		WISCONSIN UV PHOTOMETRY EXPERIMENT
AS-47-S	_	ATTACHED FAR IR SPECTROMETER
AS-48-S	—	ARIES/SHUTTLE UV TELESCOPE
AS-49-S		FIRST UCB BLACK BRANT PAYLOAD
AS-50-S	_	COMBINED UV/XUV MEASUREMENTS
		(AS-04-S, 10-S)
AS-51-S		COMBINED IR PAYLOAD (AS-01-S, 15-S)
AS-54-S	-	COMBINED UV PAYLOAD (AS-03-S, 04-S)

AS-61-S		ATTACHED FAR IR PHOTOMETER
AS-62-S		(WIDE FOV) COSMIC BACKGROUND ANISOTROPY
	_	
AS-01-R	_	LST REVISIT
HIGH ENE	RGY	ASTROPHYSICS
*HE-11-S		X-RAY ANGULAR STRUCTURE
HE-12-S		HIGH INCLINATION COSMIC RAY SURVEY
HE-13-S		X-RAY/GAMMA RAY PALLET
HE-14-S	_	GAMMA RAY PALLET
*HE-15-S	-	MAGNETIC SPECTROMETER
HE-16-S		HIGH ENERGY GAMMA-RAY SURVEY
HE-17-S		HIGH ENERGY COSMIC RAY STUDY
HE-18-S		GAMMA-RAY PHOTOMETRIC STUDIES
HE-19-S		LOW ENERGY X-RAY TELESCOPE
HE-20-S		HIGH RESOLUTION X-RAY TELESCOPE
HE-03-R	_	EXTENDED X-RAY SURVEY REVISIT
HE-11-R		LARGE HIGH ENERGY OBSERVATORY D REVISIT
SOLAR PH	IYSIC	<u>s</u>
*SO-01-S		DEDICATED SOLAR SORTIE MISSION (DSSM)
*SO-11-S	_	SOLAR FINE POINTING PAYLOAD
SO-12-S		ATM SPACELAB
ATMOSPH	ERIC	AND SPACE PHYSICS
* AP-06-S	_	ATMOSPHERIC, MAGNETOSPHERIC, AND PLASMAS IN SPACE (AMPS)
EARTH O	BSER	VATIONS
*EO-01-S	_	ZERO-9 CLOUD PHYSICS LABORATORY
*E0.05.S	_	SHUTTLE IMAGING MICROWAVE SYS (SIMS)

- SHUTTLE IMAGING MICROWAVE SYS. (SIMS) SCANNING SPECTRORADIOMETER *EO-05-S _
 - _
- *EO-06-S EO-07-S ACTIVE OPTICAL SCATTEROMETER ----

*REQUIREMENTS DEFINED TO LEVEL B (30 PAYLOADS)

Table 5. SPDA Sortie Payloads (Cont'd)

EARTH AND OCEAN PHYSICS

SPACE TECHNOLOGY

*0P-02-S *0P-03-S	-		ST-04-S	_	WALL-LESS CHEMISTRY + MOLECULAR
~UF-03-3		MULTIFREQUENCY DUAL POLARIZED			BEAM (FACIL. NO. 1)
		MICROWAVE RADIOMETRY	ST-05-S	_	
*OP-04-S		MICROWAVE SCATTEROMETER			POSITIONING (FACIL. NO. 2)
*OP-05-S	-		ST-06-S	—	FLUID PHYSICS + HEAT TRANSFER
*OP-06-S	—	COMBINED LASER EXPERIMENT			(FACIL. NO. 3)
			ST-07-S	—	NEUTRAL BEAM PHYSICS (FACIL, NO. 4)
SFACE Pr	IUUE	SING APPLICATIONS	*ST-08-S		INTEGRATED REAL TIME CONTAMINATION
*SP-01-S		SPA NO. 1 – BIOLOGICAL (MANNED)			MONITOR
SP-02-S		SPA NO. 2 - FURNACE (MANNED)	ST-09-S	_	CONTROLLED CONTAMINATION RELEASE
SP-03-S			ST-21-S	-	LASER INFORMATION/DATA TRANSMISSION
SP-04-S	_	SPA NO. 4 – GEN. PURPOSE (MANNED)	ST-12-S		ENTRY TECHNOLOGY
SP-05-S	_	SPA NO. 5 – DEDICATED (MANNED)	ST-13-S	_	WAKE SHIELD INVESTIGATION
0. 00 0		(B+F+L+G+C)	*ST-21-S	_	ATL P/L NO. 2 (MODULE + PALLET)
SP-12-S	-		*ST-22-S		ATL P/L NO. 3 (MODULE + PALLET)
SP-13-S			*ST-23-S	_	ATL P/L NO. 5 (PALLET ONLY)
*SP-14-S					
0			<u>COMMUN</u>	ICAT	IONS AND NAVIGATION
*SP-15-S	_	SPA NO. 15 – AUTOMATED FURNACE/	*CN-04-S	_	TERRESTRIAL SOURCES OF NOISE +
		LEVIATION			INTERFERENCE
SP-16-S	_	SPA NO. 16 – BIOLOGICAL/GENERAL	*CN-05-S	<u> </u>	LASER COMMUNICATION
		(MANNED)			EXPERIMENTATION
SP-19-S	_	SPA NO. 19 – BIOLOGICAL AND	CN-06-S	_	COMMUNICATION RELAY TESTS
		AUTOMATED	CN-07-S		LARGE REFLECTOR DEPLOYMENT
SP-21-S		SPA NO. 21 – MINIMUM BIOLOGICAL	CN-08-S	_	OPEN TRAVELING WAVE TUBE
SP-22-S		SPA NO. 22 – MINIMUM FURNACE	CN-11-S		STARS & PADS EXPERIMENTATION
		(MANNED)	CN-12-S	_	INTERFEROMETRIC NAVIGATION &
SP-23-S					SURVEILLANCE TECHNIQUES
SP-24-S	_	SPA. NO. 24 – MINIMUM LEVIATION	CN-13-S	_	SHUTTLE NAVIGATION VIA
		(MANNED)			GEOSYNCHRONOUS SATELLITE
LIFE SCI	ENCE	S			
*10040	_	- EDEE ELVING TELEOREDATOR			

*LS-04-S – FREE FLYING TELEOPERATOR *LS-09-S – LIFE SCIENCES SHUTTLE LABORATORY

*LS-10-S - LIFE SCIENCE CARRY-ON LABORATORIES

*REQUIREMENTS DEFINED TO LEVEL B (30 PAYLOADS)

Category		No. of Items
No.	Category Name	in Category
1	Collectors	8
2	Sensors	28
3	Generators	1
4	Systems	5
5	Special Devices	5
6	Inertial/Electromechanical	1
7	Life Sciences	4
8	Contamination	4
9	Structural & Spacecraft/	11
	Mechanical	
10	Environmental Control	2
11	Environmental Protection	1
12	Cryogenic Control	2
13	GN&C	2
14	Propulsion	2
15	Attitude Control/Measurement	2
16	TT&C/Data	2
17	Electrical Power	2
18	Instrument Electronics	3
19	Software	6

Table 6. Categories of Advanced Technology Requirements

•

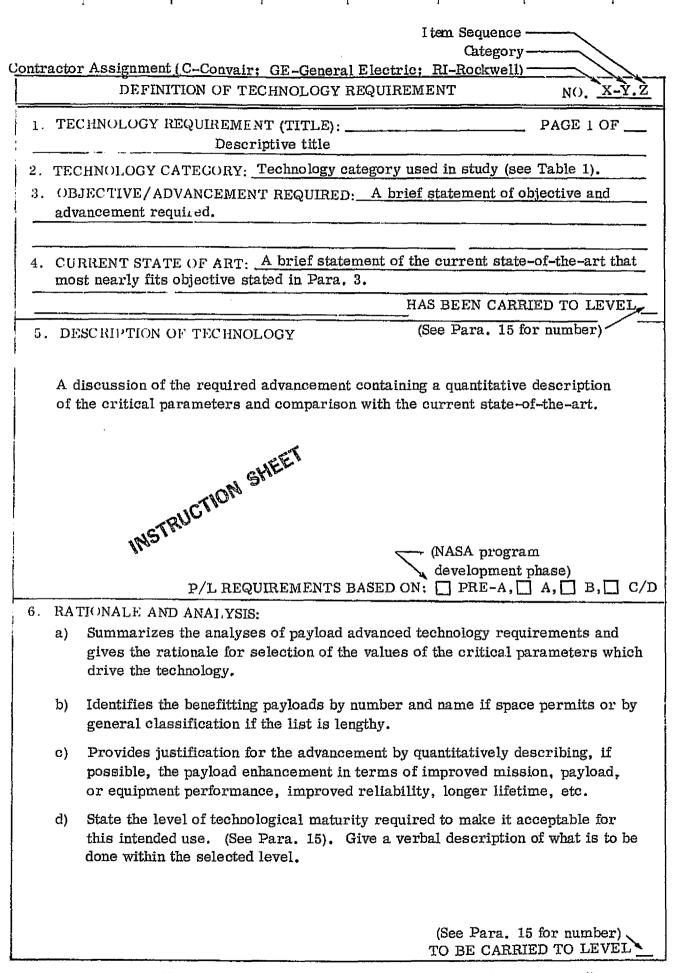


Figure 11. Instructions for 'Definition of Technology Requirements"

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.
1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF
7. TECHNOLOGY OPTIONS:	<u> </u>
Describes potential "spectrum" of technology and discusse quantitative variation in the critical parameters affects the	
8. TECHNICAL PROBLEMS: INSTRUCTION SHIEFT	
8. TECHNICAL PROBLEMS: 115	
Identify potential problems in advancing the state-of-the-a	rt.
9. POTENTIAL ALTERNATIVES: Identify any alternatives to the described technology.	<u> </u>
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA Identifies, for reference purposes, ca-going or planned technolog are closely related to the described requirements. Identifies with if a NASA program.	y programs which
Unperturbed technology advancement is the state-of-the-art at the expends no special effort in this area. (See para. 13 for need date EXPECTED UNPE)	•)
	15 for number)
Describes requirements for other technologies which may be nece success of the stated requirement. Describes the relationship.	essary for the
Figure 11. Instructions for "Definition of Technology Requireme 7-8	nt" (Cont'd.)

DEFINITION C	F TECHNOLOGY REQUIREMENT	NO.								
1. TECHNOLOGY REQUIE	REMENT (TITLE):	PAGE 3 OF								
12. TECHNOLOGY REQUI	EMENTS SCHEDULE: CALENDAR YEAR									
SCHEDULE ITEM	75 76 77 78 79 80 81 82 83 84 85 86	87 88 89 90 91								
TECHNOLOGY 1.Analysis/Design 2.Fabrication	List of key steps and time span in "wat to achievement of desired technology.	erfall" manner leading								
3. Test 4. Documentation	TYPICAL (be specific as required)									
5.										
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations	Show payload development schedule whi need date.	nich drives technology								
4.										
13. USAGE SCHEDULE:		┶╼╌╴┶								
TECHNOLOGY NEED DATE	Show need date – allows for flight hard	ware lead time. TOTAL								
NUMBER OF LAUNCHES	Number of launches each year using te	chnology.								
	nd references where further information ontributors during user/manufacturer re	-								
INSTRUCTION SHEET										
\sim Definition of levels to be applied in paragraphs 4, 6 and 10.										
 LEVEL OF STATE O. BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	ENVIRONMENT IN AND REPORTED. 6. MODEL TESTED IN A CRIBE PHENOMENA. 7. MODEL TESTED IN S EXPERIMENT 8. NEW CAPABILITY DE OPERATIONAL MO RACTERISTIC DEMONSTRATED. 9. RELIABLITY UPGRA	RIVED FROM A MUCH LESSER DEL. DING OF AN OPERATIONAL MODEL. N OF AN OPERATIONAL MODEL.								
- 1941 0 11. 1110 01 4001011	7-9									

j)

4

a Conservation and a second second

. 2

Ì

Table 7.	Accounting of Technology Item Sequence Numbers Not
	Appearing in Definition of Requirements

Item No.	Comments
C-1.3	Combined with C-1,2 because of common requirement.
RI-5.5/5.6	Data system operating in plasma- Advancement initially required was identified to be to reduce effects of boom mounted in stitu data system on the plasma. It was found to be within state of the art and dropped.
RI10.2	Gravity Gradiometer - Environment Control - Initial requirement was based on a concept by JPL that required temp. control to 0.001C. Hughes concept indicates temperature effect (low frequency effects) could be subtracted from the data.
RI-10.3	Reidentified as C-7.1, change of category.
RI-12.3/12.4	Combined with RI-12.2 because of common requirements.
RI-13.3	Reidentified as RI-2.26, change of category.
GE-15.2/15.3/15.4	Combined with GE-15.1, because of common requirements.
GE-16.2/16.3	Data display for monitor application – Advancement initially required was identified to be increased display size and improved resolution. It was found to be adequately covered within the current technology and was dropped.
GE-16.5	Combined with GE-2.6 because of closely related require- ments.
GE-17.2/17.3	Combined with GE-17.1 because of related requirements.
GE-17.5	Combined with GE-17.4 because of related requirements.
C-18.3/18.4	Combined with C-18.1 because of related requirements.

Ē

Table 8. List of Symbols Used in the Definition Forms

- C Convair
- GE General Electric
- RI Rockwell International
- AS Astronomy
- HE High Energy Astrophysics
- SO Solar Physics
- AP Atmospheric and Space Physics
- EO Earth Observations
- OP Earth and Ocean Physics
- SP Space Processing Applications
- LS Life Sciences
- ST Space Technology
- PL Planetary
- CN Communications/Navigation
- LU Lunar

Table 9. Location of "Definition of Technology Requirement" by Category

Category No.	Category Name	Page
1	Collectors	7-13
2	Sensors	7-55
3	Generators	7-189
4	Systems	7-195
5	Special Devices	7-217
6	Inertial/Electromechanical	7 - 241
7	Life Sciences	7-247
8	Contamination	7-265
9	Structural & Spacecraft Mech.	7-293
10	Environmental Control	7-341
11	Environmental Protection	7-351
12	Cryogenic Control	7-355
13	GN&C	7-365
14	Propulsion	7-375
15	Attitude Control/Measurement	7-385
16	TT&C/Data	7-393
17	Electrical Power	7 - 401
18	Instrument Electronics	7-409
19	Software	7 - 423

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.1
1.	TECHNOLOGY REQUIREMENT (TITLE): Large Gamma Ray Survey Instr. PAGE 1 OF 3
	nsitivity, spatial resolution, conversion efficiency, energy resolution.
2.	TECHNOLOGY CATEGORY: Collector
3.	OBJECTIVE/ADVANCEMENT REQUIRED: Sensitivity of 10 ⁻⁸ photons/cm ² /sec, activ
<u>co]</u>	llector area $3m^2$ to $8m^2$, angular resolution 0.1° in selected bands, 1° over 20 to 10^6 MeV
	nversion efficiency 50% or better, energy resolution 10%.
4.	CURRENT STATE OF ART: <u>Current state-of-art 10⁻⁷ photons/cm²/sec. active collected</u>
are	ea 1 m ² , angular resolution 1° in balloon flight, $1/16m^2$ in space flight to date.
	HAS BEEN CARRIED TO LEVEL 7
pro inc que por the ele dat Th pos sin	DESCRIPTION OF TECHNOLOGY — The large gamma ray survey instrument will obably use detectors in spatial measurement compatible layers (laminates) to convert eident gamma ray energy in the range 20 to 10^6 MeV to positron-electron pairs. Subse- ent layers of detectors can use charged particle detectors to resolve lower energy com- ments. Detectors that work in the pair production region have distinct advantages such as a fact that each photon transfers most of its energy to an electron-positron pair and the extron-positron pair preserves the direction information of the photon fairly well. To te, the typical separation between the pairs is $M_e C^2/E_{photon}$ (about 0.3 deg. at 100 MeV e actual angular resolution will be limited by the multiple scattering of the electron- sitron pairs (1 deg. achieved to date). Rejection of charged particles flux is important are number of charged particles during part of observation orbit may exceed the gamma of flux up to 1000 times. P/L REQUIREMENTS BASED ON: PRE-A, A, A, B
6.	RATIONALE AND ANALYSIS:
a.	Trades in effective area, sensitivity/unit area, energy resolution, angular sensitivity, field of view, and degree of rejection of charged particles lead to a compromise. Components involved include a surrounding (usually) plastic scintillator which provides anti- coincidence vetoes, a converter sandwich that produces sufficient radiation length to cause pair production, intermediate sandwiches or spatial detectors for track location, and energy discriminators at the bottom to measure energy of incident photons (or components at lower energies). Discrimination data are recorded to identify charged parparticles, or neutral primaries as well as gamma rays where anti-coincidence methods fail. Auxiliary measurements of shower development, secondary containment, and response of anticoincidence guard counters enable estimates of what fraction of output is due to freak events.
	Two payloads HE-16-S (1981), High Energy Gamma Ray Survey and HE-08-A, Large High Energy Observatory A (Gamma Ray), 1986, benefit from development of capability
c.	The instrument will perform in sortie and automated missions to give a full sky survey with a sensitivity and resolution factor of 10 better than previously accomplished. (Final Report, High Energy Astrophysics Working Group Report, May 1973).
d.	Smaller gamma ray instruments (OSO III Gamma Ray Detector, Cornell University), photographic spark chamber telescope for balloon use, and the Goddard Digitized Spark Chamber Gamma Ray Telescope indicate current state-of-art (10^{-6} to 10^{-7} photons/cm sec) When 10^{-8} photons/cm/sec sensitivity with $8m^2$ effective area has been achieved (by 1981), above technology requirement is satisified. Testing on a shuttle sortie fligh is expected prior to longer term automated flight. TO BE CARRIED TO LEVEL 8

۰. ۵ $(22.5) \leq 2$

PRECEDING PAGE BLANK NOT FILMED

: **\$**_}__

·	
DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-1.1
Large Gamma Ray 1. TECHNOLOGY REQUIREMENT(TITLE): <u>Survey Instrument</u>	PAGE 2 OF <u>_3</u>
Sensitivity, spatial resolution, conversion efficiency, energy resolution.	······
 TECHNOLOGY OPTIONS: Extended area (8 m²) versions of previous ray detectors previously used are possible. Option A uses a surrounding dence scintillator, a CsI/plastic converter sandwich, a Cerenkov counter energy discriminator using NaI, tungsten and plastic layers. Option B c chamber surrounded by anticoincidence scintillators. Two spark chamb- below a top anticoincidence scintillator to classify the incoming primary to a one radiation length converter (lead or equiv.) followed by a plastic 12 spark chamber gaps detect the pairs or secondaries when fired by a t final plastic layer is used for coincidence-anticoincidence triggers. The tween high efficiency of conversion versus angular resolution. Option C emulsion or plastic stacks interspersed with spark chamber plates. TECHNICAL PROBLEMS: (1) Gamma ray detectors in the spectral is MeV to 1000 MeV are subject to smearing of angular resolution by multip tering (scattering angle approximately proportional to 1/E). Efforts hav use fairly numerous thin conversion plates distributed over many gaps o or equivalent detector. Anticoincidence rejection/acceptance levels may loading or conversely in excessive dead time. Dimensional resolution a angular measurements resolution in all cases of large detector arrays. tion and accuracy requires depth in scintillator materials, hence increase (3) Actual angular resolution and energy resolution achieved will be a co allowable weight. 	g plastic anticoinci- r section, and an onsists of a spark er gaps are used which then passes scirtillator. Up to riggered pulse. A ere is a trade be- uses thin nuclear region from 20 ple Coulomb scat- ve been made to f a spark chamber v result in over- nd stability affect (2) Energy resolu- sed weight. ompromise vs
9. POTENTIAL ALTERNATIVES: Track measuring devices consisting tor material with resistive readout or in terms of differences in time to being considered in lieu of spark chambers with arrays of photomultipli- photographic cameras. Spatial detection can be improved by use of a la plates; however, energy resolution can be improved by long hexagonal s gether in the desired area array. Each hexagonal segment could have a multiplier.	locate an event are ers, image devices, arge number of thin segments glued to-
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCA. RTOP W74-70649 (188-46-57), Gamma Ray Astronomy, Albert G. O. RTOP W74-70650 (188-46-57), Gamma Ray Astronomy, C. R. Ficht RTOP W74-70651 (188-46-64), Astrophysical Investigations on the S Albert G. Opp (202) 755-3665. RTOP W74-652 (188-64-64), Shuttle Definition Studies for High Ener McDonald. 	pp (202) 755-3665. tel (301) 982-6281. pace Shuttle, gy, F. B.
11. RELATED TECHNOLOGY REQUIREMENTS:	
a. C-29, C-93 Protective shell/cover to enable holding of internal temp of a selected temperature between 283°K and 303°K, cleanliness to c urization to one atmosphere, minimum gamma ray attenuation (20 to minimum protective shell secondaries, $Z < 20$.	lass 1000, press-

DEFINITION OF TECHNOLOGY REQUIREMENT										NO. C-1.1									
1. TECHNOLOGY REQUIREMENT (TITLE): Survey Instrument													PAGE 3 OF 3						
	Sensitivity, spatial resolution, conversion efficiency, energy resolution																		
12. TECHNOLOGY REQUI																			
	CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91																		
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		'
TE CHNOLOGY 1. Options & Trade Anal.																			
2. Prototype Des. & Fab.														ļ					
3. Test & Evaluation																			
4.																			
5.																			
APPLICATION 1. Design (Ph. C)				9	1		G	2											
2. Devl/Fab (Ph. D)						<u>G1</u>			Ì	G^2	<u>-</u>						ļ]	
3. Operations						ļ	•	61 	•	F1				¢2		G2			
4. Information Use		Ì					_	ļ		ł	ľ	ĺ			_	 			
13. USAGE SCHEDULE;													1			-1		1	
TECHNOLOGY NEED DATI				GI	<u> </u>		G2	2	ļ	<u> </u>	<u> </u>		ļ	-		<u> </u>	r	ioı I	AL
NUMBER OF LAUNCHES							GJ		G	4		G	2 G:	1					4
 14. REFERENCES: a. Summarized NASA Payload Descriptions, Sortie Payloads, PD, NASA, July 1974, pages 106-107. b. Summarized NASA Payload Descriptions, pages 50, 51. c. Payload Descriptions, Vol. I, Automated Payloads, Level B Data, July 1974. d. Final Report of the Space Shuttle Payload Planning Working Groups, High Energy Astrophysics, NASA/GSFC, May 1973, pages 38 and A-19. e. RTOP Plan Summary, FY 1974, NASA, page 104. f. NASA SP-243, Introduction to Experimental Techniques of High Energy Astrophysics, H. Ogelman and J. R. Wayland, GSFC, 1970, pages 95-122. g. Conference, Bob Hartman and E. S. Saari at GSFC, 10 Sept. 1974. Legend GI = Prototype Sortie Mission Instrument G2 = Automated (free flyer) Instrument 15. LEVEL OF STATE OF ART 																			
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	CRIBE EXPE RACT	: Phe: Rime Erist	NOME NT	NA.	STRA	TED,		7. I B. 1 9. 1	NODE NODE NEW (OPI RE LIA	L TE L TE CAPA ERAT BILI	STED STED HILLT IONA TY UI	IN A IN S Y DE L MO PGRA	IRCRA PACE RIVE DEL, DING	AFT I ENV D FR OF A	envif Iron! Om A .n op	NUCI ERAT	1 LES 10NAI	L MO	DEL,

 TECHNOLOGY REQUIREMENT (TTTLE): X-ray Telescope PAGE 1 OF 5 Development of better sensitivity, spatial resolution and field of view. TECHNOLOGY CATEGORY: <u>Collectors</u> OLDECTIVE/ADVANCEMENT REQUIRED: Improve sensitivity to enable detection of X-ray sources to 10⁻⁵ Soo X-1, angular resolution to 15, 000 are sees for a widefield version telescope). CURRENT STATE OF ART: <u>Angular resolution to 12, 5 arcsec over a 540 are see</u> field has been achieved; field extension at about 5 arc sec resolution was possible out. to FOY of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> DENC RUPTION OF TECHNOLOCY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (mickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometry of the surfaces of the surfaces (or shells) neceessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector areas with limited weight. Further investigation is recommended for the invers of temperature insensitive laminates coated at the X-ray collecting surfaces with		DEFINITION OF TECHNOLOGY REQUIREMENT	NO.C-1.2
 Development of better sensitivity, spatial resolution and field of view. 2. TECHNOLOGY CATEGORY: <u>Collectors</u> 3. ODJECTIVE/ADVANCEMENT REQUIRED. Improve sensitivity to enable detection of X-ray sources to 10⁻⁸ Soc X-1, angular resolution to 16. 5 arcsec over a FOV of 512 arcsec (with extension of FOV at 5 arcsec resolution to 18,000 arc secs for a widefield version talescope). 4. CURRENT STATE OF ART: <u>Angular resolution to 2.5 arcsec over a 540 arc sec</u> field has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> 5. DESCRIPTION OF TECHNOLOCY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (nickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid clours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 566 b) Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUIREMENTS BASED ON: YERE-A, A, B, C/T 6. RATIONALE AND ANALYSIS: a. Effective area and mass of mirrors segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contou	1.	TECHNOLOGY REQUIREMENT (TITLE): _X-ray Telescope	PAGE 1 OF <u>5</u>
 TECHNOLOGY CATEGORY: <u>Collectors</u> ODJECTIVE / ADVANCEMENT REQUIRED; Improve sensitivity to enable detection of X-ray sources to 10⁻⁸ Sco X-1, angular resolution to 15,000 arc secs for a widefield version telescope). CURRENT STATE OF ART: <u>Angular resolution to 2.5 arcsec over a 540 arc sec</u> field has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> DESCRIPTION OF TECHNOLOCY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding in a paraboloidal cross section. The paraboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (inkel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, \$21, 556 br Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUREMENTS BASED ON: YPE-A, A, B, C/T RATICXALE AND ANALYSIS: Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) neceessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector area arey energy r			
 ODJECTIVE/ADVANCEMENT REQUIRED; Improve sensitivity to enable detection of X-ray sources to 10⁻⁵ Sco X-1, angular resolution to 0.5 arcsec over a FOV of 512 arcsec with textension of FOV at 5 arcsec resolution to 18,000 arc secs for a widefield version telescope). CURRENT STATE OF ART. Angular resolution to 2.5 arcsec over a 540 arc sec field has been achieved; field extension at about 5 arc sec resolution vas possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL 7 DESCHPTION OF TECHNOLOGY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (mickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUIREMENTS BASED ON: PRE-A, A, B, C/I RATIONALE AND ANALYSIS: Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Prelininary trades between glasses, fused silica, metal, and early composites indicate potential success of large X			·····
 X_ray sources to 10⁻⁸ Soo X-1, angular resolution to 16, 000 arc sees for a widefield version telescope). 4. CURRENT STATE OF ART: <u>Angular resolution to 18,000 arc sees for a widefield version telescope</u>. 4. CURRENT STATE OF ART: <u>Angular resolution to 2,5 arcsec over a 540 arc see</u>field has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> 5. DESCRIPTION OF TECHNOLOGY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal cross see thon which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (mickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid concors, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 b) Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/I. REQUIREMENTS BASED ON: PEE-A, A, A, B, C/I 6. RATONALE AND ANALYSIS: a. Effective area and mass of mirrors segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessor to maintin the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector area swith limited welght			nable detection of
 see (with extension of FOV at 5 arcsec resolution to 16,000 arc secs for a widefield version telescope). CURRENT STATE OF ART. Angular resolution to 2, 5 arcsec over a 540 arc sec field has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL 7 DESCRIPTION OF TECHNOLOCY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0,5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays to a second set of cylindrical mirrors modified to a hyperboloidal cross section which focuses the X-rays to a use configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUIREMENTS BASED ON: PRE-A, A, B, C/I RATIONALE AND ANALYSIS: Elfective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector areas with limited weight. Further investigation is recommended for mirrors of temperature insensitive laminates coated at the X-ray collecting surfaces with X-ray energy range compatible materials polishable to very fine smoothness. A goal of 500 to 1000 kg per 1000 c	3.	OBJECTIVE/ADVANCEMENT REQUIRED: Improve sensitivity to e	a FOV of 512 arc-
 version telescope). CURRENT STATE OF ART: <u>Angular resolution to 2.5 arcsec over a 540 arc sec</u> field has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> DENCINPTION OF TECHNOLOGY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays to a second set of cylindrical mirrors modified to a hyperboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (mickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid al paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/I. REQURENTENTS BASED ON: PRE-A, A, A, B, B, C/I Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) neceessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray collecting surfaces with X-ray energy range compatible materials polishable to very fine smoothness. A goal of 500 to 1000 kg per 1000 cm² of effective collector area app	<u>A-</u> sec	with extension of FOV at 5 arcscc resolution to 18,000 arc secs for	or a widefield
 tield has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRED TO LEVEL <u>7</u> 5. DESCRIPTION OF TECHNOLOGY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (nickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUIREMENTS BASED ON: PRE-A, A, B, C/T 6. RATIONALE AND ANALYSIS: a. Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray collecting surfaces with X-ray energy range compatible materials polishable to very fine smoothness. A goal of 500 to 1000 kg per 1000 cm² of effective collector area appears feasible. b. Present long term plans appear to indicate a progressive growth in collector area, resolution, and angular field of view beginning withHEAO-B (300 cm²	ver	sion telescope).	
 tield has been achieved; field extension at about 5 arc sec resolution was possible out to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL <u>7</u> DESCRIPTION OF TECHNOLOGY - Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (nickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQURREMENTS BASED ON: PRE-A, A, B, C/T RATIONALE AND ANALYSIS: Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray collecting surfaces with X-ray energy range compatible materials polishable to very fine smoothness. A goal of 500 to 1000 kg per 1000 cm² of effective collector area appears feasible. Present long term plans appear to indicate a progressive growth in collector area, resolution, and angular field of view beginning withHEAO-B (4.	CURRENT STATE OF ART: Angular resolution to 2.5 arcsec over	r a 540 arc sec
 to FOV of 1800 arcsec. HAS BEEN CARRIED TO LEVEL 7 5. DESCRIPTION OF TECHNOLOGY – Techniques are needed to develop X-ray mirror and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays to a second set of cylindrical mirrors modified to a hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1, REQUREMENTS BASED ON: PRE-A, □ A, □ B, □ C/1 6. RATIONALE AND ANALYSIS: a. Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector areas with limited weight. Further investigation is recommended for mirrors of temperature Insensitive laminates coated at the X-ray collector area appears feasible. b. Present long term plans appear to indicate a progressive growth in collector area, resolution, and angular field of view beginning with HEAO-B (300 cm²) in 1978, benefiting a wide field HE-03-A (400 cm²) telescope in 1982, a narrow field HE-11-A 1, 2 M (1000 cm²) telescope in 1983, continuity, the HE-01-A Large X-ray Telescope Facility in 1985. c. T			
 and structures enabling confocal nested mirrors to achieve an effective collector area o 5000 cm² with an angular resolution of 0.5 arcsec over a field of at least 512 arcsec in the 0.03 to 4 keV energy range. Current concepts considered for extension to the large telescope include a system with two sets of about 5 concentric mirrors nested around a common axis. The input set usually consists of cylindrical shells modified by grinding and polishing to a paraboloidal cross section. The paraboloidal set of mirrors passes the X-rays to a second set of cylindrical mirrors modified to a hyperboloidal cross section which focuses the X-rays onto an image plane. Previous smaller mirrors have been made of fused silica and also Kanigan (nickel) on a metal substrate. (The Baez alternative technique uses crossed arrays of flat plates bent to hyperboloid and paraboloid contours, but Baez configurations cannot readily achieve the desired resolution.) A three geometric element glancing incidence X-ray telescope (Patent No. 3, 821, 556 by Richard B. Hoover) option is available but requires much larger geometry for same sensitivity. P/1. REQUIREMENTS BASED ON: YPRE-A, A, B, C/T 6. RATIONALE AND ANALYSIS: a. Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) neceessary to maintain the desired contour accuracy. Prelininary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector areas with limited weight. Further investigation is recommended for mirrors of temperature insensitive laminates coated at the X-ray collecting surfaces with X-ray energy range compatible materials polishable to very fine smoothness. A goal of 500 to 1000 kg per 1000 cm² of effective collector area appears feasible. b. Present long term plans appear to indicate a progressive growth in collector area, reso lution, and angular field of view beginning			ED TO LEVEL 7
 a. Effective area and mass of mirror segments used in the concentric configurations depend upon selection of materials and thickness of the surfaces (or shells) necessary to maintain the desired contour accuracy. Preliminary trades between glasses, fused silica, metal, and early composites indicate potential success of large X-ray telescope collector areas with limited weight. Further investigation is recommended for mirrors of temperature insensitive laminates coated at the X-ray collector area symplection is upon the smoothness. A goal of 500 to 1000 kg per 1000 cm² of effective collector area appears feasible. b. Present long term plans appear to indicate a progressive growth in collector area, reso lution, and angular field of view beginning with HEAO-B (300 cm²) in 1978, benefiting a wide field HE-03-A (400 cm²) telescope in 1982, a narrow field HE-11-A 1.2 M (1000 cm²) telescope in 1983, and finally, the HE-01-A Large X-ray Telescope Facility in 1985. c. The high resolution large collector area X-ray telescope capability is justifiable on basis of improved imaging capability enabling detailed study of sources in the range 10⁻⁴ Sco X-1 to 10⁻⁸ Sco X-1 (~10⁻¹⁵ ergs/cm²/sec). (Ref. pages 31, 32, Vol. 3, Final Report of Space Shuttle Payload Planning Group, May 1973). 	and 500 the tel con and the tio bed alt loi A f	I structures enabling confocal nested mirrors to achieve an effective 00 cm^2 with an angular resolution of 0.5 arcsec over a field of at lease 0.03 to 4 keV energy range. Current concepts considered for extension encode a system with two sets of about 5 concentric mirrors nmon axis. The input set usually consists of cylindrical shells mode a polishing to a paraboloidal cross section. The paraboloidal set of X-rays to a second set of cylindrical mirrors modified to a hyperb in which focuses the X-rays onto an image plane. Previous smaller en made of fused silica and also Kanigan (nickel) on a metal substra- ternative technique uses crossed arrays of flat plates bent to hyperb d contours, but Baez configurations cannot readily achieve the desin- three geometric element glancing incidence X-ray telescope (Patent chard B. Hoover) option is available but requires much larger geometric enternative technique set of the set of the set of the set of the set of the set of the set of the set of the set of the s	e collector area o ast 512 arcsec in nsion to the large s nested around a lified by grinding mirrors passes oloidal cross sec- mirrors have te. (The Baez oloid and parabo- red resolution.) No. 3,821,556 by etry for same
	a. b. c.	Effective area and mass of mirror segments used in the concentric depend upon selection of materials and thickness of the surfaces (o essary to maintain the desired contour accuracy. Preliminary tra- glasses, fused silica, metal, and early composites indicate potent of large X-ray telescope collector areas with limited weight. Fur- tion is recommended for mirrors of temperature insensitive lamin at the X-ray collecting surfaces with X-ray energy range compatib- polishable to very fine smoothness. A goal of 500 to 1000 kg per 1 effective collector area appears feasible. Present long term plans appear to indicate a progressive growth in col- lution, and angular field of view beginning with HEAO-B (300 cm ²) in 19 wide field HE-03-A (400 cm ²) telescope in 1982, a narrow field HE-11 cm ²) telescope in 1983, and finally, the HE-01-A Large X-ray Telesco The high resolution large collector area X-ray telescope capability basis of improved imaging capability enabling detailed study of sour 10^{-4} Sco X-1 to 10^{-8} Sco X-1 (~ 10^{-15} ergs/cm ² /sec). (Ref. pages Final Report of Space Shuttle Payload Planning Group, May 1973). Smaller X-ray telescopes built from concentric mirror concepts has	r shells) nec- des between ial success ther investiga- ates coated le materials 000 cm ² of lector area, reso 978, benefiting a -A 1.2 M (1000 ope Facility in 198 is justifiable on rces in the range a 31, 32, Vol. 3, ave been tested an
	PP	olution telescope is built and tested in space, TO BE CARL CEDING PAGE BLANK NOT FILMED 7-17	RIED TO LEVEL

ÿ

1

.

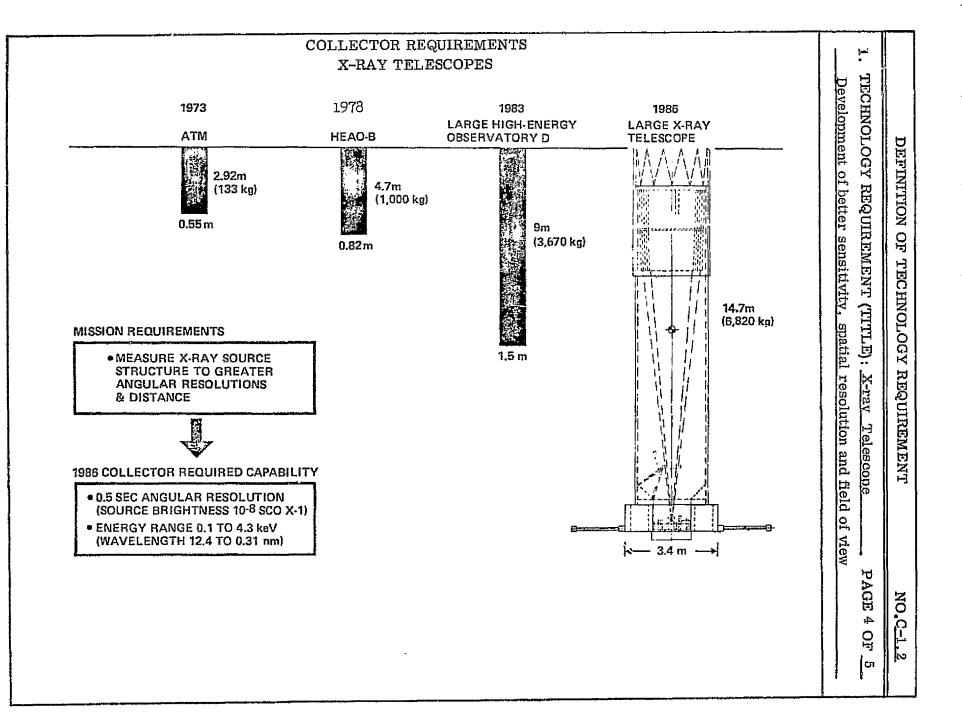
Ì

DEFINITION OF TECHNOLOG	Y REQUIREMENT	NO.C-1.2
1. TECHNOLOGY REQUIREMENT(TITLE):	X-ray Telescope	PAGE 2 OF 5
Sensitivity, spatial resolution, and field of v	iew.	
7. TECHNOLOGY OPTIONS: Choice of an entity X -ray focal ratio. For most efficient X -r collecting area by trades between the surface attainable area. The geometric area, A, of a where L = length of each X-ray mirror set, D length. The effective area can be increased be surfaces need to be kept confocal. Besides of mirror thickness, and focal length, the shuttle	ray collector optics, one s material high energy lim an X-ray telescope is ≈ 0 = concentric mirror dia: by nesting additional surfa hoice of material, diamet	should optimize the it and the maximum $\pi \left(\frac{D}{2}\right)^2 \left(\frac{L}{4F}\right)$ meter, and F = focal ices, but all collecto er, number of mirror
(See pages 4 and 5 for more description.)		
8. TECHNICAL PROBLEMS: The combined collecting and focusing X-rays in compliance is affected by dimensional stability, adjustabi relative alignment. For larger telescopes, the with good X-ray reflection characteristics that quently, thermal control to tight tolerances st	with ideal equations or te ility of the elements, as v here is difficulty in obtain at are also temperature in	lescope configuration well as their bing thin materials bisensitive. Conse-
9. POTENTIAL ALTERNATIVES: The	re appear to be no better a	alternates.
 a. Large area proportional counter arrays w readout may produce signals which, with sensitivities and angular resolution of a gr b. Multilayer spatial detectors of large area c. Proportional counters with long modulatio (However, geometry for high resolution is 	considerable data process razing incidence telescops . (High angular resolution n collimators and mechan	sing, might reach e. n is unlikely.)
10. PLANNED PROGRAMS OR UNPERTURBE	ED TECHNOLOGY ADVAN	CEMENT:
 a. RTOP: W74-70631, X-ray Astronomy, N. b. HEAO-B 0.815 m X-ray telescope, R. Gia c. Additional X-ray telescopes gradually impangular resolution, and stability need to b ment steps to enable attainment of techniq X-ray Telescope Facility. 	acooni, ASE. proved in collector area, e funded as necessary tec	hnology develop- ures for Large
11. RELATED TECHNOLOGY REQUIREME images with X-ray optics and sensors can be aspect optics, guide star trackers, and a fiel providing guide star tracker error signals for corrective high frequency error signals can b minimize high frequency jitter components in during ground data processing, since any mod times of arrival of individual photons).	obtained to desired tolera d monitor camera are uti pointing and stabilizing to e applied to an X-ray con the output image (or to co	nces if adequate UV lized. Besides the X-ray telescope, verter/intensifier to orrect the image

DEFINITION C	FI	EC	HNO)I.C)GY	NE	ດູບ	IRE	ME	NT					1	10,	C-1	.2	
1. TECHNOLOGY REQUIT Sensitivity, angular resolu							<u> -r</u> a	uy Ţ	'ele	<u>sco</u>	pe			I	PAG	Е 3	OF	5	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IEC			ND.	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79	86	41	89	83	81	85	26	87	22	89	00	91		
TECHNOLOGY 1. Ops. & Parametric Anal. 2. Exp. Mirror Design & Fab. 3. Test and Evaluation			<u>,</u> T2		<u>r</u>	3	 T3	-	0.0							30	01		
APPLICATION 1. Design (Phase C)			ł		T	1, Т	2		<u>T3</u>										
2. Development/Fabrica- tion (Phase D)]	<u>,</u>	<u>Г</u> 2 Т1		T2	<u>T3</u>			-	17		T1		
B. Operations							T2	8	-	$\frac{T^2}{\lambda}$	•] <u>T3</u>	-	<u>}</u> _			12	
. operation.		 			<u>i</u>	Ĺ	Г	1						<u> </u>	[<u> </u>	<u> </u>	<u> </u>	
13. USAGE SCHEDULE:											•								
	Ţ	1		[T1			TS			<u> </u>		Τ	1		1	T		· · · ·
TECHNOLOGY NEED DATE		<u> </u>		<u> </u>	<u>T2</u>	ļ	 	T1		 	T1		<u> </u>	T :		 	T1	To	
NUMBER OF LAUNCHES	<u> </u>	 	[]		<u> </u>	<u> </u>	<u> </u>	$\bar{T}\bar{2}$	T2	<u>T2</u>		<u>T 3</u>					T2		.1
 May 1973, pages A-1, b. Summarized MAX Pay pages 112, 113, 114. c. Payload Descriptions, HE-03-A, HE-11-A, H 2-28. d. U.S. Patent 3,821,556, Richard B. Hoover, Hu LEGEND Sortie operations Automated operations 	load Vol E-0 Th ints	l De . I, 1-A ree ville	Ser Au ; pa Min e, A	tom ages rroi la.	ate s 2- : Gl:	d Pa 31 i	aylc thru ing l	ads 12-	, L 56, den	eve 2-: ce	el B 131 Syst	Da thr	ta, u 2	NA -15 c X-	.SA, 8, a -ray	Ju and	ly 1 2-1	974 thr	u
(T 1)=HE-03-A, 0.75 m X (T 2)=HE-11-A, 1.2 m X- (T 3)=HE-01-A, Large X-	ray	Tel	esc	ope	(82	, 8	4 -	S),	(83	, 80 , 90	8, 9 1 -	90, A).	91	- S)					
S = Sortie																			
A = Automated (free flyer) 15. LEVEL OF STATE O	-	RT						5. C								ed in	REL	EVAN	т
 BASIC PHENOMENA OBSERVLD THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	CRIBE EXPE RACT	PHE RIME ERIST	NOME NT	NA.	STRA	TED,		7. M 8. N 9. R	ODE ODE EW C OPE ELIA	L TES L TES (APA) (RAT) BILIT	TED STED SHAT ONAI ONAI	IN AI IN SI Y DE MOI GRAI	IRCRA PACE RIVEI DEL, DING	AFT I ENVI D FRI OF A	IRONN DM A N OPI	RY ONME IENT MUCH ERATI	I LES	. MOE	
						7-	19												

v

2


Sec. Sec.

(1,1,2)

31

١

ł

	ECHNOLOGY NI C-RAY TELESCO				1.	
			TECHNOLOGY REQUIREMENT (T Development of better sensitivity,	ţ		
	REQUIRED C	APABILITY	STATE	OF ART	DGY]	
CATEGORY	1983	1986	1973	1978	REQ U	
WAVELENGTH (nm)	12.4 - 0.31	12.4 - 0.31	3.3 - 0.5	12.4 - 0.4	IREMEN c sensitiv	
ANGULAR RESOLUTION (SEC)	0.5	0.5	3	2	ុំ ជ) invo
EFFECTIVE COLLECTOR AREA	500	5,000	42	400	(TITLE): X-ray Telescope y, spatial resolution and field	
SENSITIVITY, SCO X-1	10 ⁻⁷	10 ⁻⁸	5 x 10 ^{−6}	5 x 10 ⁻⁷	X-ray Telescope resolution and fie	TTO Point
MIRROR SLOPE ERROR (ARC SEC)	0.1	0.1	0.5	0.35	Dele Dele	
DIAMETER (m)	1.2	3	0.4	0.8	scope nd fie	1 1
	<u> </u>				ld of view	
					PAGE 5 OF 5	NO.CT.A

en general og eller

A March Mart 1996 (1997) A Conference and the second second second second second second second second second se

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Optical Telescopes</u> PAGE 1 OF <u>8</u> <u>Mirror figure accuracy; efficiency in far UV; stray light control</u>

2. TECHNOLOGY CATEGORY: Collectors

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Development of optical telescope figure</u> accuracy to $1/50\lambda *$ for 1 to 3m primary and $1/70\lambda *$ for secondary to achieve $<0.05\lambda$ total system wavefront error and <1% scattering from 90 to 5000 nm.

1. CURRENT STATE OF ART: <u>A 1.8m mirror has been configured to $1/62\lambda$ rms;</u> telescope mirror surfaces up to 1m dia. have been polished to a smoothness of 2 nm peak to valley yielding less than 3% scatter at 120nm (UV) but with $1/20\lambda$ rms figure error. HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY

Although mirrors have been configured to $1/62\lambda$ (1.8m) at Itek and $1/10\lambda$ (3.8m) at 632.8 nm at AURA in the laboratory for ground telescope use, the largest mirror operable at UV wavelengths in space was 0.81m. Mirror surface contour is dependent upon choice of material, thermal coefficient of expansion, the combination of effects of shaping, grinding, polishing, and coating processes, as well as figure sensing (interferometer) capabilities and the environment maintained during manufacture, assembly, test, launch, and operation. For the telescope mirror, compensation for errors in the primary by pregrinding calculations or by match figuring the secondary (Ritchey Chrétien conf.) helps, but shop, laboratory, and assembly test equipment for future telescopes need to be designed and improved to enable total system measurements as well as component measurements.

P/L REQUIREMENTS BASED ON: □ PRE-A, □ A, X B, □ C/D

6. RATIONALE AND ANALYSIS:

a. The manufacture of mirrors to date has been limited by the ability to measure surfaces during the course of manufacture as well as by ability to maintain an optimum "finishing" environment. Stable metering structures are needed during final matching of Ritchey Chrétien mirrors as well as during observations in space. A key item in the process is a mirror scanning interferometer to periodically measure mirror surface contours to at least $1/100\lambda$ with automatic reduction of system and surface wavefront contour plots. Techniques are needed to separate contour and surface errors as well as alignment and focus errors in matching Ritchey Chrétien type mirrors.

b. Although AS-01-A, Large Space Telescope, benefits mostly from the improvement in optical telescope technology, other payloads such as AS-14-A, 1 m UV-Optical Telescope; AS-04-S, 1 m Diffraction Limited UV-Optical Telescope; AS-31-S, Combined AS-01, -03, -04, -05-S; and AS-51-S, Combined IR Payload (AS-01, -15-S) will also benefit from better contours and super polishing.

c. The better contours and super finishes will improve far UV (200 to 90 nm) reflection efficiency, angular resolution, and minimize light scatter (diffuse reflections from mirror surfaces). Hence, full angular resolution as well as sensitivity of the telescope may be achieved. The larger telescopes may approach the goal of sensing magnitude 28 stars TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT	NO, <u>C-1.4</u>
1. TECHNOLOGY REQUIREMENT (TITLE):Optical Telescopes	PAGE 2 OF _8_
Mirror figure accuracy; efficiency in far UV; stray light control	

6. RATIONALE AND ANALYSIS: (Cont'd)

in an exposure time of <10 hours assuming that best sensitivity sensors are used.

d. A 0.813m telescope, OAO-C, is currently in orbit but the wavefront error is larger than the technology goal.

When a total system wavefront error of $\langle 1/20\lambda \rangle$ and less than 1% light scatter in 90 to 5000 nm spectral range has been achieved with a large telescope in an environment equivalent to that of an LST in orbit, this technology goal will have been met. Final test will be accomplished in space under gravity release conditions by means of special LST on board built in test equipment.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. C-1.4

1. TECHNOLOGY REQUIREMENT(TITLE): <u>Optical Telescopes</u> PAGE 3 OF <u>8</u>

Mirror figure accuracy: efficiency in far UV: stray light control

7. TECHNOLOGY OPTIONS: The total system allowable wavefront error is a compromise between absolute focus achievable and optical system quality. Optical system quality in the extreme case of a 3 meter telescope is degraded from ideal by manufacturing error contributions (0.026λ) , alignment error (0.009λ) , design error (0.001λ) , mirror mount distortion effects (0.01λ) , focus maintenance (0.025λ) , material variation (0.015λ) , and thermal distortions (0.026λ) . An operation effective resolution is further degraded by image motions with about 0.0025 arc secs from guide signal errors, 0.0025 arc sec) from metering and mount structures. Attitude control disturbances (0.0025 arcsec) and vehicle vibration (0.0025 arc sec) also were considered in the trades of parameters affecting resultant resolution and wavefront errors. Most current telescope concepts use secondaries with an obscuration of 0.30. Up to 0.50 has been utilized (such as in IUE where auxiliary baffles caused the obscuration problem). Thinner mirrors offer possibilities for continual mirror figure adjustments. Ultimately fully servoed active control telescopes may be feasible.

8. TECHNICAL PROBLEMS:

a. UV Efficiency. The major problem for 3m LST optics involves degradation of UV efficiency and low reflection losses. Besides low wavefront errors $(1/7 \text{ to } 1/10\lambda \text{ between} 90 \text{ and } 150 \text{ nm})$, super finishes down to 1 nm are desired. Even with these, interference phenomena of coatings in the 90 to 120 nm regions will be difficult to overcome.

b. Mirror mounting.

c. Automated feed techniques may be needed in coating processes to enable super finishes.

d. Dust particles need to be avoided in final finishing.

e. Stray light scatter.

9. POTENTIAL ALTERNATIVES: If mirror weight and dimensional stability problems occur due to potential shuttle load or environmental limits, light weight mirrors made of ultrastable laminates surfaced with smoothable reflecting materials may be necessary. However, insufficient research experience exists to apply these techniques to large telescopes at this time. An effort is needed to obtain interference-free coatings for mirrors in 90 to 150 nm region. Mirror coatings may be protected by an easily removed layer of material to avoid dust particles and contamination damage. Coatings applied in space may be necessary to avoid some contamination problem.

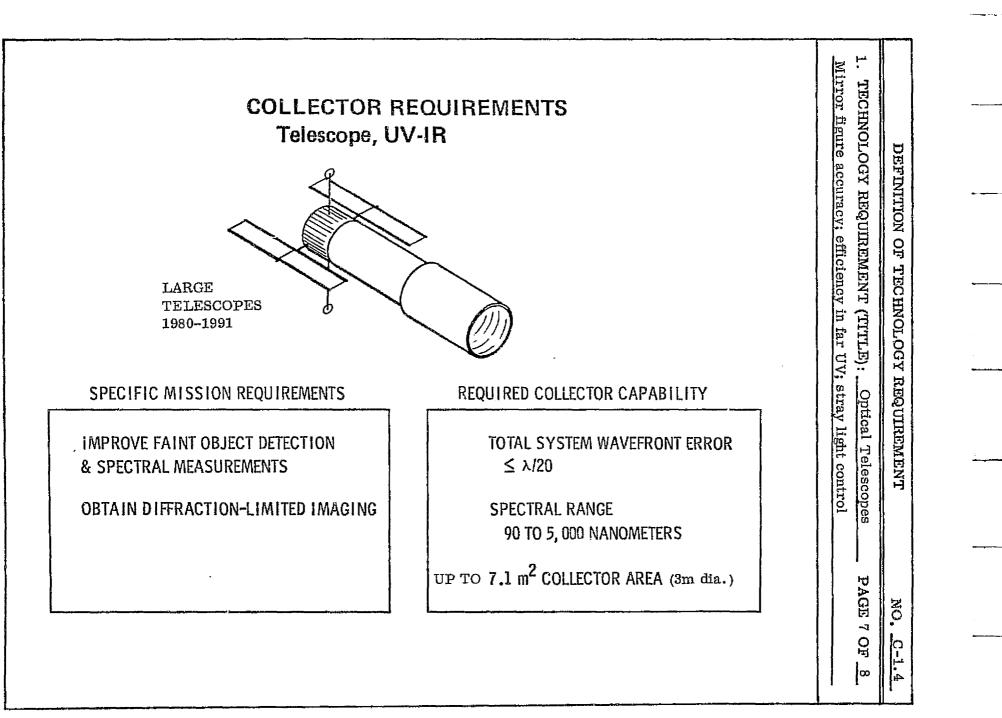
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

a. W-74-70265 (502-21-32), Optical Contamination of Spacecraft, Hoyt Weathers, MSFC.

- b. W-74-70658 (188-78-56), Design, Analysis and Evaluation of LST Instrument Systems, GSFC.
- c. W-74-70661 (188-78-57), Large Space Telescope Advanced Technology, G. Emanuel, MSFC.
- d. W-74-70662 (188-78-58), Large Space Telescope Phase B Studies, J. Downey, MSFC. EXPECTED UNPERTURBED LEVEL 7

11. RELATED TECHNOLOGY REQUIREMENTS: Besides improved figure accuracy and far UV efficiency, related developments are desired in guide star tracking, instrument mounting, and materials selection. To enable better weight control as well as

	DEFINITION OF TECHNOLOGY RE	-	NO. <u>C-1.4</u>
1.	TECHNOLOGY REQUIREMENT (TITLE):		PAGE 4 OF <u>8</u>
	Mirror figure accuracy; efficiency in far UV;	stray light control	


11. RELATED TECHNOLOGY REQUIREMENTS: (Cont'd)

°•4 ∉∔ performance; greater development and use of light weight, stiff, vibration absorbent, temperature insensitive, metering mount, and instrument structures may be necessary. Contamination measurement and control continues to be a major problem.

DEFINITION	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.4																		
1. TECHNOLOGY REQUI	REM	EN	т (FIT	LE)	:	OŢ	otica	al T	ele	sco	pes	;	F	PAG	Ε5	OF	<u>۔</u> ۲	
Mirror figure accura	<u>y; e</u>	ffic	ienc	y i	n fa	r U	<u>V;</u>	stra	<u>y 1</u>	ight	<u>; co</u>	ntro	<u>, 1</u>						
12. TECHNOLOGY REQU	IREM	EN	TS	SCI	IEL	UL	E:												
							_	ND		YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Concepts Analysis																			
2. Techniques Developme	nt	-																	
3. Test & Evaluation	-																		
4.																			ļ
5.																			
APPLICATION			<u> </u>																
1. Design (Phase C)			TA											-					
2. Devl/Fab (Phase D)		ļ		TA					Į		ļ								
3. Operations:							.	TI			TI			<u> </u>		TI			
															ł				
					Т	0	•	• T4		0		••	8.	60	8.	••	•		
13. USAGE SCHEDULE:	<u></u>				<u></u> .	J		۰ <u>ـــــ</u>	L		·	Ļ	····		ş	·	4,		
TECHNOLOGY NEED DATH	2	[TA														ר	ют	AL
NUMBER OF LAUNCHES		Ī			2	2	1	4	5	4	5	6	6	5	6	6		52	(1)
14. REFERENCES: a. Final Report of Space	Shut	tle	Fay	vloa	dF	lan	nins	r W	ork	ing	Gr	oup	s, 1	Vol.	. I.,	As	troi	nom	.у ,
pages 4-6.																			
b. Large Space Telescor December 15, 1972.	be Pl	ase	A	ŀm	ai i	kepo	ort,	.T.I	VLX-	-04	(10,	IN I	АбА	./ <u>I</u> VL	ort	. .			
Legend: (Ref	ler <i>e</i> n	ces	co	ntin	ued	l on	Pa	ge (3.)										
 = Sortie Operations - = Automated Operatio 	nc																		
TA = Optical Telescope A		nbl	y, /	4S-(01-	Α, Ξ	Lar	ge	Spa	ce '	rele	esco	ope						
TL = Integrated Telescop																			
T1 = AS-14-A, 1 m UV -(T2 = AS-04-S, 1 m Diffra						-Op	tica	1 T	ele	sco	pe								
T3 = AS-31-S, Combined	l AS-	01,	-03	3, -	-04,	, -0	5-8	;											
T4 = AS-51-S, Combined (1) = Does not include up									S-0)1-1	4.								
15. LEVEL OF STATE O									OMPO	ONEN	T OR		ADBO. FHE L				REL	EVAN	T
1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DES	CR! BE	PHEI	NOME					7. N	IODE .	L TE: L TE:	STED	IN AI IN SI	RCRA PACE	ENVI	NVIR RONM	ONMË IENT.			
3. THEORY TESTED BY PHYSICAI OR MATHEMATICAL MODEL									OPE	RATI	ONAI	, MOI	DEL.			MUCI			
 PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	ARACTI INT, E	ERIST TC.	IC DE	MON	STRA	TED,	1											l MOI Odel	

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-1.4
i.	TECHNOLOGY REQUIREMENT (TITLE): <u>Optical Telescopes</u> Mirror figure accuracy; efficiency in far UV; stray light control	PAGE 6 OF _8
c.	Large Space Telescope, Optical Telescope Assembly/Scientific Ins Phase B Definition Study Monthly Progress Reports, Sept. 1973 to	Aug. 1974.
d.	Summarized NASA Payload Descriptions, Level A Data, PD, NASA pages 22, 23.	
c.	Preliminary Payload Descriptions, Vol. I, Level B Data, NASA, J p_{a} jes 1-1 thru 1-23.	Fuly 1974,
d.	Comments, Garvin Emanuel, 6 Jan. 1975.	

.

	FECHNOLOGY NEED elescope, UV-IR	DS	1. TECHNOLOGY REQUIREMENT (TITLE): Mirror figure accuracy; efficiency in far l
CATEGORY	REQUIRED CAPABILITY	STATE OF ART	EQUIREA uracy: ef
MIRROR FIGURE ERRORS PRIMARY SECONDARY	≤1/50 λ,1 то 3m DIA. ≤1/70 λ, ≈ 1m DIA. AT 632.8 nm	1/20 λ (1 m DIAMETER) 1/20 λ (1 m DIAMETER) (Better than 1/20 with smaller secondaries)	
SPECTRAL RESPONSE	90 TO 5,000 nm	CERTAIN RANGES ONLY	<u>Optical Telescopes</u> JV: stray light contro
IMAGE MOTION	≤0.005 ARC-SEC	0.1 ARC-SEC	sscopes t contro
MIRROR SURFACE SCATTERED LIGHT	≤1%	3 to 10%	PAGE 8 C
			OF 8

DEFINITION OF TECHNOLOGY REQUIREMENT

7

1. TECHNOLOGY REQUIREMENT (TITLE): __Infrared Telescopes; PAGE 1 OF 7 Sensitivity improvement; minimization of local flux

2. TECHNOLOGY CATEGORY: Collectors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Improve far infrared sensitivity by reducing the local IR flux to $<10^2$ photons/cm²/sec. Desired telescope spectral bandwidth 2 to 3000 µm (for family of IR telescopes). Increase cryogenic efficiency through minimization of heat transfer (<250 joules/hr) from the ambient environment to the cryogen. 4. CURRENT STATE OF ART: a. AIRO 0.914m IR telescope local flux < 5 x 10⁻¹⁴ WHz^{-1/2} delivered to detector area $\sim 1 \text{ cm}^2$. b. F. Low 0.15m IR telescope cooled by <u>LHe/LNe to about 4.2^oK.</u> Estimated local flux $\sim 10^{-17}$ WHz^{-1/2}. Cooled military telescopes have been flown, possibly with advanced technology.

HAS BEEN CARRIED TO LEVEL

The instruments of concern are to be used pri-5. DESCRIPTION OF TECHNOLOGY marily for observations of faint cool objects in the far infrared regions beyond the solar system. Even when placed outside the influence of the earth's atmosphere. IR detectors in such a telescope receive more radiation from the instrument itself than from the astronomical objects they seek to observe. Fluctuations in local radiation set a limit in the sensitivity achievable by subtraction methods. Since the present application cannot tolerate spectral band and/or narrow FOV limitations, the background radiation itself must be minimized. The desired result can be achieved by artificial cooling, the only limiting factor being the inherent detector sensitivity. Therefore, the operating instrument temperature must be lowered sufficiently to reduce the local flux due to background noise below the equivalent noise produced by a cooled detector.

One of the telescopes required will be capable of observations over a 5 - 1000 μ m spectral range, but is primarily optimized for a somewhat narrower region (e.g., $10-50 \mu m$ for the 1.5m instrument of the AS-01-S payload). Detectors having a noise-equivalent power (NEP) of 10^{-16} WHz^{-1/2} in the 10-30 μ m region with decreased sensitivity at longer wavelengths, are currently available. Assuming a 0.05 emissivity, a telescope would have to be cooled to below 40° K to take full advantage of this NEP in the 10-50 μ m band. NEP's approaching 10^{-18} WHz^{-1/2} have now been reported and no doubt will be available in the 1980's. Proper use of these devices can be made possible by a cryogenic system capable of maintaining the telescopes at less than 20⁰K and the detectors at the cryogen temperature $\ge 1.5^{\circ}$ K, thus reducing local flux to $\sim 10^{2}$ photons/sec. A small telescope cooled by liquid helium (4.2°K) and liquid neon has been flown in high altitude airplanes. See pages 6 and 7 for additional description.

Possibly the military have flown telescopes with advanced technology.

P/L REQUIREMENTS BASED ON: X PRE-A, A, A, A, C/D

6. RATIONALE AND ANALYSIS:

(a) To accomplish their purpose the payload IR instruments require sufficiently high sensitivity to give them the capability to perform the proposed observations and measurements in various bands within the 2 to 3000 μ m range. The greatest sensitivity can be achieved by reducing background noise below the detector noise level. The solution is to provide a cryogenic system sufficient to lower the temperature of both the detectors and the collector to make them compatible with detector capability.

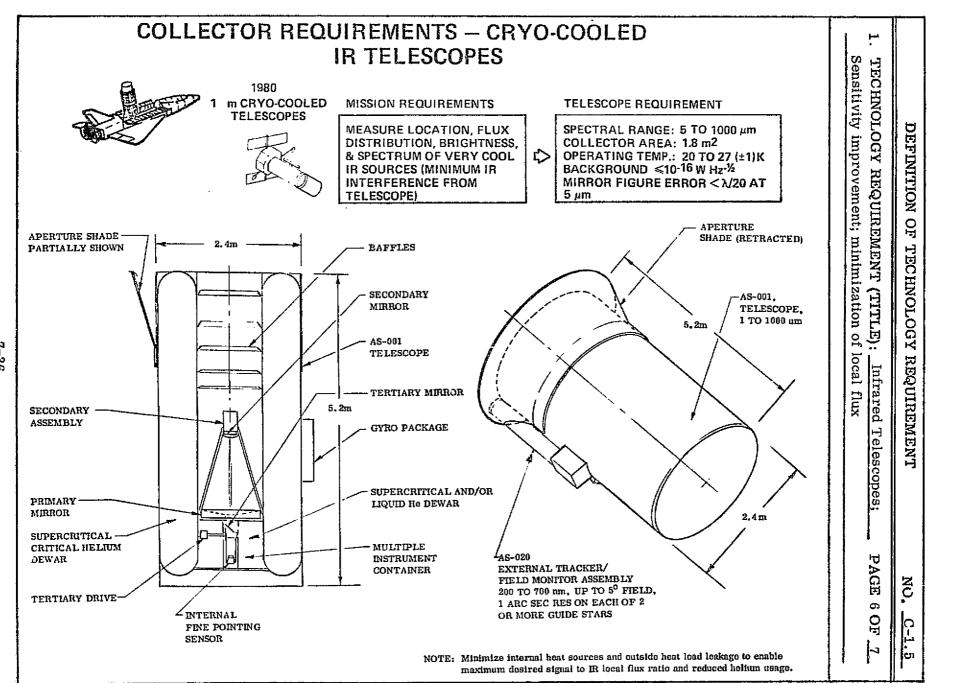
TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNO	LOGY REQUIREMENT	NO. <u>C-1.5</u>
1. TECHNOLOGY REQUIREMENT (TI Sensitivity improvement; minimiza		: PAGE 2 OF _7
 6. RATIONALE AND ANALYSIS: (Con (b) Most IR astronomy payloads can be Three Sortie and two Automated payloads 	enefit from a minimization of t	
(c) The reduction or suppression of th directly into an enhanced ability to locate very cool IR sources and to or extended sources, to the limitin	e background thermal noise ca penetrate the far infrared rea perform spectroscopy and pho	an be translated gions to detect and
(d) Collector areas of 10^4 cm^2 and lat noise of best available detectors (for $\lambda < 30 \mu \text{m}$). Even a 10^{-15} WHz Final test of a cryogenically coole be accomplished on a Shuttle Sorti	10^{-16} WHz $^{-1/2}$ for $\lambda > 30 \ \mu m$ a $^{-1/2}$ would represent a signift IR telescope for astronomical	nd 10 ⁻¹⁷ WHz ⁻¹⁷² icant advance.
Initial test would be performed in	a good cooled vacuum chambe:	r.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.5
1. TECHNOLOGY REQUIREMENT(TITLE): <u>Infrared Telescopes;</u> PAGE 3 OF <u>7</u>
Sensitivity improvement; minimization of local flux
7. TECHNOLOGY OPTIONS: A reduction in local background radiation may be accomplished by working either in a narrow spectral band and/or in a narrow field of view for a fixed size IR telescope. These options would defeat the purpose and the objectives of the payloads by precluding Fourier spectroscopy, broad-band photometry of extended sources, observations of faint sources, etc. Current trends indicate that the problem may be alleviated by increasing effective collector area such as in payloads AS-20-S, AS-15-S. However, an optimum compromise in collector area, telescope cooling, detector cooling, detector array area and detector sensitivity is expected to enable implementation of IR telescopes compatible with the investigator needs, shuttle accommodation capability, and the available budget for each time period.
 TECHNICAL PROBLEMS: A very cold IR telescope is susceptible to contamination in space resulting from shuttle outgassing, water vapor release, migration of sublimated materials, etc. In addition each particle floating in the near field of view of the telescope tends to act like a bright IR source tending to degrade desired astronomical source observations. Since the IR telescope needs to be filled with cryogens some time before launch, the DeWar should be effective at the surface of earth as well as in space. If too much heat from the outside leaks in, more cryogen is required. Consequently, weights tend to exceed desired values due to an extremely heavy Dewar or large quantity of cryogen. POTENTIAL ALTERNATIVES: The improved sensitivity may be obtained by increase in collector area (such as 2.5m dia. in AS-20-S, 3m in AS-15-S) with the output coupled to cryogenically cooled instruments (detectors) to eliminate most of the local flux around the detectors. Discrimination against local flux noise may be possible if heterodyne type detectors (but cryogenic) can be used to limit effective bandwidth while measuring selected IR spectral lines. It is recommended that further research be accomplished in finding temperature insensitive light weight materials such as beryllium and graphite epoxies suitable for IR telescope optics, metering structure, and Dewars, compatible with cryogens ranging from LNe to superfluid helium. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENTS. RTOP 356-41-01, Development of Shuttle Infrared Telescope Facility, ARC, D. Chapman/J. V. Foster (415) 965-5065.
 b. W74-70626 (188-41-55) Infrared Astronomy, N. W. Boggess, (202) 755-3688, Hqs. c. W74-70628 (188-41-55) Infrared Astronomy, Glen Goodwin, (415) 965-5065, ARC. d. W74-70655 (188-78-51) Low Gravity Superfluid Helium Advanced Technology Development, R. A. Potter, (205) 453-3432, MSFC. e. Contract, Hughes Aircraft Company, awarded 1974, f. Program Code 352, Airborne Research, R. Cameron, ARC. EXPECTED UNPERTURBED LEVEL 7
11.RELATED TECHNOLOGY REQUIREMENTS:
Areas in which greater effectiveness as well as weight savings can occur in the process of minimizing IR local flux are: (a) absorption, reflectivity, and emissivity of mirror, baffle,
and telescope structure surfaces visible to super cooled detector/amplifier assemblies,

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Infrared Telescopes</u>; PAGE 4 OF <u>7</u> <u>Sensitivity improvement</u>; minimization of local flux


11. RELATED TECHNOLOGY REQUIREMENTS: (Cont'd)

(b) thermal control necessary to hold IR telescope and optics temperatures constant at desired values, (c) selection of effective cryogens for telescope thermal shields, (d) large aperture Dewars, contamination protection enabling maintenance of reflection and emissivity characteristics desired, alignment and adjustment of supercooled telescope optical elements.

NASA/ARC already has Phase B equivalent studies underway for system predesign, critical components for AS-01-S and AS-11-A. At present no equivalent effort is known for AS-15-S and AS-07-A. AS-20-S is an extension on up-scaling of AS-01-S but with lessons learned applied.

DEFINITION O	FΊ	EC	HNO	OLC	GY	RE	QU	IRE	ME	'N'T					N	ю.	C-1	1.5	
1. TECHNOLOGY REQUIR	EM	EN'	т (FIT	LE)	: <u>I</u>	ıfra	red	lΤe	eles	cop	es;		F	PAG	E 5	OF	7	_
Sensitivity improvemen	<u>1t; 1</u>	nini	imi	zati	on_c	of_1	ocal	flu	IX										_
12. TECHNOLOGY REQUI	REM	IEN	TS	SCH	IED	UL	E:												
-				.		CA	LE	ND.	AR	YE	AR			.			···,		
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	39	90	91		
TECHNOLOGYT1T21. Concepts & ParametricT1Studies2. Exper. Hardware Dev.T1T33. Test & Evaluation																			
APPLICATION TO																			
1. Design (Phase C) $\underline{T1}$ $\underline{T3}$ $\underline{T2}$																			
2. Development/Fabrication T1 T2 T2																			
3. Sortie Operations T1 0 0000000 0 0 0 0 0 0																			
T 3 x x x x x x x x x x x x x x x x x x																			
4. Automated Operations																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE				T3	ļ			 	 		T2	2	 	ļ		-	r	TOT	AL
NUMBER OF LAUNCHES				1	2	4	5	3	6	6	4	2	5	3	5	5		56	3
14. REFERENCES:	•	,				-													
 a. Summarized NASA Payload Descriptions, Sortie Payloads, PD, NASA, July 1974, pp. 30, 62, 64, 78, 86. b. Summarized NASA Payload Descriptions, Automated Payloads, PD, NASA, July 1974, pp. 26, 32. c. Final Report of the Space Shuttle Payload Planning Working Groups, Vol. I, NASA/GSFC, May 1973, pp. 6 thru 13. d. Reference Earth Orbital Research and Applications, Vol. II, NASA, January 1971, 																			
Section 6. e. Instrumentation in Astronomy - II, Proceedings of the SPIE Meeting, March 1974.																			
Legend: T1 - AS-01-S, 1 to 1.5m Crycgenically Cooled IR Telescope T2 - AS-20-S, 2 to 2.5m Cryogenically Cooled IR Telescope T3 - AS-15-S, 3m Ambient Temperature Telescope (Alternate) T4 - Automated IR Telescope Missions (AS-11-A) T5 - AS-07-A, 3m Ambient Temperature IR Telescope 15. LEVEL OF STATE OF ART																			
 HASIC PHENOMENA OBSERVED / THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONEN 	AND R RIBE EXPE RACTI	E POI PHEI RIME: ERIST	NOME NT	ENA.	STRA	TED,		7. M 8. N 9. R	IODE IODE EW C OPE ELIA	L TES L TES LAPAI CRATI BILIT	STED STED BILIT IONAI IONAI	IN AI IN SI Y DE MOI GRAI	IRCR/ PACE RIVEI DEL. DING	AFT E ENVI D FRO	INVIR RONM DM A N OPI	ONMI MENT MUCI ERAT	I LES IONAI	SER L MOI ODEL	

Þ

TECHNOLOGY NEEDS – REPRESENTATIVE CRYO COOLED **1.5m IR TELESCOPE**

ц Ч

TECHNOLOGY REQUIREMENT (TITLE): <u>Infrared Telescopes</u>;

PAGE 7 OF 1

NO.

2 . СЛ

DEFINITION OF

TECHNOLOGY

REQUIREMENT

		r
CATEGORY	REQUIRED CAPABILITY	STATE OF ART
SPECTRAL RANGE (µ m)	5 TO 1,000	1 TO 500
LOCAL IR FLUX (INTERFERENCE) (WHz ^{-1/2})	< 10 ⁻¹⁶	~ 5 x 10^{-14}
TELESCOPE INTERNAL TEMP (K)	20	4.2 to 77
EFFECTIVE COLLECTOR AREA (m ²)	1.8	0.64
MIRROR COLD FIGURE ERROR AT 5µm	< × /20	<λ/20
MINIMUM DEWAR HOLD TIME (DAYS)	> 7 EXTENSION TO 30 & 90	0.5
MAX INTERNAL POWER DISSIPATION (W)	1	1 to 500
INTERNAL ATMOSPHERE	V.ACUUM, OR GHe	Vacuum, Air or GN_2
INTERNAL CLEANLINESS LEVEL	100	200 to 10,000

1. TECHNOLOGY REQUIREMENT (TITLE): LHE Cooled Telescope ____ PAGE 1 OF 3____

Extend design lifetime of liquid helium cooled experiment telescopes and sensors.

2. TECHNOLOGY CATEGORY: Cryogenic Control -Collectors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Extend the design life of a LHe cooled

telescope to 12 months. Minimize local flux to enable cosmic background measurements The spatial and spectral distribution of the cosmic microwave background needs to be measured in the 100 μ m to 3,000 μ m range which is inaccessible from the ground.

4. CURRENT STATE OF ARC: Current maximum lifetime of a LHe closed system is 90 days.

HAS BEEN CARRIED TO LEVEL 6

0. <u>C-1.6</u>

5. DESCRIPTION OF TECHNOLOGY

An IR telescope for wavelengths from 100 to 3000 micrometers with an aperture of 0.2m, FOV of 5 degrees, and f/15 optical system needs to be cooled to liquid helium temperatures to obtain maximum radiometric sensitivity and accuracy.

Some controversy exists as to what wavelengths will be most effective in determining the spatial and spectral distribution of the cosmic IR and microwave radiation field. The portion of the measurements in the 100 to 3,000 μ m which tend to be inaccessible can best be accomplished from space by a cryogenically cooled IR telescope instrument.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

6. RATIONALE AND ANALYSIS:

- a. The whole telescope will be cooled to below 4.2°K to achieve the performance required to survey the spatial and spectral distribution of the cosmic microwave background radiation field.
- b. The benefitting payload is AS-03-A, Cosmic Background Explorer.
- c. The technology to extend the design life to one year will enable complete coverage of the sky with one satellite to map cosmic background radiation in the 100 to 3,000 μ m range.
- d. The Cosmic Background Explorer is desired to be launched in 1979, hence the proof of the experimental model can be combined with the initial observation flight. The basic initial technology demonstration would be performed in a good cooled vacuum chamber.

7 - 39

TO BE CARRIED TO LEVEL 8

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.6
1.	TECHNOLOGY REQUIREMENT(TITLE): LHE Cooled Telescope PAGE 2 OF _3
	Extend design lifetime of liquidhelium cooled experiment
7.	TECHNOLOGY OPTIONS:
Tra	ade studies required are:
a.	Optimum operating temperature
b.	Type of insulation and Dewar
C.	Type of active cooling
d.	Type of thermal control coatings
e.	Light weight and small size to fit Explorer class vehicles
8.	TECHNICAL PROBLEMS:
a.	Need better insulating techniques
b.	Realistic demonstration of selected solutions
c.	Reliability of electrical and mechanical components.
d.	Dewar for containing helium for one year (however, techniques being developed by Garrett Airesearch for the magnetic spectrometer are applicable on a smaller scale)
9.	POTENTIAL ALTERNATIVES:
a.	Launch a series of satellites with lesser design lifetimes.
b.	Reduce sensitivity requirements to allow an increase in operating temperature.
c. d.	Obtain cosmic background radiation measurements at other wavelengths. Increase satellite size.
u.	increase saterifie size.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
a.	W74-70256 (502-21-27), Space Vehicle Thermal Control, Goddard Space Flight Center, Stanford Ollendorf, (301) 982-5228.
b.	W74-70257 (502-21-27), Thermal Control, Ames Research Center, John V. Foster, (415) 965-5083.
c.	W74-70567 (180-31-51), Thermal Systems Management, Lewis Research Center, C. A. Aukerman, (216) 433-6223.
đ.	W74-70657 (188-78-51), Advanced Technological Development, General: Cryogenics, NASA, Washington, D.C., M. J. Aucremanne, (202) 755-3676.
	EXPECTED UNPERTURBED LEVEL 6
11.	RELATED TECHNOLOGY REQUIREMENTS:
a.	Solar electric powered helium recycling (RI-12.2)

DEFINITION O	F TI	ECI	HNC	DIC	GY	RE	ເວັກ	IRE	CME	NT	۹.				1	10.	C-3	1.6	
1. TECHNOLOGY REQUIR	EM	EN'	г (7	ודוי	LE	. 1	HE	: Co	oole	ed T	'ele	sco	pe	I	PAG	E 3	OF	. 3	
Extend design lifetime of														•					
12. TECHNOLOGY REQUIR														, <u>, </u>					ᅴ
	C 1-3 IVI	53 T.A	10	501	11515		LE	ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79		81		· · · · ·	<u> </u>		86	87	88	89	90	91		
TECHNOLOGY (Exp. Equip.			~									<u> </u>					1		
1. Trades & Constraints Anl	-																		
2. Prelim. Design & Fabr. 3. Test and Evaluation		_																	
APPLICATIONS (Spacecraft)										 		 			<u> </u>				
1. Design (Phase C)			']						l I				
2. Development/Fabrica-			_																
tion (Phase D) 3. Operations																1	Ì		
				T1				İ		1		[<u>i</u>		1		ļ	
+																			1
	1		1	1	<u></u>	1	1	1	1	1	<u> </u>	1	1	т-	- <u></u> -	1		rot	
TECHNOLOGY NEED DATE		Т			<u> </u>				+	-	-			-				+	
NUMBER OF LAUNCHES					T1		T1	-	T	L	T	-	T	1	T	<u> </u>	T1	·	7
14 REFERENCES;																			
a. Summarized NASA Pa	yloa	dĽ)esc	erip	tio	ns,	Aut	tom	ate	d P	ayle	bad	ક, ડે	ſuly	19	74,	NA	SA/	,
MSFC, p. 26.		Ch.	. 644.			ađ			T	Non	lein	a C		n	۸ e+	non	077017	, TA	آم ۲۲
b. Final Report of the Sp 1973, Goddard Space									ng v	wor	KII	g G	rou	.p,	ASL	ron	omy	, 1	ау
1975, Goudard Space	- 1181		Jen	ισr ;	PF	. 2		0.											
Legend:																			
T Technology		_		_		_													
T1 = AS-03-A, Cosmic	Ba	ckg	rou	nd	Ext	lor	er												
15. LEVEL OF STATE OF	' AR	\mathbf{T}						s. C									NREL	EVAN	IT
1. BASIC PHENOMENA OBSERVED A									IODE		STED	IN A	IRCR	AFT I	ENVI	ion m			
2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL I				NA.				7. N	SODE	L TE	STED	IN SI	PACE	ENV	IRONI	MENT		SER	
OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAF	ACTE	RIST	IC DF	MON	STRA	TEC.		9, F	OPI E LIA	ERATI BILIT	iona Fy ui	l MO PGRA	DEL. DING	OF A	N OP	ERAT	IONA	l MOI	DEL.
E.G., MATERIAL, COMPONEN								10. 1	IFET	IME	EXTE	NSIO	N OF	AN O	PER/	TION	IAL M	ODEL	

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-1.7</u>
1. TECHNOLOGY REQUIREMENT (TITLE): IR Scanner/Radiometer Improve accuracy of measurement of ocean surface temperature	PACE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY:Collectors	<u> </u>
3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Measure sea surface t</u> an accuracy of 0.13 ^o K over temperature range of 273 to 309 ^o K. Im	÷ · · · · · · · · · · · · · · · · · · ·
FCV to at least 0.7 milliradian (0.04 deg) and preferably to 0.21 mr	(0.012 deg).
4. CURREN'T STATE OF ART: <u>Global maps of the ocean have been ob</u> of 1° K by Weather Service Satellite System, DMSP, FOV = 1°	
HAS BEEN CARR	IED TO LEVEL 7
rotating or oscillating mirror. To obtain a good measure of ocean surf- versus spatial location (0.4 km), selected wavelengths in the 8 to 13 μ m (probably 11.9 to 12.9 μ m and 10.2 to 11.2 μ m) will be used. The scan collect sufficient energy from each 0.4 x 0.4 km ² spatial resolution ele surface to produce a signal larger than the local IR flux. The scanner bration source at least one time per scan to enable attainment of observ	spectral region aning mirror will ement on the ocean will review a cali-
desired. High resolution $(0.4 \times 0.4 \text{ km}^2)$ is only required near the coa	
	stline.
desired. High resolution (0.4 x 0.4 km ²) is only required near the coa P/L REQUIREMENTS BASED ON: PRE-A, 6. RATIONALE AND ANALYSIS:	stline.] A, [] B, [] C/D
desired. High resolution $(0.4 \times 0.4 \text{ km}^2)$ is only required near the coa P/L REQUIREMENTS BASED ON: X PRE-A,	stline.] A, [] B, [] C/D
 desired. High resolution (0.4 x 0.4 km²) is only required near the coa P/L REQUIREMENTS BASED ON: PRE-A, 6. RATIONALE AND ANALYSIS: a. Since a fairly wide +40° scan, perpendicular to orbital direction an field of view of 0.04° are sized, dwell time on each element is not 1 	stline. A, B, C/D d the instantaneous ong. Consequently er/radiometers is
 desired. High resolution (0.4 x 0.4 km²) is only required near the coa P/L REQUIREMENTS BASED ON: PRE-A, 6. RATIONALE AND ANALYSIS: a. Since a fairly wide +40° scan, perpendicular to orbital direction an field of view of 0.04° are sized, dwell time on each element is not 1 a fairly large collector is required (0.3 to 0.4 m aperture). b. The current temperature accuracy per spatial element for IR scann about 1° from space; the Seasat A goal is between 0.15 and 1°K. OF 	 stline. A, □ B, □ C/D d the instantaneous ong. Consequently er/radiometers is P-07-A, Seasat B ctivity of minute to noise ratio will cements. Areas to
 desired. High resolution (0.4 x 0.4 km²) is only required near the coa P/L REQUIREMENTS BASED ON: PRE-A, 6. RATIONALE AND ANALYSIS: a. Since a fairly wide +40° scan, perpendicular to orbital direction an field of view of 0.04° are sized, dwell time on each element is not 1 a fairly large collector is required (0.3 to 0.4 m aperture). b. The current temperature accuracy per spatial element for IR scann about 1° from space; the Seasat A goal is between 0.15 and 1°K. Of goal is 0.13°K. c. Sensitive sea current and upwelling measurements depend upon dete temperature gradients. The higher sensitivity and improved signal permit refinements and additions to present ocean dynamics measurements. 	 stline. A, □ B, □ C/D d the instantaneous ong. Consequently er/radiometers is P-07-A, Seasat B ctivity of minute to noise ratio will cements. Areas to , 12.5 µm has rom an orbital
 desired. High resolution (0.4 x 0.4 km²) is only required near the coa P/L REQUIREMENTS BASED ON: PRE-A, 6. RATIONALE AND ANALYSIS: a. Since a fairly wide +40° scan, perpendicular to orbital direction an field of view of 0.04° are sized, dwell time on each element is not 1 a fairly large collector is required (0.3 to 0.4 m aperture). b. The current temperature accuracy per spatial element for IR scann about 1° from space; the Seasat A goal is between 0.15 and 1°K. OJ goal is 0.13°K. c. Sensitive sea current and upwelling measurements depend upon dete temperature gradients. The higher sensitivity and improved signal permit refinements and additions to present ocean dynamics measure be surveyed are too great for periodic measurements from aircraft d. A very high resolution radiometer Type VHRR using 0.6, 0.7, 10.5 achieved 1°K measurements. The 0.13°K measurement capability f altitude of 600 km can be proved only by comparison against local m from aircraft. 	<pre>stline.] A, □ B, □ C/D d the instantaneous ong. Consequently er/radiometers is P-07-A, Seasat B ctivity of minute to noise ratio will cements. Areas to . , 12.5 µm has rom an orbital</pre>

7-43

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO
		NO. C-1.7
	TECHNOLOGY REQUIREMENT(TITLE): <u>IR Scanner/Radiometer</u>	PAGE 2 OF <u>4</u>
	prove accuracy of measurement of ocean surface temperature	
	TECHNOLOGY OPTIONS:	
sen siz is l but	e design of a scanner/radiometer is constrained by the tradeoff between sitivity and spatial resolution. To obtain very fine resolution, a sma e, d, and focal length, f, is required (hence a large focal ratio). As arge, the instantaneous field of view is very small, the radiant area a larger collector mirror is needed. The size of detector is expecte mm. The detector sensitivity is improved by cooling cryogenically.	ll ratio of detector noted before, if f viewed is smaller d to be in the orde:
	hbroom arrays up to 5000 detectors per spectral band are being cons . Pilts, Westinghouse Electric Corporation.	idered according
8. a.	TECHNICAL PROBLEMS: Collector size versus dwell time per spatial element.	
b.	The major technical problem is the effect of clouds and of the atmosp satellite and the ocean surface. Although a systematic calibration ch from the local vertical can be developed by actual test comparisons of against a local airborne radiometer, there is considerable variation masses giving some measure of uncertainty. Correlation between sea state effects and water temperature.	art versus angle of orbital readings
9.	POTENTIAL ALTERNATIVES:	,,,,,,,,,,,
nun ver acc sen Hov	umber of coordinated scanner/radiometer instruments operating sim- aber of the IR and RF atmospheric windows may produce synchronize sus the same spatial elements, giving a better incremental and absol- uracy. The multisensor multispectral alternative using RF bands as sor channels may provide a correlated set of data enabling correction vever, addition of microwave radiometer antennas, receivers, and da ipment, have greater weight, volume, and cost demands.	d sets of data ute radiometer well as IR n to 0.1 ⁰ K.
10.	PLANNED PROGRAMS OR 'NPERTURBED TECHNOLOGY ADVANC	EMENT:
506	4-70538 (177-55-11) Remote Sensing of Coastal Upwelling, Glen Good 5. (Indicates that NOAA II, FAMOS, ERTS-B, NIMBUS G thermal in	magery now
bei	ng used.) EXPECTED UNPERTU	JRBED LEVEL 7
	RELATED TECHNOLOGY REQUIREMENTS: Development of a stable local calibration reference.	
	Development of correction charts of atmospheric IR measurements velocal vertical.	ersus angle from

. Here a second second to the standard standard was seen a second to the second was well.

	DEFINITION O	FΊ	ECI	HNC	DLC	OGY	RE	QU	IRF	ME	NT					1	10.	C-1	L.7	
1.	TECHNOLOGY REQUIR	EM	EN'	Г (1	riT.	LE)	: <u> </u>	R S	can	ner	/Ra	ıdio	me	ter	F	PAG	Е3	OF	4	_
	Improve accuracy of m	easi	urei	ner	t o	<u>f oc</u>	ean	Su	rfac	e t	emr	er	etur	e						
12.	TECHNOLOGY REQUI	\EN	IEN	TS	SCI	IED			ND	AR	YE	AR								
	SCHEDULE ITEM	75	76	77	78	79		81			<u> </u>		86	87	88	89	90	91		
	HNOLOGY Trades & Predesign																			
2.	Exp Model Fabr.																			
3. 4.	Tests, Calibration & Evaluation																			
5.																				
API 1.	PLICATION Design (Ph. C)																			
2.	Dev1/Fab (Ph. D)						-	<u> </u>	╞											
3.	Operations							Т	 -		-		<u> </u>							
4.																				
13	. USAGE SCHEDULE:				- <u>.</u>				**					-1		-1				
ΊΈC	HNOLOGY NEED DATE			T															roj	<u>AI</u>
NU	MBER OF LAUNCHES								1									 	1	
14	REFERENCES:																			
a.	Summarized NASA Payl	oad	De	ser	ipti	ons	, L	eve	1 A	Dai	ta,	NA	SA	PD,	, Ju	ıly∶	1974	1 .		
b.	Preliminary Payload De 6-110 thru 6-126.	sci	ripti	ons	, V	ol.	Ι,	Aut	oma	ated	l Pa	iylo	ads	, J	uly	197	4,	pag	es	
c.	E & OP Applications Pr	ogr	am,	Vo	51.	II,	Rat	ion	ale	and	Pr	ogr	am	Pla	ans	, se	epte	mbe	er 1	.972
d.	W 74-70538 (177-55-11)	. F	lem	ote	Ser	ısin	g of	C C c	ast	al I	Ups	wel	ling	. •						
(Re	ferences continued on pa	ıge	4.)																	
	<u>end</u> = Technology = OP-02-A, Seasat B																			
15	LEVEL OF STATE OF	FA	\mathbf{RT}						5.					EADB THE				N REI	LEVA	NT
	 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	CRIBI EXPI RACI	e phe Erime Ferist	NOM: NT	ENA.	NSTR	ATED	' .	7. 8.	MODI MODI NEW OP RELL	EL TE EL TE CAPA ERAT A BILI	STEI STEI BILI IONA) IN A) IN S TY D (L MC PGR/	IRCR PACE ERIVE DEL.	AFT ENV DFF OF /	ENVI TRON IOM A	RONN MEN MUC	H LE	SSER	DDEI

V,

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-1</u> ,7
--------------------------------------	-------------------

1. TECHNOLOGY REQUIREMENT (TITLE): <u>IR Scanner/Radiometer</u> PAGE 4 OF <u>4</u> <u>Improve accuracy of measurement of ocean surface temperature</u>

14. REFERENCES: (Cont'd)

- e. Definition of the Technical Requirements for an Earth Resources Payload, Vol. 5, Appendix A, Sensor Data, Table 3, Earth Resources Market Analysis of October 15, 1973.
- f. Infrared-Optical Techniques Applied to Oceanography. Measurement of Total Heat Flow from the Sea Surfaces, E. D. McAlister, May 1964, Applied Optics.
- g. A Radiometric System for Airborne Measurement of the Total Heat Flow from the Sea, E. D. McAlister and W. McLeish, Page 2697, Dec. 1970, Applied Optics.
- h. Oceanography from Space, April 1965, Ref. 65-10 Woods Hole, E. D. McAlister and W. L. McLeish "Oceanographic Measurements With Airborne IR Equipment and Their Limitations, page 189.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.8
_	TECHNOLOGY REQUIREMENT (TITLE): VIS-IR Optics Experi- PAGE 1 OF 3 mental Techniques for Lasers;Communication Fineness and Stability of Alignment; Enable manual access as well as automatic and manual adjustment. TECHNOLOGY CATEGORY: Collectors
	OBJECTIVE/ADVANCEMENT REQUIRED: <u>Alignment of multiple mirrors of optical</u> stem is desired within 0.04 arc second (may be mitigated for optical bench by choice
	mirrors) to minimize wavefront distortion, avoid spoiling coherence, and enable
	ucking. Tracking of gimballed laser telescope will be good to about 1 arc second
aft	er initial acquisition search.
4,	CURRENT STATE OF ART: Optically flat mirrors (even half silvered for beam
eve	litting) and two axis mirror mounts manually adjustable up to 0.1 arc sec exist; how- er, neither adjustments for long optical trains nor the breadboard philosophy for lase perimentation have been proven yet.
	HAS BEEN CARRIED TO LEVEL 4
	DESCRIPTION OF TECHNOLOGY
cat sys sco the tio ar c via mo tai wa any fle wif be	dulated laser beams at 10.6, 1.06, 0.53 μ m are used as carriers in a laser commun- tion system. For experimenters to have access to the lasers and receiving circuitry stems of mirrors are used to route received and transmitted beams to an optical tele ope that is used for projecting and receiving the signals. To avoid damage to mirror e outgoing laser beams are expanded to distribute laser energy over a greater reflec- n area. All the optics are to be mounted in a stable structure. Some of the mirrors e fixed but manually adjustable; some are on two axis mounts driven by error signals analog or digital computing circuits to compensate for Space Lab or orbital vehicle tions as well as tracking errors. In practice, small optical mirrors cannot main- n beam coherence equivalent to 0.04 arc sec (Airy disc size is about 1 arc sec at velengths shown). However, as has been demonstrated by many autocollimators, gular detection devices track either the centroid or preferably the edges of a re- cted image of a small mirror which may be blurred by diffraction and aberrations th an accuracy of 0.04 to 0.06 arc seconds. "Cat's Eye" type reflectors need to researched to minimize need for sub-arcsecond alignment. P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/I
	RATIONALE AND ANALYSIS:
a.	Although most of the optical system components for receiving and transmitting the laser communication to and from a Space Shuttle Orbiter payload are available, logic programming and servo system techniques need to be developed to enable inte- gration of components.
b.	The techniques are needed to implement CN-05-S, Laser Communication Experiment (MSFC version). An additional laser experiment proposed by GSFC with a new CN-XX-S number can be mounted outside the Spacelab cabin on the pallet. It is not accessible for manual experimentation during flight. However, the optical beam alignment and transfer techniques may be applicable to all payloads involving optica referencing, tracking, or pointing, where very good correlation and alignment are needed.
c.	The techniques will enable development of techniques for proper detection and trans
	lation of laser signals from ground to space and space to ground. A later GSFC ex-
	periment will apply lessons learned toward development and test of practical laser
d.	communications equipment. The technology requirement is satisfied when a similar optical system functions successfully in space. TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-1.8
1. TECHNOLOGY REQUIREMENT(TITLE): VIS-IR Optics Experimental PAGE 2 OF <u>3</u> Techniques for Lasers;Communications Fineness and Stability of Alignment; enable <u>manual access as well as automatic and manual adjustment</u> .
7. TECHNOLOGY OPTIONS:
 A preliminary review of the current state of the art indicates that the uplink and downlink optical transmission trains can be corrected by servoed beam deflectors driven by error signals obtained from tracking detectors. However, no existing system for as many optical elements exist. The most critical beam deflectors are those coupling the gimballed telescope to the internal laser and detector optics. Tracking capability will depend largely on the accuracy and stability of the optics train used to track the incoming laser signals. Use of a stable optical base and strategic layout of optical trains will reduce the number of servoed deflectors to a minimum. A major trade exists as to whether a multiple carrier laser communication experiment in breadboard (optical bench) form or the finished operational form is flown. Plane parallel plates in divergent or convergent optical space can provide up to 100:1 advantage in beam angular adjustments. 8. TECHNICAL PROBLEMS: a. Optical path extends from pallet in shuttle orbiter to pressurized module and is subject to large deflectors and distortions. b. Use of a number of movable mirrors in passing the beam through a multiaxis mount as well as the beam deflectors requires a systematic allocation of corrections in each axis of each deflector. c. Tracking pointing needs to be accomplished to within a fraction of a beamwidth (0.1 arc sec for 1 arc sec beam) simultaneously with alignment of laser signal optical
trains; interactions may occur.
 POTENTIAL ALTERNATIVES: a. A computer controlled alignment system using auxiliary corner reflectors or fiducial marks on each servoed mirror might enable balanced correction of errors in align- ment of mirrors.
b. A more reliable laser communicator unit mounted on standard gimbals (Instrument Pointing System) can be used in later communications experiments. It avoids laser beam tracking through windows and on optical beach but is not accessible for human manipulation.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70344 (502-03-11) Optical Communication Research, GSFC, H. H. Plotkin,
(301) 982-6171.
b. Communication Exp. Definition, TRW Report DR-MA-04, pages 9-1 thru 9-19, Appendix A, 9A-1 thru 9A-15 under study from MSFC (C. Quantock).
EXPECTED UNPERTURBED LEVEL 7
11. RELATED TECHNOLOGY REQUIREMENTS:
a. Telescope pointing to 0.1 seconds (beam adjustments to sub-arcseconds can be ac- complished by use of plane parallel plates in divergent or convergent optical space to obtain a lever effect where the actual mirror angle can be adjusted only with a preci- sion of several arc seconds).
 b. Tracker and alignment detector errors less than 0.1 arc seconds to minimize accumulative errors of several loops.

DEFINITION O	FТ	EC	HNG	DIC	GY	RE	QU	IRE	ME	NT					ľ	10.	C-1	.8	
1. TECHNOLOGY REQUIR mental Techniques for La enable manual access as y	EM ser vell	EN' s;Co as	T ('. omr aut	rIT nun om:	LE) icat atic	: V tion and	IS-I Fii 1 m	R C nena anu	Dpti ess al a	cs and dju	Exp l Sta str	eri abil ien	- lity t.	F of J	PAG Alig	E 3 mm	OF ent;	_3	
12. TECHNOLOGY REQUIF	REM	IEN	TS	SCI	IEC		E: ALE	ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80		82		84		96	87	88	89	90	01		
TECHNOLOGY 1. Parametric Analysis	-			10	15	00	01	02	03	04	00	00	01	00	00	90	51		
2. Comm. Breadboard			_																
3. Test & Evaluation				_															ļ
4.																			
5.																			
APPLICATION 1. Design (Ph. C)																	 		<i>i</i>
2. Devl/Fab (Ph. D)																Ì			
3. Operations									0										
4.																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE				1	Т]]	ют	'AL
NUMBER OF LAUNCHES								1	1	1			1	1	1				6
14. REFERENCES:		•																	
 a. Definition of Experime Laboratory, Vol. II, E TRW, pages 9-1 thrus b. Summarized NASA Pay July 1974. 	2xpe 9-1	erin 9, A	nen: App	t Se endi	lec ix A	tion pa	, Si ges	tudy 9A	7 Re -1 :	ep o i thru	rt D 1 94	R-1	MA 5.	-04	, M	ay	1972	2,	
 c. Preliminary Payload I NASA, July 1974. d. Ltr. from Robert T. 1 27 Dec. 1975. 		-		-				•			Ť		-				ata,		
Legend T = Technology • = Sortie Operations																			
15. LEVEL OF STATE OI	F AI	RT						5. C									N REL	EVAN	łТ
 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. 	RIBE	PHE	NOME					7, 1	iode iode iew (L TE L TE CAPA	STED STED HILIT	IN A IN S Y DE	IRCR PACE	ENV. DFR	E NVH IRON	ionm Ment	ENT. '. h LES	SER	

.

4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.

ļ

, Ì

5

. D

·

alla an an a

- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

à

NO. <u>GE-1.9</u>

1. TECHNOLOGY REQUIREMENT (TITLE): _____ LARGE MICROWAVE ANTENNA ARRAYS PAGE 1 OF 3

2. TECHNOLOGY CATEGORY: Collectors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Maintain the required dimensional

accuracy of large foldable antenna arrays in terms of flatness and phase-feed point dimensions.

4. CURRENT STATE OF ART: Antenna structure can be designed and manufactured to the required tolerances, but maintenance of the tolerances in the extreme

thermal conditions of space is not in the S.A. HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

The subject advancement is representative of structural requirements for large (over 5m) foldable microwave antenna arrays for active and passive earth sensing applications. Flatness requirements range from 1/4 to 1/20 wavelength. For instance, the ATL printed circuit array antenna which will support simultaneous measurements in altimetry, scatterometry and passive radiometry will require surface flatness during operation less than 0.25 CM. During the Shuttle era, antenna lengths up to 30 meters long (Met. Radar Facility) are planned. They will be articulated or deployable, and will receive varying thermal flux contributions from the earth's albedo, the sun, and the Shuttle/Spacelab assembly.

Foldable antenna arrays, up to 30 m. long have not been built to date. A 14 meter long printed phase array is being designed for SEASAT. Although flatness tolerances of 0.25 CM over a 25 meter span are well within current manufacturing capabilities, the maintenance of these tolerance limits under the expected space thermal conditions is not within the state of the art.

P/L REQUIREMENTS BASED ON: \square PRE-A, \boxtimes A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

(a) The required dimensional tolerance of antenna arrays will be based on operating frequencies ranging up to 100 GHz and the criteria of 1/4 to 1/20 wavelength contour accuracy. The optimum frequency upon which the design will be based will consider the required altitude and radiometric measurement accuracy and degree of weather penetration.

(b) This technology advancement specifically supports: the Slotted Waveguide Antenna for Payload No. ST- 22S (ATL); the Shuttle Imaging Microwave System, EO-05S; Multifrequency Radar Land Imagery, OP-02S; Multifrequency Dual Polarized Microwave Radiometry, OP-03S; and the Millimeter Wave Experiment.

(c) This advancement will be instrumental in attaining altitude measurements with less than one meter error for averaging times of ten seconds, land and ocean imaging, microwave soundings of the atmosphere and other earth observation applications.

(d) Structural models of the antenna array should be tested in simulated thermal vacuum conditions.

TO BE CARRIED TO LEVEL 5

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.GE-1.9
1. TECHNOLOGY REQUIREMENT(TITLE): LARGE MICROWAVE ANTENNA ARRAYS	PAGE 2 OF <u>3</u>
7. TECHNOLOGY OPTIONS: The 1/4 to 1/20 wavelength flatness criterion will be relaxed, depending on the allowable degree of measurement degradation. dimensional tolerance will significantly affect microwave beamw and system efficiency. Methods of actively adjusting the posit antenna segments to compensate for deflecting influences such a or inertial loads are theoretically possible, but may introduce and program cost.	The antenna width, sidelobes, tion of individual as thermal gradient
8. TECHNICAL PROBLEMS:	
Thermally induced deflections must be minimized through proper tion and structure design. The hinge mechanism must be proper permit proper parallelism between antenna segments and its elem antenna deployment (unfolding). Special test procedures must b simulate zero-g for pattern measurements and thermal distortio Erectable antenna structures 10 to 30 meters long, built for m saving, will be subject to serious distortion forces due to gr	ly indexed to ments after e developed to on measurements. maximum weight
9. POTENTIAL ALTERNATIVES:	testing
Altimetry measurements will be feasible through use of a smalle bolic antenna, as indicated in DTR No. GE-4.4. However, the hi wave radiometry and imaging applications will require a large a	gh resolution micro
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	ICEMENT:
a) RTOP W74-70492 Earth Observations Radar Workshop b) RTOP W74-70274 Structural-Thermal - Optical Program c) Additional technology program emphasis will be required to i of the required antenna technology early in the Shuttle Program	nsure availability 1.
EXPECTED UNPER	TURBED LEVEL 3
11. RELATED TECHNOLOGY REQUIREMENTS: The development of the subject antenna technology must be done with the analysis and advancements in microwave systems for alt metry, radar imaging, and passive microwave radiometry. The ad phic microwave techniques will be relevant to the subject requi dimensional tolerances on the antennas will be more stringent.	imetry, scattero- vances in hologra-

And the set

DEFINITION C)F I	ECI	HNC	DLC	GY	RE	QU	IRE	ME	NT					N	ю .	GE-	1.9	
1. TECHNOLOGY REQUI			-		-		AYS							þ	AG	E 3	OF	;	3
																			 -
12. TECHNOLOGY REQUI	REM	IEN	TS	SCF	1EL			ND.	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79							86	87	88	89	90	91		
TECHNOLOGY																			
1. Thermal/Structural An	e1	+-																	
2. Material Selection		-			ļ														
3.Range Tests of Proto- type.			-																
4. Space Qualification			-	-															
APPLICATION		1		 										1			 	!	†
1. Design (Ph. C)					-													{	
2. Devl/Fab (Ph. D)					-	╞				ļ									
3. Operations						-					<u> </u>						<u> </u>		
4.					Ì														
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATI	2				4													roj +	ΓAL
NUMBER OF LAUNCHES						5	5	4	4	4	3	4	5	4	6	5	4		53
14. REFERENCES:	•					•													
L. Study of Shuttle Laboratory ATL.		pati i-X-1			iva	nceo	1 Te	echi	n o 10	ogy								·	
2. Shuttle Imaging M by Dr. J. Waters	iicr JP	oway L, J	ve S Janu	Syst Lary	tem y 21	(SI 2, 1	[MS] 1974),] 4.	Per	spe	cti	ves	an	d 01	bje	cti	ves	,	
15. LEVEL OF STATE C	FA	\mathbf{RT}						5,						OARD LABC		IED (I	N REI	LEVA	.NT
1. BASIC PHENOMENA OBSERVEI 2. THEORY FORMULATED TO DE 2. THEORY FORMULATED TO DE	SCRIB	E PHE	NOM					7.	MODE	EL TË EL TË	STEI) IN A) IN S	IRCR	AFT: ENV	£.NVII]RON	RONM MENT MUC	7.		
3. THEORY TESTED BY PHYSICA OR MATHEMATICAL MODEL 4. PERTINENT FUNCTION OR CH E.G., MATERIAL, COMPON	ARAC'	FERIS		EMO	NSTR	ATED	•	9.	OP RELL	ERA] A BILI	TY U	L MO PGR/	DEL.	01	N OI	ERAT ATION	TIONA	LMO	ODEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Spatial Detector;	_ PAGE 1 OF _4
Spatial readout resolution, dimensional stability, (cosmic or gamma	rays)
. TECHNOLOGY CATEGORY: Sensors	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Measure gamma ray or 1	nuclear particle's
trajectory through spatial detector to 0.1mm (and preferably to 0.01mm)	
tion to 0.002mm over 1.2m range to enable detectible rigidity from 200	GV/c to 10^4 GV/c .
4. CURRENT STATE OF ART: Current state of art provides a spatial r	esolution of
() Prove with four measurements around the married (1) Imm now date	

+0.2mm with four measurements averaged to provide +0.1mm per detector element which is equivalent to a maximum rigidity of 200 GV/c. HAS BEEN CARRIED TO LEVEL 6

5. DESCRIPTION OF TECHNOLOGY

Spatial detectors can sample a gamma ray or nuclear particle trajectory at 3 or 4 points. Each point should be measured at least to ± 0.1 mm. The current positional accuracy capability combined with the field from a superconducting magnet for a cosmic ray will yield a spectrometer mean maximum detectible rigidity of 200 GV/c with ± 0.1 mm measurements and in the future to 10^4 GV/c with 0.002mm measurements. Conventionally, each spatial detector would consist of a multiwire proportional chamber with delay line readout. The charge deposited by a cosmic ray is drawn to the closest wire in the chamber and multiplied in the detector gas. The time required for the induced signal to propogate to the end of the delay line attached to the wire indicates the location where ionization occurs. The resultant value is digitized for output. Time of flight measurments enables identification of tracks as gamma ray or as cosmic rays, and provide an additional measure of energy through determination of velocity.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. When traversing a magnetic field, a charged particle is bent through an angle which is proportional to its rigidity (momentum/unit charge). Hence a higher energy particle's trajectory is bent less, requiring more precise readouts. Gamma rays, of course, are not bent but can be converted to e⁺ e⁻ pair, which is bent.
- b. Payloads benefiting fron. improvement in spatial detector resolution and accuracy include HE-15-S and HE-09-A, 'Magnetic Spectrometer'. Spatial detector techniques are also applicable to HE-08-A, Large High Energy Observatory (Gamma Ray).
- c. Improvement in spatial detector resolution and stability of 10 to 50 times the accuracy of present day gaseous or proportional spark chambers would extend the useful range of magnetic spectrometers as high as 10^4 GV/c. Greater accuracy in determining direction of arrival of gamma : ays is needed.
- d. Improved spatial detectors can be tested by installation in early or existing magnetic spectrometers used in balloon flights as well as in gamma ray instruments. These early tests should indicate feasibility by 1976.

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C- 2.1
1. TECHNOLOGY REQUIREMENT(TITLE): Spatial Detector;	PAGE 2 OF <u>4</u>
Spatial readout resolution, dimensional stability, (cosmic or gamma ra	ys)
7. TECHNOLOGY OPTIONS: Conventional measurements of gamma ray or particle trajectories (in a utilize proportional and spark chamber technology. Solid state high spat tectors not using gas as a detection medium are being investigated using	ial resolution de- stable substrates.
Considerable improvement can be obtained by measuring positions of sp relative to each other by auxiliary optical systems. Calibrations better straight trajectories will help. With the magnetic field applied, the ben energy particle may be determined by measurements at four locations. ments of the particle's path allow greater rejection of background than w	than 0.01 mm by 1 angle for various Four measure-
8. TECHNICAI PROBLEMS:	
a.For gaseous proportional or spark chambers, the temperature should read and the pressure within 0.05 atmosphere of the desired limits. Other the variations and triggering, there appear to be few problems in attaining +0.1mm accuracy. Higher accuracy appears to require non-gaseous procession.	an data readout performance of
 b. Selection of high structural stability and low outgassing materials. c. There is a problem in delay line readout of multiwire proportional coun particles (e⁺ and e⁻) transversing the counters. There appears to be no for the delta rays associated with extending performance to charge 26. 	
9. POT NTIAL ALTERNATIVES: A spatial detector system consisting of four plates of detector per spatial Instead of using conventional proportional or spark chamber technology means arrays of wires and gas, each plate would consist of a thin array means array of wires and flight of a gamma ray or nucleon thru the the detector elements provide coincidence-anticoincidence triggers to d etry, charge magnitude, time of flight of each particle or gamma ray. (a require identification of track as a cosmic ray or gamma ray type.)	which usually of detectors which plates. In addition efine the FOV geom
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
 a. RTOP W74-70646 (188-46-56) Particle Astrophysics, NASA HQ, Al (202) 755-3665. b. RTOP W74-70651 (188-46-64), Astrophysical Investigations on the S HQ, Albert G. Opp, (202) 755-3665. c. RTOP W74-70652 (188-46-64), Shuttle Definition Studies for High End F. B. McDonald, GSFC, (301) 982-4801. EXPECTED UNPERT 	pace Shuttle, NASA ergy Astrophysics,
 11. RFIATED LECHNOLOGY REQUIREMENTS: a. Magnetic field uniformity and predictability (DeWar/Cryostat/Magnet) b. Uniformity and knowledge of spatial detector temperature. c. Automatic cryostat/Magnet control. d. Spatial detector electronics (subnanosecond circuitry). e. Pressurizable thermal control shield with minimum loss & seconda 	

DEFINITION O	F T	ECI	INC	DLC	GY	RE	QU	IRE	ME	NT))	10.	C -	2.	L
1. TECHNOLOGY REQUI	REM	EN'	г (7		LE)	:	S	pati	al I	Dete	ecto	r;		<u>р</u>	AG	E 3	OF	4	
Spatial readout resolut													amr	na	ray	s)			_
12. TECHNOLOGY REQUI	₹EM	EN'	ТЧ	SCI	IED	UL	E:												
	11	· · · · ·			r				AR	YE	AR					(····	<u> </u>		
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Options & Para. Anal.	_																		
2. Design of Exp. Model	_															ļ			
3. Fabrication & Assembly	_																		
4. Tests & Evaluation	-																		
5.																			
APPLICATION 1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)				-		╞					ļ					}			
3. Operations						• V	<u>†1</u>		12 N	11				• 1	11				
4.							•	61	•0	1.			●G	1	<u> </u>		G2		
13. USAGE SCHEDULE:	<u> </u>	<u>.</u>										-		,					
TECHNOLOGY NEED DATE		M1 M2								<u> </u>				ļ	<u> </u>] 	το	'AL
NUMBER OF LAUNCHES						M M	G	<u> </u>	$[M]{G1}$			Gź	2 G1	. м	1			8	}
14. REFERENCES:	•																		
 a. Final Report of the Sp Energy Astrophysics, b. Superconducting Magr Preliminary Design a 1971 thru 15 Feb. 197 (Continued on Page 4) J. agend 	Ma ietic nd I	y 19 Spe Perf	973 ecti orn	, pa rom nan	iges iete ce i	s 39 r E: Spec	an xpe cifi	d A rin cati	-23 ient ons	for , C	: HI	EAC rac) Mi	lssi	on	в,	Par	tΙ	ne
Legend M1 = Sortie Flight of Mag M2 = Automated Flight of G1 = Prototype Gamma Ra G2 = Automated Free Flyst • = Sortie Operations = Automated Operation	Mag iy So er G	meti orti	ic S e M	bpec liss	etro ion	mei Ins	er tru:	(HE mei	2-09 nt (I	HE-	16-								
 LEVEL OF STATE O. BASIC PHENOMENA CESERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE *Also G1 and G2. 	AND H CRIL. EXPE RACT	F POF PHEI RIME	NOME NT	ENA.	STRA	TED,		6. 1 7. 1 8. 1 9. 1	ENV MODE MODE NEW (OPI RE LIA	VIRON L TE L TE CAPA ERAT ABILI	IMEN STED STED HILIT IONA TY U	T IN IN A IN SI IN SI IN DE L MO PGRA	THE A IRCRA PACE RIVE DEL. DING	ABO AFT E ENVE D FRO	RATC ENVII IRONI OM A	FED II DRY. RONM MENT MUC PERAT	ENT. H LES	ser l mo	DEL.

<u> </u>	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-2.1</u>
	ECHNOLOGY REQUIREMENT (TITLE): <u>Spatial Detector</u> ; PAGE 4 OF <u>4</u> patial readout resolution, dimensional stability, (cosmic or gamma rays)
14.	REFERENCES: (Cont'd)
c.	Introduction of Experimental Techniques of High Energy Astrophysics, H. Ogelman and J. R. Wayland, GSFC, 1970.
d.	Summarized NASA Payload Descriptions, Level A Data, Automated Payloads, NASA PD, July 1974.
e.	Preliminary Payload Descritions, Vol. I, Automated Payloads, Level B Data, July 1974.
f.	Summarized Level A and Level B Descriptions, Vol. II, for Sortie Payloads, July 1974.
g.	High Resolution Readout of Multiwire Proportional Counters Using the Cathode Coupled Delay Line Technique, by J. L. Lacy and R. S. Lindsey, JSC, March, 1975
h.	A Direct Measurement of Magnetic Rigidity Spectra of Cosmic Riy, J. H. Adams, North Carolina State University at Raleigh, N.C., JSC Doc. MTM-TN2-71, January 1973.
i.	Superconducting Magnetic Spectrometer for Cosmic Ray Nuclei, Review of Scientific Instruments 43, 1, January 1972.
j.	A Measurement of Cosmic-Ray Rigidity Spectra Above 5 GV/c of Elements from Hydrogen to Iron, Astrophysical Journal 180, 987, March 1973.
k.	Spatial Spark Jitter Measurements of Highly Charged Nuclei for Optical Spark Chambers, Review of Scientific Instruments, 43, 1285, September 1972.
1.	"Superconducting Magnet and Cryostat for a Space Application", and "Low Heat Leak Current Leads for Intermittent Use", G. F. Smoot and W. L. Pope, to appear in Vol. 20, Advances in Cryogenic Engineering (1974).

DEFINITION	\mathbf{OF}	TECHNOLOGY	REQUIREMENT	
	<u></u>			

NO. <u>C-2.2</u>

HAS BEEN CARRIED TO LEVEL 7

1. TECHNOLOGY REQUIREMENT (TITLE): X-Ray Transmission Grating PAGE 1 of <u>4</u> Dimensional stability of elements versus temperature, g level, size

2. TECHNOLOGY CATEGORY: ____ Sensor

3. OBJECTIVE/ADVANCEMENT REQUIRED: Spectral resolving power of $\lambda/\Delta\lambda = 5$ &200 at 0.31 to 12.4 nm respectively, for signal input of 3 x 10⁻³ photons/sec cm² arc minute²;

survive launch acceleration to 5 g; 263° K to 303° K; grating dia. = 0.5m.

4. CURRENT STATE OF ART: A 0.3m dia. transmission grating of 1400 lines per mm

with gold evaporated on it at a near-grazing angle was used on the Skylab ATM in the 0.3

to 6 nm range.

5. DESCRIPTION OF TECHNOLOGY

Low resolution spectral data are obtained by dispersing incident X-rays from an X-ray telescope with a transmission grating located near the telescope mirror. Each point source in the field of view results in a point image and a line image in which the position along the line follows the normal grating function of the wavelength. The spectral resolution is poorer than obtained with crystal spectrometers but since data are taken simultaneously over the entire spectral range, a higher data rate is obtained which enables investigation of weaker sources and of temporal behavior of stronger sources.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

- 6. RATIONALE AND ANALYSIS:
- a. Dimensional stability of the transmission grating lines to avoid permanent distortion by ascent and versus temperature change are critical as well as materials used for stabilizing the grating. Progressive improvement and tests will result in rugged transmission gratings for each type of x-ray telescope.
- b. The transmission grating is useful in the 1.2m X-ray (HE-11A) telescope as well as the Large X-ray telescope (HE-01-A). It could also be applied in 4 mcre types of telescopes
- c. An improved transmission grating capable of handling X-rays from 0.1 keV to 4 keV (0.31 to 12.4 nm) properly coupled to the Large X-ray telescope and appropriate detector will enable low resolution spectroscopy at very faint signal levels.
- d. Transmission gratings for X-ray telescope flown in 1973; larger greater range grating needs to be developed.

Test to be performed in cooled vacuum chamber to demonstrate technology.

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.2
1. TECHNOLOGY REQUIREMENT(TITLE): X-Ray Transmission Grating PAGE 2 OF 4_
Dimensional stability of elements versus temperature, g level, size
7. TECHNOLOGY OPTIONS:
The X-ray transmission grating intercepts an X-ray beam of 1° at a point 0.5m in diameter. It is used in conjunction with a maximum sensitivity detector or an X-ray converter/ image intensifier for low resolution spectroscopy at very faint signal levels (flux ~3 x 10^{-1} X-ray photons per sec per cm ² per arc minute ²).
8. TECHNICAL PROBLEMS:
Primary problem is dimensional stability of transmission grating line spacing during ascent and descent versus g level and temperature change. Grating mounting needs to be stable (with little residual vibration or movement during an observation); however should be stowable outside of X-ray beam when not wanted and should be axial adjustable by remote control.
9. POTENTIAL ALTERNATIVES: a. Primary ruled reflection grating, platinum on glass, holographically ruled.
Such gratings, however, usually are designed for smaller angular divergence than produced by typical X-ray mirrors.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
EXPECTED UNPERTURBED LEVEL 7
11. RELATED TECHNOLOGY REQUIREMENTS:
X-ray telescope (development of better sensitivity, spatial resolution, and field of view).

ŝ,

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.2																			
1.	1. TECHNOLOGY REQUIRFMENT (TITLE): X-Ray Transmission Grating PAGE 3 OF 4																			
L.L	Dimensional stability of elements versus temperature, g level, size																			
12.	TECHNOLOGY REQUI										-									
									ND	AR	YE.	AR								
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TEC	HNOLOGY Trades, Anal., Design																			
2.	Sample Grating Fab.		T1	_т2		Т	3													
3.	Test & Evaluation		,	Г1 <u>,</u>	Т2			т3	_											
4.																}				
5.															2					
APF	LICATION			$\left\{ \right\}$		i]									
1.	Design (Ph. C)					T	<u>1,</u> 7	2	ף 	:3					ļ					
2.																				
3.	3. Operations $T_1 = T_2 = T_2$																			
4.										2	T4		3- ø	<u> </u>						
13.	USAGE SCHEDULE;	<u>.</u>			<u></u>			-1	<u>.</u>	4	<u> </u>	•	4	<u></u>						
TEC	HNOLOGY NEED DATE		<u> </u>			$\begin{array}{c} TT \\ T2 \end{array}$			T3		Ĺ	[4					r	ют Н	AL
NUN	IBER OF LAUNCHES								T1	Т2			Т		Τ4		T4	T2		Ł
			1			<u> </u>	ļ		Т5	<u> </u>]T	<u>il _</u>	T4	1			<u> </u>	T4		
a. b.	 14. REFERENCES: a. Final Report of the Space Shuttle Payload Planning Working Groups, NASA/GSFC, May 1973, pages A-1, -2, A-4. b. Summarized NASA Payload Descriptions, Sortie Payloads, PD, NASA, July 1974, pages 112, 113, 114. (References Continued on Page 4) 																			
9	 egend = Sortie operations — = Automated operations 																			
(T	(T1) = HE-03-A, 0.75m X-ray Telescope (82-A), (85, 86, 88, 90, 91-S). (T2) = HE-11-A, 1.2m X-ray Telescope (82, 84-S), (83, 91-A).																			
	(T2) = HE - 01 - A, Large X-ray Telescope Facility (1986).																			
1 '	(T4) = HE-19-S, Low Energy X-ray Telescope.																			
	5) = HE-20-S, High Reso = Automated (free flye				-		esc	ope												
	LEVEL OF STATE OF			י – נ	001				5. C	омро	ONFN	тоя	BRE	ADBO	DARD	TEST	ED IN	REL	EVAN	łТ
	 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC 	ND F RIBE	REPOI PEEI	NOME						ODE	L TES	TED	IN A		AFT I	ENVI	ORY. IONMH MENT			
	 THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. 	EXPE	RIME	NT					8. N	EW C OPE	RATI	BLIT ONA	y di L Mo	RIVE	D FR	ом а	MUCE	1 LES		
	4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC. 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.																			

10

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. C-2.2

1. TECHNOLOGY REQUIREMENT (TITLE): X-Ray Transmission Grating PAGE 4 OF 4_

Dimensional stability of elements versus temperature, g level, size

14. REFERENCES: (Cont'd)

- c. Payload descriptions, Vol. I, Automated Payloads, Level B Data, NASA, July 1974, HE-03-A, HE-11-A, HE-01-A; pages 2-31 thru 2-56, 2-131 thru 2-158, and 2-1 thru 2-28.
- d. Conference, S. S. Holt with E. Saari, 6 November 1974, at GSFC.

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): X-ray Max. Sensitivity Detector PAGE 1 OF 5

Detector window passband efficiency, charged particle rejection

2. TECHNOLOGY CATEGORY: <u>Sensors</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: Achieve sensitivity of 3×10^{-4} counts per cm²-second-arc minute², spectral range 0.1 to 4 keV (0.31 to 12.4 nm), sectional

detectors for anticoincidence

 4. CURRENT STATE OF ART: The current state of the art very nearly meets technology

 goal except for closed cycle cooling system and a front window transparent to X-rays from

 0.1 to 4 keV.
 HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY

The detector concept includes a supercooled Si (Li) detector cooled to 70 to 120°K with a transparent front window. The primary detector is surrounded by anticoincidence solid state detectors to minimize background arising from charged particles and Compton scattered photons. The detector front window should be capable of passing 0.1 to 4 keV (12.4 to 0.31 nm) X-ray photons and rejecting the local flux of charged particles. The current state of the art very nearly meets the technology goals except for a closed cycle cooling system and a front window transparent to the desired spectral range.

The detector assembly for HEAO-B currently employs solid methane, with ammonia as a secondary refrigerant. The current detector cannot operate below 0.4 keV because of noise. The capacitance of the detector is a problem. Segmenting would help and could reduce the capacitance effect to a fraction of a picofarad. The quality of FET preamplifiers is currently going downward and needs improvement.

See pages 4 and 5 for additional technology description.

P/L REQUIREMENTS BASED ON: DRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. Solid state detectors, with cooling, have the best presently obtainable detector spectral response and efficiency using a direct photo electric interaction. When used with the Large X-ray Telescope, the detector will enable sources 10^{-8} SCO X-1 to be detected (detector will be capable of a sensitivity of 3×10^{-4} counts/cm²-sec-arc minute² as limited by effectiveness of rejection of charged particles).
- b. Any or all of the X-ray telescopes of HE-19-S, Low Energy X-Ray Telescope, HE-11-A, Large High Energy Observatory D, HE-01-A, Large X-Ray Telescope Facility Observatory, can use a maximum sensitivity detector to improve total system effectiveuess.
- c. A maximum sensitivity detector enables realization of full sensitivity of an X-ray telescope particularly at the lower energy levels. Improvement in segmenting will also provide mapping or imaging data.
- d. When a maximum sensitivity detector can be operated with a large X-ray telescope and effectively rejects background from charged particles and Compton scattered photons, these technology requirements are satisfied. Test should be performed in a HEO-B spacecraft in 1978 on an Atlas/Centaur launch.

TO BE CARRIED TO LEVEL 8

DEFINITION	OF	TECHNOLOGY	REQUIREMENT
------------	----	------------	-------------

NO. C ~ 2.3-1

1. TECHNOLOGY REQUIREMENT(TITLE): X-ray Max. Sensitivity Detector PAGE 2 OF 5

Detector window passband efficiency, charged particle rejection

7. TECHNOLOGY OPTIONS:

Trades of detector size, coincidence-anticoincidence configurations, entrance window material, cryogenic cooling are expected to produce a maximum sensitivity detector whose threshold sensitivity, limited by sky background, can detect 3×10^{-4} counts per cm²-secarc minute². Due to the necessity for rejecting charged particles and Compton scattering components, considerable detector electronics are needed for coincidence-anticoincidence gates, pulse height (energy) analysis, and output registers to handle the considerable dynamic range in counting rate and energy range. Segmenting, besides improving spatial resolutions, will reduce noise and eventually enable operation down to 0.1 keV. Charged particle influx may be minimized by using a permanent magnet to sweep aside low energy protons or electrons. Gamma ray noise, except down the detector axis, will be minimized by anticoincidence circuits.

TECHNICAL PROBLEMS: 8.

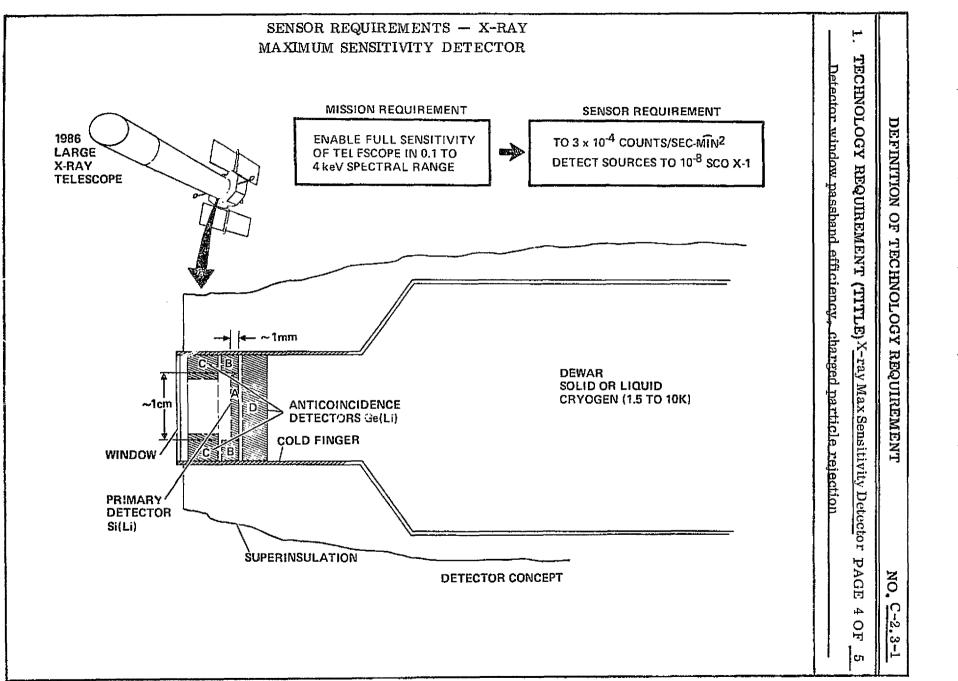
- a. There is a problem of enclosing the active Si (Li) within the anticoincidence volume and yet providing adequate cold finger contact. Due to the small dimensions of the detector, time of flight values are small for X-rays. However, signal may be gated for durations up to use.
- b. Conversely, increase of area increases the background count rate.
- c. Mounting to minimize microphonics. d. Need many detectors on the same silicon chip.
- e. Front window transparency vs. anticoincidence g. Gama ray interference.
- f. FET preamplifier noise.

9. POTENTIAL ALTERNATIVES:

effectiveness.

.......

- a. Since detector and anticoincidence dimensions tend to be too small for effective use, multiple layer detector arrays of larger size give more effective anticoincidence "shielding".
- b. Image converter/intensifier of high sensitivities, low background noise level, and anticoincidence shielding. However, entrance window efficiency over total spectral range is a problem.
- c. Scintillation Shield (such as CsI (Na) counter anticoincidence system).


10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

- a. RTOP, W74-70631 X-ray Astronomy, N. G. Roman.
- b. HEAOB, 0.875m X-ray Telescope, R. Giaconni, ASE.
- c. Additional X-ray telescopes gradually improve in collector area sensitivity, and angular sensitivity. (The telescope instrument definitions usually include options for maximum sensitivity detectors.)

EXPECTED UNPERTURBED LEVEL 7

- 11. RELATED TECHNOLOGY REQUIREMENTS:
- a. Large area X-ray telescope focusing X-ray to about 1 cm detector area.
- b. Cryogenics for holding detector material at low noise levels for long durations.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C - 2.3-1																		
					:													
1. TECHNOLOGY REQU													<u>y D</u>	etec	etor	\mathbf{P}	AGE	3 OF <u>5</u>
Detector window passba	nd	effic	eien	cy,	cha	rge	d p	arti	cle	rej	ecti	on						
12. TECHNOLOGY REQU	• • • • • • • • • • • • • • • • • • • •																	
	,				·	C	AL	ENI	DAI	YI	EAF	<u>.</u>						
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	
TECHNOLOGY 1. Trades, Tests, Analysis		· T T1	T2			5												
2. Design & Fab. Imp. Proto- type		1	jinan j	ļ	-	3	Ψa								Į			
3. Tests & Evaluation				, T2			<u>T3</u>	2) 10-1-73							ļ			
APPLICATIONS 1. Design (Phase C)					T T	<u>і, т</u> г	<u>2</u> [1,]	<i></i>	I 3	I	Т3						T1	(5)
2. Development/Fabrica- tion (Phase D)							<u></u>	τ1 		(1747)-C		-		-				
3. Operations							T2	99		$\frac{T^2}{\lambda}$	0	0	T3	8) ø	ר של	2
13. USAGE SCHEDULE																		
ECHNOLOGY NEED DATE T2 T3 Total																		
														T1 T2	16			
14. REFERENCES: a. Final Report of the Space		hutt	ໂດ່ມີ	Davi	أمفط	וס	ann	ina	Wa	rkii	את (ייען!	100	N.		/65	ምር	
May 1973, pages A-1, -				. ау.	.020		<i>a</i> 101		WQ.	1 121	-6 (11 01	10.1	. 191	1011	, 00	/1 U	\$
b. Summarized NASA Payl	08đ	Des	ser ⁱ	inti	ons	So	rtie	e Pa	avlo	ads	. P	D.	NA	SA.	Ju	lv 1	974	
pages 112, 113, 114.				- <u>-</u>		,			-5 -+		, -	-,		,		- ,	- • -	,
c. Payload Descriptions, V	/ol.	Ι,	Aut	om	atec	l Pa	ylo	ads	, L	eve	1 B	Daf	a,	NAS	SA,	Jul	y 19	974,
HE-03-A, HE-11-A, HE																		
2-28. d. Conference, S. S. Holt w	vith	Е.	Saa	ri,	6 N	ov.	19'	74,	at (JSF	c.							
e. Comments, M. Lampton	, U	св,	Be	rke	ley,	CA	١.											
Sortie operations																		
- Automated operations		m .1			(00				• •		• •		_	~ .				
(T 1)= HE-03-A, 0.75 m X-r (T 2)= HE-11-A, 1.2 m X-ra													Ι-	S).				
(T 3)= HE-01-A, Large X-ra	(T 3)= HE-01-A, Large X-ray Telescope Facility (1986).																	
(T4)= HE-19-S, 1.2m X-ray					rtie	e Mi	issi	on i	n 19	985	, 19	86,	19	90,	199)1).		
A = Automated (free flyer);				÷								_						
15. LEVEL OF STATE									EI	NTRO	ONME	NT IN	THE	LAi¥	ORAT	ORY.		е VANT
1. BASIC PHENOMENA ORSERVE 2. THEORY FORMULATED TO D 3. THEORY FORMULATED DV DINSIC	ESCR	IBE PI	HENO	MEN	۸.			7.	MOD	егт	ESTE	d in s	SPAC:	E EN	TRON	RONM MENT MUC	r.	85 F B
3. THEORY TESTED BY PHYSIC OR MATHEMATICAL MODE 4. PERTINENT FUNCTION OR C	L.				ONST	RATE	D		0	PERA	TION.	AL M	ODEL	•				L MODEL.
E.G., MATERIAL, COMPO				C1.01	1 6110													ODEL,

TECHNOLOGY NEEDS -MAXIMUM SENSITIVITY DETECTOR

ŝ,

ITEM	CAPABILITY REQUIRED	STATE OF ART
DETECTOR WINDOW PASS BAND (keV)	0.1 TO 4	0.1 TO 10
DETECTOR WINDOW PROTON/ELECTRON LIMIT, (COUNTS/SEC-MĨN ²)	3 × 10 ⁻⁴	1 x 10 ⁻³
ANTICOINCIDENCE SHIELD SPURIOUS EVENT LIMIT (COUNTS/SEC-MÎN ²)	10 ⁻⁴	10 ⁻³
TEMPERATURE CONTROL AT SELECTED TEMPERATURE IN RANGE 1.5 TO 10K	+0.5	+2
CLOSED CYCLE REFRIGERATOR ENDURANCE (YR)	2	0.25
DETECTOR SENSITIVITY (COUNTS FOR 1,000 SEC)	1	10

Detector window passband efficiency, charged particle rejection

NO.C-2.3-1

PAGE5 OF5

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.3-</u> 2
1. TECHNOLOGY REQUIREMENT (TITLE): <u>X-ray Polarimeter</u> Sensitivity; dimensional stability	PAGE 1 OF <u>3</u>
 TECHNOLOGY CATEGORY: <u>Sensors</u> OBJECTIVE/ADVANCEMENT REQUIRED: <u>Obtain polarization meas</u> <u>1% (at least 3%) accuracy at selected spectral lines in 0.1 to 4 keV spect</u> as at 2.62 keV) with the polarimeter at focus of an X-ray telescope. 	· · · · · ·
4. CURRENT STATE OF ART: Estimated state of art is 10% polarization 6 to 10 keV range with a flux of 2×10^{-3} photons cm ⁻² sec ⁻¹ keV ⁻¹ . HAS BEEN CARR	on measurements i IED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

Current concepts for an X-ray polarimeter at the focal point of an X-ray telescope indicate potential use of graphite, LiH, or similar materials in crystals for polarimeters. When soft X-rays are reflected through $\pi/2$ rad (90°) of a crystal lattice, only the polarization component normal to the incident and reflected rays contributes effectively to the output signal. A proportional counter is in the direction of the polarized component output and polarization is detected by rotating the entire assembly around the telescope axis and measuring reflected power as a function of angle. A polarized X-ray source will output a maximum in the counting rate when the azimuthal angle is such that the plane of the incident X-ray crystal normal and reflected ray are perpendicular to the polarization of the incident ray.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

a. Within an X-ray telescope field of view of 1°, 1 to 3% polarization measurement accuracy capability, compatible with large X-ray telescopes, is desired to enable identification and quantitative evaluation of synchrotron X-ray emission processes in the source examined.

b. Payloads benefitting from the polarimeter development include: HE-19-S, Low Energy X-ray Telescope; HE-20-S, High Energy X-ray Telescope; HE-11-A, Large High Observatory D (1. 2m X-ray Telescope), and HE-01-A, Large X-ray Telescope Facility.

c. The technology advancement to 1% from current colimated 10% polarization measurement accuracy enables better estimates of X-ray source synchrotron emission process outputs.

d. When 1% polarimeters function in a space equivalent environment to the accuracy desired, this technology requirement is satisfied.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT NO. (2-2.3-2
1. TECHNOLOGY REQUIREMENT(TITLE): X-ray Polarimeter PAGE 2	OF <u>3</u>
Sensitivity; dimensional stability	
7. TECHNOLOGY OPTIONS: Energy bands for X-ray polarimeters are chosen to insure maximum likelihood of o significant physical and cosmological insight into selected spectral lines corresponded materials and processes found in the source. Most of the current options for X-ray meters involve selected crystals in symmetric slab format. The prevailing concept based upon the fact that X-rays can be reflected thru $\pi/2$ rad (90°) by a crystal slat lattice planes oriented at $\pi/4$ rad (45°) to the telescope symmetry axis. The reflection component which can be readout by a proportional coarray.	ling to y polari- t is b-with cted ray
8. TECHNICAL PROBLEMS: Secondary radiation around the X-ray telescope can give rise to polarization measu errors.	rement
9. POTENTIAL ALTERNATIVES: A multichannel, asymmetric Bragg crystal spectrometer/polarimeter array, develo R. Graham Bingham is reported to enable simulaneous spectrometry and high preci- polarimetry in selected energy channels. Each spectrometer/polarimeter consists X-ray concentrator/detector unit which could be cycled into the X-ray telescope bea method measures linear polarization by comparing counting rates of individual sector X-ray sensor located at a collecting cone apex.	sion of an um. The
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	
a. W 74-70630 (188-41-59) X-ray Astronomy, Elihu Boldt, GSFC, Ph. (301) 982-58	353.
b. W74-70631 (188-41-59) X-ray Astronomy, N. G. Roman, Ph. (202) 755-3649.	
EXPECTED UNPERTURBED LE	VEL <u>5</u>
11. RELATED TECHNOLOGY REQUIREMENTS:	
 a. Symmetric nonpolarized X-ray telescope. b. Development of X-ray instrument mounts allowing rotation in a circle around X-telescope FOV center. 	•ray

DEFINITION C	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.3-2																		
1. TECHNOLOGY REQUIREMENT (TITLE): X-ray Polarimeter PAGE 3 OF <u>3</u> Sensitivity; dimensional stability																			
12. TECHNOLOGY REQUI	2. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																		
SCHEDULE ITEM	CHEDULE ITEM 75 76 77 78 79 80 81 82 83 34 85 86 87 88 89 90 91																		
TECHNOLOGY 1. Parametric Analysis																			
2. Predesign & Fab.	-								[ļ	2
3. Test & Evaluation		-		-															
4.									J						· 1				
5.																			
APPLICATION 1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)																			
3. Operations																			
4.	4. $T_2 \circ T_3 \circ T_4$													{ {					
13. USAGE SCHEDULE:	- I		-J							······		J		,	<u> </u>	······	·	: ,	
TECHNOLOGY NEED DATE		}		Т	[ł			r	TO	AL
NUMBER OF LAUNCHES								T2	Т	3 T 2	T	\mathbf{T}		T1		T		9)
 1973, pages A-1, -2, b. Summarized NASA Pay pages 112 - 115. c. Summarized NASA Pay 1974. d. Payload Descriptions, 	 14. REFERENCES: a. Final Report of Space Shuttle Payload Planning Working Groups, NASA/GSFC, May 1973, pages A-1, -2, -4. b. Summarized NASA Payload Descriptions, Sortie Payloads, Level A Data, July 1974, pages 112 - 115. c. Summarized NASA Payload Descriptions, Automated Payloads, Level A Data, July 1974. 										4, [.]								
T1 = HE-19-S, Low Energ T2 = HE-20-S, High Energ T3 = HE-11-A, Large Hig T4 = HE-01-A, Large X-r 15. LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DESC	 e = Sortie Operations - = Automated Operations T1 = HE-19-S, Low Energy X-ray Telescope T2 = HE-20-S, High Energy X-ray Telescope T3 = HE-11-A, Large High Energy Observatory D (1.2m X-ray Telescope) T4 = HE-01-A, Large X-ray Telescope Facility 15. LEVEL OF STATE OF ART EASIC PHENOMENA OBSERVED AND REPORTED. THEORY FORMULATED TO DESCRIBE PHENOMENA. EASIC PHENOMENA OBSERVED AND REPORTED. THEORY FORMULATED TO DESCRIBE PHENOMENA. 																		
OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHA	3. THEORY TESTED BY PHYSICAL EXPERIMENT B. NEW CAPABILITY DERIVED FROM A MUCH LESSER																		

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.4

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Position Sensitive Propor</u> PAGE 1 OF <u>3</u> tion Counter — Spectral resolution, spatial resolution, transient measurements

2. TECHNOLOGY CATEGORY: Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Measure source spectra to $\lambda/\Delta \lambda = 5$, spatial resolution to 0.2mm and transients measured to 1 μ sec in spectral range to

0.124 to 6.2 keV.

4. CURRENT STATE OF ART: _____Spectral distribution to $\lambda/\Delta \lambda = 1$, spatial distribution to 1 mm and transient measurement to 10 μ secs.

HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY

Position sensitive proportional counters are intended for measurement of structure of diffuse backgrounds and coronal of near by stars. Early position sensing proportional counter concepts include one using multianode resistive wire grids. The input signal components are measured by comparing the charge collected at the two ends of each wire. The orthogonal component is determined by the identity of the wire collecting the charge To get 10 arc sec resolution over a 1° field, approximately 360 anode wires spaced 10 arc sec apart in an X-ray telescope field are required. Considerable electronics are required for anticoincidence, pulse height analysis, count per analyzer, position reporting, & event timing.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

6. RATIONALE AND ANALYSIS:

- a. Early position sensitive proportional counters have been designed. Advanced matrices will have more position sensing elements. Earlier telescopes did not have the resolution of planned telescopes.
- b. HE-20-S, High Resolution X-Ray Telescope, HE-11A, 1.2m X-Ray Telescope and HE-01-A, Large X-Ray Telescope Facility utilize the position sensing porportional counter. However two other types of telescopes could utilize the position sensitive proportional counter if instruments are exchanged.
- c. Flux and spectral distribution versus position and time could be obtained by the position sensitive proportional counter at input signal sensitivities approaching 10⁻⁸ Sco X-1 enabling quick mapping of a region.
- d. When a position sensitive proportional count r is used with a Large X-ray Telescope at sensitivities approaching 10^{-8} Sco X-1, the ultimate technology requirements will be satisfied. However initial test should be performed in space.

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT(TITLE): <u>Position Sensitive Propor-</u> PAGE 2 OF <u>3</u> tional Counter — Spectral resolution, spatial resolution, transient measurement

7. TECHNOLOGY OPTIONS:

Wire grid proportional counters may compete with solid state detector arrays complemented with microchannel plate circuits. Improved imaging devices compete or do better in spatial position but tend to lack spectral resolving ability. Proportional counters are best used in the 0.1 to 30 keV region. The low energy end of the range is determined primarily by the counter window while photoelectric efficiency determines the highest energy at which the counter can give useful information. An argon counter is best suited for 1 to 10 keV, propane or other gases are utilized for lower energy/ranges to enable quenching.

It appears that a solid state alternate to the wire grid proportional counters will have a better transient response than the wire grid gas proportional counter type.

8. TECHNICAL PROBLEMS:

- a. Gaseous wire grid instruments tend to have long collection times hence limiting timing accuracy.
- b. Solid state detectors used in arrays equivalent to proportional counters tend to have lesser spectral range than wire grid proportional counters.
- 9. POTENTIAL ALTERNATIVES:
- a. Multisegmented solid state detector.
- b. Parallel plate proportional counter. (Stumpel, Sanford, and Goddard, Journal of Physics E, 6, 397, 1973.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

RTOP: W74-70630 (188-41-59) X-ray Astronomy, Elihu Boldt, Ph (301) 982-5853, GSFC.

EXPECTED UNPERTURBED LEVEL 7

- 11. RELATED TECHNOLOGY REQUIREMENTS:
- a. Development of X-ray collectors (telescopes) for concentrating X-ray images on position sensitive detector array.

DEFINITION O	Fi	EC	HN	OLC	OGY	RE	ເລູບ	IRF	MF	IN	1 				N	10,	C-	2.4	1
1. TECHNOLOGY REQUIR portion Counter - Spectr	EM al	EN' res	Γ (' olu	FIT. tio	LE)	<u>. P</u> o spa	osi tia	tior l re	1 Se so	ens: luti	itiv On,	re l tı	Pro ran	- F sie	PAG at r	E 3 nea	OF	en	ner
12. TECHNOLOGY REQUIE	REM	IEN	TS	SCI	IED		-	ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79							86	87	88	89	90	91		
TECHNOLOGY 1. Trades & Analysis 2. Design & Fab.																			
3. Test & Evaluation						:													
APPLICATION 1. Design (Ph. C) 2. Dev1/Fab (Ph. D) 3. Operations							T2	•	3	T1 •	• T4	•				•	•		
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE T TOTAL																			
NUMBER OF LAUNCHES								TZ	ТЗ	3 T 2				T1		TI	.T1		9
 a. Final Report of Space S 1973, pages A-1, -2, - b. Summarized NASA Pay pages 112-115. c. Summarized NASA Pay 1974. d. Payload Descriptions, Legend: T = Technology = Sortie Operation = Automated Operation T1 = HE-19-S, Low Energy T2 = HE-20-S, High Energy T3 = HE-11-A, Large High T4 = HE-01-A, Large X-rail 	.4. loa loa Vol ons y X y X y X	d Do d Do i. I, -ray C-ra	esc esc Au y T y I gy (ript ript itor eles eles	ion ion nate scop scop	s, f s, <i>l</i> ed F pe pe itor	Sori Auto Payi	ie l oma	Pay ted	load Pa	ls, ylo: vel	Le ads B D	vel. , L	A D eve , N	Data I A ASA	, Jı Dat	uly æ, 4	197 July	4,
 15. LEVEL OF STATE OF 1. EASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESCH 3. THEORY TESTED BY PHYSICAL E OR MATHEMATICAL MODEL. 4. FERTINENT FUNCTION OR CHARMING 	AF ND R RIBE XPEI	₹T EPOR PHEN RIMEN	TED. OME IT	NA.			~ J	5. M 7. M 8. N	ENV ODEI ODEI EW C OPE	IRON L TES L TES APAI RATI	MEN TED TED ULIT ONAI	e in 2 In Al In Sy Y De Mol	PHE I RCRA PACE RIVEI DEL.	ABOI FT E ENVI D FRC	RATO NVIR ROKA M A	RY. ONMI IENT MUCI		SER	

C 2

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): Modulation Collimated Scin- PAGE 1 OF <u>3</u> tillation Counters; Flux distribution, spatial resolution, transient measurement

2. TECHNOLOGY CATEGORY: _____ Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Modulation collimated scintillation counting in 20 to 30 keV range to 2 arc sec resolution in field of view of $5 \times 5^{\circ}$. A collector area

greater than 10^4 cm² in a low background configuration is desired.

4. CURRENT STATE OF ART: <u>HEAO A has a modulation collimator of 10 arc seconds</u> resolution under development by American Science and Engineering, Smithsonian <u>Astrophysical Observatory, M.I.T.</u> HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

The scintillation counter with modified modulation collimators will need an improved modulation geometry and possibly temperature controlled grids. According to S. S. Holt, NASA GSFC, modulation collimators limit the field of view in either an integral or differential manner. An integral collimator cuts off the edges of the field of view and allows some response in the control field of view; integral collimators are good for angles >1/2 deg. Differential modulation collimators provide better source locations. Differential modulation collimators slice the field of view as well as limit the periphery of detector response to avoid other interfering sources. Hence, a given source may, within certain size and complexity limits be, mapped spatially as well as each spatial element categorized spectrally.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. An array of seven modules of 0.5 m dia × 1.5 m long has been proposed with about 1 meter of each unit consisting of the desired modulation collimators. A collector/slat/ grid trade will provide highest collection efficiency and best coupling to scintillation counters.
- b. HE-11-S, X-Ray Angular Structure, and HE-18-S, Gamma Ray Photometric studies are sortic payloads benefitting from this technology.
- c. The development of high resolution modulation collimated scintillation arrays will enable imaging or determination of shape of extended X-ray sources, mapping of selected X-ray regions, and measurement of K and L absorption edges.
- d. Acceptable maturity level is test in a space equivalent environment.

TO BE CARRIED TO LEVEL 7

PRECEDING PAGE BLANK NOT FILMED

DEFINITION OF TECHNOLOGY REQUIREMEN'S

NO. C. 2.5

1. TECHNOLOGY REQUIREMENT(TITLE): Modulation Collimated Scin- PAGE 2 OF <u>3</u> tillation Counters; Flux distribution, spatial resolution, transient measurement

7. TECHNOLOGY OPTIONS:

Modulation collimators have been constructed of rectangular tubing, slats, wires, grids, ' or combinations thereof. Wires and grids need to have collimating dimensions in the order of 0.025 mm. Some of the collimators proposed would roll or oscillate over detector arrays or are fixed. The fixed configurations depend upon mount motion and spacing of scanning modes to give a relative motion effect between X-ray/gamma ray sources, modulation collimator, and detectors. The counting rate maxima and minima are then observed to define the source location to the order of arc seconds. Scintillators are expected to be used at energies in excess of 10 keV to detect flux and spectrum of X-ray sources versus spatial location. Pulse counting/energy measurement modes are contemplated.

8. TECHNICAL PROBLEMS:

- a. Scintillators have poorer spectral (energy) resolution than do proportional counters but might be improved by use of scintillator-avalanche diode combinations.
- b. Other than large collector scintillator cell areas shielded from interference by some forms of collimators, little can be done to concentrate or intercept enough of higher energy X-ray photons. Observing times may be long, up to days.

9. POTENTIAL ALTERNATIVES:

- a. Development of spatial detector arrays made of X-ray to light or electron converter elements + microchannel plates. (Silicon or pure germanium lithium drift process, or avalanche detectors + tunnel diode.)
- b. Arrays of combinations of scintillator cells + silicon or GaAs photoconductors.
- c. Scintillators with isoelectronic dropouts (CdS with Te and ZnTe) or scintillators using Lanthanum oxysulfide & Gadolinium oxysulfide activated with Ytterbium or Cerium.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

a. W74-70630 (188-41-59), X-Ray Astronomy, NASA/GSFC, Elihu A. Boldt (301) 982-5853.

b. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301)982-5853.

EXPECTED UNPERTURBED LEVEL 5

- 11. RELATED TECHNOLOGY REQUIREMENTS;
- a. Development of scintillator and avalanche or photomultiplier detector combinations.
- b. Combination of modulation collimator arrays and spatial detector (fast response) arrays in equivalent focusing (gating) modes as to obtain electronic scan and direction sensing ability.
- c. Precise slow scanning capabilities are needed for the instrument pointing system or stabilized platform to enable sufficient integration of X-ray photons per spatial and spectral element as well as attainment of the desired spatial resolution.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C.2.5																			
1.	1. TECHNOLOGY REQUIREMENT (TITLE): <u>Modulation Collimated</u> PAGE 3 OF <u>3</u> Scintillation Counters, Flux distribution, spatial resolution, transient measurement																			
12.	2. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
	HNOLOGY Concepts Trades & Anal.	1		-												· · ·				
2.	Prototype Design & Fab																			
3.	Tests & Evaluation																			
4.	Redesign, Fab. & Test		Ì	_																
5.												ļ								
APP 1.	LICATION Design (Ph. C)			-																
2.	Devl/Fab (Ph. D)		ĺ		_		-						Ì						Ì	
3.	Operations					T1	٠		•				•		•					
4.							ĺ]	T2	0		•		•		•		•		
13.	USAGE SCHEDULE:	 ب	······	,	L	· ·	·				₩ 	·	·	·	·/	، ۲	<u>م</u>	!	·	·
TEC	HNOLOGY NEED DATE			Т				}.					1					ר	ют і	AI
NU	MBER OF LAUNCHES						T		T1	T2	2 T1	T2	T1	T2	TI	T2	T1	T2	1	1
a. b. c.	 REFERENCES: a. Summarized NASA Payload Descriptions, Sortie Payloads, July 1974, NASA/MSFC, page 96. b. Final Report of the Space Shuttle Payload Planning Working Groups, High Energy Astrophysics, May 1973, NASA/GSFC, pp. 36-37, A-11 to A-12. c. Introduction to Experimental Techniques of High-Energy Astrophysics, NASA SP-243, 1970, pp. 91-2. d. Materials for Radiation Detection, NMAB 287, January 1974, pages 47 through 78. 																			
T:	Technology												•	•••		· .			. • •	
-	= Automated Operations = Sortie Operations	3											. •					a j		
_	= Sorue Operations = HE-11-S, X-Ray Ang	ulaı	: Sta	ruct	ure	÷		2			•	•								
	= HE-18-S, Gamma-Ra						udi	es	•		:									
15.	LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL B OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAR	ND F RIBE EXPE	EPOF PHEN RIME	NT	NA,		•••	•	6. M 7. M 8. N	ENV IODE IODE EW C OPE	IRON L TE L TE APA	imen Sted Sted Hilit Iona:	t in ' in al in si y de l moi	THE N IRCR/ PACE RIVE DEL.	LABO MTE ENVI DFRO	RATO NVIR RONM DM A	RY. ONME IENT MUCI	NT.	EVAN SER L MOI	

DEFINITION OF TECHNOLOGY	REQUIREMENT
--------------------------	-------------

NO. <u>GE-2.6</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>CONVERTER/INTENSIFIER</u> PAGE 1 OF <u>4</u> ASSEMBLY

2. TECHNOLOGY CATEGORY: Sensor

3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide high resolution, variable F.O.V. sensor for energy range 0.3 to 1 KeV

4. CURRENT STATE OF ART: <u>Photon and charged particle imaging systems are available for soft X-rays within the energy range of interest.</u> Resolution needs to be increased for this application. HAS BEEN CARRIED TO LEVEL <u>3</u>

5. DESCRIPTION OF TECHNOLOGY

Imaging data of X-ray sources is required in the range 0.3 to 1 KeV, with a spatial resolution of 1024 x 1024 elements per frame, and 8 bits/element. Two selectable fields of view are required: $0.3^{\circ} \times 0.3^{\circ}$ and $5^{\circ} \times 5^{\circ}$. Electronics must be capable of controlling, testing, converting, scaling, formatting the data to and from the X-ray telescope and converter/intensifier.

The problem of X-ray photon detection and localization can be divided into three functions -- photoelectric conversion, charge amplification, and charge detection and localization. One component, such as a microchannel plate, may be used for more than one function, for example, photoconversion and charge amplification in this case.

(Continued on page 2)

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

- 6. RATIONALE AND ANALYSIS:
- (a) The scientific basis for this technology requirement is the need for data on the fine structure of X-ray sources, as defined by the Space Shuttle Payload Working Group in terms of the wide field X-Ray telescope payload.
- (b) The benefitting payload will be HE-03-A, 0.75 meter X-Ray telescope.
- (c) More detailed perception of flux density and angular position will enable better identification of key characteristics and special features of soft x-ray sources.
- (d) This development should include the development of a prototype sensor model to be tested in a sounding rocket or small satellite survey mission.

TO BE CARRIED TO LEVEL 7

PRECEDING PAGE BLANK NOT FILMED ...

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): <u>CONVERTER/INTENSIFIERPAGE</u> ² OF <u>4</u> ASSEMBLY

5. DESCRIPTION OF TECHNOLOGY (CONT'D)

An important X-ray imaging device currently being developed is the negative electron affinity photocathode (VanSpeybroeck, Kellogg, Murray, and Duckett, IEEE-Transaction on Nuclear Science NS21, 408, 1974), which theoretically should be a factor of 5 to 10 times more efficient in the photoconversion process at 1 - 4 keV than currently observed, or theoretically expected from other photo-emitters, such as the walls of a Micro-channel Plate. The photoelectron signal must then be amplified and detected. The microchannel plate devices are suitable amplifiers, and the charge detector can be one of a number of devices, some of which are discussed in the paper by Lampton and Paresce which describes the "Ranicon".

At least two charge detection schemes are being developed – one based on a sheet resistor such as in the "Ranicon"* – in which two dimensional charge diffusion occurs, and one based upon charge splitting techniques, in which each coordinate is determined independently (charge diffusion occurs in two separate one dimensional devices). The best results obtained with the two dimensional devices are those of the University of Leicester group – σ of about 18 μ over an 18 mm field, or one part in 1000. This is to be compared with the Ranicon result of 1 – 2 lp/mm limiting resolution, or $\sigma = 400$ to 200 μ over a field of 4 cm, or one part in 100 – 200. The SAO HEAO-B group has achieved the best result obtained with the charge splitting technique (known to us) – σ of about 50 μ , with, however, no practical intrinsic size limitation because systems easily can be operated in parallel to cover larger areas without boundary losses. This system performance also was obtained with a wide dynamic range of input amplitudes, which is required for one of the detectors being developed. This is possible because the fractional resolution needn't be good.

The French have developed a different approach, which consists of a multi-wire proportional counter containing an ionization chamber. A matrix of 30,000 anode wires collects ions created by X-ray photons. Each anode is followed by an a aplifier, trigger, counter, and memory. Readout of the memory can be effected 10 times per second.

*Developed by Michael Lampton and Francesco Paresce, at Berkeley.

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. GE-2.6
1. T ASSEM	ECHNOLOGY REQUIREMENT(TITLE): <u>CONVERTER/INTENSIFIER</u> BLY	PAGE ³ OF <u>4</u>
7. T	ECHNOLOGY OPTIONS:	
• •	ne pulse position determination method may involve options such as approximation", dual slope integrator, leading edge rise time, etc	
(b) F!	at Plate Proportional Counter (Stumpel, et al)	
8. I	ECHNICAL PROBLEMS:	
	rincipal problem is attaining the high spatial resolution with it is a the source.	thin the sen-
9	OTENTIAL ALTERNATIVES:	
stage sistor a pote	I consider the Negative Electron Affinity Photocathode with a charg and either the charge splitting, separate coordinate determination charge detector. The microchannel plate and sheet resistor shound ntial alternative during the period required to develop the higher se potential alternatives also exist.	or a sheet re- ld be considered
10.P	LANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	CEMENT:
	#188-41-59 - X-Ray Astronomy #188-41-64 - X-Ray Spectroscopy for Shuttle	
	: These are related efforts, not dealing directly with the : lefinition EXPECTED UNPERTU	and the state of the second
11.	RELATED TECHNOLOGY REQUIREMENTS:	
propo	ossibility of using delay lines to scan large number of elem rtional counter has been investigated. This method has show esolution one and two dimensional imaging.	

12

DEI	FINITION OF	r T	ECI	INC	DLC	GY	RE	QU.	IRE	ME	NT					N	10,	GE-	2.6	
1. TECHNOLO ASSEMELY	GY REQUIRE	ΞM	EN'	г ('	CIT)	LE)	: <u> </u>	ONV	ERT	ER/	INT	ENS	IFI	ER	P	AG	E 4	OF	4	
12. TECHNOLO	GY REQUIRI	EM	EŊ	TS	SCI	IED						4 70					-			
SCHEDULE	TEM	75	76	77	78	79			ND/ 82	83	- 1	<u> </u>	86	87	88	89	.90	91		
TECHNOLOGY 1. Analyses 2. Laboratory 3. Breadboard 4. Prototype 1 5. Rocket Tes	Tests Design			- - - - - - - -																
APPLICATION 1. Design (Ph. 2. Devl/Fab (F 3. Operations 4.																				
13. USAGE SCI	IEDULE:		T	T			T	T		1	1				7		7	1		
TECHNOLOGY N	EED DATE	<u> </u>	 		<u> </u>		<u> </u>		 	 	 		<u> </u>				<u> </u>		ют I	AL
NUMBER OF LA	AUNCHES						1	1	1	1	2	2	2	1	1	1	2	2	17	7

14. REFERENCES:

"The RANICON: A Resistive Anode Image Converter," by Michael Lampton and Francesco Paresce, Review of Scientific Instruments, Sept. 1974.

15. LEVEL OF STATE OF ART

1. BASIC PHENOMENA OBSERVED AND REPORTED.

2. THEORY FORMULATED TO DESCRIBE PHENOMENA.

3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.

- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.C., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.

6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.

7. MODEL TESTED IN SPACE ENVIRONMENT.

- 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL,
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO, <u>C. 2. 7</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Echelle Spectrograph</u> <u>Spectral Resolution</u> ; Dimensional Stability; Imaging detector sensitivity	PAGE 1 OF <u>4</u>
 TECHNOLOGY CATEGORY: Sensors OBJECTIVE/ADVANCEMEN'T REQUIRED: Spectral resolving power 700 nm range; Echelle format for imaging efficiency; higher sensitivity 	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
4. CURRENT STATE OF ART: <u>A resolving power of 10⁴ has been ach</u> UV per Space Optics, by Thompson & Shannon, NBS, 1974, pp. 319	ieved in the middle

HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY: A modified echelle spectrograph/spectrometer (consisting of several instruments in one assembly) is desired to cover the 120 to 700 nm spectral range. Extension of UV coverage from 120 nm to 90 nm is desired. The echelle arrangement allows a spectral band length (up to 10 meters long) to be read out in spectral strips folded like lines of type on a printed page. Each portion of the spectrometer has its own set of optics including predisperser, echelle grating, focusing mirror, and camera. The mirror, grating ratings, film or imaging device, and coatings are selected per spectral wavelength range. Detector sensitivity needs improvement to enable high resolution spectrograms to be obtained at fainter source brightnesses.

P/L REQUIREMENTS BASED ON: □ PRE-A,□ A, 🕱 B,□ C/D

6. RATIONALE AND ANALYSIS:

- a. Echelle spectrometers have been used in aircraft (O'Dell, in Lear Jet, etc) and in sounding rockets. Hence, an orderly history of development exists to provide a base technology. Interferometric techniques for ruling gratings as well as better ruling engines exist.
- b. The development of echelle spectrometers of high resolving power with sensitivity to reach moderate brightness stars would lead to use of these instruments in AS-01-A, Large Space Telescope, AS-04-S, 1m Diffraction Limited UV-Optical Telescope, AS-14-A, 1m UV-Optical Telescope (1), SO-01-S, Dedicated Solar Sortie Mission (DSSM), SO-02-A, Large Solar Observatory. The first three are astronomy payloads, the last two are solar; some degree of commonality may exist.
- c. The echelle spectrographs enable attainment of complete spectral signatures of elements emitting radiation in the sources examined as well as ability to identify and, in data reduction, reject absorption lines of interspace clouds. Also they enable one to study narrow spectral lines and determine abundance in each cloud rather than integrated abundance along the line of sight. High resolution spectra of areas on the sun or of stars enable estimation of constituents in the area observed as well as measures of temperatures.
- d. Final test would occur on a shuttle sortie mission in conjunction with a 1m telescope such as AS-04-S. An Aries launched rocket flight would meet the initial technology requirement. TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C.2.7
1. TECHNOLOGY REQUIREMENT(TITLE); _Echelle Spectrograph	PAGE 2 OF <u>4</u>
Spectral Resolution; Dimensional Stability; Imaging Detector Sensitivi	ty
7. TECHNOLOGY OPTION In spectrograph design analysis, a bal- eters such as spectral resolution, spectral range per exposure, field cal complexity is necessary. To obtain full resolution from the echell of the parameters may be driven to the state of art limit. Some idea of seen from the following description. "The main light beam, after pass split spectrally into 3 light beams. Three predisperser gratings moun- can be translated into indexed positions bring the appropriate predisper- bonding light beams and the predisperser collimates light from the slip echelle grating and restricts wavelength remaining to a single order." ment and adjustment for each of the spectral ranges may be possible. lower noise level detector is desired for use with automated payloads. is expected to be used. For applications to solar astronomy, detector dynamic range will be needed. The primary discussion here dealt with	of view, and mechani le spectrometer, each of complexity may be sing through a slit is inted on a platen which ersers into their correct t into the proper ' Automatic align- A higher sensitivity In sortie use, film cs with very large
spectrographs.	
 TECHNICAL PROBLEMS: Requires advances in coatings, particularly in the 200 to 120 nm rative interference effects. 	nge to avoid destruc-
 b. It is easier to achieve the higher spectral resolution by increasing adequate structural stability can be maintained; hence instrument s c. Stray light control. 	
 Grating fineness, uniformity, and demadation of reflecting surface going on at GSFC in development oper holographic gratings; the gratings may be applicable over when wavelength ranges.) 	•
 POTENTIAL ALTERNATIVES: a. A series of Fabry Perot spectrometers can be used to cover the to however more instrument sections may be required. b. Fourier interferometers might be possible in the visible and UV ra laser references, better detectors and optics now exist. 	· ,
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA a. W74-70619 (188-41-51), UV and Optical Astronomy, GSFC, Alber 982-5103.	
 b. W74-70627 (188-41-55), Ultraviolet Stellar Spectrometer Develop Y. Kondo, (714) 483-646'. 	ment, NASA/JSC,
c. W74-70634 (188-41-64), Astron. v Sortie Instruments, NASA/G8 (301) 982-4718.	SFC, T. P. Strecher
d. W74-70660 (188-78-56), Optical Instrumentation - Image Tube De Washington, D. C., M. J. Aucremanne, (202) 755-3676.	
EXPECTED UNPI 11. RELATED TECHNOLOGY REQUIREMENTS:	RTURBED LEVEL
a. A telescope with an input angular resolution of 0.1 arc sec is desi	ired.

.

DEFINITION C)F T	EC	HNC)I.C	GY	RE	QU	IRF	ME	NT					N	10,	C.2	.7	
													4-1		٩d	E 3	OF	_4	
								ig o	lete	<u>cto</u> 1	. se	1151		<u>.y</u>					
12. TECHNOLOGY REQUI	REN	EN	TS	SCI	1EL			ND	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79			·				86	87	88	89	90	91		
3. Test & Evaluation]																		
2. Devel. /Fab. (Ph. D)								ļ								•			
3. Operations				,	ТЗ	0		0	T1 98	90 06	00 00	00		60	••	00 00	50		ĺ
		ļ			T2			· · ·	╞╶	T4				<u></u> 	Ē	<u> </u>			
13. USAGE SCHEDULE:	- <u> </u>	۱ <u> </u>	<u> </u>		1 7	 ;	منابع	·	1		·	1	1 <u></u>	 T		1	: <u></u> ن		
TECHNOLOGY NEED DATE			Т						ļ		0771	077	5777	14771	10.11	077		To	tal
Spectral Resolution; Dimensional Stability; Imaging detector sensitivity12. TECHNOLOGY REQUIREMENTS SCHEDULE:CALENDAR YEARSCHEDULE ITEM7576777879808182838485868788899091TECHNOLOGY:7576777879808182838485868788899091TECHNOLOGY:7576777879808182838485868788899091TECHNOLOGY:7378798081828384858687888990911. Trades & Analysis78767778798081828384858687888990913. Test & Evaluation767778797677787677787677787778																			
14. REFERENCES:	<u> </u>		<u>ı </u>	ł	!	110	1	1-0	1- 10		1	1	1	1	1	<u></u>	1	1	
Nasa TMX-64726, Decen	ıber	19'	72,	MS	FC,	, pp	. 3	-22	to	3-2	6.								age
	ad 1)esc	rip	tion	ls,	Sor	tie	Pay	102	as,	่งน.	у т	974	, IN	A9%	7/ 1VI	or c	· 3	
c. Summarized NASA Paylo pp. 22,60.									·										
												Par	rt 1,	, D	ougi	las :	Mis	sile	1
e. Large Space Telescope C nition Study, Itek Optical)ptic	al I	rele	sco	pe	Ass	em	bly,	/Sci	ient	ific								efi -
f. Large Space Telescope O nition Study, Itek Optica!	ptic Sys	al 1 tem	'ele 15 D	sco livi:	pe sior	Ass 1, C	emi lont	oly/ rac	'Sci t N.	enti AS8	fic -29	Ins 949	tru , J:	mer anu	nts ary	Pha: 197	se I 4, 1	3 De LST	∍fi- `-
1. TECHNOLOGY REQUIREMENT (TITLE): Echelle Spectrograph PAGE 3 OF 4 Spectral Resolution; Dimensi val Stability; Imaging deteotor sonsitivity PAGE 3 OF 4 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR CALENDAR YEAR SCHEDULE ITEM 78 76 77 78 79 80 81 82 83 84 85 86 87 88 89 80 91 TECENNOLOGY: 1. Trades Analysis 1. Trades Analysis - - 2. Imprvd. Model Des. & Pal- 2. Devel. (Fab. (Ph. D) - - 3. Operations T3 - - T2 T2 T4 - 13. USAGE SCHEDULE; T T2 T4 T2 T2 T4 - - NUMBER OF LAUNCHES T2 T2 T6 T3 T7 T3 56 14. REFERENCES: T2 T5 T2 T5 T7 T3 T7 T3 56 a. Large Space Telescope Phase A Final Report, Volume IV - Scientific Instrument Package Nasa TMX-6476, December 1972, MSFC, pp. 3-22 to 3-26. Summarized NASA Payload Descriptions, Automated Payloads, July 1974, NASA/MSFC, pp. 22, 60. . . 0. Orbital Astronomy Support Facility (OASF) Study, Volume II, Part 1, Douglas Missile and Space Systems Division, DAC-58142, June 1968, p. 373. . . 1. Large Space Telescope Opti																			
													., -		<u>,</u>				
														lue	Boo	ok),	Vo]	[. I]	[-
Legend: See page 4. 15. LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED 3. THEORY FORMULATED TO DES 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL 4. PERTINENT FUNCTION OR CH-	AR AND CRIBI EXPI	T REPO E PHE ERIME ERIST	rted Nomi Int	514.1.				5. 1 6. 1 7. 2 8. 3	COMF EN MODE MODE NEW (OP RELU	PONE! VIRON LL TE CAPA ERAT A BILI	IT OI IMEN STEI STEI INLLI IONA TY U	R BRI IT IN IN A IN S IN S IN S IN S IN S IN S IN S IN S	ADB THE IRCR PACE RIVE DEL.	LABO AFT ENV DFR	ORATI ENVII TRON IOM Á	DRY, RONM MENT MUC PERAT	ENT. H LES	SER L MO	DEL.
											<u> </u>								

ĸ

NO. C.2.7

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Echelle Spectrograph</u> PAGE <u>4</u> OF <u>4</u> Spectral Resolution; Dimensional Stability; Imaging detector sensitivity

LEGEND:

- T = Technology
- = Sortie Payload
- = Automated Payloads
- T1 = AS-04-S, 1m Diffraction Limited UV Optical Telescope
- T2 = AS-01-A, Large Space Telescope
- T3 = SO-01-S, Dedicated Solar Sortie Mission
- T4 = SO-02-A, Large Solar Observatory
- T5 = AS-14-A, 1m UV Optical Telescope (automated version of AS-04-S)

·	DEFINITION OF TECHNOLOGY REQUIREMENT		<u>C.2.8</u>
1. TECHNO Improved Re	P LOGY REQUIREMENT (TITLE): <u>VIS-IR Mapper / Sensor Asser</u> egistration Accuracy; Instantaneous Field of View, Spectral Res	nbly	TOF5 (SEOS), m
2. TECHNOI	LOGY CATEGORY: Sensors		
3. OBJECT	IVE/ADVANCEMENT REQUIRED: Improvement in angular (spa	atial)	resolu-
	or coupling, and detector element packing density (angle to 3 μ s		Con-
tinual and orbit satel	random access to earth surface area within line of sight lite.	of sy	nchrono
4. CURREN	T STATE OF ART: VSSR has effective angular resolution	of 2	L x 25
μ rad in th	e visible portion of the spectrum and 14 μ rad in the paralle	l mir	ror
thermal win	dow. HAS BEEN CARRIED	TO I	LEVEL 7
cally scanne scope. Any from 0.00 Desired gr Up to 200 of spectral	cope which collects IR image radiation components. Either line ad arrays or static image matrices will be used at the focal plan gular resolution in the wavelength region between 0.5 to 27 mrad to 0.14 mrad with poorer resolution at the longe cound resolution varies from 100 meters at 0.5 μ m to 80 different channels, some narrow band imaging but some 1 lines, to enable selective examination of each spatial s chronous orbit satellite are required.	le of t 15μm er wa 0 m a used	he tele- n varies velength at 15 μm
	p/l requirements based on: 🔲 pre-a, 🕱 a	, 🗆 I	3, <u>□</u> C/I
6. RATIONA	ALE AND ANALYSIS:		
Equivale	nechanically scanned arrays have been used on aircraft and som nt static imaging matrices in the form of visible light and near n used. However, a ground image resolution of 100 to 1500 m i	IR im	lage tubes

- the multispectral imaging sensor in 35,870 km orbit which will require more detector elements in imaging arrays. Angular resolution of 4.85 μ rad (1 arc sec) have been achieved in the visible light region by astronomical telescopes. GSFC is applying light weight astronomy telescope techniques to solving the synchronous orbit earth observation problem.
- b. EO-09-A, Synchronous Earth Observatory Satellite, EO-57-A Foreign Synchronous Meteorological Satellite, EO-59-A Geosynchronous ERS and EO-62-A Foreign Synchronous EOS will benefit from improvement in angular resolution, detector coupling, and detector packing density.

(Continued on Page 2)

TO BE CARRIED TO LEVEL 8

- 1. TECHNOLOGY REQUIREMENT (TITLE): VIS-IR Mapper/Sensor PAGE 2 OF 5 Assembly (SEOS), Improved Registration Accuracy; Instantaneous Field of View, Spectral Resolution
- 6. RATIONALE AND ANALYSIS: (Continued)
- c. The technology improvement will enable improved payload performance in obtaining meteorological (flood, storm, freeze, fog, pollution), oceanographic, land use, natural resources, and agricultural data. Changes and trends are more readily observed from a geostationary satellite. The initial satellite will enable earth observation technology development as well as useful observations. Later, a set of three applications satellites can provide random access observation of the whole populated earth.
- d. Because of multiple needs of many groups and the limited launch capability to synchronous orbit, the resultant compromise SEOS Sensor Assembly will need to receive its final test in orbit. Earlier tests in the laboratory together with corrective action will be needed to develop the desired performance.

7. TECHNOLOGY OPTIONS: The objectives of best spatial and spectral resolution per earth surface and atmospheric location element for each spectral region capable of yielding chemical and physical characteristics information result in a large number of tradeable options. The location of the observing satellite at earth synchronous altitude enables an instantaneous view of about a 17 degree diameter area of the earth and the surrounding atmosphere. If the whole area were viewed by an imaging sensor at one selected wavelength band at best desired resolution about 2.94 x 10^9 spatial elements would need to be examined. Hence each circular frame would require many gigabits of data per frame. Since up to 200 spectral bandwidths need to be examined essentially simultaneous to a radiometer accuracy of at least 1%, most of the SEOS senses options consider less than the total available field of view.

A compromise SEOS sensor assembly might cover a field of view of 0.5 x 0.5° (1800 x 1800 arc seconds) with an instantaneous field of view of 0.003 millirad or better with the observation telescope output image being imaged at any 4 or 5 spectral bands out of 24 to 200 bands at one time. The telescope would be capable of being pointed to any 0.5 by 0.5° sector within the surface area of the 17° diameter earth scene available by direct he sight from synchronous altitude.

Body pointing of a narrow field telescope versus selection of part of the field of view of a wider field telescope needs to be considered in trade studies as well as from a state of art viewpoint. A wide field telescope could observe the whole earth's surface at one time; auxiliary switchable optics could select any desired sector more quickly than slewing the telescope.

(Continued on Page 3).

NO. <u>2.8</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>VIS-IR Mapper/Sensor</u> PAGE 3 OF <u>5</u> Assembly (SEOS), Improved Registration Accuracy; Instantaneous Field of View, Spectral Resolution

7. TECHNOLOGY OPTIONS: (Continued)

Major options needing trade analysis and research are those involved in development of an advanced multiple band selector process that would enable simultaneous imaging in up to 5 spectral bands selected from a total of 24 to 200 spectral bands. A dynamic range better than 256 with a radiometric accuracy of better than 1% per spatial resolution element is desired. Area and spectral band selection flexibility should predominate in these analyses.

To satisfy the need for random spatial and spectral access anywhere within line of sight of a SEOS, careful consideration of all detector configuration options is necessary. Scanned linear arrays versus static multispectral imaging arrays and the role of tunable imaging filters need research, particularly where a number of images at a number of selectable spectral bands needs to be acquired at the same time.

Up to 40,000 detectors per linear array and up to 5 linear arrays in a push broom configuration might be possible; imaging arrays may grow from 0.262 million image elements to 400 million image elements per spectral band.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C. 2.8
1	rechnology requirement (TITLE): VIS-IR Mapper/Sensor PAGE 4 OF 5
	Assembly (SEOS), Improved Registration Accuracy; Instantaneous Field of View, Spectral Resolution
8.	TECHNICAL PROBLEMS:
a.	High array density and high transfer efficiency.
ь. b.	Noise due to slow response of high density detector arrays.
с.	Trade between mechanically scanning multiple linear detector arrays and
	static IR imaging devices.
d.	Image indexing to 0.1 to 0.5 resolution element; landmark recognition to
	supplement stellar referencing.
è.	Insufficient radiance per band for small spatial surface elements.
f,	Weight delivery to synchronous orbit is limited.
g,	Scattered light and stray light suppression.
h.	Direct solar radiation suppression.
i.	Calibration accuracy of 1% over large, multielement detector arrays.
j.	Cooling for IR detectors.
9. I	POTENTIAL ALTERNATIVES:
a.	Far infrared vidicons with filters for some of the bands.
b.	Pyroelectric vidicon in place of cooled detector arrays.
c.	Silicon charge-coupled devices (has problem of loss of incoming signal
	at high input levels).
d.	Cluster of telescopes each with sets of sensors to cover each sector.
10.1	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
a.	W74-70488 (177-22-41), Visible and IR Sensors Subsystems, NASA/GSFC, Harvey Ostrow, (301) 982-4107.
b.	W74-70489 (177-22-81), Visible-Infrared Sensor System Technology
	Development, NASA/JSC, Richard R. Richard, (713) 483-4661.
	EXPECTED UNPERTURBED LEVEL 7
11.	RELATED TECHNOLOGY REQUIREMENTS:
a.	Stabilization of input by 1 to 1.5m telescope used for observing the earth.
b.	Efficient coupling of visible and IR radiation to linear or matrix detector
	array.
с.	Light weight temperature insensitive telescope optics.
d.	On board data correlation and processing versus multiple wideband
 	communication links from synchronous orbit satellite to a dedicated
	earth based communication terminal.

	DEFINITION O	 ह ज	ECI	HNC	DT.C)GY	RE	ດບ	IRE	ME	NT	 !			•••••	1	10.	Ċ	.2.	8
1.	TECHNOLOGY REQUIR Assembly (SEOS), Im Field of View, Specta												isor Ista	inte	I ine	PAC ous	Е 5	OF	' <u>5</u>	
12.	TECHNOLOGY REQUI						UL	E:	ND.		,				-					
	SCHEDULE ITEM		76	77	70	άó		*****		·		[0.0	07	00	00	90	0.1		
		75	70	$\frac{77}{1}$	18	79	80	81	84	83	84	00	86	87	00	09	190	91		
TEC	HNOLOGY																			· .
	Options & Parametric Analysis														i					
2.	Design imaging sensor	[ļ				- 5			ĺ					ļ		ĺ		
3.	Construct model											ļ			ŀ		ļ			ĺ
4.	Test model				<u> </u>	ļ				ļ	 				ļ	┢	ļ	<u> </u>	ļ	
APF	LICATION	ļ	1]				1		Í					.			ľ
1.	Design (Ph. C)	1		ļ	_	 _•			ļ			ļ		·			1			
2.	Devl/Fab (Ph. D)	ļ						 		ļ		1						1	1	
3.	Operations						T1 T2							<u>+ </u>		<u>+</u> ·			<u>†</u> =	ŧ.
I			ļ	[1	Ι.					[T3	=	+-	╪╤╴	F	F	Ĩ
13.	USAGE SCHEDULE:		4	J	<u>. </u>	J	1	ا	·	<u> </u>			·	<u>' 14</u>	- 2	=			-	
TEC	HNOLOGY NEED DATE				Т		<u> </u>	<u>, </u>		<u> </u>		1.	1	T	1	Τ			To	tal
·	MBER OF LAUNCHES		1		1			T1 T2	T2	ΓI	T 2	ήTΙ	T2	ZT:	ί Τ. Խუ		r'i T lar		Τ́Τ	23
 т. л.	REFERENCES:		. <u> </u>	L		<u>}</u>	!	<u>11 4</u>	1	-l	<u>[</u>	.l				31 1 2]		T_{4}		
	 a. Summarized NASA Pa MSFC, pp. 84, 92, 90 b. Payload Descriptions, NASA/MSFC, pp. 5-2 c. Advanced Scanners an NASA SP-335, pp. 71 	8, 1 , Vo 14, 1d In	.00, 51, 3 5-78 mag	1, <i>4</i> 8.	Auto	ma	teđ	Pay	7loa	ds,	Le	vel	B	Dat	a, .	July	197	4,		
	d. Comments, R. F. Hu Legend: — Automated Operations		er,	Sa	nta (Bar	bar	a R	ese.	aro	h C	ent	er,	31	De	c. :	.974	:•		
	T Technology						•													
	$\Gamma 1 = EO - 09 - A$, Synchron $\Gamma 2 = EO - 57 - A$ Foreign								Sate	lli	e									
	$\Gamma 2 = EO-57-A$, Foreign : $\Gamma 3 = EO-59-A$, Geosynch					let.	Sa	C.		. •								·		
	I4 = EO-62-A, Foreign					OS														
15									5. (COME	ONE:	NT OI		ADE	OARL) TES	ted (N REI	LEVA	NT
	 LE CALL OF DIATIES OF BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	AND CRIB EXPI	refo: 5 phe 5 phe	NOMI NT	ENA.	ISTRA	TED		6. 1 7. 1 8. 1	EN MODE MODE NEW OF RELL	VIRON L TE L TE CAPA ERAJ ABILI	STEI STEI HILL IONA TY U	T IN IN A IN S IN S IY DE L MC PGRA	THE IRCR PACE SHIVE DEL. DING	LAIX AFT ESA D FF	DRATY ENVI TRON IOM 4	DRY. RONM MENT MUC PERAT	ENT. H LE TONA	· · · ·	DEI.

DEFINITION (\mathbf{DF}	TECHNOLO)GY	REQUIREMENT
--------------	---------------	----------	-----	-------------

NO. C2.9

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Advanced Thematic Mapper PAGE 1 OF 3</u> Registration Accuracy

2. TECHNOLOGY CATEGORY: Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Registration accuracy within 0.3 picture element (pixel). Precise correlation of multispectral data to a single picture element.

4. CURRENT STATE OF ART: ____ Registration accuracy is within 3 pixels.

HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY: Mapping is required to identify terrestrial features for map making, land use planning, hydrological and agriculture purposes with 10 to 30 m resolution. The advanced thematic mapper may have 7 to 12 spectral bands. The detector output for each band must be capable of being registered within 0.1 pixel with the output of any other detector. This requires sampling the output of all detectors systematically and keeping the resultant data as a recognizable set. Also, the output of a side looking radar must be registered with the thematic mapper outputs within a single picture element. In addition, images need to be registered accurately from pass to pass over the same ground area. Landmark references are needed to enable registration of image outputs. Stellar referencing helps if correlated with landmark references.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. Registration of data from detectors associated with the separate bands of an IR Scanner can be achieved easily by sampling all detector outputs at the same time. Registering IR scanner data with that of another instrument(the side looking radar) is much more difficult.
- b. Benefitting payloads are: EO-08-A, Earth Observatory Satellite, EO-61-A, Earth Resources Survey Operational Sat., OP-02-S, Multifrequency Radar Land Imagery, OP-05-S, Multispectral Scanning Imagery.
- c. Accurate multispectral image registration will allow more effective land use determination for planning purposes.
- d. Technology objectives can be demonstrated by flying a model of the instruments in an aircraft.

NO. C2.9

1. TECHNOLOGY REQUIREMENT(TITLE): <u>Thematic Mapper (Advanced)</u> PAGE 2 OF <u>3</u> Registration Accuracy

7. TECHNOLOGY OPTIONS: Registration within one instrument between images in different spectral bands can be achieved by sampling all detectors concurrently. Registering images from different instruments requires very accurate alignment and synchronization in pointing angle and time of recording data. Seven to 12 spectral bands in the range from 0.5 to 15 µm are expected. One can obtain both high resolution and high sensitivity for a given collector size by scanning several lines in parallel.

The high resolution requires a small I FOV which means the detector must be very sensitive but response time must also be sufficient for the scanning rate. There is a tradeoff between spatial resolution and IR input temperature sensitivity (higher resolution reduces sensitivity). An accurate calibration source should be provided for the IR scanner.

8. TECHNICAL PROBLEMS:

- a. Accurate optical alignment of separate instruments.
- b. High resolution requires small I FOV and high detector sensitivity. (Ideally collector size is determined by the resolution requirements and detector sensitivity.)
- c. Detector response time may be a problem at high scan rates.
- d. High data rates and large amount of total data.

9. POTENTIAL ALTERNATIVES:

- a. Accurately record pointing angles with data and register images by postflight computer processing. Use landmark recognition as well as stellar references.
- b. Build single instrument with accurately controlled FOVs for IR and radar. However, radar and scanner geometry is different.
- c. Use reference such as a laser beam pointed by radar and identifiable in IR image from reference beacons.
- d. Use of laser heterodyne radiometry.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

- a. W74-70488 (177-22-4), Visible and IR Sensors Subsystems, NASA/GSFC, Harvey Ostrow, (301) 982-4107.
- b. W74-70489 (177-22-81), Visible-Infrared Sensor System Technology Development, NASA/ JSC, Richard R. Richard, (713) 483-4661.

EXPECTED UNPERTURBED LEVEL 5

11. RELATED TECHNOLOGY REQUIREMENTS:

a. Develop a high resolution thematic mapper.

- b. Develop a high resolution side looking radar.
- c. Resolve onboard data correlation and processing versus communication relay link (TDRS) data problem.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C2.9																		
1. TECHNOLOGY REQUIR Registration Accuracy	EM	EN'	Г (7	riT)	LE)	: A	dva	nce	1 TI	hen	nati	c M	apr)erP	PAG	E 3	OF	3
12. TECHNOLOGY REQUIE	ÆM	EN.	TS	SCI	IED		-	ND.	AR	YE.	AR							
SCHEDULE ITEM	75	76	1777	79	70							86	87	88	89	۹N	91	
Technology:	10	10		10	10	00	<u>ot</u>	04	03	04	00	80	01	00		30	91	
1. Options & Param. Analysis 2. Design Model 3. Build Model 4. Test Model & Evaluate		_																
Application:		Ì		-								ļ					ļ	
1. Design (Phase C) 2. Devel./Fab. (Phase D)		-	t															
3. Operations			-	T1	Γ			_						<u> </u>	<u> </u>	<u> </u>	ļ.,	
			1	T_2		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	┢	<u> </u>	<u> </u>	<u> </u>	
13. USAGE SCHEDULE:				T3 T4		63	68		88 86		0	•	90 90	00 90	00			
TECHNOLOGY NEED DATE		T																Tota
NUMBER OF LAUNCHES					2	6	6	6	5	4	3	4	6	5	6	3	4	60
 a. Summarized NASA Payload NASA/MSFC. b. Summarized NASA Payload NASA/MSFC. c. Earth Resources Payload f d. Comments from H. Tavard 1974. e. Comments, R. F. Humme 	i De or i es,	scr he ¦ Hor	ipti Spa 1eyv	ons cela vell	, S b, Ra	orti MB diat	e P B-I tion	aylo ERF Ce	oads 9 73, ntei	s, I /02 c, I	Jevo , D	el A ec. ingt	Da 19' ion,	ata, 73, Ma	Jul pp.	y 1 11	974 4-1	, 7.
Legend: T Technology • Sortie Operations Automated Operations T1=EO-08-A, Earth Observa T2=EO-61-A, Earth Resource T3=OP-02-S, Multifrequency T4=OP-05-S, Multispectral	ces 7 Ra	Sur Idar	vey La	Op ind	Ima	ıger		Sat.										
 LEVEL OF STATE OF BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESIGNATION OF CHARTINEMATICAL MODEL, PERTINENT FUNCTION OF CHARE, G., MATERIAL, COMPONE 	AND CRIBI ENPI RACT	REPO E PHE ERIMI ERIMI	NOM: NT	ENA,	1STR	ATED	·	6. 1 7, 1 8, 1 9, 1	EN MODE MODE NEW OP RELL	VIRO L TE L TE CAPA ERAT	NMEN STEI STEI DILL TONA	RT IN D IN A D IN S TY DI L MC PGR/	THE IRCE PACE PACE PACE DACE DACE DACE	LABO LAFT 2 ENV 2D FR 3 OF 7	DRATO ENVII TRON TRON AN OF	ORY. RONM MENT MUC	ENT.	

NO. C-2.10

1 TECHNOLOGY REQUIREMENT (TITLE): <u>VIS-IR Mapper, Lumines- PAGE 1 OF 3</u> cence Mapper --- Coastal zone fluorescence measurement with scanning spectral radiometer: Spectral resolution 2. TECHNOLOGY CATEGORY: <u>Sensors</u>

, IEOMAODOI OMIEOOMI.

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Measure reflectance and emission spectra</u> in the visible region to single Fraunhofer lines; attain image resolution of 100 to 300m

in ±22.5° swath widths from altitudes up to 1695 km.

4. CURRENT STATE OF ART: At present spectral resolution good to one Fraunhofer line in a wide angle scanning instrument has not been attained but high potential exists. HAS BEEN CARRIED TO LEVEL 3

5. DESCRIPTION OF TECHNOLOGY

Promising development in the field of luminescence mapping appears feasible with new instruments that make measurements within several "single" Fraunhofer lines and may push the "state of art" sensor development. The effective instantaneous field of view (EIFOV) desired in the ocean coastal environment is between 3 and 300 meters. In general, the use of ocean color to monitor currents, biological, and ecological features requires high sun elevation angles and a scan that looks away from the sunside of the spacecraft. A sensor system capable of observing the oceans up to 20 deg away from nadir enhances contrast of ocean features at space altitude. Up to 3 Fraunhofer lines in the IR and 6 lines in the visible UV portion of the spectrum appear amenable.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The information extracted from scanner data is in the spatial, spectral, and temporal distribution of radiation from an ocean scene. For the most part, attention has been given to improving spatial resolution. More recently considerable attention has been given to spectral distribution and automatic classification based on the spectral information from the scene. Finally the advanced ocean scanning spectrometer developed will be a high resolution multispectral scanner with ability to observe a given ocean area periodically.
- b. The luminescence mapper is planned to be used as part of EO-56-A, Environmental Monitoring Satellite.
- c. The desired performance will enable better sensing and application of ocean fluorescence components to detect, identify, and measure characteristics of river and ocean pollutants.
- d. Technology requirements will be satisfied when a luminescence scanner is tested in a high altitude aircraft flight.

TO BE CARRIED TO LEVEL 6

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-2.10
1.	TECHNOLOGY REQUIREMENT(TITLE): VIS-IR Mapper, Lumines-	_ PAGE 2 OF <u>3</u>
cenc	e Mapper Coastal zone fluorescence measurement with scanning s	pectral radio-
Spec mete angle seve scan imag char rota	TECHNOLOGY OPTIONS: tral and spatial resolution, signal to noise, and ocean surface fluore ars directly related to identifiability. Observation parameters such a e, polarization & spectral bands need to be optimized. Narrow band fi ral Fraunhofe: lines are needed to pass the instantaneous image of a ning optics to a photo multiplier or an imaging sensor. Trades betwee ge sensors, such as a vidicon, and scanned detector elements, such as av ged coupled arrays, need to be made. Of course, depending upon the s ting or push broom linear arrays (one filter and a single Fraunhofer for etors) may be used.	s observation lters at each of a set of ocean en integrating alanche diodes or scanning optics,
	TECHNICAL PROBLEMS: Rapid scanning imposes high sensitivity requirements on the instrum including use of better detectors. Design of a Fabry Perot (<1Å) filter at each Fraunhofer line.	ent design
c.	Optical scatter reduction,	
d. e.	Development of a catalog of fluorescence signatures enabling identifi and a measure of abundance of each pollutant. Detector response.	cation of pollutant
f.	Photomultiplier limiting noise.	
g.	Cooling photocathode to increase sensitivity.	
a	POTENTIAL ALTERNATIVES: Comparisons of signature data obtained by thermal IR, microwave so synthetic aperture radar to identify pollutants.	ensors, and
b.	Multispectral Scanner (0.4-0.5 μ m, 0.8-0.9 μ m, 3.5-4.0 μ m, 5-7 μ	m, 8–14.5 µm, etc
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
	P W74-70545 (177-55-61) Physical Oceanography and Coastal Proces ne Disaster, J.D. Oberholtzer (703-824-3411)	ses, including
	EXPECTED UNPERT	URBED LEVEL 5
11	. RELATED TECHNOLOGY REQUIREMENTS:	
a,	Detectors Compatible with Fraunhofer line measurement devices. Narrow band image pass filters such as Fabry Perot.	
		۱.,

1. Ka 10

·													. .				<u> </u>		
DEFINITION OI	ГT	EC	HN(DLC)GY	RE	QU	IRE	ME	ΝT	ا 				۲	10.	-C-	21	0
1. TECHNOLOGY REQUIR cence Mapper Coastal zon radiometer: Spectral resolut	EM ne tior	EN' fluo 1	Γ (' res	riTi scen	LE) ce i	. VI mea	S-I .sur	R M em	apr ent	er, wit	Lu h so	umi) eani	nes iing	- F ; sp	PAG	E 3 ral	OF	• <u>3</u>	
12. TECHNOLOGY REQUIR	EM	EN	\mathbf{TS}	SCI	IED			ND.	AR	YE	AR								
SCHEDULE ITEM	TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR CHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 CHEDULE ITEM 75 76 77 78 79 80 81 82 93 84 85 86 87 88 89 90 1 HNOLOGY arametric Analyses - - - 1																		
TECHNOLOGY 1. Parametric Analyses 2. Selection of Detectors 3. Assembly of Test Model 4. Flight Test (Ni Altitude Aircraft) APPLICATION 1. Design (Phase C) 2. Devel/Fab (Phase D) 3. Operations																			
13. USAGE SCHEDULE:		<u></u>	·		, <u>-</u>	<u> </u>	, <u> </u>	·	, <u> </u>							<u>,</u>			
TECH START DATE		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	_		<u> </u>	 	ļ,	<u> </u>	<u> </u>	<u> </u>	T	'OT	<u>AL</u>
TECHNOLOGY NEED DATE NUMBER OF LAUNCHES		T		-		1	1	1			1	1	1	1		1		8	
14. REFERENCES:																			

- a. Summarized NASA Payload Descriptions, Level A Data, July 1974.
- b. Advanced Scanners and Imaging Systems for Earth Observations, NASA SP-335, Dec 11-15, 1972, pages 15, 28, 32, 65, 244, 448.
- c. J. A. Plascyk, Advanced Prototype Fraunhofer Line Discriminator, Perkin Elmer Report 1077A.
- d. Comments, R. F. Hummer, Santa Barbara Research Center, Goleta, CA., 31 Dec. 1974.

10.	ע מת		PIATI	e of a	1.11	
	1. BASIC	: PHENOM	ENA OBSET	RVED AND	REPORTED	

- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL ENPERIMENT
- OR MATHEMATICAL MODEL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- MODEL TESTED IN SPACE ENVIRONMENT.
 NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABLITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME ENTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO, <u>C-2.11</u>
1. TECHNOLOGY REQUIREMENT (TITLE): VIS-IR Mapper for Coastal Zone Oceanography; Registration accuracy, IFOV reduction, spectral res	PAGE 1 OF <u>3</u> solution
 TECHNOLOGY CATEGORY: Sensors OBJECTIVE/ADVANCEMENT REQUIRED: Spectral data in 3 to 5 bar resolution element of 10m and 75m. (Development of technology enabling) 	
oceanography.)	
4. CURRENT STATE OF ART: <u>A resolution of 90m was obtained on Sky</u> achieved 75m spatial resolution with 4 spectral bands (0.5 to 1.1 μ m)	lab; ERTS MSS

HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

The dual multispectral scanners (one with 10m ground resolution and the other with 75m resolution). The multispectral line scanners are used for coastal zone oceanography. Two scanners use various combinations of spectral bands, spatial resolution and field of view. The scanning section has an object plane scanner to take the load off the optical system and place it on a scanning system sequencing a narrow field of view across the ground trace of the flight path. Both a narrow field and wide field of view may be implemented on the same scanner assembly.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. Rationale: Special oceanographic multifield of view scanner capable of spectral signatures appear feasible with some improvement in state of art in scanning, detectors, and data processing.
- b. Benefitting Payloads: ST-22-S, ATL Payload No. 3 (Module + Pallet)
- c, Justification: The purpose of the payload to demonstrate continually improved multispectral line scanner technology as well as other technologies can be satisfied by the technology development. Applications to continual improvement of other multispectral scanners are possible.
- d. Technology Achievement Criterion: This technology development is satisfied for each successively improved multispectral time scanner by shuttle sortie flight test in orbit as per ST-22-S. Initial technology verification could be performed in a high altitude aircraft prior to demonstration in space. This advancement is a new capability based on an operational model with lower resolution capability, hence level 8.

	LOGY REQUIREMENT(TITLE): VIS-IR Mapper for Coastal	
	LOGI REGUIREMENT(TITLE).	_ PAGE 2 OF 3.
	graphy; Registration accuracy, IFOV reduction, spectral res	olution
While a four coupled into better. A re coverage, a combinations S-192 multis their on-axis with a spher over a 22 de cannot achie can meet the	LOGY OPTIONS: side wedge scanner may be used for 2 fields of view as a sca an all reflective Schmidt telescope, a Kennedy split field opti- effecting polygon or a reverse polygon may be used. For limit refractive polygon with a rotating plane parallel plate is appli- with refractive wedges and Nipkow scanning devices also are pectral scanner with a rotating pair of tilted mirrors in conju- s all-reflective Schmidt was used on Skylab. A Pfund type fol- ical collector (U of Ariz) theoretically could provide 10 arc sc g field of view. The Nipkow disk, refractive polygons, and w ve 2.9 arc secs (10m resolution at 717 km). The only class of requirement appears to be an object space plane scan mirror lescope working essentially on axis (such as in ERTS-1 MSS).	ical system is ited spectral icable. Other e possible. The inction with iding flat used ec resolution redges apparently of scanner that r with a highly
 8. TECHNI a. A multificence needs to 1 for ocean b. Major projection of the second seco	CAL PROBLEMS: eld of view with two resolutions (greater signal at larger spat be indexed or correlated in registration at each of the spectra ographic signatures. oblems include optical resolution, method of scanning, spatia earity, jitter, cross axis motion, position reference) accurate rate, and sufficiently sensitive detectors.	ial resolution) I bands selected I registration
a. Electron b. Solid Stat	IAL ALTERNATIVES: beam imagers (extended to IR, coupled to wide field optics). e Sensor Arrays (self scanned, coupled to wide field all refle ssector Tube.	etive optics).
RTOP W74-	D PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCI 70546 (177-55-61) Physical Oceanography and Coastal Proces sters, T.D. Oberhaltzer (703-824-3411)	
	EXPECTED UNPERTU	JRBED LEVEL 1
a. Output da b. Correctio	'ED TECHNOLOGY REQUIREMENTS: ta rates up to 50 Mbps on Tables: Correction versus altitude and angle from nadir. ata System Hardware and Software (NASA SP335, page 418 to	565)
		a de la companya de l

																	- - -	
			_		_										<u>.</u>		<u> </u>	
1. TECHNOLOGY REQUIR	EM	EN	T (?	FIT.	LE)	: <u>V</u>	<u>[S–1</u>	<u>R N</u>	<u>Iap</u>	per	for	Co	ast	<u>nl</u> P	AG	E 3	OF	3
Zone Oceanography; Regist	rati	ion	100	ura	cy,	IFC	ر V(redu	ıcti	on,	spe	eotr	alı	esc	luti	on		
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	IEL	UL.	E:											
		,	,	·		CA	LE	ND	AR	YE	AR	,,			:			
SCHEDULE ITEM	75	76	77	78	79	80	81					——-i		-	<u> </u>			
TECHNOLOGY								S	ucc 1	essi I	ivel	y In I I	npr	ove	d Vi	ersi	ons 1	
								-	-		_					_		
3. Assemble working model									1	L						- 1		
4. Test in space on sortie		-	- -				•	_	L .					+	_		i i	ł
	raft)	} 			 					<u> </u>								
		-																
				 	. 				 									
3. Operations			1				•			•	ĺ	•		ĺ			[
13. USAGE SCHEDULE:	1	{	<u></u>	I	ſ	[•		<u>(</u>		((·	([]		-, <u>,, </u>	
TECHNOLOGY NEED DATE	<u> </u>	T					···		1		Ţ	Ţ	·`				- тО	
NUMBER OF LAUNCHES	-	<u> </u>					1		1			1	1		1	1		
	I	ļ	<u> </u>	<u> </u>	<u> </u>	<u>}</u>	Ļ	ļ 	<u> </u>	<u> </u>		<u> </u>		L	<u> </u>	L		
	nea	ina	Suc	ton	18.	Dec	. 11	-15	. 1	972	. N	ASA	SF	-33	5. 1	na ore	- 	l8 to
		, <u>.</u> 5	~~~~~		,		,		· 3 ·	014	,			00	-,,			
		SA	Pay	yloa	d D	esc	rip	tion	s,	Sor	tie	Pay	load	ls,	Lev	vel 1	A Da	ta,
July 1974.		a -		·	7	_ Th			1 0	ont		Cal	ota	C		91 T	000	107
c. Comments, R. F. Humm	er,	Sai	nta .	BEI	Dar	a n	ese	are	шU	enc	θг,	GU	.c.a	, 0	Δ, '			201
					· .													•
																•		
• •					•		÷											
2									r									
Zone Oceanography; Registration accuracy, IFOV reduction, spectral resolution 2. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 79 80 81 82 83 84 85 86 87 88 89 90 Improved Versions COLOGY Successively Improved Versions Successively Improved Versions Improved Versions Assemble working model Improved Versions Improved Versions Improved Versions Assemble working model Improved Versions Improved Versions Improved Versions Assemble working model Improved Versions Improved Versions Improved Versions Assemble working model Improved Versions Improved Versions Improved Versions Assemble working model Improved Versions Improved Versions Improved Versions System Design Phase C Improved Versions Improved Versions Improved Versions System Design Phase C Improved Versions Improved Versions Improved Versions Soperations Improved Versions Improved Versions Improved Versions System Design Phase																		
								•										
15. LEVEL OF STATE OF	7 A1	RT						5. (RELE	VANT
 THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL 	RIBE	PHE	NOME					7. I	IODE	L TE L TE	STED STED	IN AI IN SI	RCR	AFT E ENVI	NVIR	ONME		ER

OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATEMAL, COMPONENT, ETC. 4.

- OPERATIONAL MODEL. 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C. 2. 12</u>
1. TECHNOLOGY REQUIREMENT (TITLE):Scanning Spectroradio VIS-IR Instantaneous Field of View Reduction; Radiometric Accur	•
 TECHNOLOGY CATEGORY: <u>Sensors</u> OBJECTIVE/ADVANCEMENT REQUIRED: Scanning with 29.4 	to 44.2 microradian
instantaneous FOV and sensing seven channels in the 0.5 to 1.1 μ	m , 1.55 to 1.75 μ m,
2.1 to 2.35 μ m and 10.1 to 12.6 μ m bands with a radiometric acc	
4. CURRENT STATE OF ART: <u>Although 30 µ rad resolution has</u> visible light and near IR regions, current instruments cannot meet	t requirement in 10.1 to
12.6 µm spectral region HAS BEEN	CARRIED TO LEVEL (

5. DESCRIPTION OF TECHNOLOGY

The spectrometer assembly includes seven multispectral imaging channels using a pallet mounted high resolution scanner. The scanning section consists of scanning optics such as a rotating 45° mirror which collects the radiation from the scene measured and optics which focus the radiation through a field stop to the spectrometer or radiometer channels. Beyond the field stop, the light is collimated, passed through a dispersive element and focused on an array of detectors. The wavelength of each detector is determined by its position in the spectrum. Other equivalent methods may be used to separate the incoming radiation into each spectral channel.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The desired field of view is driven by the need for high spatial resolution for earth resources and land use analyses. However, the designs of IR scanning spectrophotometers are restricted by the tradeoff between IR input signal sensitivity and spatial resolution versus dwell time on each spatial element.
- b. The scanning spectroradiometer for the visible IR is used primarily in EO-06-S, Scanning Spectroradiometer but is also used as the thematic mapper in EO-08-A, Earth Observatory Satellite.
- c. Better spatial and spectral resolutions enable better mapping and recognition of terrestrial features.
- d. Due to uncertainity in effect of earth's atmosphere and weather on results obtained,
 a full size model operating in space with provable confidence levels is necessary.
 Probably a shuttle sortie flight can be utilized for testing in space.
 Initial test can be performed in a high altitude aircraft to prove the technology.
 The advancement is based on improving a lesser operational model, hence level 8.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C.2.12
	TECIINOLOGY REQUIREMENT(TITLE): Scanning Spectroradiometer PAGE 2 OF 3
a ta d r e ia	TECHNOLOGY OPTIONS: Spatial resolution is determined by the scan angle (through tmosphere), the optics quality, the detector size, and focal length. A scanning instanation is allowed of view size of about 30 microradians is desired. Spectral resolution is etermined by channel bandwidth and dispersive element quality. The spectrometer/ radiometer channels may be calibrated by a number of alternative methods such as temp rature controlled black bodies, cold sky background, integrating spheres, and radio-sotopes. In order to obtain imaging in each of the spectral bands the small field of view $\sim 30 \ \mu$ rad) is scanned across the flight path by a rotating mirror (fields up to 48° wide).
a	TECHNICAL PROBLEMS: . Dwell time of each detector upon each of earth surface spatial elements is small resulting in low signal levels which are susceptible to local noise. . Currently detector materials and cryogenic cooling techniques need improvement to improve signal to local system noise values.
M. in	POTENTIAL ALTERNATIVES: Iultiple 1R electronic camera (or solid state imaging arrays) taking up to 7 frames (one a each desired spectral band) simultaneously in a slight overlapping series of rames might satisfy the requirements.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
R m	TOPS: W74-70489 (177-22-81) Visible - Infrared Sensor System Technology Develop- nent, Richard R. Richard JSC, Ph 713-483-4661. 740488, Visible and IR Sensor Subsystems, GSFC, Harvey Ostrow 301-982-4107.
	EXPECTED UNPERTURBED LEVEL
11	. RELATED TECHNOLOGY REQUIREMENTS:
a.	Development of sufficient scanning collector area. Corrections for atmospheric effects versus altitude and angle from nadir.
b,	. Closed cycle cooling; combination of radiative and active cooling.

DEFINITION O	г 'I	'ECI	HNC)LC). GY	RE	ល្ប	IRE	ME	NT	- <u>-</u>			<u> </u>		10.	C. 2	. 12	
1. TECHNOLOGY REQUIR											-	lion	nete	r I	PAG	Е 3	OF	3	
VIS-IR Instantaneous Field																			
12. TECHNOLOGY REQUIE	REM	EN	TS	SCI	IED			ND.	AR	YE	AR					<u> </u>			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
1. Options & Parametric Analy.															2				
2. Design optics 3. Build Model											· · · ·	ł							
4. Test		_																	
APPLICATION																			
1. Design (Ph. C)		-			i.												ļ		}
2. Devl/Fab (Ph. D)														ļ					
3. Operations		[0	ið I T	<u></u>	0	0	00	00	•	••	00		۲		<u>ا</u> .
					ŀ					F	7	ΠĽ		\Box	ſ		יי		1
13. USAGE SCHEDULE:		- .							.										
TECHNOLOGY NEED DATE	Ì	Т						Ì				ŀ				.		To	tal
NUMBER OF LAUNCHES $E1$					1		11		T	2	2	$ \frac{2}{1}$		1-1-	1	2	2-1		26
14. REFERENCES:	!	<u>↓</u>	t	I	L	L			╂	4			<u></u>		1		1.7	┸╼╾╼	
 a. Summarized NASA Pay NASA PD, July 1974. b. Summarized NASA Pay PD, July 1974. c. Definition of the Techn ESRO Contract SC/3/7 d. Comments, R. F. Hun Legend: 	yloa nica 73/1	id D I Re HQ,	esc equi ME	rip ren 3B,	tion nent Mu	s, í s fo nch	or or a en,	Sor m E 3 I	tie lart Deco	Pay h R əmt	'loa eso ier	ds, urc 197	Le es 3, 1	vel Pay	A c loa 114	lata d, 1 1-11	, N. Vol. .7.	ASA	L .
T = Technology																			
E1 = EO-06-S, Scannin	~ .	-											÷						
E2 = EO-08-A, Earth (= Sortie Operations		ar.As	400T	y ฮ	arei	1106													
= Automated Operat		s																	
15. LEVEL OF STATE OF	1 A 5	ንጥ						5. C	OMP	ONEN	тoñ	BRE	ADEC	ARD	TESI	ed R	REL	EVA	τ
 EASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. DERFINENT FUNCTION OR CHAN E.G., MATERIAL, COMPONES 	AND I CRIBE EXPE	EPOI PHEI RIME ERIST	NOME NT	NA.	STRA	TED,		G. N 7. N 8. N 9. H	ENV IODE IODE IEW C OPE IELIA	/IRON L TE: L TE: CAPA CRATI BILIT	MEN STED STED DILIT ONAI ONAI	T IN 1 IN AI IN SI Y DE L MOI PGRAI	FHE RCR. PACE PACE RIVE DEL. DEL.	LABO AFT E ENVI D'FRO OF A	RATC NVIF IRON: OM A N OF		ent. I les Iona	ser L Mo	DEL.

12

NO.C.2,13

1. TECHNOLOGY REQUIREMENT (TITLE): Ocean Scanning Spectrophotometer 1 OF 3 I FOV Reduction, Radiometric Accuracy

2. TECHNOLOGY CATEGORY: <u>Sensor</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide sensing with 0.37 to 0.6 milliradian instantaneous field of view scanned ± 45° with respect to orbital plane with a radio-

metric accuracy of 2% and a sensitivity of 3×10^{-5} J/m² (at 1695 km for E0-56-A, 250

<u>km for OP=05-S</u>.
 CURRENT STATE OF ART: <u>Current state of art is tending to approach the capability</u> for electromechanical scanners but radiometric accuracy is only 5%. Up to twenty 15 <u>nm bands from 400 to 700 nm have been recorded HAS BEEN CARRIED TO LEVEL 7</u>

by the MOCS instrument in an AAF experiment over oceans and lake waters in 1972. 5. DESCRIPTION OF TECHNOLOGY

A 12 channel visible light, near infrared (IR) scanning radiometer (or spectrophotometer) is desired to provide global measurements of ocean color. The requirement can be met by a series of 12 linear arrays (each at a selected spectral band) or by operating 12 filtered imaging devices simultaneously. However, a number of problems exist requiring further advanced technology support.

Earlier experiments from an aircraft in 1972 used an image dissector tube to record the instantaneous image in twenty 15 nm bands from 400 to 700 nm. The spectra were scanned in sequency over a 150 point line on the tube. The principal application is the measurement of water color which is an indicator of subsurface phenomena such as plankton growth and pollution diffusion.

P/L REQUIREMENTS BASED ON: 🖾 PRE-A, 🗌 A, 🛄 B, 🛄 C/D

6. RATIONALE AND ANALYSIS:

- a. Gradations in water color per image indicate composition and subsurface phenomena such as plankton growth and polution diffusion.
- b. The improved ocean scanning spectrophotometer is used in EO-56-A, Environmental Satellite but may be applicable to OP-05-S, Multispectral Scanning, ocean physics payload.
- c. The multispectral ocean scanning spectrophotometer development will permit very accurate environmental coverage of ocean color with a spatial resolution up to a resolution of 1 km.
- d. Test can be accomplished from a high altitude aircraft providing that equivalent to space observations conditions with respect to the scene can be achieved; a shuttle sortie flight test would be useful prior to deployment in an automated spacecraft.

TO BE CARRIED TO LEVEL 8_

PRECEDING PAGE BLANK NOT FILMED

Ocean Scanning SpectrophotometerAGE 2 OF 3 1. TECHNOLOGY REQUIREMENT(TITLE): I FOV Reduction, Radiometric Accuracy

7. TECHNOLOGY OPTIONS: It is assumed that electromechanical scanners or static electronic imaging devices can scan the object or image plane in a manner that permits reconstruction of the scene radiance per spectral band. Besides the major options of an electromechanical scanner/radiometer or the array of static electronic filtered imaging devices, scanner parameters need to be traded. Key parameters are instantaneous field of view (angular resolution), radiometric accuracy, coverage rate, scanner size, number of channels, number and sensitivity of detectors, and various efficiency factors involved. Alternative scanners employing photomultipliers, photodiodes and photoconductors may be considered. The unique advantage that a tube system has over other types is the ability to accommodate a large number of spectral bands or a programmable, variable number of bands. In the tube system a prism or a grating is used to spread out a line of imagery (visible thru a slit) over the full raster of a tube.

8. TECHNICAL PROBLEMS:

- a. As the I FOV is decreased, angular resolution increases, data rates are increased, calibration and vehicle stabilization requirements are tighter, need for cryogenics (to get greater detector sensitivity) increases. As the angular resolution is increased the dwell time of the detectors on a spatial resolution element may become less than detector time constant, resulting in decreased responsivity. b. Resolution for a tube system with a limited readout rate is limited, since the bandwidth required is used for multiple copies of a single line.

POTENTIAL ALTERNATIVES:

9. POTENTIAL ALTERNATIVES: a. Wide Range Image Spectrophotometer (Electron optics, image diss ectors, vidicons).

b. Multispectral framing camera (with criss crossing patterns of striped filters).

c. Improved Multichannel Ocean Color Sensor (MOCS).

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: RTOP W74-70543 (177-55-41), Remote Sensing of Oceanographic Color, etc., W.A. Harris GSFC Ph 301-982-6465.

RTOP W74-70546 (177-55-61), Physical Oceanography and Coastal Processes, including Marine Disasters, T. D. Oberholtzer (703-824-3411), Wallops Sta., Va.

EXPECTED UNPERTURBED LEVEL 7

- 11. RELATED TECHNOLOGY REQUIREMENTS:
- a. Forward motion compensation if frame cameras used.

b. Development of detector cooling systems if electromechanically scanned.

DEFINITION	<u>ירי</u> און	ECI	HNC)].(OGY	RF	OU	IRF	ME	INI			<u></u>	<u> </u>	ĩ	10, ⁰	2.2.	13
1. TECHNOLOGY REQUIE FOV Reduction, Radiome	REM	EN'	г (7	CIT.	LE							rop	hoto	omf	ster.	Е 3	OF	3
12. TECHNOLOGY REQUI	REM	(EN'	TS	SCI	IED			ND	AR	YE	AR							
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	
TECHNOLOGY																		
1. Options & Parametric Analysis	~																	
2. Design Imaging Device	-																	
3. Build Model	-	_														ļ		
4. Test Model	ļ		-							<u> </u>					<u> </u>			
APPLICATION									l			l						
1. Design (Ph. C)				-									•					
2. Devl/Fab (Ph. D)								ļ			ļ							
3. Operations					T2	••	••	••	••	•	•	•	60	0.	••	•	•	
· · · · · · · · · · · · · · · · · · ·					·T1	<u> </u>								-	<u> </u>	-		
13. USAGE SCHEDULE:																		
TECHNOLOGY NEED DATE			т															Tota
NUMBER OF LAUNCHES	4					$\frac{1}{2}$	$\begin{array}{c} 1\\ 2\end{array}$	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	2	1	1 1	1 1	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	$\frac{1}{2}$	2	1	1 1	28
14. REFERENCES:																		
į																		
a. Summarized NASA Pay					ions	s, A	uto	mai	ted	Pay	rloa	ds,	N#	4SA	PD), A	utoı	nated
Payloads, Level B Dat b. Pages 194, 291, NASA Observations Day 11	\mathbf{SP}	-33	5 A	lva	nce	d So	anı	hers	s &	Īma	ıgir	g S	ysto	əms	s foi	c Ea	urth	
Observations, Dec. 11		9 .L.		•										:				
T = Technology — = Automated Operation	ms													-				
• = Sortie Operations																		
T1 = EO-56-A, Environment					e				•									
T2 = OP-05-S, Multisper	etra	1 Sc	ann	ing	•													
-																		
15. LEVEL OF STATE OF	7 AF	T						5. C									REL	EVANT
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL 	RIBE	PHEN	OME					7. N	IODE IODE	L TE	STED	IN AI IN SI	RCR	AFT I ENVI	NVIR RONA	RY. ONMI JENT MUCI		SER
OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAN	RACTI	ERIST	IC DE	MON	STRA	TED,		9. H	OPE	ERATI BILIT	IONAI EY U¥	l MO IGRAI	DEL. DING	OF A	N OPI	ERAT	IONAI	, MODEI

NO. C-2.14-1 DEFINITION OF TECHNOLOGY REQUIREMENT

PAGE 1 OF 31. TECHNOLOGY REQUIREMENT (TITLE): <u>IR Photometer</u>

Reduction in the number of instruments to cover 2 to $1000 \,\mu m$ range; Compatible with cryogenically cooled IR telescope. Flexibility in selection of any desired band 1 μ m or larger in 2 to 1000 m range.

2. TECHNOLOGY CATEGORY: Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Photometric measuremen s at any selected band in 2 to $1000 \,\mu\text{m}$ range good to 0.1 magnitude

4. CURRENT STATE OF ART: Current state of art indicates measurement to 0.1

magnitude in 2 to 1000 µm requires 4 to 6 different IR instruments.

HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

A single IR Photometer instrument is required to operate to 0.1 magnitude over the range from 2 to 1000 μ m. This instrument must operate at 1.5 K and provide capability for switching in narrow band IR filters for radiation bands of interest which are mounted on a filter wheel. Different types of filters are necessary for different parts of the 2 to 1000 µm spectrum. An array of radiation detectors, each detector covering a part of the 2 to 1000 μ m region, is required.

Probably IR photometer development will proceed in stages or cycles of about 4 to 7 years apart, contingent upon development of low loss bandpass filters.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- Separate instruments covering parts of the 2 to 1000 μ m region are available. Use of a. a collection of existing technology instruments is not feasible because of size restrictions for mounting in a liquid helium cooled environment.
- This technology can benefit payloads AS-01-S, 1. 5m Cryogenically Cooled IR Teleb. scope, AS-20-S, 2.5m Cryogenically Cooled IR Telescope, and AS-11-A, 1.5m IR Telescope.
- Use of a single instrument to cover the 2 to 1000 µm region will greatly reduce the С. number of flights or the time to accomplish the measurements associated with the payload.
- đ. When sufficient accuracy over the full range of IR radiation measurements has been demonstrated this technology requirement will have been met. Final test would be accomplished in space against standard spectral reference stars.

Initial test to prove technology can be performed on high altitude rocket flight.

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOG	Y REQUIREMENT	NO.C-2.14-1
1. TECHNOLOGY REQUIREMENT(TITLE):	IR Photometer	PAGE 2 OF <u>3_</u>
Reduction in the number of instruments to c	over 2 to 1000 µm range; (Compatible with
cryogenically cooled IR telescope. Flexibil	ity in selection of any desi	red band 1 μ m or
larger in 2 to 1000 µm range.		
7. TECHNOLOGY OPTIONS: Trade studies are associated with the type o different regions, the method of selecting sy tion of multiple detector arrays. Calibratio using black bodies or in the operational envi	pecific narrow band filters on of the integrated instrum	, and the organiza- nent can be done
Detector segmenting strategies should enabl point source IR signals as modified by the se may be attained by connecting detector preas	elected IR filter (i.e., pro	
8. TECHNICAL PROBLEMS:		بود المعالمين من تعرباني وين منه ^{الم} الين معالمين المراجع المعالمين المراجع المعالمين المعالمين المعالمين المعال :
 a. The construction of selectable bandpass b. Difficulty of calibrating all combination c. Operation in a low temperature environ d. Constancy of detector and calibration r e. Development of stable detector element 	us of filters and detectors. ument (1, 5°K). eference temperatures.	
9. POTENTIAL ALTERNATIVES:		
a. Use of separate instruments to cover of experiment objectives for each mission .		gion and limit
10. PLANNED PROGRAMS OR UNPERTURE	BED TECHNOLOGY ADVA	NCEMENT:
a. RTOP W74-70625 (188-41-55), Millimet Goddard Inst. for Space Studies, Patric		• •
 b. RTOP W74-70626 (188-41-55), Infrared N.W. Boggess, (202) 755-3688. 	- , -	
c. RTOP W74-70628 (188-41-55), Infrared Glen Goodwin, (415) 965-5065.	Astronomy, Ames Resear	rch Center,
d. W74-70629 (188-41-55), Infrared Astron	nomy, Jet Propulsion Lab.	, Donald
P. Burcham, (213) 354-3028.	EXPECTED UNPER	TURBED LEVEL 7
11. RELATED TECHNOLOGY REQUIREME	NTS:	
a. Low noise level detectors.		
b. Segmented arrays of multiple detectors		
c. Telescope that contributes minimum lo	ocal flux.	

DEFINITION (DF T	EC	HNC	DLC	GY	RE	ເວັ	IRF	ME	NT					N	10.	C-2	.14	-1
1. TECHNOLOGY REQUI												_		F				3	_
Reduction in the number of	of ina	stru	mei	nts	to c	2076	r 2	to to	100	Ю µ	m	ran	ge;	Coi	npa	tibl	e w	ith	
cryogenically cooled IR to larger in 2 to 1000 µm ran		ope	.]	Tlez	ribi	lity	in	sele	ecti	on d	of a	ny	des	ire	i ba	nd :	ι μι	n 01	<u> </u>
12. TECHNOLOGY REQU	IRE)	MEI	VTS	SC	не	נטם	.Е:					CAI	EN	DA	RΥ	EA	R.		
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Parametric Studies & Trades	<u>T</u> 1	:3																	
2. Design & Fabrication of Exp. Model		1 	3						T2										
3. Test & Evaluation		T <u>1</u>	T3							T2					: - 				
APPLICATION 1. Design (Ph. C)		т1 Т1	T3							T2									
2. Devi/Fab (Ph. D)			נן	${}^{r_1}_{\overline{T}}$	8						T2				ļ				
3. Operations						1. T3	••	• •	••	••	•		•	T T	2.	•	•		
13. USAGE SCHEDULE:		i	J		I				L		L	<u>. </u>		<u>].</u>	I	ľ	t	L	L
TECHNOLOGY NEED DATE	:	T1	ТЗ							T2							L J		AL
NUMBER OF LAUNCHES						т1	2T1 T8	1	12TI	2T: T3			T1 T2	1		L T1 2 T2 3			ļ
14. REFERENCES.		· I		J		. <u></u>	<u> </u>	<u>.</u>		·	•	<u> </u>	<u>.</u>	<u>.</u>			·		
 a. Summarized NASA Pay pp. 30, 62. b. Summarized NASA Pay MSFC, p. 32. c. Materials for Radiatio pp. 211-221, 333-343. d. Astronomical Technique. Payload Descriptions, Item AS-002, IR Filter 	vload n De ies, Voli	l De teci Vol	escr tion lum	ipt , N e II So	ions atic ., e	s, A onal dite e Pa	uto Ma d bj	ma ater y W ads	ted ials . A	Pay s Ac	yloa lvis Tiltr	ids, sorj ner,	Ju 7 Bo Cl	ly 3 parc	(974 1, J :er	1, N an. 7.	IAS. 19'	A/ 74,	
 = Sortie operations = Automated operation (T1) = AS-01-S, 1.5m Cry (T2) = AS-20-S, 2.5m Cry 	oger		_						_								·		
(T3) = AS-11-A, 1.5m IR	Tele	sco	pe																
 LEVEL OF STATE O BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	AND R CRIEF EXPE RACTH	epor Phen Rimei Crust	OME: NT		STRA	T2D,		6. M 7. M 8. N 9. R	ENV ODEI ODEI EW C OFE ELIA	IRON L TES L TES APAI RATI BILIT	MEN TED TED HLIT ONAI Y UP	e in 7 In Al In Sf Y DE MOI GRAI	THE L RCRA PACE RIVEI DEL. DING (AFO FT E ENVI D FRO	RATO NVIR RONM DM A	RY. ONME IENT. MUCH RATI	NT. I LES ONAI	EVAN SER MOE DDEL	EL.

\$

} }

 $r_{i,i}$

7-117

.. .

į

ŝ

1. TECHNOLOGY REQUIREMENT (TITLE): IR Interferometer Spectrom-PAGE 1 OF <u>4</u> eter Resolving Power; Large Spectral Range in One Instrument

2. TECHNOLOGY CATEGORY: Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED. With one instrument, measure spectrum

from 25 to 1000 um with resolving power of 50000; spectrum may be measured in a number of overlapping sections.

4. CURRENT STATE OF ART: Current state of art indicates spectral range can be cover-

ed with a resolving power of 5000; higher resolution achievable by use of several instruments HAS BEEN CARRIED TO LEVEL 6

5. DESCRIPTION OF TECHNOLOGY: An IR spectrometer/interferometer capable of covering the 25 to 1000 μ m spectral range with a resolving power 50000 in one instrument is desired. The Fourier spectrometer technique depends upon stability of laser reference, precision of scan of reference arm, and dimensional stability. General principles: The optical configuration of a Fourier spectrometer includes a two beam interferometer with an easy (but accurate) way of varying the path difference (or delay) by moving some component. A detector gives the interference output, which consists of a uniform background signal upon which is superimposed an oscillatory function of the delay, called an interferogram. The current state of the art in the laboratory is in wave numbers between 0.1 and 0.05 decreasing to a value between 0.5 and 1 wave number at cryogenic temperatures. Two techniques are in use: rapid continuous, scan (L. Mertz) and step integrate system (P. Connes, et al).

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. The original requirement is for a single Fourier spectrometer assembly for use with an astronomical IR telescope over the total spectral range with best resolving power so that space is available on a given flight for other instruments. Then at the time the telescope is pointed at an IR source, a maximum of spectral coverage may be obtained with a few spectral range adjustments.
- b. AS-01-S, 1.5 m cryogenically cooled IR Telescope, AS-15-S, 3 m ambient temperature IR Telescope, AS-20-S, 2.5 m cryogenically cooled IR Telescope, AS-07-A, 3 m ambient IR Telescope are IR telescope payloads which can benefit from development of a high resultion extended range IR spectrometer.
- c. The availability of an extended range instrument of high precision will reduce the number of flights to obtain fairly complete spectra. The high resolution spectra enable source component identifications, line profiles, and velocities to be measured.
- d. Final test of the desired spectrometer /interferometer will be accomplished in space coupled to a cryogenically cooled IR telescope on a shuttle sortie flight.
 Initial test would be performed in a cooled vacuum chamber.

TO BE CARRIED TO LEVEL 8

PRECEDING PAGE BLANK NOT FILMED 7-119

NO.C.2.14.2

1. TECHNOLOGY REQUIREMENT(TITLE): IR Interferometer Spectrom- PAGE 2 OF <u>4</u> eter Resolving Power; Large Spectral Range in One Instrument

7. TECHNOLOGY OPTIONS: A simple interferometer observing an external point source

of radiation passes the signal collected by a telescope through the interferometer to a point detector with low noise (local flux) background and a high dynamic range. The transit time for IR signal transfer for each ray path through the interferometer is Σ nd/c, the ray length d in each medium through which it passes divided by the speed of light in that medium. The difference in the delay time, for the two paths, delay J, is multiplied by the speed of light (IR) to give the path difference x = ct. The optical path difference is changed by increasing distance travelled in some part of one arm, usually by movement of a mirror. Most of the spectral range and resolving power problems involve the smoothness and precision of measurement of location of the mirror at any given time of the scan (so that the wavelength detected can be known accurately for each IR spectral element received). For the continuous drive method it is noted that observation efficiency is directly affected by (continued on page 3)

8. TECHNICAL PROBLEMS:

a. To cover range, an equivalent 62.5 to 2500 cm retardation needed.

b. Operation of mechanisms in 1.5 to 2° K temperature range.

c. Large spectral coverage with one instrument 25 to 1000 μ m (although instrument may be adjusted to scan complementary ranges during different observations).

- d. Suppression of local flux, detector, photon, scintillation, and digitizing noise.
- e. Dynamic range.
- f. Detector size and coupling might be resolved by selectable area segmented detector array.

9. POTENTIAL ALTERNATIVES:

- a. Step and integrate mode of operation.
- b. Beam splitting of IR telescope output (with low loss); operation of two or three Fourier spectrometers to cover desired range.
- c. Multiple mirror retardation (however, has reduced interferometer modulation).

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

RTOP W74-70629 (188-41-55) Infrared Astronomy, N.W. Boggess, NASA Hq, Ph 202-755-3688.

EXPECTED UNPERTURBED LEVEL 6

- 11. RELATED TECHNOLOGY REQUIREMENTS:
- a. Electromechanical devices to enable precise scan or sampling.

b. Thermal control at lowest feasible temperature.

- c. Development of 1 million Point Fast Fourier Transform Software and Computation Capability.
- d. Increase of data handling capabilities by 10 to 20 times current rates.

NO.C.2.14.2

1. TECHNOLOGY REQUIREMENT (FITLE): IR Interferometer Spectrometer Spectrometer 3 OF 4 Resolving Power; Large Spectral Range in One Instrument

7. TECHNOLOGY OPTIONS (CONTINUED): fluctuations in mirror drive speed. In comparison of options, there are at least three distinct types of interest in astromony: Mach Zender with pairs of mirrors: Michelson with retroreflectors: and the cyclic. The Mach Zender interferometer has the advantage of separate outputs in which the interferogram data may be complementary. The complementary data may be useful in reducing noise from source fluctuations. The Michelson interferometer gives the simplest method of changing path difference and is the type most used in Fourier spectroscopy. In the Michelson interferometer the second output is returned to the source; it can be recovered if modified and mirrors have been replaced by retroreflectors.

Interferometer path variations can be described better in terms of the following parameters:

- a. Shear, s (related to field images)
- b. Shift, h (related to longitudinal separation)
- c. Tilt t' (related to source images)
- d. Lead, 1'

In theory, there is no reason why a Fourier spectrometer should have either a shear or tilt. However, in practice they occur. The integrated effect of variations in path length is to reduce the modulation of the interferogram. Use of retroreflectors in future and coupling of these mirrors (back to back) in each arm will compensate for shear and tilt.

Choice of curvature of corner mirrors (or retroreflector characteristics) enables compensation for shifts and leads.

Areas which need further development are:

- a. Truly background limited detectors for wavelengths longer than 100 μ m.
- b. Design techniques for high efficiency wide range coverage, capable of accepting beamsplitter and detector mixes to cover total desired spectral range exterior.
- c. Improvement of retardation schemes, trades between multiple mirror and step and integrate concepts.

DEFINITION O	<u></u>	ECI	HNO)GY	RE	QU	IRF	MF						. N	10,	C.	2.14	4.2
									_			Spec		F		E 4			
1. TECHNOLOGY REQUIN trometer Resolving Power; I	larg	se S	т (. рэс	tral	Ra	nge	in	One	. In	stru	ıme	nt		, 					_
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	IED			מאי	AR	YF	AR								
SCHEDULE ITEM	75	76	77	78	79		_			r	·	86	87	88	89	50	91		
TECHNOLOGY																	****		
1, Options & Parametric Analysis								Ī											
2. Design Spectrometer 3. Fabricate Model	-																		
4. Test Spectral Range & Resolving Power		_																	
APPLICATION 1. Design (Phase C)																			
2. Devl/Fab (Phase D) 3. Operations					T1	-								*		•			
								T2 T4	9 9	86	*	•	•	9 T3		•	•		-
13. USAGE SCHEDULE:	<u>L</u>	!	<u>ا </u>	I	I	<u>T5</u>) <u>.</u>	1		<u> </u>	1	<u>t</u>	<u> </u>	ţ	<u>t</u>	<u> </u>	1	<u>+ -</u>	<u>t.</u>
TECHNOLOGY NEED DATE		Т	l									Γ		\square	Γ	1		To	tal
NUMBER OF LAUNCHES A						1	2 1	2	4	4	2	1	$\frac{2}{1}$	2	$\frac{3}{1}$	3 1	3		36
14. REFERENCES: a. Aspen International Confe b. Summarized NASA Payloa						-													-53
NASA/MSFC, pp. 30, 56,			r rbi	,1011		JOI 0	10 1	Lay.	ioac	10,	TIC /	, GI 1	CL 39	ava	, 01	LLY -	-017	-,	
c. Summarized NASA Payloa NASA/MSFC, pp. 30, 32.	dD	esc	ripi	ion	s, 1	Auto	ma	ted	Pa	yloa	ıds,	Le	evel	A 2	Dat	a, J	uly	197	4,
d. Cryogenic Interferometer well Radiation Center, 11	/Sp Fe	b. 1	.974	•															
Legend:		٠ſ	F1	= A			-			-	_							3860	
T = Technology = Sortie Operations							-					-	-					esco esco	
- = Automated Operations											_		-					SCOL	
					S-1														
15. LEVEL OF STATE OI	A I	RT				•		5. C									REL	EVAN	Ť
 BASIC PHENOMENA OBSERVED : THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. 	RI BE	PHE	NOME					7. 3	iode Iode Iew (L TE L TE MPA	STEÐ	IN Al IN SI Y DE	RCR ² PACE RIVE	AFT E Envi	INVIR RONY	ONMI IENT MUCI	•	SER	а.
4. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONES			IC DI	EMON	ISTRA	TED,		9, J 10. I	uelia Vefia	Internet	ry Ui	GRA	DING	OF A AN O	N OP PERA	ERAT TION	ionai Al. M	l MOI ODEL	EL.

-			
DEFINITION	OF TECHNOLOGY REQU	IREMENT	NO. <u>RI,2.15</u>
1. TECHNOLOGY REQU IR Interferometer/Sp	IREMENT (TITLE):		PAGE 1 OF <u>5</u>
2. TECHNOLOGY CATE	GORY: Sensors		
3. OBJECTIVE/ADVAN	CEMENT REQUIRED: IR s	emiconductors and d	etectors (and
associated electronics) w	hich are less sensitive to hi	gh radiation backgro	unds
4. CURRENT STATE OF	ART: IR detectors are a	vailable which can v	withstand 10 ⁷ rads
with 50% degradation.			
		HAS BEEN CARI	RIED TO LEVEL *
5. DESCRIPTION OF T	ECHNOLOGY	*Some military cl	assified activity
radiation. Required inte which reduce charge can	rate gain decreases and leal gration times also increase. ter lifetimes and mobility. cause the fraction of items v rrespondingly less.	These changes are Minority carrier ser	attributed to traps ni–conductors are
	Requirement	State	of Art
Detector type	Thermal IR detectors, 0.74	-100 µ Therm 0.7-1	al IR detectors 00μ
Radiation level before damage	Jupiter environment at 4 . radii (>> 10 ⁵ rad)		out degradation)
(continued on page	4) 11 REQUIREMENTS BASE	DON: \bigvee PRE-A,	50% degradation) A, B, C/D
6. RATIONALE AND AN	ALYSIS:		
by Pioneer 11.	s in Jupiter orbit have been		ted and confirmed

- b. Using payload will be PL-12-A, Mariner Jupiter Orbiter.
 c. Less radiation sensitive IR detectors are needed to operate the IR Interferometer/ Spectrometer in Jupiter orbit.
 d. Insensitivity to nuclear radiation with minimal shielding must be demonstrated in the
- laboratory.

DEFINITION OF TECHNOLOGY I	EQUIREMENT NO	RI, 2.15
1. TECHNOLOGY REQUIREMENT(TITLE): IR Interferometer/Spectrometer	PAGE	2 OF <u>5</u>
 TECHNOLOGY OPTIONS: If the designer will accept an allowable degradate be able to withstand higher radiation levels over can withstand 10⁵ rads at no degradation, 10⁶ rad degradation. Table 1 illustrates allowable time 	the required orbital time. An IR ds at 25% degradation, and 10 ⁷ r	detector ads at 50%
The present mission configuration requires orbitin period of one year. A design which allows detect probably necessary. JPL has tested the effects o damage at levels of 5 x 106 rads. (See Reference	tor degradation on the order of 50 Fradiation on IR detectors and has	0% is
(Table I on page 4)		
8. TECHNICAL PROBLEMS: The associated electronics bias circuits signal and hardness with the IR detectors or very little is ga and the other blind to IR energy, a subtraction la radiation. However, in addition to resulting ind two circuits with identical radiation response wo calibration over a very broad range to give any	ined. If two circuits are used, or ogic may be used to define effects reased weights and power, the bu uld be difficult, and would requir	e open to of ilding of
 POTENTIAL ALTERNATIVES: a. Shielding – Beyond shielding on the order of weight on the orbiter is prohibitive. Table function of orbit. 	~0.5 gm/cm ² , the effect of shiel 2 illustrates shielding requirement	ding s as a
(continued on page	5)	
10. PLANNED PROGRAMS OR UNPERTURBED Work on hardening IR detectors against nuclear r Honeywell		3
Texas Instruments	M. M. Blanke S. R. Borrello	
(continued on page 4)	EXPECTED UNPERTURBED	LEVEL *
11. RELATED TECHNOLOGY REQUIREMENT	CS: * Some military classifie	ed activity
Unknown		

[DEFINITION O	FΤ	ECI	HNC	DLC	GY	RE	ຊບ	IRE	ME	NT					N	10,	2	.15	
1.	TECHNOLOGY REQUIR IR Interferometer/						:								P	PAG	E 3	OF	· _5	—
12.	TECHNOLOGY REQUIN	REM	EN	TS :	SCI	IED		E: .LE	ND.	AR	YE.	AR					•			
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
	HNOLOGY								TE:									пe	et	
	Materials Testing/ Research Detector Development		NOTION AND AND AND AND AND AND AND AND AND AN					ри	oba	bly	a	ail	[ab]	equ e a	tΙ	oD,	bu	is t de-		
	Life Testing		~~			•		te	cto	r v		. ne		e r				ue-		
4.										-P.										
5.																				
APP 1.	LICATION Design (Ph. C)											-						 		
2.	Devl/Fab (Ph. D)																	ŀ		
3.	Operations															ļ				
4.																				
13.	USAGE SCHEDULE:						- <u>r</u>				1								- <u>1</u>	
TEC	HNOLOGY NEED DATE		<u> </u>	 				<u> </u>	<u> </u>		<u> </u>			<u> </u>		<u> </u>			roı +	'AL
NU	MBER OF LAUNCHES		<u> </u>			<u> </u>		2						<u> </u>						2
14. 1. 2. 3. 4. 5. 6.	Dr. J. Haffner, Rockw A. G. Stansbery, and Research, Vol. 79, No J. W. Haffner, "Calau Vol. 7, No. 12, pp 23 Discussion between R. Rockwell International Thermoelectric Outer I TM 33–589, April 1, 1	ell R. 1 Jato 305- H. Jan 973 . J.	Inte 5. V 6, r ed [-231 Par! nuc et S , Hc	rna Vhit op 2 Jose 1 (I cer, iry 2 ipac	tion 331 Ra Dec Je 20, cecr	al "Ju -23 tes emb t Pr , 19 aft,	pite 342 in J oer 0pu 975 . TC	rs R (Jupi lupi 1969 Isio DPS	ladi ters 7) n Lo Fi	atic 974 Va aboi nal	n B) n A rato Rep	elts Iler ry, port	;", n Be and , Je	Jou It", I P. et P	rnal , Al R.	of AA Fag	Ge Joi jan jan	oph urna aba	ysîc I,	
15.	LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAR E.G., MATERIAL, COMPONEN	ND F RIBE EXPE (ACT)	epoi Piiei Rime Erist	NOME NT	NA.	STRA	TED,		6. A 7. N 8. N 9. F	ENV IODE IODE IEW (OPI IELIA	ARON L TE: L TE: CAPA ERAT BILLY	MEN STED STED BILIT IONA IY UI	T IN IN A IN SI TY DE L MO PGRA	THE 1 IRCR/ PACE RIVE DEL. DING	LAHO AFT E ENVI D FR OF A	RATC ENVIE IRONI OM A	ORY. IONM MENT MUC ERA'I	ENT. H LE: TONA	.EVAI SSER L MO LODEI	DEL.

NO, <u>RI, 2.1</u>5

1. TECHNOLOGY REQUIREMENT (TITLE): __

PAGE 4 OF <u>5</u>

IR Interferometer/Spectrometer

5. Description of Technology - continued

Photoconductors can tolerate approximately 3 x 10⁵ rads before appreciable damage. Photovoltaic detectors can tolerate approximately 10⁵ rads before damage. Thermal detectors are two or more orders of magnitude less sensitive and can tolerate approximately 10' rads. Transient effects below these radiation levels manifest themselves as background noise. Transient effects are observed at one rad/hr in photoconductors and photovoltaic IR detectors.

7. Technology Options - continued

TABLE 1

NOTE: 0.1 gm/cm² shielding

Radiation Tolerance	Degradation	Orbiter Jupiter Radii	Allowable Exposure Time
10 ⁵ rads	0%	4 R 1	4 orbits (~4 days)
10 ⁶ rads	25%	4 R	40 orbits (~ 1 month)
10 ⁷ rads	50%	4 Rj	400 orbits (one year)

10. Planned Programs or Unperturbed Technology Advancement - continued

Kaman Nuclear Gulf Radiation Tech.

P. L. Jessen B. C. Passenheim A. M. Kalma

Current research in the area of radiation effects on infrared devices is directed toward minimizing the transient response (which will increase the signal-to-noise ratio) as well as toward extending the exposure which can be tolerated before permanent damage become significant. Approaches being investigated include pulse-suppression electronic circuits (to minimize unwanted transient response), thermal grounding (to limit temperature rise due to radiation, especially laser radiation), and new material compositions which operate satisfactorily (high D*) with short minority carrier lifetimes). Various annealing techniques which can be used for certain applications are also under consideration.

Since nearly all of the research in this area pertains to classified applications, it is not possible to discuss recent results in an unclassified document (see the IRIS Conference reports for classified research reports).

9. Potential Alterr	atives – continue	ed	
		TABLE 2	
Shielding	<u>Orbit</u>	Radiation Level	Total Dose for I-Year Orbit
0.1 gm/cm ²	4 Rj	10 ⁴ rads/hr	10 ⁸ rads
0.5 gm/cm^{2*}	4 R J	4 x 10 ³ rads/hr	4×10^7 rads
1 gm/cm^{2*}	4 R.J	7 x 10 ² rads/hr	7 x 10 ⁶ rads
10 gm/cm ^{2*}	4 R _J	3 rads/hr	3 x 10 ⁴ rads
*Shieldina at t	hese levels resul	ts in prohibitive orbiter v	veiahts.
on the order of 0.5 . Higher Orbits.	gm/cm ² . Increased data	collection time before fo ecting higher orbits. Ta	i) must be accepted with shielding ailure can be accomplished with ble 3 illustrates the impact of
on the order of 0.5 . <u>Higher Orbits</u> . less detector de higher orbits.	gm/cm ² . Increased data egradation by sel	collection time before fo	ailure can be accomplished with
on the order of 0.5 Higher Orbits. less detector de higher orbits. NOTE: 0.1 gr	gm/cm ² . Increased data egradation by sel n/cm ² shielding	collection time before fo ecting higher orbits. Ta TABLE 3	tilure can be accomplished with ble 3 illustrates the impact of
on the order of 0.5 Higher Orbits. less detector de higher orbits. NOTE: 0.1 gr <u>Radiation</u>	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before fo ecting higher orbits. Ta TABLE 3 <u>Orbit</u>	tilure can be accomplished with ble 3 illustrates the impact of <u>Allowable Exposure Time</u>
on the order of 0.5 Higher Orbits. less detector de higher orbits. NOTE: 0.1 gr	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before fo ecting higher orbits. Ta TABLE 3 <u>Orbit</u> 4 RJ 6 RJ	tilure can be accomplished with ble 3 illustrates the impact of
on the order of 0.5 . <u>Higher Orbits.</u> less detector de higher orbits. NOTE: 0.1 gr <u>Radiation</u> 10 ⁵ rads	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before fo ecting higher orbits. Ta TABLE 3 <u>Orbit</u> 4 Rj	tilure can be accomplished with ble 3 illustrates the impact of <u>Allowable Exposure Time</u> ~ 4 orbits
on the order of 0.5 . <u>Higher Orbits.</u> less detector de higher orbits. NOTE: 0.1 gr <u>Radiation</u> 10 ⁵ rads 10 ⁶ rads	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before fo ecting higher orbits. Ta TABLE 3 <u>Orbit</u> 4 Rj 6 Rj 8 Rj 8 Rj	tilure can be accomplished with ble 3 illustrates the impact of <u>Allowable Exposure Time</u> ~ 4 orbits ~ 11 orbits ~ 37 orbits ~ 40 orbits
on the order of 0.5 . <u>Higher Orbits.</u> less detector de higher orbits. NOTE: 0.1 gr <u>Radiation</u> 10 ⁵ rads 10 ⁶ rads	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before fo ecting higher orbits. To TABLE 3 <u>Orbit</u> 4 RJ 6 RJ 8 RJ	tilure can be accomplished with ble 3 illustrates the impact of <u>Allowable Exposure Time</u> ~ 4 orbits ~ 11 orbits ~ 37 orbits
on the order of 0.5 . <u>Higher Orbits.</u> less detector de higher orbits. NOTE: 0.1 gr <u>Radiation</u> 10 ⁵ rads 10 ⁶ rads	gm/cm ² . Increased data egradation by sel n/cm ² shielding n Tolerance	collection time before for ecting higher orbits. To TABLE 3 <u>Orbit</u> 4 Rj 6 Rj 8 Rj 4 Rj 6 Rj	Allowable Exposure Time ~ 4 orbits ~ 11 orbits ~ 40 orbits ~ 110 orbits ~ 110 orbits ~ 110 orbits

7-127

.....

1. TECHNOLOGY REQUIREMENT (TITLE): Pyroelectric Detector PAGE 1 OF 4 Increase detectivity of uncooled detector to that of current cooled detectors

2. TECHNOLOGY CATEGORY: Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop an IR detector with a detectivity of 3×10^{11} .

4. CURRENT STATE OF ART: <u>Current state of art of triglycine sulfate pyroelectric</u> detectors is approximately $D^* = 1 \times 10^{40} \text{ cm HZ}^{1/2} \text{W}^{-1}$

HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

The pyroelectric detector employs a temperature-sensitive ferroelectric crystal, such as triglycine sulfate, which has two parallel electrodes deposited on it making it into a parallel plate capacitor. As the temperature of the polarized crystal is changed, a charge is generated in the pyroelectric detector. When employed in the voltage mode, the responsivity and the noise both decrease as a function of frequency and the D* of the detector stays nearly constant up to quite high frequencies. Pyroelectric detectors are particularly advantageous in wide bandwidth systems where their performance at both low and high frequencies is superior.

Pyroelectric detectors can be conveniently formed into linear arrays with associated preamplifier arrays for use in two-dimensional scanning systems. The current practical limit in the size of array elements is of the order of 0.25 x 0.25 mm. Below this area, for the current material and thickness limitations, the capacitance becomes small

.(continued on page 3) P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

- 6. RATIONALE AND ANALYSIS:
- a. Rationale for Selection: The improvement in detectivity in pyroelectric detectors obtained during the last five years has been about an order of magnitude. The best pyroelectric detectors being made in the United States and in England now approach a D^* of 2×10^{10} cm $Hz^{1/2}$ W⁻¹, and the average detectors are within a factor of four of this value. The best detectors are now about a factor of ten away from the ideal thermal radiation noise limited performance. There appears to be no reason why considerable progress toward reaching this fundamental limit of thermal detector performance at about 20°C could not be made over the next few years. Recent studies of polyvinyl-fluoride film pyroelectric detectors are also of interest.
- b. Benefitting payloads. Payload benefitting from development of improved IR detectors include:

1)	OP-02-S	Multifrequency Land Imagery
-	OP-03-S	Multifrequency Dual Polarized Microwave Radiometer
	OP-04-S	Microwave Scatterometer
	OP-05-S	Multispectral Scanning Imagery

(continued on page 3)

TO BE CARRIED TO LEVEL 8

7-129

PRECEDING PAGE BLANK NOT FILMED

1. TECHNOLOGY REQUIREMENT(TITLE): Pyroelectric Detector PAGE 2 OF 4

Increase detectivity of uncooled detector to that of current cooled detectors

7. TECHNOLOGY OPTIONS:

To the extent that the pyroelectric detector is an ideal capacitor, it is free of electrical noise and, therefore, would be limited only by temperature noise, which is the fluctuation of detector temperature through radiation exchange with its surrounding. In practice, at intermediate to higher frequencies the detector is generally limited by Johnson noise associated with the dielectric loss in the ferroelectric crystal. At low and very high frequencies, the limiting noise is usually that of the field-effect transistor preamplifier. Considerable progress has been made in improving the ferroelectric materials being used, in methods of attaching electrodes free of contact resistance, in minimizing electrical leakage around the detector, and in obtaining field-effect transistors with lower electrical noise characteristics. Noise equivalent power (NEP) for a pyroelectric detector is based on detector material, modulation frequency, FET characteristics and operating temperature. (Continued on page 3)

8. TECHNICAL PROBLEMS:

a. Crystal growth needs to be perfected to obtain uniform crystals with minimum dielectric loss and methods of attaching leads need to be improved to avoid resistance loss in the lead attachment.

b. Preamplifier (FET's) needs to be reduced

c. Dielectric constant changes and responsivity goes down above some temperature such as 35° C. Pvroelectric detector needs to be generated within fairly narrow temperature band.

9. POTENTIAL ALTERNATIVES:

a. Cooled detectors

b. Electron beam imaging

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Some activity at Barnes Engineering, Mullard and Texas Instruments.

EXPECTED UNPERTURBED LEVEL 5

11. RELATED TECHNOLOGY REQUIREMENTS:

a. Low noise multispectral scanners.

b. Array element segmentation and coupling of elements for maximum efficiency vs wavelength.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.16

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Pyroelectric Detector</u> PAGE 3 OF <u>4</u> Increase detectivity of uncooled detector to that of current cooled detectors

5. DESCRIPTION OF TECHNOLOGY (continued)

compared with the stray capacitance of the associated circuitry. For small elemental area detectors or arrays, materials of higher dielectric constant would be particularly valuable. Examples are SBN and PLZT.

6. RATIONALE AND ANALYSIS: (continued)

c. Justification for Advancement: It appears that considerable improvement in the characteristic of pyroelectric infrared detectors could be achieved with substantial research support. Because of the importance of pyroelectric detectors, not only as elemental detectors at low frequencies, but also as laser heterodyne receivers and in the pyroelectric vidicon, a strong and vigorous materials research program is recommended.

Quite a few earth observations on geophysics payloads could avoid going to cooled detectors, if appropriate advance in pyroelectric detector occurs.

d. Substitution of typical pyroelectric detectors in a multispectral scanner test on an early shuttle flight. Initial test to be performed in high altitude aircraft.

7. TECHNOLOGY OPTIONS: (continued)

Ferroelectric materials should be investigated to find those having: (a) a better ratio of pyroelectric coefficient to dielectric constant, (b) greater thermal capacity per unit volume, and (c) higher Curie temperature. Material research is complicated by the wide variation of the dielectric properties of the material with temperature with the state of polarization of the crystal, with the previous thermal history, and with poling method employed. Several materials currently being investigated such as TGFB, deuterated TGS, alanine-doped TGS, SBN, and PLZT show considerable promise in this direction.

The responsivity of pyroelectric detectors above the thermal time constant is determined by the ratio of the pyroelectric coefficient to the dielectric constant of the detector material and the thermal capacity per unit volume of the detector material. To date this has been found to be optimum for triglycine sulfate just below its Curie point which occurs at 47°C and for triglycine fluoberyllate just below its Curie point of 73°C. A lower rather than a higher thermal capacity is advantageous for some type of pyroelectric detectors.

																. <u>.</u>	Ċ	-2.	 1 G
DEFINITION O							_	_								10. 			
1. TECHNOLOGY REQUIR	EM	EN'	Г (riT.	LE)	: <u>P</u>	yro	elec	etric	c D	etec	etor		F	PAG	E 4	OF	· _4	
Increase detectivity of un	cool	.ed a	lete	oto	r to	tha	at o	f cu	rre	nt c	ool	ed	dete	ecto	r.	·····			
12. TECHNOLOGY REQUI	RTCW	IEN	тs	SCF	नम्हा	NIT.	Е.												
	64.5.11	L stad al. 1						ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	· · · ·					86	87	88	89	90	91		
TECHNOLOGY:			<u> </u>										<u> </u>			<u> </u>			
1. Material Development													l l				,		l
2. Detector Design & Fab.																		1	
3. Substitution in Multi-		_										Ì							
spectral scanner			ł																
4. Test in space							1						1				1		
APPLICATION (in new		<u> </u>									·							┝╼─	
sensor)	ļ																		
1. Design (Phase C)		1	-	┢		ļ]								1	
2. Devel/Fab (Phase D)	Ì		1	_	<u> </u>			1]						1	
3. Operations															<u> </u>	<u> </u>	1	<u> </u>	
13, USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE		[Т	1													r	OT	AL
NUMBER OF LAUNCHES			1														•		
OP-02-S						2	2	2	2	1	1	1	2	2	2	1	1	j –	
OP-03-S	1					1		1		1	1	1	1		1	1	1		
OP-04-S			ļ	1			1		1	1	1	1		1		1	1		
OP-05-S		1				2	2	2	$\frac{2}{2}$	1	1	1	$\frac{2}{5}$	2	$\frac{2}{5}$	$\frac{1}{4}$	1		
						5	5	5	5	4	4	4	5	5	5	4	4	5	5
14. REFERENCES:																		•	
		•	_				_												
a. Materials for Radiation De			-									-	-	-	-				
b. Summarized NASA Payloa	d D	esci	ript	ion	s, 1	-eve	ei A	Da	ta,	201	rtie	Pa	yloa	ads,	ปน	цу.	1974		
Legend:																			
T = Technology																			
										•									
15. LEVEL OF STATE O	F A	RT						5. C)ARD LABO			N NEI	EVAN	1.L
 BASIC PHENOMENA ORSERVED THEORY FORMULATED TO DESC 				-					IODE	L TE	STED	IN A	IRCR		:NVII	IONM	ENT.		

- NODED INSTRUCT DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- THEORY TESTED BY PHYSICAL EXPERIMENT ,OR MATHEMATICAL MODEL.
 PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMEN	NO. <u>GE-2.17</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Soil Moist</u> Sensor	<u>re</u> PAGE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY: Sensors	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide al mapping soil moisture from orbit.	l-weather capability for
 CORRENT STATE OF ART: Show good accuracy only relative to surface smoothness, freedom from vegeta 	rrently under development ander ideal soil conditions tive cover, and known homo- BEEN CARRIED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY	
a) Accuracy requirement - not attainable under operation	al
<pre>measurement conditions (refer to item #4 above). b) Resolution requirement - 100 meter minimum spot d (up to 490 n.mi.); theoretically feasible with sy techniques.</pre>	
 c) Soil depth of measurement - 0 to 50 cm; the higher be feasible in the L-Band, which shows promise in effects of vegetative cover. d) If roughness and vegetation effects are to be eliminated and the state of the state o	terms of reducing the
range should not exceed 15°.	
Active microwave (radar) techniques show good response The effect of roughness can be minimized if the syste incidence angle range at frequencies between 1 GHZ ar ≈10% of full scale from dry to saturated soil). P/L REQUIREMENTS BASED ON:	m is operated over the 7 ⁰ -1 d 4 GHZ (experimental data Continued on page 3)
 RATIONALE AND ANALYSIS: a) Requirements are based on user needs in crop yiel forecasting, watershed modeling, flood area asses forecasting. Many of these applications could to up to 4 KM diameter spot size. 	sment, and snow run-off
b) The requirement to measure to a soil depth of 50 in crop yield surveys during seasonal measurement obtaining water from the deep portion of the root	s when the plant is s.
c) Technology advance is applicable to the following Observatory Satellite, and EO-61A, Earth Resource Satellite. Both of these payloads will be active 1991 period.	s Survey Operational
d) The development program required for this technol include fabrication of experimental models and te	
Ground truth sites will be required, as well as corr	oborating measurements of

DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-2.17
1. TECHNOLOGY REQUIREMENT(TITLE): SOIL MOISTURE SENSOR PAGE 2 OF 4
7. TECHNOLOGY OPTIONS: The choice of microwave techniques over optical sensing in the UV-VIS-IR spectral region is dictated by the requirements for all-weather capability, penetration of vegetation canopies, and moisture measurement below the soil surface. Within microwave techniques, the principal options are passive and active (radar). Although a passive system would be desirable for its simplicity of implementation, its resolution capability is limited to several kilometers spot size. The illumination frequency is an important parameter to be selected. L-Band looks promising. Multiple radar frequencies, with dual polarization is a possibility. The use of a combination of active and passive channels is a possible option. For instance, Dr. Fawwaz T. Ulaby, director of RemoteSensing Laboratory at the University of Kansas would propose the following: (Continued on page 3)
8. TECHNICAL PROBLEMS: The principal problems to be solved relate to the correlation of the microwave return signal with soil moisture content under a large spectrum of operational variables, including soil composition, soil structure, vegetation type/ geometry/density, and observation incidence angle.
9. POTENTIAL ALTERNATIVES:
 a) Should the stringent resolution limits that are required prove to be unfeasible, it may be necessary to rely on aircraft microwave measurements to this application. Space-based observations would be used merely for correlating. b) Large number of in-situ moisture sensors could be installed in a network of ground instrumented platforms (e.g., one platform per 16 KM² with data relay link through satellite systems. (Continued on page 3)
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: RTOP #W74-70514, JSC, Joint Experiment on Remote Sensing of Soil Moisture, addresses the problem of proving feasibility of measurement by means of ground- based and air-based observations. RTOP-177-51-41 deals with microwave techniques for remote sensing. It is estimated that a 1980 flight target of this sensor on EOS will not be met unless a comprehensive sensor development program is continued during the interim period. EXPECTED UNPERTURBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:
The development of synthetic aperture radar imaging techniques will be directly applicable to this technology advancement. Investigations such as the Shuttle Imaging Microwave Sensor (EO-05S) may be significant in defining the degree to which advanced, passive microwave sensors will provide data for soil moisture surveys.

r, e

1. TECHNOLOGY REQUIREMENT (TITLE): <u>SOIL MOISTURE</u> PAGE 3 OF <u>4</u> SENSOR

5. DESCRIPTION AND TECHNOLOGY (Continued)

generated under the RTOP #W74-70514, JSC, Joint Experiment on Remote Sensing of Soil Moisture). Also, for the same sensor parameters, radar signals can easily penetrate vegetation and measure a response due to soil moisture (1,2).

7. TECHNOLOGY OPTIONS: (Continued)

Radar

of interest.

Frequency: 1-3 GHz range

Incidence angle range: 7-15⁰ (lunar sounder synthetic aperture can be used) Polarization: Probably HH

9. POTENTIAL ALTERNATIVES: (Continued) The selection of the optimum number and location of ground sensors would require detailed surveys of soil types, soil structure, topography, and climatological conditions over the geographic areas

Same as radar (with small offset to avoid interference Nadir

NO.GE2.17

Either (Nadir)

Radiometer

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 2.17																			
1. TECHNOLOGY REQUIREMENT (TITLE): <u>SOIL MOISTURE SENSOR</u> PAGE 4 OF <u>4</u>																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
1. ANALYSIS	{																ļ		
2. DESIGN			1																
3. FABRICATION		4																	
4. AIRBORNE TESTS			,									ļ						ļ	
5. SHUTTLE SORTIE C/O					+	1													
APPLICATION									 	 							 	1	
1. Design (Ph. C)		ŀ		-	ŀ														
2. Devl/Fab (Ph. D)					•							Ì	ļ						
3. Operations									<u> </u>	 -		<u> </u>						╁	1
4.																			
13. USAGE SCHEDULE:													- -						
TECHNOLOGY NEED DATE			l			4	1								ĺ			roi	AL
NUMBER OF LAUNCHES						1	1	1	1	1	1	1	1	1	1	1	1	1	2
14. REFERENCES: 1. "Radar Measurement (#177-35, by F. T. U											5 T.	echi	nica	a1 1	Repo	ořt			
2. "Geoscience Specific (Contract #NAS-1-112			fo	or (rbi	tal	L In	agi	lng	Rad	lar	", 1	by .	J. 1	W. 1	Rou	se,	Jr,	•
3. "On the Feasibility Sensors", by Newton national Symposium o	, Le	e,	Rou	se	and	l Pa	irie	3.	Pap	per	Ъy	LM	SC a						
4. "Radar Response to V <u>Propagation</u> , Vol. Al 177-42, University of	-23	3, N	lo.	L,	Jar	nuar	:у 1	1975	5; 7	als	o s	ee	CRE	S T	ech	nic	al	Rep	ort
5. "Radiometer-Scatterd Ulaby, <u>Proceedings</u> Los Angeles, Califor	of t	he																	
15. LEVEL OF STATE OI 1. BASIC PHENOMENA OBSERVED	AND 2	RT REPOI		-				6. 7	EN' NODE	VIROI L TE	NMEN STEI	T IN IN A	THE IRCR	LABO AFT I	RATC	DRY.	ENT.	LEVAI	YT :
2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL, 4. PERTINENT FUNCTION OR CHA	EXPE	RIME	NT		STR	TED		8. 1 9. 1	NEW (OPI RELLA	capa Erat Abili	BILI' IONA TY II	ry de L MO PGRA	DEL.	OF A	om A N OP	MUC ERAT	H LE	L MO	DEL.
E.G., MATERIAL COMPONE	NT, E	TC.				136		10.]	LIFET	TIME	FXT	INSIO	N OF	AN O	PER	TION	AL N	IODEI	<u>.</u>

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE-2.18</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Range and Range Rate</u> PAGE 1 OF <u>5</u> Sensing
2. TECHNOLOGY CATEGORY: Sensors
3. OBJECTIVE/ADVANCEMENT REQUIRED: Range and range rate sensor suitable for automatic rendezvous/docking of the teleoperator to the disabled or service-
able spacecraft, and for gravimetric measurements in Earth and Ocean Physics.
4. CURRENT STATE OF ART:
of satisfying the teleoperator requirements does not exist, according to thereport in reference #1.HAS BEEN CARRIED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY
(A) The teleoperator system requirements are to measure range to non-cooperative (disabled) targets from 3 KM to 1.5M, range rate from 6M/S to 1 cm/sec. Maximum system weight: 4.5 KG, maximum power 15 watts. The weight and volume constraints for this application are not considered within the state of the art.
(B) Earth and Ocean Physics application require measurements of range to 2 cm, and range rate to 0.003 cm/sec. The state of the art is approximately 20 cm range accuracy and 0.03 cm/sec.
P/L REQUIREMENTS BASED ON: □ PRE-A, X A, □ B, □ C/D
6. RATIONALE AND ANALYSIS:
a) The range requirement of 3 KM considers the possible deployment of the teleoperator assembly by the Shuttle or Tug at that distance away from the spacecraft to be serviced. Ground or fDRS-assisted tracking would be employed for longer ranges. Range rates down to near zero will be required during delicate close - in and docking maneuvers. Physical size and weight limi-tations are imposed by the overall teleoperator spacecraft weight and volume allocations.
b) Payload No. LS-04S, Free Flying Teleoperator, EOP will benefit specifically from this advancement. Other beneficiaries are the sub-satellites requiring
deployment and retrieval from the Shuttle or Tug. The GRAVSAT system will bene-
fit from this technology, in the Earth and Ocean Physics discipline. c) Attainment of the desired advancement will increase the reliability and
utility of the teleoperator system in a large variety of potential space applications. Precision range and range rate measurements are important in mapping the earth's gravity field for earthquake hazard assessment applications.
d) To be incorporated in the teleoperator design, the range and range rate sensor prototypes should be successfully demonstrated in ground tests.
TO BE CARRIED TO LEVEL 5

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO, GE-2.18
1.	TECHNOLOGY REQUIREMENT(TITLE): <u>Range and Range Rate</u> Sensing	_ PAGE 2 OF <u>5</u>
•••	TECHNOLOGY OPTIONS: Laser or RF ranging techniques should be considered as options. and pointing requirements may necessitate that a microwave syst for coarse RRR sensing and laser be employed for fine sensing.	Power consumpti em be used
8.	TECHNICAL PROBLEMS:	
?. }.	Implementation of a system to meet the stringent specifications weight and power constraints constitutes the technology problem Determination of accuracy limits imposed by ionospheric irregul tropospheric refraction on range and range rate measurements in to-space paths (Reference #3). Specification of technique best suited for minimizing propagati each application (See notes on the next page).	arities and volving ground-
- •	POTENTIAL ALTERNATIVES: The use of three-dimensional television for close-in maneuvers in early teleoperator concepts (see reference 2).	was considered
10	. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
	Related programs: RTOP No. 970-63-20, Teleoperator Control & M RTOP No. 502-33-95, Video Guidance, Landing and Imaging System Programs	anipulation; for Space
	EXPECTED UNPERT	URBED LEVEL
	. RELATED TECHNOLOGY REQUIREMENTS: None identified.	
	AONE LUENLILLEU.	

	DEFINITION OF TECHNOLOGY	REQUIREMENT	GE NO. <u>2,18</u>
1.	TECHNOLOGY REQUIREMENT (TITLE):	RANGE AND RANGE RATE	PAGE 3 OF _5_
		SENSING	

8. TECHNICAL PROBLEMS (Continued)

<u>NOTES</u>: Dr. Roy E. Anderson (GE, Corporate Research and Development Laboratory) discusses the ionospheric and tropospheric problem and some of the work that has been performed to date:

"We have investigated the effects of the ionosphere and troposphere on the accuracy of range and range rate measurements of missiles and spacecraft.

"A radio signal is delayed as it passes through the ionosphere. At VHF frequencies, the delay may be equivalent to 2000 meters range error at midday. The effect varies as $1/F^2$, hence it is much smaller at higher frequencies. One way to correct for it is to employ two coherently related, widely separated frequencies, measure the difference in their phase at the receiver, and apply a range or range rate correction according to the $1/F^2$ relationship. The method has been applied very successfully in the Navy Transit satellite navigation system. Another, less accurate approach is to apply corrections based on ionosphere models.

"The ionosphere usually contains irregularities in electron density resulting in horizontal gradients that cannot be individually described by a model. The two-frequency method is one way to measure the irregularities.

"We have calculated the effect on missile velocity measurements of the horizontal gradients of electron density and find that at L-band, 1500-1600 MHz the apparent rate of change of range due to changing electron content along the ray path can far exceed the specifications stated in GE-2.18.

"We have also considered the effect of tropospheric refraction on the measurement of range rate. Tropospheric refraction causes a bending of the ray path from an object above the earth to a measuring device near the earth's surface. The effect is independent of frequency. An error in the measurement of range rate results when the object is at a low elevation angle and moving with a high velocity component toward or away from the measuring device. Bending of the ray path results in a slight error in the viewing angle at the fast moving object. Observed doppler frequency shift, hence velocity, is a function of the viewing angle. The cause of the error is described more completely in "A Survey of Tropospheric, Ionospheric, and Extra Terrestrial Effects on Radio Propagation Between Earth and Space Vehicles" by G. H. Millman, GE Report TIS R66EMTL, presented at NATA-AGARD Symposium on "Propagation Factors in Space Communications", Rome, Italy, Sept. 21-25, 1965. The report also contains data for calculating the magnitude of the effect. As an example, the troposphere will cause a velocity measurement error as large as ten feet per second for a missile at 30 KM altitude traveling 20,000 feet/second, viewed at an elevation angle of 10°. The error may be corrected to within 5 or 10% of the total error by the measurement of atmospheric temperature, pressure, and humidity at the receiving site.

(Continued)

DEFINITION OF TECHNOLOGY I	REQUIREMENT	NOG <u>E2.18</u>
1. TECHNOLOGY REQUIREMENT (TITLE): _	RANGE AND RÂNGE RATE SENSING	PAGE4 OF 5
······································	·····	

8. TECHNICAL PROBLEMS (Continued)

"Our studies and experiments to date suggest that the propagation effects must be considered in any application requiring high accuracy in range and range rate measurements. The relatively small amount of data from our own work and from other sources points up the problem, but much more data are needed before the magnitude of the problem can be defined precisely and applied to specific applications.

DEFINITION O	FТ	EC	HN	DTC	GY	RE	QU	IRE	ME	NT					1	٩Ο,	GE-	2.1	.8
1. TECHNOLOGY REQUIR Sensing	EM	EN	Γ(rit)	LE)	:F	lang	je a	nd	Rar	ıge	Rat	te	F	PAC	E 5	OF		
12. TECHNOLOGY REQUIR	EM	IEN	TS	SCI	IED			ND.	AR	YE	AR								-
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Lab Investigation																			
2. Prot type Design	-		Ļ																
3. Prototype Fabrication] -	-								ļ							
4. Ground Tests				_	 	ļ						İ							
5. Space Demonstration					-	-													
APPLICATION												1	1				 		
1. Design (Ph. C)					-					ļ				ł			1		
2. Devl/Fab (Ph. D)							┢	Ì											
3. Operations					1	ĺ	-	<u> </u>			-	-			┼─				
4.																			ĺ
13. USAGE SCHEDULE:												· · · · · · · · · · · · · · · · · · ·					- <u>-</u>	1	
TECHNOLOGY NEED DATE						Δ										_		roj	AL
NUMBER OF LAUNCHES							1	2	1	1	1	1	1	1]]	. 1	1		12
 14. REFERENCES; (1) Shuttle Free-Flying Contract NAS-8-2789 Report #D7425-95300 (2) Application of Remu	95, 08	Re (Be	por 11 .	t∦ Aer	D74 osp	25- ace	953 Co	004 .)	; a	nd	Con	tra	ict	NAS	-8-				
NAS-2-5072.	066	THE	nrb													•			
(3) "Ionospheric Phase Millman and Ray A Research, Volume	nde	rso	n (Gen	era														
15. LEVEL OF STATE OF									EN	VIRO	NMEI	IT IN	THE	LABO	DRAI	ORY.	N REI	EVA	NT
1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL, 4. PERTINENT FUNCTION OR CHAI E.G., MATEMAL, COMPONEL	CRIBI EXPI RACT	S PHE ERIMI TERIS	NOM ENT	ENA.	nstr	ATEE		7.) 8,) 9.)	MODE NEW OF RELL	el te Capi Eraț Abili	ISTEI IBILI FIONA ITY U	D IN S TY D L MC PGR/	SPACI ERIVI DDEL ADINC	E ENV ED FI	AN O	MEN' A MUC PERA'	ient. F. Chile: Tiona Nal N	L MC	DEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): Counting Detector	PAGE 1 OF <u>14</u>
Improve high resolution angular coverage; improve resolution; improve	dynamic range.
2. TECHNOLOGY CATEGORY: Sensors	· · · · · · · · · · · · · · · · · · ·
3. OBJECTIVE/ADVANCEMENT REQUIRED: Obtain 0.03 arc sec reso	olution over a
300 to 375 arc sec field with a photon counting dynamic range $>10^7$. (De	sired image
area 200 to 500 mm dia.). At least 20000×20000 picture elements will	be needed to
obtain 0.03 arc sec resolution. 4. CURRENT STATE OF ART: <u>A SEC-Orthicon of 75 mm dia. with a re</u>	ad area of 50 x
50 mm and a resolution of 33 lines/mm at 80% MTF is currently being d	
HAS BEEN CARR	ED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY	
For large visible light/UV telescopes, there is need for a larger area d 0.03 are seconds resolution over a 300 are second field when operating ing mode. To enable more complete imaging of astronomical objects in region, a dynamic range $>10^7$ is desired. The large high resolution phot detector enables observers to obtain a maximum of the high resolution a available from large telescopes such as the LST. The increased covera improves observation efficiency for detailed surveys per unit time by a 1t is predicted that read areas up to 500 x 500 mm, capable of 50 lines p MTF may be possible. Previous or current technology development obj obtain a 50 x 50 mm read area with a capability of 33 to 40 lines/mm at	in a photon count- a 300 arc sec ton counting ngular coverage ge of the detector factor of 100. ber mm at 80% ectives were to
Noiseless gain or electron multiplication (intensification) in parallel for after the initial conversion from incoming photons to electrons. (Cont'd on Page 2) P/L REQUIREMENTS BASED ON: 🔀 PRE-A,	
6. RATIONALE AND ANALYSIS:	
a. High resolution coverage of a large visible light and UV telescope operation from an automated satellite is currently limited by the detector angula coverage. The optical systems can provide up to 100 times the high plane area or field that our best high resolution electronic imaging detections.	ar (and area) resolution image
b. The follow-on or later flights of payloads such as AS-01-A, Large Sp AS-14-A, 1m UV Telescope; AS-04-S, 1m Diffraction Limited UV O as well as AS-03-S, Deep Sky UV Survey Telescope, can benefit from large angular field, large area detectors.	ptical Telescope,
c. The development of high resolution, large area detectors with read a 200 x 200 mm and 500 x 500 mm will enable better utilization of obsetunities and produce from 10 to 100 times more information per obse	ervation oppor-
d. Satisfactory development of the photon counting detector will be comp sec field has been imaged in space to a 0.03 arc second resolution. ity milestone will include building a smaller 200 x 200 or 1000 x 1000 counting device expandable to the larger one.	An earlier feasibil-
A full scale version will be tested in space, e.g., shuttle flight.	
	ED TO LEVEL 7
7-143	

PRECEDING PAGE BLANK NOT FILMED

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): Counting Detector	PAGE 2 OF <u>14</u>
Improve high resolution angular coverage; improve resolution; improve	dynamic range.

5. DESCRIPTION OF TECHNOLOGY (cont'd)

Since it may be difficult to obtain one photon counting detector to cover IR (5 μ m to 0.7 μ m) visible light (0.7 μ m to 0.4 μ m), and UV (0.4 μ m to 0.09 μ m) in one instrument, several instrument types may be necessary.

7. TECHNOLOGY OPTIONS

Low f-number optical systems can achieve 100 times greater limiting MTF than many typical sensors but are only a few times better than the highest resolution sensors such as the RCA Return Beam Vidicon. On the other hand, high sensitivity sensors such as the Orthicon, Isocon and EBS/SIT can trade f-number for diffraction limit until they exceed the information gathering capability of film if the optical system is optimized for electro-optical systems. An increase in sensor capability to 5000×5000 elements would be more than sufficient to achieve the increased field-of-view desired for a few purposes; however, the desired angular coverage would not be achieved. When one looks in a given direction with a long time exposure, all the details in the whole fine resolution field ought to be obtained in order to maximize observing efficiency.

(cont[†]d on page 3)

Rev. 24 Nov. 1974

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-2. 19
High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): Counting Detector	PAGE 3 OF <u>14</u>
Improve resolution over 300 arc sec FOV; improve dynamic range	

7. TECHNOLOGY OPTIONS: (contⁱd)

Practical detector devices for the 0.1 to 2.0 μ m spectral range can be organized into three classes: (a) photon to electron converter + electron multipliers such as microchannel plate photomultipliers and image intensifiers; (b) solid state devices such as photoconductors, photodiodes, and photo-transistors, IC CCD's, and (c) hybrid storage + amplifier devices such as electronic camera tubes including SEC vidicons, SIT vidicon, SEC-orthicons. Most practical devices are hybrid. Solid state devices may be used in arrays coupled to image intensifiers. Overlapping selected bands in the 2 μ m to 0.1 μ m spectral range are covered in discussion of options for imaging detectors, which follows:

These devices are considered in more detail below. The key detector element in vacuum devices is the photocathode where incoming radiation is converted into electrons which

are emitted into vacuum for subsequent processing. It is the photocathode therefore, which has received emphasis in the discussion of vacuum devices rather than the devices themselves.

Quantum counters have been examined for many detector applications, including imaging, but are relatively inefficient and have an optical detection bandwidth too narrow for most applications. However, recent experiments indicate that investigation into these naturally band limited devices may need to be resumed. (Some work on stimulated emission infrared sensors has been accomplished by Varian.)

Several important advances have been made in recent years in materials and device technology for detectors in this spectral range. Examples are the introduction of the negative electron affinity photocathode, the development of the silicon diode array vidicon, and the low-noise, high-gain silicon avalanche photodiodes, and the demonstration of surface charge-coupled imaging arrays. These developments have led to an increasing degree of commonality in the materials technology applicable to both vacuum and solid state devices. For example, negative electron affinity photocathodes with gallium arsenide sensing layers can be described by the same diffusion model for carrier transport as would be gallium arsenide p-n junction photodiodes. This is in contrast to conventional multialkali antimonide photocathodes whose operation has largely defied all but the crudest analytical treatment. This has been an important factor in the developing materials technology of the new photocathodes. The rapid development of planar integrated circuit technology has affected the size and quality of pre-amplifier and amplifier packages for detector elements and television cameras and of power supplies for image intensifiers and detectors alike and is responsible for the fabrication technology for silicon diode array vidicon targets. Finally, the surface charge-coupled devices offer a highly flexible technique for self-scanned, imaging detector arrays with the possibilities of low-noise operation and integrated signal processing.

(Continued on Page 4)

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>High Resolution Photon</u> Counting Detector	PAGE 4 OF <u>14</u>
Improve resolution over 300 arc sec FOV: improve dynamic range	

7. TECHNOLOGY OPTIONS: (Cont'd)

Considerable emphasis has been placed here on basic photodiode detection processes without a discussion of classical photoconductors. To a large extent, this is a reflection of the growing importance of photodiodes in detector systems for this spectral range. The photoconductor is a slab of extrinsic (doped) material with ohmic contacts at both ends. Signal generation occurs when incident light reduces the dark resistance of the material, allowing increased current to flow when bias is applied. These devices frequently can be made to exhibit gain due to minority-carrier trapping at controlled defect sites. When this occurs, excess majority carrier current will flow until the trapped minority carriers are neutralized. For the most part, II-VI compounds such as ZnS, SnSe, CDS, CdSe, and CdTe have been used as photoconductive detectors. Control of the doping level, trap type, and distribution is critical if reproducible results are to be obtained.

The gain mechanism itself provides a limitation on useful performance. Since the gain is achieved by a trapping process, changes in input light level will not be manifested until trapped carriers are ejected and swept out or neutralized. High gain, however, requires long trapping lifetimes so that these devices tend to have slow response times. This is particularly acute at low light levels. The dark current in photoconductors is predominant-ly due to majority carriers. Since this current sets the low-level threshold for detection, suppression of dark current can be achieved by reduction of the doping level or cooling, both of which reduce the number of majority carriers available for recombination with trapped minority carriers which increases trapping lifetimes. In reality, the behavior of trapping lifetime with temperature or doping level may be considerably more complicated, depending on the energy level of the trap in the forbidden band and the capture cross sections for both types of carrier. In general, however, speed of response becomes an increasing problem as detection threshold is reduced.

Noiseless gain has been achieved in special forms of electronographic cameras, however, an electronographic camera does not lend itself to computer compatible readout from an automated satellite in orbit. Therefore part of the research problem for the high resolution photon counting detector is to provide appropriate digital accumulation and readout of the resultant frame for each stabilized observation period.

One of the options proposed by Fred Schaff of Westinghouse suggests the following approach.

- a) Achieve the current diode density of 4×10^6 diodes per square inch used with SIT/EBS sensors in a back illuminated, thinned CCD or CID.
- b) Design the above device to either 25 or 50 millimeter squared chips with registers, amplifiers, etc., masked on the back of the chip to allow edge butting on all four sides.
- c) Assemble 100 25-millimeter square or 25 50-millimeter square chips on a stiffened auxiliary surface.

(continued on page 5)

	DEFINITION OF TECHNOLOGY REQUIREMENT NO.	2.19
1. TI	High Resolution Photon ECHNOLOGY REQUIREMENT (TITLE): Counting Detector PAGE 5 C)F <u>14</u>
7. TE	SCHNOLOGY OPTIONS: (Cont'd)	
d)	Use Item (c) in direct photon-in mode for 20,000 x 20,000 array with silicon spectral capability.	
e)	Process in space a 500 x 500 millimeter photocathode on the desired surface mount in a proximity focused mode on the array of Item C, and operate unen- relying on the space vacuum. This retains the 20,000 x 20,000 element reso but adds essentially noise free gain of 3000 to 5000 with a variety of spectral sponses as a function of the photocathode/faceplate combination.	closed olution
f)	True photon counting requires sufficient gain to allow a single photon event to out above all noise sources. Since most noise sources are a function of band and, in turn, bandwidth is dependent on frame time and number of resolution elements, an exact value of required gain cannot be specified but is generally 10^5 for a reasonable system. This would then require additional stages in at to the detector of Item (e) which could be achieved in a single stage with mich channel plate intensifiers if channel size can be reduced to the 12 micron or size of the diode array.	lwidth 1 y above ddition ro
g)	The combination of dynamic range of >10 ⁷ and 20,000 x 20,000 picture eleme requires 4×10^8 words at 24 bits per word, or 9.6 x 10 ⁹ total storage which itself, represents an improvement in the state-of-the-art for memory system space. Using the sensor as a photon counter requires only 2 bits per picture per frame, but the rate of photon arrivals for all but the dimmest objects real frame times in the order of fractions of seconds to perhaps 10 seconds. This require real time computations on the order of 80 megabits per second at the second frame time or higher.	, in ns in e eleme quires s would

7-147

ч, ₁

1. TECHNOLOGY REQUIREMENT (TITLE):

PAGE 6 OF 14

8. TECHNICAL PROBLEMS:

a. Suppression of spurious photon counts, background or thermal noise

- b. Deviation of focused surface from ideal flat image plane.
- e. Quantum efficiency versus selected spectral bands.
- d. Methods for data readout in reasonable time, preferable less than exposure time per sampled frame
- e. Metric and photometric stability.
- f. Current devices have a poor dynamic range.
- g. Necessity for processing immediately at the detector.
- h. Need for noiseless gain.

A more detailed discussion of some possible technical problems follows:

Avalanche multiplication often degrades the frequency response of a photodiode due to the feedback effect of the multiplication process. If both electrons and holes cause ionization, the duration of a current pulse will increase with multiplication. In general, a distribution of ionization lengths and times exists, and the pulse will cut off only when all carriers are finally swept from the field region. The pulse has, in the meantime, increased in length.

Alternatively $[F(\omega, \alpha)]^2$ has been degraded and becomes $[F(\omega, \alpha, M)]^2$, a decreasing function of the avalanche gain, M. If the electron and hole ionization rates is somewhat different. The frequency response of the diode will degrade by a factor of two at most but a large increase in detector gain bandwidth product is possible. This is only true if

(continued on page 7)

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
1. TECHNOLOGY REQUIREMENT (TITLE): High Resolution Photon Counting Detector	PAGE 7 OF 14
Improve resolution over 300 arc sec FOV; improve dynamic range	

8. TECHNICAL PROBLEMS (Cont'd)

the carrier with the largest ionization rate initiates the avalanche. The frequency dependence of the avalanche gain itself is absorbed into a factor $[M(\omega)]^2$ multiplying $[F(\omega, \alpha, M)]^2$. In principle, the signal-to-noise ratio is substantially independent of gain when the ionization coefficients are grossly disparate. (α = absorption coefficient)

The underlying assumption regarding photodetectors with more than one noise source present is that no correlation exists between the noise sources, so that their respective noise "currents" may be added in quadrature. The four noise sources considered here are Johnson (thermal) noise, shot noise, if noise, and avalanche multiplication noise. Bulk generation-recombination noise is frequently found in photoconductors and is generally equal in magnitude to the shot noise but does not contribute in junction devices. While all noise sources have a frequency dependence, particularly at high frequencies, the low-frequency case ($\omega < 1/\tau$) will be assumed here for simplicity. (The following noise discussions are repeated here for convenience only; they are credited to NMAB287, Materials for Radiation Detection, Jan. 1974, National Academy of Sciences/National Academy of Engineering.

Johnson Noise - Solid-state detectors, photomultipliers, and vidicon camera tubes generally have associated with them a load resistor across which a signal voltage is developed by the device output current. While not part of the detector itself, the load resistor is frequently a limitation on the performance of the detector package. Further, in some detectors, series resistance in the detector itself may influence device performance. In both cases, random thermal motion of carriers through the material gives rise to fluctuations in the current. The mean square noise current is then given by:

> $\overline{\left(\frac{1}{JN}^2\right)} = \frac{4kT \Delta f}{R}$, Equation 5.5 Boltzmannic constant. T is the absolute temperature. Af is the measureme

where k is Boltzmann's constant, T is the absolute temperature, Δf is the measurement bandwidth, and R is the value of the load or series resistance. (JN = Johnson noise)

Morton has pointed out that a deliberate or parasitic capacitance, C, in a photodiode circuit may limit its performance as a photon counter. In conjunction with the diode load resistance, R, the bandwidth $\Delta f = 1/RC$ or $R = 1/C\Delta f$. In these terms, Equation (5.5) becomes:

 $\left(\frac{1}{I_{\rm JN}^2}\right) = 4e\left(\frac{kT}{e}C\right)\Delta f^2$,

Equation 5.6

Ref. 24 Nov. 1974

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): <u>Counting Detector</u>	PAGE 8 OF <u>14</u>
Improve resolution over 300 arc sec FOV; improve dynamic range	

8. TECHNICAL PROBLEMS: (cont'd)

Shot noise - In solids it is possible for the density of carriers to fluctuate about the steady-state value. Such fluctuations occur in the emission of electrons by a cathode or the arrival of photons at the surface of the detector. In all cases, the mean square shot noise current associated with a current, I, is given by:

 $\overline{(i_{SN}^2)} = 2eI\Delta f$, (SN = shot noise) Equation 5.7

where e is the electron charge. The current, I, includes both signal and dark current.

Photons at a specific wavelength, λ , with the flux ${}^{\phi}{}_{0}$ photons/cm²-sec, are converted into signal electrons with the efficiency $\eta(\lambda)$. Consequently, fluctuations in ϕ_0 will be reproduced in the signal current but will correspond to the reduced arrival rate $\eta \phi_0$. The signal current used in Equation 5.6 for a detector of area A is then:

$$I = e \eta \phi_0 A$$
, Equation 5.8

Dark current in semiconductor diodes (including photocathodes) arises from either thermal generation across the gap or through impurity centers (traps) with energies located within the forbidden band. In p-n junctions, the generation-recombination process takes place primarily within the junction depletion region. The current due to bandgap generation outside the depletion region is given by:

$$I = e\left(\frac{D_n}{\tau_n}\right)^{\frac{1}{2}} \frac{n_i^2}{N_A} A, \qquad \text{Equation 5.9}$$

where contributions from the n-type side of the junction have been suppressed and the diode is assumed to be heavily reverse biased. D_n and τ_n are the diffusion constant and lifetime respectively of electrons in the p-type region, ni the intrinsic carrier density, and N_A the acceptor doping density. The trap generation current, I_{gr} , is found from the ex- $I_{g} = e \frac{n W}{\tau} A,$ pression:

Equation 5.10

where W is the width of the depletion region. τ_{e} is the effective electron lifetime due to traps in the depletion layer and varies inversely with trap density.

It is important to note that generation-recombination current increases with the width of the depletion region and the inclusion of more trapping centers. Since the carrier densities are suppressed due to sweep-out by the field, only the generation process is significant with the trap alernately emitting electrons and holes as indicated above.

The shot noise current contributed by these processes is then given by:

 $\overline{\begin{pmatrix} \mathbf{i}_{\mathrm{SN}}^2 \end{pmatrix}} = 2e^2 A \left[\eta \Phi + \left(\frac{\mathbf{n}}{\tau} \right)^2 \frac{\mathbf{n}_{\mathbf{i}}^2}{\mathbf{n}_{\mathbf{n}}} + \frac{\mathbf{n}_{\mathbf{i}}^W}{\tau_{\mathbf{e}}} \right] \Delta \mathbf{f}.$ Equation 5.11 (continued on page 9)

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-2.19</u>
High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): <u>Counting Detector</u>	PAGE 9 OF <u>14</u>
Improve resolution over 300 arc sec FOV: improve dynamic range	

8. TECHNICAL PROBLEMS: (cont'd)

 i_{f} Noise - The surface of the detector material, particularly near a junction may contribute a separate noise current, one source of which is generation-recombination events due to surface states. The noise current can be represented by:

$$\frac{1}{1} \frac{1}{f} = \frac{BI^2 \Delta f}{f},$$

Equation 5.12

where B is an empirical constant. Suppression of this source of noise is critically dependent on the passivation of the detector surfaces and consequently is strongly related to the materials technology available for a particular material.

<u>Avalanche Multiplication Noise</u> – Current amplification by avalanche multiplication is an internal secondary "emission" process and as such is subject to fluctuations in the mean carrier gain per incident carrier, the multiplication factor M. This process then gives rise to an additional noise current

$$\left(\frac{i_{JN}^2}{\Delta f}\right) = 2eIM^3 \Delta f.$$
 Equation 5.13

When electron and hole ionization rates are related, $\alpha_p = \frac{k\alpha_n}{n}$. McIntyre has shown that

 $\left(\frac{1}{n^2}\right) = 2eIM^3 \left[1 - (1-k)\left(\frac{M-1}{M}\right)^2\right] \Delta f,$ Equation 5.14

for injected electron current.

A special case of the diode noise treatment is the negative affinity photocathode, which should exhibit no avalanche noise since the fields are insufficient to support avalanche multiplication. It is doubtful if either thermal noise or 1/f noise would be present in the photoemission. Consequently, the noise current from this device will be the sum of contributions given in Equation (5.12) from the photon flux and carrier generation in the bulk and the surface band-bending (depletion) region. The relative contributions to dark current and total noise currents in negative affinity photocathodes were treated by Bell, who concluded that generation currents from the band-bending region and surface states would dominate the dark current.

As in the case of detectors in the far infrared, a figure of merit can be defined for these detectors. The ideal detector is limited in performance only by shot noise in the incoming photon signal. The signal-to-noise ratio can them be written as:

S	I 2		$\eta \Phi_0^A$		ηΡΑ
N	$=\frac{s}{2eI_{c}\Delta f}$	=	2Af	-	2hvÅf

where Equations (5.7) and (5.8) have been used and $P_0 = \frac{h\nu}{\Phi_0} \Phi_0$ is the input power density with photon energy $h\nu$. The threshold power P_T is defined for S/N = 1 as:

(continued on page 10)

High Resolution Photon

NO. C-2.19

PAGE 100F 14

1. TECHNOLOGY REQUIREMENT (TITLE): Counting Detector Improve resolution over 300 arc sec FOV: improve dynamic range

8. TECHNICAL PROBLEMS: (cont'd)

 $P_{T} = \frac{2h\nu}{\eta A} \Delta f (watts/cm^{2}),$

from which the noise equivalent power (NEP) is given by:

NEP =
$$\frac{P_T A}{(\Lambda f)^{\frac{1}{2}}}$$
 = $\frac{2h\nu}{\eta}$ $(\Delta f)^{\frac{1}{2}}$ (watts/Hz^{1/2}),

and the limiting detectivity D_{L}^{*} becomes

 $\overset{D}{}_{L}^{*} = \overset{A^{\frac{1}{2}}}{\underline{A^{2}}} = \overset{D}{\underline{NEP}} \left(\overset{A}{\underline{\Delta f}} \right)^{\frac{1}{2}} (\text{cm-Hz}^{\frac{1}{2}}/\text{watt}).$

 η = quantum efficiency, electrons emitted per incident photon.

For example, at leV($\approx 1.2 \,\mu$ m), a detector with 100 percent quantum efficiency and an area of 1 cm² feeding a 1 Hz bandwidth has a $D_{L}^{*} = 3 \times 10^{18} \text{ cm} - \text{Hz}^{\frac{1}{2}}/\text{watt}$. Real detector efficiencies will be less than 100 percent due to reflection, absorption, and transport losses and will result in reduction in the measurable D^{*} even if other noise sources can be neglected. At wavelengths beyond 1.2 μ m, the blackbody background becomes the limiting factor with a resultant decrease in D_{L}^{*} . Also as $\nu \rightarrow \infty$, $D_{L} \rightarrow 0$ as is apparent from the above definition.

The reader is advised that D_{L}^{*} defined here differs from that used in the infrared in that it is not independent of area and bandwidth.

Real detectors seldom have efficiencies approaching unity unless gain is present in the detector itself (photoconductors or avalanche diodes). A detector with 10 percent intrinsic efficiency (without gain) can have unity efficiency at its terminals if gain is present. However, in many applications (imaging, photon counting) such a detector has irretrievably lost 90 percent of the available information. For this type of detector, high quantum efficiency is imperative regardless of the current gain available or its location in the system.

The material parameters limiting detector performance can easily be identified. The reflection and absorption coefficients are functions of the band structure, temperature, and, near the absorption edge, the impurity density. The reflection from the input surface can be minimized by an antireflection coating.

The parameters τ and μ in most semiconductors of practical interest are adversely affected by the defect density in the materials. The mobility is reduced by increasing scattering from dislocations, grain boundaries, vacancies, and impurity centers as material quality is reduced. These same defects result in shorter carrier lifetimes by acting as recombination centers when they appear in the bulk of the material and as dark current generators when in a depletion layer.

(continued on page 11)

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 2.19 High Resolution Photon 1. TECHNOLOGY REQUIREMENT (TITLE): Counting Detector PAGE11OF 14 Improve resolution over 300 arc sec FOV; improve dynamic range

8. TECHNICAL PROBLEMS: (cont'd)

The effect of surfaces is similar. Surface states arise in part, due to a discontinuity in the material resulting in local surface strain and accompanying defect states. Growth of a detector material onto a substrate has a similar effect if the mechanical properties (lattice parameters and thermal coefficients of expansion) do not properly match. Extra states can be added, due to interaction with the environment, by adsorption of or chemical reaction with foreign atoms. Controlled treatment of surfaces with foreign substances (passivation) can reduce or compensate surface states. The surface can act as a sink for both minority and majority carriers and as a source of extraneous noise. In addition to pure chemical or material treatment, it is possible in junction devices to provide an encircling junction or contact that is independently biased to prevent surface leakage from reaching the output junction. Similarly, if a passivation material is used, it is possible to deposit an encircling electrode on the passivator to further suppress leakage with the passivator. Surface breakdown of avalanche diodes has been suppressed by diffusing an encircling junction (guard ring) contiguous with the detector junction but at a lower doping density so that surface fields are always much lower than in the bulk.

Dark current is a potentially major limitation for low-input-power levels and narrowbandgap detectors if the output of the detector must be directly coupled to the amplifier or readout device. In this case, the operating temperature of the detector is reduced until an adequate ratio of signal to noise is obtained at the lowest input-power levels likely to be encountered, or other limitations are encountered. In depletion layer devices such as fast photodiodes or avalanche photodiodes, the dark current decreases as kT/2 due to the trap generation process and increases linearly with depletion layer width and the trap density. This implies that the temperature will have less effect on dark current than in the case of bulk generation, so that reduction of trap density is necessary to provide low dark currents. A simple numerical example will illustrate the magnitude of the difficulty involved. In a silicon diode at room temperature 10^{12} traps/cm³ with energies at midgap will result in a dark current density of approximately 10 nanoamps/cm² for a depletion layer width of $10 \,\mu$ m. Lower trap densities than this strongly push the state of the art in the materials.

Note: (As noted before the noise problem is stressed in order to provoke development of concepts with a high probability of minimizing spurious responses and noise. The reader is invited to modify, delete, and replace portions of the preceding discussion in order to clarify the technology problem).

1

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. 2.19 High Resolution Photon
	TECHNOLOGY REQUIREMENT (TITLE): <u>Counting Detector</u> PAGE 12OF <u>14</u> improve resolution over 300 arc sec FOV; improve dynamic range
9.	POTENTIAL ALTERNATIVES:
	a. Electromagnetically focused image intensifier such as being developed for AS-03-S AS-13-A. Deep Sky UV Survey Telescope. (Wide field electronographic camera).
	b. An array of electronic cameras, segmenting or splitting high resolution field into zones. (However, tends to have different response per camera, making small differences difficult to detect.)
	c. Bimat film with densitometer readout; combination of film images in densitometer output form on the ground.
	d. Electrostatic camera tubes.
	e. To achieve the gain required for photon counting, electron gain is required in the sensor. To achieve this and maintain the resolution requires either channel plate multipliers or multiple stages of electromagnetic focused intensifiers. The first would require 4:1 or greater reduction in channel size to perhaps 5 microns dianeter. The latter would increase focus power requirements by the square of the diameter increase resulting in increase from the 50 watts of the 50 x 50 mm SEC/ Orthicon to 5 kw for a 500 x 500 mm sensor per stage.
	f. Shot noise of para. 8 can also come from the thermionic cathode and may or may not be the dominant noise source in a scanned integrating target sensor. Also, the ultimate noise performance of solid state devices such as buried channel CCD's is still to be determined.
	g. Equation 5.6 is given as proportional to $C^2 \Delta f^3$ by several references including L. D. Miller of R.C.A. in Photoelectronic Imaging Devices, Volume 1, Plenum Press, 1971. This form has been experimentally verified and has obvious implications on the requirements of selecting frame time, line number, and resolution elements to maximize signal to noise by selecting the proper Δf .

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 2.19
1.	High Resolution Photon TECHNOLOGY REQUIREMENT (TITLE): <u>Counting Detector</u>	PAGE13 OF <u>14</u>
	Improve resolution over 300 arc sec FOV; improve dynamic range	
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
	a. W74-70369 Astronomical Sensors and Imaging Systems for Large Lawrence Dunkelman, GSFC, 301-982-4988.	Space Telescopes
	b. W74-70358 (502-23-32) Astronomical Sensors and Imaging System Telescope.	s for Large Space
	c. Contract No. NAS-5-20069 Large High Resolution Integrating TV a nomical Applications, GSFC.	Sensor for Astro-
	d. W74-70358 (502-23-32) Automated Data Handling Techniques and (D. H. Schaefer, (301)982-5184.	Components, GSF(
	EXPECTED UNPERTU	RBED LEVEL 4
11.	RELATED TECHNOLOGY REQUIREMENTS:	
	a. Provide means for compensating for relative shifts between guida high resolution camera focal plane to minimize angular shifts dur period.	
	b. If successive readout and superposition of images used in photon of image registration to 0.1 pixel.	counting mode,
	c. Angular stability during exposure, preferably to 0.1 of resolution at least to one resolution element; enables better and more accura per spatial element.	
	d. Selectable bandpass filter, adjustable from 0.1 nm to 10 nm at an	y wavelength.
	e. Parallel photon counters with a dynamic range of 10 ⁷ are needed if the 20,000 by 20,000 pixel detector array. A very large, real tin computer is required for this purpose and, to be usable, both the the computer cycle time must be sufficiently fast so as to ensure probability of a photon event per picture element per frame from observation.	ne, digital sensor readout an a less than 10%

DEFINITION O	FТ	ECI	HNC	DLC	OGY	RE	QU	IRE	ME	NT					N	10.	C-2	.19	
1. TECHNOLOGY REQUIR	TEM	EN'	<u>רי</u> ד	ካጥ	L.E.	H · C	igh	Re	solu r De	tio	n P tor	hoto	n	F	AG	E 14	4 0	F 1	4
I. TECHNOLOGY REQUIR			•		-								\ \	•					
								<u>v.v</u>	<u>y 116</u>	1124.5	· · · ·								-
12. TECHNOLOGY REQUIE	REM	EN	TS	SCI	IED														
						CA	NI'E	ND.	AR	YE.	AR			i		(
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
1. Tech. & Parametric Trades Analysis	-	-																	
2. Design & Construction																			
of Feasibility Model	l																		
3. Feasibility Tests & Eval 4. Design & Construction			-	-]											
of Full Scale Model	1																		
5. Sortie Flight Tests (Par	l tial	Co	vera	ı age	(;)	Ļ							1	ł					
	 	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>						┨					
APPLICATION	ļ				Į			1	 	etin	o					1.			
1. Design (Ph. C)					Í			1	 Rei		-	lion			1				
2. Devl/Fab (Ph. D)	 									1008	fra								
3. Operations*				,	T1 T3	0	P		T2	8	•	8	6	•					
4.							4	-	₩	**			7.1	- 	<u>` </u>	-			*
13. USAGE SCHEDULE:	1		1	- <u> </u>	- <u>1</u>			· · ·	-i		+			- <u>1</u>				1	
TECHNOLOGY NEED DATE	<u> </u>	<u> </u>				Т							<u> </u>	+T	┍╉╴╴	<u> </u>		roı 	AL
NUMBER OF LAUNCHES						TS	3	1	ТЗ	T^{1}	T		2 Т;	2 T2	2 T	2 T	2 T 2	2 :	17
	1					1		Т4		Τ4			T 4	T:	31				
14. REFERENCES:												•			-				:
a. Summarized NASA Payle		Des	cri	ptic	ons,	Au	itor	nate	ed P	ayl	oac	ls,	Lev	vel.	A D	ata	, Pl	D,	
NASA M3FC, July 1974.		_				_		_		1	-			-					
b. Summarized NASA Payle		Des	scri	ptic	ons,	, 80	rti(e Pa	iylo	aas	, т	eve	a A	Da	.ta,	PD	3		
NASA MSFC, July 1974. c. NMAB, 287, Materials		Rađ	iati	on	Det	ecti	on.	Na	tior	al j	Mat	eri	als	Ađ	viso	orv	Boa	trd.	
Jan. 1974, pages 79 thru					_														
Legend:																			:
• = Flight utilized, Sou o = Flight not utilized;	adv	vanc	eđ	dev	relo	pme	ent	res	alts	ava	aila	ble	foi	r la	ter	flig	hts	•	
T1 = AS-03-S, Deep Sky	יטז	7 Su	rve	уT	'ele	sco	pes		m - *										
T2 = AS-04-S, Im Diffr	acti	on	Lim Jac	nte	αU	<u>ک</u> ک	pu ליי	cai	Tet	980 + 1	ope ope		in .	init	is]	ריפע	n 4¶4	_ማ ከተነ	
T3 = AS-01-A, Large S T4 = AS-14-A, 1m UV-0							ι <i>Ľ</i> .	ша	уцс	ເມ	եպ	seu	ш.		TCPT	ال ترسي		رسىن	1
* Different payloads re							dete	ecto	rs.										
15. LEVEL OF STATE OF								5. (COMP								N REI	LEVAI	٩T
1. BASIC PHENOMENA OBSERVED	AND 1	EPO						6. 1	MODE	L TE	STEL	IN A	IRCR	LABC AFT	envii	RONM	ENT.		
2. THEORY FORMULATED TO DES 3. THEORY TESTED BY PHYSICAL				ENA.				7. 3	MODE NEW (τ, TE	STEE	115	PACE	E ENV	TRON	MENI	1 .		
OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHA				EMO	Jeme	1 かたち				ERAT	IONA	L MC	DEL.						DEL.
E.G., MATERIAL, COMPONE				e a control i	10 T TU	لاهدد	•	9. 10.	LIFE	CIME	EXT	INSIC	NOF	AN C	DPER	ATION	IAL N	IODEI	J.

الروسي

NO. <u>C-2.20</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Visible UV Polarimeter</u> PAGE 1 OF <u>4</u> Improved circular and linear polarization sensitivity and resolution

2. TECHNOLOGY CATEGORY: Sensor

3. OBJECTIVE/ADVANCEMENT REQUIRED: Measure linear and circular polarization to 1% at a number of wavelengths between 0.13 and um of source brightness of $\langle m_v = 20 \rangle$

4. CURRENT STATE OF ART: Polarization at source brightness of $m_v \sim 20$ has been measured to about 10%.

HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

According to Perkin Elmer Report No. 9800: Polarizers which provide an undeviated beam such as the Rochon or Senarmont prism^e, a pile of plates¹, or mirror systems¹ offer advantages in the techniques of detection and measurements.ⁿ These advantages relate to the fact that the polarizer can be rotated while the detector remains fixed, all without the use of auxiliary reflectors.

For internal calibration purposes a Lyot-type depolarizer^O should be flipped in the beam between the telescope output and the polarizing prism. A Lyot depolarizer consists of two retardation plates, one twice the thickness of the other, with the axis of one oriented at a 45- degree angle to that of the other. The depolarization is effective if the plates are thick enough to provide a 2007 change in the retardation angle for changes in λ defined by the bandwidth. The Lyot depolarizer is not effective in monochromatic light.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

6. RATIONALE AND ANALYSIS:

a. During the past decade the measurement of polarization has become increasingly important in stellar astronomy. These measurements are usually made because of their usefulness in establishing the presence and nature of magnetic fields - either the general field of the galaxy or extragalactic nebulae or more restricted fields, such as that found in the Crab Nebula or in M87^a.

b. Benefiting payloads are AS-04-S, 1 m Diffraction Limited Visible/UV Telescope and AS-01-A, Large Space Telescope, with which the polarimeter may be used in space.

c. The polarization measurements will enable better analysis of stellar atmospheres and intersteller dust clouds.

d. While tests in the laboratory are indicative final tests will be with a 1 meter telescope for a sortie flight in space. For initial technology verification an Aries rocket launch can be used.

TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-2.20
1. TECHNOLOGY REQUIREMENT(TITLE): Visible UV Polarimeter	PAGE 2 OF <u>4</u>
Improved circular and linear polarization sensitivity and resolution	
7. TECHNOLOGY OPTIONS: According to Perkin Elmer Report No. 9	800
Only polarimeters in the range of wavelengths from 0.13μ to 1.0μ ed. Because of the special nature and severity of the problems relating below 0.13μ , they will not be dealt with here.	u will be consider- g to wavelengths
Piles of plates or mirror systems, because of their inefficiencies, sidered because of recent developments in a 'double' Rochon prism ^f . sists of MgF ₂ crystals and is good for the range 0.13 μ to 0.30 μ . A be fabricated more easily and has a smaller optical path which allows 1	This prism con- double Rochon can
loss. For the wavelength range 0.30μ to 1.0μ , calcite is a good mate high bi-refringence and consequently higher prism angles, which make	rial. It has a for easier fab-
rication. The transmission is good for the whole range $(0.3 \mu$ to 1.0μ polarimetry it is desirable to provide five band pass filters, equally sp that is, filters centered at: 0.322, 0.379, 0.463, 0.500 and 0.813 mic width 0.47 recriprocal microns.	μ). For color paced in 1/λ,
Measurements may be carried out with any one of the five filters of depolarizer.	or with the Lyot
8. TECHNICAL PROBLEMS:	
a. Filters for the range 0.13μ to 0.3μ are difficult to make and r ment. Metal dielectric types have been made by Bates and Bradley ^K , and	require develop- I by Baumeister ¹ .
b. Polarization by switch mirror or offset optics.	
c. Telescope mirror coatings as well as telescope mirror surface contours.	e finishes and
9. POTENTIAL ALTERNATIVES:	
a. Any asymmetry introduced by the coating process will cause su zation errors. If the evaporation sources do not provide enough symmetry conditions, the mirror must be rotated during evaporation. The evaporation short so that high speed rotation would be needed. This requirement is r asymmetry is periodic and of many periods in the course of 1 revolution.	ry under static tion times are very elaxed if the
b. Polarization Filters of Technology Req. C2. 22 plus improved p detector of Technology Requirement C-2. 19.	photon
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC a. W74-70658 (188-78-56) Design, Analysis and Evaluation of the Telescope Optical Instrument System, GSFC. A. B. Underhill, (Ph: 301- b. W74-70633 (185-50-63) Theoretical Studies on Neutron Stars a Waves, Goddard Institute for Space Studies, New York, V. M. Canuto (F 	e Large Space -982-5101) and Gravitational
EXPECTED UNPERT	URBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS: a. Flip on switch mirror compensation. The flip mirror should for by another mirror using the same incidence angle as the flip mirror h of incidence normal to that of the flip mirror. Electronic compensation i tion because the amount of correction is far greater than the polarization	out with its plane s out of the ques+

_	DEFINITION O	<u> </u>	'EC'	HN) GY	नन्न	ណា	नजा	MF	זיא	 1				 1	. OI	C-1	2.2	0
 							•							<u> </u>	<u></u> т			OF		
1. Trr	TECHNOLOGY REQUIR															-AG	យរ	i Oŀ		-
									169		1.6	501		<u>.</u>						
12.	TECHNOLOGY REQUIE	(EN	IEN	TS	SCI	IEE		•												
<u> </u>	SCHEDULE ITEM	HE.	20			5				AR	·						<u> </u>			
		75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
1	CHNOLOGY Trades & Theoretical				}						:									
	Analysis Prelim. Design of Exp.	_	ļ												Ì					
1	Model Fabrication of Exp.																			
}	Model														ļ					
4.	Laboratory Test & Evaluation			-	ĺ															
5.	In Space Tests & Evaluation				Т	 	•													
1	LICATION		1															1	1	1
1.	Design (Ph. C)									ľ										
2.	Devl/Fab (Ph. D)							ļ												
3.	Operations									T1		•	•	•		•				
4.						T2	+			<u>}</u>					I f					7
13.	USAGE SCHEDULE:						-	-			- 7			- <u>1</u>					·	
TEC	HNOLOGY NEED DATE				T															AL
טא 🛛	MBER OF LAUNCHES			Ţ			T	2		T	TI	T	[]T]	T		1 Т 2			1	.1
	REFERENCES: Hiltner, W.A., ed.: A Chapter 10.	stro	onor	nic	al I	.ecł	miq	ues	, U	niv	ers	ity	of (Chic	ago	o Pi	ress	5,1	962	•
b.	Greenberg, J. Mayo, M	[elt	zer	, A	.S.	: As	stro	phy	sic	al J	our	nal	, v	ol.	132	2, 1	.960	•		
с.	Coyne, G. V., Gehrels,	, т	•: 4	Ast	ron	omi	cal	Jou	ırna	ıl. '	Vol	. 7	1, 1	٩o.	6,	Jun	ıe,	1960	З,	
	pp. 355-363.						(C	ont	inue	ed o	n p	age	4)							
LE	GEND:						•					-	·							
•	= Sortie Operations																			
- T	= Automated Operations = Technology	5																		
	= AS-04-S, 1m Diffract	ion	Lir	nite	ed T	IV C)pti	cal	Tel	lesc	ope	э.								
T 2	= AS-01-A, Large Spac	еT	eles	500]	pe (Insi	trur	nen	t m	ay i	not	be	use	d ir	ı in	itia	1 LS	ST f	ligł	ıt)
15.	LEVEL OF STATE OF	' AI	3T						5. C									REL	evai	۹T
	 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAR 	RIBE EXPE	Phen Rime: Erist	NOME NT	INA.	STRA	TED.		7. N 8. N	IODE IODE IEW C OPE	L TE: L TE: APA RATI	STED STED HILIJ IONA	in Si Y de L Moi	RCR PACE RIVE DEL.	AFT I ENVI D FR	ENVII IRONI OM A	NONM MENT MUC			DEL.
l	E.G., MATERIAL, COMPONEN	T, E	TC.						10. I	IFET	IME I	EXTE	NSIO	N OF	AN O	PER	TION	AL M	ODEI	٠.

7-159

9

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-2.20</u>
	TECHNOLOGY REQUIREMENT (TITLE): Visible UV Polarimeter PAGE 4 OF 4_ nproved circular and linear polarization sensitivity and resolution
14	. REFERENCES (Continued)
d.	Gehrels, T., and Teska, Thomas M.: Applied Optics., Vol. 2, No. 1, January 1963, pp. 67-77.
е.	Steinmetz, D. L., Phillips, W. G., Wirick, M., and Forbes, F. F.: Applied Optics, Vol. 6, No. 6, June 1967, pp. 1001-1004.
f.	Bird, G. R., Shurcliff, W. A. Shurcliff, J.: J. Opt. Soc Amer. Vol. 37, No. 818, pp. 235-237.
g.	Perkin Elmer Engineering Report 9800, Large Telescope Experiment Program, Apr. 24, 1970.
h.	Walker, William C.: Applied Optics. Vol. 3, No. 12, December 1964, pp. 1457-1459
i.	Rosenbaum, G., Feurerbacher, B., Godwin, R. P., Skibowski, M.: Applied Optics, Vol. 7, No. 10, October 1968, pp. 1917-1920.
j.	Hamm, R. N., MacRae, R. A., Arakawa, E. T.: J. Opt. Soc. Amer. Vol. 55, No. 11, November 1965, pp. 1460-1463.
k.	Bates, B. and Bradley, D. J.: Interference Filters for the far UV (1700Å to 2400Å), J. Appl. Opt. Vol. 5 No. 6, p. 971, June 1966.
1.	Baumeister, P. W., Costich, V. R., Pieper, S. C.: Paper WB11, Pres. Opt. Soc. Amer., October 7, 1964.
m.	Hiltner, W. A., ed.: Astronomical Techniques, University of Chicago Press, 1962, Chapter 10.
n.	Pernicone, C. V., Hemstreet, H. S., Patrick, K. W.; Arizona Photopolarimeter Telescope - OAO, Vol. 1, Perkin-Elmer Engineering Report No. 8527 (I), October 26, 1966.
٥.	Billings, Bruce H.: J. Opt. Soc. Amer. Vol. 41, No. 12, December 1951, pp. 966-9
p.	Steinmetz, D. L., Phillips, W. G., Wirick, M., and Forbes, F.F.: Applied Optics, Vol. 6, No. 6, June 1967, pp. 1001-1004.
q.	Astronomical Techniques by W. A. Hittner, pages 107 to 125, Chapter 5 on Measurem of Stellar Magnetic Fields by H. W. Babcock, Mount Wilson and Palomar Observatorie 1962.

1. TECHNOLOGY REQUIREMENT (TITLE): Large Photocathode PAGE 1 OF <u>5</u> Electrographic Camera; Improved resolution, higher sensitivity at selected wavelengths in 100 to 400 nm range, with long wavelength cutoff.

2. TECHNOLOGY CATEGORY: ____ Sensors

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Development of magnetically focused</u> electrographic camera capable of 5 to 10 micrometer resolution over a 200 nm diameter field.

4. CURRENT STATE OF ART: ______ Electronographic cameras have produced

10 micrometer resolution over a 100 mm field.

HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

Electronic cameras evolving from the initial Lallemand electronic camera (Lallemand, Duchesne, and Walker, 1960) to the electronographic cameras produced by George R. Carruthers for use with 70 mm film provide the technology base for development of a larger magnetically focused electrographic camera. The desired electrographic camera converts a UV image at a 200 mm or larger photocathode into a photoelectron image which is accelerated by voltage through a magnetic field (up to 20000 gauss with a super conducting magnet) to an electron sensitive emulsion.

Several wavelength bands are being considered: one at 220 nm, one at 150 nm, and one including Lyman Alpha.Subarc second angular resolution over a 5° diameter field is desired assuming a focal length of 25 meters.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. Resolution and sensitivity are a function of the angular, spectral, and intensity resolution capabilities of the wide field telescope and the electrographic camera. (See Page 3, Technology Options.)
- b. The payloads benefiting from the development of the electrographic camera include: AS-03-S, Deep Sky Survey Telescope; AS-13-A, UV Survey Telescope; AS-31-S, Combined AS-01, -03, -04, -05-S. An earlier payload AS-42-S Far UV Electrographic Schmidt Camera/Spectrograph could also benefit.
- c. The electrographic camera technology development will enable direct imaging of unreddened B0 stars to $m_v = 21$, $m_v = 11$ with objective grating and 0.1nm spectral resolution and $m_v = 17$ with objective grating and 10 nm spectral resolution in 15 minutes exposures.

The camera in conjunction with a 0.75 m to 1 m UV Survey Telescope will detect and measure cosmic sources rich in UV radiation, measure properties of intersteller media, provide uniform UV reference data (magnitudes & spectra), enable studies of wide angle diffuse sources, and provide updating and a UV complement to the Palomar Sky Survey. (See continuing discussion on Page 2)

TO BE CARRIED TO LEVEL 7

NO, <u>C-2.21</u>

- 1. TECHNOLOGY REQUIREMENT (TITLE): Large Photocathode PAGE 2 OF 5 Electrographic Camera; Improved resolution, higher sensitivity, at selected wavelengths in 100 to 400 mm range, with long wavelength cutoff.
- 6. RATIONALE AND ANALYSIS: (Continued)

c. (Continued)

Both Deep Sky Survey Telescope and 1 Meter Diffraction – Limited Telescope will benefit by the increased information storage capacity 4×10^8 pixels/field dia. of this detector which will be 4 times greater than that of existing electrographs. Such a detector is ideally mated to the ability of the Deep UV telescope to produce better than 1 arc sec images over a 5° field diameter and to the ability of the 1 meter diffration-limited telescope to produce 0.2 arc sec images over a 1° field.

Photographic film already has this information storage capability but the electrographic camera has several additional advantages:

- (1) Greater quantum efficiency by a factor of at least 10 (this is a critical factor).
- (2) Greater resolution thus making possible a more compact, less massive telescope.
- (3) Long wavelength cutoff which eliminates noise effects from solar radiation in optical wavelengths.
- (4) A linear response curve over broader density ranges which allows easier conversion of the data to intensities and also gives a greater dynamic range.
- d. Although some testing can be accomplished in the laboratory or the ground, final testing is expected in orbit on a shuttle sortie mission. Initial laboratory tests by 1976 should indicate feasibility. An experimental smaller model may be flown on an Aries rocket to deomonstrate technology.

NO. C-2.21

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Large Photocathode</u> PAGE 3 OF <u>5</u> Electrographic Camera; Improved resolution, higher sensitivity, at selected wavelengths in 100 to 400 mm range, with long wavelength cutoff.

7. TECHNOLOGY OPTIONS:

The electrographic cameras utilize UV to electron conversion, acceleration of photo electrons to strike a photographic emulsion instead of a phosphor. For each photoelectron, several grains in the emulsion become exposed. As mentioned before, the technique dates back to 1960 and the concept back to 1936. However, new techniques such as better photocathodes and means of obtaining stronger and more uniform magnetic focusing or guiding fields open the way for improved performance. Since photoelectrons accelerated from the photocathode produce identifiable tracks on the nuclear or equivalent film, the device may be used for counting electrons, and indirectly photons.

Magnetically-focused and electrostatically focused image tube options exist. The image quality of magnetically focused image tubes is generally superior to that of electrostatically focused types. However, magnetically focused types require an external, cylindrical focusing coil or a permanent magnet and the voltage applied to the tube should be well regulated and filtered. As a result magnetically focused image tubes are normally heavier and more complex than those using electrostatic focus. But a 200 mm diameter electrostatically focused camera is very difficult to make.

When the magnetic field is increased to about 20000 gauss, such as in a small super-conducting magnet, the photoelectrons tend to follow the magnetic field lines arranged to extend uniformly from the photocathode to the film or output image phosphor. Consequently very little degradation would occur in the UV photon to photoelectron conversion and acceleration process. The photocathode surface can be selected to match the telescope optical surface without degradation of the electron image.

For nonfilm alternatives at the output image plane, silicon, or other charge coupled devices have developed into the most promising approach to solid state imaging. The basic feasibility has been demonstrated for small numbers of image elements at correspondingly low scan rates. Some problem with surface states with life times near the inverse of the line scan frequency tend to reduce transfer efficiencies. Unless a technological breakthrough occurs, image resolution and acceptability will be compromised. (Picture elements per frame are currently less than 10^6 , vs 10^8 to 4×10^8 for the advanced electrographic camera.)

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-2.2
1.	TECHNOLOGY REQUIREMENT(TITLE): Large Photocathode Electrographic Camera, Improved resolution, higher sensiti selected wavelengths in 100 to 400 mm range, with long wave	PAGE 4 OF <u>5</u> wity, at length cutoff.
8.	TECHNICAL PROBLEMS:	
Ъ. 5	Non uniform deposition of a 200 mm photocathode is biggest p The quality of electron focus on the nuclear emulsion limits resolu- the 2nd largest problem.	
f	The ideal electrographic camera writes directly on film but r for loading and unloading film. Interaction with other payload elements in AS-31-S.	requires access
u, 1	interaction with other payload elements in AD-51-5.	
9.	POTENTIAL ALTERNATIVES:	
i: v	Multistage, fiber optically coupled, electrostatically focused intensifiers. (However, these have greater threshold noise a very difficult to make in 200 mm size.)	and are
	JV-to-electron converter/microchannel plate/output phospho for direct writing on film.	r combinations
-		
c. T đ	JV-to-electron converter/microchannel (Chevron) plate and device (CCD) detector array. (Gains between 10^4 - 10^7)	
c. U đ d. N	JV-to-electron converter/microchannel (Chevron) plate and a	
c. U d d. N o	JV-to-electron converter/microchannel (Chevron) plate and d levice (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho	r feeds fiber
c. U d. M o 10.I W	JV-to-electron converter/microchannel (Chevron) plate and o levice (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.)	r feeds fiber EMENT:
c. U d. M o 10.I W	JV-to-electron converter/microchannel (Chevron) plate and o device (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC 74-70369, Astronomical Sensors and Imaging Systems for La	r feeds fiber EMENT: arge Space
c. U d. M 0 10.1 W Te	JV-to-electron converter/microchannel (Chevron) plate and o device (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC 74-70369, Astronomical Sensors and Imaging Systems for La elescopes, Lawrence Dunkleman, 301-982-4988, GSFC.	r feeds fiber EMENT: arge Space
c. U d. M o 10.1 W Te 11. a. b.	JV-to-electron converter/microchannel (Chevron) plate and of device (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC 74-70369, Astronomical Sensors and Imaging Systems for La elescopes, Lawrence Dunkleman, 301-982-4988, GSFC. EXPECTED UNPERTUR RELATED TECHNOLOGY REQUIREMENTS: Internal Electrographic camera contamination/vacuum cont Nuclear radiation suppression (protons, electrons, bremma and secondaries). (However, intense magnetic fields may p magnetic shield effect around electrographic camera.)	r feeds fiber EMENT: arge Space URBED LEVEL <u>5</u> rol. strahlung, provide
c. U d. M o 10.1 W Ta 11. a. b. c.	JV-to-electron converter/microchannel (Chevron) plate and of levice (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC 74-70369, Astronomical Sensors and Imaging Systems for La elescopes, Lawrence Dunkleman, 301-982-4988, GSFC. EXPECTED UNPERTUR RELATED TECHNOLOGY REQUIREMENTS: Internal Electrographic camera contamination/vacuum cont Nuclear radiation suppression (protons, electrons, bremma and secondaries). (However, intense magnetic fields may p magnetic shield effect around electrographic camera.) Deep Sky Survey Telescope (0.75 to 1m dia), resolution bet 0.5 arc sec.	r feeds fiber EMENT: arge Space URBED LEVEL <u>f</u> rol. strahlung, provide ter than
c. U d. M o 10.1 W Te 11. a. b. c.	JV-to-electron converter/microchannel (Chevron) plate and of levice (CCD) detector array. (Gains between 10 ⁴ - 10 ⁷) Magnetically focused image intensifier (165 mm dia, phospho optics to enable contact film recording.) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC 74-70369, Astronomical Sensors and Imaging Systems for La elescopes, Lawrence Dunkleman, 301-982-4988, GSFC. EXPECTED UNPERTUR RELATED TECHNOLOGY REQUIREMENTS: Internal Electrographic camera contamination/vacuum cont Nuclear radiation suppression (protons, electrons, bremms and secondaries). (However, intense magnetic fields may p magnetic shield effect around electrographic camera.) Deep Sky Survey Telescope (0. 75 to 1m dia), resolution bet	r feeds fiber EMENT: arge Space URBED LEVEL <u>f</u> rol. strahlung, provide ter than

	DEFINITION O	FI	EC.	HNG	 DLC	OGY	RE	ເຊັນ	IRF	ME	N'I	•				N	10.	C-2	.21	†
1.	TECHNOLOGY REQUIF Electrographic Came selected wavelengths	REM era in	EN' ; Ir 10(Γ ('. np1) to		LE) ed 1	: L res	are olu rai	re I tion nge	Pho n, 1 , W	t <u>oc</u> nigl rith	a <u>th</u> her lo:	ode se	nsi way	F tiv: vele	AG ity,	E 5 at) OF	 ff.	-
12.							UL	E:	ND.											
	SCHEDULE ITEM	75	76	77	110	79		81		<u> </u>	· · · ·		0.0	07	0.0	00	00	0.7		
		10	10	$\frac{77}{1}$	10	79	<u>80</u>	01	82	83	84	00	80	87	88	89	90	aT		
	CHNOLOGY User Needs Analysis	-						:									a.			
	Parametric & Design Analysis Prototype Design																			
1	Lab Tests & Improvement		_	l +					1											
5.	Test on Aries rocket			ļ								ļ		1	ĺ			ĺ		
6.	Test in Sortie Shuttle			[•														
APT	PLICATION			<u> </u>		<u> </u>									1	-				
	Design (Ph. C)			-															1	
2.	Devl/Fab (Ph. D)																			
3.	Operations (Primary)				T1	Т3	•	-		-20	4	810 6-0		5.0	00					
4.	Alternate				T2	F4	14				L3	17	1-3		П			L.		
13	. USAGE SCHEDULE:				<u>.</u>			••						- <u>j</u>						
'IEC	HNOLOGY NEED DATE		T					<u> </u>		ļ								_	ют 	AL
NU	MBER OF LAUNCHES					T1 T2	$T1 \\ T2 \\ T3$				T	12T 2 T 2	Ť	2	T1			T_{2}	3	3*
		<u> </u>			ļ	T4	T4	T	3 T3	T3	3 T3	3 2T	32T	32T	3 2T;	32T	32T	3 2T.	¥	
14 a.	. REFERENCES: Lallemand Electronic Ca	me	ra,	pag	çes	347	to	353	, A	str	ono	mic	eal '	Tec	linio	que	s,			
	edited by W. A. Hiltner,																			
	Conference, Dr. Karl G.																et a	517 4		
d.	Summarized NASA Paylo Summarized NASA Paylo	ad	Des	crij	ptio	ns,	Au	ton	iate	d P	ayl	oad	s, 1	MS]	FC,	Ju	ly 1	.974		
	Applications note E20, I (with improved window a				_	oduc	ets :	Div	., 1	USN	I F S	3361	.57()-C	-18	26 2	and	-17	35	
	end: = AS-03-S, Deep Sky UV	Sur	vey	Te	les	cop	е			T :	- T	ech	nol	ogy						
	= AS-13-A, UV Survey T		-			-				Øå :	= S	orti	e O	per	atic	ns				
T3 =	= AS-31-S, Combined AS	-01	, -0)3,	-04	, -	05-8	s		┍╼╬╴╴	= A	uto	mat	eđ	Ope	rat	ion	5		
T4=	AS-42-S, Far UV Elec	trog	rap	hic	Scl	mi	ik C	lam	lera	l/Sp	ect	rog	rap	h						
	The automated is a backu														eđu	ce i	the	req	uire	}
r	nents for AS-03-S flights	5.									-			-						
15	. LEVEL OF STATE OF									ENV	IRON	MEN	т іл '	тне і	LA BO	RATO	RY.	N KEL	e Aurti	•
	1. BASIC PHENOMENA OBSERVED / 2. THEORY FORMULATED TO DESC	RIBE	PHEN	OME					7. N	ODE	L TE	STED	IN SE	PACE	AFT E ENVI	RONN	1EN'I			
	3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL.								8, N			BILIT			D FR()M A	MUC	H LES	SER	
	4. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONEN	ACTI	ERIST TC.	IC DF	MON	STRA	TED,		9, H 10. L	ELIA	BILI	ry ui	GRA	DING				TONAI		

NO. <u>C-2.22</u>

1. TECHNOLOGY REQUIREMENT (TITLE): IR, Visible, UV, XUV PAGE 1 OF 3 Universal Filters; Selectable Pass Bands in each Portion of the Spectrum, with Low Loss, Constancy of Loss, Accuracy of Loss

2. TECHNOLOGY CATEGORY: <u>Sensors</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide a readily selectable universal adjustable bandpass filter for each range (IR: one to 10 μ m, passband from 1000 to 1 μ m; Visible 0.1 to 10nm passband from 1000 to 400 nm, 0.1 to 10nm passband from 400 to 90nm; 0.01 to 1nm passband from 100nm to 10nm).

4. CURRENT STATE OF ART: A transmission filter capable of wavelength selection between 420 and 700 nm with passband variable from 0.01 to 0.06nm has been built by Carl Zeiss, Oberkochen, West Germany in 1974. HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

Readily adjustable bandpass filters with low loss (less than 25%) are needed to cover the IR, Visible, UV and XUV spectral ranges to enable band limited imaging or the equivalent of imaging spectrophotometer. The Carl Zeiss Company in Germany has produced a prototype universal bi-refringent filter. Reflective or transmissive techniques are applicable. Imaging detector resolution shall not be degraded more than 0.5 resolution element.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. Electronographic, electronic, and film image detection methods can be utilized for narrow band spectral imaging or imaging spectrophotometry in a large number of optical instruments.
- b. Payloads that directly benefit include sortie and automated astronomy, solarphysics, earth observation, earth and ocean physics disciplines. Payloads with potential benefit are those with imaging requirements in the high energy astrophysics, atmospheric and space physics and in the planetary and lunar discipline.
- c. Improved filters enable rejection of stray light, analysis of source constituents, and identification by spectral signatures.
- d. Final tests will be accomplished in space on sortie flights. Initial test will be accomplished on Aries rocket or HEO-B spacecraft.

TO BE CARRIED TO LEVEL 7

 Universal Filters; Selectable Pass Bands in each Portion of the Spectrum, with Low Loss, Constancy of Loss, Accuracy of Loss 7. TECHNOLOGY OPTIONS: Neutral density transmission filters as well as advance bi-refringent filters need to be considered in trades. The universal filter will include programmable control to select any of the wavelengths and the passband around the wavelength within the range of any one of the universal filters. In addition to the described pass band characteristics, each universal filter will have polarization analyzer segments that can be inserted into the light path to provide magnetically related information. 8. TECHNICAL PROBLEMS: a. Imaging with a dynamic range greater than 256 (8 bits). b. Accountable losses in filter chain, good to 0.1 magnitude. c. Minimun distortion in optical path. 9. POTENTIAL ALTERNATIVES: a. Individual filters per instrument. 		DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-2.22
need to be considered in trades. The universal filter will include program- mable control to select any of the wavelengths and the passband around the wavelength within the range of any one of the universal filters. In addition to the described pass band characteristics, each universal filter will have polarization analyzer segments that can be inserted into the light path to provide magnetically related information. 8. TECHNICAL PROBLEMS: a. Imaging with a dynamic range greater than 256 (8 bits). b. Accountable losses in filter chain, good to 0.1 magnitude. c. Minimun distortion in optical path. 9. POTENTIAL ALTERNATIVES: a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TED EXPECTED UNPERTURBED LEVEN 11. RELATED TECHNOLOGY REQUIREMENTS:	1	Universal Filters; Selectable Pass Bands in each Portion of	the
need to be considered in trades. The universal filter will include program- mable control to select any of the wavelengths and the passband around the wavelength within the range of any one of the universal filters. In addition to the described pass band characteristics, each universal filters. In addition to the described pass band characteristics, each universal filter will have polarization analyzer segments that can be inserted into the light path to provide magnetically related information. 8. TECHNICAL PROBLEMS: a. Imaging with a dynamic range greater than 256 (8 bits). b. Accountable losses in filter chain, good to 0.1 magnitude. c. Minimun distortion in optical path. 9. POTENTIAL ALTERNATIVES; a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TED EXPECTED UNPERTURBED LEVEN 11. RELATED TECHNOLOGY REQUIREMENTS:	7. 1	TECHNOLOGY OPTIONS:	
 a. Imaging with a dynamic range greater than 256 (8 bits). b. Accountable losses in filter chain, good to 0.1 magnitude. c. Minimun distortion in optical path. 9. POTENTIAL ALTERNATIVES; a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TBD EXPECTED UNPERTURBED LEVEN 11. RELATED TECHNOLOGY REQUIREMENTS: 	ne ma wa to po	ed to be considered in trades. The universal filter will inclu- able control to select any of the wavelengths and the passband velength within the range of any one of the universal filters. the described pass band characteristics, each universal filter larization analyzer segments that can be inserted into the light	ude program- d around the In addition er will have
 c. Minimun distortion in optical path. 9. POTENTIAL ALTERNATIVES; a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TBD EXPECTED UNPERTURBED LEVEI 11. RELATED TECHNOLOGY REQUIREMENTS; 			
 9. POTENTIAL ALTERNATIVES: a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TBD EXPECTED UNPERTURBED LEVEI 11. RELATED TECHNOLOGY REQUIREMENTS: 	ь.	Accountable losses in filter chain, good to 0.1 magnitude.	
a. Individual filters per instrument. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TBD EXPECTED UNPERTURBED LEVEN 11. RELATED TECHNOLOGY REQUIREMENTS:	c.	Minimun distortion in optical path.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: TBD EXPECTED UNPERTURBED LEVET 11. RELATED TECHNOLOGY REQUIREMENTS:	9. I	POTENTIAL ALTERNATIVES:	<u> </u>
TBD EXPECTED UNPERTURBED LEVER 11. RELATED TECHNOLOGY REQUIREMENTS:	a.	Individual filters per instrument.	
TBD EXPECTED UNPERTURBED LEVER 11. RELATED TECHNOLOGY REQUIREMENTS:	10.3	TANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
11. RELATED TECHNOLOGY REQUIREMENTS:			
11. RELATED TECHNOLOGY REQUIREMENTS:			
		EXPECTED UNPERT	URBED LEVEL
a. Optical Telescope Technology. (See C-1.4)	11.	RELATED TECHNOLOGY REQUIREMENTS:	
	a.	Optical Telescope Technology. (See C-1.4)	
b. High Resolution Photon Detector. (See C-2.19)	Ъ.	High Resolution Photon Detector. (See C-2.19)	

 $v_{_{tx_{2}}}$

	DEFINITION O	ΓT	EC	HNO	OLC	GY	ŔĔ	ຊບ	IRF	ME	NT	<u></u>)				N	10.	C-	2.2	:2
1.	TECHNOLOGY REQUIR Universal Filters; So Spectrum, with Low	EM ele Lo	EN cta ss,	T (1 ble Co	FIT Pa onsi	LE) ss ian	. IF Bar cy (l, nds of I	Vis in Los	ible eae s,	e, ch Ac	UV Po; cur	, X tic	UV n c y of	I f tl Lo	PAG 1e 255	E 3	OF	3	1
12.	TECHNOLOGY REQUIF	EM	IEN	TS	SCI	IEI			****	۸ D	-	4.75								
			~ 0						ND											
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TEC 1.	HNOLOGY Survey & Analysis of Applications	_																		
2.	Concepts Trades		_		1								1			[
3.	Design of Exp. Models per Band																			
4.	Fab. of Exp. Models			┣	1	ļ		1					Į							1
5.	Test & Evaluation				-		-	-						1						
APP	LICATION					[1							<u> </u>	1			 		
1.	Design (Ph. C)		1			<u> </u>									ĺ		ļ		1	1
2.	Devl/Fab (Ph. D)					-	1													
3.	Operations		1											+	╉╾				}	
4.																				
13.	USAGE SCHEDULE:																<u>.</u>			
TEC	HNOLOGY NEED DATE			<u> </u>						<u> </u>		 -{							roi +	AL
NU	MBER OF LAUNCHES*					4	4	4	4	4	4	4	4	4	4	4	4	4	5	52
14. a.	REFERENCES: Universal Birefringe	ent	Fil	.ter	·, (Car	1 Z	eis	s,	ОЪ	erk	ocł	ıen	, W	les	t G	ern	nan	у <i>.</i>	
	egend: = Technology																			
	hese are the directly be bservations and earth an																			
15.	LEVEL OF STATE OF L. BASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL, 4. PERTINENT FUNCTION OR CHAR	ND F RIBE EXPE	REPOI PHE RIME	NOME NT	ENA.	נפיים			6. M 7. M 8. M	ENV IODE IODE IEW (OFI	/IRON L TE L TE CAPA SRAT	IMEN STEL STEL BILIJ IONA	T IN IN A IN S TY DE L MO	THE IRCR PACE RIVE DEL.	LABO AFT ENV DFR	RATC ENVIE IRONI OM A	ORY. KONM MENT MUC	H LES	SER	

DEFINITION OF TECHNOLOGY REQUIREMENT

NO, <u>C-2.23</u>

TECHNOLOGY REQUIREMENT (TITLE): Advanced Atmospheric PAGE 1 OF <u>4</u> Sensors Group - Improved Area coverage, spatial and spectral resolution, selectivity, and measurement accuracy

2. TECHNOLOGY CATEGORY: Sensors

OBJECTIVE/ADVANCEMENT REQUIRED: <u>Obtain atmospheric and pollution signature</u> data versus location (0.9 to 10 km horizontal/vertical resolution). Improve calibration accuracy to 0.2% for CO₂ and 1% for other constituants, solar constant to 0.5%, temperature to $\pm 1.5^{\circ}$ K.

 4. CURRENT STATE OF ART: Calibration accuracy 3 to 5% for some constituents; up to

 30% for most of the pollution constituents; altitude 2 to 3 km, horizontal accuracy 2 to 3

 km.

 HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY

The advanced atmospheric sensor group will include an improved ozone/sun polarimeter, a limb atmospheric composition radiometer, an air pollution sensor, and a high speed interferometer. Improvements include greater spatial coverage by faster sequencing of channels, application of image motion compensation, better data compression (coding), improved instantaneous field of view, greater collector area (hence better sensitivity), relocation and resizing of spectral bands, improvement of detector sensitivities together with coolers or closed cycle refrigeration. A solar extinction photometer is expected to be used to obtain data on the complex refractive index and size distribution of atmospheric aerosols. A radiative budget monitor will be added to the instrument complement to obtain the true atmospheric absorption, independent of and separate from scattering. Equipment measurements are needed for particulates.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

- 6. RATIONALE AND ANALYSIS:
- a. An improved set of atmospheric sensing (particularly pollution sensing) instruments can be evolved from currently planned gas filter correlation analyzer, IR correlation interferometer, IR optical interferometer, photopolarimeter, solar extinction photometer, radiative budget monitor instruments concepts. Considerable opportunity exists for consolidation and on-board cross correlation.
- b. The primary payload benefitting from the development of an advanced atmospheric sensors groups is EO-56-A Environmental Monitoring Satellite. However some atmospheric sensing instruments will(EO-09-A Synchronous Earth Observatory Satellite and EO-08-A Earth Observatory Satellite).
- c. The advanced set of atmospheric sensors will enable identification and monitoring of atmospheric pollutants, distribution of ozone, aerosols, measures of concentrations of ozone, nitric oxide, sulphur dioxide, nitric acid, nitrogen dioxide methane, and freens as well as measurements of related atmospheric conditions.

d. Final proof of achievement of capability is test on a sortie or automated space payload against aircraft and balloon measurements.

Initial technology needs can be demonstrated on an Atlas/Centaur flight.

TO BE CARRIED TO LEVEL 8

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.23
1. Sen a <u>nd</u>	TECHNOLOGY REQUIREMENT(TITLE): Advanced Atmospheric PAGE 2 OF 4 sors Group - Improved Area coverage, spatial and spectral resolution, selectivity, measurement accuracy
7.	TECHNOLOGY OPTIONS:
vigy imp Cal pro Inte mea	sting instrument concepts cannot provide all of the required measurements; hence orous development of sensors for identification of atmospheric constituents as well as provements in accuracy for measurements of quantity and location of pollutants is needed ibration accuracy should improve from 5% to 1%. Instantaneous field of view should im- ve to enable spatial resolution to 0.9 km and identification of polluting sources to 15m. ernal calibration techniques are required on all visible and IR sensors. Constituent asurements will require use of correlation instruments for measurements in the posphere.
	(Continued on page 3)
8. a. b. c. d.	TECHNICAL PROBLEMS: Increased real time data relay capability up to 30Mb/s initially and to 120Mb/s later. Simpler data reduction software and techniques to reduce computational complexity. Faster integration times. Decreased instantaneous field of view to help pinpoint source locations.
9.	POTENTIAL ALTERNATIVES:
a. b.	Alternative atmospheric sensing group: gas filter radiometer/correlation interfero- meter, optical filter radiometer, IR pressure modulated radiometer, UV/ozone monitor, solar extinction photometer, radiative budget monitor, photopolarimeter, THIR IR Radiometer, and a scanning spectroradiometer. Information comparable to that obtained for gaseous pollution should be obtained for particulate pollution by a complementary set of instruments.
	. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
W74 W74	4-70476 Atmospheric Pollution Sensing, C. B. Graves, LaRC 4-70450 Numerical Simulation, Pollution Transport, Eugene S. Love, LaRC 4-76452 Remote Sensing Techniques for Atmospheric Structure and Surface Condition Relevant to Meteorology, W. A. Harris, GSFC.
	EXPECTED UNPERTURBED LEVEL 7
1.	1. RELATED TECHNOLOGY REQUIREMENTS:
а. Ъ.	Increased data handling capability, up to 120Mb/s (on board data processing). Attitude determination to 0.002°; spacecraft position data to \leq 15m is desirable (at least 0.3 to 1 km is required).
с.	Long lifetime, low temperature cooling.
d. e.	Temperature profile correlation methods. Multiple sensor registration of view footprints.
f.	Solar energy and earth albedo monitors.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-2.23

1. TECHNOLOGY REQUIREMENT (TITLE): Advanced Atmospheric PAGE 3 OF 4

Sensors Group - Improved Area coverage, spatial and spectral resolution, selectivity, and measurement accuracy

7. TECHNOLOGY OPTIONS: (Cont'd)

The key instruments - the correlation interferometer, the gas filter analyzer, and the IR interferometer - will certainly be improved over the next several years with the most improvement being expected in the correlation interferometer and the least in the IR interferometer. There is certainly opportunity for simultaneous use of a combination of these instruments. It should be noted that the measurement time is quite different for these three instruments - the correlation interferometer being the fastest and the IR interferometer the slowest. It should also be noted that the signals reaching the instruments and hence their sensitivities are functions of the wavelength, the species burdens, the atmospheric temperature profile, the surface temperature, the surface reflectivity, the surface emissivity, and other factors.

Another fundamental capability is provided by the radiative budget monitor (not the Earth albedo monitor). This instrument can only measure the net radiation flux (or the upward and downward fluxes the difference of which yields the net flux). This quantity is influenced by both physical processes of absorption and scattering from both gases and particulates. However, the quantity of interest is the true atmospheric absorption, i.e., independent of and separate from scattering. It is this absorption that determines the atmospheric heating. JPL has developed a true absorption radiometer, an engineering model has been constructed, and preliminary test conducted in JPL's ambient air.

The absorption data provided by the near IR interferometer are usually interpreted (incorrectly) without regard to the effects of scattering by atmospheric gases and particles. However, since scattering alone (not absorption) induces polarization in the light field, the measurement of polarization should in principle enable one to assess the scattering effects. This information can be used to both study the scatterers for themselves and eliminate their effects in interferometric data. Unfortunately the spectral resolution of the photopolarimeter is too coarse compared to that of the interferometer (typically it is 10^3 times coarser). What is needed is an interferometer-polarimeter that will provide both the radiance and the polarization with the same spectral resolution. JPL has developed a prototype model of such an instrument with the help of the University of Arizona. The first polarization spectra (wavelength range 0.8 to 2.7 μ m, spectral resolution 0.5 cm⁻¹) of Venus were obtained with this instrument at the telescopes of Steward Observatory and Mexican National Observatory (Baja California).

DEFINITION O	FI	EC	HNO	OLC	GY	RE	QU	IRF	MF	NT	. <u></u> .				N	10.	C.	-2.2	23
1. TECHNOLOGY REQUIT Sensors Group - Improved A and measurement accuracy	REM Tea	EN'	T ('! vera	rit: agė,	LE) , sp	; <u>A</u> ati:	dva al a	nce nd :	ed A spe	tm etra	ospl d r	her eso	ic luti	I on,	PAG sej	E 4 lect	OF ivit	_4 y,	-
12. TECHNOLOGY REQUI				-		UL				·									
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
 Concepts analysis & trades LaRC parametric design 																-			
 3. Fabrication of integra- table experimental in- struments 4. Test & Evaluation 	-																		
5. Planning & Recommen- dation		-																	
APPLICATION																			
1. Design (Ph. C)				1]				ł										
2. Devl/Fab (Ph. D)																-			
3. Operations				E2	E1					Γ_	<u> </u>	-		E	<u> </u>	<u>†</u> _		—	┢
4.				152		ES	<u>-</u>		<u>F</u> .			—				-	-	-	
13. USAGE SCHEDULE:	-i	<u>,</u>			.			- <u>-</u>		- 									
TECHNOLOGY NEED DATE			Т					<u> </u>		<u> </u>									'AL
NUMBER OF LAUNCHES					E2				_	E2		_	LE		-E	_	$ E_2 $		27
14. REFERENCES:	•						\mathbf{E}	3	Eg	3	$\mathbf{E}_{\mathbf{S}}$	3	2E	3	2 E	3	2E;	3	
a. An Evaluation of Techno by Wendell G. Ayers, I LaRC, 1974.)r. (Dav	id I	E. I	3ow	keı	, D	r. 1	L.F	₹.G	ree	nwc	øđ	and	As.	SOC	iate	s a'	t
b. Study for Office of Appli Technology Satillite, La	icat RC	ions Sta	s of ff,	Nev May	w In y 31	ıstr ., 1	ume 974	enta •	tio	n In	itia	tive	e fo	r tl	ie E	Invi	ron	mer	ıtal
c. Comments from Dr. M. d. Comments from Dr. Al Legend:												an.	19'	75.					
T = Technology																			
— = Automated Cperation																		·	
E1 = EO-56-A Environ					-	-	tell	ite											
E2 = EO-08-A Earth Ot E3 = EO-09-A Synchror			-				עינו	Sat	elli	te									
					~~*	*	J				1m ^ ~	007	A 12 19	74 85	TRET		1957	FVAN	ነጥ
15. LEVEL OF STATE O			איזיזיינ						ENV	лном	MEN	T IN	THE	LARO	RATC	DRY.	I REL	a ni	
ASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT EXECTION OF CHA	CRIBE EXPE	PHE: RIME	NOME NT	ENA.				7. N 8. N	AODE IEW (OPI	L TE CAPA ERAT	STED BILIT IONA	in si Y de L Mo	PACE RIVE DEL	ENV DFR	IRONI OM A		II LES		ner
4. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE			ic D	MAION	STRA	TED,		9. E 10. 1	(ELIA JFEJ	'IME	IY UI EXTE	-GRA NSIO	N OF	OF A AN O	in op Iteria	ERAT ATION	ionai مي M	ODEL	1011, 4.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 04-2.24
1. TECHNOLOGY REQUIREMENT (TITLE):G-JITTER DETERMINATION	PAGE 1 OF <u>3</u>
 TECHNOLOGY CATEGORY: OBJECTIVE/ADVANCEMENT REQUIRED: To define the G-Jitter determine the level expected aboard Spacelab, develop instrumen 	
accurate measurements, and relate it to objectives of proposed	experiments.
4. CURRENT STATE OF ART: <u>Some measurements of perturbations</u>	were conducted
on Skylab. These should serve as a reference point in the anal	ysis.
HAS BEEN CARRI	ED TO LEVEL 2

*** 13 73 9 # TH 5 7/75

5. DESCRIPTION OF TECHNOLOGY

G-Jitter is defined as an unsteady perturbation to the gravity field resulting from spacecraft maneuvers and/or mechanical vibrations. A need exists for determining the environment from which G-Jitter occurs. A determination of the G-Jitter levels expected aboard the Shuttle Space Lab system during planned experimentation must be made. One must ascertain the potential effects of disturbances on the results and conduction of typical experiments (ref. 2). Finally, instrumentation must be developed for accurate measurement of G-Jitter on a continuous basis as compared to current methods involving back-calculations of questionable accuracy. G-Jitter levels can render certain space experiments worthless. Electrostatic accelerometers of high sensitivity exist, but their adequacy in this application has not been evaluated fully.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

The need for the above technology is a part of the LeRC overall program for convection oriented experiments aboard Spacelab. This technology should not only serve the proposed physics and chemistry experiments, but will be applicable to many others. The critical parameter which drives this technology is gravity. A knowledge of its magnitude is essential to the objectives of all proposed experiments. Its assessment will provide valuable design information. Without knowledge of the effect of G-Jitter on the possible experiments, their validity is in question.

te technology program should include a zero-G test of the measuring instrumentation aboard an Aerobee vehicle.

TO BE CARRIED TO LEVEL 5

02.9 94

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-2.24
1.	TECHNOLOGY REQUIREMENT(TITLE): <u>G-Jitter Determination</u> PAGE 2 OF <u>3</u>
7.	TECHNOLOGY OPTIONS: One approach would be to measure the position error-signal fluctuations in an electromagnetic (RF) positioning device. The test mass within the positioning device would consist of a low resistivity material.
8.	TECHNICAL PROBLEMS:
	1. Can the vibration spectrum of Shuttle Spacelab be defined locally?
	2. Will the instrumentation be defined in a timely way?
	3. Is there sufficient knowledge of vibration induced convection to define effects accurately?
9.	POTENTIAL ALTERNATIVES:
	Automated free-flying experiments as an alternative to manned Spacelab, however, many experiments require manned intervention.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
	LeRC Physics and Chemistry Experiments Program requires the above technology for insurance that current focused development studies will result in study areas that can be handled from an experimental point of view.
	RTOP 975-73-48
<u></u>	EXPECTED UNPERTURBED LEVEL 3
11	. RELATED TECHNOLOGY REQUIREMENTS:
	The work being conducted in the Space Processing Discipline concerning elec- tromagnetic levitation :- relevant to these measurement requirements. (See reference no. 4.)

.

*																			
DEFINITION O	FT	EC	IINC	01.0	GY	RE	ิญม	IRE	ME	NT	•				N	10.	GE-	2.2	4
1. TECHNOLOGY REQUI	REM	EN'	г (7	TIT:	LE)	: <u>G</u> -	Jit	ter	D	ete	rmi:	nat:	ion	F	PAG	E 3	OF	_3_	-
12. TECHNOLOGY REQUI	REN	IEN	TS	SC 1	HED			ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79							S 6	\$7	88	S 9	90	91		
TECHNOLOGY 1. Analyses	-																		
2. Math.Model Simulation		-	1																
3. Instrument Design			1 1																
4. Instrument Test	ĺ			1															ĺ
5.																			
APPLICATION				F	 													•	
1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)					t		ļ												
3. Operations							<u> </u>				┼──	-			┢──	┢	┢		
4.									ļ					ļ		1		İ	
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE					1	2					<u> </u>]]	roi	AL
NUMBER OF LAUNCHES							2	3	3 3	3 3	3 3	3 3	1 3	1 3	3	3	<u>'</u> 3		32
14. REFERENCES:		_				_	··· <u>·</u>								-			-	
1. Dodge, F. T.; et Experiments in S Southwest Resear	pac	e.	Fi	nal	Re	ori	. o											r	
2. Gebhart, B.: Ra AIAA J., Vol. 1,							ler	Cor	nd i t	tio	15 (of N	√eig	ghtl	ess	snes	5.		
3. Bannister, T. C. Hedden, R. O., a Experiments. Fi	nd	Fac	emi	re,	Β.	R.	: 1	Apol	110	17	Hea	at l	₹1ov	v ar	nd T	lonv	/ect	ion 3	
4. "Design Analysis Final Report, Mo Co.).																			ns";
 LEVEL OF STATE (1. EASIC PHENOMENA OBSERVE THEORY FORMULATED TO DE THEORY TESTED BY PHYSICA OR MATHEMATICAL MODEI PERTIMENT FUNCTION OR CH E.G., MATERIAL, COMPON 	D ANI SCRII L EXI L.) REP BE PII PERIM TERIS	ORTE ENON IENT STIC	IENA		ATE	, D,	6. 7. 8. 9.	EI MOD MOD NEW OI REL	NVIRO EL T CAP PERA	onme Este Este Abili Tion. Ity I	NT IN D IN 4 D IN 5 TY D AL MO IPGR	THE MRCI SFACI ERIVI DDEL ADING	LAF AFT E ENV ED FF	DRAT ENVI VIRON KOM A	ORY. RONM MENT MUC	n rei Ient. C. H lei FIONA IAL M	sser L MO	DEL.

Ś

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE-2.25</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Mass Measuring Device PAGE 1 OF 3
 TECHNOLOGY CATEGORY: Sensors OBJECTIVE/ADVANCEMENT REQUIRED: To develop a mass measuring device for use in Spacelab scientific experiments where very small masses are
involved and high accuracy is required. 4. CURRENT STATE OF ART:Zero gravity mass measuring devices have been used on Skylab for relatively large masses (50 gm)
HAS BEEN CARRIED TO LEVEL 2
A mass measuring device is required for use in Spacelab experiments in which "weight changes" are normally a principal measurement in normal gravity experiments. Combustion experiments involving solid or liquid burning are a good example. Masses as small as one to two grams are expected. Accuracy of two percent is anticipated. The currently available systems consist of force-damped devices covering the range up to 50 gm (Skylab)
P/L REQUIREMENTS BASED ON: 🔯 PRE-A, \Box A, \Box B, \Box C/D
 RATIONALE AND ANALYSIS: The mass values and accuracies cited in (5) are determined from previous normal gravity experimentation.
The users of this device would be physics and chemistry experimenters, as a minimum. Other potential experiments which might require it would be in space processing.
The lack of this instrument could eliminate many worthwhile experiments.
Payloads: SSPD No.'s. ST-06S and SP-04S will utilize this technology.
Prototype models should be tested in a drop tower or free-fall trajectory aircraft test.
TO BE CARRIED TO LEVEL 5

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-2.
1.	TECHNOLOGY REQUIREMENT(TITLE): <u>Mass Measuring Device</u> PAGE 2 OF <u>3</u>
7.	TECHNOLOGY OPTIONS:
	Measurement techniques may sense inertia (e.g. translational or rational acceleration due to a given force) or density/volume measurements (e.g. though microwave or x-ray penetration.
8.	TECHNICAL PROBLEMS: This device must use a technique which does not interact with experiment processes in a manner which influences experimental results. For example, a device which relys on oscillation to measure mass might induce artificial convection.
9.	POTENTIAL ALTERNATIVES:
	1. Measure mass before and after process, whenever possible.
	 Use induced-oscillation methods with very low accelerations and longer integration times.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
	The Physics and Chemistry Experiment Program requires this device.
	Work conducted under RTOP 975-73-48.
11	EXPECTED UNPERTURBED LEVEL
¥7.	. RELATED TECHNOLOGY REQUIREMENTS: Analyses that may be pertiment to this technology are the subjects of "Particle Manipulation through Small Forces, in Zero Gravity", Beneficial Uses of Space Study (GE), NAS 8-28179.

DE	FINITION OF T	ECI	HNC)LC	GY	RE	លប	IRE	ME	NT	•				N	10,	GE-	2,2	5
1. TECHNOLO	GY REQUIREM	EN'	г (1	'ITI	LE)	: <u>Ma</u>	SS	Mea	sur	ing	De	vic	e	F	PAG	E 3	OF	3	
12. TECHNOLO	GY REQUIREM	IEN	TS S	SCI	IED			ND.	AR	YE.	AR								
SCHEDULE	ITEM 75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
1. Analyses																			
2. Design of 3	Model																		
3. Manufactur	e			-															
4. Free-Fall	Tests			-	-						:								
5.																			
APPLICATION																			
1. Design (Ph.	C)				-	-													
2. Devl/Fab (I	Ph. D)																		
3. Operations	î.	1]									 			
4.										ļ	 								
13. USAGE SC	HEDULE:		······																
TECHNOLOGY N	EED DATE			[4	4											L I	OT	AL
NUMBER OF L	AUNCHES						2	3	3	3	3	3	3	3	3	3	3	3	2
14. REFEREN	CES:	-i		<u>.</u>		4				-1									
	of Combustion to be publish			men	ts	in	Spa	.ce.	C	ont	rac	et I	VAS3	8-17	7089	}			
Paper	, A.L.: Combu presented at W rnia State Uni	Vest	ern	Se	cti	.on	of	the	Co	mbu	sti	ion	Ins	stii	tute	⊇.			
3. Catalo Novemb	g of Experimer er 1973.	nt H	ard	war	e.	Co	ntr	act	: NA	.s9-	135	559	- I	lepo	ort	JSC	:-08	650),
15. LEVEL OI	F STATE OF AL	RT						5. C								ed in	REL	EVAN	T
	IENA OBSERVED AND B IULATED TO DESCRIBE			NA.					ODE	l tes	STED	IN AI	RCR/	lft e		ni Onme IENT.			
3. THEORY TEST OR MATHEM	ED BY PHYSICAL EXPE IATICAL MODEL.	RIME	NT					8. N	EW C OPE	APAI	BILIT ONAI	l Moi	RIVEL DEL,	D FRO	A MC	MUCI	I LES		
4. PERTINENT F E.G., MATE	UNCTION OR CHARACTI RIAL, COMPONENT, E	ERIST	IC DE:	MON	STRA	TED,		9, R 10. L	ELIA	BILIT	Y UF	GRA	DING	OF A AN O	N OPI PERA	ERATI	IONAI AL MO	, MOI	DEL.

. . .

DEFINITION OF TECHNOLOGY REQUIREMENT	NO, <u>_RL, 2.2</u> 6
1. TECHNOLOGY REQUIREMENT (TITLE): Relativity Gyroscope (Extremely Low Drift Cryogenic Gyroscopes)	PAGE 1 OF <u>5</u>
2. TECHNOLOGY CATEGORY: Sensor	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Gyroscope and Gyrosco	pe Readout
I. CURRENT STATE OF ART: <u>A gyroscope and readout method is bei</u>	ng developed at
<u>Stanford U. and MSFC. Extensive gyroscope operation at low tempera</u> (continued on page 4) HAS BEEN CARI	<u>itures has been</u> RIED TO LEVEL <u>5</u>
 DESCRIPTION OF TECHNOLOGY Conventional electrically suspended gyroscopes are deliberately made moments of inertia so that there is a preferred spin axis. Readout, the observing marks on the surface of the sphere. 	with unequal refore, depends on
A relativistic gyroscope cannot use this method because of the extreme homogenenity and sphericity of the rotor. The readout method require direction and amplitude of the London Moment associated with the spi The spinning sphere generates a London Moment proportional to the an the sphere. Total magnetic flux is 8×10^{-5} gauss Direction of field means of a superconducting loop and magnetometer. The currents will constant and can be detected to fractions of a microamp. A Josephson is built into the pickup loop to detect changes in magnetic flux equive magnetic flux quantum. At 150 Hz, the total flux is 7800 flux quanter changes is 1:10 ⁸ flux quanta.	s measuring the nning superconductor gular frequency of is determined by fry to keep flux n junction detection alent to 1/10,000 of
p/l requirements based on: 🔲 pre-a,	⊠ А, 🗋 В, 🗍 С/D
 RATIONALE AND ANALYSIS: Readout of precession in conjunction with changes in line of sight or tracker is required to accuracy of 10⁻³ arc sec/year. Accuracy is nor deny various theories of relativity and to make a unique measurer or Lense-Thirring effect. AP-04-A Gravity and Relativity Satellite - LEO (Phy-2) Payload experiment fails (cannot verify or deny theories of relativity accuracy of at least 3 arc sec/year is not attained. Testing of one gyroscope concept is in progress at Stanford U. Testi concept will be initiated at MSFC within six months. 	equired to confirm nent of the motional y) if readout
,	
TO BE CARJ	RIED TO LEVEL 8
7-183 PRECEDING PAGE BLANK NOT FILMED	· .

Ð	DEFINITION	OF	TECHNOLOGY	REQUIREMENT
---	------------	----	------------	-------------

NO. RI, 2.26

1. TECHNOLOGY REQUIREMENT(TITLE):

_ PAGE 2 OF <u>5</u>

Relativity Gyroscope

TECHNOLOGY OPTIONS:

The Stanford U. and MSFC gyroscope models employ somewhat different methods to spin the rotor. The options which affect gyroscope operation and manufacturing techniques, are being thoroughly studied. There are also options in the exact form of the Josephson junction detector which will influence readout accuracy.

Both Stanford U. and MSFC have full readout capability. Critical parameters which affect testing are: low magnetic field, low acceleration, low temperature, high sphericity rotor, and low gas pressure. (See Reference 1).

Hansen Laboratories of Stanford U. will continue their work in the areas of sophisticated optics and measurement of long term drift.

8. TECHNICAL PROBLEMS:

Figure 1 illustrates some of the tol. ances to which the gyroscope must be constructed. Superconducting microbridges are required and have been constructed at MSFC of thickness on the order of 50 A using RF sputtering techniques. Junction widths on the order of 0.5_{H} have been constructed using modified scanning electron microscope techniques. All technical problems appear solvable and models are being constructed.

9. POTENTIAL ALTERNATIVES:

Methods for measuring certain relativistic parameters, at reduced accuracies are: radar ranging and measuring gravity red shift by moving an EM signal in gravity field of the earth. However, with the possible exception of a binary pulsar observation experiment, the gyroscope will provide the only method for measuring the Lense-Thirring effect.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

No similar efforts other than at Hansen Laboratory, Stanford U. and MSFC.

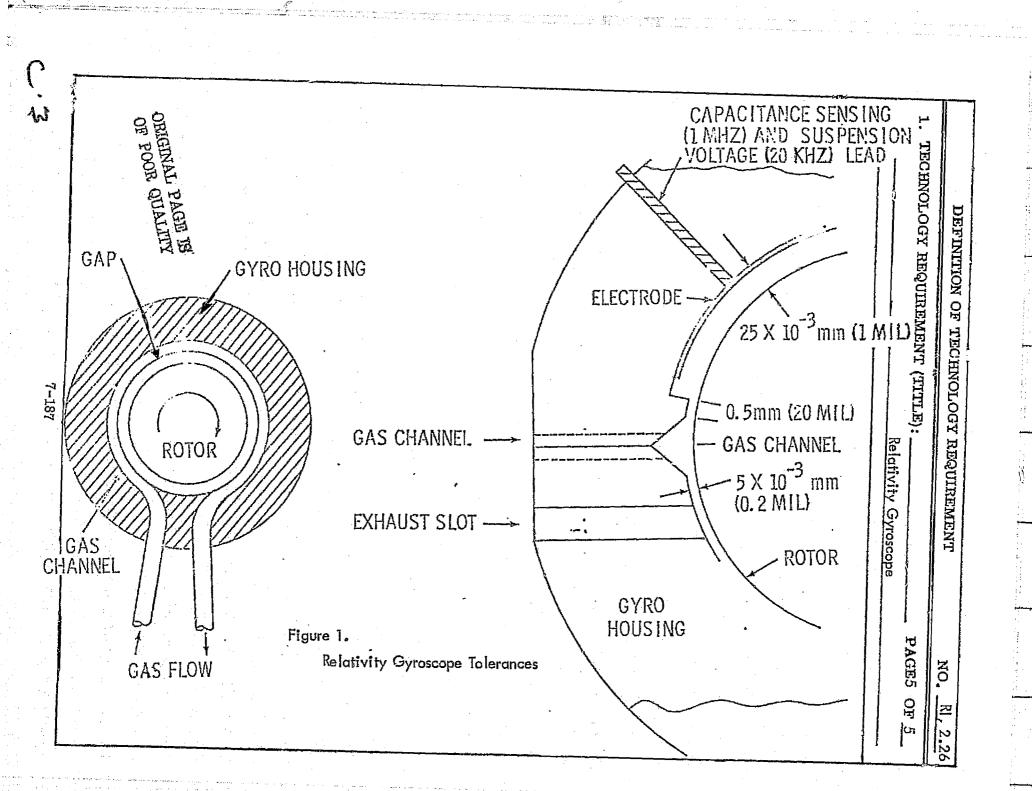
EXPECTED UNPERTURBED LEVEL 5

- 11. RELATED TECHNOLOGY REQUIREMENTS:
- a. Niobium microbridges for the gyroscope are being developed by MSFC, and for other uses by other laboratories.
 - b. Lightweight cryogenic storage vessel with hold time of one year in space at 1.6 to 2°K (see RI, 12.1)

DEFINITION C)F T	EC.	HNO	DLC	GY	RE	QU	IRE	ME	NT	1				N	10.	2	.26	 j
1. TECHNOLOGY REQUI Relativity Gyros			т (1	CIT)	LE)	:								ŀ	PAG	E 3	OF	• <u>5</u>	;
12. TECHNOLOGY REQUI	{EM	EN	тS	SCI	IED			ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Options & parametric analysis (3.0 yr.)* 2. Design (3.0 yr.)* 3. Construct models (3.5 yr.)* 4. Test models (4.0 yr.) 5.							le 19 NC	sse 75 TE:	r n if T	ode Lau ech	l g nch nol	yrc av ogy	sco ail ne	pe abl ed	in e. dat	te Spr e n che	ing ot	bei	ng
APPLICATION 1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)								:						ļ					
3. Operations									.										
4.																			
13. USAGE SCHEDULE:		1	<u>.</u>	J	L	<u> </u>	l	L		.	I	.I	<u>.</u>	J	·	<u></u>	<u>.</u>		1
TECHNOLOGY NEED DATE			• ا									1			Τ		ר	roj	AL
NUMBER OF LAUNCHES						1		1			Ī	Γ						2	2
 REFERENCES: * As presently scheduled. C.W.F. Everitt, the Gyroscope Experiment, International School of Physics - Enrico Fermi Course 56 Ed: B. Bertotti (Acad. N.Y. 1974) P. E. Wright, Refrigeration Systems for Spacecraft, RCA Advanced Technology, Publication of RCA Advanced Technology Laboratories, Camden, New Jersey, 1972 Lipa, J. r., et al, Research at Stanford on the Containment of Liquid Helium in Space by a Porous Plug and Long Hold-Time Dewar for the Gyro Relativity Experiment, W. W. Hansen Laboratory of Physics, Stanford University, Proceedings of the Cryogenic Workshop, MSFC, March 29-30, 1972 Everitt, C.W.F., and W. M. Fairbank, Applications of Cryogenic Techniques to the Stanford Gyro Relativity Experiment, W. W. Hansen Laboratories of Physic, Stanford University, Proceedings of the Cryogenic Workshop, MSFC, March 29-30, 1972 Technical discussion between Dr. E. Urban, MSFC, and P. R. Fagan, Rockwell International at MSFC on 17 October 1974. 																			
(continued 15. LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONEN	F AF AND R RIBE EXPEI	epor Phen Rimen Rimen	TET . Some: St		STRA	TED,		6. M 7. M 8. N	ENV ODEI ODEI EW C OPE	IRON L TES L TES APAI RATI	MEN TED TED BLIT ONAI	f in 7 In Ai In Sf Y DE: , MOI	rhe L RCRA PACE RIVEI DEL.	ABOI FT E ENVI FRC	RATO NVIR RONM M A	ed in Ry. Onme Ient. Muci Irati	NT.	SER	

•

DEFINITION OF TECHNOLOGY REQUIREMENT


PAGE 4 OF 5

1. TECHNOLOGY REQUIREMENT (TITLE): _ Relativity Gyroscope

4. Current State of Art - continued

accomplished at Stanford U.; MSFC has made important advances in development of superconducting instrumentation for the readout system.

- 14. References continued
- 6. Haldeman, L.B., and P. N. Peters, Niobium Bridges for SQUID Applications, 1974, Applied Superconditivity Conf., 9/30–10/2, 1974, Oakbrook, Illinois
- Letter from Dr. E. Urban, MSFC to H. Ikerd, General Dynamics Convair Aerospace, December 30, 1974
- Letter From Dr. J. Lipa, Hansen Laboratories, Stanford U., to H. Ikerd, General Dynamics – Convair Aerospace, December 17, 1974

1. L. L.

1. TH	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>RI, 3.1</u>
	HNOLOCY REQUIREMENT (TITLE): Lasers PAGE 1 OF 5
a. oi	HNOLOGY CATEGORY: <u>Generator</u> ECTIVE/ADVANCEMENT REQUIRED: <u>Provide laser diode pumping for Nd:YAG</u> communications system
4. CI	RENT STATE OF ART: <u>Breadboard model has been constructed</u>
<u> </u>	HAS BEEN CARRIED TO LEVEL 5
mona is us and laser pump	liodes are solid state devices which convert electrical energy into intense, nearly hromatic light which can be used to pump an Nd:YAG laser. The technique which is to match Ga:Al:P laser diode outputs at 8100 Å (preferred wavelength), 8690 Å, 50 Å to the narrow 100 Å wide pumping band of the Nd:YAG laser. Because (1) the iode has a limited power output, and (2) the Nd:YAG laser requires 3 to 4 watts ing to achive at 0.1 watt output, an array of laser diodes must be developed capable in power pumping.
6. R/	P/L REQUIREMENTS BASED ON: ☐ PRE-A, X A, ☐ B, ☐ C/I TONALE AND ANALYSIS:
	e array size is defined as follows: It requires 3 to 4 watts of pump power at 8100 Å to acite \cdot e Nd:YAG lasers rod and to cause oscillation at the desired frequency as well maintain a power output of 0.1 watt at 1.06 μ . The limiting power output of the ser diode at 8100 Å results in a need for laser diode arrays on the order of 80 to 160
	odes.
b. c.	odes. The Nd:YAG with the developed laser diode array will be used on the CN-05-5, aser Communications Experiment. esent NASA defined space communication data rates are on the order of 0.3 to 0.4 gabits/sec with a post 1984 requirement of one gigabit/sec. The Nd:YAG laser is a ggedized space qualified laser capable of data rates on the order of NASA require- ents. The laser will communicate data from a low orbit satellite such as EOS to a
b. c. d.	odes. The Nd:YAG with the developed laser diode array will be used on the CN-05-5, the Ser Communications Experiment. esent NASA defined space communication data rates are on the order of 0.3 to 0.4 gabits/sec with a post 1984 requirement of one gigabit/sec. The Nd:YAG laser is a ggedized space qualified laser capable of data rates on the order of NASA require-

(see 6.c

ۍ ا

PRECEDING PAGE BLANK NOT FILMED

te ta

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. RI, 3.1
1. TECHNOLOGY REQUIREMENT(TITLE): Lasers	PAGE 2 OF5
7. TECHNOLOGY OPTIONS: A number of pumping options exist within certain limitations; they are:	
a. Sun pumping – the sun is a high power standard source for collecting be used to pump the Nd:YAG, and is being proposed for the joint US communication experiment. Two problems exist. The first is that the terminal of the laser communications system spends much of its time the laser communications system inoperable unless alternative power available on-board. The second is that a steerable parabolic collect collect the sun's energy and focus it on the laser.	AF/NASA laser ne low altitude in darkness making sources are
(continued on page 4)	
8. TECHNICAL PROBLEMS:	
Primary problem is currently in development of the array itself. A potenti has been defined as requirements for long life laser diode arrays. Curren achieved 10,000 hours, equivalent to a one year life. Laser communica require operational lifetimes on the order of 10 years. In discussing with (reference 2) he stated that there appears to be no theoretically or analy assume that laser diodes will not be capable of 10-year lifetimes. Life t	nt life tests have ition systems will h Dr. M. Fitzmaurice itical reasons to
(continued on page 4)	
9. POTENTIAL ALTERNATIVES:	
Alternatives to the laser diode pumping are described in (7) technological alternative to the concept of laser transmission is the use of RF transmissi limitations are that bulky large arrays and terminals are required; howev feasible than lasers for space to ground because of all weather capability also a potential alternative, and are pumped by gaseous discharge of the	ion methods, RF er, they are more y. CO ₂ lasers are
(continued on page 4)	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	CEMENT:
The WPAFB is building laser communications terminals and will use the h information is available as to whether they are considering laser diode p program is non classified. Contact at WPAFB is Dr. Dale Barry, Technic	Nd:YAG laser. No
EXPECTED UNPER	
 RELATED TECHNOLOGY REQUIREMENTS: The Nd:YAG operates at 1.06μ and a requirement for low noise, high sense been defined. GSFC has contracted two approaches to solve the problem five elements from the periodic table (Indium, Galium, Arsenide, Phosphapproaches are: 	m using group three-
(continued on page 5)	

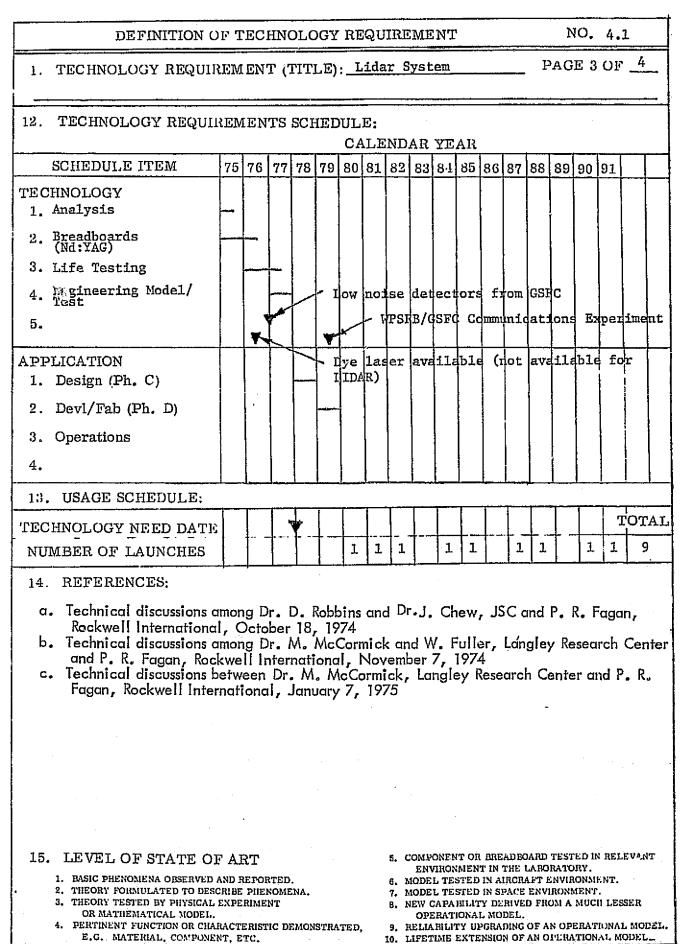
÷...,

1		* *	101	111	JTC	JGY	RE	QU	IRE	ME	NT					N	ю,	3.1	1
1.	TECHNOLOGY REQUIR	EM	EN	r (7	TT:	LE)	:		La	ser	s				þ	AG	Е 3	OF _	5
12.	TECHNOLOGY REQUU	EM	EN	TS	SCI	HED		•	ND	AR	YE	AR							
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	
	HNOLOGY -Laser Diode Breadboard Dev.				ł	RC	. cc	ntı	act	w	th	GSI	C						
2.	Life Testing			_								1							
3.	Engineering Model		****		_				-	·				-	che	i '			
4.	Joint AF/NASA communi- cations experiment (Re	ef.	1)			¥									hed Nee			meet	-
5.	Testing																		
	PLICATION ** Design (Ph. C)								TE: m:l									esul:	
2.	Devl/Fab (Ph. D)							ĺ			[1			[-	[able	
з.	Operations								fc	r a		mbl					1	e in	
4.					{	-	ļ			•						ĺ			
13	. USAGE SCHEDULE:	1	<u>L</u> ,	<u></u> _		<u>.</u>	4		L	<u>. </u>	£	!	1		J		<u>'</u>	<u>, 1</u>	
'TEC	HNOLOGY NEED DATE			•	V													TC	TAL
NU	MBER OF LAUNCHES						1	1	1					1	1	1			6
14	REFERENCES:	·••	-1																
2.	 NASA Laser Data Relay Link (LDRL) Experiment for the DoD/NASA Cooperative Space Laser Communications Test Flight, Volumes I and II, GSFC, May 1974 Technical Discussions between Dr. M. Fitzmaurice, GSFC, and P. R. Fagan, Rockwell International, Nov. 6, 1974, and Dec. 23, 1974. 																		
									•										
÷.,																			
15	LEVEL OF STATE OF	' AF	ζŢ.						5, 0	OMP	onen	TOR	ARE	ADEC	DARD	TEST	ed in	RELEV	ANT
4	 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAF E.G., MATERIAL, COMPONEN 	ND R RIBE EXPE	EPOR PHEN RIMEI	NOME NT	NA.	<u> </u>	ted,		6. M 7. M 8. N 9. R	ENV IODE IODE EW C OPE ELIA	TRON L TE: L TE: DAPA RAT BILM	MEN STED STED BILLT ONAL	T IN IN A IN SI Y DE L MO PGRA	THE IRCR PACE RIVE DEL. DING	LABOI AFT E ENVI D FRO	RATO INVIR RONM DM A	RY. ONMI 4ENT MUCI ERAT	NT.	R

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>RI. 3.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Lasers	PAGE ⁴ OF <u>5</u>
6. Rationale and Analysis – continued	<u> </u>
Estimates as of this writing is that the Nd:YAG laser with diode arra ready for use in a space communications system after T–V and vibrati of unclassified USAF and NASA space communications experiments a fore, the laser diade arrays readiness will be derived from a lesser or	on testing in the light and programs. There-
7. Technology Options - continued	
b. Lamp pumping - Fluorescence and Xenon pumping methods are availed outputs are very broadband and much energy is wasted at wavelength the pumping of the Nd:YAG. Therefore, higher energy is required to Nd:YAG output.	is which do not assist
c. Light emitting diode (LED) pumping - LED pumping has been investig Texas Instruments and have concluded that relative to laser diodes, I expensive, have lower power outputs (20 milliwatts), have more cool shorter lifetimes.	ED devices are more
The use of a laser diodé array for pumping has advantages over other Current options which are under consideration are selection of optim with current preference at 8100 A.	pumping techniques. um pumping band,
8. Technical Problems - continued	
underway at RCA under NASA contract, and at McDonnell Douglas, St. IR&D.	Louis under in-house
7. Potential Alternatives – continued	
They are capable of very high power output and have been proposed for u USAF space communications experiment (reference 1). CO2 lasers have l applications; it is not known if they have been used in spaceborne system	use in the joint NASA been used in airborne s.
<u>a na hana ana ana ana ana ana ana ana an</u>	

3. ₁₉₁

	_						<u></u>		<u> </u>													<u>_RI</u> ,		-
1.	י <u>ן</u>	TECH	NOI	٦OC	iY F	ŒQI	UIR	EMJ	EN'	г (FI'T.	ĹΕ):	;	asei	<u>,s</u>		<i>#~~~~</i>		1	PAG	E 5	OF	`5	Ļ
11.		Relat	ed T	ech	nola	ogy /	Regi	uirer	men	uts -	- co	ntini	ued							•				
œ.	1	Photo using stable in 18	tube phoi	s - totu nd la	GSI bes ong	FC h with life	as c 1 sei	contr mico	ract ondu	ted Ucto	Var or ta	ian, Irget	Pala s wh	ich c	are ru	ugge	d an	d rel	iable	, ef	fici	ent,	7	
b.	1	Photo group catic for th	3-5 on sy	i pho ster	otod ns	liode Sen	es w sitiv	hich vity	n are wil	e co II be	apak e ec	ole c pual	of hig to th	gh sp iat ol	eed f pho	respo tom	onse Ultip	for b	igh d	lata	rate	e co	mm	u
		ould b er and																nts c	ıt Laı	ngle	y Re	sea	rch	
		. *																						
																·								
•																								
					•			·																
																							•	
										·									·					
														·										
																· .						• .		
								. •																
								•					·			·.								
															1 .									
					• . •		. <i>1</i> .								÷ .	r .			· .					
	÷				• .							· ·	•			• .			 	· : ·			÷.	
																						,	• •	
					·					÷				:		1.1.1	· .							


1. TECHNOLOGY REQUIREMENT (TITLE): Lidar System PAGE 1 OF _4 2. TECHNOLOGY CATEGORY: Systems 3. OBJECTIVE/ADVANCEMENT REQUIRED: Development of space qualified system 1. CURRENT STATE OF ART: Ground to air lidar system for weather analysis at Langle Research Center. Airborne lidar being used by EPA in Nevada for pollution analysis. HAS BEEN CARRIED TO LEVEL 5. DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: a. a. Measure backcatter from aerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. b. Differential dosorption techniques with require two or three different frequencies, and comparison of absorption at each frequency to determine densities. c. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. d. Measure dosorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim try interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON: Y PRE-A, A, B, C, G RATIONALE AND ANALYSIS: a. Lasers are capable of interesto the eaerth scientist, b.		
 TECHNOLOGY CATEGORY:		DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>RI, 4.</u>
 OBJECTIVE/ADVANCEMENT REQUIRED: Development of space qualified system CURRENT STATE OF ART: Ground to air lidar system for weather analysis at Langle Research Center. Airborne lidar being used by EPA in Nevada for pollution analysis. HAS BEEN CARRIED TO LEVEL DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: Measure backscatter from aerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. Differential absorption techniques which require two or three different frequencies, and comparison of obsorption te each frequency to determine densities. Exciting molecules of their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above.	1. TH	ECHNOLOGY REQUIREMENT (TITLE): Lidar System PAGE 1 OF 4
 CURRENT STATE OF ART: <u>Ground to air lidar system for weather analysis at Langle</u> Research Center. Airborne lidar being used by EPA in Nevada for pollution analysis. HAS BEEN CARRIED TO LEVEL DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: Measure backscatter from aerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. Differential absorption techniques which require two or three different frequencies, and comparison of absorption at each frequency to determine densities. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above.	2. TE	CHNOLOGY CATEGORY: Systems
Research Center. Airborne lidar being used by EPA in Nevada for pollution analysis. HAS BEEN CARRIED TO LEVEL 5. DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: a. Measure backscatter from cerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. b. Differential absorption techniques which require two or three different frequencies, and comparison of absorption of each frequency to determine densities. c. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. d. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON:	3. O	BJECTIVE/ADVANCEMENT REQUIRED: <u>Development of space qualified system</u>
Research Center. Airborne lidar being used by EPA in Nevada for pollution analysis. HAS BEEN CARRIED TO LEVEL 5. DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: a. Measure backscatter from cerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. b. Differential absorption techniques which require two or three different frequencies, and comparison of absorption of each frequency to determine densities. c. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. d. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON:		UDENTE STEATER AND ADD. Ground to gir lidge system for weather analysis at langles
 DESCRIPTION OF TECHNOLOGY The defined potential lidar techniques are as follows: Measure backscatter from aerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. Differential absorption techniques which require two or three different frequencies, and comparison of absorption at each frequency to determine densities. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above.		
 The defined potential lidar techniques are as follows: a. Measure backscatter from aerosols or Rayleigh phenomena from molecular species which will require a fixed frequency at high power. b. Differential absorption of each frequency to determine densities. c. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. d. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON: IN PRE-A, □ A, □ B, □ C, P/L REQUIREMENTS BASED ON: IN PRE-A, □ A, □ B, □ C, P/L REQUIREMENTS BASED ON: IN PRE-A, □ A, □ B, □ C, Stability, tripling, or tuning techniques will permit analysis of atmospheres at absorpt or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of X⁴ and JSC is particularly interested in UV frequencies at 0.255 μ. LaRC has as its objectives definition of cloud heig⁽¹⁾ and its areal extent, penetration of very thin cloud layers, and analysis of earth mixing layers. They feel that attaining a wavelength of 0.53 μ for analysis of acrosols, molecules, and zone wavelopment at GSFC (See R) ← 1.06 μ are also or a discusted. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd:YAG laser. The Nd:YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode p		HAS BEEN CARRIED TO LEVEL 4
 which will require a fixed frequency at high power. b. Differential absorption techniques which require two or three different frequencies, and comparison of absorption at each frequency to determine densities. c. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser technique. d. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest. In discussion with NASA personnel at Langley Research Center and Johnson Space Center prim ry interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C, G RATIONALE AND ANALYSIS: a. Lasers are capable of producing coherent, high power, very narrow band energy. Us doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorp or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of X⁴ and JSC is particularly interested in UV frequencies at 0.265 µ. LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd:YAG laser. The Nd:YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diade pumping and high sensitivity, low noise olid state detectors for 1.06 µ are also under development at GSFC (See RI, C 1). It is likely that the success of the Nd:YAG space experiments wi		
 prim ry interest was expressed in (a) and (b) above. (continued on page 4) P/L REQUIREMENTS BASED ON: PRE-A, A, B, C, 6 RATIONALE AND ANALYSIS: a. Lasers are capable of producing coherent, high power, very narrow band energy. Us doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorp or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of λ⁴ and JSC is particularly interested in UV frequencies at 0.265 μ. LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd:YAG laser. The Nd:YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode pumping and high sensitivity, low noise olid state detectors for 1.06 μ are also under development at GSFC (See RI, the lidar system and a lidar model tested in an aircraft e vironment appears to be adequate to satisfy NASA requirements, however, i a dye laser or other laser is used a level 7 would be required. 	b. c. ai te d.	Differential absorption techniques which require two or three different frequencies, and comparison of absorption at each frequency to determine densities. Exciting molecules at their resonant frequencies and analyzing the light amplitudes and frequency shifts given off to determine composition; this may require a dye laser echnique. Measure absorption over a path from a primary satellite to a subsatellite or ground station which will require a dye laser tunable to a specific wavelength of interest.
 P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C, 6 RATIONALE AND ANALYSIS: a. Lasers are capable of producing coherent, high power, very narrow band energy. Us doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorp or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of X⁴ and JSC is particularly interested in UV frequencies at 0.265 μ. LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd: YAG laser. The Nd: YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode pumping and high sensitivity, low noise olid state detectors for 1.06 μ are also under development at GSFC (See RI, to 1). It is likely that the success of the Nd: YAG space experiments will be noted and technology transferred to the lidar system and a lidar model tested in an aircraft e Vironment appears to be adequate to satisfy NASA requirements, however, i a dye laser or other laser is used a level 7 would be required. 		ry interest was expressed in (a) and (b) above.
 6. RATIONALE AND ANALYSIS: a. Lasers are capable of producing coherent, high power, very narrow band energy. Us doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorp or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of λ⁴ and JSC is particularly interested in UV frequencies at 0.265 μ. LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd:YAG laser. The Nd:YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode pumping and high sensitivity, low noise olid state detectors for 1.06 μ are also under development at GSFC (See RI, to 1). It is likely that the success of the Nd:YAG space experiments will be noted and technology transferred to the lidar system and a lidar model tested in an aircraft e Vironment appears to be adequate to satisfy NASA requirements, however, i a dye laser or other laser is used a level 7 would be required. 		
 a. Lasers are capable of producing coherent, high power, very narrow band energy. Us doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorp or resonant frequencies of interest to the earth scientist. b. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). c. JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of X⁴ and JSC is particularly interested in UV frequencies at 0.265 μ. LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. d. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd:YAG laser. The Nd:YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode pumping and high sensitivity, low noise olid state detectors for 1.06 μ are also under development at GSFC (See RI, the 1.00 μ are also under development at GSFC (See RI, the 1.00 μ are also under developments will be noted and technology transferred to the lidar system and a lidar model tested in an aircraft e vironment appears to be adequate to satisfy NASA requirements, however, i a dye laser or other laser is used a level 7 would be required. 	6. RA	
TO BE CARRIED TO LEVEL6	b. c. d.	doubling, tripling, or tuning techniques will permit analysis of atmospheres at absorption resonant frequencies of interest to the earth scientist. The lidar system would be used with ST-23-S ATL P/L No. 5 (pallet only). JSC is interested in analysis of the backscatter from aerosols or Rayleigh phenomena from molecular species. Backscatter is a function of χ^4 and JSC is particularly interested in UV frequencies at 0.265μ . LaRC has as its objectives definition of cloud height and its areal extent, penetration of very thin cloud layers, and analysis of aerosols, molecules, and ozone is adequate. The only laser available which satisfies the lidar system requirements and is space ruggedized is the Nd: YAG laser. The Nd: YAG was developed by WPAFB and a cooperative effort is underway with GSFC to exploit the laser in a space communications system. Laser diode pumping and high sensitivity, low noise olid state detectors for 1.06 μ are also under development at GSFC (See RI, \approx 1). It is likely that the success of the Nd: YAG space experiments will be noted and technology transferred to the lidar system and a lidar model tested in an aircraft ervironment appears to be adequate to satisfy NASA requirements, however, if
	•	
	<u> </u>	

.

1

PRICEDONG PAGE BLANK NOT FILMED

	DEFINITION OF TECHNOLOGY	Y REQUIREMENT	NO. RI, 4.1
1. Ť	TECHNOLOGY REQUIREMENT(TITLE): _	Lidar System	PAGE 2 OF <u>4</u>
 7. Т	TECHNOLOGY OPTIONS:		
а. b. c. d. e.	He:Ne laser Nd:YAG laser CO2 laser Dye laser Ruby laser		
8. 5	TECHNICAL PROBLEMS:		
а. b. c.	He:Ne laser – the He:Ne has been space Nd:YAG and has too low an output power Nd:YAG laser – 1/10 joule is off the shel boarded. The lidar system will require 1 CO ₂ laser – this laser has too long a wave both doubled or tripled. (continued on	r. If, with an output powe joule output which is t elength to be used for l	er of 1/2 joule bread- heoretically feasible.
The	POTENTIAL ALTERNATIVES; are appears to be no potential alternatives t wavelengths of interest should be accompli	to the laser; however, i ished.	more firm definition of
	LANNED PROGRAMS OR UNPERTURBE		
a. b.	Dr. Harry S. Melfi (Remote Sensing Brand borne lidar system for pollution analysis Dr. Pat McCormick (Langley Research Ce lidar system and a Nd:glass laser for weat	enter) is ground testing	
	(continued on page 4)		detectors: 7 PERTURBED LEVEL
11.	RELATED TECHNOLOGY REQUIREME	INTS:	. <u></u>
а. Ь. с.	Laser pointing capability	ored, but because of a I. Also JSC would like an output around 1000	, to analyze the vacuum
······	171		

.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>RI. 4</u> .
1.	TECHNOLOGY REQUIREMENT (TITLE): Lidar System PAGE 4 OF 4
5.	Description of Technology - continued
JSC 0,2	desires to use a Nd:YAG laser with output at 1.06 μ , doubled to 0.53 μ and tripled to 65 μ . LaRC is satisfied with the output of 1.06 μ doubled to 0.53 μ .
bea	defines the desired Nd:YAG output as rol joule, pulsewidth of 20 nanoseconds, and m divergence of 2 milliradians, which varies from LaRC requirements only in beam argence of one milliradian.
8.	Technical Problems – continued
d.	Dye laser - JSC has defined a potential two-stage dye laser technique using flash lamp pumping. Dye laser state of the art in wavelength generation is 0.25μ to 1.5μ with continuous tuning over the full range. A bandwidth of 0.1 Å is available now; however, 0.01 Å bandwidth has been demonstrated in the laboratory. JSC has stated its lidar bandwidth requirement as 10^{-4} Å; therefore, more development of the dye laser is require
e.	Ruby laser - a 48-inch ruby laser doubled to 0.3472μ is currently being used at LaRC for weather analysis; however, the ruby laser cannot meet the repet" ion rate of 10 cycles/se
f.	that the Nd: YAG is capable of. Detectors - The Nd: YAG appears to be the primary lidar laser candidate; however, at th 1.06 μ there is high internal noise in amplified solid state silicon diodes. A program is underway at GSFC in developing periodic table group 3-5 detectors with low internal
g.	noise at 1.06 μ . See RI, 3.1. Photomultipliers are adequate at shorter wavelengths. Safety requirements will limit laser beam intensity on the ground. The LaRC concept results in a beam intensity on the ground of 8 x 10 ⁻¹⁰ joules/cm ² , too low to be a hazard
10.	Planned Programs or Unperturbed Technology Advancement – continued
c.	Nd:YAG laser diode pumping and low internal noise, high sensitivity detectors responsiv at 1.06% are under development by Dr. M. Fitzmaurice at GSFC.
d.	Nd:YAG iaser for communications under development at WPAFB by Dr. Dale Barry, Program Technical Director.
e.	Dye laser being built at LaRC for airborne lidar research available 1976
11.	Related Technology Requirements – continued
e,	Laser pumping techniques using laser diodes are needed and are under development by GSFC.

<u> </u>	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>RI, 4.2</u>
i .	TECHNOLOGY REQUIREMENT (TITLE): Nephelometer PAGE 1 OF 4
3.	TECHNOLOGY CATEGORY: <u>Systems</u> OBJECTIVE/ADVANCEMENT REQUIRED: Development of a space rated scanning /stem with active light source.
—— 	CURRENT STATE OF ART: LED and laser nephelometers breadboarded and some testing
<u>for</u>	Pioneer Venus 1978 Flyby. JPL has breadboarded a model more specific to requirements ein. HAS BEEN CARRIED TO LEVEL4*
5.	DESCRIPTION OF TECHNOLOGY
obs use cor	e size and distribution of atmospheric particles can be determined using a detector to serve the sun through a planetary atmosphere. Alternatively, an active source can be ed for an in situ measurements. The size and distribution of particles and their nplex refractive index are determined from examise of algorithms with detector signa el as primary input.
The	e minimum particle radius which can be detected is approximately equal to 1 μ m.
sity a s	e detector is moved through an angle on each side of the sun and detector signal inten- y is collected. Optimum scan has been determined to be $\lesssim 10$ deg. off solar center or can of $\lesssim 20$ deg. conically. The angular resolution has a major impact upon determin- on of particle size distribution. (Continued on page 4) P/L REQUIREMENTS BASED ON: \boxtimes PRE-A, \square A, \square B, \square C/I
6	RATIONALE AND ANALYSIS:
a.	Selection of active and passive mode and particular source to be used is function of opacity of planets atmosphere.
b.	PL-11-A – Pioneer Saturn/Uranus Flyby PL-13-A – Pioneer Jupiter Probe PL-15-A – Uranus Probe/Neptune Flyby PL-22-A – Pioneer Saturn Probe
с.	Nephelometer can determine atmosphere particle size, and distribution, and chemical composition.
d.	Flight testing required with some results based upon 1978 Pioneer Venus Flyby nephelometer success to derive new capability from lesser model.
	JPL has breadboarded a scanning nephelometer with laser output at 6328 A. No testing accomplished as yet.

THE REPORT OF THE PARTY OF THE

	DEFINITION OF TECHNOLOGY REQUIRED	
1. 5	TECHNOLOGY REQUIREMENT(TITLE): <u>Nephelomet</u>	er PAGE 2 OF <u>4</u>
	TECHNOLOGY OPTIONS:	
a, F	Passive system can be used without laser source in atmos	pheres which are not opaque.
b. I	Light emitting diodes or lasers can be used for source in	opaque atmospheres.
V	System can be mechanically scanned or use CCD's and evariations. For spectral variations, scanning can be passive instrument), or a set of sources or a tunable	performed using a set of filters
ð.	TECHNICAL PROBLEMS:	*******
	Software presently available with small study to define atmosphere	implications of planetary
b.	Effects of high nuclear radiaton on detectors can be ha RI 2.15 discusses radiation effects on semi-conductors. (continued on page 4)	ndled by shielding if a problem. Also, LaRC is
9. 1	POTENTIAL ALTERNATIVES:	
Non	e	
10.1	PLANNED PROGRAMS OR UNPERTURBED TECHNO	LOGY ADVANCEMENT:
The Venu will	1978 Pioneer Venus Flyby will use both and LED and las us atmosphere. Some technology transfer to RI, 4.2 is p be used on the Venus probe. A breadboard model has b versity of Colorado.	er nephelometer to investigate ossible., The LED nephelometer
	(continued on page 4) EXPE	TED UNPERTURBED LEVEL
11.	RELATED TECHNOLOGY REQUIREMENTS:	
Unkr	nown	
• •	$(-2)^{2} e^{-i\omega t} = (-1)^{2} e^{-i\omega t} e^{-$	
·		

DEFINITION O	F T	EC.	HNG	DLC	GY	RE	ເຊບ	IRI	CME	NT	, ,				N	IO _R	1,	4.2	
1. TECHNOLOGY REQUIR Nephelometer	EM	EN'	Γ ('	ri Ti	LE)	;								4	٩G	E 3	OF		4
12. TECHNOLOGY REQUI	₹EM	EN	TS	SCI	IED			ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Laboratory Model (Built)																			
 Construct flight & test models Life Testing/ Evaluation 4. 									cre stu	ded tio die ect	un nai s a ly.	der y F re J	JP und fun PL	L D ing ded has	ire by re	cto The NA que	y w rs ore SA ste	Dis tic	ľ,
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4.									sch nee Ph. duc	eđu Is C ed	le dat & E	nee e.) sc tot	ts hed	tec	nno ca				
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE NUMBER OF LAUNCHES			 		₩_	1	 	 		2		2	+ -		+		r	 -	'AL 6
NUMBER OF LAUNCHES 1 1 1 2 2 6 14 REFERENCES: 1. Discussion among R. Jackson and L. Polaski, NASA-Ames Research Center and E. Kraly, Rockwell International, 15 Nov. 1974 6 2. Discussion between A. Fymat, Jet Propulsion Laboratories, and P. R. Fagan, Rockwell International, 18 January 1975																			
						·													
 LEVEL OF STATE OF BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAF E.G., MATERIAL, COMPONEN 	ND R RIBE EXPE RACTE	epor Phen Rimei Crist	OME NT	NA.	STRA	TED,		6. b 7. b 8. b 9. f	ENV IODE IODE IEW C OPE	IRON L TE: L TE: APA RATI BILIT	MEN STED STED HILLT ONAL	T IN 1 IN AI IN 31 Y DE MOI GRAI	THE I RCRA PACE RIVEI DEL. DING	LABO AFT E ENVI D FRO OF A	RATO NVIR RONA DM A	RY. ONMH IENT MUCI ERATI	I LES	SER , MOI	del.

÷

۹.,

1

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>RI. 4.2</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Nephelometer	PAGE ⁴ OF <u>4</u>

5. Description of Technology - continued

An angular resolution of 15 arc minutes or less has produced the best theoretical and experimental results. Fairly good results can be obtained up to 45 arc minutes, but above 45 arc minutes results are very bad. Scanning can be accomplished either mechanically or electronically using CCD's.

The chemical content is inferred from the refractive index and its spectrum; however, this will require simultaneous detector scanning at two or more different wavelengths. The wavelengths to which the detectors respond are selected on the basis of $\lambda_2 \neq \lambda_1$ where λ_1 is selected to define particle size. The frequency scan can be accomplished using either a set of sources (or filters) or a tunable laser.

The algorithm used is to determine size distribution at λ_1 , independent of refractive index and of distribution model, and refractive index spectrum using a set of λ_2 's. Additionally by scanning over the 20-degree cone, the horizontal homogeneity of the planet's atmosphere can be determined and maps of size, distribution, and chemical composition made.

A passive nephelometer cannot be used if the atmospheric thickness or composition is such that the sun cannot be seen by the detectors. Therefore, a source of light is needed to activate the detectors. The laser and the light emitting diode, LED can both be used in this application, which is most appropriate to the Earth, Jupiter and Saturn atmospheres. JPL has breadboarded an active scanning model with laser and output at 6328 A.

8, Technical Problems - Continued

- b. investigation nuclear radiation effects on CCD's at Langley Research Center.
- c. A space rated laser will be required if to be used. Technology transfer of the Nd: YAG laser developed by WPAFB and to be used in RI 3.1 and RI, 4.1 is possible

10. Planned Programs or Unperturbed Technology Advancement - continued

The laser nephelometer is a working breadboard and has not been flown by TRW. It will be used as part of the Venus orbiter model.

The LED has advantages over the laser technique in lower weight and power requirement.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-4.	3
1. TECHNOLOGY REQUIREMENT (TITLE): <u>MULTI-FREQUENCY</u> PAGE 1 OF WIDEBAND SYNTHETIC AFERTURE RADAR	
2. TECHNOLOGY CATEGORY: Systems	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide a three-frequency synthetic aperture radar for space operation.	<u> </u>
4. CURRENT STATE OF ART:	
aircraft, but not on spacecraft.	
HAS BEEN CARRIED TO LEVE:	<u></u>
 5. DESCRIPTION OF TECHNOLOGY (a) Ground resolution requirement is 15 meters (50 ft.); should have variable resolution capability. (b) Systems will operate in X,K and L bands, 2 polarizations. (c) High reliability under actual operating conditions. (d) Swath-widths should be compatible with daily global coverage in meteorological applications. 	.e
The need to on-board compensate for the doppler effect due to cross-track velocity component of earth rotation is significant at orbited altitudes. System techniques are not yet developed to accomplish this compensation.	C/I
6. RATIONALE AND ANALYSIS:	
 (a) The basis for this radar system requirement is the requirement in the Earth and Ocean Physics and Earth Observation disciplines, for mapping topographic features, geological features, hidden faults, near surface teathermal mapping and oil and mineral resources location. (b) The specific payload that will utilize this system is OP-02S, "Multi-frequency Radar Land Imagery," and the Meteorological Radar Facility, EO (c) Use of synthetic aperture radar from orbital altitudes will afford faster data acquisition and simplified composition of maps of large 	-18
areas of the globe. (d) This technological advance will require testing of a simplified system from orbital altitudes. A single frequency system (e.g. 10 GHz) with less stringent resolution capabilities (e.g. 60 meters) will be adequate to test the adequacy of this system.	

.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.GE-4.3
1. TECHNOLOGY REQUIREMENT(TITLE): <u>MULTI-FREQUENCY</u> WIDEBAND SYNTHETIC APERTURE RADAR	PAGE 2 OF <u>3</u>
7. TECHNOLOGY OPTIONS:	
 (a) Compensation for cross-track velocity component of earth rough approached through proper programming of the receiver local electronic shifting of the beam to the appropriate angle control to the latitude of the sub-satellite point, or through the reduction process. (b) Use of solid state transmitter/receiver/phase shifter ior earray element or group of elements will increase system relation. (c) Use of two antennas instead of one for each individual free. 	ocal oscillator, orresponding ground data each antenna liability.
be explored. (d) Both pulse-compression techniques and uncompressed techniques	ies should
 (c) Some degree of on-board preprocessing of the radar data sho to reduce load on the data link. 	
 8. TECHNICAL PROBLEMS: (a) SAR requires relatively narrow swath widths, requiring many passes to complete a given large area map. (b) Wide signal bandwidth complicates recording and transmission (c) Individual transmitter/receiver/phase shifter per array elegincrease system cost. (d) A fairly high degree of spacecraft attitude stability is relateral and angular. 	on. ement may
9. POTENTIAL ALTERNATIVES:	
Optical sensors constitute a potential alternative, however, th the all weather capability of the radar system.	ey do not offer
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA	NCEMENT:
Expect JPL to request Goodyear to examine feasibility of clutter to simplify data processing of images involving cross track vel component. (Clutter lock must operate over water at low sea st Texas Instrument has development program for solid-state TX/RX/ element. Westinghouse & Goodyear proposed 2-frequency SAR for Westinghouse has performed a study of SAR for EXPECTED UNPER	er lock LO Locity tate conditions). /PS module EOS Program
11. RELATED TECHNOLOGY REQUIREMENTS:	
(a) Techniques of ocean surface truth using aircraft radar.(b) Wideband transmission and recording.	
 (b) wideband transmission and recording. (c) Precision pointing of phased arrays (e.g. Meteorological R one milliradian pointing accuracy, Shuttle Imaging Microwar requires 1.7 milliradar pointing accuracy). 	adar requires ve System

DEFINITION C)F]	EC	HNC	DLC	OGY	RE	ຊູບ	IRE	ME	NT					N	10,	GÉ-	4.3	
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Multifrequency</u> PAGE 3 OF <u>3</u> Wideband Synthetic Aperture Radar														3					
12. TECHNOLOGY REQUI	REN	ŒN	TS	SCI	IED			ND.	AR	YE	AR								
SCHED: LE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	_	
TECHNOLOGY																			
1. Math. modeling	_																}		
2. TX/RS/PS element design	-																		
³ . System model design		-	<u> </u>																
4. Ground Tests			-											İ					
5. Space Tests				_															
APPLICATION					<u> </u>												1		
1. Design (Ph. C)				-	+-										ĺ				
2. Devl/Fab (Ph. D)				ļ		-													
3. Operations		ļ	1							ļ			ļ				-	4	
4.	ĺ			.															
13. USAGE SCHEDULE:	- -			<u>.</u>				*******											
TECHNOLOGY NEED DATE					Y													roi	AI
NUMBER OF LAUNCHES					T	2	2	2	2	1	1	1	2	2	2	1	1	. 1	9
14. REFERENCES:			<u> </u>	_ <u>_</u>	1.	- !	- -	_1		<u> </u>	<u>_</u> .	- I - A - A							
1) GE-Utica Study o	r X	Bar	rg F	has	sed	arr	ay	wit	h e	eler	neni	t m	odu	1es	•				
2) Final Report - S				Syı	ithe	eic	Ape	ertu	ıre	Rac	lar	Pi	lot	St	udy				
		l1/7 itre		NAS	35-2	2195	1												
		GE GE		1			الأحريم.'												
		Wes Syst								orp.	•								
						÷											.'		۰.
15. LEVEL OF STATE O	F A	\mathbf{RT}						5. C						DARD			N REI	LEVAI	T
 LASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL, 	CRIBE EXPE	PILE	NOME	-				7. 1	NODE NODE	l te l te capa	sted Sted INLII	IN A IN S IY DE	IRCR PACE	AFT ENV DFR	envii Iron	RONM	ENT. F. CH LE		
4. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE	ract		C DI	EMON	ISTRA	TED.			RELL	BILI	TY U	PGRA	DING	OF A				L MO	

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE-4.4</u>
1. TE(CHNOLOGY REQUIREM .NT (TITLE): <u>Wave Height Altimeter</u> PAGE 1 OF <u>4</u>
2. TEC	CHNOLOGY CATEGORY: Systems
3 OB	JECTIVE/ADVANCEMENT REQUIRED: Obtain ocean wave height measurement
	h precision of 0.5 meters or 10% (Min Wave 1M - Max Wave 20M)
	(25% min.wave height of 2M)
4. CU	RRENT STATE OF ART: Designs for GEOS-C and ATS-F have 2 to 3 meter
pre	cision as a goal (see Ref. 1); Skylab approximate precision of 1.5 to 2
	ers. HAS BEEN CARRIED TO LEVEL 3
5. DE	SCRIPTION OF TECHNOLOGY
(a)	Earth and Ocean Physics investigations of wave height requires precision of 0.5 meter or better.
(b)	
(c)	
	P/L REQUIREMENTS BASED ON: 🔀 PRE-A, □ A, □ B, □ C/
	TIONALE AND ANALYSIS:
(a) (b) (c) (d)	Present goal for topography, Sea Sat A, is 0.1 meter. Wave height precision must be less stringent due to difficulty in measuring with short integration time and large signal amplitude fluctuations; goal set at better than 0.5 meters precision or ±10% Parameter of interest is wave height distribution (see reference 3) Seasat B (OF-07-A) is the principal beneficiary of this technological advancement. Information effectively usable by Coast Guard, Corp of Engineers, Off- Shore Nuclear Power Stations, general shipping.
	parameters.
•	
PRECE	DING PAGE BLANK NOT FILMED TO BE CARRIED TO LEVEL

1

DEFINITION OF TECH	NOLOGY REQUIREMENT	NO. GE-4.4
1. TECHNOLOGY REQUIREMENT(T	[TLE): <u>Wave Height Altimeter</u>	PAGE 2 OF <u>4</u>
7. TECHNOLOGY OPTIONS:	······································	
achieve higher precision b shorter pulses, narrower b extensive signal processin tude fluctuations. These the higher level of perfor (b) Long Pulse Scatterometer - (milli-seconds); further e	uses averaging of signals oy 1 xtensive investigations would b we height data; would be lower p	peak power and g, and more and pulse ampli- sts to acnieve ong pulses e required to
8. TECHNICAL PROBLEMS:		<u> </u>
large fluctuation of signa frequency than in current of shorter pulses, higher	rious jitter in sample/hold cir amplitude; use of higher puls systems is suggested to prevent peak power, and narrower beam a al; signal processing becomes m by wide band recording.	e repetition this, at cost ntenna with
9. POTENTIAL ALTERNATIVES:		
Dual Frequency Scatterometer (r restricted to aircraft use.	ef. 2) requires further conside	rations, concept
		· · · · · ·
10. PLANNED PROGRAMS OR UNPE	RTURBED TECHNOLOGY ADVAN	CEMENT:
	by technology surveys under AA to 5 cm for topographic applic	
	EXPECTED UNPERI	TURBED LEVEL 5
cycle, s (b) long pul Antenna Pointing Control: accu Energy Storage: for short puls	t pulse system, higher peak pow whorter pulses se operation (1 to 4 msec) with	1 50% duty cycle. 2 to provide 2 to
	7	

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. <u>GE 4.4</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Nave Height Altimeter</u> PAGE 3 OF <u>4</u>

8. TECHNICAL PROBLEMS (Continued)

- (b) Effects of adverse weather conditions on the measurements.
- (c) Tube development and/or modifications required.
- (d) Precise orbit determination required for topography.
- (e) Use of solid status X mitters secondary now-good for shuttle increase reliability, reduce power consumption

11. RELATED TECHNOLOGY REQUIREMENTS

On board data processing techniques may be employed to reduce raw data transmission/ground processing and to provide real-time data on sea-state.

The development of solid state transmitters will permit their utilization in this application, to increase reliability, reduce power consumption.

Digital pulse compression might provide a more flexible means of adapting the system when optimizing for Sea-state and altitude measurements.

DEFINITION	OF I	EC.	HNO	DI	OGY	RE	ເວັດ	IRE	ME	ГИЗ				<u>_</u>	1	، 0	GE	4.4	
1. TECHNOLOGY REQUI	REM	EN'	т (riT.	LE)	:_W	ave	He	igh	it A	lti	.me i	er	I	PAG	E4	OI	P	4
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	IEI			ND.	AR	YE	AR					- 11=		-	
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																	ł		
1. Analyses	+																		
2. Ground Tests	-	-																	•
3. Model Design, Fab.			┝━						ļ										
4. Aircraft Tests		Į							ļ										
5.																Į		1	
APPLICATION 1. Design (Pn. C)		 	 			 													
2. Devl/Fab (Ph. D)						-		-											
3. Operations	ļ					ĺ.				ļ	 	<u> </u>	ļ			ſ			
4.	Ì		l		ł	Į				ĺ		ĺ	ļ]			-	
13. USAGE SCHEDULE:	_l	<u> </u>	<u> </u>	<u> </u>		L		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>
		1	Τ	1	[Τ	1	Τ		T	1	T		1-	1	1		TOT	A.T.
TECHNOLOGY NEED DATI NUMBER OF LAUNCHES	<u>s</u>				$\overline{\uparrow}$				<u> </u>	┼─	+	+	┥╌╴	+	+			+	 L
		<u> </u>	1		L			<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>		
14 REFERENCES:																			
1. "The Space App Section 4.	lica	tio	ıs I	?ro	gra	n 19	974'	',]	NAS.	A 0	ffi	ce	of	Pub	lic	ati	ons	,	
2. Weissman, David Measurement of Propagation, Se	0ce	an ĭ	Javo	e H	eigl	1t"	, I	EEE	Tr	ans	act	rom i.on	etr s o	у А n А	pp1 nte	ied nna	to s_a	nd_	3
3. Walsh, Edward . Vol. 9, #8-9, p											met	er	Dat	a",	Ra	dio	Sc	ien	зe,
4. McGoogan, J. T	•, "	Pre	cis	ion	Sa	tel.	lit	e A	lti	met	ry"	•		• •					
· · · · · · · · · · · · · · · · · · ·					·														
15. LEVEL OF STATE O	F AJ	RT				•		6. C						ARD LARO			I REI	EVAN.	T
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAI OR MATHEMATICAL MODEL PERTINENT FUNCTION OR CHI 	CRIBE EXPE	PHER	NOME	NA.	07573	#D.5		7. N 8. N	IODE IODE IEW C OPE	L TE L TE CAPA CRAT	STED STED NILIT	IN A IN SI Y DE L MOI	RCR PACE RIVE DEL	AFT E ENVI D FRO	ENVIR RONN DM A	ONM IENT MUC	H LES	ser L Moi	EL
E,G., MATERIAL, COMPONI	INT, E	TC.	10,01		ATTA	.teD,		9, F 10, I	as li la Lifet	IME	EXTE	NSIO	N OF	AN O	PERA	TION	AL M	ODEL	, LL 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE 4.5</u>
1.	TECHNOLOGY REQUIREMENT (TITLE): <u>TRANSMITTER/COUPLER</u> PAGE 1 OF <u>5</u> SYSTEM
2.	TECHNOLOGY CATEGORY:
	OBJECTIVE/ADVANCEMENT REQUIRED: HIGH POWER TRANSMISSION THROUGH
	CURRENT STATE OF ART: <u>HAVE FLOWN AIRCRAFT AND SPACECRAFT WITH ANTENNAS</u> THAT ARE SHORT RELATIVE TO TRANSMITTED WAVELENGTH. POWER LEVELS USED WERE LOW COMPARED WITH THE SUBJECT REQUIREMENTS. HAS BEEN CARRIED TO LEVEL 5
T a <u>F</u> A r p	DESCRIPTION OF TECHNOLOGYChe requirements for transmission through the specified 330 meter long dipoleEntenna are as follows:MAVELENGTH (M)ANTENNA L./WAVELENGTH1KW300 Hz to 0.2 MHz10° to 15000.00033 to .2210KW0.2 MHz to 2.0 MHz1500 to 1500.2 to 2.210KW2.0 MHz to 20.0 MHz150 to 152.2 to 20.2Automatic antenna tuning devices for application to antenna length/wavelength catios down to 0.0003, and power levels up to 10 KW need to be developed. The present state of the art is exemplified by H.F. antenna installations on 707 type aircraft. Operation is in the 2-30 MHz region, and the antenna is a 9'
a a N	boom mounted near the tip of the vertical stabilizer. This works against the dircraft fuselage to form an asymmetrically fed dipole. The reactance characteristics are determined by the short portion (boom), leading to high capacteristics of P/L REQUIREMENTS BASED ON: P/L
2 . 3	(A) The R.F. frequencies and power levels listed in (5) above are those that are specified to induce the plasma excitation and generation of plasmic waves required by the Atmospheric and Space Physics Experiment. (See attached rationale description).
-	(B) The benefitting payload is AP-06S "Atmospheric, Magnetospheric Plasmas in Space" (AMPS).
1	(C) The development of adequate tuning devices for the antenna is essential to the ability to transmit the required power levels and to the prevention of system electrical breakdown.
(5	(D) Due to the difficulty of physically simulating the pertinent characteristi of the space environment, it is recommended that a simplified space test of a scaled-down model be conducted. This may involve a brief test on one of the Arobee rocket flights.

1. TECHNOLOGY REQUIREMENT (TITLE): Transmitter/Coupler Sys.PAGE 2 OF 5

5. DESCRIPTION OF TECHNOLOGY (Continued)

ac tive reactances. Impedance matching is accomplished by an automatic tuner, located in the stabilizer, which senses the mismatch and drives it out. All components are designed for minimum loss and relatively good efficiencies are realized. The transmitter powe is 50 watts, and voltage breakdown is not a problem.

The Alouette-2 satellite topside sounder operates in a wider frequency band. The sounder sweeps from 0.2 to 14.0 MHz once every 30 seconds. It provides an average pulse power of 300 watts at a PRF of 30 cycles per second and a pulse width of 100 sec. The apogee and perigee of the satellite are 2982 km and 502 km, respectively.

6. RATIONALE AND ANALYSIS: (Continued)

(A) Antenna properties are determined by their dimensions in wavelengths. When these are very small, the impedance and power handling properties become limiting factors.

For instance, one of the antennas under consideration is a dipole 330 meters in length, required to operate under the extreme conditions of:

1.	Frequency	300 Hz
2.	Power	1 KW

6

At this frequency the wavelength is 10° meters, and the dipole is 0.00033 wavelengths long. The radiation resistance is 0.002 ohms. The reactance depends upon the conductor diameter; but in any event is several thousand ohms capacitive. The significance of these numbers may be appreciated by considering that, for reasonable power transfer from the transmitter to free space via the entenna the latter must have impedance properties comparable to the transmitter. This is in the order of $50 + >j_0$ ohms; the tremendous disparity requires a tuning device which matches the impedances.

The ohmic losses in the antenna and tuning device will be large in comparison to the radiation resistance. Since the efficiency of the system is given by the ratio of radiation resistance to total resistance, the radiated power will be only a fraction of one percent of the total available. The rest is dissipated as heat. Moreover the system Q, representing the ratio of stored energy to energy dissipated is extremely large which means that the bandwidth is extremely narrow. This will be affected by the impedance change resulting from ionized sheaths which may form about the antenna due to a potential difference between it and any neutral plasma. The sheath structure depends upon antenna voltage, orientation, velocity and the temperature of the ambient electrons and ions.

Extremely high voltages will appear in the tuning system, due to its high Q, for moderate powers.

NO. <u>GE 4.5</u>

1. TECHNOLOGY REQUIREMENT (TITLE): Transmitter Coupler Sys. PAGE 3 OF 5

In the event that all of the power could be transferred to the dipole, another voltage problem may arise. The periodic charge accumulation at the dipole tips is very large, being limited only by the small capacity of the tips. Thus, in the presence of an ionized medium, such as a plasma, voltage breakdown may occur.

In any case, the current flow must be balanced in order that the dipole radiation pattern may be realized without degradation. This is readily accomplished by connecting the dipole to the transmitter by a balun. This is a simple network which goes from terminals which are <u>balanced</u> to ground (dipole) to <u>unbalanced</u> terminals (transmitter).

In order to place the problems mentioned above in perspective it is instructive to consider the ideal case, in which the dipole would be one-half wave long. The radiation resistance in that ideal case is 73 ohms, and the reactance is 43 ohms inductive. This may readily be matched to the transmitter with essentially 100% efficiency. For the 330 meter dipole, the corresponding frequency is 0.455 MHz; here the specified power is 10 K.W. The potential gradient at the dipole tips is then 2800 volts per centimeter, assuming the use of #4 wire. For orbits in the 200-300 N.M. range the pressure is sufficiently low that voltage breakdown may not be a problem.

At the upper end of the specified frequency band, 20 MHz, the dipole is 22λ long. This produces a multilobed pattern, and high impedance values which again bring up the problem of realizing a satisfactory match to the transmitter.

	DEFINITION	OF TECHNOLO	GY REQUIREMENT	NO. GE 4.5
1. T EC	HNOLOGY REQUII	REMENT(TITLE)	: <u>TRANSMITTER/COUPLE</u> SYSTEM	<u>R</u> PAGE 4 OF <u>5</u>
7. TEC	HNOLOGY OPTION	NS:		
volta model	ge breakdown at va s; (b) various te	arious frequency chniques for aut		
8. TE	CHNICAL PROBLI	EMS:		
the s ficie desig	hort antenna is contraction character ned to minimize the	omparison with t acteristics. Th he losses.	the antenna and the the wavelength, would the tuner to be develo transmitter is a pos	l cause very inef- oped would have to be
9. PO	TENTIAL ALTERN	ATIVES:		
inter	est. At the low :	frequencies (300	cover the entire fre) to 200,000 Hz), and to effect better mat	enna lengths in the
		OR UNPERTIE	BED TECHNOLOGY A	DVANCEMENT:
10.PL	ANNED PROGRAMS	OIL OIL DILLON		
	ANNED PROGRAMS S Program			
				NPERTURBED LEVEL
Amp		•	EXPECTED UI	
AMP 11. R The s	S Program ELATED TECHNO	LOGY REQUIREI	EXPECTED UI	NPERTURBED LEVEL

.

DEFINITION O	FΤ	ECI	HN	DLC	OGY	RĒ	QU	IRE	ME	NΤ					N	í 0 , (GE 4	4.5	_
1. TECHNOLOGY REQUIR	EM	EN'	T (7	FIT:	LE)	·	<u>Fra</u> Sys	nsm tem	itt	er/	Cou	<u>ple</u>	<u>r</u>	P	AG	E 5	OF	5	
12 TECHNOLOGY REQUIE	REM	EN	TS	SCH	IED			ND.	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
FECHNOLOGY 1. Circuit Analysis																			
2. Math. Simulation			-	ļ															
3. Model Design			-	-															
4. Model Tests (Ground)				-	-														
5. Model Test (Rocket)															}				
APPLICATION 1. Design (Ph. C)					_	_			<u>د الجامع</u>								<u>}</u> → 		
2. Devl/Fab (Ph. D)				l	ĺ	-													
3. Operations				ļ					<u> </u>	ļ		 		<u> </u>	ļ	 			
4.							ļ		ĺ										
13. USAGE SCHEDULE:		·	J	· · · · - ·	·							····						. <u>.</u>	
TECHNOLOGY NEED DATE					4	4												ror	A
NUMBER OF LAUNCHES							1	lı	1	3	3	4	3	4	3	4	3	3	0
14. REFERENCES:		-i																	
• • •									• .							•			
																		÷.,	
								•											
15. LEVEL OF STATE OI																		EVAN	

HASIC PHENOMENA OBSERVED AND REPORTED.
 THEORY FORMULATED TO DESCRIBE PHENOMENA.
 THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
 PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.

- 7. MODEL TESTED IN SPACE ENVIRONMENT. 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER
- NEW GREATIONAL MODEL.
 RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
 LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-5.1
1. TECHNOLOGY REQUIREMENT (TITLE): Levitation Unit PAGE 1 OF <u>5</u>
 TECHNOLOGY CATEGORY: <u>Special Devices</u> OBJECTIVE/ADVANCEMENT REQUIRED: Provide position and temperature control to a large spectrum of materials and specimen sizes while in a
levitated state in micro-gravity, and provide adequate heat rejection.
4. CURRENT STATE OF ART: <u>A limited number of experiments have been performed</u> in drop towers, electromagnetic levitation in 1g field, and acoustic levitation
in 1g field. HAS BEEN CARRIED TO LEVEL 3
5. DESCRIPTION OF TECHNOLOGY Space processing requirements are characterized by the following approximate ranges:
 (a) Sample volume requirements for the various materials and products are shown on Table 5-a-1. (b) Correction for translational acceleration: 10⁻⁴ G. (c) Material Resistivity: 10⁻⁸ to 10⁻² ohm-meter (electromagnetic levitation) 10⁻² - 1 ohm-meter (acoustic levitation) (d) Melting Temperature of Metals: 312^oK (Rubidium) to 3660^oK (Tungsten) (e) Heat dissipation from metallurgical processes up to 20-30 KW.
p/l requirements based on: ☑ pre-a, □ a, □ b, □ C/D
 6. RATIONALE AND ANALYSIS: (a) Technology advances in specimen positioning and heating during levitation processing are needed to permit efficient application of zero-G and other unique properties of the space environment. The material types, quantity and other parameters indicated in item 5 above were chosen to represent a large segment of the potential early-operational processing requirements, which will be tested and demonstrated on Spacelab. The acceleration correction requirement is based on the extent of perturbation due to astronaut motion.
Analyses and experiments to date show that most of the stated require- ments can be met by means of electromagnetic or acoustic positioning systems. The former is required for materials requiring a vacuum or ultra-pure gas environment during processing, provides rapid heating by electromagnetic induction or by means of an electron beam but is restricted to materials whose resistivity does not exceed 10 ⁻² ohm-meters when heated. For higher resistivities, acoustic positioning with radiant heating can be considered.
Continued
TO BE CARRIED TO LEVEL 5
RECEDING PAGE BLANK NOT FILMED 7-217

L

1

l

1. TECHNOLOGY REQUIREMENT (TITLE): Levitation Unit

Table 5(a)-1. Experimental Process Material Size Requirements

NO. GE-5.1

PAGE 2 OF 5

<u>Material</u>	Sample	<u>e Size</u>	Processed Product (Typ.)
Metal Oxide Glasses	0.5 ci	m (sphere radius)	Glass Boules
Berillium & Beryllia		m (sphere ;adius)	Uniformly Dispersed Ingot
Tungsten	0.5 ci	m (sphere radius)	Fine Grained Spheroids
Nickel + Tungsten	0.5 ci	m (sphere radius)	Eutectic W/N _f
Molybdenum	0.5 ci	m (sphere radius)	Fine Grained Spheroid
Tanualum or Niobium Alloys	0.5 ci	m (sphere radius)	Fine Grained Spheroid or Single Crystals
Crystalline Ge Te	1 01	m (sphere radius)	Chalcogenide Glass
Cop, er + Tungsten	0.5 ci	m (sphere radius)	Uniformly Distributed Spheroids
Titanium, Lanthanum Oxide	0,5 ci	m (sphere radius)	Uniformly Distributed Ingot
High Silicates & Silver Chloride	4 ci	m (sphere radius)	Uniformly Distributed Boule
Iron Antimonide & Indium Antimonide	4 ci	m (sphere radius)	Eutectic Boule
Niobium & Tin	2 ci	m (sphere radius)	Monotectic Boule
Lanthanum Hexaboride		m (sphere radius)	Polycrystalline Boule
Molybdenum Disilicide		m (sphere radius)	Polycrystalline Boule
Silicate Glass + Europium and/or Cerium	2 ci	m (sphere radius)	Amorphous S _i O ₂ Glass and Dispersed Europium, Cerium
Crystalline ralladium Silicon	2 Ci	m (sphere radius)	Amorphous Palladium Silicon
Iron/Iron-Sulphide Composite	2 ci	m (sphere radius)	Lamellar Fe-FeS

7-218

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>CE-5.</u>
TEC	HNOLOGY REQUIREMENT (TITLE): Levitation Unit	_ PAGE 3 OF _E
5, 1	DESCRIPTION OF TECHNOLOGY: (cont'd)	
with molte	ent state of the art may be typified by experiments in fr samples in the order of 1-5 cc; electromagnetic levitati en tungsten (GE Space Division); and acoustic levitation g 0.3 gram specimens in 1g field.	ion of 10 gm of
6. I	RATIONALE AND ANALYSIS: (cont'd)	
(b)	The technology advancement will benefit the following particle of SP-13S - SPA No. 13 - Automated Levitation SP-14S - SPA No. 14 - Manned and Automated S.P.A. SP-15S - SPA No. 15 - Automated Furnace/Levitation	lyloads:
(c)	The determination of optimum techniques as indicated abo accelerate the advent of operational space processing fa benefit of mankind.	
(d)	This state of the art advancement must be carried to the stage and tested in a simulated space environment.	e breadboard
	· · · ·	

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-5.1
1.	TECHNOLOGY REQUIREMENT(TITLE): Levitation Unit PAGE 4 OF 5
	TECHNOLOGY OPTIONS: The following optional techniques must be investigated, relative to the required material and processes:
-	<u>Positioning</u> (a) Electromagnetic - limited to resistivities below 1/100 ohm-meter (b) Acoustic - must utilize a gas medium of significant pressure (c) Electrostatic
	 Heating (a) RF induction - uses eddy current effect, skin depth is a function of field coupling and frequency. (b) Electron Beam - must consider secondary electron emission and optimum electron primary energy level. (c) Solar Furnace Heating - requires large collector and focussing device. (d) Arc imaging.
	TECHNICAL PROBLEMS: Special problems to be considered are as follows:
	 (a) Formation of bubbles in liquid specimens (may require specimen rotation about its axis) (b) Degree of stirring due to positioning fields.
	POTENTIAL ALTERNATIVES: Levitation in a one-G field may be feasible in some limited applications.
(PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: (a) Payload Definition and Payload Equipment Study (MSFC) (b) SPA Kit Study (Power and Heat Rejection Kit) (MSFC)
] :	The unperturbed technology advancement would consist of demonstration of individual components.
	EXPECTED UNPERTURBED LEVEL 4
I I S	RELATED TECHNOLOGY REQUIREMENTS: Due to the large energy requirements in many of the metallurgical and glass processes, the development of suitable power supplies (to supplement the Spacelab power) and attendant heat dissipation provisions are critical to the attainment of the desired goals.

DEFINITION O	FΊ	EC	HNC	DLC	GY	RE	QU	IRE	MĒ	INT					1	٥٥.	GE-	5.1	
1. TECHNOLOGY REQUIE	EM	EN'	r ("	CIT:	LE)	: <u>L</u>	evi	tat	ion	Un	it			I	PAC	E E	i OF	5	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IED			ND.	AR	YE	AR	<u> </u>	<u>_</u> _		<u> </u>				
SCHEDULE ITEM	75	76	77	78.	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1.Analytical Studies	-																		
2. One-G Tests												}							
3.Drop Tests (Zero-G)																}			
 Sounding Rocket Equip- ment Development Breadboard Design Breadboard Tests 																			
APPLICATION	1	{																	
1. Design (Ph. C)				'		t					ł								ļ
2. Devl/Fab (Ph. D)		{		1			+-				[
3. Operations		{					-					 		┼─	+-		+-		ſ
4.			ļ		ļ					}									ł
13. USAGE SCHEDULE:	•	- to - to -																	
TECHNOLOGY NEED DATE																		roi	'AI
NUMBER OF LAUNCHES						1	1	2	2 2	2 :	2 2	2 2	2	2	2	2	2	2	22
 14. REFERENCES: (a) "Electromagnetic (Facility Concept a No. NAS-8-29680 (0) 	nd	Cap	abi	lit	ies	fo	r S	pac											
(b) "Design Analysis tions", Final Rep (General Electric	ort,	, Mo																	
								. •											
								•											``
15. LEVEL OF STATE O	FA	RT						5. (N REI	LEVÅ	ŧT.
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	AND I CRIER EXPE RACT	REPOI 5 PHE 5 RIME 5 RIME 5 RIST	NOMI NT	ENA.	istr/	TED	•	7. 1 8. 1	MODE MODE NEW OP RELL	L TE L TE CAPA ERAT	STED JULI JONA TY U	IN A IN S FY DI L MC PGRA	IRCR PACE RIVE DEL.	AFT ENV DFR	ENVI TRON IOM A	RONM MENT MUC PERA	n le Tiona	L MO	DEI

۰.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE 5.</u>	2
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Continuous Flow</u> PAGE 1 OF <u>3</u> Electrophoretic Column/Fractional Collecting System	+
 TECHNOLOGY CATEGORY: Special Devices OBJECTIVE/ADVANCEMENT REQUIRED: Provide fluid handling techniques to enable purification of biologicals to purity 5-10 times better than earth- 	-
based processes.	~
4. CURRENT STATE OF ART: <u>Initial zero-G tests on Apollo show the feasibilit</u> of attaining improvements in purity through electrophoresis, however, signifi advancements are required to make this a HAS BEEN CARRIED TO LEVEL viable processing technique.	<u>.c</u> ai
5. DESCRIPTION OF TECHNOLOGY	
The basic parameters for this system are as follows:	
Total Sample Volume: 10 cc Total Column Volume: 10 cc Buffer Pump Rate: 30 cc/min. (max.) Temperature Control: 263°K to 278°K Voltage Gradient: 100 V/CM (max.) Current Density: 100 milliamp/sq. cm Pump Pressure Fluctuations: less than ±10 N/sq. meter	
The technology for meeting the above parameters is available; however, the desired high purity may not be attainable due to wall contamination in the electrophoretic cell, which causes degrading changes in the cell character- istics.	
P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C	/D
6. RATIONALE AND ANALYSIS:	
(a) Increased electrophoretic cell thickness possible in zero-G makes theor- etical separation resolutions 5 to 10 times better than those on ground based systems. However, wall contamination seriously degrades the reproducibility of the cell characteristics, thus adversely affecting the purities that can b attained. A large portion of the contamination may be traced to fuel handlin functions such as (biological) sample insertions wherein contact of the sampl with the cell walls occurs very often with the state-of-the-art techniques.	l pe ng
(b) The benefitting payloads are SP-14S (SPA No. 14, Manned and Automated), and SP-01S (SPA No. 1, Biological - Manned).	
(c) Reductions in contamination will benefit both ground based and space bas electrophoretic processes, removing a significant obstacle to the attainment of higher purity biologicals.	3ed
(d) This technology program should be carried to the point where an experime tal system is tested and demonstrated in the laboratory (in one-G). Zero-G effects should be projected and appropriate technique adjustments made to permit satisfactory operation in space.	≥n-
TO BE CARRIED TO LEVEL	5

à

PRECEDING PAGE BLANK NOT FILMED

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-5,2
	TECHNOLOGY REQUIREMENT(TITLE): Continuous Flow PAGE 2 OF 3_ Electrophoretic Column
7.	TECHNOLOGY OPTIONS:
1	Various aspects to be considered in the technological advancement are:
:	 (a) Attainment of high degree of cleanliness in the equipment and facility (b) Proper sample insertion techniques (c) Avoidance of batch-to-batch contamination (d) Prevention of bubble formation in the cell (e) Maintenance of sample away from the cell walls (e.g., through the use of externally applied electrostatic forces)
- - -	TECHNICAL PROBLEMS: It is anticipated that significant amount of contaminants will tend to deposit on the cell walls, regardless of the precautions. The main problem is to avoid not only excessive contamination but also uneven distribution from one cell wall to the other, and changing conditions with respect to time.
ł	Suppression of electro-osmosis is a technological problem. Bonded charges alo the container surfaces interact with the electrolyte, affecting yield.
9.	POTENTIAL ALTERNATIVES:
: 	Many types of separation processes exist and are undergoing technological improvements (e.g., chromatography, centrifugation, etc.). Each type of process is applicable to a limited set of applications; there is no known alternative method to electrophoresis.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
ſ	The unperturbed level of technology advancement is estimated to reach the testing of theories through physical experimentation in the laboratory.
	EXPECTED UNPERTURBED LEVEL
11.	. RELATED TECHNOLOGY REQUIREMENTS:
	(a) Investigations of optimum cell-wall coatings(b) Development of multi-electrode-pairs (Beckman)

4 rates

DEFINITION C		ידירי				न प		<u></u>	יזאמי	<u>.</u>					N			5.2	•=
1. TECHNOLOGY REQUIE Electroph	REM	EN'	Г ('	CIT.	LE)							7		F			- <u>-</u>	× _3	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IEC				AR	YE	AR			<u></u>				- <u></u>	-
SCHEDULE ITEM	75	76	77	78	79							86	87	88	89	90	91		
TECHNOLOGY 1. Analysis	-																		
2. Experiments on Tech- niques				-															
3. Model Fabrication	}	-														ļ			
4. Model Testing			-	┝				ļ								ļ			
5.		l																	
APPLICATION					1								[1	1	
1. Design (Ph. C)	ļ			•	+														
2. Devl/Fab (Ph. D)	Ì					ł				Ì									}
3. Operations] —	<u> </u>	-	<u> </u>			 			ļ	ļ	 		
4.				l				}								. 			
13. USAGE SCHEDULE:	.l	ميدججيك		<u></u>		.L.,	بمنجيك	-l		ş	· I	ļ	<u></u>	<u>.</u>	1	<u>ب</u>		<u> </u>	
TECHNOLOGY NEED DATE					K		Τ										5	roi	'AI
NUMBER OF LAUNCHES				1		1	1	2	1	1	1	1	1	1	1	1	1	1	.3
14. REFERENCES:							+	_ <u></u>	- L				س ن ا		<u></u>			-4	
— ——		·																	
																			•
				·.	·														
		,																	
										N.									
	÷					·													
								•											
· · · · · ·		·· ·	1				۰.,												·
		1				•											·		
15. LEVEL OF STATE OF				•					ENV	лког	MEN	TIN	THE	LABO	RATC	RY.		LEVAI	łT
 BASIC PHENOMENA OBSERVED THEORY FORNULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	CRIBE EXPE RACT	PHE RIME ERIST	NOMI NT	ENA.	ISTRA	TED,	1	7. N 8. h 9. h	RELIA	L TE CAPA SRAT BILI	STED HILIT IONA TY UI	IN SI Y DE L MO PGRA	PACE RIVE DEL. DING	ENV D FR	iron! Om A N OP	MENT MUC ERAT	i le: 10na		DEL

\mathbf{DE}	FINITION	OF TECH	HNOLOGY	REQUIR	EMENT	

NO. <u>RI, 5.3</u>

PAGE 1 OF 5

1. TECHNOLOGY REQUIREMENT (TITLE): ____ Package, Solids Analysis

2. TECHNOLOGY CATEGORY: Special Devices

3. OBJECTIVE/ADVANCEMENT REQUIRED: Analysis of chemical content of Encke tail

4. CURRENT STATE OF ART: ____Breadboard of workable model developed at GSFC

HAS BEEN CARRIED TO LEVEL 4

5. DESCRIPTION OF TECHNOLOGY

Two major efforts have been carried out in recent years on the development of massspectrometric techniques for the compositional analysis of micrometeoroid material from spacecraft. The first of these (headed by H. Fechtig and E. Grün of the Max Planck Institut fur Kernphysik, Heidelberg, Germany) has been successfully flown on the Helios Solar Probe. The second effort was under the leadership of J. F. Friichtenicht of TRW, Redondo Beach, California. The two approaches are identical in concept: a compositional analysis of micrometeoroid material is made through a time-of-flight (TOF) mass spectrometer analysis of the plasma generated when a small dust particle strikes a tungsten target at high velocity. Information on the size of the particle is gained through a measurement of the total integrated plasma charge and a measure of the relative particle velocity is made through the measurement of the rise time of the plasma "pulse".

(continued on page 4)

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The most widely accepted theory of cometary origin assumes comets to be made up of the primordial "stuff" of the solar system. If so, cometary solids and small asteroids may be the only sources of undifferentiated, unmixed primitive material available, and the elemental (and isotopic) composition of this material is of fundamental importance in geochemistry and cosmogeny. If not of solar system origin, the cometary solids must come from interstellar space, and an analysis of interstellar material is no less interesting.
- b. The best way to measure the composition of the non-volatile fraction of the cometary nucleus during a flyby is probably to analyze the composition of the cometary dust reaching the spacecraft.
- c. PL-18-A Encke Rendezvous and PL-19-A Halley Comet Flyby are benefiting payloads.
- d. Model must be constructed with improved plasma generating particle target and subjected to testing in the space environment.

PRECEDING PAGE BLANK NOT FELMED

TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT	NO DI CO
	NO. RI, 5.3
1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF <u>_5</u>
Package, Solids Analysis	
7. TECHNOLOGY OPTIONS:	
Lesser capability models by:	
a. H. Fechtig, Max Planck Institute, Germany (Helios)	
b. J. F. Friichtenicht, TRW	
c. Dr. S. Auer, GSFC device with SiO target	
8. TECHNICAL PROBLEMS:	
a. A redesign of the target to materials which are not likely associated composition is desirable. Presently Si and SiO_2 compounds are use and it is desirable they be switched to materials such as germanium	ed for the target
9. POTENTIAL ALTERNATIVES: None known	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	CEMENT:
None known or anticipated	
	· · · · · · · · · · ·
EXPECTED UNPERT	TURBED LEVEL 4
11. RELATED TECHNOLOGY REQUIREMENTS:	
Unknown	

٩.,

r	DEFINITION O	FI	ECI	HNO	DLC	GY	RE	ເຊນ	IRE	ME	CNT					Y	10.	R1	, 5	.3
1.	TECHNOLOGY REQUIR Package, S			•		•	:								1	٩Ċ	E 3	i OI	• _5	
12.	TECHNOLOGY REQUI	REM	EN'	TS	SCI	1EL			ND.	AR	YE	AR								
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
1.	HNOLOGY Breadboard completed 10/74 Develop new target	2.00 miles 2.2					тои					nt								
]	Construct model Life Testing		÷1	асула ди	2.7-0															
5.													.							
APP: 1.	LICATION Design (Ph. C)																	 		
2.	Devl/Fab (Ph. D)				ł		4 2.5 5	ł			ł									
3.	Operations																			
4.	·																			ł
13.	USAGE SCHEDULE:																			
TEC	HNOLOGY NEED DATE					8												:	ťот	AL
NUI	MBER OF LAUNCHES	Í	1					1	ļ	1		1							2	2
14	REFERENCES:	- }	- <u> </u>	d		· F · <u>-</u> -	. <u></u>	4	- <u>9</u> 6	-4									- 	
a. b. d. e.	 a. Science Aspects of a 1980 Flyby of Comet Encke with a Pioneer Spacecraft, L. D. Jaffe, et al; 760-96, May 20, 1974, JPL b. Cosmic Dust Analyzer, Final Report, 10735-6002-RO-00, TRW Systems Group, Redondo Beach, Calif., 1971 c. Letter from J. F. Friichtenicht, TRW to H. Ikerd, GDCA, December 26, 1974 d. Discussion between C. Giffin, Jet Propulsion Laboratory, and P. R. Fagan, Rockwell international, January 22, 1975 																			
													·	•						
15.	LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL D OR MATHEMATICAL MODEL. 4. PERTIMENT FUNCTION OR CHAR E.G., MATERIAL, COMPONEN	ND R RIBE EXPE: ACTI	EPOR PHEN RIMEI	OME	NA.	STRA	TED,	·	6. M 7. M 8. N	ENV IODE IODE EW (OPI ELIA	/IRON L TE L TE CAPA ERAT LEILI'	MEN STED STED HILL HILL IONA TY UI	T IN IN A IN SI Y DE L MO PGRA	THE IRCR PACE RIVE DEL. DING	LARO AFT I ENV D FR OF A	RATC ENVII IRONI OM A N OP	ORY. IONM MENT MUC ERAT	II LES	ser L Moi	DEL.

.

1. TECHNOLOGY REQUIREMENT (TITLE): _

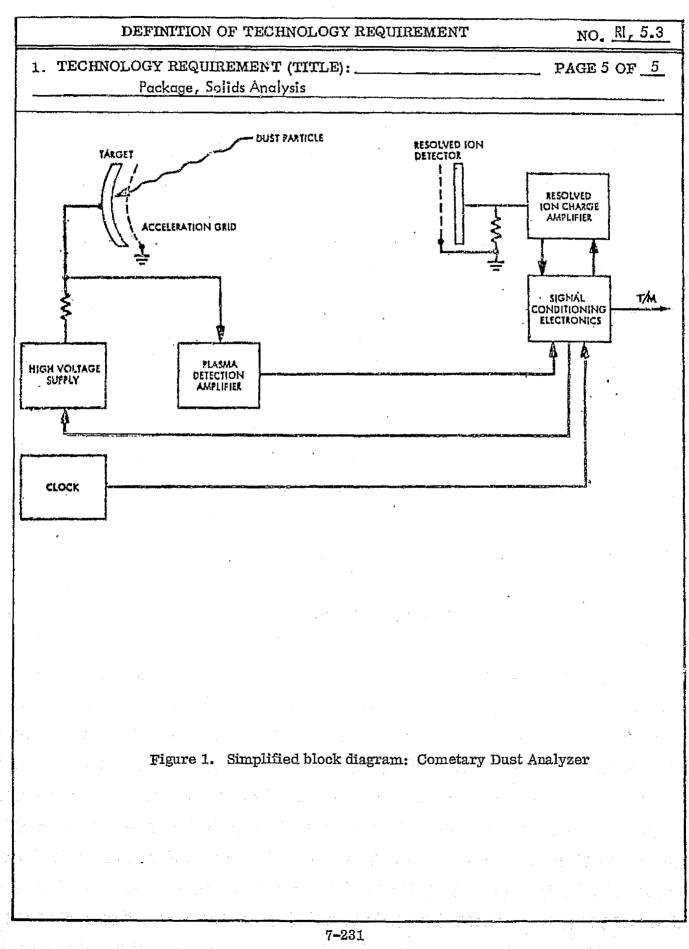
PAGE 4 OF 5

Package, Solids Analysis

5. Description of Technology - continued

The TOF mass spectrometer analysis assumes that the ionic composition of the impact-generated plasma is directly related to the bulk composition of the micrometeoroid (or in this case the cometary dust particle). By accelerating the plasma ions through a potential difference, and then letting them pass along a field-free drift region of known length, the atomic masses of the ions can be determined by their respective arrival times at a detector.

A simplified schematic of the instrument is shown in Figure 1, page 5. Upon impact of a dust particle on the target, a plasma is generated, the time profile and intensity of which is measured. The plasma-detection amplifier sends a signal to the signal-conditioning electronics which starts a clock for timing the arrival times of ion "bunches" as they reach the resolved ion detector. The signal-conditioning electronics format the measurement of the integrated charge in each ion "bunch" and time-label it for mass identification.


Dr. S. Auer of GSFC is the inventor of the analyzer used on the Helios Solar Probe and has further improved the analyzer by incorporating two important improvements. The Helios analyzer was limited in its ability to detect a wide range of atomic mass units as it could only focus on a given single AMV and respond to a narrow AMV bandwidth centered around the selected single AMV value.

Dr. Auer developed and demonstrated a static focus technique which increases the response to an AMV range of 1–300 AMV. The target was changed to a capacitor which when struck by a particle had a capacitance discharge. This improved ionization efficiency, particularly for slow moving particles.

The linear particle path length was changed to a circular path, improving the path length the particle can travel.

The most important improvement was to change the tungsten (or gold in some concepts) target to a thin film capacitor which is charged by applying 30–60 V between the two conductors. The thicker substrate is positive relative to the thinner conductor.

The technique was formerly used in space to detect micrometeoroid impact and developed for Explorer 46 by LaRC. When a particle enters the field between the two conductors a spark is generated. The ions are extracted from the spark and the ion current has been found to be 7 orders of magnitude better f in that generated by Helios. The resultant is higher resolution, wider AMV response than the Helios Analyzer, and ability to detect slow moving particles on the order of 10 m/sec.

DEFINITION OF TECHNOLOGY REQUIRED	MENT	NO. <u>GE-5.4</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>High Pow</u> Efficiency Transmitter	ver, High	_ PAGE 1 OF <u>4</u> _
2. TECHNOLOGY CATEGORY: Special Devices		
3. OBJECTIVE/ADVANCEMENT REQUIRED: Obtain	power output	in the range of 50
to 500 watts in the frequency band 620 to 790 MH	lz, transmitte	r characteristics
to be: 45% efficiency, 30 dB gain, 20 MHz bandwi	dth, minimum	size and weight.
4. CURRENT STATE OF ART: <u>100W, 45% efficiency</u> channel centered at 790MHz.	y, 30MHz band	width, single
Н	IAS BEEN CAR	RIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY		
Direct broadcast CW operation, single channel o the Disaster Warning Satellite (CN-54A).	peration such	as required for
Critical parameters are: power output, efficie	ncy, size, we	ight, and long li
		• .
P/L REQUIREMENTS BASED O	N: 📋 PRE-A,	🛛 А, 🗋 В, 🗍 С/
6. RATIONALE AND ANALYSIS:		
(a) Low cost ground receiver in a building (15 58.6 dBW EIRP required for a 9.0 dB S/N ra noise temperature of 1100°K.	dB building tio at the re	attenuation); ceiver; receiver
 (b) Benefitting payload: CN-54A, Disaster War (c) Solid-state devices and circuits increase transmitter and offer opportunity to minim mitter. 	lifetime, rel	iability of
(d) The technology program should culminate in model on ground tests.	the testing	of a breadboard
	. *	
		an an an an an an an an an an an an an a
PRECEDING PAGE BLANK NOT FILMED		
	TO BE CAR	RIED TO LEVEL 5

۰... موجد بو

New A

1

DEFINITION OF TECHNOLOG	GY REQUIREMENT NO. GE-5.4
1. TECHNOLOGY REQUIREMENT(TITLE): Efficiency Transmitter	High Power, High PAGE 2 OF <u>4</u>
 7. TECHNOLOGY OPTIONS: Gritical factors in the Disaster Warn output power and satellite payload us (a) Efficiency of the transmitter af transmitter (linear relationship (b) Noise temperature of the ground of the satellite transmitter (di (c) Building attenuation directly af (direct relationship in dB); ant (d) Number of simultaneous signals i 	fects the DC power requirements for the). receiver affects the required power output rect relationship in dB). fects the required transmitter output powe enna location outside the building desirab n the transmitter affects the output power
assumed to be one carrier per tr	ation signal level requirements); design ansmitter. (Approximately 6 dB back-off uired for 2 simultaneous signals.) (continued)
8. TECHNICAL PROBLEMS:	(oontailingit)
State-of-the-art in solid-state trans efficiency, 20 MHz BW. In the power	range of 100W to 430W, technical problems or junction temperature = 125°C maximum);
9. POTENTIAL ALTERNATIVES:	# <u>Cardenus</u> danus,as uzan <u>nu, ,</u> g. 18.17. – a. 18.17. –
	higher power outputs; development of ppears to be a limiting factor in long lif
The use of an outside antenna would r 15 dB specification, thus lowering th user receiver systems would increase.	educe the attenuation from the present the transmitter power requirement. Cost of
10. PLANNED PROGRAMS OR UNPERTURB	
Global Positioning Satellite Program	- 1600 MHz transmitter being developed by North American Rockwell.
GE in-house program - VHF and 1600 MH	z transmitters.
	EXPECTED UNPERTURBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREM	ENTS:
None	
-	

NO. <u>GE-5.4</u>

1. TECHNOLOGY REQUIREMENT (TITLE):

PAGE 3 OF $\frac{4}{4}$

HIGH POWER, HIGH EFFICIENTY TRANSMITTER

7. TECHNOLOGY OPTIONS: (Continued)

- (e) Power supput per transmitter affects the size and weight of the payload; the number of transmitters affects the size and weight of the payload.
- (f) Receiver bandwidth directly affects C/N of the receiver and thus the rf power output and DC power input requirements of the transmitter.

	DEFINITION O	FΊ	EC	HNO	DLC	ЭGY	RE	ຊູບ	IRE	ME	ΝT					Ņ	10,	GE	-5,4	έ
1.	TECHNOLOGY REQUIR Efficiency Transmitte		EN	т (?	FIT	LE)	; <u> </u>	ligl	1 Pc	ower	r, 1	Hig	h		F	PAG	E 4	OF	4	
12,	TECHNOLOGY REQUI	REM	IEN	TS	SCI	IED				gh 1 AR			Amp	lif	ier	(1	00-	430	N)	
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
I.	HNOLOGY Systems Tradeoffs Transistor Selection	-	47857570																	
	Thermal Design Ampl. Ckt. Design		diarrada	- -																
5,	Breadboard Test			689410																
	LICATION Design (Ph. C) Devl/Fab (Ph. D)					 														
3. 4.	Operations																			,
13,	USAGE SCHEDULE:	····	•					levenni		لیبینی ا			د <u></u>	ېرا	<u>~</u>	ł	1	<u>. </u>	·	
TEC	HNOLOGY NEED DATE				2	Δ												I	OT.	AL
NU	MBER OF LAUNCHES							1	1			1					1		4	:
14	BEFEBENCES.								;	:		····								• •

(a) Telephone conversation with J. R. Ramler, NASA Lewis.

(b) Feasibility Study of Using Satellites for a Disaster Warning System, R-3015-2-1.

15. LEVEL OF STATE OF ART

1. BASIC PHENOMENA OBSERVED AND REPORTED.

THEORY FORMULATED TO DESCRIBE PHENOMENA.
 THEORY TESTED BY PHYSICAL EXPERIMENT

OR MATHEMATICAL MODEL.

- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

NO. C-5.7 DEFINITION OF TECHNOLOGY REQUIREMENT PAGE 1 OF 41. TECHNOLOGY REQUIREMENT (TITLE); ____ Self aligning Multipin Electrical Connector Assembly Special Devices 2. TECHNOLOGY CATEGORY: 3. CBJECTIVE/ADVANCEMENT REQUIRED; Electrical interface for resupply and refurbishment of orbiting spacecraft 4. CURRENT STATE OF ART: Development hardware has been fabricated. feasibility of concepts has been demonstrated HAS BEEN CARRIED TO LEVEL 4 5. DESCRIPTION OF TECHNOLOGY Multipin electrical connectors are required to transverse the spacecraft/module interface of an in-orbit serviceable spacecraft. Connector design will permit reliable engagement or interruption of power, data, and communication lines when malfunctioning and/or depleted systems are replaced remotely on the orbiter. P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D 6. RATIONALE AND ANALYSIS: The present method for orbiting a spacecraft precludes its (a) recovery for repair and/or refurbishment. The cost effective solution is to provide a shuttle compatible system to recover, repair, and reorbit spacecraft. (b) EOS-A, B, C, and D; SMM; EGRET; SSOS; SEOS; SeaSAT will benefit. BESS is potentially a benefiting payload. In orbit repair and/or refurbishment of spacecraft will re-(c) place the present method of operation, i.e., launching a second or backup spacecraft to complete the mission of the malfunctioning spacecraft. The test of a model in a spacecraft (EGRET) to demonstrate its applicability (ď) will satisfy this technology requirement. *EO-08A **OP-07-A & 09A TO BE CARRIED TO LEVEL

	DEFINITION OF TE	CHNOLOGY REQUIREMENT	NO. C-5.7
	OGY REQUIREMEN lectrical Conne	F(TITLE): <u>Self Aligning</u> ctor Assembly	PAGE 2 OF <u>4</u>
(a) Develop a		nt for refurbishment and/or re ed above in paragraph 5.	pair of malfunctioning
(b) Capture a	nd return spacecrat	it to earth for electrical discon	aect.
	present mode of ope at has malfunctione	eration, i.e., launch a backup s d.	pacecraft to replace
(a) Align	AL PROBLEMS: ment and mating ockets includin	of up to 200 power, dat g an undetermined number	ta and communicati s of coaxial inter
sockets.	ffect of therma on next page)	l gradients on the align	ment of pins and
There are a	L ALTERNATIVES: no known potent in Section 7.	ial alternatives other a	than those
			······
		PERTURBED TECHNOLOGY AI	OVANCEMENT:
(a) EGRET s	pacecraft, F. J. Ce	epollina, (301) 982-5913.	
		EXPECTED UN	PERTURBED LEVEL
11. RELATE	O TECHNOLOGY RI		
	of tooling to a	measure pin/sock engager	nent and
-			
		7→238	

	1. T Mult	ECHN ipin	OLO(Ele	3Y RI ctri	EQUI cal	REM Con	ENT nect	(TII) .or	TLE): Asse	Se mbly	elf 7	Alig	ning		. PA	AGE 3	³ of <u>4</u>	· · · · ·
		TECHI							mod	 \								
	(c)	Con	necto	ors	mus t	b be	con	sis			h r	equi	remei	nts o	f Tl	DRSS	, i.€	9 . ,
	high (d)	_							comp	atik	le	with	meg	abit	data	a ra	tes.	
	(e)																gemer	ıt.
										•								
																·		
	* 																	
								•										
-																		
																	• • •	
								·										
·								· · ·					· .					
																	· · ·	
		. 14.		•														· · · · · · · · · · · · · · · · · · ·
																	:	

•

NI I

DEFINITION OF TECHNOLOGY REQUIREMENT NO.C-5.7																			
1 TECHNOLOGY REQUIF Multipin Electrical									\li	gn:	ing			P	AG	E4	OF	4	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IEL			ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77.	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1.Redesign E/U	 																	-	
2. Modification E/U	-													1					
3. Qualification E/U					-														
4.					:]					
5.														i		ļ			
APPLICATION 1. Design (Ph. C)					 														
2. Devl/Fab (Ph. D)			ļ					Ì	ļ					ł					
3. Operations								 	 					<u> </u>					
4.																		Ì	
13. USAGE SCHEDULE:	·····		·	<u>.</u>		ند در بار	·/	4	<u>. </u>	<u> </u>		<u>к</u>	-1		<u> </u>	موسط	<u></u>		<u>ئىي ئەر</u> يە
TECHNOLOGY NEED DATE				$ \Delta$														roj	AL
NUMBER OF LAUNCHES					2	2	1	2	1	*	1	*	*	1	*	*	*		9
NUMBER OF LAUNCHES 2 2 1 2 1 * 1 * *																			
In-Orbit Servicing by Fran & Aeronautics, Vol. 13, N			-							sfie	ld,	paş	ges	46-	-56	Ast	ron	auti	CS
Legend: [*] Resupply m E/U Engine				it	s			•										i	
		- 							0.00	111 121	in án	gDF	ספרוא	ነል ወጥ	ትድዴጥ	יו הפי	1 BET	evan	IT.
 LEVEL OF STATE OF BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAIL E.G., MATERIAL, COMPONENT 	AND H CRIBE EXPE	EPOI PIIE: RIME ERIST	NOME NT	NA.	ISTRA	TED.		6. h 7. h 8. ř 9. f	ENV IODE IODE IEW (OPI IELIA	ARON L TE L TE DAPA SRAT BILL	imen Sted Sted Bill'i Iona Iona	T IN 1N A IN S V DE L MO CRA	THE I IRCRA PACE RIVE DEL. DING	LABO AFT E ENVI D FR(RATO INVIR RONS DM A	RY. ONMI MENT MUCI ERAT	ENT. HI LES	ser L Moi	DEL.

t_{kings}

NO. <u>GE 6.1</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Accelerometer Package</u> PAGE 1 OF <u>5</u> for Gravity Gradiometer

2. TECHNOLOGY CATEGORY: Inertial/Electromechanical

3. OBJECTIVE/ADVANCEMENT REQUIRED: Measure steady-state acceleration in the order of 10^{-6} gal (10^{-9} G) with an accuracy of 2 to 3%

4. CURRENT STATE OF ART: <u>Miniature Electrostatic Accelerometers (MESA)</u> <u>have demonstrated capability to measure to 10⁻⁶ G.</u> (continued on page 4) HAS BEEN CARRIED TO LEVEL 3

5. DESCRIPTION OF TECHNOLOGY

A gravity gradiometer system, to be used to obtain improved measurements of the earth's gravity field, requires an accuracy of approximately 0.01 EU $(10^{-11} \text{ gal/cm})$. The principal instrument in the gravity gradiometer is a set of accelerometers capable of measuring to 10^{-9} G. Current state of the art is illustrated in figure 1, on the next page.

P/L REQUIREMENTS BASED ON: \Box PRE-A, \Bbbk A, \Box B, \Box C/D

6. RATIONALE AND ANALYSIS:

A. The technology requirement is based on a spinning cruciform gradiometer configuration utilizing four test masses on the ends of the cross. The analyses for the measurement were made in a study by the Jet Propulsion Laboratory "Earth Physics Satellite Gravity Gradiometer Study." (See reference 1) The instrument dimensions have been scaled up from the original version in the JPL study, so that its mass is 30 times that of the original.

B. The Gravity Gradiometer Satellite OP-02A will benefit from this technology advance.

C. The successful development of the gravity gradiometer will be useful in the establishment of an accurate earth subsurface model. This would improve knowledge of structure and density distributions of the base of the continental crust, mountain ranges, deep sea trenches, etc. with resolutions approximating 100 kilometers.

D. The technology program should demonstrate the accuracy of the accelerometer package in the space environment.

TO BE CARRIED TO LEVEL _7

	DEFINITION OF TECHNOLOGY REQUIREMENT NO	<u>GE 6.1</u>
1. TECHI	NOLOGY REQUIREMENT (TITLE): <u>Accelerometer Package</u> PAGE	² OF <u>5</u>
		CONFIGURATIO
•	INTEGRATING ACCELEROMETERS FOR BOOST TRAJECTORY CONTROL, NAVIGATION, GUIDANCE	CLOSED LOOP
GUIDANCE AND NAVIGATION	ΔV, MIDCOURSE BURN, TRAJECTORY ALTERATION	, CLOSED LOOP
	REENTRY AND LUNAR LUNAR LUNAR LUNAR LUNAR LUNAR LUNAR LUNAR LUNAR LANDING EARTH LANDING EARTH LUNAR L	CLOSED LOOP OPEN LOOP
	SPIN STABILIZATION	CLOSED LOOP
	LOW-g ION THRUST ENGINES TERMINATION SPACE DRAG MEASUREMENTS	MESA; VSA
MONITORING AND CONTROL	LANDING AND PYROTECHNIC SHOCKS SHORT DURATION	OPEN LOOP, PIEZOELECTRIC OR FLEXURE PROOF MASS SUPPORT
	VIBRATION, MONITORING	OPEN LOOP, PIEZOELECTRIC OR FLEXURE PROOF MASS SUPPORT
		PLATFORM ACCELEROM- ETERS, PENDULUMS, BUBBLE LEVELS
	10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{1} ACCELERATION INPUT LEVELS, g	3
	Figure 1. Current State of the Art for Accelerometer Technology	

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. GE 6.1
1. TECHNOLOGY REQUIREMENT(TITLE): <u>Accelerometer Package</u>	PAGE 3 OF <u>5</u>
7. TECHNOLOGY OPTIONS:	
Several types of accelerometers will be considered in the inve	estigation:
 a. Closed loop integrating accelerometers (used in boost GNC applications) b. Piezoelectric strain monitors on the cruciform arms. C. Miniature Electrostatic Accelerators. D. Vibrating String Accelerometers. 	er trajectory
The MESA is the most likely candidate for the orbital gravity application because of its extremely low damping and near zero restraint of the suspension system when scaled for a low g er) spring
8. TECHNICAL PROBLEMS:	
 A. High sensitivity B. Instrument sensitivity to acceleration component due at low orbits. 	to drag,
because of the low acceleration environment. Many of the error associated with the terrestrial gravity gradiometer become (co 9. POTENTIAL ALTERNATIVES: None	ntinued on page 4)
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
Extensive effort is being carried out on the terrestrial gradiometer for SAMSO.	gravity
EXPECTED UNPERT	URBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:	
 A. Precision ephemeris determination. B. Development of 19-bit A/D converter. 	
	• • •

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Accelerometer Package</u> PAGE 4 OF <u>5</u> for Gravity Gradiometer

Paragraph 4. *Current State of Art (continued)

Bell is presently developing a feasibility model of a rotating accelerometer gravity gradiometer for aircraft applications under funding from the Minuteman SPO of SAMSO, USAF. The performance goal in this case is a randomness of 1 EU as measured through a 10 second time constant. The separation of the Model VII accelerometers for terrestrial gravity gradiometer is 20 cm. For the orbital application the space qualified MESAs would be substituted for the Model VIIs because of the low acceleration encountered in space and the separation between accelerometers is increased to one meter. The goal of .01 EU is therefore realistic.

Currently a noise of about 2 EU is measured for four Model VIIs and the instruments are in the process of being mounted on the rotating fixture for gravity gradient measurements. The feasibility demonstration program for the terrestrial gravity gradiometer is scheduled for completion in mid-1976.

Paragraph 8. *Technical Problems (continued)

negligible in the orbital case. The major unknown parameter is the residual thermal noise of evacuated and modified MESAs. Theoretically a noise level of under.01 EU should be achievable based on present data obtained on Model VII accelerometers, but verification in laboratory is necessary. Another unknown area at this time are the residual drag acceleration components of the satellite at spin or twice spin speed.

* Excerpts from inputs by Dr. Ernest H. Metzger, Chief Advanced Inertial Systems, Bell Aerospace Company.

DEFINITION C)F I	EC	HNC	DLC	OGY	RE	ຊບ	IRE	ME	NT					N	10.0	GE (5.1	
1. TECHNOLOGY REQUI	REM	EN'	Г (']	TT:	LE)	: <u>A</u> c	ce]	lerc	omet	er:	Pac	ekar	<u>ze</u>	F	PAG	E 5	OF	5	-
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IEC			NÐ	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. ANALYSES	_																		,
2. MODEL DESIGN																			
3. MODEL MANUFACTURE		ĺ						ļ											
4. GROUND TESTS 5. PROTOTYPE MANUFACTURI 6. ROCKET TESTS	S		-																
APPLICATION					<u> </u>	<u> </u>									-				
1. Design (Ph. C)					┢														
2. Devl/Fab (Ph. D)	Ì																		
3. Operations																			
4.																			ļ
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE	2				A													roi	'AL
NUMBER OF LAUNCHES		-		Γ		1	Τ				Τ							1	-
14. REFERENCES:					_1			-										-, -	
1. "Earth Physics S	Bate	11i	te (Gra	vit	y G:	rad	iom	ete	r S	tud	y"	Rep	ort	: #7	60-	70.	JP	L
2. "Space Vehicle A	lcce	ler	ome	ter	Ap	pli	cat	ion	s",	NA	SA	SP-	810	2.					
3. Comments from D the gravity grad facilities.	. E liom	rne: ete:	st] rw(H. 1 ork	Met cu	zge: rrei	r, ntl	Bel y b	l A ein	ero g P	spa erf	ce orm	Com ed	ipan at	y c the	onc	ern	ing	
								·											
											. ,								
														•					
15. LEVEL OF STATE O	F Aj	RT						5. (N REI	EVA	IT
 BASIC PHENOMENA OBSERVI D THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE 	CRIBE EXPE	i Phe Crime Erist	NOME NT	ENA.	(STR/	TED,		7. 1 8. 1 9. 1	NODE NODE NEW (OF) RELL	L TE L TE CAPA ERAT L BILI	STED STED BILIT IONA TY UI	IN A IN SI TY DE L MO PGRA	IRCR PACE RIVE DEL. DING	AFT ENV DFR	DRATC ENVII IRONI IRONI OM A N OP	RONM MENT MUC ERAT	n le: Jona	l MO	DEL.

NO. <u>C-7.1</u>

1. TECHNOLOGY REQUIREMENT (TITLE): Life Sciences PAGE 1 OF 5 Organism Holding Units

2. TECHNOLOGY CATEGORY: Life Sciences

3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop spaceflight holding units for primates, small vertebrates, cells and tissues, invertebrates and plants, which meet

the requirements of the life sciences principal investigators.

- 4. CURRENT STATE OF ART: Separate small holding units have been flown in past unmanned (Biosatellite) and manned spacecraft. Several prototypes of larger holding (Cont'd on Page 2) HAS BEEN CARRIED TO LEVEL 5
- 5. DESCRIPTION OF TECHNOLOGY

Organism holding units are needed to house various research organisms and support whatever research procedures are required by the scientists. Except for primates or other large vertebrates, multiple organisms may be accommodated within each holding unit in order to provide a statistical basis for the observed scientific results. Small vertebrates would be contained in individual cages within one or more holding units to be flown on each mission. Holding unit design emphasis will initially be placed upon the support of vertebrates, and cells and tissues since these types of organisms can be used more directly in the study of spaceflight effects on man. In addition to a controlled atmospheric environment for the organisms (see Table 1 for typical environmental requirements) the holding units may have to provide one or more of the following, depending upon the research being conducted: (1) Data acquisition interface equipment for monitoring the organism without electromagnetic inter-

(Cont'd on Page 2) P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The use of organisms in spaceflight experiments will require some sort of holding facility. Many varieties of organisms have been proposed because of the nature of the research being performed. Such organisms include monkeys, rats, mice, turtles, chickens, quail, rabbits, fish, frog and fish eggs, tissues, cultures, marigolds, algae, flies, spiders, etc. Some organisms and experiments involve the use of radioactive tracers which should not enter the crew environment. Other experiments require special atmospheric conditions such as temperature, gaseous composition, pressure, etc. (ref. Table I). Metabolic experiments require special measurement devices associated with feeding, watering, and waste management. Plant experiments may require special lighting characteristics and scheduling. All of the above requirements can be met in the form of one or more special holding units designed with these requirements in mind.
- b. The payload which will benefit from this development will be the Life Sciences Shuttle Laboratory (LS-09-S), and the Life Sciences Mini-Labs (LS-10-S).
- c. Allows populations of various organisms to be flown and maintained. Allows for statistical numbers (>30) of organisms.
- d. Reliability improvement of operational models is required.

TO BE CARRIED TO LEVEL 9

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-7.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Life Sciences Organisms	PAGE 2 OF <u>5</u>
Holding Units	

4. CURRENT STATE OF ART (Cont'd)

units have been built and are currently being reviewed and/or tested by NASA for future application.

5. DESCRIPTION OF TECHNOLOGY (Cont'd)

ference (EMI); (2) Special feeding and watering equipment to provide for accurate measurement of these functions; (3) Bio-waste collection and management equipment; (4) A containment shroud or device to allow crew access to the organisms without organism escape into the cabin or cabin contamination; (5) Noise and vibration abatement features; (6) Special lighting provisions; (7) Provision for photographic or video coverage of the organisms within the holding unit.

Past organisms in spacecraft have been housed in small enclosures specific to the particular experiment being conducted. Very limited manipulation of these organisms has been performed by the crew. Biosatellite experiments were unmanned and generally quite specific in nature. Current holding units potentially applicable to future space-flights include: (1) the Convair Common Holding Unit, (2) the Monkey Pod being developed at the University of California, and (3) orbiting primate prototype monkey housing units developed by Lockheed and Northrup.

		PRIMATES	NON-PRIMATE VERTEBRATES	CELLS & TISSUES	PLANTS	INVERTEBRATES
		LS-041	LS-040	LS-060	LS-050	Lo-010
Tomporatures*	Range, °F Tolorances, ±°F	68 - 86 ±1	70 ~ 86 ±1	64 - 100 土1	62 - 82 ±1	50 - 99 ±1
Humidity*	Range, % Tolerances, %	45 - 70 ≠2	40→ 78 ±3	67 - 100 ±2	51 - 92 ±2	16 - 91 ±2
Atmospheric Pressure	Nominal Max CO ₂ partial pressure, torr	1 Atm. 3	1 Atm S	1 Atm 3	1 Atm 7.6	1 Atm 3 - 7
Lighting	ft-cd	90 ± 10	90 ± 1 0	90 ± 10	Daylight fluores- cent 100 ± 10	0 - 120
Sound Isolation,	d.b.	TBD	TBD	TBD	TBD	TBD
Vibration, EMI,	Radiation	TBD	TBD	TBD	TBD	TBD
Food Manageme	at	Demand or con- trolled feed. Stored pollets.	Demand or con- trolled feed. Stored pellets GT	Stored Nutrients	Stored Nutrients	Stored Nutrients
Waste Managem	ent	Removal, collec- tion & separation	paste type fe Removal, collec- tion & separation	ed. TBD	TBD	TED

TABLE I. LIFE SCIENCES HOLDING UNIT REQUIREMENTS

*Controllable at any point within range.

8/1/74

	DEFINITION OF TECHNOLOG	Y REQUIREMENT	NO. C-7.1
1.	TECHNOLOGY REQUIREMENT(TITLE):	Life Sciences Organism	PAGE 3 OF 5
	. ,-	Holding Units	
7.	TECHNOLOGY OPTIONS:	<u> </u>	
	Options in the holding unit design include a use of restrained organisms as opposed to number of internal cages for small organi mixing various compatible types of organ considered.	o unrestrained organisms. sms would be open to futur	The size and e studies. Also,
8.	TECHNICAL PROBLEMS:		
	The holding unit must be designed for bro flight but pre- and post-flight and for grou laboratory. Thus, its size, internal confi- coolant interconnections, weight, and other environments in which it will be used, bot sealable for those experiments which cam	nd testing in the principal iguration, electrical power er properties must be comp h in 0-g and 1-g. The hold not intermix the air ventilat	investigator's interconnections, patible with all the ling unit should be
9.	POTENTIAL ALTERNATIVES: a. Some experiments may be capable o For example, limited plant experim	f being performed without a	a holding unit.
	environment. This alternative, how ments which require controlled envi- controlled data acquisition, etc.		
	1 · · · · · · · · · · · · · · · · · · ·	(0	Cont'd on Page 4)
10.	. PLANNED PROGRAMS OR UNPERTURBI	ED TECHNOLOGY ADVAN	CEMENT:
	RTOP is currently under review at NASA Patterson at NASA/MSFC.	Headquarters. The COR w	vill be Bill
	· · · · · · · · · · · · · · · · · · ·	EXPECTED UNPERT	URBED LEVEL _
11	. RELATED TECHNOLOGY REQUIREMI Several related technology areas may be t	ENTS:	· · · · · · · · · · · · · · · · · · ·

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-7.1</u>							
1. TECHNOLOGY REQUIREMENT (TITLE): Life Sciences	_ PAGE 4 OF <u>5</u>							
Organisms Holding Units								

8. TECHNICAL PROBLEMS (Cont'd)

with that of the cabin.

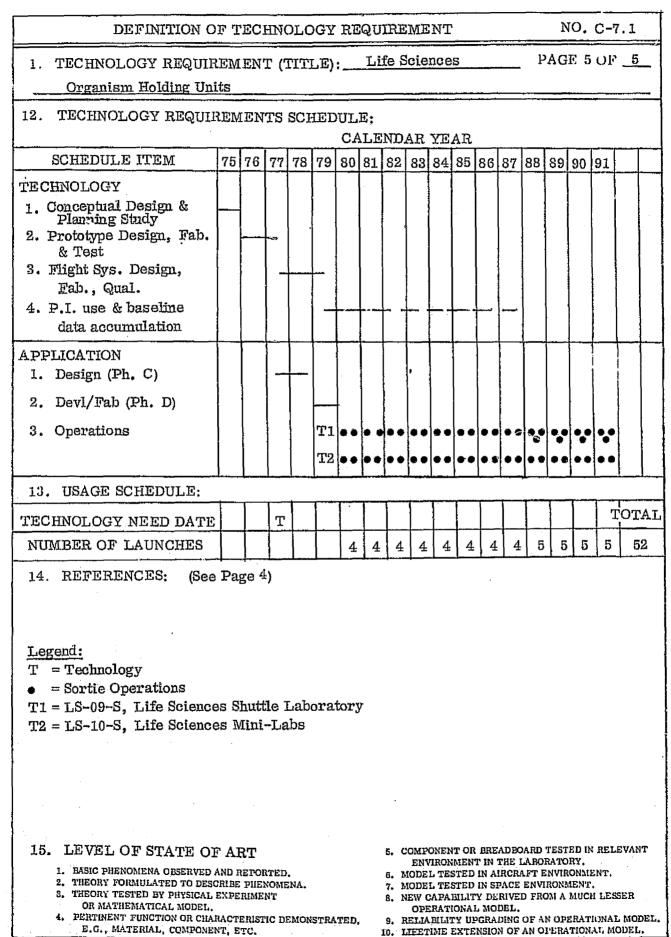
Organism feeding, watering and waste systems must not only be compatible with 0-g, but for some experiments must provide accurate measurements of the quantities consumed or produced. EMI will undoubtedly be a problem with low voltage electrophysiclogical signals.

Spacecraft operational factors will have to be taken into account in holding unit development. These may include: (1) loading and unloading of the holding unit, (2) orientation of the holding unit and organisms during various flight and ground phases of the mission, (3) vibration and acceleration loads, (4) refurbishment between flights, (5) modifications to the holding unit to accommodate a new type of organism or a mixture of organisms, and (6) subsystem support of the holding units including electrical power, thermal control fluids and data management functions.

9. POTENTIAL ALTERNATIVES (Cont'd)

b. Another alternative to the use of a general purpose holding unit would be the use of specific holding units or cages for each organism and experiment. This concept is not considered to be a good approach since it would be costly and would result in many problems in mission operations, spacecraft integration, and research program coordination.

14. REFERENCES:


Study of Common Holding Units and Environmental Control Systems for Biological Organisms in Spacecraft Laboratories, General Dynamics/Convair Aerospace Planning Document No. PD663-74-003, San Diego, CA, August 1974.

Life Sciences Payload Definition & Integration Study, Task C&D, CASD-NAS-73-003, Vols. I, II, III & IV, Contract NAS8-29150, General Dynamics/Convair Aerospace, Aug. 1973.

A Study of Environmental Control and Life Support Systems for Spacecraft Animal Experiments, Report No. GDC-ERR-1401, General Dynamics/Convair Division, San Diego, CA, Dec. 1969.

Implementation Techniques for a General Space Bioresearch Laboratory, Report No. GDCA-ERR-1657, General Dynamics/Convair Aerospace Division, San Diego, CA, Jan. 1972.

Space Bioexperiments Support and Transfer Equipment Fabrication and Testing, Report No. GDCA-ERR-1716, General Dynamics/Convair Aerospace Division, San Diego, CA, Dec. 1972.

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-7.2</u>
1.	TECHNOLOGY REQUIREMENT (TITLE): <u>Bioresearch</u> Centrifuge	PAGE 1 OF <u></u>
2.	TECHNOLOGY CATEGORY: Life Sciences	
3. 	OBJECTIVE/ADVANCEMENT REQUIRED: To develop a continu fuge capable of supporting live organisms for up to 30 days.	uous rotation centri-
4.	CURRENT STATE OF ART: <u>Ground-based centrifuges have be</u> hypergravity. A centrifuge for space research is presently only HAS BEEN CA	
	The basic requirement is to provide a control 1-g environment for rats, plants, etc.) for up to 30 days. Provisions for food and wa collection of data and samples (blood, urine, tissues), and the én disturbance must be considered. Drive and balance mechanisms 3.6 m diameter centrifuge are of particular concern.	ste management, the surance of minimum
	p/l requirements based on: 🔀 pre-a	, 🗋 А, 🗍 В, 🗍 С/1
6.	P/L REQUIREMENTS BASED ON: A PRE-A RATIONALE AND ANALYSIS: a) The 1-g environment provided by the Bioresearch Centrifug gravity control organisms to be aboard the Spacelab and dir results with the zero-g organisms. On-board 1-g controls bound controls obviate the simulation of launch and re-entr on the earth controls.	ge permits normo- rect comparison of instead of earth-
6.	 RATIONALE AND ANALYSIS: a) The 1-g environment provided by the Bioresearch Centrifug gravity control organisms to be aboard the Spacelab and diresults with the zero-g organisms. On-board 1-g controls bound controls obviate the simulation of launch and re-entry 	ge permits normo- rect comparison of instead of earth- y stress conditions
6.	 RATIONALE AND ANALYSIS: a) The 1-g environment provided by the Bioresearch Centrifug gravity control organisms to be aboard the Spacelab and direcults with the zero-g organisms. On-board 1-g controls bound controls obviate the simulation of launch and re-entron the earth controls. b) The Bioresearch Centrifuge is to be used in conjunction with the series of the ser	ge permits normo- rect comparison of instead of earth- y stress conditions th the Life Sciences under variable but
6.	 RATIONALE AND ANALYSIS: a) The 1-g environment provided by the Bioresearch Centrifug gravity control organisms to be aboard the Spacelab and direcults with the zero-g organisms. On-board 1-g controls bound controls obviate the simulation of launch and re-entron the earth controls. b) The Bioresearch Centrifuge is to be used in conjunction with Shuttle Laboratory, LS-09-S. c) The centrifuge enables life sciences experiments in space controlled g levels, including reconditioning after a period. 	ge permits normo- rect comparison of instead of earth- y stress conditions th the Life Sciences under variable but l of near zero "g"

ъ.: Н

7.]	TECHNOLOGY REQUIREMENT(TITLE): Bioresearch pAGE 2 (Centrifuge TECHNOLOGY OPTIONS: 1) Maintenance of the 1-g environment at the organism location is of prime in portance. The effects of g-gradient, Coriolis forces, angular velocity variation is velocity variation. 2) Ventilation: Passive - Forced air flow-through using scoops. Active - Blower.	 m⊶
7. 1	 TECHNOLOGY OPTIONS: Maintenance of the 1-g environment at the organism location is of prime in portance. The effects of g-gradient, Coriolis forces, angular velocity var have to be investigated. Ventilation: Passive - Forced air flow-through using scoops. Active - Blower. 	
	 Maintenance of the 1-g environment at the organism location is of prime in portance. The effects of g-gradient, Coriolis forces, angular velocity variative to be investigated. Ventilation: Passive - Forced air flow-through using scoops. Active - Blower. 	
8		
	 TECHNICAI PROBLEMS: Removal of specimens and samples while continuously rotating or possible Providing and recording food and water during rotation. Automatic counter-balancing system especially for manned interface with centrifuge. Provisions for telemetry of biophysiological data. 	
	POTENTIAL ALTERNATIVES: For small organisms (cells & tissues, invertebrates) a small, laboratory-style commercial centrifuge could be adapted to provide the 1-g environment.	3
 10 T	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	
	Possible requirements study done by NASA/ARC beginning in CY 75.	
	EXPECTED UNPERTURBED LE	VEL
11.	. RELATED TECHNOLOGY REQUIREMENTS:	
	Development of organism holding units which will be used on the centrifuge. Th provide the environmental and physical housing for the 1-g controls.	lese

	DEFINITION O	FΊ	EC.	HN	DLC)GY	RE	ເຊບ	IRF	ME	NT				<u>.</u>	ľ	10,	C-	7.2	•
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Bioresearch Centrifuge</u> PAGE 3 OF <u>3</u>																				
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91																				
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
	HNOLOGY Concepts and Trades																			
2.	Exp. Model Design	-	_															ĺ		
3.	Exp. Model Fab.		_	Ļ																
4.	Test and Evaluation										-									
APP	LICATION														 					
1.	Design (Ph. C)				-			ļ												
2.	Devl/Fab (Ph. D)				ł		┣	<u> </u>		-									ĺ	
3.	Operations										88	• 9	¢e	6-0	• •	•	94			
13.	USAGE SCHEDULE:		. 	J			I		· <u>}</u>		L	L			,I		·	<u>,</u>		i
TEC	HNOLOGY NEED DATE				x			1		x	1								ΓΟŢ	'A]
NU	MBER OF LAUNCHES										2	2	2	2	2	2	2		1	4
14.	REFERENCES: SSPDA: Payload LS-08 Payload Descr										sh C	Cent	rifi	ige	, St	ımp	nar	izeo	1 NA	ر S
. .																				
15.	 LEVEL OF STATE OF ART BASIC PHENOMENA OBSERVED AND REPORTED. THEORY FORMULATED TO DESCRIBE PHENOMENA. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, 									 COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY, MODEL TESTED IN AIRCRAFT ENVIRONMENT, MODEL TESTED IN SPACE ENVIRONMENT. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL. RELIABILITY UPGRADING OF AN OPERATIONAL MOD 										

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Teleoperator Subsystems</u> PAGE 1 OF <u>3</u>

2. TECHNOLOGY CATEGORY: Life Sciences

3. OBJECTIVE/ADVANCEMENT REQUIRED: Development of display, manipulator controller and end effectors for teleoperator application.

4. CURRENT STATE OF ART: <u>There are several earth-based teleoperator systems</u>. However, technology deficiencies exist in certain subsystem areas.

HAS BEEN CARRIED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

Advanced technology is needed with respect to teleoperator systems (e.g., Free-Flying Teleoperator, and Shuttle Orbiter Remote Manipulator) in at least the following three areas:

- 1. Video display capable of providing high-resolution, three-dimensional picture that in effect places the operator at the end-effector site.
- 2. Manipulator/Grappler and controllers for providing the sensitivity, light-to-heavy grappling power and resolution desired.
- 3. End effectors which can secure all types of payloads with sufficient but not excessive force.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

a. These technology problems evolve from functional analysis of the teleoperator reqmts.

- b. This technology is required for the Free-Flying Teleoperator payload, LS-04-S. The advanced technology is required for experiments in the manned systems integration research areas.
- c. Implementation of the teleoperator capability would enable supplement EVA as a means for spacecraft and experiment equipment repair and service in orbit.
- d. This technology advance requirement will be met with a final test in orbit on a Shuttle flight.

Initial test may be performed at the Lunar landing simulator site at Langley Research Center to demonstrate the technology readiness.

PRE-EDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL $\frac{8}{2}$

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-7.3
1.	TECHNOLOGY REQUIREMENT(TITLE): <u>Teleoperator Subsystems</u> PAGE 2 OF <u>3</u>
7.	TECHNOLOGY OPTIONS:
a)	Displays - It is possible that existing displays such as a seven-inch monitor de- veloped for Skylab could be used. However, a technology study of video parameters such as illumination, color vs B/W, and stereo vs. two-dimensional multi-camera systems is required.
Ъ)	Sensor Systems - Trade studies of advanced sensors, e.g., touch, position, optical ranging, force, etc.
С).	Control - Pre-programmed vs. master/slave operation.
8,	TECHNICAL PROBLEMS:
a.	End effector action and reaction.
b.	TV camera three-dimensional perception effectiveness.
c.	Remote manipulator controls feedback servicing effectiveness.
d.	Range-and-range-rate sensor to supplement TV.
9,	POTENTIAL ALTERNATIVES:
a)	Display Systems - Rather than strictly analog TV sensors and display digital proces ing may add 3-D information at increased cost and complexity.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
a.	W 74-70347 (502-03-32) Artificial Intelligence for Integrated Robot Systems, Robert Powell, JPL
	W74-70791 (970-23-20) Teleoperator Manipulator and End Effector Technology, H. P. Kleen, ARC
c.	W74-70823 Remotely Manned Systems Displays and Supervisory Control (Requirements for Payload Work Station Design), J. R. Thompson, MSFC, Huntsville, Ala.
đ.	W74-70824 (970-63-10), Teleoperator Control and Manipulation, W. G. Thornton, MS Huntsville, Ala. (Ph. 205-453-5530) EXPECTED UNPERTURBED LEVEL
11	. RELATED TECHNOLOGY REQUIREMENTS:
	nge-Rate Sensor (a separate development) will be coupled with the display/control pects of the teleoperator system for payload retrieval missions.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-7.3														
1. TECHNOLOGY REQUIREMENT (TITLE): Teleoperator Subsystems PAGE 3 OF 3														
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR														
SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91														
TECHNOLOGY 1. Basic Research Display Systems														
2. Design/Fabrication End Effectors														
3. Test, Evaluation and — Manipulators/Controllers Concept Improvement — — 4. Final Test in Space — —														
5.														
APPLICATION Free-Flying Teleoperator Development														
2. Devl/Fab (Ph. D)														
3. Operations														
4.														
13. USAGE SCHEDULE:														
TECHNOLOGY NEED DATE X X	TOTAL													
NUMBER OF LAUNCHES 1 2 1	12													
14. REFERENCES:														
1. SSPDA: Payload LS-04-S, Free-Flying Teleoperator, Summarized NASA Pay Descriptions, MSFC, July 1974.	rload													
2. Shuttle Free-Flying Teleoperator System Experiment Definition, NAS8-27895 Bell Aerospace, June 1972.	3													
 LEVEL OF STATE OF ART BASIC PHENOMENA OBSERVED AND REPORTED. THEORY FORMULATED TO DESCRIBE PHENOMENA. THEORY TESTED BY PHYSICAL EXPERIMENT THEORY TESTED BY PHYSICAL EXPERIMENT MATHEMATICAL MODEL. COMPONENT OR AREADBOARD TESTED IN REPORTED. COMPONENT OR AREADBOARD TESTED IN REPORTED. MODEL TESTED IN AIRCRAFT ENVIRONMENT. NEW CAPABILITY DERIVED FROM A MUCH LESCOPERATIONAL MODEL. 	SER													
4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL COMPONENT, ETC. 9. RELIABILITY UPGRADING OF AN OPERATIONAL 10. LIFETIME EXTENSION OF AN OPERATIONAL														

Ì.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-7.4</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Surgery in Space PAGE 1 OF 3
2. TECHNOLOGY CATEGORY: Life Sciences
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop techniques for performing
surgery on animals in 0-g.
4. CURRENT STATE OF ART: Routine surgery in 1-g is highly developed.
HAS BEEN CARRIED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY
 There are several unknowns concerning surgery on animals or emergency surgery on humans in the space environment. The principal concerns are: Retention and control of tools and instruments. Confinement of fluids (e.g., blood), tissues, specimens. Visibility and manipulation or animal contained within shrouded area. Maintenance of a sterile field about the surgery site.
p/l requirements based on: 👿 pre-a, 🗖 a, 🗍 b, 🗍 C/d
6. RATIONALE AND ANALYSIS:
a. Techniques are derivable from ground and Skylab experience.
 b. Benefiting payloads: Any Life Sciences payloads containing animals as research subjects or humans. In particular - Life Sciences Shuttle Laboratory, LS-09-S - Life Sciences Mini-Labs, LS-10-S
c. Justification for advancement: Surgery on animals in the space environment will be required for autopsy, biopsy, sensor implementation or removal, stress induction and, in the case of humans, minor emergencies. It will be needed to provide a research pro- gram similar to that found in the principal investigator's laboratory where such surgery is routine.
d. Final test is in space on a sortie flight. Initial technology tests would be performed on a zero-gravity simulator.
TO BE CARRIED TO LEVEL $\frac{5}{7}$
7-261

PRECEDING PAGE BLANK NOT FILMED

•

	DEFINITION OF TECHNOLOGY I	REQUIREMENT	NO. C-7.4	1
1 9750	HNOLOGY BEQUIREMENT/TITLE	Surgery in Space	PAGE 2 OF 3	

7. TECHNOLOGY OPTIONS:

Reference 1 details the following technology development areas. These are only examples of potential approaches to required technology for performing surgery in space.

a) Zero-G Equipment Restraint - A device fabricated of small diameter surgical rubber tubing or large rubber bands secured in holes or notches properly positioned in a lightweight frame to produce an open elastic grid. Test tubes, pencils, syringes, petri dishes, reagent bottles, beakers, etc., can be rapidly secured by insertion between slightly stretched rubber bands at a position on the double grid where the spacing was somewhat smaller than the size of the object to be secured.

b) Air Flow Zero-G Work Surface - The air flow zero-g work surface is a screen or other perforated surface attached to an air duct and blower to induce a stream of air through the surface and provides a positive force acting to hold items against the work surface.

c) Flexible Shroud - A transparent, flexible shroud for debris containment. The shroud is equipped with arm slits to enable the experimenter to gain access to all equipment within the shroud. With the shroud positioned over the area in front of the animal housing unit, all other equipment items required for animal handling procedures are located within the shroud.

d) Vertebrate Management Kit - A kit providing tools and devices for restraining small animals during surgery. Includes harness-type restraints and a universal animal dissection board.

9. POTENTIAL ALTERNATIVES:

Reference 2 includes other potential solutions.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

a. Concept Verification & Test (CVT) at NASA/JSC to test some initial concepts. b. A working prototype of an ARC developed multipurpose workbench/surgery table was tested in the ARC/MSFC CVT in July 1974. Further in-house work is in progress to upgrade this unit. The initial tests were quite promising.

EXPECTED UNPERTURBED LEVEL 4

11. RELATED TECHNOLOGY REQUIREMENTS:

Development of organism holding units and interface elements for performing animal surgery.

DEFINITION ()F T	EC.	HNC	DLC	GY	RE	ຊບ	IRF	ME	'N'I	· · · · · ·				P	10.	C-7	7.4	
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Surgery in Space</u> PAGE 3 OF <u>3</u>																			
12. TECHNOLOGY REQU	REN	IEN	TS	SCI	IED		-	ND	AR	YE	AR	-							
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Technique Improvement	_																		
2. Experiment Technique Design		 																	
3. Experiment Technique Ground Test		_							ļ		ļ				ļ				
4. Zero g Simulations in Water Tank			·															,	
5. Evaluation	<u> </u>											<u> </u>							
APPLICATION					ł					ļ						ŧ			
1. Design (Ph. C)						1								ł				İ	
2. Dev1/Fab (Ph. D)																			1
3. Operations							• 0	00	90	00	80	00	90	00	00	କଟ			
4.																			
13, USAGE SCHEDULE:				. <u>.</u>						<u></u>									
TECHNOLOGY NEED DATE	;			x														ro'i	'AI
NUMBER OF LAUNCHES							2*	* 2	2	2	2	2	2	2	2	2			20
14. REFERENCES:						_												_	
1. Life Sciences Paylos	ıd D	efin	itic	n a	nd)	inte	gra	tior	ı St	udy	, N	AS	-30	288	3, A	ugu	ıst 1	L974	ŧ.
New Technology Rep a) Zero-G Equipme b) Air Flow Zero-G	nt F	est	rair	ıt		NA	.SA,	/M	SFC	in	cor	ijun	etic	on v	vith	NA	S8-	302	88:
2. NASA Technical Bri	ef 1	088	7, 5	oor	ı to	be	pub	lisĭ	ued.	•									
* Life Sciences Shuttle La	bor	ator	у,	LS-	09-	·S.		• .											
15. LEVEL OF STATE O	FA	RT						5. (N REI	EVA	NT
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL PERTINENT FUNCTION OR CHA 	AND I CR! BE EXPE	REPOI PILE RIME	NOMI NT	ENA.	ISTRA	TED.		7. 1 6. 1	Mode Mode New (Opi	L TE CAPA ERAT	STEL STEL BILL TONA	IN A IN S IY DE L MO	IRCR PACE RIVE DEL.	AFT ENV DFR	ENVII 1RON OM A	RONM MENI . MUC	ENT. 7. H LE: TIONA		DEL

	DEFINITION OF TECHNOLOGY REQU	IREMENT	NO. <u>C-8.1</u>
1. TECI	NOLOGY REQUIREMENT (TITLE):	Active Cleaner PA	AGE 1 OF <u>7</u>
2. TECH	INOLOGY CATEGORY: Contamination		
3. OBJ	ECTIVE/ADVANCEMENT REQUIRED: To will permit in-situ cleaning of contaminant		<u>to a level</u>
<u>have</u> of ba	RENT STATE OF ART: Laboratory invest demonstrated the feasibility of active clear etween 3.5×10^{-13} and 10^{-7} gm/cm ² -sec.1 been flown on orbiting payloads.	ming using gas plasmas nave been demonstrated.	<u>Removal</u> rates No equipment
	CRIPTION OF TECHNOLOGY	HAS BEEN CARRIED	TO LEVEL 5

Contamination

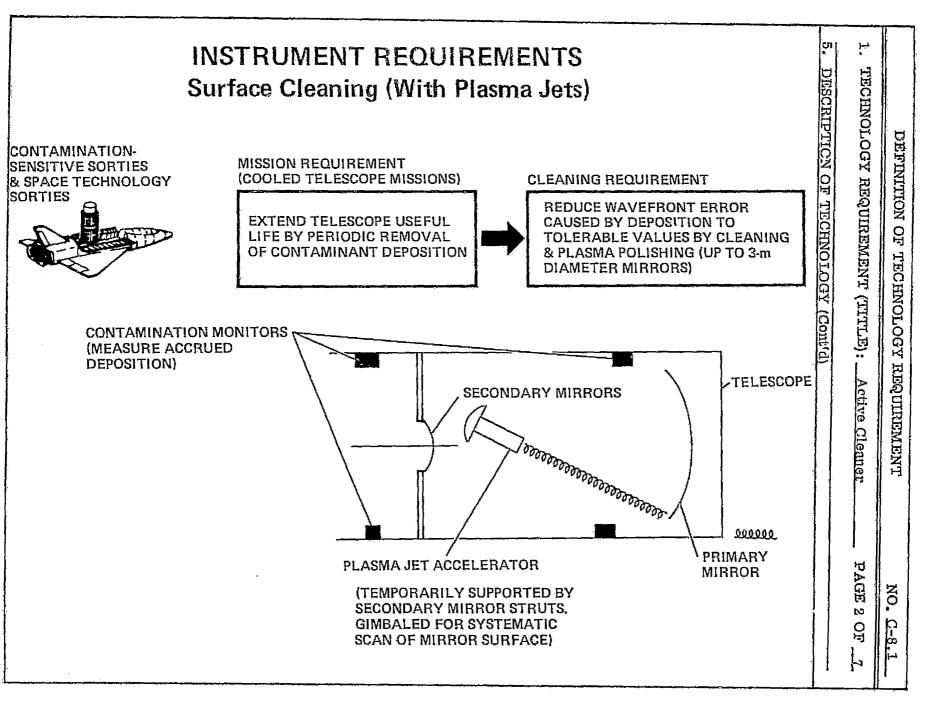
Contamination of optical surfaces is a severe problem for orbiting payloads. Contaminants can be introduced during manfacture, test and launch operations. Payload designs sometime preclude the pre launch cleaning of these optical surfaces.

Outgassing of the payload structure from plastics, seals, paints and lubricants also causes contamination following launch. If the contaminants are subjected to UV radiation, the resulting deposit becomes polymerized and very difficult to remove.

Research under NASA contracts has shown that severe reflectance degradation in the UV range (0.1 to 0.3 micron) occurs with film depositions of 10^{-6} gm/cm². Deposition rates of 4×10^{-12} gm/cm-sec. were observed on one of the Skylab Contamination Monitors. Data from the OGO-6 contamination experiment indicated a 9×10^{-11} gm/cm²-sec. deposition rate during the early part of the mission.

Active Cleaning

Laboratory experiments carried out by the Boeing Company under NASA contract have demonstrated contamination removal rates of 10^{-7} gm/cm²-sec. using Oxygen, Argon, Hydrogen and Helium plasmas. Plasma powers ranged from 30 to 50 watts. Efficiency of cleaning varied from partial to complete recovery of reflectance of the test samples.


The n echanism involved in the cleaning process is unknown, but evidence indicates that chemical reactions are not involved to a significant extent.

(See pages 2 and 3 for additional description.)

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

7-265

PRECEDING PAGE BLANK NOT FILMED

DESCRIPTION OF TECHNOLOGY (Cont'd) **CONTAMINATION – SURFACE CLEANING** WITH PLASMA JETS CAPABILITY REQUIRED **ITEM** STATE OF ART* MEASURE OF CONTAMINANT TYPE & MASS 1 TO 300 2 TO 150 RANGE (AMU) 1 x 10⁻¹¹ 1 x 10⁻¹⁰ DEPOSITION MEASUREMENT RESOLUTION (g/cm²) 1 x 10⁻¹⁰ TO 1 x 10⁻⁹ TO DEPOSITION MEASUREMENT RANGE (g/cm²) 1 x 10⁻⁴ 1 x 10⁻⁵ CLEANING AREA (cm²) 10,000 100 2 x 10⁻¹⁰ 10⁻⁷ CONTROLLABILITY OF CLEANING RATE (g/cm² SEC) *OGO-6, GROUND-BASED LABORATORIES

en en la companya de la companya de la companya de la companya de la companya de la companya de la companya de

ţ٦

1-4

7-267

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8,1</u>
1. TECHNOLOGY REQUIREMENT (TITLE);Active Cleaner	PAGE 4 OF _7_

6. RATIONALE AND ANALYSIS

a. The total deposition and deposition rates recorded from the OGO-6 experiments were from 5 to 10×10^{-6} gm/cm² deposition and up to 9×10^{-11} gm/cm²-sec. deposition rate. Based on these records, deposit removal rates should exceed these by 2 to 3 orders of magnitude, i.e., 10^{-7} gm/cm²-sec.

The larger and more complex payloads envisioned for launch by Space . Shuttle will be subjected to contamination rates well in excess of the maximum rates recorded by OGO-6. The Space Shuttle Sortie missions will be especially severe with RCS, material outgassing and waste dumps. Further experiments are needed to determine the removal rates required for these payloads. Shields and doors protect only on ascent and descent, not during observation.

b. All astronomy payloads, Earth Resources payloads, and miscellaneous payloads using optical surfaces or ports will benefit.

c. Degradation of transmission or reflectance can render an experiment useless, even though the supporting payload systems continue to operate. The ERTS-1 Multi-spectral Scanner calibration system was useless when activated, apparently due to contamination. Even moderate contamination can render the payload performance so low as to be worthless as a scientific experiment. Additional benefits result from fewer spacecraft required or fewer shuttle retrival missions.

d. To be used as a method for extending the useful life of spacecraft optics, active cleaners must have demonstrated successful prototype qualification.

This will include on-orbit tests using a variety of gases, plasma powers, and surface scanning methods. The qualification must also include tests on a variety of contaminants including UV exposure on the various test samples. Final test will be in orbit on a Shuttle sortie flight.

TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-8.1
1. TECHNOLOGY REQUIREMENT(TITLE): <u>Active Cleaner</u>	PAGE <u>5</u> OF <u>7</u>
 7. TECHNOLOGY OPTIONS: The critical parameter is the removal rate. This parameter is affer a. Plasma power b. Type of gas used to generate the ionized plasma. c. Distance from plasma orifice to surface treated. d. Type of contaminant. The first three items can be varied to affect removal rates. Plasm beam forming methods used can both be optimized for a particular a beam power would vary from 10 to 100 watts, depending on the beam the contamination to be removed and the speed of removal required. of gas can be used including Argon, Oxygen, Helium and Hydrogen. needed to determine the optimum gas and power for a specific surface 	a power and the pplication。 The cross section, Various types Further study is
8. TECHNICAL PROBLEMS:	ued on page 6)
Inaccurate control of the plasma could cause erosion of the optical s Structure, lubricants and seals adjacent to the treated surface will from the plasma to minimize re-contamination of the optical surfac techniques are needed to insure ignition, treat large surfaces and a with spacecraft communication. (Contin	have to be shielded e. Improved
9. POTENTIAL ALTERNATIVES:	
 a. Protective Covers. b. Careful material selection. c. Cooled sacrificial surfaces. d. Bake-out in-situ. e. Long outgassing periods prior to surface exposure following orbit. Retrieval and replacement of degraded surfaces. g. Avoid deposition in space. 	it insertion.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	ICEMENT:
 NASA Contract NAS 8-26385, "Active Cleaning Technique for Remo from Optical Surfaces in Space." NASA Contract NAS 8-28270, "Active Cleaning Technique Device." 	ving Contamination
(Continued on page 6) EXPECTED UNPERT	URBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS: Technology advances in the identification of contamination mechaniss elimination of contamination sources through materials research.	
7-269	

_

计数据 有可能 建化合物 化化合物 化化合物 化化合物 化化合物 化化合物化化合物化化合物化合物

NO. <u>C-8.1</u>

1. TECHNOLOGY REQUIREMENT (TITLE): Active Cleaner PAGE 6 OF 7

7. TECHNOLOGY OPTIONS (Continued)

The most efficient method for contamination removal is by plasma bombardment. Removal of contamination by plasma bombardment results when the ions in the plasma impact the surface. The removal of material is called sputtering. The cleaning rate is a function of

- a) Mass of the bombarding ion
- b) Mass of the contamination atoms
- c) Ion impact energy
- d) Plasma density
- d) Angle of incidence
- f) Surface finish

Maximum cleaning rates are achieved for high density plasma (mA/cm^{2}) and impact energies in the 1 to 10 keV range. To clean carbonaceous contamination a neon plasma is most efficient. For higher molecular weight contamination, an argon or krypton plasma would be used.

8. TECHNICAL PROBLEMS (Continued)

Uniform control of the plasma cleaning rate across the contaminated surface is the principle problem in using ion bombardment for cleaning. It will be necessary to maintain removal precision to a few angstroms to avoid damaging optical surfaces.

To maintain uniform cleaning rates a QCM servo-loop to control the plasma generator is needed.

10. UNPERTURBED TECHNOLOGY ADVANCEMENTS (Continued)

At present there is no program to develop a QCM servo control of a plasma contamination removal system. Without such a program it will be impractical to use a plasma cleaning system.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-8.1																			
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Active Cleaner</u> PAGE 7_														_OF	_7				
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR														-					
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	Ì	
TECHNOLOGY 1. Basic Research												-							
2. Design																			
3. Fabrication			9																
4. Test and Evaluation			-		31 57														
5. Documentation					TMC 1														
APPLICATION 1. Design (Ph. C)				(Uts	32														
2. Devl/Fab (Ph. D)																			
3. Operations								232-117	<u>सम्बद्ध</u> ाः	- 	¥-	-	-	r					
4.												:							
13. USAGE SCHEDULE:		<u></u>				·									•	<u> </u>		·	
TECHNOLOGY NEED DATE						Т											l 1	OT.	AL
NUMBER OF LAUNCHES						7	6	6	3	6	5	1						3	2
14. REFERENCES:		.	•••						•										
 REFERENCES: "Control of Contaminants on Sensors" N73-33367 "Active Cleaning Technique for Removing Contamination from Optical Surfaces In Space" N73-30697 & N71-35075 "A Survey of Contamination of Spacecraft Surfaces" (Contract No. NAS 8-26004) "Space Measurements of the Contamination of Surfaces by OGO-6. Outgassing and Their Cleaning by Sputtering and Desorption" N71-20207 "Report on Skylab QCM Performance" N73-31412 Comments from Boeing Aerospace Company, Roger B. Gillette, 88-06, Dec. 6, 1974. Comments from Dan McKeown, Foraday Labs, Dec. 18, 1974. 																			
Legend:								•											
T = Technology																			_
 LEVEL OF STATE OF nasic phenomena observed a theory formulated to desc theory tested by physical i OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAF E.G., MATERIAL, COMPONEN 	ND R RIBE EXPEI	epor Phen Rimen Risti	omei It	NA.	STRA	red,		6. M 7. M 8. N 9. R	ENV ODEI ODEI EW C OPE ELIA	IRON TES TES APA1 RATI BILIT	MEN TED TED HLIT ONAI Y UP	t in 1 IN AL IN SP Y DEI MOI GRAI	HE L RCRA ACE RIVEI DEL. DING (ABOI FT E ENVI D FRO	RATO NVIR RONM DM A	RY. ONME IENT. MUCH :RATI		er. Mod	EL.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.2</u>
Advanced 1. TECHNOLOGY REQUIREMENT (TITLE): <u>Contamination Monitors</u> <u>Contaminant identification</u> , rate and deposition measurement accuracy	PAGE 1 OF <u>6</u>
2. TECHNOLOGY CATEGORY: Contamination	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Development of a set of me ments to correctly identify contaminants in the vicinity of a contamination	onitoring instru- on sensitive pay-
load as well as to measure deposition flow rate and thickness.	
4. CURRENT STATE OF ART: <u>Sampling techniques</u> , photometers and que microbalance deposition monitors were used in the Skylab flight. Impro	uartz crystal ved units are
being planned for a greater dynamic range & accuracy. HAS BEEN CARRIE	D TO LEVEL 7
5. DESCRIPTION OF TECHNOLOGY Improvement is required in the efficient of the efficient of the end of the efficient of the efficient of the end of the efficient of the efficient of the end	nd automated measurement avoidance pro- ication and es organic con-
Two classes of contaminant monitors are currently planned: one, to me orbiter bay contamination from high to medium levels; and two, measure taminants within telescopes from medium to very low levels as well as p and signals to protective doors and devices. P/L REQUIREMENTS BASED ON: PRE-A, A	ement of con- providing alarm
6. RATIONALE AND ANALYSIS:	· · · · · · · · · · · · · · · · · · ·
a. Contaminants induced by the spacecraft environment have a most dele on the proper operation of certain payloads and results in the degradation sensors, optics and other systems sensitive to these contaminants. This	ı of various

cially true with payloads to be transported in and deployed by the Shuttle Orbiter.

Experience gained from the Skylab program has demonstrated the need for advanced sensors to adequately evaluate and control the spaceflight contamination environment. However, Skylab ATM operated with solar "heated" optics, some future sensors will utilize cooled optics and detectors which pose a greater contamination problem.

b. All Astronomy, solar physics, and some high energy astrophysics payloads (particularly in the spectrum from 0.03 to 4 kev) will benefit from the contamination monitor and consequent control measures. Payloads with cooled optics and detectors will benefit greatly from improved contamination control.

c. With adequate knowledge of types of contaminants, quantities, rates of deposition, etc., countermeasures such as closing covers, positive pressurization (purging) may be instituted on orbit. Tests as per ST-08-S for Shuttle bay monitoring are planned. Internal telescope optics need greater protection particularly during sortie missions.

d. Final proof of effectiveness of contamination monitors is in space with an astronomical payload. High to medium level monitors are to be tested on Shuttle Orbiter bay on a sortie flight. Medium to very low level monitors are to be tested in a telescope on a sortie flight.

7 - 273

TO BE CARRIED TO LEVEL 8

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-8.2
1. TECHN	Advanced OLOGY REQUIREMENT(TITLE):Contamination Monitors	PAGE 2 OF 6
Contamina	nt identification, rate and deposition measurement accuracy	u
The for monitor cepts to be detector for a detector gassing and particulate of a previo	OLOGY OPTIONS: is task is an extension of previous efforts to develop concept oring contaminants induced into the spacecraft environment. investigated include a dust fall (surface accumulation and cor- for monitoring selected portions of the orbital particulate indu- alarm for trace elements of various volatile matter which r id leaks, and a photodiode array to be used as an imaging ph- es. The first two will be conceptual efforts while the latter ous development. Other contaminant monitor concepts may in- ters and other sampling identification devices.	Three of the con- characterization) uced atmosphere, results from out- otometer to define will be an extension
	(continued on page 3)	
8. TECH	NICAL PROBLEMS:	
	ration of contamination monitors.	
b. Pow	er, weight, and data rate allocations are limited.	
	; lifetime, refurbishment, low cost.	
ther	pratory temperature control QCM's cannot be used in space us mo electric devices for cooling are developed to withstand the of the launch environment.	
e. Imp	roved quartz crystal stability.	·
 a. An alto is the with a b. If surf 	NTIAL ALTERNATIVES: ernate method of measurement of deposition of organic mate: use of an X-ray fluorescence monitor which can detect thick sensitivity of ± 1 nm. aces can (many optical surfaces cannot) be heated, heating w ; it easier to concentrate on measurements of organic mater	ness of 5 nm or les vill boil out water,
10. PLANN	ED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	CEMENT:
	FC RTOP 909-54-13 Contamination Monitors Development bert Naumann	•
	• · ·	
	EXPECTED UNPERT	TURBED LEVEL 7
11. RELA	TED TECHNOLOGY REQUIREMENTS:	
	velopment of catalog or reference memory of signatures for ntaminants.	dentifying
••••E,	7-274	

⁵у Эр

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.2</u>
Advanced 1. TECHNOLOGY REQUIREMENT (TITLE): Contamination Monitors	PAGE 3 OF <u>6</u>
Contaminant identification, rate and deposition measurement accuracy.	

7. TECHNOLOGY OPTIONS: (Continued)

Recent advances in solid state electro-optical components have resulted in imaging devices having quantum efficiencies of 0.8 which is several times higher than those currently used with image intensifier systems and SEC vidicon monitors. Concurrently the solid state logic technology field has produced micro-computers occupying volumes of only cubic centimeters. The interfacing of these developments offer the potential of continuous monitoring and analysis of the particulate induced atmosphere near critical experiment view directions in space flight laboratories. The photodiode array system offers particle detection, monitoring, and induced brightness levels as direct data. These properties would facilitate near real time mission timeline planning for affected experiments operations thus significantly increasing the probability of obtaining meaningful data. Present laboratory development and interfacing activities are in progress to evaluate detectability of moving point sources by 32 x 32 and 50 x 50 photodiode array modules. This "breadboard" system is operational and is being tested in the laboratory. The system is providing visual images and brightness values for field of view test items. The objective of this task is to build a larger mat system with increased capability electronic circuits for improving resolution limit and ability to measure lower reflectiveness, i.e. particles at greater speeds.

Integrated Real Time Contamination Monitor Development

The development of the various modules utilizes as much as possible the instruments and techniques developed in the Skylab program for flight and ground tests. The approach is to develop each module independently to the status of a flight type engineering model, capable of being tested under flight simulated conditions. The models are then brought into the laboratory and incorporated as instruments in various contamination research programs and flight test programs. This allows a gain practical experience in the performance of the instrument and an incorporation improvements as they become necessary. In some instances the engineering model could be flight qualified and flown if the opportunity presents itself. The status of each module is:

a. Deposition monitors in the form of quartz crystal microbalances have been successfully flown on Skylab and have yielded the bulk of our current knowlege of deposition of condensibles. One of the lessons learned in Skylab is that the amount of material collected is very temperature dependent. In fact, by cycling the temperature or by collecting on two or more surfaces at different temperatures, it is possible to measure the heat of absorption of the material and thereby deduce the type of material. This has led to the thermally controlled QCM (TQCM) which has a small Peitier cooler controlling the crystal temperature. Another version, the ultrasensitive QCM uses 20 MH_z crystals which allows it to measure a fraction of a monolayer. This unit is presently undergoing evaluation tests. These units are essentially developed to off-the-shelf flight hardware and are small enough to be deployed in a number of locations. Individually or in conjunction with other instruments. TQCMs can be operated down to 140° K using a passive radiative cooler. A study

NO. <u>C-8.2</u>

Advanced 1. TECHNOLOGY REQUIREMENT (TITLE): Contamination Monitors PAGE 4 OF 6 Contaminant identification, rate and deposition measurement accuracy.

7. TECHNOLOGY OPTIONS: (Continued)

is under way to incorporate a battery of these units into an Air Force satellite to study the interactions of back-scattered H_2O vapor with cryogenic surfaces. Other units that can operate as low as $5^{\circ}K$ are available if cryogenics are on board.

b. A flight quadruple mass spectrometer has been developed that operates from 1-300 AMU with unit resolution at 300 AMU. It is being evaluated at the present and a suitable inlet system must be developed to enable it to perform trace gas analysis at atmospheric pressure. One of the significant features of this system is a computer interface, compatible with the SUM-C Space Lab system, that can unfold complex spectra of a number of substances and give a real-time qualitative and quantitative analysis of a mixture of gases.

c. The optical effects module has been tested in the laboratory and has been used in the Skylab thermal vacuum tests as a contamination monitor. Some design problems were identified in the source and in the placement of the high voltage leads. A subsequent redesign and repackaging in a more convenient form is underway. The system can monitor the transmission, reflectance, and scatter at two different wavelengths in the ultraviolet. This allows the optical constants of the deposited contaminant to be ascertained. In addition, one of the reflection surfaces is a QCM which can measure the deposition responsible for the change. This QCM can also be heated to vaporize the contaminant so that it may be identified by the mass spectrometer. This technique allows identification to be made of trace quantities far below the threshold of a mass spectrometer.

d. A volumetric aerosol detector that can count and size particulates from 0.1 to 30 μ m has been developed and used in the Skylab SCGT tests of the waste tank and in the tests of the Shuttle sublimator and evaporator systems to monitor particle production. It has also been used in a variety of other applications such as measuring clean room performance and monitoring fog droplet size in laser penetration tests. The device features two intercavity lasers as sources and represents a unique state-of-the-art instrument for such purposes. The instrument was recently rebuilt and several features such as optical isolators were incorporated to reduce noise. It is currently undergoing evaluation.

e. Skylab experience has taught that accumulated dust fall even in clean room environment can be significant. Therefore, in addition to the volumetric aerosol detector that measures the instantaneous dust content in the ambient environment, a device to measure the integrated dust deposition is required. Ordinary QCM's do not detect dust deposition because the surface accelerations are so high that the weak Van-der-Waal forces that cause particulates to adhere do not couple the particulates to the surface solidly enough to be measured. There is no instrument currently available to actually measure dust fall in situ in a vacuum zero-G situation. Several possibilities exist such as the quartz fibre

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.2</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Advanced	PAGE5 OF 6
Contaminant identification, rate and deposition measurement accuracy.	

7. TECHNOLOGY OPTIONS: (Continued)

microbalance developed by Dudley Observatory to study ice crystal melting in support of Skylab. This type of device will be given primary emphasis in this fiscal year to bring it up to the development status of the other instruments.

f. Attempts to measure scattered light background on Apollo and Skylab using photometers and photography have taught that it is very difficult to make meaningful measurements unless imaging data is available. Photometers cannot distinguish light scattered from structure, sunshield, individual large particles, stars, earth, or moon from a cloud of unresolved particles. Photography has proved more useful, but does not provide real-time read out. Low light level TV would be ideal except that it lacks dynamic range and has too high a data rate. An excellent compromise is the new charge-coupled optical arrays. Such a device for this application is under development and is presently undergoing preliminary tests. Such a device can be coupled with one of the new microprocessers to provide data compression and to act as a moving target indicator to identify individual particles moving through the field.

g. Since some of the proposed Shuttle payloads may use hydroscopic optical coatings, it is important to monitor the partial pressure of H_2O . The gas analyzer could do this, but it may not always be convenient to locate the analyzer near the surfaces in question. Therefore, a small simple H_2O vapor monitor should be developed. Such a device could consist of a QCM with a hydroscopic surface to measure the absorbed H_2O . Other devices based on resistance change in semi-conductors resulting from absorption of various specific molecules may also be applicable.

DEFINITION C	F T	EC	HNC	DTC)GY	RE	ເຊບ	IRE	ME	NT				<u></u>	ľ	10.	C8	3.2	
1. TECHNOLOGY REQUI		ENU	г /л	<u>יי</u> דיי	E TEN	. Čo	ivar nta	iceo min	l atio	on I		ito	rs	 P	AG	E 6	OF	6	7
Contaminant identification																- •	~ -		-
														<u> </u>		<u> </u>			-
12. TECHNOLOGY REQUI	(EM	LEN	TS	SCF	ŒΕ			ND.	۸D	NT.	۸ D								
SCHEDULE ITEM	75	R.C.			70	· · · · ·	1			i									
	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		-
TECHNOLOGY 1. Previous experience -																			
analysis (baseline)																			
2. Concepts & trades analysis		-												ļ					
3. Exp model design		—																	
4. Exp model fabrication		_																	
5. Test and evaluation											ī								
APPLICATION																			
1. Design (Ph. C)				-	Ļ				•								İ		
2. Devl/Fab (Ph. D)					<u> </u>							;							
3. Operations					.		-				 	-			-	-			-
4.																			
13. USAGE SCHEDULE:			1	i	T			.			<u> </u>	- <u></u> -		- T	7	<u>1</u>		1 .	
TECHNOLOGY NEED DATE				Т			<u> </u>				<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u>ן</u> ז	TOT	AL
NUMBER OF LAUNCHES	<u> </u>	<u> </u>		<u> </u>	26	26	26	26	26	26	26	26	26	26	26	26	26	32	18
14. REFERENCES:																			
a. Faraday Labs, NASA I Microbalance".	MSF	C C	ont	rac	t N.	AS 8	8-33	1110), "	'Cr	yog	eni	c Qi	uar	tz C	rys	stal		
b. Faraday Laboratories	, N/	ASA	MS	FC	Co	ntra	act	NA	58-	-278	379	, 117	The	rmo	ele	etri	ical	ly -	,
Cooled QCM".																			
Legend:																			
T = Technology																			
15. LEVEL OF STATE OF	F AI	ЗT						5. C									REL	EVAN	T
 BASIC PHENOMENA OBSERVED. THEORY FORMULATED TO DESC 									ODE	l tes	TED	IN A	RCR		NVIE	ONM			
3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL.	EXPE	RIME	NT	NA.				7. N 8. N	EW C	APAI	ELLI	Y DE	RIVE	D FR(DM A	ient Mu <mark>ci</mark>	I LES	ser	
4. PERTINENT FUNCTION OR CHA. E.G., MATERIAL, COMPONEN	RACTI NT. E	ERIST TC	IC DF	MON	STRA	TED,	4	9. A	ELIA	RATI BILIT IME I	ev u	GRA	DING	OF A AN O	N OP PERA	ERAT.	IONAI AL M	L MOI DDEL)EL.

NO. <u>C-8.3</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Contamination ProcessPAGE 1 OF 10</u> Mechanisms; effects vs temp, time, radiation exposure, interactions, production and distribution

2. TECHNOLOGY CATEGORY: Contamination

3. OBJECTIVE/ADVANCEMENT REQUIRED: Development of further understanding of contamination mechanisms, effects, production and distribution

rates. Greater problems are expected with the advent of cooled telescopes and detectors

especially where greater photometric and spectral accuracy is desired in experiment

observatory.

4. CURRENT STATE OF ART. Some effects of contamination process were studied during preparation of components for Skylab flights, incluing guidelines for contaminant avoidance. HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY - All spacecraft encounter contaminants induced by the environment in which they are transported and operate and also by the atmosphere internal to the spacecraft. These contaminants can cause degradation of critical optical systems by deposition on lenses and mirrors and by absorbing, scattering or attenuating the signal when particulates obstruct the field of view. Although much has been determined experimentally post facto about effects of contamination, little investigation has occurred into understanding the exact mechanisms by which gaseous contaminants in the presence of ultrviolet and radiation convert into "varnishes" or a golden brown film as experienced in Skylab.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- a. An understanding of contamination sources and mechanisms or processes enables the user to avoid contaminant damage.
- b. All payloads with optical windows and optical element surfaces will benefit from application of knowledge gained.
- c. A better understanding of the role of contaminants in interfering with observation processes as well as mechanisms causing the contaminants will help improve all project plans and strategies for avoiding or circumventing the contaminants.
- d. Final test of understanding is in space on sortie flights which tend to affect all contamination elements. Theory to be developed by 1977.

TO BE CARRIED TO LEVEL 8

NO. C-8.3

1. TECHNOLOGY REQUIREMENT(TITLE): Contamination Process PAGE 2 OF 10 Mechanisms; effects vs temp, time, radiation exposure, interactions, production and distribution 7. TECHNOLOGY OPTIONS: A number of theoretical models have been developed for contaminants emission, distribution, chemical conversion, distribution, deposition and interference processes. While much experience with contamination avoidance and measurement tasks has been obtained in a long series of spacecraft flights from the early OAO's to the Skylab flight, there is no universal easy-to-use model or even a catalog of contributing processes leading to understanding of each_situation Each of the models needs to be evaluated and the apparent results need to be tabulated. The accuracy of the results predicted by each model would be compared against metric measurements accumulated from previous flights. (Continued on Page 3 8. TECHNICAL PROBLEMS: Several models in existence plus many papers and guidelines published, need clarifying and update philosophy. а. Much of previous experimental data being lost versus time b. (some could be used to verify updated theory). Funding for experimental work at a minimum. c. 9. POTENTIAL ALTERNATIVES: A study is needed to consolidate past experience and to adjust previous theoretical models possibly resulting in new mathematical models capable of explaining the processes more effectively. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: а. Development of an Integrated Real Time Contamination Monitor, MSFC 755-49, April 19, 1974. b. Instrumentation (Contamination Monitors), MSFC 909-54-13, July 9, 1974. EXPECTED UNPERTURBED LEVEL 7 11. RELATED TECHNOLOGY REQUIREMENTS: a. High resolution IR, visible, UV, XUV telescopes and instruments. ь. High resolution X-ray telescopes, instruments and arrays.

NO. <u>C-8.3</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Contamination ProcessPAGE3 OF 10</u> Mechanisms; effects vs temp, time, radiation exposure, interactions, production and distribution.

7. Technology Options: (Continued)

Ultimately one will see the weaknesses of each model or set of explanations for the contamination processes. Where some investigators such as R. L. Shannon and R. B. Gillette have duplicated some of the in space contamination processes on earth in the laboratory, a more exact understanding of those processes exists and these explanations might be included in the total study.

Very good guidelines, based on science as well as experience have been generated by R. J. Naumann and associates, at MSFC, in "Skylab Advanced Environment" and the "Space Transportation System Contamination Monitor Plan" in 1974.

DEFINITION C)F T	EC.	HNO	DLC	GY	R	QU	IRE	MF	IN	1				N	10,	C-8	3.3	
1. TECHNOLOGY REQUI	REM	EN'	т (1		LE)	. C	ont	am	ina	ati	on	Pr	.00	esş					
Mechanisms; effects v								io	n e	exp	051	ire	,i	nte	ra	cti	ons	3,	_
12. TECHNOLOGY REQUI	{EM	EN	TS	SCH	IEL	UL	Е:	p	ro	iuc	tic	on	an	d c	is	tri	bui	:10	n.
·	·					C	LE	ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		<u>.</u>
TECHNOLOGY 1 Review + comparison of previous knowledg	l e																		
2.Concepts for improved model.																			
3.Planning of complet model for understand	e																		
4. Model and explana- tion.		-	-																
5. Test and evaluatio	n				-	-													
APPLICATION									Fo	r t	he	av	er	age		nt	am:	lna	nt
1. Design (Ph. C)										Ł		ŧ	1	-	ł	ļ	ad	1	
2. Devl/Fab (Ph. D)														ĺ					
3. Operations						-			- 1	<u> </u>	+		+ -	┟╴	-		-	ļ	
4														<u> </u>					
13. USAGE SCHEDULE:			T	+	1			1	·i		-		1		7	.		r	
TECHNOLOGY NEED DATE	ļ		T			<u> </u>	<u> </u>				<u> </u>		·					OT	
NUMBER OF LAUNCHES		<u> </u>		26	26	26	26	26	26	26	26	26	26	26	24	2.6	26	33	88
14. REFERENCES:																			
See Attached	Bił) l i	ogr	ap	hy	(p	age	95	5 1	to	10)								
Legend:																			
T = Technology																			
15. LEVEL OF STATE OF	r AF	tr						5. C									REL	EVAN	T
 BASIC PHENOMENA ORSERVED A THEORY FORMULATED TO DESC 	ND R	Eror							ODE	L TE:	TED	IN AI	THE I RCRA	IFT E	NVIR	ONME			
3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL.	EXPEI	HME	NT					8. N	EW C	APA	BILIT	Y DE , MOI	DEL.) FRO	DM A	MUCH	I LES		
4. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONEN	ACTE NT, El	RIST	IC DE	MON	STRA	TED,	1	9. R	ELIA	BILII	ייט צי	GRA	DING	OF A) AN OI	N OFF	RATI	IONAL AL MO	, MOL	EL.

t Sector

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.3</u>
1. T Mecha	ECHNOLOGY REQUIREMENT (TITLE): Contamination Proces nisms: effects vs temp, time, radiation exposure, into production and d	eractions,
	BIBLIOGRAPHY	
1.	ATM Cleanliness Requirements (Apollo Telescope Mount Cleanliness, Specification for), NASA/MSFC document 5	*
2.	ATM Contamination Follow-on Study, Volume II, Append Last Monthly Report, Ball Brothers Research Corporatio TN67-68, Vol. II, 28 Oct. 1967	
3.	ATM Flight and Prototype Purge Requirements, NASA/M 50M02538, Rev. B, prepared by PM/SE-ATM.	ISFC document
4.	ATM Material Control for Contamination due to Outgassi Rev V, NASA/MSFC document 50M02442, December 1, 1	-
5.	ATM Optical Environment Contamination Control and Ab Plan, Space Sciences Laboratory, MSFC, Huntsville, Al January 10, 1968	
6.	ATM Prototype Article Thermal Vacuum Test Plan, Man NASA/MSFC document 50M02536	rch 31, 1971
7.	Thermal Vacuum Bake-Out Criteria (FLT/Prototype), N document 50M03663, April 19, 1971	ASA/MSFC
8.	ATM Transportation Plan, NASA/MSFC document 50M02 prepared by Astrionics Laboratory, April 1, 1969	2420, Rev. A,
9.	Active Cleaning Techniques for Removing Contamination Surfaces in Space; R. B. Gillette and W. D. Beverly, (C NAS8-26385), Boeing Company for MSFC, Quarterly Pro Report No. 2	ontract
10.	Analysis of a Two-Dimensional Mass Transport Problem Contamination of Space-Flight Experiments; Edwin Kling NASA/TMX-64581, February 18, 1971	
11.	Apollo Applications Program (AAP) Payload Integration, Report, August 29, 1969, Cluster System Contamination Report, Vol. IV, External Thermal Coating Contamination Marietta Corporation, Denver Division, ED-2002-893-1	Analysis
12.	Apollo Applications Program (AAP) Payload Integration, Report, Materials Compatibility Analysis For the Multip Adapter (MDA), Apollo Telescope Mount (ATM), and Ref Experiments: Martin Marietta Corporation, Dec. 20, 196	le Docking lated

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.3</u>
1.	TECHNOLOGY REQUIREMENT (TITLE) Contamination Process	PAGE 6 OF <u>10</u>
	hanisms; effects vs temp,time,radiation exposure, int production and f	eractions,
13.	Apollo Telescope Mount Extended Applications Study Progra Follow-on ATM Contamination Study Task IV, Third Periodic Report; D. B. McPherson and R. B. Morse, Ball Brothers I Corporation, Report No. TN 67-68, Vol. I	m, Progress
14.	Apollo Telescope Mount Extended Applications Study Program ATM Contamination Study Task IV, Final Report prepared fo NASA by BBRC under contract NASw-1386, March 10, 1967	
15.	Atmosphere in Space Cabins and Closed Environments, ed. Kemmermeyer, Appleton-Century-Crofts, New York 1966	Karl
16.	Attitude-Control Rocket Exhaust Plume Effects on Spacecraf Functional Surfaces, F. G. Etheridge and R. A. Boudreaux, J. Spacecraft <u>7</u> :44	ť
17.	Briefing (on) NASO Large Space Telescope, ITEK 71-3100-1, Feb. 1, 1971	,
18.	Cleanliness Requirements for Space-Borne Optical Sensors, D. C. Smith, Hughes Aircraft Co., AIAA Paper No. 71-471, AIAA 6th Thermophysics Conference, Tullahoma, Tenn., April 26-28, 1971	
19.	Cluster System Contamination Report, Vol I, Contamination & Report, Skylab Program Payload Integration, Martin Mariett Denver Division, ED-2002-879, Vol. I	
20.	A Compilation of Low Outgassing Polymeric Materials Norm Recommended for GSFC Cognizant Spacecraft, Aaron Fisher Benjamin Mermelstein, Special Materials and Projects Offic Materials Engineering Research Branch, July 1971; GSFC, C Maryland, (NASA-TM-X-65705)	and e
21.	Contaminant Particle Trajectories Near a Spacecraft, R. Gr et al., Space Research IX-North Holland Publishing Co, Ams	
22.	Contamination Control and Environmental Protection of Spac Vehicles and Associated Equipment, Procedures for, MSFC- 151	
23.	Contamination Control Handbook, Washington, NASA 1969, 31 Sandia Corporation, (NASA Order H-13245A), (NASA-CR-612 NASA-SP-5076)	

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-8.3</u>
	CHNOLOGY REQUIREMENT (TITLE) Contamination Process PAGE 7 OF 10 nisms; effects vs temp, time, radiation exposure, interactions, production and distribution.
24.	Contamination Control Principles (Sandia Corporation), NASA-SP- 5045
25.	Cross-Check Study of Thermal Vacuum Weight Loss Determinations for Selected Polymers, by C. T. Egger, et. al., NABA TM X-53106
26.	Direct Observation of Particulate and Impact Contamination of "Optical" Surfaces in Space, by D. S. Hallgren and C. L. Hemenway, Space Research IX - North-Holland Publishing Company, Amsterdam (1969), p. 102
27.	Effect of Vacuum on Materials, by Henry E. Frankel of NASA- Goddard SFC, ESRO TN-77, NASA-TM-X-61789, Junuary 1969
28.	Evaluation of Orbital Optical Contamination Phenomena and its Effects on Astronomical Experiments, by A. L. Sherman and J. Majoros, AIAA Paper No. 71-74, AIAA 9th Aerospace Sciences Meeting, New York, New York, January 25-27, 1971
29.	External Spacecraft Contamination Modeling and Countermeasures, by T. Baurer, et. al. (General Electric Company), June 1970, pp. 85, Rept-70SD260
30.	Further Studies on M_gF_2 -Overcoated Aluminum Mattors with Highest Reflectance in the Vacuum Ultraviolet, by L. R. Confield, G. Hass, and J. E. Waylonis, Applied Optics <u>5</u> :45 (1966)
31.	GSFC Micro-Volatile Condensable Materials System for Polymer Outgassing Studies, A, Fisher, et. al., October 1969, pp. 36, NASA-TM-X-65399)
32.	Handling and Environmental Requirements for ATM Solar Modules, Procedures NASA MSFC Doc. 40M26359
33.	Indentification of Volatile Contaminants of Space Colum Materials, by J. V. Pustinger, Jr., et.al., Final Report, January 1967 - February 1968 (Monsanto Research Corporation), 1427 1968; pp. 178, (NASA-CR-97918)
34.	Instrumentation Package for a Large Space Telescope (LST), GSFC X-670-70-480, November 1970

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.3</u>
1.	TECHNOLOGY REQUIREMENT (TITLE) Contamination Process	PAGE 8 OF 10
	hanisms; effects vs temp, time, radiation exposure, production and	interactions,
35.	Laboratory Experiments to Study Surface Contamination ar of Optical Coatings and Materials in Simulated Space Envir by G. Hass and W. R. Hunter, Applied Optics <u>9</u> :2101 (1970	conments,
36.	Large Space Telescope-Continuation of a Technology Study Report; September 3, 1971, ITEK 71-9463-2	, Final
37.	Large Space Telescope (LST); Preliminary Analysis and D December 1971, Goddard Space Flight Center, Greenbelt,	
38,	Large Space Telescope (LST), Preliminary Study, Volume Report, by Program Development, February 25, 1972, NAS	
39.	Large Telescope Experiment Program (LTEP), Volume 1, Perkin-Elmer Corp., 24 April 1970, 512 p. refs. (Contrac (NASA-CR-102769, Rept. 9800, Volume 1, pt 2), Avail. Cl CSCL 17H	t NAS8-21497),
40.	Light Scattering by Manned Spacecraft Atmospheres, by Ko and Bonner, Planetary and Space Science <u>17</u> :143, February	
41.	MSC Contamination Control Program Requirements Manua land 2, Sept. 1970, (NASA-TM-X-66541)	l, Vols.
42.	Molecular Contamination in Environmental Testing at Gode J. C. Goldsmith, et.al. (NASA), October 1970, pp 24, Pap ASTM/IES/AIAA Space Simulation Conterence, September 1970, (NASA-TM-X-66936)	er No. 2,
43.	A Neutral and Ion Mass Spactrometer for Environmental C of the ATM, by Richard J. Leite, Conrad J. Mason, et.al. of Michigan, Ann Arbor, Aerospace Engineering, Meteorol Oceanograph Department, Experiment No. T-030, Final Re December 1969, 65p. (Contract NAS8-21448), (NASA-CR-1 Rept. 01747-1-F)	, University ogy and port,
44.	New Conclusions Concerning the Observation of Faint Sour a Sunlit Spacecraft, by Buffalano, C. and W. D. Grobman, Planetary Space Science <u>17</u> :1089 (1969)	
45.	Oil-Vapour Contamination of Satellite Optical Surfaces, by Williams, March 1969, 22p. ref., Royal Aircraft Establish Farnborough (Eng.), (RAE-TR-69055)	

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-8.3</u>
1. 7	ECHNOLOGY REQUIREMENT (TITLE): Contamination Processpage 9 OF 10
M <u>ech</u>	anisms; effects vs temp, time, radiation exposure, interactions, production and distribution.
46.	Optical Contamination Due to Outgassing, Teledyne Brown Engineering, Technical Letter SMSD-ABMDA-776, 4 August 1969
47.	Outgassing Characteristics of Spacecraft Materials and Physical Adsorption Studies, by G. L. Rao, Teledyne Brown Engineering Summary Report RL-SSL-551, April 1969, ATM Optical Contamination Study
48.	Performance and Design Integration Requirements for the Cluster System/Apollo Applications Program, General Specification for NASA/MSFC, Document RS003M00003, 8 August 1969
49.	Performance Evaluation of the Celescope Experiment, prepared for NASA-Goddard by SAO Under Contract No. NAS5-1535, NASA-CR-1219
50.	Photoheliograph Thermal Vacuum Optical Test Chamber, by R. Hahn, August 12, 1968, 9p., (Contract NAS7-100), (NASA-CR-110248, JPL-750-9)
51.	Potential AAP Cluster or Apollo Contamination Monitor in Support of ATM, Martin MCR-68-78 (1968), Martin Marietta Corporation, Denver Division
52.	Preliminary Definition of A Contamination Control System for the Sortie Can, Teledyne Brown Engineering Technical Letter ASD-PD- 14134, February 2, 1972
53.	Proceedings - 8th Annual Technical Meeting and Exhibit, New York, N.Y., May 19-22, 1969, American Association for Contamination Control
54.	Procedure for the Determination of Particulate Contamination of Air in Dust Controlled Spaces by the Particle Count Method, SAE ARP 743A
55.	Reaction Control System Rocket Engine Space Plume Flow Fields, by B. A. Sodek and C. Y. Chou, Interim Report ATM Optical Con- tamination Study, RL-SSL-039, Teledyne Brown Engineering, April 1968
56.	The Reflectometer Experiment for Application Technology Satelline, Phase 2, Annual Report, November 1, 1967 - January 1, 1969, (Electro-Optical Systems, Inc.) January 1, 1969, pp 87, (NASA- CR-107063)

generation of the

and and a second

•

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-8.3</u>
1. I	ECHNOLOGY REQUIREMENT (TITLE): Contamination Process	PAGE10DF10
lech	anisms; effects vs temp,time, radiation exposure,in production and dist	
57.	Requirements and Constraints for a Space Station Prototype SSP Document A8, June 10, 1971	Je EIC/LSS,
58.	Skylab Program Payload Integration Technical Report; Ch Contamination Analysis Report, Vol. II, Corrective Action dations, ED-2002-879, Vol. II, March 31, 1970	
59.	Skylab Program Payload Integration Technical Report; Clu Contamination Analysis Report, Vol. III, Experiment Susc Report, (EREP Supplement), ED-2002-879, Vol. III, ERED January 31, 1972	eptibility
60.	Skylab Program Payload Integration Technical Report, AA tamination Control Verification and Cluster System Analys External Thermal Coating Contamination, ED-2002-879, N March 31, 1970	sis,
61.	Space Contamination Due to Manned Vehicles, by Kovar, F Bonner, p. 85, Space Research IX-North-Holland Publishi Amsterdam (1969)	
62.	Space Measurements of the Contamination of Surfaces by Outgassing and Their Cleaning by Sputtering and Desorptic D. McKeown and W. E. Corbin, Jr., September 1970, NA 117138	on, by
63.	A Survey of Contamination of Spacecraft Surfaces, by C. A et.al., AIAA Paper No. 71-457 presented at the 6th Therr Conference, Tullahoma, Tennessee, April 1971	
64.	Theoretical Efficiency of the Princeton Two-Element Echo graph, by D. A. Markle, et.al., September 1969, 51 p. re Prepared for Princeton U. Obs., by Perkin-Elmer Corpor (Grant NGR-31-001-044), (NASA-CR-115892, ER-9746)	efs.,
65.	Three-Meter Telescope Study Final Report, Perkin-Elme Report No. E.R. 10713, Prepared for GSFC, August 1971	r Corp.,
66.	Vacuum Cemparability of Engineering Materials (Liquid a Solids), February 1965, NASA TM-X-53207	nd Sem-

NO. <u>C-8.4</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Contamination Avoidance</u> PAGE 1 of <u>3</u> <u>Devices such as Electrets Contamination Avoidance and Trapping Effectiveness</u>

2. TECHNOLOGY CATEGORY: Contamination

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Develop a family of contamination</u> avoidance techniques for application in contamination sensitive payloads.

4. CURRENT STATE OF ART: <u>Very little application of contaminant avoidance</u> devices except for protective covers, pressurization and laminar flow has been applied. HAS BEEN CARRIED TO LEVEL <u>3</u>

5. DESCRIPTION OF TECHNOLOGY: Experience has shown that it is extremely difficult to keep optical surfaces free of particulate and molecular depositions. Even optical components stored for an appreciable length of time will collect considerable amounts of particulate material. Molecular films, particularly pthalates, originating from the HEPA filters also have been observed to deposit on surfaces. Though sensitive surfaces are provided with covers, molecular films and particulates will settle on surrounding surfaces and migrate to the sensitive surfaces after the covers are removed. The degradation in performance from such deposits can render some optical surfaces useless when operated in extreme UV or because of increased light scattering.

A practical method of controlling these particulates and vapors is by trapping them on the surface of an electret. After the mission the electret, which would be in the form of a thin film of polarized dielectric material would be removed and a new electret trapping surface installed. Such trapping surfaces would be located at the aperture of a telescope.

P/L REQUIREMENTS BASED ON: ☑ PRE-A, ☐ A, ☐ B, ☐ C/D

6. RATIONALE AND ANALYSIS:

- a. There has been some work on logic and strategy for employing trapping or protective devices at apertures through which radiation or photon beams pass in order to protect the optics or instruments behind those apertures. Additional effectiveness may be obtained with the development of better trapping devices such as electrets.
- b. All Astronomy, x-ray telescope, and solar physics telescopes as well as optical earth observations and oceanographic space experiments will benefit from trapping of contaminants.
- c. Payload performance, particularly on sortie observation missions will be enhanced by avoiding deposition of contaminants on optics or on detecting surfaces. Apertures also may be cleared of floating particles if appropriate attracting fields may be applied.
- d. Final test is on selected optical telescope payloads on shuttle sortie missions in space.

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT	NO, C-8.4
1. TECHNOLOGY REQUIREMENT(TITLE): <u>Contamination Avoidance</u> Devices such as Electrets Contamination Avoidance and Trapping I	PAGE 2 of <u>3</u> Effectiveness
7. TECHNOLOGY OPTIONS: It is therefore proposed that a research and development program ducted to determine if electrets can be successfully manufactured of large sheets of polymer materials for use as contamination tra- faces by spacecraft. It has been quantitatively demonstrated on a in the laboratory that an electret will trap both particulates and n species. The initial effort in this task will determine the best ma- electrets in terms of surface charge retention, life-time, materi and outgassing characteristics, and particularly methods of manu- large sheets or rolls of polarized materials. A parallel effort we the efficiency of the electret as a collector of various types of pa- and molecules. Also to be investigated will be the geometry of the Suitable materials with high charge retention capability, very low charge high stability, molecular and particulate retention efficiency need to be de-	l in the form apping sur- a small scale nolecular aterials for al stability facturing ill determine rticulates he electret. decay rate,
8. TECHNICAL PROBLEMS:	
a. Initial collection of contamination on trapping surface with substructed release when surface saturated.	equent
b. Need for electret material to be non-reflective; most effective appear to be at interior of sunshade at the entrance aperture of with additional protection at the cassegrain telescope output pri- coupling to detectors.	a telescope
 9. POTENTIAL ALTERNATIVES: a. Complete cleanliness of telescope and spacecraft/carrier vehic protective pressurization with clean inert gas. b. Covers over telescope/instrument apertures with consequent tr 	
loss.	· · ·
c. Same methods may work only on ionized or charged particles.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEM	ENT:
RTOP 909-54-B, Task 52, Contamination Control with Electrets, R. J. Naumann/E. L. Shriver MSFC, July 9, 1974.	
EXPECTED UNPERTURE	BED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS:	
a. Better real time contamination monitors and measurements.	
b. Contamination mechanisms/processes understanding.	
7-290	- <u> </u>

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-8.4																			
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Contamination Avoidance</u> PAGE 3 of <u>3</u> Devices such as Electrets Contamination Avoidance and Trapping Effectiveness																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Theoretical Analysis 2. Electret Exp. 2. Production		-																	
3. Specimen preparatio	փ	ļ																	
4. Test and Analysis			-	-															
5. Reporting					-														
APPLICATION 1. Design (Ph. C)				.															
2. Devl/Fab (Ph. D)						╞									1				
3. Operations			ţ																
4.		ļ																l	
13. USAGE SCHEDULE:				<u>.</u>	<u>.</u>	 		·				- <u>-</u>	-1	T		1		r	
TECHNOLOGY NEED DATE				Т								·	 		<u> </u>	<u> </u>] 	TOT	AL
NUMBER OF LAUNCHES			ŀ		26	26	26	26	26	26	26	5 26	526	526	5 26	26	26	3	38
 14. REFERENCES: a. Skylab Induced Environment, R. J. Naumann, MSFC/NASA, Hunstville, Alabama, 1974 b. Space Transportation System Contamination Monitoring Plan, R. J. Naumann, MSFC/NASA, Huntsville, Alabama, About October 1974. c. Comments from Neil E. Chatterton, Teledyne Brown Engineering, Huntsville, Alabama, December 16, 1974. Legend: T = Technology 																			
 LEVEL OF STATE OF ART BASIC PHENOMENA OBSERVED AND REPORTED. THEORY FORMULATED TO DESCRIBE PHENOMENA. MODEL TESTED IN AIRCRAFT ENVIRONMENT. MODEL TESTED IN SPACE ENVIRONMENT. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 																			

Ť

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C.9.1</u>
1.	TECHNOLOGY REQUIREMENT (TITLE): <u>Instrument Boom, 50 m</u> PAGE 1 OF <u>3</u> Extended Alignment, Retractability
2.	TECHNOLOGY CATEGORY: Structural/Mechanical
3.	
	To improve alignment accuracy during boom deployment and positioning.
	To reduce structural weight.
4.	CURRENT STATE OF ART: <u>Laboratory development and demonstration specimens</u> only, not space rated.
	HAS BEEN CARRIED TO LEVEL 4
	needec for extendable/retractable booms which can attain an operational pointing accuracy of 0.5 deg for a duration of 1/2 hour, and a stability level of 0.1 deg for a duration of 1/2 hour with a maximum stability rate of 0.1 deg/sec. An additional objective is to minimize structural weight. Current state of the art is somewhat deficient in providing required pointing stability. A load up to 60 kg should be deployed away from spacecraft, preferably beyond most of the contamination zone. Structural concepts amenable to extended lengths up to 100 m with minimal weight and stowage-volume penalties are desirable.
	p/l requirements based on: ∑ pre-a, ☐ a, ☐ b, ☐ c/d
6.	
a.	The critical pointing parameters have been initially selected equal to the pointing requirements of the Shuttle.
b.	The benefitting payloads: AP06S, "Atmospheric, Magnetospheric, and Plasmas in Space (AMPS)", ST-21-S "XST-017 Upper Atmospheric Neutral Gas Parameters", ST-22-S "XST-014 Spacecraft Wake Dynamics and XST-029 Environmental Effects on Non Metals", ST-23-S "XST-001 Microwave Interferometer", and ST-32-S "Wall-Tess Chemistry Facility".
c.	The presence of optical equipment and magnetic and electric field sensors mounted on the remote platform at the boom's end calls for high pointing accuracy to obtain reliable experiment results. The retractability of the boom is imposed by the requirement of retrieving space hardware.
d.	This technology requirement will be satisfied when a breadboard instrument boom is tested in relevant load and thermal environment in the laboratory.
	PRECEDING PAGE BLANK NOT FILMED
	TO BE CARRIED TO LEVEL 5
	7-293

:

1

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C.9.1
1. TECHNOLOGY REQUIREMENT(TITLE): Instrument Boom, 50 m PAGE 2 OF 3 Extended Alignment, Retractability
7. TECHNOLOGY OPTIONS: A matrix of structural materials and design concepts are considered and evaluated including tubular, furlable, articulated, foldable, etc. Criti- cal parameters are associated with susceptibility of design concepts and materials to un- even heating under solar radiation, the resulting distortions, and possible instabilities. Parameters involved in trades include load carried, boom length extended, boom length retracted, extension and retraction time, resonant frequency, articulation angle range, articulation angular velocity, base gimbal characteristics as well as line of site pointing accuracy and stability. The size and mass distribution of the 'payload'' carried on the boor also affects boom characteristics. Gravity gradients, atmospheric drag as a function of altitude need to be investigated.
 8. TECHNICAL PROBLEMS: a. The retractability requirement may impose weight and cost penalties in the development of the new technology items. Power requirements will be larger than for extendable only systems. b. In low earth orbit such as 435 to 340 km, considerable air drag and gravity gradient effects are experienced, tending to deflect the boom. c. Electrical conductivity (an isolated or non-conducting boom is desirable).
 9. POTENTIAL ALTERNATIVES: a. Remote maneuverable Vehicle/Teleoperator flying in same orbit ahead of shuttle orbiter (retractible by maneuver). b. Use a less rigid (and lighter) boom complemented with additional optical alignment equipment such as a laser beam reflecting from a corner reflector on the payload end of the boom, with error signals being detected at a directional sensor located at the gimballed base mount; active correction of boom deflections can be provided via existing servos. Protective thermal control coatings would be employed. There is possibility of lowering boom system weight and cost.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
TBD
EXPECTED UNPERTURBED LEVEL 4
11. RELATED TECHNOLOGY REQUIREMENTS: New material developments, including composites and combinations of metallics and composites may ease meeting the stated operational pointing accuracy and stability requirements with lower structural weights.
7-294

, <u> </u>														Re	ev.	11/	15/	7±		
 	DEFINITION O	FΊ	EC	HNC	DLC	OGY	RE	ເຊບ	IRF	ME	N'I	• • • • • •				1	10.	C.	9.1	
1.	TECHNOLOGY REQUIR	EM	EN	т (1	CI'T	LE)	: <u>In</u>	str	ume	ent	Boc	om,	50	m	F	PAG	E 3	OF	' <u>_</u> 3	
! 	Extended Alignment, Ro	etra	leta	bili	У	<u>></u>														
12.	TECHNOLOGY REQUIR	REM	IEN	TS	SCI	IEL	UL	E;												
			r	i		·····	CA	LE	ND	AR	YE	AR			r		. <u> </u>			
 	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	55	86	87	88	89	90	91		
1	HNOLOGY Ops. & Param. Analysis																			
2.	Model Design			-																
3.	Build Model					ł				[ļ	Í		
4.'	rest Model					-					1 									
5.							 				Į									
APP	LICATION																			
1.	Design (Ph. C)					-	-			ľ									Ì	
2.	Devl/Fab (Ph. D)						-	-												
3.	Operations				ļ			*		•			* * * *							
4.																			ĺ	
13.	USAGE SCHEDULE:									-1		-1					- <u>,</u>	·		
TEC	HNOLOGY NEED DATE					Т											<u> </u>		1	AL
NU	MBER OF LAUNCHES					. 		1	1	1	3	3	4	3	4	3	4	3		30
14.	REFERENCES:	•																		
a.	Summarized NASA Pay July 1974.	loa	d D	esci	ripi	tion	s, 8	Sori	tie 1	Pay	loa	ls,	Le	vel	ΑI)ata	1, N	ASA	A PI	D,
Ъ.	Preliminary Payload D AP-06-S, Atmospheric pages 4-1 to 4-101.																			
Le	gend																			
	Sortie operations																			• •
Т	Technology													,						
																				·
15.	LEVEL OF STATE OF	' AI	RΤ.						5, C								ED B	REL	EVAN	łΤ
	 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL B OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHART 	RI BE EXPE	PHER RIME ERIST	NOME	NA.	ISTRA	TED.		7. N 8. N 9. F	(ODE (ODE IEW (OPI IELIA	L TE: CAPA SRAT BILL	STED STED HILIT IONA IONA	IN A IN SI Y DE L MO GRA	RCR/ PACE RIVE DEL. DING	AFT ENVI ENVI D FRO	IRONI DM A	IONMI MENT MUCI ERAT	: H LES IONA:	L MO	DEL.
P	E.G., MATERIAL, COMPONEN	Т, Е	TC.		• . •		205		10. 1	IFET	IME	EXTE	NSIO	N OF	AN O	PERA	TION	AL M	ODEI	la.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C.9.2</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Payload and Spacecraft Structure, Tower (SS001); light weight fabrication	PAGE 1 OF _3
2. TECHNOLOGY CATEGORY: Structural/Mechanical	
3. OEJECTIVE/ADVANCEMENT REQUIRED: Develop light weight a materials and low-cost manufacturing techniques for payloads and	structural concepts/ spacecraft.
4. CURRENT STATE OF ART: Present material and fabrication tech	hnology needs refine-
ment to achieve lightweight goals that will permit orbiting of large	
5. DESCRIPTION OF TECHNOLOGY	
Development of an ad hoc lightweight structure is required to satisfy th CN-54A and relieve TUG payload capability limitations. The critical p tural weight (86.2 Kg) with consideration for low-cost fabrication techn	parameters is struc-
The study documented in Ref. a. evaluated a thin-gage magnesium tub provides a reference point design.	ing structure and
For large area structures such as antennas and arrays, compactly sto structures are needed at lower cost than currently available.	wed deployable
P/L REQUIREMENTS BASED ON: X PRE-A	.□ A,□ B,□ C/D
6. RATIONALE AND ANALYSIS:	
 6. RATIONALE AND ANALYSIS: a. The limitations of the TUG payload capability make the tower's w parameter. The design evaluated in reference a. is of a prelimin other structural concepts and materials must be considered and e b. The initial benefiting payload is CN-54A, "Disaster Warning Satel synch payloads. However, light weight low cost fabrication is approximation." 	veight the critical ary nature, and valuated. lite" and other geo-
 6. RATIONALE AND ANALYSIS: a. The limitations of the TUG payload capability make the tower's we parameter. The design evaluated in reference a. is of a prelimine other structural concepts and materials must be considered and et b. The initial benefiting payload is CN-54A, "Disaster Warning Satel synch payloads. However, light weight low cost fabrication is approach sortile and automated. c. A direct trade of payload weight versus tower structural weight is of this development to overcome limits of TUG payload capabilities. 	veight the critical ary nature, and valuated. lite" and other geo- dicable to all payload the potential benefit
 6. RATIONALE AND ANALYSIS: a. The limitations of the TUG payload capability make the tower's we parameter. The design evaluated in reference a. is of a prelimine other structural concepts and materials must be considered and e b. The initial benefiting payload is CN-54A, "Disaster Warning Satel synch payloads. However, light weight low cost fabrication is approach sortile and automated. c. A direct trade of payload weight versus tower structural weight is 	veight the critical ary nature, and valuated. lite" and other geo- olicable to all payload the potential benefit s and expand the , thermal, and Other lightweight,
 6. RATIONALE AND ANALYSIS: a. The limitations of the TUG payload capability make the tower's we parameter. The design evaluated in reference a. is of a prelimine other structural concepts and materials must be considered and et b. The initial benefiting payload is CN-54A, "Disaster Warning Satel synch payloads. However, light weight low cost fabrication is approach sortie and automated. c. A direct trade of payload weight versus tower structural weight is of this development to overcome limits of TUG payload capabilities spectrum of satellites that can be placed on synchronous orbit. d. When a breadboard tower structure is tested under simulated load space environment, this technology requirement will be satisfied. larger structures such as antennas may need testing in the space of the spac	veight the critical ary nature, and valuated. lite" and other geo- olicable to all payload the potential benefit s and expand the , thermal, and Other lightweight,
 6. RATIONALE AND ANALYSIS: a. The limitations of the TUG payload capability make the tower's we parameter. The design evaluated in reference a. is of a prelimin other structural concepts and materials must be considered and e b. The initial benefit and payload is CN-54A, "Disaster Warning Satel synch payloads. However, light weight low cost fabrication is approach sortie and automated. c. A direct trade of payload weight versus tower structural weight is of this development to overcome limits of TUG payload capabilities spectrum of satellites that can be placed on synchronous orbit. d. When a breadboard tower structure is tested under simulated load space environment, this technology requirement will be satisfied. larger structures such as antennas may need testin" in the space of as in the laboratory on the ground. 	veight the critical ary nature, and valuated. lite" and other geo- olicable to all payload the potential benefit s and expand the , thermal, and Other lightweight,

÷

7-297

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT(TITLE): <u>Spacecraft</u> <u>Structure</u>, <u>PAGE 2 OF 3</u> Tower (SS001); light weight fabrication

7. TECHNOLOGY OPTIONS:

Low structural weight fractions can be achieved by the use of composite materials, machined thin wall metallics, and sandwich trusses. A comparative study should be done of weight tradeoffs of several concept/fabrication techniques. The most promising material for lightweight, high stiffness, and low expansion are the graphite epoxy advanced composites. To take advantage of the low expansion characteristics of the graphite, the material should be fabricated as a lay-up using continuous fibers. The lay-up orientations should be varied through 0° at least $\pm 45^{\circ}$ and 90° directions of fiber to obtain a given isotropic structure. Such materials are operable to 350° F, if higher temperatures are required, the matrix polymer can be changed to polyamide to allow operating temperatures up to 550° F.

8. TECHNICAL PROBLEMS:

A potential problem area associated with the development of this structure is the fabrication of thin gage metallic and composite members.

Original low cost techniques, studied by Lockheed, took advantage of higher Shuttle payload capabilities to show that higher weight allowances would produce lower costs. However, there is an advantage in large structures to lower weight and costs.

9. POTENTIAL ALTERNATIVES:

a. Use other materials such as composite, beryllium and aluminum.

b. Use a trussed tower with thin-gage sandwich (perforated core) members.

c. Use a thin-gage stiffened shell of similar materials.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

W74-70278 (502-22-10), Advanced Space Structures, Langley Research Center, George W. Brooks, (703) 827-2042.

EXPECTED UNPERTURBED LEVEL 4

11. RELATED TECHNOLOGY REQUIREMENTS:

Development of lightweight, spaced rated, structures.

DEFINITION O	ΓΊ	EC	HNO	DLC	GY	RF	ເຊບ	IRF	ME	'NT					ľ	10.	с.	9.2	
1. TECHNOLOGY REQUIR	EM	EN'	г (7	rir	LE)	: <u>S</u> r	ace	ecra	aft f	Stru		re.		Ē	PAG	E 3	OI	' <u>3</u>	
Tower (25001); light weig			-													<u></u>		<u></u>	
12. TECHNOLOGY REQUI	٤EM	IEN	TS	SCI	IEL	UL	E:			_									
	·	· · ·		:				ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Ops & Param. Analysis			-																
2. Model Design				-					• •.		N.								
3. Build Model																			
4. Test Model	• •							· .	· . · .						: • •				
5.																			
APPLICATION	· · ·	: <u> </u>																	
1. Design (Ph. C)				. :	-				1							ŀ	Ì		
2. Devl/Fab (Ph. D)		. '	· ·		·.		-					. ·			1.0				
3. Operations				· · .						· · · · ·									
4.										н 						-	 		
13. USAGE SCHEDULE:	t			:	1										 			.	
TECHNOLOGY NEED DATE NUMBER OF LAUNCHES				 	T	 	 T1	T1			T1				-	T		OT	AL I
14. REFERENCES: a. Disaster Warning Satel Technology Division, M	[arc	3h 1	971	•		1		÷ .	•••••	• • •	¹			•		•			•
b. Summarized NASA Pay NASA/MSFC, p.164.														·. ·	•	•			
n An an an an Angelo, an an an an an an an an an an an an an														•					··· ·
		. ¹																	
				1	•	•.	·	: :	•		3 - C	e în c		n y					
Legend T: Technology										- 1		·							
Automated Operations	· ·				e e tra	1.71	· 1			i s ery	e la r	•				•			e de la
T1 = CN-54-A, Disaster W	arn	ing	Sat	elli	te		it Jan 14			i de	n. Sina								
15. LEVEL OF STATE OF	AF	T					·· · ·	5. C							TEST RATO			EVAN	T
 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL FOR MATHEMATICAL MODEL. DERTINENT FUNCTION OR CHAR E.G., MATERIAL, COMPONEN 	RIBE XPEI	PHEN RIMEN RISTI	omei IT	NA.	TRA!	fed,	زند. >	7. M 8. N	ODEI ODEI EW C OPE ELIA	J TES J TES APAJ RATI BILIT	TED TED ULIT ONAI Y UP	IN AI IN SE Y DE MOI GRAI	RCRA PACE RIVEI DEL. DING	.FT E ENVI D FRO DF AI	NVIR RONM DM A	onme IENT Much IRATI	INT. I LES ONAI	MOL)EL.

5

• •

ALCORDON.

с. 1

4

 1×2

N. 15 - 1

4

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-9.3</u>
1. TECHNOLOGY REQUIREMENT (TITLE): Protective Shell/Cover Reduction of high energy loss and secondary radiation; improved therm	PAGE 1 OF <u>5</u> nal control
2. TECHNOLOGY CATEGORY: Structural/Mechanical	
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop a contaminat protection cover which minimizes environmental control costs, energy	
secondary radiation.	
4. CURRENT STATE OF ART: Current state of the art heat shields de	o not have the
capability to pass gamma rays and cosmic rays above one GeV without	some secondary
reactions. HAS BEEN CARR	IED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY	······································
Protective shells up to 4.27m dia and 7.3m long are needed to provide surjection for some high energy payloads. The protective shell is desi	- · · ·

surization for some high energy payloads. The protective shell is desired to hold the payload temperature at a selected temperature within a 263 to 303°K range up to $\pm 2^{\circ}$ K. The shell will also enable internal cleanliness up to 1000 class pressurization up to 110000 N/m² (one atmosphere), and enable venting and pressurization control to ± 0.1 atmosphere. The shell shall pass gamma and cosmic rays with minimum loss and secondary radiation (loss less than 0.1% at 1 MeV. Typical radiation length used to date for lower energy cosmic rays is ≤ 1 gm/cm² for shell thickness. Some experiments may require a thinner window, particularly in the lower energy gamma ray range.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

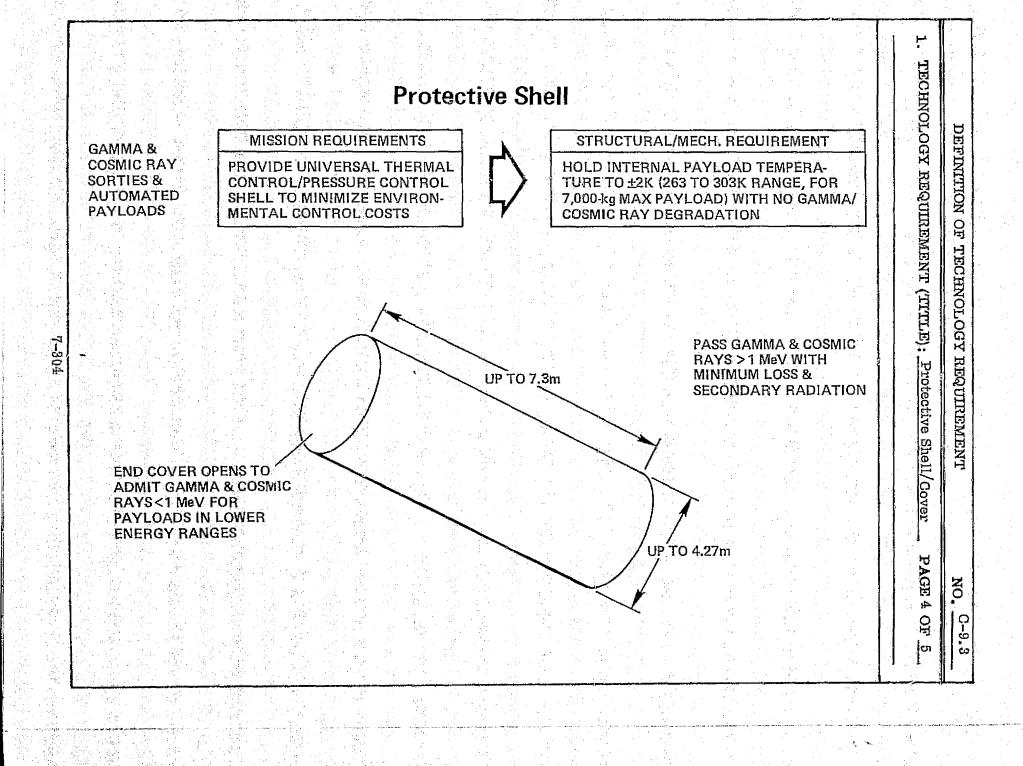
6. RATIONALE AND ANALYSIS:

- a. Some of the high energy payloads operate better in a pressurized atmosphere with adequate thermal isolation. A protective shell and the beneficial environment will not seriously detract from performance but allows considerable cost savings.
- b. The benefitting payloads are: HE-01-A, HE-03-A, HE-08-A, HE-09-A, HE-11-A, HE-12-A, and HE-15-S, "High Energy Astrophysics."
- c. Enables control and rejection of interfering heat loads and particles at low energies (up to 1.0 MeV) with minimum secondaries and persistent radioactivity.
- d. When a full scale model has operated in a space equivalent environment passing gamma and cosmic rays with low loss (<0. 1%) and uniformly to an internal gamma ray or cosmic ray instrument, technology requirement will be satisfied. An Atlas/Centaur could be used as the booster for the test.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 7

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.3
	1. TECHNOLOGY REQUIREMENT(TITLE); Protective Shell/Cover PAGE 2 OF 5 Reduction of high energy loss and secondary radiation; improved thermal control
	7. TECHNOLOGY OPTIONS:
	Use of basic shell materials with atomic number below 20 include:
	a. Beryllium (Z = 4) b. Magnesium (Z = 12) c. Aluminum (Z = 13)
	Choice of external high reflecting, mission coatings as well as basic thermal equalization material or process gives a large number of options to be investigated. The need for uniform cross section makes it difficult to utilize heat pipes for thermal equalization.
	8. TECHNICAL PROBLEMS:
	a. Removal of excess heat generated by inside equipment while protecting large payloads from external heating effects.
	b. Minimizing secondary radiation (gamma, X rays, particles) at lower energies while enabling passage of gamma rays and cosmis rays >1 MeV.
	9. POTENTIAL ALTERNATIVES:
	a. Build gamma ray and cosmic ray instruments to withstand and provide their own thermal control at much greater cost.
na statu i sa sa sa Mata	a di fan da ana ang ang ang ang ang ang ang ang an
	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
	(TBD)
	EXPECTED UNPERTURBED LEVEL 4
	 11. RELATED TECHNOLOGY REQUIREMENTS: a. Thermal control, structures, and materials technologies need to cooperate in solving the protective shell problem.


•

•

10 A 10 A	DEFINITION O	FТ	'EC	HNO	DLC	GY	RE	QU	IRF	ME	NT					N	10.	C-9	.3	
	 1. TECHNOLOGY REQUIR <u>Reduction of high energy</u> l																	OF ol	5	-
aktrikk	12. TECHNOLOGY REQUIE	REM	IEN	TS	SCI	IEC			ND	AR	YE	AR								
, Shejikaroza	 SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	67	88	89	90	91		
	 TECHNOLOGY 1. Ops & Param. Analysis		 											•	· · ·					
The second second	2. Model Design		-			ан 1947 — 19								- 				·		
no: Cimitativad	3. Build Model																			·
	4. Test Model												\							
	 5.	÷	2							. *					•					
	APPLICATION 1. Design (Ph. C)								4											
4 502 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2. Devl/Fab (Ph. D)						T7			т2					T1					•
	 Operations 4. 					T4			— '	T5			г6				T	Т3		
	13. USAGE SCHEDULE:	l				<u>.</u>			1	1	ە		<u></u>	<u>.</u>			<u>.</u>	1	<u>.</u>	<u> </u>
	TECHNOLOGY NEED DATE	:			Т					1.		Γ	••••				1		I TOT	AL
	NUMBER OF LAUNCHES	i					2		1	2			2	1	1			1	1	0
 The second se Second second >	 14. REFERENCES: a. Final Report of the Spa Astrophysics, May 197 b. Materials for Radiation c. Summarized NASA Pay 	3, 1 De	God stec	dar tior	dS] 1, J	oac an.	e F 19'	ligh 74,	t C Na	ente tion	er. al l	VIat	eria	als	Adv	riso	ry :	Boa	rd.	.
	$\frac{\text{Legend}}{\text{T1}} = \text{HE}-01-\text{A}, \text{ Large } \lambda$							cilii	y	et t.	÷.					· ·			і. 	1.
	T2 = HE-03-A, Extende T3 = HE-08-A, Large H T4 = HE-09-A, Large H	High	ı En	erg	y C	bse	rva							· · ·			: : .:	· · ·		
	T5 = HE-11-A, Large F T6 = HE-12-A, Cosmic	Iigh	ı En	erg	y C	bse	erva					· . • ·							·	
	T7 =HE-15-S, Magneti • Sortie operations	c S	pect											e la	· · ·	(terla				۰۰، ۱۰۰ - ۱۰۰۰ - ۱۰۰۰
	Automated operati T Technology	ons							turk. A				: ·	· · · · · ·			n in Sector			
	 LEVEL OF STATE OF BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL I OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAR 	ND I RIBE EXPE	epoi Phei Rime	NOME	NA.				6.) 7.)	ENV IODE IODE IEW (OPI	/IRON L TE L TE MPA SRAT	MEN STED STED BILIT IONAI	T IN IN A IN S Y DE L MO	THE IRCR PACE RIVE DEL.	LABO AFT I ENV D FR	RATO ENVIR IRONN OM A	RY. ONM IEN'I	ENT.		

 π

i e

	Protective Shell		[OILOG	L L L L
ITEM	CAPABILITY REQUIRED	STATE OF ART	Y REQU	
TEMPERATURE CONTROL; (K) (RANGE)	±2k of selected teme (263 TO 303K)	±10K OF SELECTED TEMPERATURE	TECHNOLOGY REQUIREMENT (TITLE):	OT THOMOTORY
GAMMA RAY LOSS AT I MeV	<1%	< 5%		
SECONDARY RADIATION	<0.1%	1%	Protective Shell/Cover	
INTERNAL ATMOSPHERE CLEANLINESS CLASS	1,000	10, 000	PAGE 5 OF	NO. C.

í.

NO. C. 0.4 DEFINITION OF TECHNOLOGY REQUIREMENT TECHNOLOGY REQUIREMENT (TITLE): Metering Structure for PAGE 1 OF 5 Solar Telescopes; Decrease dimensional sensitivity to thermal variations TECHNOLOCY CATEGORY: Structural/Mechanical 2. OBJECTIVE/ADVANCEMENT REQUIRED: Decrease dimensional sensitivity to 3. thermal variations. Obtain at least a 0.15 (preferably 0.075) arc second resolution (a measure of mirror figure contour accuracy & metering structure stability). 4. CURRENT STATE OF ART: The Skylab ATM Ha instrument could have a pointing error up to 1 arc second due to thermal gradients. Normal temperature range for HAS BEEN CARRIED TO LEVEL operating was ± 9.5 K.

5. DESCRIPTION OF TECHNOLOGY Truss-type and shell-type structures having zero expansion coefficient characteristics are needed to satisfy the resolution requirements of equipment mounted on it. Near zero-expansion graphite-epoxy composite materials with or without metallic straps offer the potential needed for this application. Critical parameters are a pointing accuracy of 10 arc sec for a duration of .83 hr, a stability of .15 arc sec for a duration of 3.8E-04 hour, a stability rate of .15 arc sec/sec, and a spatial resolution of 0.15 arc sec (preferably 0.075 arc sec). However, the metering structure is interdependent with the telescope mirrors.

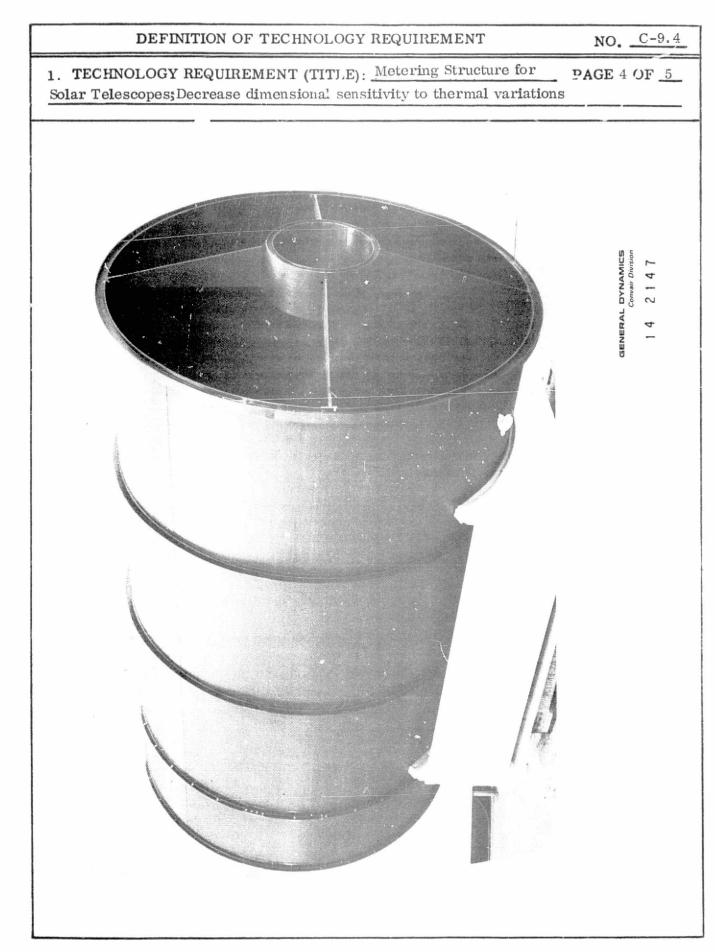
The solar telescope mirrors suffer the most from heat loading and temperature rise. Use of temperature insensitive substrates with a fused silica surface and high reflectivity coatings should be considered. Three sizes of photoheliograph telescopes are being considered (65 cm early, 100 cm later, and finally 150 cm diameter). Ultimately the 150 m photoheliograph axis will be directed by advanced offset star trackers and/or a pattern recognition tracker to selected objects with an accuracy of 0.1 arc sec.

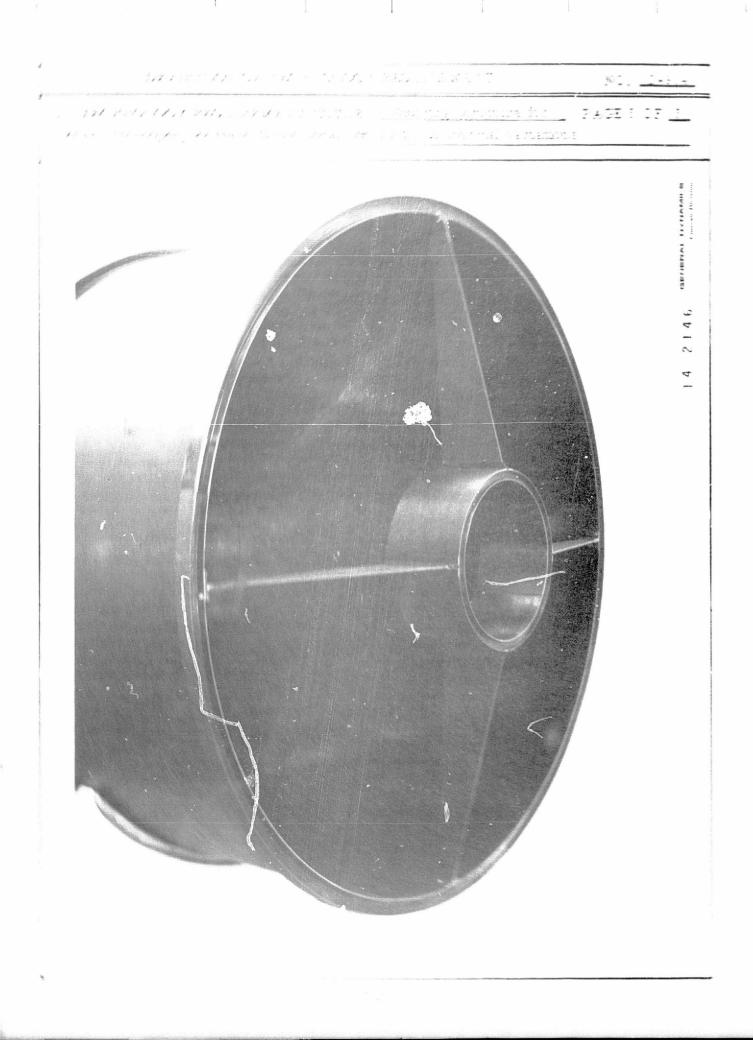
P/L REQUIREMENTS BASED ON: X PRE-A, \Box A, \Box B, \Box C/D

6. RATIONALE AND ANALYSIS:

- a. The critical parameter is the temperature control of the mirror within $\triangle t = 9.3 \text{ K}$ at 293°K. The problem is compounded by high f number (f/40) resulting in focal length of 200-300 cm, which must be folded to maintain reasonable barrel dimensions. Thermal distortions could degrade the system resolution.
- b. The benefitting payloads are SO-01-S Dedicated Solar Sortie Mission (DSSM), SO-11-S Solar Fine Pointing Payload, and SO-02-A Large Solar Observatory.
- c. Smaller primary held at $\triangle t = 9.3$ °K would have less thermal distortions and result in ability to resolve smaller details.

7 - 307


d. This technology requirement will be satisfied when a breadboard structure is tested in relevant environment in the laboratory.


PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 5

	DEFINITION O	P TECHNOLOGI	TING OTTOMINIA I		NO. C.9.4
			Metering Structure tivity to thermal ve		PAGE 2 OF <u>5</u>
compensati		allic elements co	ials and design cor uld be possibly use hite-epoxy structu	ed but they	
		· .			· · ·
ng accurate . Obtain 1, hermal char	measurements un 20λ in the spectrages. The prima	der laboratory co al range from 90 ury, secondary, a	scatter. The difficu anditions simulative nm to 900 nm vers and coupling optics	e of spatia us solar l may need	d environment light/dark cyc to be made of
ng accurate Obtain 1, hermal char naterials wi 9. POTEN . Compen are sens	ich vary due to ma measurements un 20λ in the spectr ges. The prima th low temperatur FIAL ALTERNATI sating composite/n sitive to actual ten	der laboratory co al range from 90 ury, secondary, a e coefficients of IVES: metallic structury	scatter. The difficu mditions simulative nm to 900 nm vers	e of spatia sus solar l may need us the met	l environment light/dark cyc to be made of ering structur bility but they
ng accurate b. Obtain 1, hermal char naterials wi 9. POTEN . Compen are sens tempera . Use of h optics to	ich vary due to ma measurements un '20 λ in the spectr ages. The prima th low temperatur FIAL ALTERNATI sating composite/n sitive to actual ten tures. igh reflective coat	der laboratory of al range from 90 ary, secondary, a e coefficients of IVES: metallic structur operatures which sings and more ef sions.	scatter. The difficu mditions simulative nm to 900 nm vers and coupling optics expansion as well a al concepts offer so could be different ficient heat dump r	e of spatia may need us the met ome possi than predi nirrors w	I environment light/dark cyc to be made of ering structur bility but they icted/design ill help reduce
ng accurate b. Obtain 1, hermal char naterials wi 9. POTEN . Compen- are sens tempera . Use of h optics te . Use of p 10. PLANN . NAS3-28 General . NAS8-29	ich vary due to ma measurements un '20 λ in the spectr ages. The prima th low temperatur FIAL ALTERNATI sating composite/n sitive to actual ten tures. igh reflective coat emperature excurs redictable materia ED PROGRAMS OF 201 "Graphite-Ep Dynamics Convail	der laboratory of al range from 90 ary, secondary, a e coefficients of IVES: metallic structur operatures which ings and more efficients. als and improved R UNPERTURBEI oxy Metering She r. (See pages 4 a rication, and Tes	scatter. The difficu- mditions simulative nm to 900 nm vers and coupling optics expansion as well a al concepts offer so could be different ficient heat dump r active thermal con O TECHNOLOGY A: 11 (GEMS)". Contra nd 5.) st of a Graphite-Ep	e of spatia sus solar 1 may need us the met ome possi than predi nirrors w trol syste DVANCEM act from 1	I environment light/dark cyc to be made of ering structur bility but they icted/design iII help reduce em. AENT: NASA MSFC to
ng accurate b. Obtain 1, hermal char naterials wi 9. POTEN . Compen- are sens tempera . Use of h optics te . Use of p 10. PLANNI . NAS3-28 General . NAS8-29	ich vary due to ma measurements un '20 λ in the spectr ages. The prima th low temperatur FIAL ALTERNATI sating composite/n sitive to actual ten tures. igh reflective coat emperature excurs redictable materia ED PROGRAMS OF 201 "Graphite-Ep Dynamics Convain 9825 "Design, Fab	der laboratory of al range from 90 ary, secondary, a e coefficients of IVES: metallic structur operatures which ings and more efficients. als and improved R UNPERTURBEI oxy Metering She r. (See pages 4 a rication, and Tes	scatter. The difficu mditions simulative nm to 900 nm vers and coupling optics expansion as well a al concepts offer so could be different ficient heat dump r active thermal con O TECHNOLOGY A 11 (GEMS)". Contra nd 5.) st of a Graphite-Ep o.	e of spatia may need us the met ome possi than predi nirrors w itrol syste DVANCEN act from 1 oxy Meter	I environment light/dark cyc to be made of ering structur bility but they icted/design ill help reduce em. AENT: NASA MSFC to ing Truss".
ng accurate b. Obtain 1, hermal char naterials wi 9. POTEN . Compen- are sensi- tempera . Use of h optics te . Use of p 10. PLANNI . NAS3-28 General . NAS8-28 Contract 11. RELA . Develop	ich vary due to ma measurements un ⁽²⁰ λ in the spectr ages. The prima th low temperatur FIAL ALTERNATI sating composite/n sitive to actual ten tures. igh reflective coat emperature excurs redictable materia ED PROGRAMS OF 201 "Graphite-Ep Dynamics Convain 825 "Design, Fab : from NASA MSF TED TECHNOLOG	der laboratory of al range from 90 ury, secondary, a e coefficients of UVES: metallic structur operatures which ings and more efficients. als and improved R UNPERTURBEI oxy Metering She r. (See pages 4 a rication, and Tes C to the Boeing C	scatter. The difficu mditions simulative nm to 900 nm vers and coupling optics expansion as well a al concepts offer so could be different ficient heat dump r active thermal con D TECHNOLOGY A: 11 (GEMS)". Contra nd 5.) st of a Graphite-Ep o. EXPECTED UN UTS: ings insensitive to	e of spatia may need us solar 1 may need us the met ome possi than predi nirrors w utrol syste DVANCEM act from 1 oxy Meter VPERTUR	I environment light/dark cyc to be made of ering structur bility but they icted/design ill help reduce em. AENT: NASA MSFC to mg Truss". BED LEVEL

		DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.4
1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -		1. TECHNOLOGY REQUIREMENT (TITLE): Metering Structure for PAGE 3 OF 5
		Solar Telescopes;Decrease dimensional sensitivity to thermal variations
1 - 10 1 - 10 1 - 10	•	12. TECHNOLOGY REQUIREMENTS SCHEDULE:
		CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
		TECHNOLOGY
	·. ·	1. Ops & Param. Analysis
		2. Model Design
		3. Build Model
		4. Test Model
nadija na slovenske star 		5.
- the second	•	APPLICATION
maalo qaafee moos		1. Design (Ph. C)
		2. Devi/Fab (Ph. D)
		3. Operations
		4. $T3 \bullet \bullet \bullet \bullet \bullet \bullet$
•		13. USAGE SCHEDULE:
		TECHNOLOGY NEED DATE TOTAL
		NUMBER OF LAUNCHES 2 2 2 3 3 5 2 3 2 3 32
		14. REFERENCES:
·		a. Summarized NASA Payload Descriptions, Automated Payloads, July 1974, NASA/ MSFC, p. 60.
		b. Summarized NASA Payload Descriptions, Sortie Payloads, July 1974, NASA/MSFC,
		pp. 120, 122. c. Photoheliograph Definition Study, Volume II, Book II, 100-Centimeter Photohelio-
		graph for Shuttle and Balloon Missions, NASA Contract NAS 8-28147, Itek Optical
the second		Systems Division.
		Legend
		• Sortie Operations T1 = SO-01-S, Didicated Solar Sortie Mission (DSSM) — Automated Operations T2 = SO-02-A, Larger Solar Observatory
5. J. C.		T: Technology $T3 = SC-11-S$, Solar Fine-Pointing Payload
		이 이 가지 않는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같
		15. LEVEL OF STATE OF ART 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
		1. BASIC PHENOMENA OBSERVED AND REPORTED. 6. MODEL TESTED IN ALRCRAFT ENVIRONMENT. 2. THEORY FORMULATED TO DESCRIBE PHENOMENA. 7. MODEL TESTED IN SPACE ENVIRONMENT.
		3. THEORY TESTED BY PHYSICAL EXPERIMENT 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OR MATHEMATICAL MODEL. 0PERATIONAL MODEL. 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
		E.G., MATERIAL, COMPONENT, ETC. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL, 7-309
		. (1985) 이 가지 않는 것은 가슴 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있다. 이 가지 않는 것이 같이 있다. 1995년 우리 아들 아들 아들 것이 같은 것은 아들 것이 같아. 아들 것이 같아. 아들은 것이 같아. 아들 것이 같아. 아들 것이 같아. 아들 것이 같아. 아들 것이 같아. 아들 것이 같아. 아들 것이 같아.

NO. _C-9.5

1. TECHNOLOGY REQUIREMENT (TITLE): Entry Probe PAGE 1 OF 4

2. TECHNOLOGY CATEGORY: Structural/Mechanical

::. OBJECTIVE/ADVANCEMENT REQUIRED: To develop entry probe heat shield capable of planetary entry with larger AV environment.

4. CURRENT STATE OF ART: <u>Apollo used heat shield</u>, but some planetary missions will have a ΔV larger than the existing thermal shield on Apollo CM.

HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY

Blunt body heat shield technology should be developed to withstand the entry heating environments of Saturn, Uranus and Jupiter which have peak rates of approximately 20, 7, and 75 kW/cm². Low heat shield fractions are required in order to increase the size of the payload packages. A single entry probe for both Saturn and Uranus may prove economical, while a special one for Jupiter would be required. Ablative/reflecting dielectric heat shield concepts offer potential superior to those of conventional heat-shield concepts.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

a. Heat shield mass fractions from . 10 to .46 are required to satisfy the entry requirements. These fractions should be lowered to permit larger payloads.

- b. The benefitting payloads are: PL-11-A "Pioneer Saturn/Uranus Flyby," PL-13-A "Pioneer Jupiter Probe," and PL-22-A "Pioneer Saturn Probe."
- c. This technology is required to perform atmospheric measurements of Uranus, Saturn and Jupiter.
- d. This technology requirement will be satisfied with model testing in actual space environment, most likely on some high density planet.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.5	1
1. TECHNOLOGY REQUIREMENT(TITLE): Entry Probe PAGE 2 OF 4	:
7. TECHNOLOGY OPTIONS:	
Alternate ablative materials such as opaque sublimers (e.g., carbon-phenolic, graphite) can be used although with decreased performance. Radiative heat shield concepts may offer some possibilities particularly if minimum foreign material is desired in the region of probe measurements.	-*
8. TECHNICAL PROBLEMS:	
 a. Validity of ablative analyses at high heating rates b. Sensitivity of analysis to atmospheric composition, radiation blockade and sublimation chemistry. Heat shield configurations that reduce the possibility of turbulent flow 	
c. Scaling of time for testing purposes d. Reliability of components in radiation environment	
9. POTENTIAL ALTERNATIVES:	
Radiative heat shields plus insulation protective layer are a possibility although there may be interference with measurements.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70253 (502-21-20), Advanced Materials for Space, Lewis Research Center,	
 W. D. Klopp, (216) 433-6676. b. W74-70331 (502-07-01), Gas Dynamics Research, Langley Research Center, Eugene S. Love, (703) 827-2893. 	
c. Martin Contract with NASA ARC. d. Mc DAC Contract with NASA ARC. EXPECTED UNPERTURBED LEVEL 7	n de la Britania. A des plites e
 11. RELATED TECHNOLOGY REQUIREMENTS:	
a. Insulation between heat shield and probe instruments,	
$7{ au}314$	

DEFINITION O	FZ	EC	HNC	DLC	GY	RE	QU	IRE	ME	I'N'I	, ,				ľ	10.	C	9.5	
1. TECHNOLOGY REQUIR	EM	EN.	T (]	NT.	 LE)	:	E	atry	Pr	obe	3			I	PAG	E 3	OI	۲ <u>4</u>	
12. TECHNOLOGY REQUI	₹EŅ	IEN	TS	SCI	IEC		· .	ND	AR	YE	ÅR		11 (
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	•:		
A 1. Ops. & Param, Analysis 2. Model Design 3. Build Model 4. Test Model																			
B 1. Design (Ph. C) C 2. Devel/Fab (Ph. D) C 3. Operations						T <u>3</u>	T1			<u>T2-</u>									
13. USAGE SCHEDULE:							<u></u>									<u> </u>			
TECHNOLOGY NEED DATE		1	[Т							ľ		1		1			OTA	<u></u>
NUMBER OF LAUNCHES						1	1			2		<u> </u>		<u> </u>	1		<u> </u>	4	<u> </u>
14 REFERENCES: See Page 4 for References.	}	4	*			1	•	.	 -	••••••		4	• !	-L	<u>.</u>		<u>.</u>		in in in in in in in in in in in in in i
		•								· · · ·				· · · ·	•	···· • · ·			•
Legend: T1 = PL-11-A, Pionee T2 = PI-13-A, Pionee T3 = PL-22-A, Pionee T = Technology —— Automated operat	r Ju r Si	ıpite atur	er I	?rol	be	Fly	Ъy					•••	· · ·			•			
			·	•••••			· · · . 					•		• •	:			· · · · · ·	2 ÷ 2
 LEVEL OF STATE OF 1. EASIC PHENOMENA OBSERVED A 2. THEORY FOUMULATED TO DESC 	AND I	EPOI						6. A	ENV IODE	лном L TE	inen Sted	t in In A	THE IRCR	LABO AFT I	RATC		ENT,	LEVAT	NT.
 THEORY TESTED BY PHYSICAL 1 OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONEN 	ACT	ERIST		MON		тер, 315		8. N 9. T	IEW C OPE IELIA	APA RAT BILI	BILIT IONA ITY III	Y DE L MO 2GRA	RIVE DEL. DING	d fr	om a N op	MUCI ERAT	h les Iona	SER L MO ODEI	

143 N

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-9.
1.	TECHNOLOGY REQUIREMENT (TITLE): Entry Probe	PAGE 4 OF 4
14.	REFERENCES:	
	The Outer Solar System, Volume 29, Part 2, Proceedings of the A Meeting, p. 215-	AS 17th Annual
	Summarized NASA Payload Descriptions, Automated Payloads, Ju MSFC.	ly 1974, NASA)
e.	"Atmospheric Entry Probes for Outer Planet Exploration - A Tech and Summary," NASA CR 137542, by Dynatrend Inc., August 1974	
đ.	"Proceedings - Outer Planet Probe Technology Workshop - Summa Workshop held at Ames May 21-23, 1974. NASA CR 137543, by D	•
e.	"Saturn/Uranus Atmospheric Entry Probe," Final Report, by McI Corp, July 18, 1973.	•
	Part I: Summary, MDC E0870.	
	Part II: Technical Discussion. MDC E0870.	
f.	"Jupiter Atmospheric Entry Probe, " NASA Ames, September 1974	.
	"Outer Planet Probe Entry Thermal Protection,"	
0-	Part 1: "Aerothermodynamic Environment," h	y Nicolet,
	Morse, Vogvodich, AIAA Paper No. 74-700, J	-
	Part II: "Heat-Shielding Requirements," by Ni	
	Mezines, AIAA Paper No. 74-701, July 1974	•
h.	"Sensitivity of Probe Heating Environment to Entry Parameters,"	by NASA
	Ames - Advanced Space Projects Office, September 1974.	
i.	"Outer Planet Atmospheric Entry Probes," by McDonnell Douglas	Corp., May
	1974. (Booklet)	. '

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): Instrument Mount/Selector PAGE 1 OF 3 Reduction of dimensional and angular degradation

Structural/Mechanical 2. TECHNOLOGY CATEGORY:

3. OBJECTIVE/ADVANCEMENT REQUIRED: To increase dimensional stability of instrument mount under space environment. Enable vernier rotation, tilt, cross axis, and

axial measurements to one arc sec and 1 micrometer

4. CURRENT STATE OF ART: Most of space X-ray instruments are mounted one at a time at the focal point in a fixed mount which makes it difficult to move instruments in sequence to the least distortion field of the X-ray telescope.

HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

To develop an instrument mount having high dimensional stability in order to avoid large variations or interference with images, polarization measurements and detailed spectral measurements. This dimensional stability is required under various conditions of vibration, temperature, and aging. The use of zero-expansion graphite epoxy material offers the potential required for thermal stability.

Capability: The instrument mount selector assembly mounts 5 instruments, a field monitor, and guide star tracker. The mechanism of the mount moves one of 5 scientific instruments into X-ray field of view, angle adjustable to one arc second and translations to 1 micrometer crosswise and axially with respect to the line of sight.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS:

- The mount dimensional stability to better than 0.5 arc sec is required for the tempera. ature range of 270-275% under operating conditions, and have a cleanliness class of 1000.
- The benefiting payloads are HE-01-A, Large X-Ray Telescope Facility, HE-11-A, b. Large High Energy Observatory D, HE-20-S, High Resolution X-Ray Telescope. The techniques would also improve XUV, UV, visible light, and IR telescope selectors.
- c. Enables use of more than one instrument per telescope to maximize X-ray telescope mission output and scientific return with minimum dimensional degradation penalty. Due to the relatively short wavelength of X-rays within the X-ray telescope spectral range, small variations in dimensional stability cause large variations in images. polarization measurements, and detailed spectral measurements.
- d. This technology requirement will be satisfied when a breadboard mount/selector is tested in relevant environment in the laboratory.

TO BE CARRIED TO LEVEL 5

 TECHNOLOGY REQUIREMENT(TITLE): <u>instrument Mount/Selector</u> PAGE 2 OF <u>3</u>. <u>Reduction of dimensional and angular degradation.</u> TECHNOLOGY OPTIONS: Compensating metallic/composite structural concepts Low expansion coefficient materials. A rotating "Lazy Susan" type of instrument selector as well as sliding rafl type concepts have been studied. The alternative mechanisms will enable rotation or translation of one instrument at a time in to X-ray mirror focal position, as well as providing vernier adjustments in rotation around the line of sight, tilt, cross axis, and axial vernier adjustments. TECHNICAL PROBLEMS: Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. POTENTIAL ALTERNATIVES: TED) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Ethn A. Boldt, (301) 982-5853. W74-70635 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. Conf. S. S. Holt with E. S. Saari, 6 November: 1974 at GSFC.
 7. TECHNOLOGY OPTIONS: a. Compensating metallic/composite structural concepts b. Low expansion coefficient materials. c. A rotating "Lazy Susan" type of instrument selector as well as sliding rail type concepts have been studied. The alternative mechanisms will enable rotation or translation of one instrument at a time in to X-ray mirror focal position, as well as providing vernier adjustments in rotation around the line of sight, tilt, cross axis, and axial vernier adjustments. 8. TECHNICAL PROBLEMS: a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TED) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shutile, NASA/GSFC, Elthn A. Boldt, (301) 982-5853. b. W74-70631 (183-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (2020) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. Compensating metallic/composite structural concepts b. Low expansion coefficient materials. c. A rotating "Lazy Susan" type of instrument selector as well as sliding rall type concepts have been studied. The alternative mechanisms will enable rotation or translation of one instrument at a time in to X-ray mirror focal position, as well as providing vernier adjustments in rotation around the line of sight, tilt, cross axis, and axial vernier adjustments. 8. TECHNICAL PROBLEMS: a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment, b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Ethu A. Boldt, (301) 982-5853. b. W74-70631 (182-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Cont, S. S. Holt with E. S. Saari, 6 November 1974 at CSFC.
 b. Low expansion coefficient materials. c. A rotating "Lazy Susan" type of instrument selector as well as sliding rail type concepts have been studied. The alternative mechanisms will enable rotation or translation of one instrument at a time in to X-ray mirror focal position, as well as providing vernier adjustments in rotation around the line of sight, tilt, cross axis, and axial vernier adjustments. 8. TECHNICAL PROBLEMS: a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elhu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. Design, fabrication of a low distortion mount, and calibration under laboratory conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elhu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 conditions simulating space environment. b. Flexability in shifting one of 5 X-ray instruments into X-ray telescope field without distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt. (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 distorting visible light/UV field monitor and guide star trackers. 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt. (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 9. POTENTIAL ALTERNATIVES: (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 (TBD) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 a. W74-70635 (188-41-64), X-Ray Spectroscopy for Shuttle, NASA/GSFC, Elihu A. Boldt, (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
 (301) 982-5853. b. W74-70631 (188-41-59) X-Ray Astronomy, NASA, Washington, D. C., N. G. Roman, (202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
(202) 755-3649. c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
c. Conf. S. S. Holt with E. S. Saari, 6 November 1974 at GSFC.
6 C C C C C C C C C C C C C C C C C C C
11. RELATED TECHNOLOGY REQUIREMENTS:
Development of light weight, zero-expansion graphite epoxy materials.

٠ġ.

• •

백고 승규 영영 가슴?

	DEFINITION OF) T	ECI	HNC	DTC	OGY	RE	QU	IRE	ME	NT					1	، 0	C⊣	9.6				•	· · ·
÷.	1. TECHNOLOGY REQUIRE									at N	/Iou	nt/s	Sele	ecto	r I	PAG	E :	3 [0]	r _ (3		•		
· ·	Reduction of dimensional an	nd	ang	ula:	r de	egra	ıda	tion																
•	12. TECHNOLOGY REQUIR	ΞM	EN	TS (SCI	IED		E: \LE	ND	AR	YE.	AR	· · · ·		: ·		:. 	•••	1. +* 	·* ··,				1
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91			1			••
•	TECHNOLOGY 1. Ops & Param. Analysis						2 ° 2.							-			•••					n. Ng N		
	2. Model Design										- 19													
	3. Build Model] .							ļ			k L A	
	4. Test Model												1										<u>í</u>	
.*•.	Territation englished Alexandria				· ·								* +: : .											·' .•
	5. 5. 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100																				, 1	1. 1.		
	APPLICATION															:						•		
	1. Design (Ph. C)	•	12.1	- 		-	<u> </u>].		1.55	i de la												•	•
	2. Devl/Fab (Ph. D)						-	-							ĺ			-				•		
·	3. Operations					ľ.		T3			•	Т	1 –		· ·	-		+						e porte 1
	4.						Î		<u>r</u> 2	, ¹	-			+				-	╉	+				5
••••;	13. USAGE SCHEDULE:		<u> </u>	<u> </u>				<u></u>			1	L			.			. L				-,		
	TECHNOLOGY NEED DATE		·			Т			T		Т								то	ΓA I			· ·· } ·	
1	NUMBER OF LAUNCHES	- 1							тз	Tž	2 T 5	3	T	1				T	2	5		e N		
	14. REFERENCES:	•	·			<u> </u>	<u> </u>		- 		<u> </u>						- 					•		i i A ci
	a. Final Report of Space Shu	ttl	e P	ayl	oađ	Pla	inni	ing '	Wor	kin	g G	rou	ips,	N.	ASA	/G	SFC), I	vīay	•.				i National National State
	1973, pages A-1, -2, -4. b. Summarized NASA Paylos	rų .	Des	scri	ntic	ons.	Sc	rtie	e Pa	vlo	ads	. I	PD.	NA	SA	. Ji	ıly	197	4,	· · · · .		214 - 1 		
	pages 112-115.	:		121				· · ·	··· ·			• •/		 	-	31 ·								
	c. Summarized NASA Paylos d. Payload Descriptions, Vo	ad : J	Des T	seri Antr	ptio ma	ons, ted	Ai Da	iton vlos	nate Ids.	d I T f	ayl vel	oac B	is, Dai	Le [.] a.1	VEL NAS	AI SA.	ata) Jul	, J v 1	шу 974	197	4			
			1 9 1	.1.r.r.				y 100	,	• استار 														
	$\frac{\text{Legend}}{\text{T1} = \text{HE}-01-\text{A}, \text{ Large X}-1}$	Ra	w m	പ്പ	Sec	ne 1	สี่จก	ilit:	7					i i i Si tu	e Series									
-	T2 = HE-11-A, Large Hi									(1.)	2m i	X-I	Ray	Те	les	cop	e)			<u>i</u> in c		1	e tu e	ст. 1 м. н.
	T3 = HE-20-S, High Reso	lut	ion	X-	Ray	уTe	eles	cop	e	•• • • • •												an an an an an an an an an an an an an a		e e Sjiri
	T = Technology = Automated			. <i>1</i> 0.	di tek K	e to e L			сі. •		R A	* 17 *	· · ·	- 1/2 - •				11 a s					an di T Ga	
	•= Sortie	,																						
	15. LEVEL OF STATE OF	AI	₹Ţ						5. C	OMP	ONEN	T OF	t ERE	ADB	DARD	TES	red I	N RE	LEVA	NT				
	1. BASIC PHENOMENA OBSERVED AN	ID R		· ·			Lister		6. A	ODE	/IRON L TE:	STED	IN A	IRCR		ENVI	RONA	IENT			<u></u>			n Ni jiya Ni takun
j.	2. THEORY FORMULATED TO DESCR	Inr	DUR	NOME	INA :	1.1.1.1.1.1	1.1		- TT - "P	നല	ישיתי ד	5787	A. *											

J

TO TREAT ATTACT ON T	OT	MEATOTOT	0077	77770	እ ተሰጠጠን በሚያክል በ	ta Nitraa
DEFINITION	Of.	TROHNOL	UGY	KLEG	LUTURIAL	ГN.T

NO. <u>C-9.7</u>

1. TECHNOLOGY REQUIREMENT (TITLE): ____

PAGE 1 OF 3

Module Resupply Mechanism

2. TECHNOLOGY CATEGORY: <u>Spacecraft/Mechanical</u>

4. CURRENT STATE OF ART: Engineering hardware has been built and feasibility of concepts is being tested for Shuttle Orbiter based systems.

HAS BEEN CARRIED TO LEVEL 4

5. DESCRIPTION OF TECHNOLOGY

Malfunctioning or depleted spacecraft systems can be replaced, remotely, in orbit without having to return the entire spacecraft to earth for refurbishment or rework. The initial system is configured for use with the Shuttle Orbiter. Advanced indexer manipulator systems concepts are being considered for use on a retrievable Tug in synchronous or higher orbits.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

(a) The present method for orbiting a spacecraft precludes its recovery for repair or refurbishment. The cost effective solution is to provide systems to recover, repair, and re orbit spacecraft.

(b) EOS-A, B, C, and D; SMM; EGRET; SSOS; SEOS; SeaSAT will benefit. LS-02-A, Biomedical Experiment Scientific Satellite (BESS) could benefit if means is provided for continuous life support for specimens during modular unit replacement operations. Additional operational synchronous orbit spacecraft such as EO-58-A (GOES), EO-59-A(GEOS) or their replacements could benefit. AS-16-A, Large Radio Observatory Array, is currently scheduled as a typical example for remotely controlled servicing at greater than synchronous orbit altitudes.

(c) In orbit repair and refurbishment of spacecraft will replace the present method of operations, i.e., launching a second or back-up spacecraft to complete the mission of the malfunctioning spacecraft.

(d) The test of a model with a spacecraft to demonstrate its applicability will satisfy this technology requirement.

*EO-08A **OP-07-A & -09A

TO BE CARRIED TO LEVEL 7

PRECEDING PAGE BLANK NOT FILMED

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.7 1. TECHNOLOGY REQUIREMENT(TITLE):_ PAGE 2 OF 3 Module Resupply Mechanism 7. TECHNOLOGY OPTIONS: (a) Development of an EVA and/or Shuttle attached manipulator system for refurbishment and repair of malfunctioning spacecraft systems. (b) Capture and return spacecraft to earth for refurbishment and/or repair. (c) Continue present mode of operation, i.e., that of replacing the total spacecraft. TECHNICAL PROBLEMS: 8. Timely installation and alignment of mechanism in orbiter during (a) turnaround operations of orbiter. (b) Weight reduction of module resupply mechanism. (c) Effect of thermal gradients on alignment of spacecraft/resupply mechanism interface. 9. POTENTIAL ALTERNATIVES: There are no known potential alternatives other than those discussed in Section 7. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: EGRET spacecraft, F. J. Cepollina, (301) 982-5913. (a) RTOP W74-70824 (970-63-10), Teleoperator Control and Manipulation, (b) W. G. Thornton, MSFC, Huntsville, Ala., (Ph. 205-453-5530). EXPECTED UNPERTURBED LEVEL 4 11. RELATED TECHNOLOGY REQUIREMENTS: Development of composite material mechanism to solve weight and thermal gradient problems.

		DEF	INITION O	FΊ	EC.)GY	RE	ຊູບ	IRF	EME	NТ	; 				N	0.	C	9.7	
	1.	TECHNOLOG Module Res				•		LE)	:			· · ·			· · · · · ·		F 	AG	E 3	OF	3	
	12.	TECHNOLO	fy requii	₹EI¥	IEN	TS	SCI	IED			ND	AR	YE	AR							· · ·	
		SCHEDULE I	TEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		İ
		HNOLOGY Redesign I	 5/U								i								00	<u> </u>		
-		Modificati			 			. 1::]. 										
*. •	ુ3.	Qualificat	tion E/U		-																	
	4.		• . •			÷	. 51 		- -	х., с					i i	te .						
2 - 1 	5.							· ·			.*		·. · .			. ·						
		LICATION Design (Ph.	C)																			
	2.	Devl/Fab (Pl	h. D)																			ŀ
	3. 4.	Operations	· · · · ·														···. · · · ·					
	13.	USAGE SCH	EDULE:	<u>.</u>	- J	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	L	.	J	<u>.</u>		1				<u>!</u>	1	<u>ا</u>	
	'TEC	HNOLOGY NI	EED DATE								· . ·										roj	٦Å
	NU	MBER OF LA	UNCHES					2	2	1	2	1	*	1	*	*	1	*	*	*		9
	a.	REFERENC	t System fo	or E	Cart	h O	bse	rva	tion	ı Sa	tell	ites	5 (N	AS	5-2:	320	3, I	ſođ	4)			
	b.	SD74-SA-005 Letter: NASA Technology R H. M. Ikerd,	A/GSFC Fi equiremen	ts,	Cor	ıtra	ct l	NAS	2-8	8275	2",	F.	1 A 4		- -	S. 1		ure	Pa	yloa	đ	
		In-Orbit Serv & Aeronautic:	se se en personale en se se se se se se se se se se se se se					2.1.2.3.2	<u></u> .					sfie	1d,	pag	;es	46-	56 .	Astı	con	au
		MCR-73-337, ments Analys																				
			C/U Engine	eri	ng I								N 1949. National States National States									
	15.	. LEVEL OF	STATE OI	A	RT						5. (COMP	ONE			ADBO	ARD	TEST	ed ii Ry .	N REL	EVAI	NT

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-9.8</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Spacecraft Docking</u> PAGE 1 OF <u>3</u> Deployment (Latching) and Retention Mechanisms
2. TECHNOLOGY CATEGORY: Spacecraft/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: To launch or retrieve a spacecraft or to
resupply and refurbish a spacecraft while in earth orbit. Technique should work in low,
synchronous, or greater orbits accessible by Shuttle Orbiter or Tug.
4. CURRENT STATE OF ART: Preliminary design concepts.
HAS BEEN CARRIED TO LEVEL <u>4</u>
5. DESCRIPTION OF TECHNOLOGY
(a) Malfunctioning or depleted subsystems/instruments can be replaced, remotely, with
the spacecraft docked to the Shuttle Orbiter or Tug while in orbit without having to return
the entire spacecraft to earth for refurbishment or rework.
(b) Spacecraft may be launched by the Shuttle/Tug.
(c) Spacecraft launched prior to the Shuttle era may be retrieved by the Shuttle and returned to earth.
n. Na statu na statu na statu na statu na statu tatu na statu na statu na statu na statu na statu na statu na stat
P/L REQUIREMENTS BASED ON: A PRE-A, A, B, C/D
6. RATIONALE AND ANALYSIS:
(a) The present method for orbiting a spacecraft precludes its rocovery for repair or re furbishment. A potentially cost effective approach is to provide a Shuttle/Tug compatible system to dock, refurbish/resupply, and redeploy spacecraft. Further advanced tech- nology is desired to support trade studies.
(b) EOS ⁻ A, B, C and D; SMM; EGRET; SSOS; SEOS; SeaSAT will benefit.
(c) In orbit repair and refurbishment of spacecraft will replace the present method of
operations, i.e., launching a second or backup spacecraft to complete the mission of a malfunctioning spacecraft.
Retention devices are required to support the spacecraft during launch of a space- craft or the return of a spacecraft to earth from orbit.
(d) The test of a model utilizing a spacecraft to demonstrate its applicability will satisfy
this technology requirement.
이 혼신은 물건이 통해 있는 것 같은 이 것을 들어갔다. 것 눈가 가 문제 말을 가 지 않을 수 있는 것 같이 것 같이 것 같이 있는 것 같이 같이?
PRECEDING PAGE BLANK NOT FILMED
*EO-08A
**OP-07-A & -09A TO BE CARRIED TO LEVEL 7
7-325
가는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는다. 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 201

٢

North Trans

the state

	н н м ^а	
DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.8	1	
1. TECHNOLOGY REQUIREMENT(TITLE): Spacecraft PAGE 2 OF 3 Docking/Deployment (Latching) and Retention Mechanisms		
7. TECHNOLOGY OPTIONS: (a) Continue present mode of operation of replacement of spacecraft, utilizing non-Shuttle launch vehicles.		
(b) Launch spacecraft by the shuttle.		
(c) Development of an EVA method for docking and deployment.		
(d) Capture and return spacecraft to earth for refurbishment and/or repair.		
(e) Capture and return spacecraft to earth for technical analysis.		
8. TECHNICAL PROBLEMS: (a) Minimum weight/maximum reliability design.		
(b) Accommodate misalignment of the spacecraft/shuttle mechanism interfaces at the moment of initial engagement.		
(c) Effect of thermal gradients on alignment of spacecraft/shuttle mechanism interfaces.		
9. POTENTIAL ALTERNATIVES: There are no known potential alternatives other than those discussed in Section 7.		
na na ing panghang na kana kana kana na na na na kana na na na ing panghanan ing panghan na kana kana pangha. Mana na ing panghang panghan dan mana na na na na na mana na na na na na na na na na na na na		
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:		
(a) EGRET spacecraft, F. J. Cepollina, (301) 982-5913.		
(b) RTOP W 74-70824 (970-63-10), Teleoperator Control and Manipulation, W. G. Thornton, MSFC, Huntsville, Ala. (Ph. 205-453-5530)		
EXPECTED UNPERTURBED LEVEL 4	i Porta de Australia Porta de Australia	
11. RELATED TECHNOLOGY REQUIREMENTS: Development of composite material structure to save weight and thermal gradient problems.		
The state of the state of the state of the state of the $7-326$ and the state of the state of the state of the 5 state of the stateo		

•

.....

CONT AUCO

8 . S 🛔

Yes (* 1927)

1

.

1. TECHNOLOGY REQUI			-												AGI	5 3	OF	r <u>3</u>				
Docking/Deployment	(La	tc]	hin	ig)	an	d 1	Ret	en	tio	n l	liec	ha	nis	ms								-
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	HEL	UL	Е:		•	:					···· ·			•	•			**** • * *
	1	· · · ·						ND			r	1						· · ·	·			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		<u> </u>			M
TECHNOLOGY 1. Design Eng. Unit														· · .		. •						
2. Fabricate E/U	- 1								:	• • •										н 1911 - М		
3. Qualify E/U		-				İ .										·.						キャンガ
																	·					
5.			- -					· · ·							ļ. · .		-				÷	141. 121. 121.
APPLICATION 1. Design (Ph. C)																						19 HIGH 1 - 1
2. Devl/Fab (Ph. D)				<u> </u>	ļ ſ.																	21 1
3. Operations					 			<u> </u>									 	1].		
4.		:									- 12- -										• *	
13. USAGE SCHEDULE:	• • •									• .							<u> </u>					
TECHNOLOGY NEED DATE									:			1					ר	roi	AL	, ii	•	
NUMBER OF LAUNCHES					2	2	1	2	1	*	1	*	*	1	*	*	*		9			
14. REFERENCES:		1				1 - 44 								•	• • •	12 AH 3	;	•	:	1.12. N.		
Flight support system	fo	r I	lar	th	ОЪ	sei	va	tic	n	Sat	tel	li	tes	0	NAS	5-2	232	03		с. 1	. ⁸ т.	
Mod 4) SD74-SA-0057				·	e e														3			.W.
Letter: NASA/GSFC File No		1 A.4.			1.1										- 10 T	oad					i ter	
Technology Require H. M. Ikerd, GD Co	onva	ur.	dat	ed i	10;	Tani	ıam	7 19	75.				~		· .				n n Na tang		· · · ·	
In-Orbit Servicing by Frank	Ĵ.	Cep	011	ina T-1	and	Jai	mes 107	: M2 75	insi	iel	d, r	bage	es 4	:G-E	56 A	.str	ona	utic	S			. 144 - 144
& Aeronautics, Vol. 13, No MCR-73-337, NAS 8-29904										አ ፖ	n	- A (
Analysis prepared for MSF	1.5.11	11 I I I			111 - N						1 A - 1 A -	S	- The Second Second		ъц	equ	11.61	men	បេន			
Legend:*= Resupply mission				- -																		
E/U = Engineerin		Jnits	3	 						۰. ¹ .												and a state of the second second second second second second second second second second second second second s
15. LEVEL OF STATE OI	а Ат	ንጥ						5. C	OMPC	NEN	t or	DRE			TEST	ed in	REL	EVAN	r			-
TOL THAT OF DIALE OF	AL	i alla							ENV	IRON	MENT	ካ የእየ ሳ	чин т	יריא א.	ግ አጣነጉ፣	ŔΥ				I		4.5

н

. С. р.

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C-9.9</u>
	TECHNOLOGY REQUIREMENT (TITLE): EVA Equipment and Tools p for Operations, Repair and Servicing of Spacecraft	AGE 1 OF <u>4</u>
2.	TECHNOLOGY CATEGORY:Spacecraft/Mechanical	
	OBJECTIVE/ADVANCEMENT REQUIRED: Operate, service, and rep in orbit.	air spacecraft
4.	CURRENT STATE OF ART: <u>Some tools have been utilized in Apollo a</u>	nd Skylab
مەسىمەر	missions; however, advanced power tools are needed.	
	HAS BEEN CARRIEL) TO LEVEL
M b	DESCRIPTION OF TECHNOLOGY alfunctioning or depleted spacecraft subsystems, instruments, and app e replaced, remotely, aboard the shuttle in earth orbit. EVA services ssembly and test operations in space can also be performed.	· · · · · · · · · · · · · · · · · · ·
		$\frac{1}{2}$
÷.		
• • •		
	P/l requirements based on: ⊠ pre-a, 🗌 a	, <u>□</u> в, <u>□</u> с/
(2 0 tx (1) (4) 0	RATIONALE AND ANALYSIS: a) The present method for orbiting a spacecraft precludes its recover r refurbishment. The cost effective solution is to provide a shuttle con- precover, repair, and reorbit spacecraft. b) EOS [#] A, B, C and D; SMM; EGRET; SSOS; SeaSAT [*] ** b) In orbit repair and refurbishment of spacecraft will replace the pre- perations, i.e., launching a second or backup spacecraft to complete the malfunctioning spacecraft.	mpatible syste
ti b	Planned or contingency EVA will be available, as required, to according on s/resupply/refurbishment mission in the event of failure. This capa e utilized if tools, drives, etc., are available to manually correct/ove ifficulties.	ability can be
(0	d) The test of a model utilizing a spacecraft to demonstrate its application at the requirements of this technology item.	ability will:
1. N.	EO-08A	
ጥ ተ (DP-07-A & -09A TO BE CARRIED	

ć

2002

PRECEDING PAGE BLANK NOT FILMED

1

Site .

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. C-9.9
	ECHNOLOGY REQUIREMENT(TITLE): <u>EVA Equipment Tools for</u> erations, Repair and Servicing of Spacecraft	_ PAGE 2 OF <u>4</u>
7. 1	ECHNOLOGY OPTIONS:	
(a) (b) (c)		
· · .	a Na Marina ang Kanalawa na katala na katala na katala na katala na katala na katala na katala na katala na kat	
÷	un en pares de la companya de la companya de la companya de la companya de la companya de la companya de la com	
8.	TECHNICAL PROBLEMS:	
· · ·		enten Stanton - Alexandra Alexandra Stantario (Schemensen)
·	OTENTIAL ALTERNATIVES: ere are no known potential alternatives other than those discussed in	n Section 7.
		e derin der Konerdi
·		
	n 1996 an the free provided an an announcement of the providence of the second second second second second seco The free providence of the free providence of the providence of the second second second second second second se	
0.I	LANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
	Skylab Experience Bulletins 5 and 13, In Flight Maintenance, a Vi Element, Robert Gunderson, JSC, September 1974. Tools, Test Equipment and Consumables to Support In Flight Main Robert Gunderson, November 1974	
	(continued on page 4) EXPECTED UNPERTU	IRBED LEVEL
11.	RELATED TECHNOLOGY REQUIREMENTS:	
Us	e composite materials for tools to solve weight and dimensional pro	blems.

DEFINITION O	F 1		INC		GY	RE	លូប	IRE	ME									-9.	
1. TECHNOLOGY REQUIR and Tools for Operation,					•								· · ·	I	PAG	E 3	OF	_4	
12. TECHNOLOGY REQUIR	EM	EN'	TS	SCI	IED			ND.	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
ECHNOLOGY 1.Design Eng. Unit	, .																		
2.Fabricate E/U																			
3.Qualify E/U		-										i .		• •				·	
4. 5.											.,‡								
θ.		·						(- 1 - 1 - 1 - 1	.					
APPLICATION 1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)																			
3. Operations		. i						<u> </u>						<u> </u>	1				
4.													. · · · .		:				
13. USAGE SCHEDULE:	.	<u></u>	<u></u>	_ <u></u>		<u>L</u>			.			- 1			-		<u></u>		
FECHNOLOGY NEED DATE								Τ	Γ		Τ						_	roi	AI
NUMBER OF LAUNCHES					2	2	1	2	1	*	1	*	*	1	*	*	*	9	
14. REFERENCES: Flight support and sy	vst	em	fo	r]	Iar	th	Ob	ser	va	tic	on	Sai	tel	1i7	tes				
(NAS5-23203, Mod 4)						÷.,						11	•		•				
Letter: NASA/GSFC File Technology Requir H. M. Ikerd. GD In-Orbit Servicing by Fran & Aeronautics, Vol. 13, N Tools, Test Equipment and	em Con k J o. i	ents vair . Ce 2, d	s, C epo ate	Cont late llin d F	rac d 1(a an ebru	t N) Ja Id J Iar	AS nua amo y 19	2-8 ry es 1 975.	272 197 Aan	", 5. sfie	F.,	J. C Pai	Cepo ges	011i1 46-	na t -56	o Ast	ron	auti	cs
Gunderson, Nov. 1974. Legend: * = Resupply miss	sior	IS			n en Servis		•	••••	N.										
E/U = Engined			nit	1 C.		• . • .		•				i pr	•1		•••••••••				e A ete
15. LEVEL OF STATE OF 1. BASIC PHENOMENA OBSERVED					1). 	-973			EN	VIRO	MEN		THE	LABO	RAT	DRY.		EVA	T

.

٤.

Operations, R 10. PLANNE (Continue (c) Contril	D PROGRAM d from page buting contra	•	ecjaft				4
(Continue (c) Contril	d from page buting contra	2)	URBED TE	CHNOLOGY	ADVANCE	MENT:	
	In Flight Ma Martin	acts – intenance Study NAS 9-8144	· · · · ·				
(2) A	Application o Matrix	f EVA Guidelin NAS 9-12997	es and Desi	gn Criteria		an de la composition an an an an an an an an an an an an an a	: : :
(3) 1	Maintenance Boeing	of Manned Spac NAS 2–3705	ecraft for]	Long Duration	1 Missions	· · · · ·	
(4) S		support Equip Standard NA		rements Study	7 EVA/IVA	•	in en en en en en en en en en en en en en
(5) S	Study of Spac LTV	e Shuttle EVA/ NAS 9-12507	(VA Support	t Requiremen	ts		
(G) F	Role of RMS Essex	in EVA for Shu NAS 9-13717	ttle Missior	ı Support		· · ·	
(7) S	Study to Eval Rockwell	luate Effects of NAS 2-824	-	yload System:	S		
(8) S	Space Shuttle Rockwell	Orbiter Logist SD-T3-SH		Plan			
			· ·		$\gamma = \lambda_1$		
				· ·	·		÷
	алан А						

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. C-9.10

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Remote Manipulator</u> PAGE 1 OF <u>3</u> System (RMS) End Effector Mechanism - Shuttle to Spacecraft

2. TECHNOLOGY CATEGORY: <u>Spacecraft/Mechanical</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: To release or retrieve a Spacecraft or to Resupply/Refurbish a Spacecraft while in earth orbit

4. CURRENT STATE OF ART: ____ Preliminary design concept

HAS BEEN CARRIED TO LEVEL4

5. DESCRIPTION OF TECHNOLOGY

(a) Spacecraft will be removed from the shuttle orbiter cargo bay and placed into earth orbit by the RMS.

(b) Spacecraft will be retrieved from earth orbit and placed into the shuttle orbiter cargo bay for resupply/refurbishment or return to earth using the RMS.

(c) Malfunctioning or depleted spacecraft appendages such as a solar array may be replaced while in earth orbit using the RMS.

(d) Special end effectors other than the basic orbiter end effector will be designed and provided by the payload requiring the special end effector. However, a set of techniques for non-standard end effectors will help reduce costs.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONALE AND ANALYSIS: (a) The present method for orbiting a spacecraft precludes its . recovery for repair or refurbishment. The cost effective approach is to provide a shuttle compatible system to dock, refurbish/resupply, and redeploy spacecraft. EOS*A, B, C and D; SMM; EGRET; SSOS; SEOS; SeaSAT will benefit. (b) In orbit repair and refurbishment of spacecraft will replace the (c) present method of operations, i.e., Launching a second or backup spacecraft to complete the mission of the malfunctioning spacecraft. A mechanism is required to interface between the orbiter RMS and the spacecraft to effect both the launch and retrieval of free flying spacecraft with a reasonable degree of safety. The mechanism is required also to replace spacecraft appendages using the RMS. The test of a model of the mechanism in conjunction with a spacecraft to (d)demonstrate its applicability will satisfy this technology requirement. *EO-08A **OP-07-A & -09A

TO BE CARRIED TO LEVEL 7

*Technology by GDFC, F. J. Cepollina and associates.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.10 PAGE 2 OF 3 1. TECHNOLOGY REQUIREMENT(TITLE): Remote Manipulator System (RMS) End Effector Mechanism - Shuttle to Spacecraft 7. TECHNOLOGY OPTIONS: Continue present mode of operations, reference 6c, utilizing (a) non-shuttle launch vehicles. Launch spacecraft by the shuttle. (b) Development of an EVA and/or Shuttle attached manipulator system. (C) Capture and return of spacecraft to earth for refurbishment (ď) and/or repair. (e) Capture and return of spacecraft to earth for technical analysis, Use of astronaut EVA with special tools and devices to accomplish manipulator end (f) effector tasks. 8. TECHNICAL PROBLEMS: (a) Minimum weight/maximum reliability with a reasonable degree of safety. Engagement possible over a reasonable range of spacecraft RMS (b) misalignment. Effect of thermal gradients on the engagement of the RMS end (c) effector/spacecraft interfaces. 9. POTENTIAL ALTERNATIVES: There are no known potential alternatives other than those discussed in Section 7. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: (a) RTOP 74-70824 (970-63-20), Teleoperator Control and Manipulation, W. G. Thornton, (Ph. 205-453-5330) (b) W 74-70817 (970-53-20) Attached Manipulator System, Richard B. Davidson (Ph. 713-483-4986) EXPECTED UNPERTURBED LEVEL 4 11. RELATED TECHNOLOGY REQUIREMENTS: Use of composite materials to solve weight and dimensional problems.

DEFINITION O	F T	ECI	INC	DLC	GY	RE	Qប	IRE	ME	NT				· .	N 	10.		2-9.	10
1. TECHNOLOGY REQUIR System (RMS) End Ef																		<u>3</u>	
12. TECHNOLOGY REQUIR	.EM	EN'	rs	SCI	IEC		E: LE	ND	AR	YE	AR						· :		
SCHEDULE ITEM	75	76	77	78	79							86	87	88	89	90	91		
FECHNOLOGY 1. Design Eng. Unit				-															
2. Fabricate E/U	-	-											ŕ .				[
3. Qualify E/U		_																	
4.									· .									E.	
ö.					- 1 - 1 -														
APPLICATION 1. Design (Ph. C)												 							
2. Devl/Fab (Ph. D)																		.	
3. Operations												-						+	
4.																			ж.,
10. USAGE SCHEDULE:				••••••	t	· ·					L			L		· · · · ·			
FECHNOLOGY NEED DATE																		to1	AL
NUMBER OF LAUNCHES					2	2	1	2	1	*	1	*	*	1	*	*	*	9	
14. REFERENCES: (a) EV. NASA-S-74-11505, RMS Des Flight Support and Sys (NAS5-23203, Mod 4) SI Letter: NASA/GSFC File No	sign ste D 7 o.8 men onva	, R. 2011 74-8 3213 nts, air,	D foi SA- SA- Co Co da	avi -00 Joda ontr ated na a	dso art 57 9 73 act 10 and	n, J th 0, 1 Jan Jan	SC Obs Sub S 2 uar nes	ject -82' y 1 Ma 5.	va t : '' 72'' 975 nsfi	stu , F ield	n S dyc J.	Sat of E C	el] ^r utu epol s 46	lit re 1 lin: 3-5(es Pay a to 3 As	load	d)nau	tics	
Technology Require H. M. Ikerd, GD Co n-Orbit Servicing by Frank J & Aeronautics, Vol. 13, No. MCR-73-337, NAS 8-29904, S Report. Martin/Marietta for	2, Shui	date ttle	Re	mot	te N	Ianı		Sys	ten	1 17.6	ะนุณ			••••••••••••••••••••••••••••••••••••••		· .			• • •
H. M. Ikerd, GD Co n-Orbit Servicing by Frank J & Aeronautics, Vol. 13, No. MCR-73-337, NAS 8-29904, S Report, Martin/Marietta for	2, Shu MS	date ttle	Re	mot	te N	Ianı		Sys	ter	1 116	squi			•••• ::		 12	d d		
H. M. Ikerd, GD Co n-Orbit Servicing by Frank J & Aeronautics, Vol. 13, No. MCR-73-337, NAS 8-29904, S	2, Shu MS Dns	date itle FC,	Re Fe	mot	te N	Ianı		Sys	ten	1 II.6	24743				i de la				
H. M. Ikerd, GD Co n-Orbit Servicing by Frank J & Aeronautics, Vol. 13, No. MCR-73-337, NAS 8-29904, S Report, Martin/Marietta for Legend: * = Resupply Missio	2, Shui MS ons ing	date ttle FC, Unit	Re Fe	mot	te N	Ianı	2ed		OMPC)NEN	TOR	BRE.	AD BO. THE L	ARD			I REL		

Ϋ́́ε.

1

7-335

Į.

DEFINITION OF TECHNOLOGY REQUIREMENT	г <u>NO, <u>C-9, 11</u></u>
1 TECHNOLOGY REQUIREMENT (TITLE): Spacecraft to ' Docking Mechanism	Tug PAGE 1 OF 3
2. TECHNOLOGY CATEGORY: Spacecraft/Mechanical	
3. OBJECTIVE/ADVANCEMENT REQUIRED: To resupply stabilized and spin stabilized geo-synch satellites.	and refurbish three-axis
4. CURRENT STATE OF ART: Preliminary engineering s	tudies have been
initiated to investigate feasibility of docking mechanism.	
HAS B	EEN CARRIED TO LEVEL 3
earth controlled tug, at synchronous altitude therefore the s be abandoned or returned to earth for rework and/or refurb controlled docking mechanisms are needed to hold the satell mechanisms are also necessary for retrieval of payloads by	ishment. However, remotely lite during servicing. Docking
· · · ·	an an an an an an an an an an an an an a
P/L REQUIREMENTS BASED ON: X	PRE-A, C A, C B, C/D
6. RATIONALE AND ANALYSIS: (a) The present method for positioning a spacecraft at synchr recovery for repair and/or refurbishment. A potentially cos vide a shuttle/tug mechanism to remotely service synchronou technology development may be necessary to reduce costs and	t effective solution is to pro us orbit spacecraft. Further
(b) All compatible spacecraft at synchronous altitude will be advance; e.g., Earth and Ocean Physics, Communication/Na tions payloads.	그는 그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 특징 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같
(c) In orbit repair and/or refurbishment of spacecraft would of operation, i.e., launching a second or back-up spacecraft malfunctioning spacecraft.	
(d) The test of a model of a docking mechanism utilizing a spapicability will satisfy this technology requirement.	pacecraft to demonstrate its
e Na sete destruíte (general destruíter e destruíter a la destruíter de la destruíter de la destruíter de la dest	
PRECEDING PAGE BLANK NOT FILMED TO	BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-9.11 TECHNOLOGY REQUIREMENT(TITLE): Spacecraft to Tug PAGE 2 OF 3 Docking Mechanism 7 TECHNOLOGY OPTIONS: (a) Capture and return of spacecraft to orbiter for repair and/or refurbishment. Capture and return of spacecraft to earth via orbiter for (b) repair and/or refurbishment. (c) Continue present mode of operation of total replacement of satellites. (d) Technology options for the docking mechanisms are: impact and non-impact methods. Lower level options are probe and drogue, latching frame, and other geometrical configurations. 8. TECHNICAL PROBLEMS: (a) Development of TV controlled position sensing and alignment system. (b) Effect of thermal gradients across tug mechanism/spacecraft interface. 9. POTENTIAL ALTERNATIVES: There are no known potential alternatives other than those discussed in Section 7. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: a. MSFC: Space Tug Docking Study, 1975 RFP. b. SAMSO/Bell Aerospace, Tug Rendezvous and Docking Studies. EXPECTED UNPERTURBED LEVEL 3 11. RELATED TECHNOLOGY REQUIREMENTS: Development of encoder system to assist remote control determination of location of malfunctioning system and checkout of replacement system.

DEFINITION O	FТ	EC	IN(C	ΟGΥ	RI	QU	IRE	ME	'N'I	1		•		ľ	10.	C-	9.1	1
1. TECHNOLOGY REQUINT Tug Docking Mecha	EM	EN' sm	г (PIT:	LE)	S	pac	cec	ra	£t	to			I	PAG	E 3	OF	3	
12. TECHNOLOGY REQUI	REN	EN	TS	SCI	IEC			ND	AR	YE	AR		•					•	
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Design Phase	÷ • ` .																		
2. Fabrication E/U									ju t		·			<u>.</u>					
3. Testing & Qual.E/I	F					-						· .							
4 <u>.</u> 5.		•.											•• •						
			:	· ·	· ·						. 				<u> </u>	<u> .</u>			
APPLICATION 1. Design (Ph. C)			· · ·"		- - -														
2. Devl/Fab (Ph. D)							-												
3. Operations	".• .						· .			 			· · · ·			· · · ·			1
4.				: :				а. Л.	2							1.			
13. USAGE SCHEDULE:								: .		- 					<u> </u>				
TECHNOLOGY NEED DATE					· .:		6											ron 	AI
NUMBER OF LAUNCHES			:- ·						*	4	*	*	*	8	: +	* *	*		
14. REFERENCES:) NASA Management Inst) Letter: NASA/GSFC File I Technology Requir	lo. em	821. ents	3, , C	Coc ont	le 7 rac	30, t N2	Sul AS 2	ojec 2-82	t: 272'	''Sti ',]	udy	of	Fut	ure	Ра	yloa	ad		
H. M. Ikerd, GD (lon	väir	, d	ate	110	Ja	nua	ry J	.974	5 .			··· .			. •			
)In-Orbit Servicing by Frank & Aeronautics, Vol. 13, No) MCR-73-337 (NAS 8-29904 Final Report - Martin/Ma:	. 2) Sh	, da uttl	ted e R	Fe emo	bru ote	ary Mai	19' me	75 . 1 Sy	ste	ms		· · ·							CS
Legend:* = Resupply M E/U=Engine	iss eri	ior ng	s Un	it							· · ·				en di F Tota	1			 مراجع مر میران
						•			- 5 - 2-	: • .		1999 - 1 1979 - 1			1			ing na Altor	- 1
15. LEVEL OF STATE OF	r Al	гт				1811. 1		5. C									REL	EVAI	}T
 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL 	RIBE	PHEN	OME				:	7. M	ODE ODE EW C	L TE: L TE:	STED STED BILIT	IN A IN SI Y DE	THE I IRCRA PACE RIVEI DEL.	ENV ENV	envii Ironi	(ONM) MENT		SER	

÷

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>RI,10.1</u>
	INOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>6</u>
2. TECH	INOLOGY CATEGORY: Environmental Control	14
à. OBJE	CTIVE/ADVANCEMENT REQUIRED: Construct a mechanism nic environment which will enable focusing of focal plane	operable in a energy on
detecto	ors of between 2 and 6 IR instruments.	· · ·
	RENT STATE OF ART: <u>USAF</u> has developed and operated a erometer with moving parts in a cryogenic environment.	· · ·
	HAS BEEN CARRI	ED TO LEVEL
5. DES	CRIPTION OF TECHNOLOGY	
to be o CCD arr pointin visible instrum energy a dich their their detecto primar	ltiple Instrument Chamber (MIC) will contain 2 to 6 IR bad developed by investigators, and 2 visible band instrument ray, and a focal plane tracker). The visible band instru- ng correction to the stabilization and tracking loop and e band observation of areas in the IR instruments FOV. I ments will investigate Taint sources of IR energy. The m transfer remains to be designed. Current considerations roic element to reflect IR band energy and pass visible b respective detectors from a reflecting telescope surface. ors are maintained at various cryogenic temperatures which y problem considered herein which is operation of a preci- t contamination of cold surfaces.	s (an imaging ments provide also permits the IR band mechanism for include use of and energy to The IR th causes the
	(continued on page2)	
	p/l requirements based on: 🔲 pre-a, 🛽	A, ☐ B, ☐ C/
a. The pe b. AS- AS- AS- AS-	IONALE AND ANALYSIS: e MIC is a part of the Shuttle Infrared Telescope Facilit rmits selection of 2 to 6 IR instruments of IR astronomy -01-S - 1.5 m cryogenically cooled IR telescope - ØA -14-S - 1 m uncooled IR telescope - pre ØA -15-S - 3 m ambient temperature IR telescope - pre ØA -20-S - 2.5 m cryogenically cooled IR telescope - pre ØA -07-A - 3 m ambient temperature IR telescope - pre ØA	y (SIRTF) and investigations. (benefiting payloads)
ob: and iz: ba	e ability to use the MIC to select an instrument enables servation of phenomena using different spatial and spectr d resolutions. Cooling the detectors and instruments res ation of S/N ratio for observation of faint IR sources as ckgrounds.	al sensitivitie ults in optim- gainst faint
de	e technology is now available in the form of potential componentsign of the MIC. The unit must be developed with final technolst in space.	ogy demonstratio
USR		
		· · · · · · · · · · · · · · · ·

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 7

7-341

1. TECHNOLOGY REQUIREMENT (TITLE): ______ Multiple Instrument Chamber

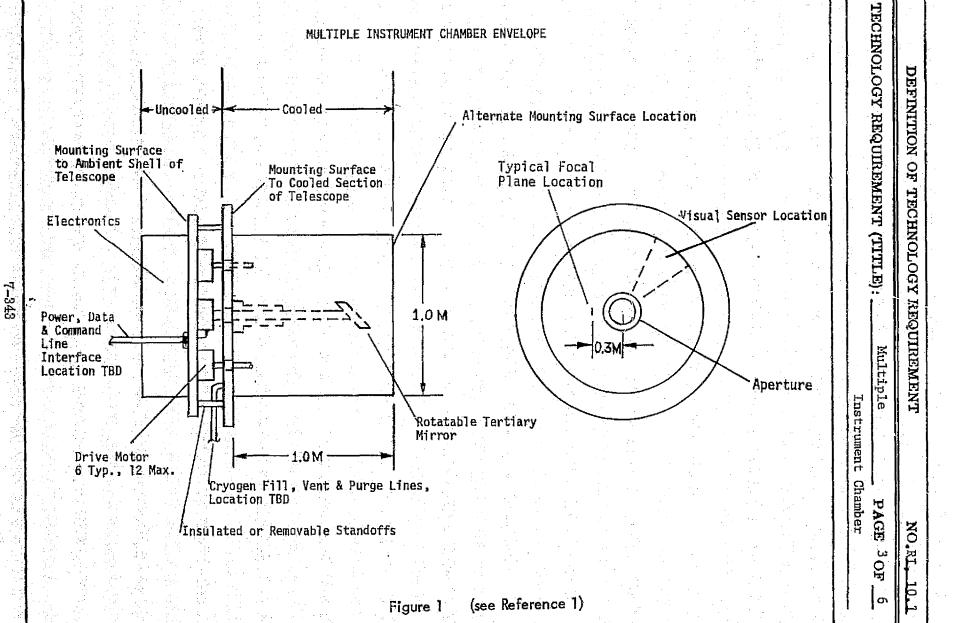
Description of Technology (continued)

Cooling requirements are tentatively listed as:

Overall telescope - expansion of supercritical He gas enabling temperatures of 10-20 K.

Gas is expanded by Joule-Thompson loop hopefully to bring temperature down to 1°K for some detectors

Other detectors will require temperatures of 4-10°K, with some at 20°K


The MIC concept is presently being developed by the Hughes Company, Culver City. Cooling requirements will be defined by August 1975 with additional requirements to be defined by experimenters after that date.

The possibility of technology transfer of cryogenic developments applicable to RI 12.2 should be investigated.

The envelope of the MIC is illustrated in Figure 1.

NO. RI 10.1

PAGE 2OF6

÷

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO.RI,10.1
ι.	TECHNOLOGY REQUIREMENT(TITLE):	PAGE 4 OF <u>6</u>
	Multiple Instrument Chamber	
7.	TECHNOLOGY OPTIONS:	
refi for	MIC cryogenic system remains to be defined as either a dewar s cigeration machine. It appears likely that the dewar is a vali the sortie missions. However, the automated mission AS-07-A h and probably could fully utilize a cooler with Joule-Thompson	id consideration has a three-year
8.	TECHNICAL PROBLEMS:	
а.	Development of a zero gravity cryogenic He container	
b.	Contamination prevention on cold surfaces in a differential to	emperature area
2.	Development of rotary cryogen joints without leakage or signif	ficant friction
	Addition of Joule-Thompson expansion techniques to current refunder development (see RI 12, 2) to lower temperature from 20°K to	Erigeration machin
Indi	POTENTIAL ALTERNATIVES: vidual instruments are not a viable alternative because the va ts ability to save weight because its instruments share the sa	
· .		en en en en en en en en en en en en en e
• •		n on orden Selektronistik selekt Selektronistik selektronistik
	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN Zero-G cryogenic containers - Dr. Urban, MSFC	CEMENT:
L.		CEMENT:
а. Б.	Zero-G cryogenic containers - Dr. Urban, MSFC IR detector development - Hughes	
а. Б.	Zero-G cryogenic containers - Dr. Urban, MSFC	
a. b. c.	Zero-G cryogenic containers - Dr. Urban, MSFC IR detector development - Hughes Contamination prevention - Dr. Ress, Martin Marietta ; Hughes,	Culver City
a. c. 11	Zero-G cryogenic containers - Dr. Urban, MSFC IR detector development - Hughes Contamination prevention - Dr. Ress, Martin Marietta ; Hughes, (, ntinued on page 5)	Gulver City FURBED LEVEL <u>4</u>
a. C. 11	Zero-G cryogenic containers - Dr. Urban, MSFC IR detector development - Hughes Contamination prevention - Dr. Ress, Martin Marietta ; Hughes, (, ntinued on page 5) EXPECTED UNPERT . RELATED TECHNOLOGY REQUIREMENTS:	Gulver City FURBED LEVEL <u>4</u> 200 <i>µ</i>

and a second second second second second second second second second second second second second second second

PAGE 5 OF _6_

NO. __________

1. TECHNOLOGY REQUIREMENT (TITLE): ________ Multiple Instrument Chamber

Planned Programs or Unperturbed Technology Advancement (continued)

d. Long wavelength filter development - current British development

e. Honeywell Radiation Center in connection with USAF Chi has developed a Michelson interferometer.

			DE	FINITION (ר יוכ	rec.	HN	OL.C	GY	RÞ	ເຊບ	IRE	MI	ENI	·				N	ю. ^в	l- 10	.1	
a La catalante conserva		1.	TECHNOLO	GY REQUI	REM	I EN'	т (FI'F I	LE)	•								p	AG	E6	OF	_6	
e and a summary of the state of the		12.	TECIINOL	OGA KEÓNI	REN	1EN	TS	SCI	IED			ND.	AR	YE	AR		-						
			SCHEDULE	ITEM	75	76	77	78	79	80	81	82	83	8.1	85	86	87	88	89	90	91	-	
al and the second second second second second second second second second second second second second second s		TECH	HNOLOGY MIC Requir Defined	ements							NC M	TE: C t	eq	fo r uire	neet emer	: Te Its	echr mus	olo st 1	gy e 1	Nee	d I ene	ate	
			Breadboard Life Testi	-	-						w	.11	de	sci ine	c c	01	ng	rec	ui	eme	nts	ir	
مندر. ا یت کارب مورد انفس			Engineeria	-		_						76. Sy V		нне L bo								hnc	1-
		5.	Testing	· · · · · · ·							• •												
			LICATION Design (Ph	.C)															· · ·				
	н Ж. А.		Devl/Fab (Ph. D)																			
1			Operations				 : .			•							 .						:- *
		- <u>++</u>	Shuttle Sont (all	others)																		<u> </u>	
		13.	USAGE SC	HEDULE:		.		-					.,				·					.	
		TECI	HNOLOGY I	VED DATE		· .	1	V	···	1 . T	[*	1									7	ют	AL
		NUN	MBER OF I	AUNCHES		· · ·				3	3	3	6	4	2	1	2	3	3	3	3	36	
			REFEREN			··· ;		1. ^{1.2}	· . ·									··· : ·.		· · ·	• •		
		2.	Technical Rockwell I Technical	ion 2-2448 discussion nternation	3, N bet al, bet	IASA wee 2 N wee	-Am n J ove n F	ies, K mbe	Ju irk v 1 litt	ly pat 974 cebc	15, ric	19 k,	74. NAS	A-A	mes	, а	nd	Ρ.	R.	Fag	an,	SIR.	
41		4.	Letter fr	om C. McCre	igh	t, l	NASA	<u>А</u> —Ап	ies	to	н.	Ike	ard	, GI	DCA	, De	ecet	nber	: 31	L, 1	.974	i	
		5.		n between (onal, Octol					NAS	5A-1	lmes	3, 8	and	P.	R.	Faş	gan	, Ro	ocki	vel.	L		
											1 4	1 1											
		15.	LEVEL O	F STATE O	FAI	3T						5. C							- 1 - A		REL	EVAN	T
			4. PERTINENT I	WLATED TO DES ED BY PHYSICAL MATICAL MODEL.	CRIBE EXPE RACTI	PHEN RIME) ERIST	NOME	NA.	itra'	TED,		7. M 6. N 9. R	IODE IODE EW C OPE ELIA		STED STED BLIAT ONAI CNAI	in ai in sp y dei , moi grai	RCRA PACE RIVEI DEL. DING (FT E ENVII FRO	nvtri Ronm IM A	onmi Ent. Much Rati	LES	SER . MOD DDEL.	
									77	-346													

•

ý F

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>RI, 10.</u>
. Т	ECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF 3
<u> </u>	ZERO-GRAVITY STEAM GENERATOR	
TI	ECHNOLOGY CATEGORY: Environmental Control	
i. 0)BJECTIVE/ADVANCEMENT REQUIRED: Obtain data on steam performance under zero-g conditions.	n generator
. c	CURRENT STATE OF ART:	Langley Researd
	HAS BEEN CARR	IED TO LEVEL 4
5. Y	DESCRIPTION OF TECHNOLOGY	
per	2 from the sorbent beds in the system. LaRC Systems Engineers rsonnel are developing a steam generator for this steam desc e phase-change and heat-transfer processes involved in the s	orption system.
are par to per	e expected to be gravity sensitive. At reduced gravity lever rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design	els, performance y are difficult e steam generator in verifying gn applications.
are par to per ana	e expected to be gravity sensitive. At reduced gravity lever rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design P/L REQUIREMENTS BASED ON: PRE-A,	els, performance y are difficult e steam generator in verifying gn applications.
are par to per ana	P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS:	 els, performance v are difficult steam generator in verifying gn applications.
are par to per ana	P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS:	 els, performance v are difficult steam generator in verifying gn applications.
are par to per ana	P/L REQUIREMENTS BASED ON: PRE-A, Requirements defined by need for efficient method for scra	 els, performance v are difficult steam generator in verifying gn applications.
are par to per ana . R. a.	e expected to be gravity sensitive. At reduced gravity lever rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS: Requirements defined by need for efficient method for scru spacecraft cabin air.	els, performance y are difficult e steam generator in verifying gn applications.
are par to per ana . R. a. b.	e expected to be gravity sensitive. At reduced gravity lever rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS: Requirements defined by need for efficient method for scru- spacecraft cabin air. ST-22-S, ATL Payload No. 3 (Module + Pallet) Scrubbing sorbent beds extend the life of environmental 1:	<pre>els, performance v are difficult e steam generator in verifying gn applications. A, B, C/D ubbing ife support ing in a altitude rocket</pre>
are par to per ana . R. a. b. c.	 e expected to be gravity sensitive. At reduced gravity level rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for designing performance prediction methods as well as for designed and the sequence of the sequ	<pre>els, performance y are difficult a steam generator in verifying gn applications. A, B, C/D ubbing ife support ing in a altitude rocket</pre>
are par to per ana . R. a. b. c.	e expected to be gravity sensitive. At reduced gravity level rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS: Requirements defined by need for efficient method for scruspacecraft cabin air. ST-22-S, ATL Payload No. 3 (Module + Pallet) Scrubbing sorbent beds extend the life of environmental 1: systems. Zero gravity cannot be simulated to extent to assure test: relevant environment. As a minimum, a test in a zero-g high such as an Aries launch would meet the initial technology requirements.	<pre>els, performance y are difficult a steam generator in verifying gn applications. A, B, C/D ubbing ife support ing in a altitude rocket</pre>
are par to per ana . R. a. b. c.	 e expected to be gravity sensitive. At reduced gravity level rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for designing performance prediction methods as well as for designed and the sequence of the sequ	<pre>els, performance y are difficult a steam generator in verifying gn applications. A, B, C/D ubbing ife support ing in a altitude rocket</pre>
are par to per ana . R. a. b. c.	e expected to be gravity sensitive. At reduced gravity lever rameters such as amount of steam generated and steam quality predict analytically or to simulate with ground tests. The rformance data obtained in this experiment will be of value alytical performance prediction methods as well as for design P/L REQUIREMENTS BASED ON: PRE-A, ATIONALE AND ANALYSIS: Requirements defined by need for efficient method for scru- spacecraft cabin air. ST-22-S, ATL Payload No. 3 (Module + Pallet) Scrubbing sorbent beds extend the life of environmental 1: systems. Zero gravity cannot be simulated to extent to assure test: relevant environment. As a minimum, a test in a zero-g high such as an Aries launch would meet the initial technology require	<pre>els, performance v are difficult e steam generator in verifying gn applications. A, B, C/D ubbing ife support ing in a altitude rocket</pre>

7-347

TO BE CARRIED TO LEVEL 2

DEFINITION OF	F TECHNOLOGY REQUIREMENT	NO.RI, 10.4
I. TECHNOLOGY REQUIREM	IENT(TITLE): ZERO-GRAVITY STEAM GENERATOR	PAGE2 OF <u>3</u>
7 TECHNOLOGY OPTIONS:		
None defined.		
		en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la composition de la composition de la composition de la composition de la composition de la c
		a da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da s Berta da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera d Berta da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera d
	an tao amin'ny faritr'i Nationa de La Carlo de La Carlo de La Carlo de La Carlo de La Carlo de La Carlo de La C Nota	· · · · ·
8. TECHNICAL PROBLEMS	<u>ne se de la companya de la companya de la companya de la companya de la companya de la companya de la companya</u> Esta de la companya de la companya de la companya de la companya de la companya de la companya de la companya d	
Compaction of heat transfer	surfaces	a Angela angela angela a
	and that was a state of the state an	n an form i somer stade i
). POTENTIAL ALTERNATIV	VES:	
Sodium peroxide (NO ₂ O ₂) a water and carbon dioxide	nd potassium superoxide (KO2) can and regenerate oxygen,	i serve to absorb
	a da servicio de la companya de la companya de la companya de la companya de la companya de la companya de la c Portece de la companya de la companya de la companya de la companya de la companya de la companya de la companya	
0. PLANNED PROGRAMS OR	UNPERTURBED TECHNOLOGY AD	
0. PLANNED PROGRAMS OR	UNPERTURBED TECHNOLOGY AD 1y being tested. Flight article	construction is
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article	construction is
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article	construction is
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article l. EXPECTED UNI Y REQUIREMENTS:	construction is PERTURBED LEVEL <u>4</u>
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article l. EXPECTED UNI Y REQUIREMENTS:	construction is PERTURBED LEVEL <u>4</u>
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article l. <u>EXPECTED UNI</u> Y REQUIREMENTS:	construction is PERTURBED LEVEL <u>4</u>
0. PLANNED PROGRAMS OR Engineering model present the next step anticipated 1. RELATED TECHNOLOGY None defined.	UNPERTURBED TECHNOLOGY AD ly being tested. Flight article l. EXPECTED UNI Y REQUIREMENTS:	construction is PERTURBED LEVEL 4

. • •

DEFINITION (DF T	EC	HNO	OLC	OGY	RE	ເຊບ	IRE	ME	NT					N	10.	RI,	10.	4
1. TECHNOLOGY REQUI	REM	LEN'	т ('	FIT	LE) ZE	: RŌ(GRA	VIT	Y S'	TEA	M G	ENE	RAT		PAG	Έŝ	3 ೧ ೯	3	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	HEL			ND.	AR	YE	AR								
SCHI ULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOL GY 1. TESTING OF ENGINEERIN MODEL	G		СОМ	PLE	ΓE														
2. FABRICATE FLT MODEL		1		ļ ,									1	ł. 		· .			
3. TEST FLIGHT MODEL	-								- 1. - 1.									-	
5									-			•					:•		
APPLICATION					CON	TRÀ	ст	AWA	RD	(PR	ESE	NT	SCB	EDU	LE)			1	
1. Design (Ph. C)		de la	f,	1.						 									
2. Devl/Fab (Ph. D)				-	•										ļ.				
3. Operations								ľ								Ì			
4.																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DAT	2			,	V.											ľ	1	гот	AL
NUMBER OF LAUNCHES	-						1		1	. 1	-								5
Scheduled acquisition Technology need da 14. REFERENCES a. Study of Shuttle-C	te.		•					•					•						• . • • •
a. Study of Shuttle-C Research Center, N b. Technical discussi	ASA	IMX	-28	313,	Se	pte	mbe	er 1	.973	•	• •	•			• .			•	
Center; and P. R. c. Letter from D. Barth International, Noven	Faga lome	an, "La	Roc ngle	skwe ey f	11	Int	err	iati	.ona	1,	Nov	7	7, 1	1974	+ •			• • •	
d. Letter from D. Barthla December 30, 1974	ome,	Lar	ıgle	ey R	lesed	arcł	n Ce	ente	r to	н.	lke	erd,	G	DC/	۹,	ette -			
 LEVEL OF STATE C BASIC PHE JOMENA OBSERVED THEORY FORMULATED TO DE THEORY TESTED BY PHYSICA OR MATHEMATICAL MODEL) AND SCRIB L EXPI	REPO E PIIE ERIME	NOM	ENA.		•		6. 1 7. 1 8. 1	EN MODE MODE NEW OP	VIRO L TE L TE CAPA ERAT	NMEN STEI STEI BILL IONA	IT IN D IN A D IN S IY DI L MC	THE IRCR PACE SRIVE	LABC AFT ENV DFR	DRATI ENVI JRON JRON A	DRY, RONA MEN' MU(ient. f. 211 le		
4. PERTINENT FUNCTION OR CH E.G., MATERLA. COMPON			LIC D	EMO	NSTRA	ATED		9. 10.	RELL LIFE	A BILI FIME	TY U EXTI	PGR	IDING DN OF	OF AN C	IN OF	ERA ATIO	FIONA NAL N	L MO	11:11.

7 - 349

NO. <u>RI.11.</u>I

1. TECHNOLOGY REQUIREMENT (TITLE):

PAGE 1 OF $\underline{3}$

Structure/Mechanism

2. TECHNOLOGY CATEGORY: <u>Environmental Protection</u>

a). OBJECTIVE/ADVANCEMENT REQUIRED: Development of method for operating electronic components and circuits at 750 K and 100 atmospheres.

1. CURRENT STATE OF ART: <u>Some silicon carbide devices have operated reliably</u>

above 750 K

HAS BEEN CARRIED TO LEVEL 4

5 DESCRIPTION OF TECHNOLOGY

Complex circuitry is generally restricted to temperatures near 400 K; however, individual silican devices which have been carefully selected and derated have been operated to 500 K. Various types of SiC rectifiers, thermistors, sensors, and prototype field effect transistors have operated with long lifetime above 750 K. There is no possibility of increasing the capability of silicon devices to 750 K.

P/L REQUIREMENTS BASED ON: 🔀 PRE-A, 🗌 A, 🗌 B, 🔲 C/D

- C RATIONALF AND ANALYSIS:
- a. The payload will operate from the Venus surface. Best estimates of conditions are 750 K and 100 atm.

7-351

- b. PL-10-A Venus Large Lander
- c. The lander will be required to maintain a communications link during the period of Venus surface data collection. The extreme environment of the surface can possibly damage the electronics.
- d. Demonstration of the capability of electronics to operate reliably in a simulated
 - Venus environment.

TO BE CARRIED TO LEVEL 5

PRECEDING PAGE BLANK NOT FILMED

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. RI, 11
1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF 3
Structure/Mechanism	
7. TECHNOLOGY OPTIONS:	
 a. Design of encapsulated environmentally protected system. b. Development of SiC devices which are capable of 750 K operation. c. Development of wide band gap semi conductors such as SiC or GaP. d. Some thermal lagging and heat sinks. 	
	n an an an an an an an an an an an an an
n en en en en en en en en en en en en en	аланан алар алар алар алар алар алар ала
8. TECHNICAL PROBLEMS:	
9. POTENTIAL ALTERNATIVES:	
9. POTENTIAL ALTERNATIVES: Unknown	
9. POTENTIAL ALTERNATIVES:	
9. POTENTIAL ALTERNATIVES:	
9. POTENTIAL ALTERNATIVES: Unknown	NCEMENT:
9. POTENTIAL ALTERNATIVES: Unknown 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN	
 9. POTENTIAL ALTERNATIVES: Unknown 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN a. USAFCRL investigating SiC devices b. USAF Rome Air Development Center is publishing MIL Handbook 217 acceleration. 	'B on high temperat
 9. POTENTIAL ALTERNATIVES: Unknown 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN a. USAFCRL investigating SiC devices b. USAF Rome Air Development Center is publishing MIL Handbook 217 acceleration. 	'B on high temperat
 9. POTENTIAL ALTERNATIVES: Unknown 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN a. USAFCRL investigating SiC devices b. USAF Rome Air Development Center is publishing MIL Handbook 217 acceleration. 	'B on high temperat
 9. POTENTIAL ALTERNATIVES: Unknown 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN a. USAFCRL investigating SiC devices b. USAF Rome Air Development Center is publishing MIL Handbook 217 acceleration. EXPECTED UNPER 11. RELATED TECHNOLOGY REQUIREMENTS: 	'B on high temperat

1. 1.

100 C

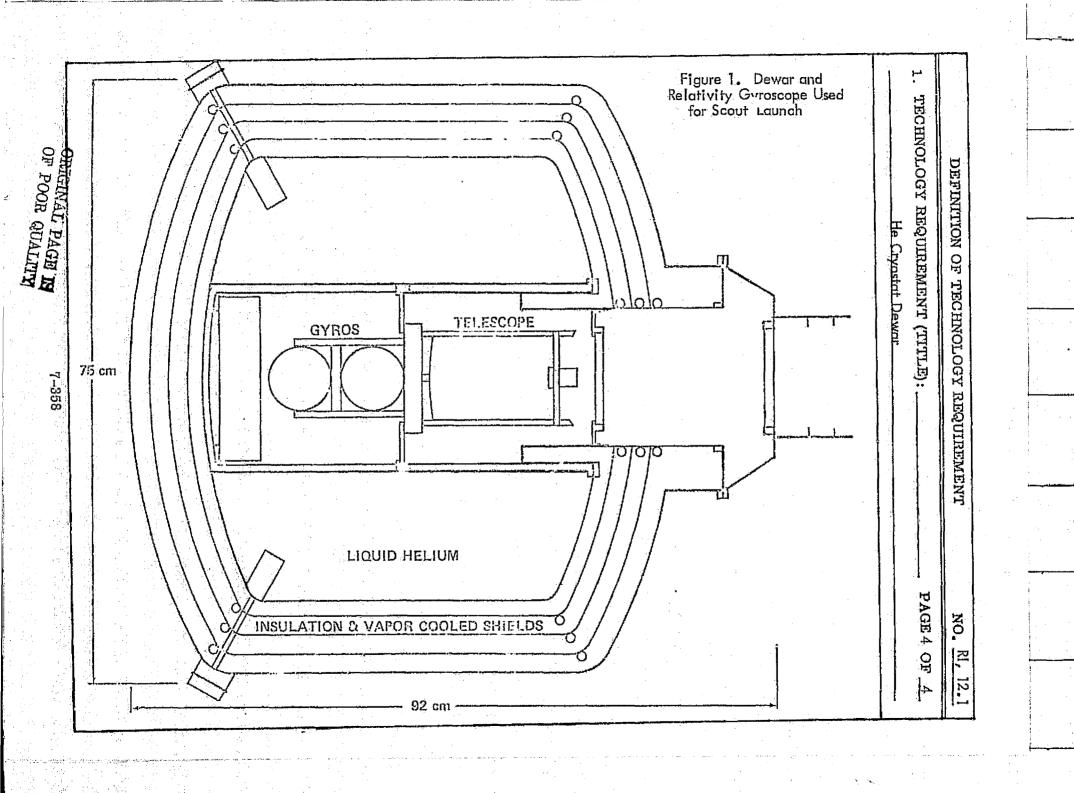
7-352

er ga. Filt

1.727.]

÷ .	DEFINITION O	FТ	EC	HNC	DLC	GY	RE	QU	IRE	ME	NT					1	ю.	11.	1	
	1. TECHNOLOGY REQUIR	EM	EN'	г (7	CIT:	ւ բ)	;								ŀ	ΡÅG	E 3	OI	• <u>3</u>	<u>.</u>
• .	12. TECHNOLOGY REQUII	₹EM	EN	TS	SCI	IED			ND.	AR	YE	AR						••••••••••		
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		[]
	TECHNOLOGY 1. Analysis/Designs 2. Breadboards		5-						NC pr de NA	TE: oba tec SA	bly tor	iC be s i	& (: u: or	aP ed	ela wii	cti th e	oni nca	cs ipsi Pi	wil lat ese ula	ec ni
nt sur i	3. Testing 4. Life Testing		-					-		on.		- 								
	5. Engineering Model 6. Testing		 										 							
	APPLICATION 1. Design (Ph. C)		1																	
	 Devl/Fab (Ph. D) Integration into Spacecraft & Testing 4. 																			
	13. USAGE SCHEDULE:														<u>.</u>			_		
	TECHNOLOGY NEED DATE NUMBER OF LAUNCHES	 				-		-			 .		¥. 			2	+		roı 	ГА 2
	14. REFERENCES:	<u> </u>		<u> </u>	<u>.</u>	<u>.</u>		·			<u> </u>		1	<u> </u>	<u> </u>	1-	_ _	<u> </u>	1	<u> </u>
	 Discussion between H. International, Novemb Letter from R. B. Camp December 10, 1974. Discussion between J. 	er bel	18, 1, V	197 Vest	4. ing	hou	se E	lec	tric	Co	rp.	r to	Η.	Ike	erd,	GI	DCA		kwe	2
	Rockwell International 4. Discussion between W. International, Februar 5. Preliminary Study of the Electric Corp. to NAS	, Jo Mo / 3, Ne F	inuc irco 192 easi	ry Je 75. bili	20, et P ty c	197 ropu of a	75. Ulsio Vei	on L nus	.abo Lan	orato	ory,	an	d P	. R.	. Fo	ıgan	, R	ock		·
	6. Feasibility of Hot Press Technical Memo, West	ed :	Sili	són	Ca	bid	e as	; a S	Subs	strai atoi	te f Ty,	or H Feb	ligh rua	1 Po ry C	wer b, 1	Las 974	er l •	Mirr	ors,	
	 LEVEL OF STATE OI BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL 	AND F	EPOI PIIEI	OME					6. N 7. N	ENV IODE IODE	лко» L TE L TE	imen Sted Sted	T IN IN A IN S	THE IRCR PACE	LABO AFT I ENV	RATC ENVIE IRON!	ny Ionm Men'i	ENT.	LEVAI	ŊТ

	F TECHNOLOGY REQUIREM	ENT NO. <u>RI, 12.</u>
TECHNOLOGY REQUIR	EMENT (TITLE):	PAGE 1 OF _4
He Cryostat De		
• • • • • • • • • • • • • • • • • • • •	RY: Cryogenic Control	
	MENT REQUIRED: 1.6°K f	or one vear
люлис түрүүдэүндүннөг		
CURRENT STATE OF A	.RT:	
	been constructed at MSFC.	
	HA	AS BEEN CARRIED TO LEVEL 3
DESCRIPTION OF TEC	HNOLOGY - Phase Change S	ystems
	(MSFC Definition for LHe Dewar)	(HEAO–B Cosmic Ray Spectro– meter Cryostat Model Under Development)
Weight	100-200 lb	3300 lb*
Life	l year	1 year
Temperature	1.5°K	45°K
	30 milliwatts	unknown
Load Dimensiona		72 in dia v 05 in Ionath
Load Dimensions Not state-of-art and will b	See Figure 1	72 in. dia. x 95 in. length
Dimensions Not state-of-art and will b	See Figure 1 e reduced REQUIREMENTS BASED ON	72 in. dia. x 95 in. length :] PRE-A, 🛛 A, 🗍 B, 🗍 C/J


PRECEDING PAGE BLANK NOT FILMED

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. RI, 12.
6	1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF _4
	He Cryostat Dewar	. <u>.</u>
	7. TECHNOLOGY OPTIONS:	
	LHe temperatures above 2.17°K will result in vibrational noise on the gy ability to measure relativity effects. Disturbances caused by mechanical closed cycle operation would be intolerable. A temperature higher than 4 excessive loss of helium as well as impacting the performance of supercor and components. Switching to another cryogen will cause greater losses.	l refrigerators and 4°K will cause nducting instruments
1		
2		
- - - - - -	8. TECHNICAL PROBLEMS: a. Design of a low heat leak neck view port. No suitable ports exist at	t the present time.
9. 19. 19. 19. 19. 19. 19. 19. 19. 19. 1	 b. Venting with superfluid has not been demonstrated in space. c. Full scaled tests must be conducted to assure no problems. d. Development of prelaunch fill and dewar servicing techniques. 	
•		
	9. POTENTIAL ALTERNATIVES;	
	1.6°K must be maintained for at least one year. On orbit resupply may most undesirable. Closed cycle systems will require very high power and etc.	be feasible but is I introduce vibration
	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA	NCEMENT:
	a. System study of closed cycle rotary reciprocating 3.6°K refrigerator some compoents built (see Keference 2)	conducted and
		an an an an an an an an an an an an an a
· · ·	EXPECTED UNPEF	TURBED LEVEL
1	11. RELATED TECHNOLOGY REQUIREMENTS; No related technology requirements for phase change system as it is state	e of the art. Howev
	if closed cycle system is used, power becomes a major consideration nec efficient solar arrays.	essitating large, ve
	if closed cycle system is used, power becomes a major consideration nec	essitating large, ve

DEFI	NITION O	FΤ	ECI	HNO	OLC	OGY	RE	ເຊບ	IRF	EMF	ENT	1				1	101	1,	12.	1
1. TFCHNOLOGY	Y REQUIR He Cryc			•		LE)	:	· · · ·							}	PAG	E 3	OF	'_4	<u> </u>
2. TECHNOLOG	Y REQUI	REM	EN	TS	SCI	IEI			ND	AR	YE	AR							- 	
SCHI DULE IT	EM	75	76	77	78	79	80	81	82	83	8.1	85	86	87	88	89	90	91		
CECHNOLOGY 1. Options & Par Analysis 2. Design	ametric	1 1						t	o n	leet	te	chr	010	8у	nee	dc	rec ate ht.		eđ	
3. Construct Mod	els	•																		
4. Test Models	•				ŀ												ļ		•	
5. Engineering M Test	odel/														1.					ļ
PPLICATION						1								· · · ·				 		
1. Design (Ph. C)				┝──															
2. Devl/Fab (Ph.	. D)				2							ļ								
3 Operations																				
1.							ľ				·	1								
USAGE SCHE	DHLE.	i	<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u>}</u>		<u>.</u>	<u>.</u>	<u> </u>	<u> </u>		<u> </u>	<u>L</u>	1 /	<u> </u>
			Ī				Ť	Τ	Ţ	1	1	ſ		<u> </u>	<u> </u>		1		lo'i	'A T
ECHNOLOGY NE		ļ			1-		1		+	1	+	$\left \right $		+					2	
	NCHES		ļ]	<u> </u>	L,	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ	· · · ·
 P. E. Wright, Publication of R. Breckenridge, Engineering Di March 29–30, Lipa, J. A., e by a Porous Plu W. W. Hansen Workshop, MSI Technical discu Rockwell Intern Letter from J. Letter from C. Letter from R. January 6, 197 	CA Advan R. W. and vision, Ar 1972 et al, Rese y and a La Laborator FC, March ussions at national, Lipa, Han McCreigh S. Hunt,	ced I Ga thur arclong ies i 29 MSF Oct sen t, N	Tec bro D. Hol of P -30 C b obei Lab	hnc n, Lit d–7 hys hys , 19 etw 17 ora A	olog F., info ime ics, 772 /een /, 1 fori Ame	y Lo Cry In rd c De Sto I Dr 974 es, is fo	obor on the on the onfo E Sta H	rato enic Pro he (for ord . Ui . Ui . Iki	ries Cont Cont the Univ bar	i, C politi edin tain e G vers η, Λ Ι., G	amo ng f gs (mer yro ity, ASF to I DCA	len, or S Cryc Rel Pr C, I	, No oger f Lio ativ oceo and kero Deco	ew sebo ic quic vity edir P. d, (Jers orne Wor I He Exp igs R. GD(er 3	Ex ksh eliu of C Fag CA,	19 peri op, m ir men Tryo an, De 197	men MS S t, gen c.	FC, bacı ĭc 17,	€.
. Letter from Dr.		, M	SFC	to	н.	Ike	rd4	G	CA	L J	anu	ary	7,	197	5			• • • . •	• • •	
 LEVEL OF S BASIC PHENOMEN THEORY FORMUL THEORY TESTFD OR MATHEMATI PERTINENT FUNC 	A OBSERVED A ATED TO DESC BY PHYSICAL E CAL MODEL.	ND R RIDE XPEI	epor Phen Rimen	OME IT	NA.	STRA	TED.		6. N 7. N 8. N	ENV IODE IODE IEW C OPE	TRON L TE: L TE: CAPA CRATI	MEN Sted Sted HLIT ONAI	f in t In Al In SP Y DE: , Moi	THE I RCRA PACE RIVE DEL.	AHO IFT E ENVI D FRO	RATO NVIR RONN DM A	ed in Ry. Onmh Ient Much Erati	NT. I LES	SER	

7-357

.

TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 6 ŧ LHe Recycling Unit

Cryogenic Control TECHNOLOGY CATEGORY:

3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide LHe refrigeration machines to cool payload items noted below.

1. CURRENT STATE OF ART: Elements of machine under construction and test.

Engineering model will be available for testing by 1-1976.

HAS BEEN CARRIED TO LEVEL

5. DESCRIPTION OF TECHNOLOGY

The DoD has been funding development of low temperature refrigerators. An early investigation was a three-year program to develop a long life 3.6 K, one watt load refrigerator for use with a superconducting computer system. The effort by Arthur D. Little, Inc. was terminated after one year.

Three companies have since been funded for development of closed cycle refrigeration systems; they are:

Hughes Aircraft Corp. North American Phillips Inc. Arthur D. Little Inc.

(continued on page 4) See Table 1 below P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D 6. RATIONALE AND ANALYSIS: Table 1. Payload Requirements Payload Status Payload Status Payload Status Pre Phase A HE-09-A AS-15-S Pre Phase A AS-03-A Phase B AS-07-A Pre Phase A Pre Phase A AS-20-S Pre Phase A AS-01-S AS-11-A Pre Phase A AS-14-S Pre Phase A HE-15-S Phase B Temperature requirements result from two factors: a. 1. Requirements for superconduction which defines operational temperature of magnets and permits low power measurement of particle energies. 2. Requirements for high detectability and high S/N ratio which requires detector cooling and allows detection of faint IR sources. See Table 2

Ь.

The use of LHe closed cycle systems permit long life missions without resupply or C. large dewar requirements

d. Space flight testing of a prototype model

TO BE CARRIED TO LEVEL

7-359

 TECHNOLOGY REQUIREMENT(TITLE):	· · · · · · · · · · · · · · · · · · ·	DEFINITION OF TECHNOLOGY REQUIREMENT	NO.RI-12.2
 Two Brayton cycles and various others should be investigated; they are: Reciprocating Reverse Brayton Cycle Rotary Claude Cycle Dual Phased Recuperated Vuilleumeir Process Hybrid Systems - which combine mechanical refrigeration with other techniques such as dielectric cooling 8. TECHNICAL PROBLEMS: In discussion with Arthur D. Little, Inc., it was determined that primary technical probare in the area of fabrication of system items and no major problems are forseen. If car seen from the scheduled availability of the ADL unit for life testing as of January 1976, that the unit modified to the necessary cooling requirements will not be available by the technology need the to the necessary cooling requirements will not be available by the technology need the an until the technology is developed by WPAFB for cooling machines. Maintenance of class tolerances during operation POTENTIAL ALTERNATIVES; It can be seen from Table 2 that a number of the payloads which are listed as desirable incorporate closed cycle systems are Shuttle sortie payloads of seven-day duration. The weights of the refrigerators are estimated as: North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page. 5) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1975, however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. 11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology vehicles required for these payloads is planned. 			PAGE2 OF 6
 Reciprocating Reverse Brayton Cycle Rotary Reverse Brayton Cycle Rotary Claude Cycle Dual Phased Recuperated Vuilleumeir Process Hybrid Systems - which combine mechanical refrigeration with other techniques such as dielectric cooling TECHNICAL PROBLEMS: In discussion with Arthur D. Little, Inc., it was determined that primary technical probares in the area of fabrication of system items and no major problems are forseen. If car seen from the scheduled availability of the ADL unit for life testing as of January 1976, that the unit modified to the necessary cooling requirements will not be available by the technology need the. The early payloads may be more suited to using the dewars currently under development until the technology is developed by WPAFB for cooling machines. Maintenance of close tolerances during operation POTENTIAL ALTERNATIVES; It can be seen from Table 2 that a number of the payloads which are listed as desirable incorporate closed cycle systems are Shuttle sortie payloads of seven-day duration. The weights of the refrigerators are estimated as: North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page. 5) PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1975; however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. 	. TECHNOL	OGY OPTIONS:	are:
 Rotary Reverse Brayton Cycle Rotary Claude Cycle Dual Phased Recuperated Vulleumeir Process Hybrid Systems - which combine mechanical refrigeration with other techniques such as dielectric cooling TECHNICAL PROBLEMS: a. In discussion with Arthur D. Little, Inc., it was determined that primary technical prob are in the area of fabrication of system items and no major problems are forseen. It can seen from the scheduled availability of the ADL unit for life testing as of January 1976, that the unit modified to the necessary cooling requirements will not be available by the technology need -site. The early payloads may be more suited to using the dewars currently under development until the technology is developed by WPAFB for cooling machines. Maintenance of close tolerances during operation POTENTIAL ALTERNATIVES: It can be seen from Table 2 that a number of the payloads which are listed as desirable incorporate closed cycle systems are Shuttle sortie payloads of seven-day duration. The weights of the refrigerators are estimated as: North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page. 5)			
 a. In discussion with Arthur D. Little, Inc., it was determined that primary technical probate in the area of fabrication of system items and no major problems are forseen. It can seen from the scheduled availability of the ADL unit for life testing as of January 1976, that the unit modified to the necessary cooling requirements will not be available by the technology need the. The early payloads may be more suited to using the dewars currently under development until the technology is developed by WPAFB for cooling machines. b. Maintenance of close tolerances during operation 9. POTENTIAL ALTERNATIVES: It can be seen from Table 2 that a number of the payloads which are listed as desirable incorporate closed cycle systems are Shuttle sortie payloads of seven-day duration. The weights of the refrigerators are estimated as: North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page 5) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1976; however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. EXPECTED UNPERTURBED LEVEL 11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing 	3. Rotary 4. Dual P 5. Hybrid	Claude Cycle hased Recuperated Vuilleumeir Process Systems – which combine mechanical refrigeration with oth	ner techniques
 a. In discussion with Arthur D. Little, Inc., it was determined that primary technical probate in the area of fabrication of system items and no major problems are forseen. It can seen from the scheduled availability of the ADL unit for life testing as of January 1976, that the unit modified to the necessary cooling requirements will not be available by the technology need that. The early payloads may be more suited to using the dewars currently under development until the technology is developed by WPAFB for cooling machines. b. Maintenance of close tolerances during operation 9. POTENTIAL ALTERNATIVES: It can be seen from Table 2 that a number of the payloads which are listed as desirable incorporate closed cycle systems are Shuttle sortie payloads of seven-day duration. The weights of the refrigerators are estimated as: North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page 5) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1976; however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. 11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology we highly efficient large solar arrays, or focusing solar collectors capable of providing 			
North American Phillips VM - 130 pounds Hughes VM - 180 pounds ADL Rotary Reciprocating - 300 pounds prior to modification for lower temperature (continued on page 5) 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1976; however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. EXPECTED UNPERTURBED LEVEL 11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing	seen from that that the un technology currently u machines. b. Maintenan 9. POTENTLA lt can be se incorporate	he scheduled availability of the ADL unit for life testing as it modified to the necessary cooling requirements will not be need date. The early payloads may be more suited to usin nder development until the technology is developed by WPA nce of close tolerances during operation AL ALTERNATIVES: een from Table 2 that a number of the payloads which are li closed cycle systems are Shuttle sortie payloads of seven-d	of January 1976, e available by the g the dewars NFB for cooling sted as desirable to
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The ADL unit will be at the stage for initiating life testing about January 1976; however, the minimum temperature it will be capable of operating to will be 11.5 K at 0.3 watts. No modification to lower temperature capabilities required for these payloads is planned. EXPECTED UNPERTURBED LEVEL RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing 	North Hughe	American Phillips VM – 130 pounds s VM – 180 pounds otary Reciprocating – 300 pounds prior to modification for I	
11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing	The ADL uni the minimum	PROGRAMS OR UNPERTURBED TECHNOLOGY ADVAN t will be at the stage for initiating life testing about Januar temperature it will be capable of operating to will be 11.5	ĊEMENT: y 1976; however, K at 0.3 watts.
11. RELATED TECHNOLOGY REQUIREMENTS: Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing			en age The second second second second second second second second second second second second second second second se
Use of closed cycle systems will require a source of high power. Related technology v be highly efficient large solar arrays, or focusing solar collectors capable of providing	··· · · · · · · · · · · · · · · · · ·	EXPECTED UNPERI	TURBED LEVEL
a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a La ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a s	Use of clo be highly e	osed cycle systems will require a source of high power. Rel officient large solar arrays, or focusing solar collectors capa	ated technology wi able of providing
	. 1	and a start of the second second second second second second second second second second second second second s Second second second second second second second second second second second second second second second second	

7-360

DEFINITION (Эг Т	EC.	HN	OLC	OGY	RI	ເຊບ	IRI	CMI	ENI	 ז				1	.0 <i>.</i>	R	I-12	2.2]			-
1. TECHNOLOGY REQUI LHe Recycling Unit	REM	EN	Τ ('	FIT:	LE)	:								.]				F					
12. TECHNOLOGY REQUI	REM	EN	TS	SCI	IEL			ND:	AR	YE	AR	-										•	
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91].			
TECHNOLOGY 1. Engineering Model Desi	gn						 NC	 DTE 	: T : T	ech npa	nole hts	ogy Ied	 nee bire	 :d c H +	late Ine	ser	່າວນ	sly					
2. Life Testing									d	eve	opi	nen	t ar	d t	esti	ng.						:	-
 Bevelopment through development testing 																							
5.								ŀ					ŀ								·.		
		 I			<u>.</u>			• , • •	<u> </u>	·					<u> </u>	<u> </u>							tan San
APPLICATION 1. Design (Ph. C)			-	ŀ				. '					- - 7	1									
2. Devl/Fab (Ph. D)		•																					
3. Operations AS-03-A			ľ					1		-				-	-	+	-	1.		ŀ		:	
4. AS-07-A AS-11-A			. [.]									1	†		+	-		1					1. 1.
13. USAGE SCHEDULE:		•••••••••			J				-		<u> </u>	 		-	· · ·	<u>.</u>			<u> </u>				
TECHNOLOGY NEED DATE								Ι										ŢO]	AL			:	
NUMBER OF LAUNCHES	1				1	4	5	5	8	4	3	2	4	3	5	4	. 4	5	2				
14. REFERENCES:	- -		·				- k				- -	- 1 2				- A					۰.	-	an an an an an an an an an an an an an a
1. Conversation between	R. \	Ν.	Bred	cker	nid	ge,	Ari	thur	D.	Lit	tle,	, în	c.,	an	d P.	R.	Fa	gan	r				
Rockwell Internationa 2. Conversation betweer	ıJ.	Kirl	kpα	tric	k, Ì	VA:	5A-	ARC	2, 0	nd	Ρ.	R. F	ago	in,								-	: 1. i.
Rockwell Internationa 3. Development of Rotar									efri	den	ator	for	· Sp	ace	An	olio	rati	ons.					۲. New Second
R. W. Breckenridge 4. Letter from R. S. Hur	, Jr	., e	et a	۱, A	rih	ur C). L	ittl	e,	lnc.	4	\FFI		TR-	72-	88		01107					
January 6, 1975.	• •		1.1	÷ •				•	:	• • •		e este	11 E.								. '		
 Letter from J. Kirkpa Letter from Dr. E. Ur Letter from C. McCre 	ban,	- Mš	SFC	, to	ъH,	lk	erd,	, G	DC/	Α, .	Jan	uary	r 5,	19	75.	11	*				 		
	a gin	<u>r 13</u>	(1-1-1-1		inc.	, 10	11.	INC	-10	. 01		. <u>1</u>		, any		1,71	· · · ·	•••	•				
							* -			· . ·				• • •					nna Maria				
	• .*		111	1.1.1		Тн.	•.			••••••••••		·			i je ski j	, în	÷.,*		• •	1			
15. LEVEL OF STATE O			•		: 			5. C		onen Aron		1 A A					N REI	LEVA	۲V				
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESI THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. 	CRIDE	PHEN	OME	NA.			'	7. 5	IODE IODE EW C	L TES L TES CAPAI	STED STED BILLT	in ai in si y de	RCRA PACE RIVEI	ENV ENV	envin Ironn	IONM JENT	• ;:	SER			· ·		
4. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE	RACTE NT, ET	RIST IC.	IC DE	MON	STRA	ΓED,	1	9. R	ELIA	IRATI BILII IME I	Y UF	GRAI	DING	OF A									

1.00 yr.

⁷⁻³⁶¹

NO. <u>RI-12.2</u>

PAGE $40F_{6}$

TECHNOLOGY REQUIREMENT (TITLE): _____ LHe Recycling Unit

Description of Technology (continued)

The Hughes Vuilleumier (VM) cycle refrigerator is the furthest along in the development cycle and is best suited for near-term missions. However, its performance at low temperatures is relatively poor. Unattended operational life on the order of three years is problematic as the dry lubricated Hughes VM has not been able to demonstrate long life, as yet.

Hughes and North American Phillips are both developing VM cycles and the requirements to which they are working are to simultaneously produce:

0.3 w at 11.5 K 10 w at 33 K 12 w at 75 K

Additional requirements are to draw 2700 watts in the all electric mode and in the thermalelectric mode draw 2600 w or less of thermal power and 500 watts of electric power.

For missions beyond the near term, the Arthur D. Little (ADL) rotary reciprocating refrigerator offers the greatest potential. It is a positive displacement machine, but because of funding lags the VM in development cycle. The prototype is in the fabrication cycle and complete refrigeration testing is expected about January 1976. The ADL device has the advantage of relatively high performance and long life, by virtue of hydrodynamic tubrication achieved by the pistons rotary stroking motion. The ADL device is capable of simultaneously producing

1.4 w at 12 K 40 w at 60 K

It can be seen from Table 2 that the above minimum temperatures of the three noted companies are too high for detectors or superconducting magnets, although they are suitable for providing internal cooling to the IR telescopes.

In discussions with R. W. Breckenridge, Arthur D. Little, Inc., he stated that the rotary reciprocating unit currently under development and noted above is capable of one watt load at 3.6 K at a required input power of 1300 watts. Further extrapolation to 2.5 K will result in a requirement for about 1900 watts for a one watt load. This capability could be achieved through the addition of another Joule-Thompson loop which will require another stage compressor and heat exchanger.

VM cycles cannot be operated at temperatures on the order of those required for detectors listed in Table 2.

1. TECHNOLOGY REQUIREMENT (TITLE): LHe Recycling Unit	PAGE 50F 6
5. Description of Technology (continued)	· · · · · · · · · · · · · · · · · · ·
bescription of recipiology (commody)	
The potential availability of an LHe cryogenic machine can be t	empered somewhat by:
 As yet no complete miniature He refrigerator (or liquific capability for providing useful refrigeration at any tempe 	
2. The longest endurance run that has been conducted to d refrigerator (Vuilleumier device operating at 80 K) is slig hours. Demonstrating the capability of operating for per year may prove to be a practical impossibility due to out of wear products irrespective of quantities involved.	ghtly in excess of 5000 lods in excess of one
No tests have been done to confirm the possibility that machine can withstand the launch and space vehicle env	
9. Potential Alternatives (continued)	
Additionally the machine will require a power input on the order At least for short term Shuttle sortie missions of 7 days it appears phase change dewars. The advantages are no or little power req	feasible to consider open cycle

NO. <u>RI-12.2</u>

A phase change dewars. The advantages are no or little power requirements and probable operation within the weights defined above. A prototype dewar is presently being prepared for thermal testing at Ball Brothers. It was designed for one year operation at 30 milliwatt heat leak and weight of 200 pounds. The dewar will cool the relativity gyroscope to 1.6 K. (See RI, 12.1)

	Table 2. Pay	load Cryogenic Requirements			1. 1.
					DEFINITION OF TECHNOLOGY TECHNOLOGY REQUIREMENT (TITLE):
					EFIN
PAYLOAD	NAME	TEMPERATURE REQUIREMENTS (DETECTORS OR MAGNETS)	LIFE	LOAÐ (WATTS)	DEFINITION (
AS03A	COSMIC BACKGROUND EXPLORER	3° <u>+</u> 1.2°K	1 YEAR	-1	OF J
AS-07-A	3-M AMBIENT TEMP IR TELESCOPE	1-4°K	1-3 YEARS	<1	TECHNOLOGY IENT (TITLE):
AS-11-A	1.5-M IR TELESCOPE	$1-4^{\circ}K$; 20 \pm 1°K TELESCOPE	3 YEARS	<1	(HI
HE-09-A	LARGE HIGH-ENERGY OBSERVATORY B	4°K	1-2 YEARS	0.2	E DG
AS-01-S	1-M COOLED IR TELESCOPE	2 <u>+0.5°K; 20+1°K TELESCOPE</u>	7 DAYS	< 1	
AS-14-S	L-M UNCOOLED IR TELESCOPE	UNKNOWN	7 DAYS	<1	LHe R
AS-15-S	3-M AMBIENT TEMP IR TELESCOPE	2 <u>+</u> 0.5°K	7 DAYS	< 1	REQUIREMENT LHe Recyclying
A5-20-5	2.5-M CRYO COOLED IR TELESCOPE	2+0.5°K; 20+1°K TELESCOPE	7 DAYS	<1	ENT
HE15S	MAGNETIC SPECTROMETER	3 <u>+</u> 1°K	7 DAYS	<1	JIREMENT Recyclying Unit
					PAGE 6
					RI-12.2 6 OF 6

7-364

DEFINITION O	F TECHNOLOGY REQUIREMENT	NO. <u>RI, 13.</u> 1
1. TECHNOLOGY REQUIR Solar Electric Propuls	EMENT (TITLE):	PAGE 1 OF <u>3</u>
3. OBJECTIVE/ADVANCE	RY: <u>Guidance</u> , Navigation, & Control CMENT REQUIRED: <u>Control of low thru</u>	
4. CURRENT STATE OF A analysis of requirements of		· ·
	HAS BEEN C.	ARRIED TO LEVEL <u>3</u>
5. DESCRIPTION OF TEC Traditional GN&C methods system.	IINOLOGY associated with coasting systems use a sun	-canopus r efe rence
inertial attitude determinati Communications link - Large field of view digi	stems must steer a thrust vector and will pro- on system. The major requirements for th probably the Deep Space Network, DSN ital sun sen sor – off-the-shelf item not available, image dissectors available	e system are:
Gyro package – Lasers	not available, gas bearing gyro available lified to compute thrust vectors	
Gyro package – Lasers Software – must be mod	not available, gas bearing gyro available lified to compute thrust vectors REQUIREMENTS BASED ON: [] PRE-	•
Gyro package – Lasers Software – must be mod P/L BATIONALE AND ANAI a. Solar electric propulsio chemical propulsion sys performance and missio b. PL-09A – Mercury Orb PL-16A – Ganymede O	not available, gas bearing gyro available lified to compute thrust vectors REQUIREMENTS BASED ON: [] PRE- .YSIS: on systems have higher specific impulse the stems. The requirements for GN&C are do n parameters. iter Orbiter/Lander	A, ⊠ A, □ B, □ C/ an conventional
Gyro package - Lasers Software - must be mod P/L BATIONALE AND ANAI a. Solar electric propulsio chemical propulsion sys performance and missio b. PL-09A - Mercury Orb PL-16A - Ganymede O PL-18A - Encke Rendez PL-20A - Asteroid Rend c. GN&C system required	not available, gas bearing gyro available lified to compute thrust vectors REQUIREMENTS BASED ON: PRE- YSIS: on systems have higher specific impulse the stems. The requirements for GN&C are do n parameters. iter Orbiter/Lander zvous	A, ⊠ A, □ B, □ C/ an conventional etermined by SEP
Gyro package - Lasers Software - must be mod P/L BATIONALE AND ANAI a. Solar electric propulsio chemical propulsion sys performance and missio b. PL-09A - Mercury Orb PL-16A - Ganymede O PL-18A - Encke Rendez PL-20A - Asteroid Rend c. GN&C system required d. Software simulation and	not available, gas bearing gyro available lified to compute thrust vectors REQUIREMENTS BASED ON: [] PRE- .YSIS: on systems have higher specific impulse the stems. The requirements for GN&C are do n parameters. iter Orbiter/Lander zvous dezvous to assure orbital precision	A, ⊠ A, □ B, □ C/ an conventional etermined by SEP
Gyro package - Lasers Software - must be mod P/L BATIONALE AND ANAI a. Solar electric propulsio chemical propulsion sys performance and missio b. PL-09A - Mercury Orb PL-16A - Ganymede O PL-18A - Encke Rendez PL-20A - Asteroid Rend c. GN&C system required d. Software simulation and	not available, gas bearing gyro available lified to compute thrust vectors REQUIREMENTS BASED ON: [] PRE- .YSIS: on systems have higher specific impulse the stems. The requirements for GN&C are do n parameters. iter Orbiter/Lander zvous dezvous to assure orbital precision	A, ⊠ A, □ B, □ C/ an conventional etermined by SEP

•

DELIX	NITION OF TECHNOLOGY REQUIREMENT	NO. RI, 13.
1. TECHNOLOGY R Solar Electric	EQUIREMENT(TITLE):	page 2 of <u>3</u>
7. TECHNOLOGY O	DPTIONS;	
Item	<u> Option – Available Techn</u>	ology
Laser gyro	Conventional gyro with high MTBF such missile spherical gas bearing gyro	as Minuteman
CCD star tracker	Image dissector star tracker made by Ball	Bros.
development by MSF CCD star trackers ur New DSN guidance pointing angles as a	CCD star trackers are emerging technology. The laser FC; the breadboards have been constructed – technolo nder development by companies such as Fairchild, not software algorithms will be required to compute optir	gy not ready. • yet proven.
	· · · · · · · · · · · · · · · · · · ·	
9. POTENTIAL AL Unknown	TERNATIVES:	
	TERNATIVES:	
Unknown	• •	ICEMENT:
Unknown 10. PLANNFD PROC	TERNATIVES: RAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications - status un	
Unknown 10. PLANNFD PROC	RAMS OR UNPERTURBED TECHNOLOGY ADVAN	
Unknown 10. PLANNFD PROC	RAMS OR UNPERTURBED TECHNOLOGY ADVAN	known
Unknown 10. PLANNFD PROC Items in 7 (above) u	RAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications – status un	known
Unknown 10. PLANNFD PROC Items in 7 (above) u	IRAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications - status un EXPECTED UNPER	known
Unknown 10. PLANNFD PROC Items in 7 (above) u 11 RELATED TEC	IRAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications - status un EXPECTED UNPER	known
Unknown 10. PLANNFD PROC Items in 7 (above) u 11 RELATED TEC	IRAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications - status un EXPECTED UNPER	known
Unknown 10. PLANNFD PROC Items in 7 (above) u 11 RELATED TEC	IRAMS OR UNPERTURBED TECHNOLOGY ADVAN nder development for military applications - status un EXPECTED UNPER	known

NO. RI, 13.1 DEFINITION OF TECHNOLOGY REQUIREMENT PAGE 3 OF 31. TECHNOLOGY REQUIREMENT (TITLE): Solar Electric Propulsion 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 TECHNOLOGY 1. Laser gyro Estimated available 2. CCD star Tracker Estimated available 3. Software 4. Breadboards/Testing* * Using available technology 5. Engineering Model/ Testing* APPLICATION VOTE: | Technology need date leave 1. Design (Ph. C) min mal development time for emerging echnology items. Recommend using 2. Devl/Fab (Ph. D) available technology itens. 3. Operations 4. USAGE SCHEDULE: 13. TOTAL TECHNOLOGY NEED DATE 2 2 1 1 8 NUMBER OF LAUNCHES 2

14. REFERENCES:

1. Discussion among Jim Cake and Bruce LeRoy, Lewis Research Center, and P. R. Fagan, Rockwell International, Nov. 18, 1974.

 Letter from T. N. Edelbaum, and J. J. Deyst, Jr., Charles Stark Draper Laboratory, Inc., to H. Ikerd, GDCA, December 18, 1974.

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT
- OR MATHEMATICAL MODEL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED. E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- B. NEW CAPABILITY DERIVED FROM A MUCH LESSER
- OPERATIONAL MODEL. 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 9. RELIAMENTY OPERATING OF AN OPERATIONAL MODEL.

 TECHNOLOGY CATEGORY: <u>Guidance</u>, Navigation & Control OBJECTIVE/ADVANCEMENT REQUIRED. <u>Docking in a Mors orbit</u> CURRENT STATE OF ART: <u>Studies and analysis to define mission</u>. Breadboard of potential rendezvous systems have been constructed. These are <u>applicable to Mars mission</u>. <u>HAS BEEN CARRIED TO LEVEL 3</u> DESCRIPTION OF TECHNOLOGY Pive mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: Accent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter & MAV couple, and Sample transfer to the earth return vehicle. NATIVNALE AND ANALYSIS: A Mars Surface Sample Return science workshop was conducted NASA Headquarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. PL-01-A, Mars Surface Sample Return Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 		DEFINITION OF TECHNOLOGY REQUIREMENT NO. RI, 13.2
 OBJECTIVE/ADVANCEMENT REQUIRED: Docking in a Mors orbit CURRENT STATE OF ART: Studies and analysis to define mission. Breadboard of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 DESCRIPTION OF TECHNOLOGY Pive mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter as an analysis and the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter as a increase and analysis and the orbiter as an analysis of the market of the Mars Surface Sample Return vehicle. P/L REQUIREMENTS BASED ON: YERE A, A, B, C/I National as the favored approach from the standpoint of controlling bac contamination. PL-01-A, Mars Surface Sample Return Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size	1. 1	FECHNOLOGY REQUIREMENT (TITLE): Structures/Mechanism PAGE 1 OF 5
 CURRENT STATE OF ART: Studies and analysis to define mission. Breadboard of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 DESCRIPTION OF TECHNOLOGY Five mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Dooking during which the orbiter & MAV couple, and Sample transfer to the earth return vehicle.	2 T	ECHNOLOGY CATEGORY: Guidance, Navigation & Control
board of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 b. DESCRIPTION OF TECHNOLOGY Pive mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: 1. Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. 2. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and 5. Sample transfer to the earth return vehicle. (continued on page 4) P/L REQUIREMENTS BASED ON: [X] PRE-A, [] A, [] B, [] C/I NATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test & simulation-7 PRECEDING PAGE BLANK NOT FILMED </td <td>3. (</td> <td>OBJECTIVE/ADVANCEMENT REQUIRED: Docking in a Mars orbit</td>	3. (OBJECTIVE/ADVANCEMENT REQUIRED: Docking in a Mars orbit
board of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 b. DESCRIPTION OF TECHNOLOGY Five mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: 1. Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. 2. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and 5. Sample transfer to the earth return vehicle. (continued on page 4) P/L REQUIREMENTS BASED ON: [] PRE-A, [] A, [] B, [] C/I 9. NATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 <td></td> <td></td>		
board of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 b. DESCRIPTION OF TECHNOLOGY Five mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: 1. Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. 2. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and 5. Sample transfer to the earth return vehicle. (continued on page 4) P/L REQUIREMENTS BASED ON: [] PRE-A, [] A, [] B, [] C/I 9. NATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 <td></td> <td></td>		
board of potential rendezvous systems have been constructed. These are applicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3 b. DESCRIPTION OF TECHNOLOGY Five mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: 1. Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. 2. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and 5. Sample transfer to the earth return vehicle. (continued on page 4) P/L REQUIREMENTS BASED ON: [] PRE-A, [] A, [] B, [] C/I 9. NATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 <td>1. (</td> <td>URRENT STATE OF ART. Studies and analysis to define mission. Bread-</td>	1. (URRENT STATE OF ART. Studies and analysis to define mission. Bread-
 DESCRIPTION OF TECHNOLOGY DESCRIPTION OF TECHNOLOGY Pive mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter & MAV couple, and Sample transfer to the earth return vehicle. (confinued on page 4) P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/M BATIONALE AND ANALYSIS: A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 		
 Pive mission sequences which support orbital rendezvous have not been performed under conditions anticipated for the Mars Surface Sample Return (MSSR) mission; they are: Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit. Initial rendezvous, in which earth based control moves the orbiter to the MAV orbit. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. Docking during which the orbiter & MAV couple, and Sample transfer to the earth return vehicle. (confinued on page 4) P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/A NATIONALE AND ANALYSIS: A Mars Surface Sample Return science workshop was conducted NASA Headquarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 	ap	oplicable to Mars mission. HAS BEEN CARRIED TO LEVEL 3
 to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and 5. Sample transfer to the earth return vehicle. (continued on page 4) P/L REQUIREMENTS BASED ON: MAREA, A, B, C/I BATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 	Fi fo	ve mission sequences which support orbital rendezvous have not been per- ormed under conditions anticipated for the Mars Surface Sample Return (MSSR) ission; they are: 1. Ascent of the Mars Ascent Vehicle (MAV) from the surface to the rendezvous orbit.
 P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/RATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 		 to the MAV orbit. 3. Terminal rendezvous during which the orbiter closes on the MAV under control of an orbiter rendezvous radar. 4. Docking during which the orbiter & MAV couple, and
 P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/A RATIONALE AND ANALYSIS: a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 		(continued on page 4)
 a) A Mars Surface Sample Return science workshop was conducted NASA Head-quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac contamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 		p/l requirements based on: 🔀 pre-a, 🗌 a, 🔲 b, 🗍 c/i
 quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mowas endorsed as the favored approach from the standpoint of controlling baccontamination. b) PL-01-A, Mars Surface Sample Return c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 	·	RATIONALE AND ANALYSIS:
 c) Rendezvous rather than direct return from a Mars lander requires less cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 PRECEDING PAGE BLANK NOT FILMED (see d above) 	a)	quarters on June 11 and 12, 1974, at which the Mars orbital rendezvous mo was endorsed as the favored approach from the standpoint of controlling bac
cost and weight for Mars ascent and Mars entry vehicles, and permits an increase in size of science sample. d) Software-Laboratory simulation - 7 Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 PRECEDING PAGE BLANK NOT FILMED (see d above)	b)	PL-01-A, Mars Surface Sample Return
Components-space environment test-5 Systems/Subsystems-Space environment test & simulation-7 PRECEDING PAGE BLANK NOT FILMED (see d above)	с)	cost and weight for Mars ascent and Mars entry vehicles, and permits an increase
	d)	Components-space environment test-5
(see u above)		
(see u above)		PRECEDING PAGE BLANK NOT FILMED
		* (see d above) TO BE CARRIED TO LEVEL

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. RI, 13.2		1
	TECHNOLOGY REQUIREMENT(TITLE): PAGE 2 OF 5		
1.	TECHNOLOGY REQUIREMENT(TITLE): PAGE 2 OF _5 Structure/Mechanisms		
7.	TECHNOLOGY OPTIONS: A number of rendezvous radars have been developed. The most favored appears to be a MSFC sponsored laser radar which is in its third generation breadboard at ITT. The Nd:YAC being developed by WPAFB could be adapted to the rendezvous laser radar with technology transfer and make higher power available.	;	
э.	An alternate approach not requiring rendezvous and docking is described in (9) below.	· · .	
		· · ·	
	$(1, 2, 2, 3) \in \mathbb{R}^{n}$, $(1, 2, 3) \in \mathbb{R}^{n}$, $(2, 3) \in $		
	TECHNICAL PROBLEMS:		
8.			
α,	Orbit determination in the presence of an anomalous Mars gravity field. Field has been partially mapped by Mariner 9 orbiter but does not allow accurate state prediction for Mars Surface Sample Return type orbits.		-
b.	Software requirements, see C 19.1		•
Ref retu for	POTENTIAL ALTERNATIVES: erence 2 states that launching the Mars Surface Sample and an integrated orbiter and earth um vehicle into Mars orbit is simpler and more reliable than launching the sample into orbit subsequent transfer to the Mars orbiter integrated as an earth return vehicle, as required for irs orbiter rendezvous modes.		
	(continued on page 5)		
	. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: lo current hardware developments, studies only.		
Tec	chnology transfer of most items from Viking Lander and Orbiter programs possible.		
	r a da ser en esta de la companya de la companya de la companya de la companya de la companya de la companya de La servició entre entre de la servició de la companya de la companya de la companya de la companya de la company		
	EXPECTED UNPERTURBED LEVEL 3		
	. RELATED TECHNOLOGY REQUIREMENTS:	Ţ	
11	Radar/laser designs		
a.	Software programs		
ι1 α. b.			

DEFINITION O)F]	EC.	HNC	DLC	GY	RE	ເຊນ	IRE	MF	INZ	1				۲ 	10.	RI,	13.	.2
1 TECHNOLOGY REQUIT Structure/mechanisms	REM	EN	г ()	ĽIT.	LE)	:		:						F	PAG	E 3	OF	<u>5</u>	
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IEI		• .	ND	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analysis & Require- ments 2. Breadboards/Testing 3. Engineering Model/ Testing 4.							fro Sc ir	ftw	Viki are rat	ng re	and qui	Ap rer	ollo ient	-LE B T	M ust	vail prog be see	ram		
5.																			
APPLICATION 1. Design (Ph. C)																		 .	
2. Devl/Fab (Ph. D)	. 																		
 Operations 4. 		. 				ļ													
			<u> </u>		 														
13. USAGE SCHEDULE:	1		· ·		<u> </u>	T	1		.		1	·i	<u>г</u> .	T	-	<u> </u>	-	T	
TECHNOLOGY NEED DATE			<u> </u>	 			V			-	<u> </u>	<u> </u>		+	╉┈			гот †	A
NUMBER OF LAUNCHES		<u> </u>							1	Ĺ	<u> </u>	l			<u> </u>	Ļ	<u> </u>		1
 REFERENCES: A Feasibility Study of Vol. I and II, Martin Mars Sample Return and H. N. Norton & I Technical discussion b Rockwell International Automated Mars Surface Essential Scientific Of Darnell, Jet Propulsio Letter from W. T. Sco December 11, 1974. 	Mai thro thro etw l, N ce S ojec n La	iett ough). J een love amp tive	a Ca affe W. mbe ole f s, \ ator	rp rkii J L r Zetu V V	ng c PL We , 19 In L. Y	IPL orbi ave 974 (MS Wec	953 t, V eroi r, L SR) iver	746 V. aut ang Mis	L. tics tics stor aRC	epte Wea & Re n C	embo ivei Ast sear onco nd l	er 1 2 & ron ch epts 1. 1	974 W. auti Cen for N.	L. cs, ter, Ac	Da: Jai an hiev	rnel n. 1 d P vem and	11, 1975 R. ent	LaR i. Fay	gc
															ţ,				
an an an an an an an an an an an an an a	* .		1	· · ·					•	····	·····	:		•••			: :	i si	
15. LEVEL OF STATE OF	F AI	RT				n,		5. C									REL	EVAN	T
1, BASIC PHENOMENA OBSERVED A 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL.	AND F	PUEN	OME	NA.		•		7. ¥	IODE IODE IEW C	L TE L TE JAPA	Sted Sted Mijt	in ai in si y de	RCR	LFT E ENVI D FRO	RONN	RY, ONMI IENT MUCI		SER	

4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.

P. 5. 5. 7

9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

1. TECHNOLOGY REQUIREMENT (TITLE): _____ Structures/Mechanism PAGE 40F <u>5</u>

5. Description of Technology - continued

The mission as presently defined in Reference 1, requires that the MAV achieve an orbit within predictable tolerances after launch from a remotely pointed platform.

Earth-based tracking with orientation sensed by the lander inertial reference determines the position of the lander on Mars before launch.

The first stage is controlled with a simple open-loop rate gyro guidance system.

The earth is established as a pointing reference using Earth tracking and command links. The other reference is the sun, as detected by MAV sun sensors.

By means of Earth calculated commands the two vehicles are pointed at each other and the orbiter radar locks on the MAV transponder.

The orbiter executes a closing maneuver when the MAV is within a reasonable slant range using retrothrusting burns. This closing control is provided by range rate versus range relationships built into the orbiting computer.

Docking begins when the orbiter and MAV are at close range. The orbiter goes into three axis control.

The pointing accuracy of the orbiter rendezvous radar and MAV transponder must hold line of sight pointing to within +0.5 deg. of vehicle axis. A docking cone is used for sample transfer.

NO.R<u>I, 13.2</u>

1. TECHNOLOGY REQUIREMENT (TITLE): STRUCTURES/MECHANISM PAGE 5 OF 5.

Potential Alternatives (Continued)

The entire entry and landing sequence is automatic. The entry program is received from Earth prior to entry, and a computer in the Earth Return vehicle (ERV) issues the required commands.

A two-way communication link with the Mars Lander Module (MLM) will allow Earth-controllers to receive surface environment data and to command the go-ahead for the sample-acquisition sequence, which will be totally automated The Viking-type sampler boom and scoop will proceed to sample at a time designated in the command, and sensors will indicate discrete sampling actions. Launching the sample and integrated orbiter/ERV into orbit is simpler and more reliable than launching the sample into orbit for subsequent transfer to the orbiter/ERV which is required with the Mars Orbital Rendezvous (MOR) modes The Mars ascent vehicle (MAV) which will launch the ERV to orbit has a two-stage solid propellant propulsion system; the first stage is 3-axis stabilized by means of a guidance package whereas the second stage is spin-stabilized. The second stage is aligned and spun up by the attitude control system on the first stage just prior to orbit insertion. Essentially all velocity losses are sustained during first stage thrusting, and the second stage thrusts horizontally for insertion. The ascent program is received from Earth before launch, and the computer on the ERV controls all operations.

The ERV establishes two-way communications with Earth after MAV separation. The ERV is designed to function for a year as a Mars orbiter and then return the sample to earth.

The potential disadvantages of this direct return mission alternative includes the following:

- 1. Controlling the contamination of the return spacecraft by possible Mars biota is more difficult;
- 2. Significantly heavier Mars lander and ascent vehicles are required;
- 3. Getting into an orbit at Mars from which an accurate Earth return trajectory can be initiated approaches the complexity of the rendezvous.

DEFINITION OF TEC	CHNOLOGY REQUIREMENT	NO. <u>RI, 14. 1</u>
1. TECHNOLOGY REQUIREMEN	IT (TITI.E):	PAGE 1 OF 5_
Primary Solar Electric P		
2. TECHNOLOGY CATEGORY:	Propulsion	·
3. OBJECTIVE/ADVANCEMEN		perational Life
•		
	•	
4. CURRENT STATE OF ART: _	Two thruster engineering m	odels have been
made and are undergoing test		
for testing.	HAS BEEN	CARRIED TO LEVEL 4
5. DESCRIPTION OF TECHNOL	.0GŸ	
Thruster Technology	~~~~	
υ.	of 30 cm diameter thrusters	have been built;
they are:		
	ation & endurance testing (or	
	ural qualification testing (con as been improved to include a	
	n the 800-series. Modificat	
	erosion will result in a 900-	
	Requirements	State of Art
Application	Defined by Lewis Re-	
	search Center	EMT #701 & EMT702
Type Specific Impulse	Mercury Ion 3000 Sec	Mercury Ion 29 <u>50</u> Sec
Cont. pg. 4) P/L REQU	3000 Sec JIREMENTS BASED ON: E PRI	$E-A, \square A, \square B, \square C/D$
6. RATIONALE AND ANALYSIS	•	
a) Requirements defined		
b) PL-18A Encke Rende	•	
PL-09A Mercury Orb PL-20A Asteroid Ren		
PT -164 Canymede Or	rhiter/Lander (PL-23)	
c) I of 3000 is result of	of optimizing thrust for avail	able power.
d) Space testing of opera		
PRECEDING PAG	E BLANE	
PRECEDING PAG	E BLANK NOT FILMED	
PRECEDING PAG	E BLANK NOT FILMED	
PRECEDING PAG	E BLANK NOT FILMED	

•

1

je.

1. TECHNOLOGY REQUIREMENT(TITLE): PAGE 2 OF 5	
Primary Solar Electric Propulsion	
7. TECHNOLOGY OPTIONS:	1
The principal option is in the selection of power processor unit (PPU) switching device (transistor or SCR). The transistor PPU provides higher efficiency, fewer parts and lighter weight. The SCR provides higher power per inverter. A secondary option is the PPU packaging concept; louver, heat pipes or a combination of both.	
8. TECHNICAL PROBLEMS:	T
 Long term internal erosion (sputtering) of thruster #701 shows a life of about 7000 hours. Analysis and accelerated tests shows that 20,000 hours can be attained using the modifications planned for the 900-series design. 	
(continued on page 5)	· ·
(continued on page 5) 9 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level.	
9 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level.	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) MSFC feasibility investigation 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) MSFC feasibility investigation 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) MSFC feasibility investigation 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) MSFC feasibility investigation EXPECTED UNPERTURBED LEVEL <u>4</u> 	
 POTENTIAL ALTERNATIVES: Xenon and Argon propellants can be used in the present thrusters with a feed system modification. However, penalties are incurred in the thruster, PPU and propellant storage. Cesium thrusters are not available at the 30 mlb thrust level. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Operational prototype design/construction to be initiated middle 1975 (Lewi Research Center) MSFC feasibility investigation EXPECTED UNPERTURBED LEVEL <u>4</u> 	

DEFINITION O	FI	ECI	HNC	DLC	OGY	RE	QU	IRE	ME	ΝΊ	<u></u>				N	10,	RI,	14	.1
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 3 OF <u>5</u> Primary Solar Electric Propulsion																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
 TECHNOLOGY 1. Engineering Model tests 2. Design Operational Prototype 3. Build Operational Prototype 4. Space Test Operation- al Prototype 5. 		-	; ; ;	g	pino	1)													
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D)									•										
3. Operations															Ì	ŀ			ļ
4.																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE					¥	 	.											ro <u>r</u>	AL
NUMBER OF LAUNCHES		1					2					2	2			1	1		8
 Technology Need Date <u>REFERENCES</u> Extended Definition Feasibility Study for Electric Propulsion Stage, Rockwell International Corporation, SD73-SA-0132. Technical Discussions with Dave Byers and Bruce Banks, Lewis Research Center, November 8, 1974. Status of 30 cm Mercury Ion Thruster Development, J.S. Soney, Lewis Research Center and H. J. King, Hughes Research Laboratories, Malibu, California, NASA TM X-71603. Solar Electric Propulsion Thrust Subsystem Development, T. D. Masek, Jet Propulsion Laboratory, Technical Report 32-1579, March 15, 1973. Ion Propulsion Flight Experience, Life Tests, and Reliability Estimates, J. H. Molitor, Hughes Research Laboratories, Malibu, California, Presented to AIAA/SAE Propulsion Conference, Noyember 5-7, 1973. (Cont'd. on page 5) LEVEL OF STATE OF ART BASIC PHENOMENA ONSERVED AND REPORTED. THEONY TESTED BY PHYSICAL EXPERIMENT OR MA HEMATICAL MODEL. * THEONY TESTED BY PHYSICAL EXPERIMENT OR MA HEMATICAL MODEL. * DESTINENT FUNCTION OR CHARACTEMISTIC DEMONSTRATED, E.C., MATERIAL, COMPONENT, ETC. 																			

NO. <u>RI. 14.1</u>

PAGE 4 OF 5

1. TECHNOLOGY REQUIREMENT (TITLE): ____ Primary Solar Electric Propulsion

5. DESCRIPTION OF TECHNOLOGY - continued

Efficiency at full thrust

Input power

Throttle range

Lifetime

Power Processor Technology

Efficiency

2:1 min 5:1 goal

2630 watts

72%

Requirements

10,000 hours over entire range of environmental constraint of near earth and planetary conditions; zero to two suns, and Shuttle and Titan-Centaur environmental envelope.

92% efficiency at full thrust and full input power. State of Art 71.6%

2630 watts

5:1 demonstrated

7500 hours have been demonstrated. Qualification testing on Titan-Centaur and Shuttle vibration envelope. Thermal tested over range of zero to two suns.

1. SCR switch, thermalvacuum breadboard developed by TRW is under test. This system has demonstrated 84% efficiency and weighs 100 lb. A follow-on breadboard has demonstrated 91% efficiency but projected TVBB weight is 125 lb.

2. Transistor switch, thermal vacuum breadboard (TVBB) built by Hughes to be delivered January 175. Projected efficiency is 91% + 1% and weight is 52 lb.

Weight	50 pounds					
Thermal-vibration specifications	Same as thruster					
Life	10,000 hours					
Reliability	0.96					
Power Input	Z3 kw					

3 kw

(continued on page 5)

7-378

DEFINITIO	ON OF TECHNOLOGY REQUIREM	ent <u>no. <u>RI, 14.</u></u>
	UIREMENT (TITLE):	PAGE 5 OF 5_
Primary Solar Elect	ric Propulsion	
5. Description of Techr	nology – continued	
	Requirements	State of Art
Input voltage	2:1 voltage swing	2:1
	o state–of–the–art power processors r Approximately first quarter 1975.	equired before future decisions
8. Technical Problems	– continued	
2. Ion beam focusing a	at the end of life (unknown at this ti	me)
3. Reduction of neutra goals).	al Hg atoms and double ions (not requ	uired to meet life or efficiency
4. Power processor eff	iciency, electromagnetic interference	ce, and thermal control.
5. Thruster/power proc	cessor switching.	
	s line ripples < 1% under all conditio	ons, without excessive weight
6. Power processor bus	s line ripples < 1% under all conditio	ons, without excessive weight
 Power processor bus penalties. 14. References - contin 	s line ripples < 1% under all conditio	
 Power processor bus penalties. References - contin Thruster and power 1969–1974. 	s line ripples < 1% under all condition	ughes Research Laboratories,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,
 Power processor bus penalties. References - contin Thruster and power 1969-1974. Letter from J. H. N January 20, 1975. Letter from R. M. V 	s line ripples < 1% under all condition nued processor design and test reports, Hu Molitor, Hughes Research Laboratoric Worlock, Electro-Optical Systems, t	ughes Research Laboratories, es, to H. Ikerd, GDCA,

Vi-

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>RI. 14</u> .2
TECHNOLOGY REQUIREMENT (TITLE): Auxiliary Ion Propulsion Thruster	PAGE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY: <u>Propulsion</u> 3. OBJECTIVE/ADVANCEMENT REQUIRED: 20,000 hour operation cyles restart capability	onal life and 10,000
1. CURRENT STATE OF ART: Basic Hg technology feasibility has	been demonstrated on
SERT I and II. Hg thruster ground test has exceeded 9,000 hours and	
Both mercury and cesium ion thrusters are designed for north/south states synchronous satellite. The mainline technology for auxiliary ion property based on an 8 cm mercury electron bombardment ion thrusters provides a nominal thrust of 1 mlb (with a thrust range capability of 0, specific impulse of 2950 seconds. Total propulsion system dry weight gimbal assembly, propellant reservoir, and power processor unit is protected on ATS-4 and ATS-5, and they used a bimetal closeable valve closed as a function of temperature change. The tests on the ATS-6 reflow rate than the bimetal valve could accommodate, and the valve wishot valve as it was believed that surface tension during cool-down we of liquid creep. Liquid migration apparently did occur under cool-do the engines would not restart. Table 1, page 4 compares mercury an primeters. (continued on page 4) P/L REQUIREMENTS BASED ON: PRE-4	ulsion systems is This thruster .5 to 2.0 mlb) at a including thruster/ jected to be 22 pounds. weight is 25 lb without lb thrust were demon- which opened and equired a much higher vas replaced with a one- ould negate the possibili own and as a cansequence id cesium thruster
 G RATIONALE AND ANALYSIS: a. Long-life, high specific impulse stationkeeping thrusters are required communications satellites. b. CN-51-A International Communications Satellite 	for geosynchronous
 c. Cesium and mercury bombardment engines are high specific impulis baseline. d. Space testing of operational prototype required. 	se devices. Mercury
PRECEDING PAGE BLANK NOT FILMED	
	RRIED TO LEVEL 7
7~381	

 Auxiliary Ion Propulsion System 7. TECHNOLOGY OPTIONS: a. Mercury - demonstrated most flight operating hours b. Cesium c. Argon d. Xenon Both mercury and cesium have been tested on auxiliary propulsion ion thrusters. Both the cesium and mercury require essentially the same amount of power. The mercury electron bombardment ion thruster has demonstrated substantially more flight operating hours than the cesium bombardment thruster. The mercury thruster has the capability of multiple thruster operation from a common propellant tank. 8. TECHNICAL PROBLEMS: a. Cesium - operates at 17 v, below the sputtering threshold which makes it longer lived, and more reliable than mercury engines. Propellant tankage, complexity, and handlin problems make cesium less attractive than mercury. ATS-6 has shown cesium to be electromagnetically compatible over wide RF band. The cesium thruster stested on ATS-6 have demonstrated an apparent cesium migration problem in zero gravity that was not experienced in ground testing. A valve (reference part 5) needs to be develope and ground life/cycling tests continued. (continued on page 4) 	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. RI, 14.2
 a. Mercury - demonstrated most flight operating hours b. Cesium c. Argon d. Xenon Both mercury and cesium have been tested on auxiliary propulsion ion thrusters. Both the cesium and mercury require essentially the same amount of power. The mercury electron bombardment ion thruster has demonstrated substantially more flight operating hours than the cesium bombardment in thruster. The mercury thruster has the capability of multiple thruster operation from a common propellant tank. 8. TECHNICAL PROBLEMS: a. Cesium - operates at 17 v, below the sputtering threshold which makes it longer lived, and more reliable than mercury engines. Propellant tankage, complexity, and handling problems make cesium less attractive than mercury. ATS-6 has shown cesium to the electromagnetically compatible over wide RF band. The cesium thrusters tested on ATS-6 have demonstrated an opporent cesium migration problem in zero gravity that was not experienced in ground testing. A valve (reference part 5) needs to be developed and ground life/cycling tests continued. (continued on page 4) p. POTENTIAL ALTERNATIVES: Use European auxiliary propulsion mercury ion thrusters. 		PAGE 2 OF <u>4</u>
cesium and mercury require essentially the same amount of power. The mercury electron bombardment ion thruster has demonstrated substantially more flight operating hours than the cesium bombardment thruster. The mercury thruster has the capability of multiple thruster operation from a common propellant tank. 8. TECHNICAL PROBLEMS: a. Cesium – operates at 17 v, below the sputtering threshold which makes it longer lived, and more reliable than mercury engines. Propellant tankage, complexity, and handlin problems make cesium less attractive than mercury. ATS=6 has shown cesium to electromagnetically compatible over wide RF band. The cesium thrusters tested on ATS=6 have demonstrated an apparent cesium migration problem in zero gravity that was not experienced in ground testing. A valve (reference part 5) needs to be develope and ground life/cycling tests continued. (continued on page 4)). POTENTIAL ALTERNATIVES: Use European auxiliary propulsion mercury ion thrusters. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Unknown – no effort other than NASA's EXPECTED UNPERTURBED LEVEL <u>4</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to	 a. Mercury – demonstrated most flight operating hours b. Cesium c. Argon 	
 a. Cesium - operates at 17 v, below the sputtering threshold which makes it longer lived, and more reliable than mercury engines. Propellant tankage, complexity, and handlin problems make cesium less attractive than mercury. ATS-6 has shown cesium to the electromagnetically compatible over wide RF band. The cesium thrusters tested on ATS-6 have demonstrated an apparent cesium migration problem in zero gravity that was not experienced in ground testing. A valve (reference part 5) needs to be develope and ground life/cycling tests continued. (continued on page 4) >. POTENTIAL ALTERNATIVES: Use European auxiliary propulsion mercury ion thrusters. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Unknown - no effort other than NASA's EXPECTED UNPERTURBED LEVEL	cesium and mercury require essentially the same amount of power. The bombardment ion thruster has demonstrated substantially more flight op cesium bombardment thruster. The mercury thruster has the capability	erating hours than the
and more reliable than mercury engines. Propellant tankage, complexity, and handlin problems make cesium less attractive than mercury. ATS-6 has shown cesium to be electromagnetically compatible over wide RF band. The cesium thrusters tested on ATS-6 have demonstrated an apparent cesium migration problem in zero gravity that was not experienced in ground testing. A valve (reference part 5) needs to be developed and ground life/cycling tests continued. (continued on page 4)). POTENTIAL ALTERNATIVES: Use European auxiliary propulsion mercury ion thrusters. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Unknown - no effort other than NASA's EXPECTED UNPERTURBED LEVEL		
Use European auxiliary propulsion mercury ion thrusters. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Unknown - no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to	and more reliable than mercury engines. Propellant tankage, comproblems make cesium less attractive than mercury. ATS-6 h electromagnetically compatible over wide RF band. The cesium tankage ATS-6 have demonstrated an apparent cesium migration problem in was not experienced in ground testing. A valve (reference part 5	mplexity, and handlin as shown cesium to b thrusters tested on n zero gravity that) needs to be develope
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Unknown – no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL 4</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to). POTENTIAL ALTERNATIVES:	Gentlemen a service et a service et a
Unknown – no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to	Use European auxiliary propulsion mercury ion thrusters.	
Unknown – no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to		
Unknown – no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to		
Unknown – no effort other than NASA's <u>EXPECTED UNPERTURBED LEVEL</u> 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics – silicon control rectifiers are viable alternatives to		
EXPECTED UNPERTURBED LEVEL 4 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADV	ANCEMENT:
EXPECTED UNPERTURBED LEVEL 4 11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to		
11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to	Unknown - no effort other than (NASA's	•
11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to		
11. RELATED TECHNOLOGY REQUIREMENTS: Power processor unit electronics - silicon control rectifiers are viable alternatives to	EXPECTED UNP	ERTURBED LEVEL
Power processor unit electronics - silicon control rectifiers are viable alternatives to		
	Power processor unit electronics – silicon control rectifiers are viable	alternatives to
	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l Nota de la companya de la companya de la companya de la companya de la companya de la companya de la companya d	

ine and

. 7

	DEFINITION O	FТ	EC	HNC)L(OGY	RE	ເຊບ	IRE	MF	EN 7	C				1	٧O.	RI	, 14	1.2
1.	TECHNOLOGY REQUIN Auxiliary Ion Prop	EM ulsi	EN' on S	T (] Syste	rir em	LE)	:								- 1	PAG	E 3	OI	r <u>4</u>	
12.	TECHNOLOGY REQUI	REM	IEN	TS	SCI	IEL	UL	E:			:	-		<u></u>						
									ND	AR	YE	AR								
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
	CHNOLOGY on-going thruster life tes	:			·				NC	TE		ļif	t t	est	s c	ann	pt :	þe		
2.	Cycling test on BB syst.	ئىببىر ي	<u> </u>	-								ed. rst								
3.	Engineering model syst. a. Development b. Qual testing c. Cycling life test											ent								
	PLICATION	!								[ļ ģ						-
1.	Design (Ph. C)	1										ŀ	1	l	ľ					Į
2.	Devl/Fab (Ph. D)		ļ			1							ĺ				k	ł	ŀ	í.
3.	Operations																			
4.																				
13	USAGE SCHEDULE:			1					.	1	<u>t</u>	ل		<u> </u>		<u> </u>		<u> </u>	<u> </u>	1.
LEC	HNOLOGY NEED DATE			N N	-		Γ	Ī	Ţ		1			T				7	ΓΟΊ	'A
• • • •	MBER OF LAUNCHES					2	3	† ·		2	3	2	2			2	3	2	2	ī
2. 3. 4. 5.	REFERENCES: Discussion between Dr. H November 13, 1974 Discussion among B. Ban International, Novembe Letter from J. Molitor, H Letter from B. Banks, Letter from R. Worlock, Letter from Dr. R. Hunte	ks a r 8 lugi wis Ele	nd I hes R.C	D. 1 974 Rese . to	Bye Bara Datio	rs, ch L . Ik al S	Lew abo erd yst	is R rate , G ems	C. DC. to	s to A, H.	ınd H. Jar İke	P. Ike iuar; rd,	R. I rd, y 1(GD	Fage GE D, 1 CA	an, DCA 1975 , D	Roc , 3 ece	kwe 0 Je	eli an.	197	
																•••			- · · ·	
				·																
		÷ .					•		2					· · ·	·. ··		•••	: * ·	·.'	
15,	LEVEL OF STATE OF	AF	۲ĭ	. 1		÷			5. C			IT OR						REL	EVAN	Т
	 EASIC PHENOMENA OESERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL E OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAR 	ND R RIBE XPEI	epor Phen Rimen	OME1	i. F	. •			7, M	IODEI IODEI EW C	l te L te Apa	imen Sted Sted Bilit Ionai	IN A! IN SI Y DE	RCR/ PACE RIVE	LFT E ENVI	NVIR	onmi Ient		SER	

4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATEHIAL, COMPONENT, ETC.

- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

	UIREMENT (TITLE):	· · · · · · · · · · · · · · · · · · ·	PAGE 4 OF $\underline{4}$
Auxiliary Ion Propulsi	on Thruster		<u> </u>
4. Current State of Art –	continued		
Two Hg thrusters were test One thruster is currently o ATS-6, both units failed to	ed on SERTS II, operating 217 perational after 207 restarts. o restart.	5 hours and 3889 hours Two cesium thrusters w	respectively. ere tested on
5. Description of Technol	ogy – continued	in an an an an an an an an an an an an an	
	Table 1.		
		Mercury	Cesium
Diameter, am	алан алан алан алан алан алан алан алан	8	8
Thrust, mlb Dry system weight wit	hout propellant and	19.5	1 25
•	ated life, hours/cycles	9130/277	2600/433
l _{sp} , sec Input power, watts	ity (dual axis), degrees	2900 1 <i>5</i> 0 10	2500 1 <i>5</i> 0 3
operation) over a ten-year	nts for this system are 20,000 l stationkeeping mission, 10,0 g. in any azimuthal angle.	10urs life (cumulative h 00 on–off operational c	ours of thruster ycles, and thrus
·	um thruster at GSFC are to de Their is no funding visibility	velop the required valv on the cesium thruster	e, and to contir
Current efforts on the cesi life testing on the ground.	· · · · · · · · · · · · · · · · · · ·		
life testing on the ground.			
life testing on the ground. 3. Technical Problems – c			
life testing on the ground. 3. Technical Problems – c 5. Argon – propellant tar	nkage, complexity and handlin	ng make argon less attra	ctive than
life testing on the ground. B. Technical Problems – c b. Argon – propellant tar mercury.	nkage, complexity and handlin	ng make argon less attra	ctive than
life testing on the ground. B. Technical Problems – c b. Argon – propellant tar mercury.	nkage, complexity and handlin	ng make argon less attra	ctive than
life testing on the ground. B. Technical Problems – c b. Argon – propellant tar mercury.	nkage, complexity and handlin	ng make argon less attra	ctive than
life testing on the ground. B. Technical Problems – c b. Argon – propellant tar mercury.	nkage, complexity and handlin	ng make argon less attra	ctive than
life testing on the ground. B. Technical Problems – c b. Argon – propellant tar mercury.	nkage, complexity and handlin	ng make argon less attra	ctive than

•

с. 1

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>GE 15.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Tracker/Field Monitor</u> Assembly	_ PAGE 1 OF <u>4</u> _
2. TECHNOLOGY CATEGORY: <u>Attitude Control/Measurement</u>	
3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Provide improved loca</u> tion of guide field as well as increased sensitivity, tracking accuracy.	
limited to 0.1 arc sec with $m_v = 12$ stars.	
4. CURRENT STATE OF ART: <u>Typically: Accuracy approximately</u>	10 arc sec and
= = = = = = = = = = = = = = = = = = =	······
	RIED TO LEVEL 3
 5. DESCRIPTION OF TECHNOLOGY Improvement in Star Tracking to Provide Tracking error signal output 0.1 to 0.3 arc sec. Pointing System Stability Rate 0.006 ARC SEC/SEC (PK Sufficient Sensitivity to track my = 12 stars. 	. TO PK.)
Prime Approach: Sensing of stars located in a direction within a fraction (proposed 0.25°) of primary telescope pointing direction single F.O.V. required for 3 - axis pointing. Position re my = 12 stars within 0.5° field of view is needed to correlate output to reference guide stars. Alternate Approach: Using 2 Star-Trackers pointed towards 2 guide stars sep- excluding the F.O.V. capability of a single tracker. E: measurement of single difference between trackers with	n. Two stars in solution of all guided telescope arated by an angle rrors will include
(cont'd on p P/L REQUIREMENTS BASED ON: 🔀 PRE-A,	
6. RATIONALE AND ANALYSIS: (a) The advantage of referencing a star within a small frac off the primary telescope axis is that the Startracker mounted to the telescope body, eliminating (or at least the problem of measuring the angles relating Star-Tracker scope axis. Tracking viewfield of Star-Tracker must be large ($\sim 0.5^{\circ}$) to include at least two potential guide requirements are dictated by requirements of the primar system. Sensitivity to Mv = 10 stars is necessary to a probability of a guide star within a small angle of tel	can be rigidly minimizing) er axis and tele- sufficiently stars. Accuracy y telescope ssure high
(b) Approximately 18 payloads will benefit by this technolo seven Astronomy Sortie Payloads, three automated astron five high energy astrophysics sortie payloads, and four astrophysics automated payloads.	omy payloads,
(c) This technology advancement will make possible at least number of valuable observations of faint stellar source	
(d) The level of technological maturity required for this d prototype model testing in a simulated environment.	evelopment is
	IED TO LEVEL 5

	DEFINITION OF TECHNOLOGY REQUIREMENT NO.GE 15.1
1.	TECHNOLOGY REQUIREMENT(TITLE): Tracker/Field PAGE 2 OF 4
	Monitor Assembly
7.	TECHNOLOGY OPTIONS: (1) Prime Option - using single tracker with starfield matching feature fixed to the telescope
Ъ) с)	Tracking stellar image with image dissector (ID) using ID aperture edge-sensin as means of improving resolution. Use of separate photomultipliers (PM) or solid-state detectors in conjunction with mirror or prism image splitters for multi-sensing. Operation of ID or PM in either of above concepts, but electronically in a photon-counting mode; as a means of increasing sensitivity. Charge coupled device (CCD) area array detector at image plane, operating with selectable f/number, focal length optics; programmable null-pointing coordinat automatic star-field map matching (Reference: JPL "Stellar" System) (continued on next page)
	(continued on next page)
8. a)	TECHNICAL PROBLEMS: Primarily sensitivity to detect the faint stars it will be necessary to
(<pre>track. Tradeoffs are - Optics size - Detector Sensitivities - Electronic Mode (current level or photon counting) - Offset Angle Capability</pre>
	POTENTIAL ALTERNATIVES: Sensing of bright stars that may be far off the telescope axis - requires highly accurate means of measuring and controlling relative pointing directions of on-board components.
	an an an an an an an an an an an an an a
10 a) b) c) d)	Planetary Vehicles. ITT NASA Contract improved FW-4012 (W/6" photocathode), 3.4 rise distance (vs. 20 typical) aperture edge-tracking applications. ITEK diff raction grating approach (inhouse)
11 a) b) c) d)	. RELATED TECHNOLOGY REQUIREMENTS: Solid-State detector sensitivity improvement Electronic Techniques development (for ID aperture edge-tracking and/or photon counting) Highly accurate large-angle measurement (for off-axis reference sensing)

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. GE-15.1

1. TECHNOLOGY REQUIREMENT (TITLE): Tracker/Field PAGE 3 OF 4 Monitor Assembly

5. DESCRIPTION OF TECHNOLOGY (Continued)

The state-of-the-art is exemplified by two current star tracker developments:

1) The STELLAR System, "Star Tracker for Economical Long Life Attitude Reference (JPL) uses charge coupled devices (CCD) in place of the image dissector, and is capable of 0.1 to 30° (variable) field of view, 11 m_v star sensitivity (with 4" diameter optics), 1 arc sec accuracy (worst case).

2) The HEAO Tracker (Hughes) uses the "photon counting and digital processing" method and is capable of a $2^{\circ} \times 2^{\circ}$ field of view, $8 m_{y}$ star sensitivity (with 4" optics), and a calibration accuracy of 0.75 arc sec.

7. TECHNOLOGY OFTIONS (Continued)

(2) Alternate Option - using two physically separate star trackers

The two trackers may have any of the features in Item 7, (1) above. The severity of the errors introduced by the measurement of relative angle between the trackers and between those and the main telescope will depend upon the interconnecting structure, thermal effects, magnitude of the deviation angles between the optics, and the actual measuring machanism.

8. TECHNICAL PROBLEMS (Continued)

- (b) Attainment of higher sensitivity required to utilize guide stars with Mv = 10. In the single-tracker option (No. 1) the F.O.V. must be sufficiently large to encompass at least two guide stars within the sensitivity capability of the detector.
- (c) Time constant or bandwidth must be adequate.
- (d) Ability to reduce acquisition and tracking time delays due to computation and response delays.
- 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT (Continued)

(e) GE -- ASP PREC, Pointing System -- Study for GSTC

- (f) Several NASA SRT Program Submittals (Nos. 506 18 -13, 506-19-12, 506-17-32)
- (g) Stellar system being developed by JPL for AMES Research Center.

	DEFINITION O	ΓT	ECI	INC	DLC	GY	RE	ຊປ	IRE	ME	NT					N	10.	GE	15.3	1
1.	TECHNOLOGY REQUIR	EM	EN	г (1	FIT	LE)	:	St	ar 1	fra	cke	rs			Р	AG	E4	OF	4	
12.	TECHNOLOGY REQUIE	EM	EN	rs	SCI	IED			ND	AR	YE	AR								
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
FEC	HNOLOGY									4			·			·				
1.	Analysis			. 1										. *						
2.	Design Phase	-														. •				
3.	Breadboard Test		-].		
4.						ļ									ļ					
5.										-										
APF	LICATION																		<u> </u>	
1.	Design (Ph. C)				-															
2	Devl/Fab (Ph. D)				-								Ì						ļ	•
3.	Operations					_				ļ		<u> </u>							+	ŀ
4.																			 -	
13,	USAGE SCHEDULE:														*				••••••	
тес	HNOLOGY NEED DATE							Ţ.										i r	rot	AI
NU	MBER OF LAUNCHES	1				12	18	22	22	23	326	2	3 28	22	2 22	20) 22	2 23	2	83
.14	REFERENCES:	- }	-	<u> </u>	i	<u> </u>	-1	<u> </u>			_1		- -							
	1. NASA/AMES c-141 3/25/74.	AI	RO	Inf	orm	ati	on	Bu1	let:	in	#6	(IB	-6)	÷			· .	•	•	
	2. "Video Inertial by J. V. Foster							or .	Ast:	ron	omy	Pa	ylo	ads	i1 .	AN	œs	RC.	 ;	
	3. JPL Memo No. 34 Charge Coupled								ect	ion	Ca	pab	ili	tie	es o	f	···· ·	- - -		•
·	and a second second second second second second second second second second second second second second second													÷.,						
i i t			· . · .			· · ·				•			- 			•				. [.] .
t e je									•					1. 7 1			er.			
15	LEVEL OF STATE OI	ר איק	- m	. · . ·	21			•••		0.07	ONF	uir int	वत्त्र {	AD P	DARD	TEST	LED I	N REI	EVA	IT.
. 	 DE VELL OF STATE OF BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAI 	AND I CRIBE EXPE	REPOI PHE RIME	NOMI	ENA,				6. h 7. h 8, N	ENV IODE IODE IEW (OPI	VIRON L TE L TE CAPA ERAT	NMEN STED STED BILLY	T IN IN A IN S IN S L MO	THE IRCR PACE RIVE DEL,	LABO AFT I ENV D FR	RATO ENVII IRON OM A	DRY. RONM MEN'I MUC	ENT.	SSER	

* ***

:	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>GE-15.5</u>
	ECHNOLOGY REQUIREMENT (TITLE): <u>Advanced Attitude</u> Sensing System	PAGE 1 OF _4
2. TE	ECHNOLOGY CATEGORY: Attitude Control	
3. OI	BJECTIVE/ADVANCEMENT REQUIRED: Provide attitud	e sensing to support
kno	owledge of pointing to 0.001 degree accuracy. Concurre	nt advances are needed
in_	ephemeris accuracy, to permit precise location of the	satellite.
4. Cī	URRENT STATE OF ART: Current systems are capable o	f 0.004-0.01 degree
	curacy. Ephemeris accuracies of 50 meters can be attain	ed with current
tec	Chnology. HAS BEEN	CARRIED TO LEVEL 3
5. D	DESCRIPTION OF TECHNOLOGY	
(a)	Advanced Earth Observation payload sensors will required cies in the order of 10^{-3} degrees in order to permit of high resolution multi-spectral data with earth sur	precise correlation
(b)	Effect savings through hardware simplification and st attitude control subsystem.	andardization of the
(c)	Current state of the art is typified by the PADS, or mination System that is accurate to 0.01 degree and u inertial measurement and star detector. The Space Shu be located within 170 meters (RSS) at 100 nm altitude such as EOS will be located within 50 meters. The Hu Tracking Attitude Reference System) would utilize a s bilized, gyro-less star tracker to accomplish 0.001°	ses strapped down ttle will be able to . Automated payloads ghes STARS (Stellar single, inertially sta
	P/L REQUIREMENTS BASED ON: X PRE	E-A, □ A, □ B, □ C/
6. R/	ATIONALE AND ANALYSIS:	
(a)	Current trends in the development of high-accuracy at systems are towards more stringent pointing accuracie cation and more extensive use of on-board computers. accuracy can be exemplified by Nimbus, ERTS, and EOS, 0.7, and 0.01 degree, respectively. Significant redu of sensors can be realized through increased computat	s, hardware simplifi- The trend in pointing which require 1.0, ctions in the number
(b)	The use of the computer also affords considerable fle and thus the necessary versatility for subsystem hard This technology will benefit most of the future Earth payloads, particularly advanced operational satellite Resources Survey Operational Satellite (ERS-OS), EO-61	ware standardization. Observation automate s such as the Earth
	Higher pointing accuracies, in the order of 0.001 deg justified on the basis of increased resolution requir in the amount of ground-based geometric correlation/c The technique will require thorough demonstration in	ements and reduction orrection. ground simulation
	tests and on experimental satellites such as EOS prio the operational satellite systems.	r to commitment to
	and the second second second second second second second second second second second second second second secon	and a second transmission of the

TO BE CARRIED TO LEVEL 7

7-389

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. GE-15.5
1. TECHNOLOGY REQUIREMENT(TITLE): Advanced Attitude Sensing System	PAGE 2 OF _4
 7. TECHNOLOGY OPTIONS: The variables involved in this techno (a) Type of inertial sensor and star sensor to be used. (b) Degree of computational capability and type of computer. (c) Centralized computer for all subsystems vs. dedicated computed) (d) Software for each mission application. (e) Drive electronics to translate computer instructions in termination phased attitude control functions. (f) Extent of ground-based versus on-board computation/data pro Tradeoffs are required concerning the optimum use of ground computers and ephemeries attices of pointing, residual alignment errors and ephemeries 	ter. ms of time- cessing. trol points vs.
	a ta ga sa sa sa sa sa sa sa sa sa sa sa sa sa
8. TECHNICAL PROBLEMS:	
1. Complexity of software requies new, versatile programming t	echniques.
 Significant improvements in ephemeris accuracy beyond current art may involve high operational complexity. 	nt state of the
9. POTENTIAL ALTERNATIVES: Autonomous navigation techniques such as those being developed target correlation through coherent optical techniques may simp system (see Reference 1). Payloads may use Navsat information location.	lify the on-board
en 1995 - Andreas Maria, and an anna an an anna an an anna an anna an an	u di kanalari tari di Manalari
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
(a) Earth Observatory Satellite and Solar Maximum Mission Satel utilize this technology but with less stringent accuracy re	
<pre>(b) Related RTOP's are as follows: 502-23-41 Earth Oriented Attitude Reference 502-23-42 Inertial Components (Continued)</pre> EXPECTED UNPERT	URBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:	
Software technology advancements are a vital part of the subjec therefore, general software developments will impact this techn	

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>GE-15.5</u>
1. TECHNOLOGY REQUIREMENT (TITLE): ADVANCED ATTITUDE SENSING SYSTEM	PAGE 3 OF _4
	•
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	(Continued)
502-23-43 Adv. Components for Precision Control System	S
al de la contrata de la contrata de la contrata de la contrata de la contrata de la contrata de la contrata de	
na an an an an an an an an an an an an a	
	i de la composition de la composition de la composition de la composition de la composition de la composition d
an an an an an an an an an an an an an a	
	e e e e e e e e e e e e e e e e e e e
A state of the second state of the second state of the second state of the second state of the second state of State of the second state of the second state of the second state of the second state of the second state of the	
n en son a substantia de la seconda da estada de la seconda de la seconda de la seconda de la seconda de la se Estada estada estada estada estada estada estada estada estada estada estada estada estada estada estada estada	
에 가장 가장 가장 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같이 것은 것 같은 것은 것이 있는 것은 것이 있는 것과 것은 것이 있다. 가장 이 것이 있는 것은 것이 같은 것이 같은 것이 같이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것은 것은 것은 것이 있는 것이 있는 것이 있는 것이 같은 것이 있다. 것이 있는 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 없다. 같은 것이 있는 것이 없는 것이 있는 것이 있	
에 있다. 이상에 가장 이 가지는 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은	

Sure -

DEFINITION	OF T	EC	HNC	DLC	GY	RE	ເຊບ	IRE	ME	NT	1		<u> </u>		1	٩O.	GE-	15.	
1 TECHNOLOGY REQUI Sensing System	REM	EN	т (')	riTi	LE)	·····	Ad	lvar	iced	1 A1	ti	ude	3	I			OF		
12. TECHNOLOGY REQUI	REN	IEN	TS	SCI	IED			ND	AR	YE	AR	· .	- 101			•		*******d ****7,	
SCHEDULE TEM	75	76	77	78	79							86	87	88	89	90	91		,»,
TECHNOLOGY 1. Analytical Studies																			<u>.</u>
2. Software Development						·				1		· · ·							
3. Prototype Hardware																1			
4. Ground Simulation		- 1											· .	ļ					
5. Space Qualification			-																
APPLICATION				 												┢	<u> </u>		
1. Design (Ph. C)		ł								ļ						ļ			
2. Devl/Fab (Ph. D)	ĺ							ł	ł						ł	ł	ŀ		
3. Operations			}			ļ		ļ			ļ								
4.								ļ		·						ļ.			
*±•											- 	<u>l</u>		<u> </u>		<u> </u>			
13. USAGE SCHEDULE:				1	, <u> </u>	<u>.</u>		<u>т</u>	- <u> </u>	1	1	· · ·		-	· · · ·			1	<u></u>
TECHNOLOGY NEED DATI		<u> </u>		L	<u> </u>		ļ	ļ			<u> </u>	-	<u> </u>			<u> </u>	<u>ר</u>	iot +	AL
NUMBER OF LAUNCHES					1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	13
14. REFERENCES:									,			÷				: .		,	
l) "Feasibility Stu Final Report", J Accession No N7	une	197	1,	Β.	Kle	sta	dt,	Hu											
2) "Definition of a for a Communicat March 1973, Hugh	ion/	'Nav	iga	tio	n R	ese	arc	hI	abc	rat	ory	7",				•		ent	
3) "Stellar Trackin Study", Septembe Report No. SCG 4	r 19	74,				adt	, H	lugh	es							ion			
																•			
						•	*				• •			•. •	•		· . ·		•;
15. LEVEL OF STATE O	ר באיקר	ידי כ						5. C	OMP	ONEN	IT OF	BRE	ADBO	DARD	TEST	ED II	N REL	EVAN	IT
1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DES 3. THEORY FORMULATED TO DES 0. MATHEMATICAL MODEL	AND I CRIBE EXPE	E POI PHE	NOME			•	••••	6. B 7. N	ENV IODE IODE IEW (/iron L TE L TE APA	imen Sted Sted Bil.17	T IN IN A IN SI	THE IRCR PACE RIVE	LAPO AFTI ENV DFR	RATC ENVU IRON	DRY RONM MENT	ENT.	·	•

PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATEMAL, COMPONENT, ETC.

۲.,

9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

·	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE-16.1</u>
	CHNOLOGY REQUIREMENT (TITLE): <u>Transmission System</u> PAGE 1 OF <u>4</u> Planetary Entry Probe
2. TE(CHNOLOGY CATEGORY: Telemetry, Tracking and Command
3. OE	JECTIVE/ADVANCEMENT REQUIRED: Develop a transmission system capable
of	penetrating through the atmosphere of Saturn, Uranus, or Jupiter, for data
tra	insmission to the planetary (bus) vehicle (e.g., Pioneer).
4. CU	RRENT STATE OF ART: <u>A design concept has been postulated and modeled</u>
for	a.probe receiver, transmitter and antenna system for a Saturn/Uranus atmospheric
ent	ry probe. HAS BEEN CARRIED TO LEVEL 3
5. DI	SCRIPTION OF TECHNOLOGY
The atm the of for	tical Parameters gathering of atmospheric data during entry of the probe in the planetary mosphere is one of the primary goals of many advanced planetary missions in NASA model. The required advancement in the state-of-the-art would consist designing and experimentally testing the operation of transmission system(s) operation in the atmosphere of Saturn, Uranus and Jupiter, considering the lowing parameters:
(a) (b) (c) (d)	Atmospheric dynamics, especially the turbulence characteristics Thermal plasma resulting in RF blackout.
	(Continued on page 2)
	p/l requirements based on: □ pre-a, X a, □ b, □ c/d
It ant mis	TIONALE AND ANALYSIS: is possible that modest state-of-the-art advancements in transmitter and enna design will be required to satisfy the desired high probability of sion success, given the uncertainties of the characteristics of the plane- y atmospheres.
(a)	Atmospheric constituents, turbulence, and pressure will affect choices of carrier frequency, modulation, and power levels needed to overcome attenuation. Uncertainty in Jupiter's helium to hydrogen ratio, for instance, is estimated at 18% and may be off by a factor of two.
(b)	The radiation environment is very severe, as evidenced by the rates encountered in the Pioneer 10/11 spacecraft. That flight also established Jupiter as a signi- ficant source of energetic particles. This aspect will affect the selection of electronic components and their shielding and thermal design.
	(Continued on page 2)

7-393

TO BE CARRIED TO LEVEL

.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. <u>GE-16.1</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Transmission System</u> PAGE 2 OF <u>4</u>

for Planetary Entry Probe

5. DESCRIPTION OF TECHNOLOGY: (cont'd)

- (e) Nuclear radiation, cosmic, and thermal environments
- (f) Uncertainty in the general geometry between the probe and the bus vehicle during fly-by probe entry.

Although the transmission system specifications have not been formulated as yet, the transmitter weight goal is typically less than 1.5 kilograms, power consumption not to exceed 100 watts, rate of a PCM convolutionally coded waveform will be 40-50 bits per second, reliability 0.998, operating life of 10 hours and storage life of up to 10 years. The maximum expected range is 10 Jupiter radii.

The current state of the art is characterized by conceptual designs based on communication link analyses which factor in the uncertainties of the planetary environment models current at the time.

6. RATIONALE AND ANALYSIS: (cont'd)

(c) Relative geometry between the probe and bus vehicle may pose special requirements on the antenna pattern and gain characteristics. Typically, the 1981 Pioneer Saturn/Uranus Flyby Mission requires 110 to 130.000 km communication range, with the trajectory chosen to limit the probe aspect angle to less than 10 degrees.

Benefitting Payloads

PL-11A	Pioneer	Saturn/Uranus	Flyby
PL-13A	Pioneer	Jupiter Probe	
PL-22A	Pioneer	Saturn Probe	

(d) Level of Technological Maturity

The receiver, transmitter and antenna system should be breadboard-tested simulating the geometric and attenuation conditions expected to be encountered in the planetary environment. The effectiveness of the electronic component hardening concept should be verified, at least to the individual part (e.g., transistor) level.

$\mathbf{D} = \mathbf{D} + \mathbf{C} + $		DEFINITION OF TECHNOLOGY REQUIREMENT	NO. GE-16.1
 for Planetary Entry Probe 7. TECHNOLOGY OPTIONS: Key variables are: (a) Carrier frequency: typically 0.4 to 1.0 GHz for the Saturn/Uranus Flyby mission. Power requirement is larger at 1 GHz. (b) Beamwidth ange up to 130° are considered. Power requirements increase with beamwidth. (c) Modulation: tradeoffs include type of modulation (e.g., non-coherent F.S.K. versus P.S.K. with phase-look loop reception). 8. TECHNICAL PROBLEMS: The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increase in overall planetary vehicle weight and volume. (b) Molti-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Pioneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres Experiment Development 185-47-67 Planetary Atmospheres Experiment Development 185-47-68 Planetary Atmospheres Experiment Development 185-47-61 Theory and Models EXPECTED UNPERTURBED LEVEL 5 18. ATECHNOLOGY REQUIREMENT: None 			
 TECHNOLOGY OPTIONS: Key variables are: (a) Carrier frequency: typically 0,4 to 1.0 GHz for the Saturn/Uranus Flyby mission. Power requirement is larger at 1 GHz. (b) Beamwidth. (c) Modulation: tradeoffs include type of modulation (e.g., non-coherent F.S.K. versus P.S.K. with phase-lock loop reception). 8. TECHNICAL PROBLEMS: The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increase in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 185-47-66 Structure of Planetary Atmospheres 185-47-66 Planetary Atmospheres Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-68 Planetary Atmospheres Experiment Development 185-47-68 Planetary Atmospheres Experiment Development 185-47-61 Theory and Models EXPECTED UNPERTURBED LEVEL 5 			AGE 3 OF <u>4</u>
 mission. Power requirement is larger at 1 GHz. (b) Besmwidth range up to 130° are considered. Power requirements increase with beamwidth. (c) Modulation: tradeoffs include type of modulation (e.g., non-coherent F.S.K. versus P.S.K. with phase-lock loop reception). 8. TECHNICAL PROBLEMS: The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increase in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres 186-68-65 Planetary Atmospheres - Structure and Composition 185-47-66 Planetary Atmospheres Experiment Development 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 	7. 5	TECHNOLOGY OPTIONS:	
 The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Ploneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-68 Planetary Atmospheres - Structure and Composition 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT: None 	((a) Carrier frequency: typically 0.4 to 1.0 GHz for the Saturn/U mission. Power requirement is larger at 1 GHz. (b) Beamwidth range up to 130⁰ are considered. Power requirement with beamwidth. (c) Modulation: tradeoffs include type of modulation (e.g., non- 	s increase
 The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Ploneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-68 Planetary Atmospheres - Structure and Composition 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT: None 			
 The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Ploneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-68 Planetary Atmospheres - Structure and Composition 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT: None 			• •
 The principal problem is the uncertainty in the characteristics of the planetary atmospheres. 9. POTENTIAL ALTERNATIVES: (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Ploneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-68 Planetary Atmospheres - Structure and Composition 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT: None 		TROUNICAL DROPT FMS.	
 (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Pioneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres – Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 			
 (a) Design the transmission system with very large power margin, to account for unknown environmental conditions. Impact may be a significant increas in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailored to various potential combinations of environments. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Pioneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres – Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 		ΣΟΓΓΕΝΙΟΥΙΛΙ Τ΄ ΑΓΓΓΕΡΙΝΙΑ ΓΙΙΥΤΕς.	
The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Pioneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres - Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT None	((a) Design the transmission system with very large power margin, for unknown environmental conditions. Impact may be a signifing in overall planetary vehicle weight and volume. (b) Multi-channel design to incorporate several approaches tailor 	ficant increas
The following programs related to planetary atmospheres are pertinent to this technology advance: 186-68-65 Pioneer Follow-on Mission Technology 185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres - Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT None	10.1	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEM	IENT:
185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres - Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development 185-47-81 Theory and Models EXPECTED UNPERTURBED LEVEL 5 11. RELATED TECHNOLOGY REQUIREMENT None	I	The following programs related to planetary atmospheres are pertinent	
None		185-47-66 Structure of Planetary Atmospheres 185-47-67 Planetary Atmospheres - Structure and Composition 185-47-68 Planetary Atmospheres Experiment Development	
an an an an an an an an an an an an an a			BED TEAET 5
		EXPECTED UNPERTUR	BED TEAET 5
	11.	EXPECTED UNPERTUR	<u>BED TEART 5</u>
	11.	EXPECTED UNPERTUR	<u>BED TEAFT 5</u>

DEFINITION O	FΤ	ECI	HNC)LC	GY	RE	ຊບ	IRE	ME	NI	•				N	ю,	GE-	16.	1
t. TECHNOLOGY REQUIR for Planetary Entry P			Г ('I	HT:	LE)	:	fra	nsm	iss	ion	. Sy	ste	m	, I	PAG	E 4	OF	r <u>4</u>	
12 TECHNOLOG REQUIE			TS	SCI	IED			ND.	AR	YE	AR			<u></u>					
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analyses																			
2. Math. Modeling			-																
3. Model Design & Mfg.			-	-									4						
4. Model Tests							:					Į							
5.																			
APPLICATION 1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)	ļ		1		-	-						1.							ľ
3. Operations						<u> </u>		ļ	ļ	 	ļ	ļ			-			-	
4.																			
13. USAGE SCHEDULE:				ļ.,				.,											
TECHNOLOGY NEED DATE					Δ								Ì				1	roi	AI
NUMBER OF LAUNCHES				<u>†</u> –		1	1			2				ŀ				4	1
14. REFERENCES:	·.																		
				÷.														۰.	
		þ				÷.		•	•		·	÷	'	i.	•	с. К.	•		
			. •	1. 11	•		• •, •		.*		۰.	- 1		÷.,	·			· ··	e, P
								÷., *					2 14						
			·	• .*		· .	. ett. j	• . • *	1 .	. : 		·	·. ·			. :		· .	•••
			÷		÷	-		. ¹ 		÷.,	<u>.</u>			1 - J.					
15. LEVEL OF STATE OF	FA	RT		•			·	5. (COMP	ONE	NT OI	8 BRE	ADB	OARD LARC	TEST	ED I	N REI	LEVA	NT
 DAS. PHENOME A OPSERVED THEORY FORMULATED TO DESCI THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G., MATERIA! MPONE 	AND I CRIBE EXPE RACT	REPOI PHE RIME ERIST	RTED NOME NT	NA.				6. 1 7. 1 8. 1 9. 1	MODE MODE NEW OP RELU	L TE L TE CAPA ERAT	STEL STEL BILL IONA) IN A) IN S IY DI L MC PGRA	IRCR PACE RIVE DEL.	AFT ENV DFR	ENVII TRONI OM A	IONM MENT MUC ERAT	ENT. 2 H LE MONA		DEL

--.:

		DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE 16.4</u>
	1	TECHNOLOGY REQUIREMENT (TITLE): <u>Memory Unit</u> PAGE 1 OF <u>4</u> for On-Orbit Functions
		2. TECHNOLOGY CATEGORY: Telemetry, Tracking and Command
		3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide high capacity, compact,
	l	module and memory unit for payload functions for P/L checkout, subsystem support and experiment data storage.
		4. CURRENT STATE OF ART: <u>Magnetic bubble memories have demonstrated the</u>
		required capability in the laboratory; adaptation to the specific shuttle
		application is needed. HAS BEEN CARRIED TO LEVEL 4
		5 DESCRIPTION OF TECHNOLOGY (APPLICATION A) Specific Pallet-only sortie payloads require a large memory (500,000 word) size and quick access time (5 millisec.) to permit very detailed checkouts to be performed expeditiously, and to conduct complex (stellar) target acquisition and pointing operations without overloading the quick access memory. The available volume is 0.06m ³ .
inter called a		
401 1		(continued on page 2)
		$P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D$
· *		6. RATIONALLY AND ANALYSIS:
		(a) (APPLICATION A) The 500,000 word (32 bit) capacity and 5 millisecond access time requirements are based on SSPDA mission analyses for the checkout phase, initial target acquisition and pointing of large astronomical optical systems. Since each nominal sortie mission lasts 7 days, any savings in preparatory tasks such as checkout and initial acquisition will allow more time for actual experimentation.
		(APPLICATION B) The large storage requirement for experiment data cited in (5) above assumes that the Tracking and Data Relay Satellite System will not be designed to offer maximum wideband data relay support for long periods (several days), to multiple simultaneous users.
		(b) Specific payloads benefitting from this technology are AS-01S, 1.5meter IR telescope; and AS-04S, 1-m Diffraction limited UV telescope. Automated payloads such as advanced versions of the Earth Observatory Satellite, EO-08A will also benefit. (continued on page 2)
		TO BE CARRIED TO LEVEL 7
4. ga 7.		7-397

ter en la segura de persona a segura de cara de segura de la segura de la segura de la segura de la segura de s

L. TECHNOLOGY REQUIREM	ENT (TTTT, F). Memory	Unit	PAGE 2 OF _4
DESCRIPTION OF TECHNOLOG			
The state-of-the-art for Applic	cation "A" is summarize	ed below:	
	Storage	Access	Volume
Type of Device	Capacity	Time	<u></u>
Charge Coupled Device	8.4 x 10 ⁶ Words	4 millisec. (max.)	0.01
		2 millisec. (ave.)	
Disc Memory	1.25 x 10 ⁶ Words	12.5 millisec.	>1.06
Drum Memory	8.4 x 10 ⁶ Words	16 millisec. (maπ.)	0.08
		8 millisec. (ave.)	
Magnetic Bubble	10 ⁶ Words	3 microsec*	TBD
Floppy Discs	1.31 x 10^5 Words	8.4 millisec.	<0.06
The 3 microsecond access mental unit. (See Applica is not designed for random	tion "B" for a bubble m		

(APPLICATION B) High data rates and long periods of observation data in Earth and Ocean Physics will require storage of and accessibility to large quantities of digital data on-board the automated spacecraft or Spacelab. Typical of these requirements is the M.S.S. Imagery P/L OP-055 which requires the storage of 4.3x10¹⁰ bits during a 7-day sortie mission. Current high density magnetic tape is capable of storing up to 10⁵ megabits per tape reel; although this magnetic tape may be adequate in applications requiring merely the accumulation of data for return to the ground, its access time is not compatible with rapid on-board edit and multi-sensor correlation functions.

6. RATIONALE AND ANALYSIS (Continued)

(c) In application A, it is estimated that 6 hours of operation time will be saved through checkout diagnostic operations and initial acquisition of stellar targets.

(d) The technological development should be carried to the testing of an operational model (prototype) under actual orbiter ascent, descent and land conditions.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE-16.4 TECHNOLOGY REQUIREMENT(TITLE); MEMORY UNIT PAGE 3 OF 4 1 7. TECHNOLOGY OPTIONS: Technology improvements may be effected in any of the following memory storage systems: (a) Disc memory - Recent developments make these systems highly reliable (e.g. incorporation of air bearings, sealed storage). (b) Magnetic Domain (Bubble) Memory - This constitutes the most promising future method for low cost, large storage capacity, and high reliability data storage. (c) Floppy Discs - These new devices compete very favorably with cartridge/cassette tape transports, as a low cost storage method. The critical parameters that affect payload are access time, life, MTBF, power consumption, weight, vibration/shock/acceleration resistance and operating temperature. 8. TECHNICAL PROBLEMS: (a) Limited volume capacity in the Payload Specialist Station or spacelab. (b) High reliability operation after exposure to the boost environment of the Shuttle System. (c) While magnetic bubble memories might offer viable solutions, the temperature range over which adequate performance margins can currently be achieved is limited. 9. POTENTIAL ALTERNATIVES: Space Shuttle computer could be shared with the payload, however, this is required on a non-interference basis with respect to the primary mavigational and checkout functions of the Shuttle. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Reference 4 lists two pertinent programs in this area. It is expected that suitable storage components will be available through unperturbed technology advances, however, their application to the specific problem at hand may not be completed on time. EXPECTED UNPERTURBED LEVEL 6 11 RELATED TECHNOLOGY REQUIREMENTS: The development of mini-computers and micro-computers that will satisfy the increasing demands by a great variety of payloads will be relevant to the memory systems with which they must operate.

DEFINITION C	FТ	ECI	HNC	DLC	GY	RE	QU	IRE	ME	NT	•	<u> </u>			N	10.	GE	16-	4
1. TECHNOLOGY REQUI	REM	EN	Γ ("	LIT.	LE)	:	Me	emor	уU	nit				P	PAG	E 4	OF	4	1
12. TECHNOLOGY REQUI	REN	IEN [,]	TS	sci	HEL			ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		÷
TECHNOLOGY 1. Detailed Requirements 2. Test of Av1'b1 System																			
3. Breadboard Test					j		ļ								ļ		ļ		
4 Prototype Test 5. Design modification						_													
API LICATION 1. Design (Ph. C)																			
2. lev1/Fab (Ph. D)				ĺ		-	\vdash					Į							
3. Operations							-		<u> </u>		┝	╆╌╺							
4.																			
13. USAGE SCHEDULE:	.	<u> </u>	.1		-1			.		2	<u></u>	·	1		<u> </u>	·			<u> </u>
TECHNOLOGY NEED DATE							\square	1										ΓOΤ	AL
NUMBER OF LAUNCHES	1	1					2	2	2	3	1		1	1	1	1	1	1	5
14. REFERENCES:	-1	 																-	
1. "Magnetic Bubbl Scientific Amer	es" ica	- a n.	irti	ic1	e by	y Ar	ndro	∋q I	4. I	ЗоЪ	acic	an	dн	.E.)	D. :	Sco	vil	,	ŗ
2. "Floppy Disc Dr	ive	s ^{tt} ,	art	tic.	le 1	у З	Joh	n A	Mu	ırp	hy,	Мо	der	n D	ata	•			
3. "Boosting Relia and S. S. Lambe							ori	es"	, aı	ti	cle	Ъу	Ro	1an	d B	ois	ver	t	
 4. "Investigation on Recorders" preparation on "System Analysis Technical Report Contract No. F33 to Microelectron search Center, N Air Force System 15. LEVEL OF STATE OF 	red fo AF 615 ics ASA s C	und r Sp AL-: -73. Gro , La Omma	ler pac FR- -C- oup ang	Co ebo 270 110 , F 1ey	ntr rne , d 3, lig , V	act /Ai ate by ht a.,	No rbo d O Roc Ins an	. N rne cto kwe tru d t ter	AS1 Ma ber 11 man he son	- 12 gne 30 Int tat Air AF	435 tic , 1 ern ion Fo B,	(i Bu 974 ati Di rce Ohi	n f bbl , P ona vis Av	ina e M rep l u ion lon	1 r iass are inde i, I ics TEST	evi Me du r c ang La	.ew) mor inde cont (ley ibor	an y", r rac Re	t ry,
 BASIC PHE SOMENA OBSERVED THEORY PORMULATED TO DES THEORY "ESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA E.G MATERIAL, COMPONE 	AND I CRIBI EXPI RACI	repoi : Phe : Rime : Rime : Erist	NOMI NT	ENA.	NSTR/	TED	•	7. 1 6. 1 9. 1	NODE NODE NEW (OF) RELL	L TE L TE CAPA ERAT	STED STED BILIT IONA TY U	IN A IN S IY DI L MO PGRA	IRCR PACE RIVE DEL. DING	ENV D FR OF A	ENVII IRONI OM A	IONM MENT MUC	H LE		DEL.

7-400

DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>GE-17.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>High Voltage</u> PAGE 1 OF <u>3</u> Solar Array
2. TECHNOLOGY CATEGORY:Electrical Power
3. OBJECTIVE/ADVANCEMENT REQUIRED: Increased reliability and decrease
electrical subsystem weight through multi-kilovolt signal conditioning with
circuits that are integral to the solar array.
4. CURRENT STATE OF ART: <u>High voltage array system at voltage 100 VDC</u>
levels are well within the state of the art, as typified by the Communications
Technology Satellite (Canadian) to be launchedHAS BEEN CARRIED TO LEVEL 4
5. DESCRIPTION OF TECHNOLOGY
switching function between solar cell blocks must be capable of blocking 15 kilovolts in the forward direction. The reliability associated with these devices must be sufficiently high to support missions of 5 to 10 years duration With the exception of the high-reliability high-voltage switching devices, the technology for high voltage solar arrays is available and will improve with the development of high efficiency solar cells. The design of the solar array and its individual components must be able to withstand the high voltage levels (e.g., up to 15 KV) without voltage breakdown. The state of the art is 67 VDC on the Canadian Communications Satellite. A laboratory solar array at the Lewis Research Center has been operated at 1500 volts without problems (Reference #3).
p/l requirements based on: ☐ pre-a, X a, ☐ b, ☐ C/D
6. RATIONALE AND ANALYSIS:
(a) The 15 kilovolt level for the switching devices is based on the require- ments of advanced communication traveling wave tubes as required for the communications R&D prototype satellite (CN-01A).
(b) In addition to payload CN-01A, advanced geosynchronous satellites utilizing ion propulsion will benefit from this technology. The majority of these applications fall in the disciplines of Earth Observation and Communication/Navigation.
(c) Heavy, complex power conditioning equipment used in low voltage solar array systems significantly reduces the reliability of the system.
(d) This technology advancement should be carried to an experimental demonstration in an automated spacecraft or an early shuttle flight.
TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMEN

NO.GE-17.1

1. TECHNOLOGY REQUIREMENT(TITLE): High Voltage Solar Array PAGE 2 OF 3

TECHNOLOGY OPTIONS:

An alternative to the high voltage SCR may be a high voltage electromagnetic vacuum relay of sufficiently small dimensions to permit integral accommod. ion with the solar array. Solid state control circuits are technology limited Transistors and SCR's with capabilities beyond a few hundred volts are beyond the state of the art.

- ⁸. 1. TECHNICAL PROBLEMS: Interaction of array with charged particle environment (Reference #4). Array handling at normal light levels.
- 2.
- 3. Hig' voltage SCR's with high reliability may not be feasible. SCR thermal dissipation on the solar array substrate has presented serious design limitations.
- The design of the array to prevent voltage breakdown will be difficult in 4. view of the light weight quality of the arrays and the possibility of sharp protrusions and discontinuities producing arcing. Shielding presents significant weight penalties.

9. POTENTIAL ALTERNATIVES:

Design using a larger number of lower voltage SCR's is possible.

Design with a higher bus voltage, up to the limit where voltage breakdown may present a hazard with conventional design practice.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

RTOP #502-24-17 "Solar Array Technology for Solar Electric Propulsion State" could be expanded in scope to also invetigate high voltage designs.

EXPECTED UNPERTURBED LEVEL 5

RFIATED TECHNOLOGY REQUIREMENTS: 11

Electrical power control component technology, high voltage level distribution systems.

DEFINITION O	ΓT	ECI	INC	DLC	GY	RE	ເຊບ	IRE	ME	NI					ľ	10.	GE-	17.	1
1. TECHNOLOGY REQUIR	EM	EN'	Γ ('	rIT	LE)	: <u>H</u>	igh	<u>Vo</u>	<u>lta</u>	ge	So1	ar	Arr	ayl	AG	E 3	OF	3	
12. TECHNOLOGY REQUI	REN	EN	TS	SCI	IED			ND,	AR	YE	AR				<u></u>				_
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY																			
1. Analyses	-																		
 Electrical Component Design Component Tasks 																			
4. Array Fabrication																			
5. Array Ground Task 6.Array Space Checkout			 		-										 		<u> </u>		,
APPLICATION		Ì								ļ									
1. Design (Ph. C)																			
2. Devl/Fab (Ph. D)		{ .	ł			-	+		[ļ			
3. Operations												†		1	<u> </u>			<u> </u>	
4.		ļ	ļ	Ì															
13. USAGE SCHEDULE:																	- j		
TECHNOLOGY NEED DATE		Ì			Z	Δ											1	ют	AL
NUMBER OF LAUNCHES		Γ			4	6	6	7	9	5	6	4	3	9	5	9	4	7	7
14. REFERENCES:	-}	-1	- L	<u> </u>	<u></u>	-!	- L												
1) "Study High Voltage Sola Electronics," Final Repo	ar A prt,	irre	iy (inti	loni cact	igu NA	rat S-3	:ion 8-89	ıs W 97.,	viti Ge	ı Iı ener	nteg ral	gra El	ted ect:	Po ric	wer Co	Co: -	ntre	51	
2) "High Voltage Solar Arra The Boeing Company.	ay H	(xpe	rir	nent	s,	Fir	ıal	Rep	ori	Ξ, (coni	tra	ct]	NAS	-3-	143	64,		•
3) "High Voltage Solar Cel A. C. Hoffman, <u>10th, IE</u>															, R		pjo	rda	a ,
 "The Interaction of Spa Environment", by S. Dom <u>Specialists Conference</u>, 	itz	and	1 N	• T															
								•		,			• .					•	•
15. LEVEL OF STATE OF	F AJ	RT.						5, C							1 A A A A A A A A A A A A A A A A A A A		REL	EVAN	T
 BASIC PHENOMENA OBSERVED A THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAI E.G., MATERIAL, COMPONENT 	RIBE EXPE RACT	phei Rime Erist	NOMI NT	ENA.	STRA	TED,		7. N 8. N 9. F	iode iode iew (opi iella	L TE L TE CAPA SRAT BILI	STED STED BILLI IONAI IONAI	IN A IN S Y DE L MO GRA	DEL. DING	AFT I ENV D FR OF A	ENVIP IRONI OM A N OP	ionm Ment Muc Erat	H LES	ser L Moi Odel	

 ϕ .

DEFINITION OF TEC	CHNOLOGY REQUI	REMENT	N	O_GE-17.5
TECHNOLOGY REQUIREMEN Battery	T (TITLE): _ High	Energy Densi	Lty PAG	E1OF <u>3</u>
FECHNOLOGY CATEGORY: _ OBJECTIVE/ADVANCEMEN' he order of 50%, for automa	I REQUIRED: Prov			
CURRENT STATE OF ART: _ att-hours per pound with ver		у.	are capable	······
		MAD DE EN	CARRIED IC	ינטעאמע (

5. DESCRIPTION OF TECHNOLOGY

1

 $\frac{2}{3}$.

4.

t

A goal of 25 watt-hours per pound or 55 watt-hours per kilogram seems reasonable on the basis of laboratory tests of the Nickel-Hydrogen cell. Attainment of high reliability for long life applications is still a problem. The behavior of a Metal-Hydrogen battery under actual space operations and environment is in question, considering its early stage of development. For instance, laboratory tests have uncovered the problem of loss of electrolyte.

Higher energy densities are possible with Silver-Hydrogen cells; the disadvantages are shorter life times, silver migration, and water formation which dilutes the electrolyte and compilicates electrolyte management.

Other cell types under investigation are Silver Zinc and Nickel Zinc.

* Note: Energy density comparisons at 100% depth of discharge are: NiCd-30-40 watt-hr/kg, AgZn and AgHz-90-100 watt-hr/kg.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

6. RATIONALE AND ANALYSIS:

(a) The stated requirement is based on the high power utilization associated with spacecraft such as those for future communication/navigation applications and Earth observation applications where high power levels are maintained through the eclipse period of the orbit. Nickel Cadmium batteries can deliver 6 or 7 watt-hour/lb. after actual power derating (from 10 watt-hr./lb. capability. Therefore, to obtain 50% weight improvement would require 12-14 watt-hr/lb, which is estimated as a realistic output from a projected Nickel-Hydrogen battery after power derating.

(b) Specific payloads benefitting by this technology advance will be the geosynchronous satellites in Earth Observation and Communications.

(c) The advancement described herein is justified on the basis of the benefit associated with weight savings for large geosynchronous satellites. The intermediate Space Tug payload capabilities will limit the weight to geosynchronous orbit, thus making it desirable to attain the highest possible operational payload versus spacecraft weight ratio.

(d) The technology program should be carried to the demonstration of cyclic life in a temperature chamber for a total of cycles equivalent to 10 year operation

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 5

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO.17.5
. TECHN	OLOGY REQUIREMENT(TITLE): High Energy Density	PAGE 2 OF <u>3</u>
	Battery	
. TECHN	OLOGY OPTIONS:	- <u>************************************</u>
affect th voltage; battery 1 affect sa Two impor H2 reserv	parameters in the NiH cell technology are: (a) The call e permissible operating temperature, battery impedance (b) method of hydrogen sealing, which will affect lead ife; (c) operating pressure of the hydrogen electroly fety considerations. tant technology areas are the selection of hydride materia oirs in metal- H2 batteries, and the use of intercell plates (IERP) for Ag-H ₂ cells.	ce, and operating akage rate and thus yte, which may aterials for use as
8. TECHI	NICAL PROBLEMS:	
and number	problem encountered in laboratory tests is the attain r of cycles. A potential problem in the initial open ttery cost, compared with NiCd batteries.	-
during th	surance under all operating conditions will be essen e portion of the mission when the battery-carrying le Orbiter.	
9. POTEN	ITIAL ALTERNATIVES:	<u> </u>
s_gnifica	ads requiring geosynchronous orbit may be able to be ntly reduced power levels during the 36 minutes of e ce the battery size.	
0 PLANN	ED PROGRAMS OR UNPERTURBED TECHNOLOGY ADV	ANCEMENT:
(A) RTOP (B) Reau (C) Prog	2-502-25-57 #W74 - 70319 "Deep Space Batteries" (JPL) lest 506-23-23 "Chemical Energy Conversion and Storag grams on NiH2 cells conducted at Wright Patterson AFF al-Hydrogen Cell Program, NASA - LeRC.	ge" (GSFC)
		ERTURBED LEVEL
	ATED TECHNOLOGY REQUIREMENTS:	میں میں بیانیں میں دیری ہی کے پیری سب
11. RELA	and the second second second second second second second second second second second second second second second	
	e Identified	

DEFINITION O															Ň	ю.	GE	17,	5
1. TECHNOLOGY REQUIR Battery	EM	EN'	Γ (7	FI T]	LE)	:H	ligh	En	ierg	;y I)ens	ity	7	F	νAĠ	Е 3	OF	3	
12. TECHNOLOGY REQUI	REM	EN	TS	SCI	IEC			ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analyses		-																	
2. Separator Development	t.					:													
3. Cell Development																			
4. Cell Tests (Ground)				ŀ															
5. Battery Model 6. Battery Cycle Test			-		:		ŀ		ļ										
APPLICATION		\ 									[i		
1. Design (Ph. C)				-	_				ļ										
2. Devl/Fab (Ph. D)					-	-													
3. Operations			ļ			-						+ .							
4.									·										
1:3. USAGE SCHEDULE:	.	- <u>4.</u> 0				. <u></u>							÷						
'FECHNOLOGY NEED DATE					6									<u> </u>]]	ro'	AL
NUMBER OF LAUNCHES			ĺ			6	9	7	10	7	8	7	7	1	410	12	8		.05
14. REFERENCES: "Predicted Energy Der Cells Embodying Meta Easter, Lewis Researd Conference, August 20	lli ch (: Hy Cent	dri er	ides (Ni	; fo	or ŀ	Iydı	oge	en s	Stor	cage	₽";	by	Ro	ber	t			
				• .									•						•
							-		· .							÷	·	• • • .	
 15. LEVEL OF STATE OJ 1. BALIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DESC 3. THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. 4. PERTINENT FUNCTION OR CHAIL 	AND I CRIBE ENPE	REPOI PHE RIME	NOME NT	ENA.	STRA	TED		6. N 7. N 8. 1	EN IODE IODE IEW OPI	VIRON L TE L TE CAPA ERAT	imen Sted Sted Billt Iona	T IN IN A IN SI 'Y DE L MO	THE I IRCR PACE RIVE DEL.	LABO AFT I ENV D FR	RATC ENVIE IRONI OM A	red in Dry , Ronmi Ment Muci Erat	SKT. H Les	ser	\T DEL

ų,

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. C-18.1

Subnanosecond TECHNOLOGY REQUIREMENT (TITLE): <u>Pulse Measurement &</u> PAGE 1 OF <u>5</u> Correlation Detection; Pulse-to-Pulse Time Resolution, Small Time Differences

TECHNOLOGY CATEGORY: <u>Instrument Electronics</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Resolution of events to 0.1 nanosecond</u>; accuracy of two pulses approximately 1 nanoseconds apart

1. CURRENT STATE OF ART: Some high energy astrophysics experiments operate with time resolution in the nanosecond region.

HAS BEEN CARRIED TO LEVEL 4

DESCRIPTION OF TECHNOLOGY

Triggered time measurements accurate to 0.1 nanosecond are required to achieve desired spectrometer experiment results. Oscilloscopes are presently available that can measure triggered time periods to a resolution of 20 picoseconds. Although these oscilloscopes are available, vast improvements in decreasing size and weight are required to obtain space compatible circuitry. Many of current balloon experiments operate with response times in the order of nanoseconds. Quick response circuits in the subnanosecond range enable measurements of time of flight of relativistic particles or of gamma rays as well as quick response triggering of anti coincidence and coincidence circuits. Current spatial detector timing measurements are accomplished to microseconds.

P/L REQUIREMENTS BASED ON: \mathbf{X} PRE-A, $\mathbf{\Box}$ A, $\mathbf{\Box}$ B, $\mathbf{\Box}$ C/D

6. RATIONALE AND ANALYSIS:

- a. Characteristics of cosmic rays are determined by measurement of electron and positron spectra. Spectrometer experiments identifying particles in a magnetic field require accurate spatial detection which, in turn, requires time measurements to 0.1 nancsecond. Time of flight measurements between scintillators are also needed in order to determine which data is to be processed (i.e., in high energy experiments only data from short time of flight measurements will be processed).
- b. The SO-01S, Dedicated Solar Sortie Mission, HE-15S, HE-08A, and HE-09A payloads require 0.1 nonosecond time measurements. See legend page 3 for payload names. (Particularly item SO-01S, Solar neutron experiment.)
- c. Time interval resolution will be increased by more than 1000 times of previous measurements for spatial detection and ~ 10 times for time flight.
- d. Technological maturity will be demonstrated when the miniaturized pulse measurement circuitry is analyzed in a space equivalent environment with other components. Laboratory tests on earth are satisfactory to prove attainment of desired capability.

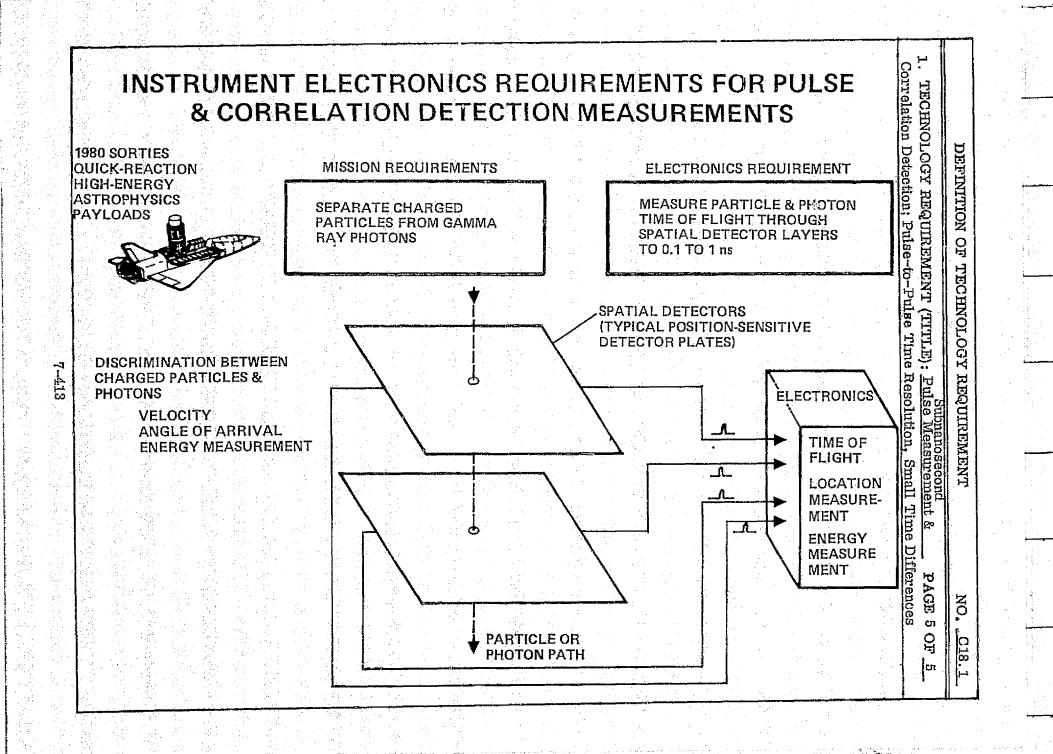
TO BE CARRIED TO LEVEL 5

DEFINITION OF TECHNOLOGY REQUIREMENT	No. C-18.1
Subnanosecond Pulse Measurement & Correlation Pulse-to-Pulse Time Resolution, Small Time Difference	PAGE 2 OF <u>5</u>
7. TECHNOLOGY OPTIONS:	
The accuracy of pulse-to-pulse time resolution measurement could be between pulses was increased. This would require a greater distance scintillators or between the spatial detector plates, depending on whic measured. This would increase payload dimensions somewhat but wo accuracy of spatial detection of "rigid" particles or rays having small magnetic field.	between either the ch output was being uld also increase
8. IECHNICAL PROBLEMS: a. Pulses delivered to the timing device must have sufficient trigger	ring level.
b. Device supplying triggering pulses must not introduce delay error	r .
c. Payloads using multiple timing circuits may require amounts of c tion which will be difficult to obtain.	eircuitry miniaturiz
9. POTENTIAL ALTERNATIVES:	
Payloads requiring multiple timing circuits may reduce size and weig timing circuit in conjunction with recording circuits. When a signal t ceived on one channel the start and stop pulses may be recorded and the The timing circuit could then measure time duration between pulses of recorder channel. However, some gamma or cosmic ray instrument of quick response circuits.	o be timed is re- he channel flagged. n the flagged
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA	NCEMENT:
RTOP: W74-70615, Definition of Solar Physics Experiments for Spac Oertel	e Shuttle, Goetz
RTOP: W74-70646, Particle Astrophysics, Albert G. Opp RTOP: W74-70647, Particle Astrophysics, F.B. McDonald	
	RTURBED LEVEL
EXPECTED UNPE	
EXPECTED UNPE	

٩.,

•

.


1.	TECHNOLOGY REQUI																			
su	rement & Correlation D	etec	tio	n; I	uls	e-ta	o-P	ulse	e Ti	me	Re	sol	itio	n, S	Sam	11 ?	Fim	e D	iffe	r
12.	TECHNOLOGY REQUI	REM	EN	TS	SCI	HED		-	ND	AR	YE.	AR						- <u></u>		
	SCHEDULE ITEM	75	76	77	78	79							86	87	88	89	90	91		[
	HNOLOGY Trades & Analysis																			
2.	Exp. Model Design & Fa	ф. —	- ·												1298) 1					
3.'	rest and Evaluation		-														÷			l
APP 1	LICATION Design (Ph. C)																			ſ
2. 3	Development/Fabrica- tion (Ph. D) Operations									004						C SC				
					-		N	1 4		ļ	ĺ		1	и _з						1
13.	USAGE SCHEDULE:	. <u>.</u>	<u>.</u>	•	.l			.	L	1	I	•				. .				-
TEC	HNOLOGY NEED DATE	<u> </u>	т		1	1	Γ	1		<u> </u>	<u> </u>		1	1	1				OTZ	
·	MBER OF LAUNCHES	-		-	<u> </u>	1	M1 M2 M4	MI	мі		Mł	M	M		M1 M1 M2	Mł	₩		$\frac{012}{27}$	
b. c. d.	PD; July 1974. Summarized NASA Pay July 1974. Preliminary Payload D Future Payload Techno	esc	ripi	ion	s, 1	7ol.	1&	п,	Aut	om	atec	i &	Sor	tie	Pa	yloa	ıds,	Ju	•	
e.	August 1974, pages 55- Oscilloscope + Micropu September 5, 1974, pages	oce ges	88-	91.												• •				
f. ∶	Superconducting Magne Space Science Laborato Principal Investigator.		-																	
g.	Introduction to Experim and J. R. Wayland, GS	FC,	19	70.		· · ·			h E	ner	gy .	Ast	\mathbf{rop}	hys	ics	, H	. 0	gelı	man	Ľ
h. i.	Tektronix 1975 Produc Comments, Andrew Bu					в,		inuz	ıry	197	5.	• • • • • • •								
	$M_1 = SO-01S$, Dedicated Sol $M_2 = HE-15S$, Magnetic Spe				ion				-				-	-	h Ene h Ene					
1997 <u>- 199</u> 7	LEVEL OF STATE O		1						5. C						ARD LABO			REI	EVA	N.
15.	1. BASIC PHENOMENA OBSERVED 2. THEORY FORMULATED TO DES					, i i i i		. * .		IODE	L TE	STED	IN A IN SI	IRCR	AFT E ENVI	NVIR	ION31			

general gener

e 7111

			. TECH Jorrelati
INSTRUMENT EL	EC: RONICS TECHN	OLOGY NEEDS	DEFINITION DEFINITION (Correlation Detection;
			DEFINITION OF TECH TECHNOLOGY REQUIREMENT relation Detection; Pulse-to-Pu
ITEM	REQUIRED CAPABILITY	STATE OF ART	
PULSE FORMING, DIFFERENCING CIRCUITS - RESPONSE TIME, NANOSECS	0.2	500 TO 2	NOLOGY KEQULKEMENT (TITLE): <u>Pulse Measurement</u> Ise Time Resolution, Small Ti
TIME RESOLUTION, NANOSEC	0.1 TO 1	1000 TO 2	osecond surement & Small Time
AMPLITUDE RESOLUTION	10 ⁹	10 ⁻⁷	me Dif
			NO. <u>CI8.1</u> PAGE 4 OF <u>5</u> ferences

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. <u>C, 18.2</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Cryostat/Magnet Electronics</u> PAGE 1 OF <u>4</u> <u>Decrease magnet charge/discharge time</u>

2. TECHNOLOGY CATEGORY: <u>Instrument Electronics</u>

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Decrease charge/discharge time of</u> magnet in order to meet all objectives of short duration mission.

4. CURRENT STATE OF ART: <u>Cryostat/magnets are currently being charged in</u> approximately 24 hours. Balloon borne magnetic spectrometers have been made. HAS BEEN CARRIED TO LEVEL 6

5. DESCRIPTION OF TECHNOLOGY

The charge/discharge time of the superconducting magnet should be decreased by an order of magnitude from the 24 hours presently required in order to optimize the number of observations completed in a short duration mission. (If safety regulations permit it, the Space Shuttle Orbiter could take off with the superconducting magnet already energized.) Using present technology, a 7 day mission would be limited to approximately 4 days of actual information gathering. The 24 hour charge/discharge time has no significant effect on long term (1 year) missions with automated (free flyer) vehicles.

A larger charge/discharge time enables safer charge and discharge cycles.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The cryostat magnet is used in experiments to provide the magnetic flux required to bend the trajectory of charged particles. Use of a cryostat magnet rather than a conventional copper wire magnet was determined by the substantial power savings offered by the cryostat magnet which, when charged, does not require a continuous source of energy. Since two magnets are required to eliminate the satellite dipole moment, and cancel the fringe magnetic field, the power savings are even more impressive. Use of a superconducting magnet coil also provides improvements in stored field strengths when compared to ordinary copper wire magnets.
- b. HE-09-A, Large High Energy Observatory B; HE-12-A, Cosmic Ray Laboratory; and HE-15-S, Magnetic Spectrometer, make use of a superconducting magnet assembly in their magnetic spectrometers.
- c. Shorter charge/discharge cycles increase maximum observation time on short missions. Automatic foolproof charge/discharge cycles also improve safety.
- d. Level of technical maturity is demonstrated when a supercooled dual magnet system has been successfully cycled several times during mission simulations in vacuum tanks via externally commanded automatic circuitry.

TO BE CARRIED TO LEVEL 10

	DEFINITION OF TECHNOLOGY REQUIREMENT NO.C, 18.2
1.	TECHNOLOGY REQUIREMENT(TITLE): Cryostat/Magnet Electronics PAGE 2 OF 4
	Decrease magnet charge & discharge time
7.	TECHNOLOGY OPTIONS:
а.	The charge/discharge time of the cryostat magnet is determined by the amount of energy stored in the magnetic field. A substantial charge/discharge time reduction could be obtained by reducing the energy stored in the magnetic field. However, a corresponding increase in the accuracy of spatial detection electronics would be required to obtain the same experiment results.
Ъ.	The charge/discharge time of the superconducting magnet could also be decreased by increasing the charging current delivered to the magnet. Unfortunately, unless current density and/or superconducting material strength of the magnet are improved, the magnet size would have to be increased.
с.	Trade off between safety, risk and time. More positive monitoring and control is required for shorter charge and discharge cycles.
8. a.	TECHNICAL PROBLEMS: The major problems are in increasing the magnets current density and increasing the strength of the superconducting material.
b.	Necessity to avoid internal heating within the cryostat device during charge; during discharge energy in the magnetic field would need to be dissipated through diodes in a resistor bank.
c. d.	Weight and size of cooling and coil charging circuitry.Hazards of runaway energy dissipation.(Cont'd on Page 4)Doctrine to a temporation
9. a.	POTENTIAL ALTERNATIVES: Investigation into supercooled superfluid helium needs to be accomplished as well as investigation of coil materials at higher temperatures. Lower helium temperature may provide a higher safety factor.
b.	Foolproof activation of supercooled magnets by means of proven software routines and a ruggedized special purpose computer may be necessary to reduce hazard if a quick charge/discharge cycle is required.
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
21(4-70389 (502-10-02) Research in Magnetics and Cryophysics, James C. Laurence, 5-433-4000. (Indicates studies to achieve intense magnetic fields with minimum mass quirements are being continued.)
	EXPECTED UNPERTURBED LEVEL 6
11 a. b.	. RELATED TECHNOLOGY REQUIREMENTS: Accurate control circuitry is required to maintain the magnetic field of the two air- borne magnets at the same strength to prevent satellite from becoming a dipole and also to prevent introduction of error in other experiments. Cryogenic cooling and reliquification of helium will avoid heating of superconducting coils and always maintain coils within LHe.

2	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C, 18.2	
	TECHNOLOGY REQUIREMENT (TITLE): <u>Cryostat/Magnet Electronics</u> PAGE 3 OF 4 (Decrease magnet charge & discharge time)	Į
:.	12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR	
	SC HLDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	
·	TECHNOLOGY 1. Concepts & Trades	• .
	2. Experiment Equipment	
	3. Fabrication of Add-on - Equipment - 4. Test with Cryostat/ - Magnet/Dewar -	
:	5. Evaluation	
	APPLICATION 1. Design (Ph. C)	•
·	2. Devl/Fab (Ph. D)	
	3. Operations	•
	13. USAGE SCHEDULE:	
	TECHNOLOGY NEED DATE TOTA	ŗŢ
:	NUMBER OF LAUNCHES M1 M2 M3 4	
•	14 REFERENCES:	···.
	(See Page 4)	
		. • : •
1		
	and Legend. A shift the Walter and the first of the second stitutes is for the other structures was an	
	M1 = Sortie Flight of Magnetic Spectrometer (HE-15-S) M2 - Automated Flight of Magnetic Spectrometer (HE-09-A) M2 - Cormia Day Lab (with advanced Magnetic Spectrometer) (UE 12 A))	
	M3 - Cosmic Ray Lab (with advanced Magnetic Spectrometer (HE-12-A)) 15. ' LVEL OF STATE OF ART 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT	7 - -
	13. E. VELLOF SIATE OF ART 13. E. VELLOF SIATE OF ART 14. ENVIRONMENT IN THE LABORATORY. 1. HASH PHENOMENA OBSERVED AND REPORTED. 2. THEORY FORMULATED TO DESCRIBE PHENOMENA. 3. TEFORY TESTED BY PHYSICAL EXPERIMENT 0. MATHE MAPICAL MODEL. 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL	

<u>.</u>	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C, 18.2</u>
1.	TECHNOLOGY REQUIREMENT (TITLE): <u>Crvostat/Magnet Electroni</u> cs P Decrease magnet charge & discharge time	AGE 4 OF <u>4</u>
d.	TECHNICAL PROBLEMS: (Cont'd)	
e.	Quicker charge and discharge cycles have higher hazards.	
f.	Liquid helium is diamagnetic and tends to form bubbles around super or	onducting
• • •	magnetic coils.	
•		
•		
		an Artan geor
	an an an an an an an an an an an an an a	
•	RIFERENCL:	• • • • • • • • • • • • • • • • • • •
a	Summarized NASA Payload Descriptions Automated Payloads, Level A	Data, NASA PI
1.	July 1974, pages 52, 53, 58, and 59.	
b.	Summarized NASA Payload Descriptions, Sortie Payloads, Level A Dat July 1974, pages 104 and 105.	a, MASA PD,
: C.	Preliminary Payload Descriptions, Vol. I, Automated Payloads, July 1	974, pages
	2–103 thru 2–130.	
d.	Preliminary Payload Descriptions, Vol. II, Sortie Payloads, July 1974 t ¹ -u 2-56.	, pages 2–29
e.	Part 1, Superconducting Magnetic Spectrometer Experiment for HEAO 15 February 1972, University of California, Berkley, California.	Mission B,
f.	Performance Review No. 3 - Plasma Physics and Environmental Pertur	bation Labora-
	tory, 13 October 1972, TRW Systems, Redondo Beach, California.	•
. В.	"Superconducting Magnet and Cryostat for a Space Application" and "Lo	
1	Leads for Intermittent Use", G. F. Smoot, and W. L. Pope, Vol. 20,	Advance in
	Cryogenic Engineering (1974).	
et en g	ne na se a la constance de la constance de la constance de la constance de la constance de la constance de la c	na at at a bara
		e des relatives des relatives

24

Rev. 3 December 1974 NO. C. 18.5 DEFINITION OF TECHNOLOGY REQUIREMENT 1. TECHNOLOGY REQUIREMENT (TITLE): <u>Filter for Gravity Grad</u>-PAGE 1 OF $\frac{3}{2}$ iometer Analog/Digital Filtering - Approach theoretical measurement accuracy 2. TECHNOLOGY CATEGORY: Instrument Electronics 3. OBJECTIVE/ADVANCEMENT REQUIRED: Filter analog signals to such a degree that 19 bit analog to digital conversion accuracy may be obtained. The signals are expected to be obtained from 4 mesa accelerometers. If signals are digital, a computer programmed filter is applicable. 4. CURRENT STATE OF ART: Circuitry for measurements with 12 bit accuracy are available. Current gradiometer designs have achieved 1.0 EU* accuracy. HAS BEEN CARRIED TO LEVEL 5 5. DESCRIPTION OF TECHNOLOGY The The gradiometer is expected to provide gravity measurements with an accuracy of 0.01 EU*in the background field of the earth of 3000 EU.* To accomplish this accuracy the output of the gravity gradiometer must be read to 19 bits of accuracy. This requires the gradiometer output to be very accurately filtered in order to suppress signals arising from system noise and from components of the nutation frequency occurring at the signal frequency. Current state of the art analog filters do not have this accuracy. The filtered signal must then be digitized to an accuracy of 19 bits. Analog to digital conversion of 12 bits can be accomplished with present state of the art. *1 EU = 1 Eötvös unit = 10^{-9} gal/cm where 1 gal = 1 cm/sec² P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D 6. RATIONALE AND ANALYSIS: Due to varying amplitude of gravity gradients with altitude, the satellite orbit should a. be as low as satellite drag will allow. The nominal altitude of 300 km was chosen. At this altitude the gravity gradiometer output would have to be measured within . 01 EU to obtain mission objectives, thus requiring 19 bits of data to achieve desired measurement accuracy. The gravity gradiometer experiment is scheduled to be conducted on the OP-02A b. Gravity Gradiometer payload. Resolution of earth subsurface mass distribution boundaries are presently on the order C. of 1000 km or more. The proposed gravity gradiometer measurements to an accuracy of 19 bits (.01 EU) will provide boundary resolutions to approximately 100 km and permit earth's gravity field and geoid to be measured with a spatial resolution of 1 or 2 degrees and 0.1 meter in height. The extension of the capability of current operational model(s) will satisfy this d. technology requirement.

TO BE CARRIED TO LEVEL _8

Rev. 3 December 1974	-
DEFINITION OF TECHNOLOGY REQUIREMENT NO. C-18.5	
1. TECHNOLOGY REQUIREMENT(TITLE): Filter for Gravity Grad- PAGE 2 OF <u>3</u> ometer Analog/Digital Filtering – Approach theoretical measurement accuracy	
 TECHNOLOGY OPTIONS: Rather than trying to filter out frequencies that do not divide the data frequency evenly a system of measuring these errors and subsequent correction of the digitized data may be more efficient. This increases the satellite data processing requirements. Since the earth's gravitational field changes very slowly, high speed digital sampling and digital reconstruction of the gradiometer output waveform is an option that should be further exploited. A constant bias may be used to remove earth's 3000 EU signal, then only 12-bit accuracy is needed. 	
8. TECHNICAL PROBLEMS:	
 Filtering and digitizing the gradiometer output signal to 19 bit accuracy require extremely accurate and stable electrical component characteristics. In addition electrical noise generated by the components could also introduce error into the digitized output signal. Different filtering is needed for different gradiometers particularly where instrumental errors need to be removed. In order to prevent filtered frequency shifts, the electronic circuitry would have to be in a thermal controlled thermal environment. 	
9. POTENTIAL ALTERNATIVES:	-
Digital filtering of the gradiometer output is most likely and enables instrumental error correction flexibility.	
우리는 가장 동네가 한 것이 가지 않는 것 같아. 이 가지 않는 것 같은 것 같은 것 같은 것이 많다.	
e per de la constant d'altre de la constant de la constant de la constant de la constant de la constant de la s	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: No advance will be made since only NASA has the 0.01 EU requirement.	
EXPECTED UNPERTURBED LEVEL 5	
 RELATED TECHNOLOGY REQUIREMENTS: Once the analog filtering of the gradiometer output is completed the analog to digital converter will have to be accurate to at least 19 bits. (If digital output, computer program used for detection.) Calibration of the nutational frequency would have to be accurate and stable in order to prevent harmonics from passing through the analog filter and being digitized. 	
c. Dynamic errors (alignment, etc.) would have to be eliminated.	
n. Dig no gine i di file esten definitori a file cesteri di terre de la timo di sere e case e della seconda cesci	

۰.

t, _s

											1	lev	. 3	Dec	em	ber	19'	74	
DEFINITION (DF T	EC.	HN	DLC	OGY	RE	QŬ	IRE	ME	NT	•				Ì	ю.	C-	18.	5
1. TECHNOLOGY REQUI																			
2. TECHNOLOGY REQUI	REM	N ند 1	TS	SCI	IEL			ND.	AR	YE	AR		• • •		•				
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
ECHNOLOGY 1. Theoretical Analysis 2. Filter Concepts 2. and Trades Experimental Filter 3. Programming	-																		
4. Test with simulated ignals 5. Evaluation		-																	
PPLICATION 1. Design (Ph. C)						· · ·													
2. Devl/Fab (Ph. D) 3. Operations 4.																			· · ·
13. USAGE SCHEDULE:	- 	li	!	<u> </u>	<u> </u>	<u>.</u>	<u></u>	la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la s	<u>t</u>	<u> </u>	نج ــــا	<u>t</u>	<u>.</u>	Ļ	<u> </u>	1	<u>.</u>	<u> </u>	
ECHNOLOGY NEED DATE		Ī	T			1	T	· [· · ·		Γ	Τ]]	roi	'A.L
NUMBER OF LAUNCHES			<u>†</u>			1											-		1
 14 REFERENCES: a. Summarized NASA Pa July 1974, pages 104 a b. Preliminary Payload 1 6-19 thru 6-37 c. Earth Physics Gravity Feam Leader, E. J. 6 a. AFCRL-TR-0535 A Short Wavelength C GSFC Science Report GSFC Science Report GSFC Report X-632 Gradiometer Data, f. Review of Gravity Gravy Gravity Gravity Gravity Gravity Gravy Gravy Gravy Grav	and Desc Gr: Sher Sher 2-74 P. adio 197	105. rip adic ry { icat pon 201, 1-21 Ar Ar met 3.	tion Stud ion ent 36 (ger	ter ly I of s o hio On	Vol stu ieac Ki f th Sta Esi	I, dy, ler) ner le (ate, tim R.	Aut JP , M nat ira G atin	om: L R lay ica vit eoi ng (arz r G	atec 197 1 G y F Gra Sa- eoc	l Pa ort ! 2. eoc iel B. 1. vit Roł lesy	uylo No. lcs d b Ra y A ple: , E	ads 76 y fo y S eed ano s; f	o-7 or 1 ate , M ma	uly O (J Det llit lar lie: t. rep	197 . A err e C ch s fi 197 ort	4, C ira ira 197 :om 4 RR	pag ard ing flion 73 469	es iner tho mei rav 9,	e try. ity

• • • • • • •

•***

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>C19.1</u>
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Onboard Software</u> for payload monitoring control, checkout, redundancy management and rende	
2. TECHNOLOGY CATEGORY: Software	

3. OBJECTIVE/ADVANCEMEN'T REQUIRED: Achieve a significant reduction (4:1) in software cost to reduce projected software cost to 10% of total payload cost. Reductions in software costs must be achieved in concert with minimum system costs.

4. CURRENT STATE OF ART: Software cost is greater than hardware cost. Techniques have been proposed but not demonstrated. HOL computers may decrease software development; their architectures have been studied. HAS BEEN CARRIED TO LEVEL 7

5 DESCRIPTION OF TECHNCLOGY: Onboard software programs are required for control and monitoring of automatic functions performed by onboard computers. Onboard functions can be implemented either by computer software or dedicated hardware. Computer software is more flexible and can be changed more easily than dedicated hardware to adapt to new or changed requirements. However, debugging and verifying software can be very expensive. New techniques to reduce software velopment cost are necessary to get maximum useful data from experiment operation in space.

Software techniques must be developed for manned intervention into the automatic software controlled computer processes by interactive graphics type terminals on-board and/or on the ground. This will allow the operator to alter the automatic process or to obtain additional data not made available to the operator on a routine basis.

The development of optimum software control strategies and control factors for executing planetary terminal rendezvous and docking maneuvers is a complex procedure that involves a great deal of trial, iteration and refinement. Methods for optimizing the initial closing ΔV maneuver, the subsequent range rate and line of sight control, and the docking algorithm must be analyzed and then demonstrated in a computer and by physical simulations.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

- a. The advanced technology is required to reduce the cost of software development including documentation by approximately a factor of four as per above objective.
- b. All payloads will probably use a computer so all are likely to benefit PL-01-A, Mars Surface Sample Return, will benefit from the planetary rendezvous and docking technology advancement.
- c. Lower cost software development will allow more of the money available for the payload to be spent on hardware to provide more and/or better data for the experimenter.
- d. Some software techniques can be demonstrated by analysis, others by being applied to a current software development for another program.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 8

} .		
	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C19.1	
	1 TECHNOLOGY REQUIREMENT (TITLE, <u>Onboard Software, for</u> PAGE 2 OF <u>3</u>	
	payload monitoring control, checkout, redundancy management and rendezvous and docking.	
un en politica de la composición de la composición de la composición de la composición de la composición de la	7 TECHNOLOGY OPTIONS: The following technology options should be considered to reduce software development cost:	
19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	a. Establish standardized software management guidelines and rules for the utilization of the "top down" and "structured programming" approaches to software develop- ment including such concepts as librarian and chief programmer concepts. Develop	
normality and the second second	standardized approach to requirements and specifications. Develop automated doc- umentation generation techniques. Develop standardized utility software for both	
a tanan managementa	ground and oncoard use. b. Develop a generalized checkout philosophy utilizing an optimum combination of software and hardware performance monitoring such as test pattern generation	·]].
A PANJAR	programs. c. Develop redundancy management techniques utilizing cost effective combinations	
and the second second second second second second second second second second second second second second second	of autonomous onboard control and ground control. d. Utilize HOL to reduce software cost. The concept of a HOL machine should be	
	cov dered. e. Develop architectural and data base designs that allow ease in implementing appli-	
	cation software. 1. Develop microcoded operators/operands at both algorithm and software system level.	
	*. TFCHNICAL PROBLEMS:	
	Early and firm specification of the functional and reliability requirements, load and throughput or response time requirements, plus the resources (CPU, memory, peripher us and special purpose hardware) that will be available to the software program	
	Determination of tradeoffs between flexibility of a larger processor and the use of independent firmwine modules.	
	 9 POTENTIAL ALTERNATIVES: a. Do data processing on ground with man assistance. b. Reduce amount of data collected and/or processed. c. Reuse software previously developed for other programs. 	
·	10 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	
	RTOP W-75 (656-12-01), Systems Analysis, Concepts and Modeling for Optimum Data Flow, NASA/MSFC, G. F. McDonough, (205) 453-3723.	
	1 IOP W74-70358 (502-23-32), Automated Data Handling Techniques and Components, GSFC, D. H. Schaefer, (301) 982-5184. Feasibility Study of Unmanned Rende vous and Docking in Mars Orbit, NAS 7-100,	
	June '74.	
	I' RFLATED TECHNOLOGY REQUIREMENTS:	
	a. Low cost, low weight, low power mputer memories. b. Fast, low weight computers.	
	7-424	

÷

·				_		<u> </u>						•			<u> </u>	. <u> </u>	<u>.</u>		
DEFINITION O	гı	ECI	HN	DLC	DGY	RE	លូប	IRE	Mŀ	ΓN	•				1	<i>\</i> 0.	<u></u>	19.	1
1. TECHNOLOGY REQUIR payload monitoring control,	EM che	EN' ckoi	r ('. ut,	rit red	LE) und	:_C anc)nbc y m	ard ana	So gen	ftw. nen	are t an	, <u>fo</u> 1d r	r end	•				ہ۔ ckir	1
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	HED			ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90			
TECHNOLOGY 1. Parametric Analysis 2. Selection of Techniques 3. Demonstration Plans 4. Perform Demonstrations																			
APPLICATION 1. Design (Phase C) 2. Devel. /Fab. (Phase D) 3. Operations										11_									
13. USAGE SCHEDULE:							•		•			· · ·							
TECHNOLOGY NEED DATE		T							. 		}						T	OT/	<u>I</u>
NUMBER OF LAUNCHES										$\frac{T1}{2}$							1	364	
a. Summarized NASA Paylos MSFC,b. Summarized NASA Paylos NASA/MSFC.																			
														•	-		•		
an an an an an an an an an an an an an a	•					•	• .				. •		•		·.		·		
Legend:								••.							•		• • •		
T: Technology —: Automated Operations T1: PL-01-A, Mars Surfa		Samj	ple	Rei	turn	•	•		•*••		•			 	••• •••	•		·	
n an an Arrange ann an Arrange ann an Arrange ann an Arrange ann an Arrange ann an Arrange ann an Arrange ann a Arrange ann an Arrange ann an Arrange ann an Arrange ann an Arrange ann an Arrange ann ann an Arrange ann an Ar	•	•		· .	· ·	*	· · .		•••••••••••••••••••••••••••••••••••••••		•	, i si				 Let	- 1		· . ·
15. LEVEL OF STATE O				· · · · · ·	: : : :				EN	VIRO	NME	it in	THE	LAR	DRAT	ORY.		LEVA	NT .
 BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHA 	CRIBI ENPI	: PHE SRIME	NOM NT	ENA.	NSTR	\TED		7. 1 8. 1	MODE NEW OP	L TE CAP/ ERA	STEI NHLI NONA	D IN S TY DI L MO	PACI ERIVI DEL	E ENV ED FI	TRON ROM /	MEN MU	CH LE	SSER	

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. <u>C19.2</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Software for GN&C: to</u> PAGE 1 OF <u>3</u> support high accuracy earth and planetary observation experiment pointing

TECHNOLOGY CATEGORY: _____ Software

3. OBJECTIVE/ADVANCEMENT REQUIRED: An accuracy of 5m is required for earth observation mapping experiments

4. CURRENT STATE OF ART: <u>Accuracy in the range of 30-100m is quite reasonable.</u> The AF Global Positioning System is in development.

HAS BEEN CARRIED TO LEVEL 7

5. DESCRIPTION OF TECHNOLOGY: The altitude and the required ground resolution determine the accuracy with which the orbit elements and attitude variables must be known. The error sources do not have comparable effects on image quality. An error in altitude effects scaling whereas along-track and cross-track errors in orbit elements affect positioning. An angle error about the local vertical does not have the same kind of effect as angular errors about the other two axes. Moreover, some of these error sources may not be clearly distinguishable. For example, an angular error about the velocity vector has effects somewhat similar to a cross-track orbit error. Therefore, the overall picture quality depends heavily on how these errors are estimated and eliminated.

The highly accurate navigation required probably cannot be accomplished by an autonomous on-board inertial reference system. Some form of landmark tracking combined with star tracker, horizon sensor, and TDRS tracking will be used. This multisensor correlation along with pattern recognition for landmark tracking will involve the development of new software techniques beyond those used for the Orbiter vehicle.

P/L REQUIREMENTS BASED ON: \square PRE-A, \square A, \square B, \square C/D

6. RATIONAL D AND ANALYSIS:

- a. Accurate navigation is required to allow registration accuracy to 0.1 picture elements (pixels). New software techniques can increase the navigation accuracy utilizing the outputs of advanced GN&C equipment.
- b. Benefitting payloads are: EO-08-A, Earth Observatory Satellite, EO-61-A, Earth Resources Survey Operational Sat., OP-02-S, Multifrequency Radar Land Imagery, OP-05-S, Multispectral Scanning Imagery.
- c. Better picture quality will be possible.
- d. Technology objectives can be demonstrated by flying a model of the instruments and the corresponding software on a Shuttle sortie flight. Initial demonstration test will be performed in the laboratory.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 8

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C19.2	7
• • • •	1. TECHNOLOGY REQUIREMENT(TITLE): <u>Software for GN&C: to</u> PAGE 2 OF <u>3</u> . support high accuracy earth and planetary observation experiment pointing	
· ·	7. TECHNOLOGY OPTIONS:	
	Accurate navigation (position determination) cannot be achieved by software alone. High accuracy gyros, accelerometers, star trackers and horizon sensors are also required. Proper data processing of the outputs of these components can enhance the navigation accuracy.	
	Options include various combinations of the use of sensors such as inertial platform (gimballed or strapdown), star tracker, horizon sensor, landmark tracking, TDRS, ground tracking update. Passive ranging techniques with interferometric landmark tracking may closely satisfy requirements. Use Kalman filtering to combine data from varies sensors to achieve improved accuracy.	
	8. TECHNICAL PROBLEMS:	
	a. Development of accurate hardware sensors. b. High speed computational capacity. c. State determination using landmarks in image data (e.g., cataloging, landmark	
	identification, etc.). d. State determination using integrated multisensor data.	at e Mari
· · · · · · · · · · · · · · · · · · ·	9. 1 DTENTIAL ALTERNATIVES:	
	a. Ground tracking for spacecraft position determination. b. TDRSS tracking for spacecraft position determination.	
	c. Use of the Tri-Service Global Positioning System (NAVSTAR). d. Use of space sextant with a measurement accuracy of one arc-sec or less.	
	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	1
	 a. W74-70709 (310-10-22), Mission Support Computing Systems and Techniques, GSFC, D. S. Woolston, (301) 982-5571. b. W74-70380 (502-33-41), Guidance and Navigation for Unmanned Planetary Vehicles, JPL, Robert V. Powell, (213) 354-6586. 	
at dia 19 Second	c. High Altitude Navigation Technology, SAMSO/DYAG, 1st Lt. Gary Greenleaf, (213) 643-1414. EXPECTED UNPERTURBED LEVEL 7	
	11. RELATED TECHNOLOGY REQUIREMENTS:	
	Development of accurate navigation sensors. Development of accurate attitude control and pointing control.	
	Development of clock accurate to 0.001 seconds.	n di Na
and the second		

. . [.] .

al -----

NO. C19.2 DEFINITION OF TECHNOLOGY REQUIREMENT TECHNOLOGY REQUIREMENT (TITLE): Software for GN&C; to PAGE 3 OF 3 1. support high accuracy earth and planetary observation experiment pointing 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 TECHNOLOGY 1. Options & Param. Analy. 2. Design Model 3. Build Model 4. Test Model APPLICATION 1. Design (Phas C) 2. Devel:/Fab. (Phase D) ΤÏ 3. Operations T2Τ3 e e . ė. ٥ö lee. ŵ, òā 13. USAGE SCHEDULE: T4... ė • ۲ ** ** . Total T. TECHNOLOGY NEED DATE NUMBER OF LAUNCHES 5 4 $\mathbf{2}$ 6 6 6 4 3 4 6 5 6 3 60 14. REFERENCES: a. Summarized NASA Payload Descriptions, Automated Payloads, Level A Data, July 1974, NASA/MSFC. b. Summarized NASA Payload Descriptions, Sortie Payloads, Level A Data, July 1974, NASA/MSFC. c. Advanced Scanners and Imaging Systems for Earth Observations, NASA SP-335, 1973, pp. 459-60. Legend: т Technology Sortie Operations Automated Operations T1EO-08-A, Earth Observatory Satellite T2 EO-61-A, Earth Resources Survey Operational Sat. T3OP-02-S, Multifrequency Radar Laud Imagery OP-05-S, Multispectral Scanning Imagery T4

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OFSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 8. THEORY TESTED BY PHYSICAL EXPERIMENT
 - OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR DREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 8. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTUD IN SPACE ENVIRONMENT. 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER
- OPERATIONAL MODEL.
- 9, RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

	Revised 12/2/74
DEFINITION OF TECHNOLOGY REQUIREMEN	
1. TECHNOLOGY REQUIREMENT (TITLE): Software for A Control; Accurate Pointing of Experiment Sensors	ttitude PAGE 1 OF <u>3</u>
 TECHNOLOGY CATEGORY: Software OBJECTIVE/ADVANCEMENT REQUIRED: Attitude sen 0.001 degree and tracking error signal of 0.1 to 3.0 arc sec comparison of picture elements data from different views of surface. CURRENT STATE OF ART: Military METSAT is capal accuracy using strapped down inertial measurement u arc sec is achieved currently on the NASA/Ames C-3 are in operation 	the same arcs on the earth's ble of ±0.01 degree sensing nit and star sensors.
are in operation. 5. DESCRIPTION OF TECHNOLOGY: The earth observing on a platform naturally imposes certain requirements on the motions, and the knowledge of such motions. To accurately ground within the sensor field of view, it must be possible to line-of-sight vector to adequate accuracies. The variables (or orbit) and orientation (or attitude) must be known accurate tion of the intersection point of the line-of-sight vector with these variables has a separate accuracy requirement.	g sensor carried as a payload nature and quality of platform locate a desired target on the o orient a platform-to-ground defining the platform trajectory tely to allow precise identifica-
en en en en en en en en en en en en en e	an an an an an an an an an an an an an a
p/l requirements based on:	₽RE-A, □ A, □ B, □ C/D
6. RATIONALE AND ANALYSIS:	
 a. Attitude sensing accuracy of ±0.0001 to 0.001 degree and 0.3 arc sec are required. b. The benefitting payload is EO-61-A, Earth Resources Sur sensing accuracy of ±0.0001 to 0.001 degree. Most of the Astrophysics payloads will benefit from the requirement 0.1 to 0.2 arc sec. 	rvey Operational Sat. for the ne Astronomy and High Energy
 0.1 to 0.3 arc sec. c. Earth sensing data will be able to be geometrically corre IFOV. This will be critical in operational earth resource requiring precise location of features on the ground. d. The technology can be demonstrated by flying a model of an orbiter mission. 	es and cartographic missions
한 방법은 지난 실험은 것입니다. 이 것은 것 같은 것이 가지 않는 것을 것을 것을 것을 것을 것을 것을 것을 것을 것을 것을 것을 것을	제가 있는 것 같이 가격한 것, 방법을 위한 위험을

PRECEDING PAGE BLANK NOT FILMED.

TO BE CARRIED TO LEVEL 8

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. C19.3
1	. TECHNOLOGY REQUIREMENT(TITLE); Software for Attitude Control; PAGE 2 OF 3
A	ccurate Pointing of Experiment Sensors
7	TECHNOLOGY OPTIONS:
	Cechniques that extend the use of Kalman filtering, coordinate conversions, and closed oop actuator control beyond the current state-of-the-art.
S	Software for new computer architectures for high rate and precision computations.
	Use of a space sextant, an inertial platform and a Kalman filter attitude determination program.
	if for the second data and grow the function of a state of the many second for the second for the second second
• •	n de grande en gelêkter grande gelegen de kommen de gelegen en die de legen op die gelegen de gelegen de geleg Gelegen
• .	3. TECHNICAL PROBLEMS: Studies and design efforts by Draper Laboratories (1972)
sd T tili a b c	 igma, or better, without using payload sensor data, may be achievable within the next everal years if adequate efforts are made. MMC believes attitude accuracies of 0.0001 legree (one sigma) may be achievable by 1979 using a space sextant. There is no insurmountable technological barrier in achieving post flight attitude determined accuracies below 10 microradians for the several minutes of time an ERTS-type sate that takes to pass over the continental United States. POTENTIAL ALTERNATIVES: Use post-flight smoothing and apply attitude and orbit corrections during data process to improve image quality. Use ground based precision orbit and attitude determination systems with a loosely controlled low jitter platform. Use self contained motion or jitter compensation hardware and software to improve image quality.
	. W74-70354 (502-23-43), Advanced Components for Precision Control Systems, GSFC,
	H. E. Evans, (301)-982-5194.
b	. W74-70458 (175-31-41), Spacecraft Subsystems Analysis and Design, GSFC, John Flaherty, (301)-982-6862.
	EXPECTED UNPERTURBED LEVEL
	11. RELATED TECHNOLOGY REQUIREMENTS:
	. Development of precision attitude sensor.
a	Low jitter electromechanical scanner.

7-432

TECHNOLOGY REQUIR Control; Accurate Pointin	EM g of	ECI EN'	T ('.	riT1	LE)	: <u>So</u>	ltwa	ire				le		 F		10. E 3	_		
12. TECHNOLOGY REQUI	REM	(EN	TS	SCI	IEC			ND	AR	YE.	AR				· · · · · · · · · · · · · · · · · · ·				
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	•	
ECHNOLOGY												1 .		1					
. Parametric Analysis											•					:. •			
. Design Software	-						•												
. Integrate w/Hardware		 										1.5					1. A	1997 - 1944. Ng	
<u>. Test Model</u> APPLICATION			<u>.</u>									1 a 21			<u> </u>				-
. Design (Phase C)													· . ·		· ·				ŀ
. Design (Thase O)			Γ_					· .											1
Operations				Т1	-						<u></u>				<u> </u>		<u> </u>	<u> </u>	-
	+		1	Т	_													Ļ	
13. USAGE SCHEDULE:				Τ-		-													
TECHNOLOGY NEED DATE				Т							1 J.							Tot	al
NUMBER OF LAUNCHES		T1 T2			$1 \\ 12$	1	$\frac{1}{21}$	1 20	$1 \\ 21$	$\frac{1}{23}$	1 24	$1 \\ 25$	$\frac{1}{23}$	$1 \\ 24$	1 22	1 22	1		09
14. REFERENCES:		T3		[2	1	4	2	3	1	5	2	2	1	2	3		
. Summarized NASA Payload NASA/MSFC, p.98. . Advanced Scanners and Ima		2.1			•••		 									, tet			£,
462-65.					-			a			· · · · ·			x /-	r • r	` ~		1	
	raft			able	e So	ftwa	ire	Co	ıcej	ot S	tud	y, 1	¶AS	A/1	La (<i>د</i> .)	1	
462-65. C. Statement of Work, Spacec	raft			able	5 So	ftwa	ire	Co	ıcej	ot S	tudy	y, 1	₹AS	A/1	La.	રઽ	· · · · · · · · · · · · · · · · · · ·		
462-65. C. Statement of Work, Spacec March 29, 1974, RFP 1-15	raft			able	5 0	ftwa	ire	Coi	ıcej	ot S	tudy	y, 1	₹ AS	A/J	La F	<u>،</u> د	· · · · · · · · · · · · · · · · · · ·		
462-65. C. Statement of Work, Spacec March 29, 1974, RFP 1-18 <u>Legend:</u>	raft			ajole	B S S S S S S S S S S	ftwa	ire	Coi	ıcej	ot S	tudy	y, 1	NAS	A/J		<u>ک</u> د .	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
462-65. 5. Statement of Work, Spacec March 29, 1974, RFP 1-15 <u>Legend:</u> T Technology	rafi 5-45	529.								ot S	tudy	7, 1	NAS	A/J	L.a.	२ С.,			
462-65. C. Statement of Work, Spacec March 29, 1974, RFP 1-15 <u>Legend:</u> T Technology T1 EO-61-A, Earth Resour	rafi 5-45	529. s Su	ırve	ху О	per					ot S	tudy	7, 1	VAS	A/1	La f	२८ :			
 462-65. 5. Statement of Work, Spacec March 29, 1974, RFP 1-15 Legend: T Technology T1 EO-61-A, Earth Resource T2 Astronomy Payloads 	rafi 5-45 rcei	529. s Su	ırve	з у О	per					pt S	tudy	7, 1	NAS 	A/ 1		२८ :			
462-65. C. Statement of Work, Spacec March 29, 1974, RFP 1-15 <u>Legend:</u> T Technology T1 EO-61-A, Earth Resour	rafi 5-45 rcei	529. s Su	ırve	з у О	per					pt S		7, 1	VAS	A/1					
 462-65. 5. Statement of Work, Spacec March 29, 1974, RFP 1-15 Legend: T Technology T1 EO-61-A, Earth Resource T2 Astronomy Payloads 	rafi 5-45 rcei	529. s Su	ırve	з у О	per		mal												
 462-65. Statement of Work, Spacec March 29, 1974, RFP 1-18 Legend: T Technology T1 EO-61-A, Earth Resource T2 Astronomy Payloads 	rafi 5-45 rcei	529. s Su	ırve	з у О	per	atic	mal												

- THEORY FORMULATED TO DESCRIBE PHENOMENA.
 THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
 PERTIMENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMFONENT, ETC.
- MODEL TESTED IN SPACE ENVIRONMENT.
 NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

<u> </u>	DEFINITION OF TLCHNOLOGY REQUIREMENT	NO. <u>C-19.4</u>
1.	TECHNOLOGY REQUIREMENT (TITLE): SOFTWARE, for	PAGE 1 OF 6
ext	periment operation accurate control, monitoring,	quality con-
tro	ol, high data rate processing.	· · · · · · · · · · · · · · · · · · ·
2.	TECHNOLOGY CATEGORY: Software/Computer Configura	ation
3.	OBJECTIVE/ADVANCEMENT REQUIRED: To develop techn	nology of soft-
war	e and hardware configurations to provide maximum	n data proces-
sin	g support for real time experiment operation.	
4.	CURRENT STATE OF ART: OAO operates five experime	ent functions
<u>con</u>	currently. The C-141 is flying with up to 5 com	puters to operate
one	primary and two secondary experiments HAS BEEN CA	ARRIED TO LEVEL
5.	DESCRIPTION OF TECHNOLOGY	
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	ns that the experiment operator cannot directly	
rel ate exp ers.	amount of useful data obtained during a mission ated to the efficiency with which the experiment d. Data processing automation is required to al eriments to be operated concurrently and monitored Software and computer configurations to provide the necessary portmust be developed at a reasonable cost.	s are oper- llow up to 85 by one or two obser
rel ate exp ers.	ated to the efficiency with which the experiment d. Data processing automation is required to al eriments to be operated concurrently and monitored Software and computer configurations to provide the necessar	s are oper- llow up to 85 by one or two obser
rel ate exp ers.	ated to the efficiency with which the experiment d. Data processing automation is required to al eriments to be operated concurrently and monitored Software and computer configurations to provide the necessary port must be developed at a reasonable cost.	s are oper- llow up to 85 by one or two obser

PRECEDING PAGE BLANK NOT FILMED

į,

and the second se

-	DEFINITION OF TECHNOLOGY REQUIREMENT NO. <u>C-19.4</u>
	experiment operation accurate control, monitoring, quality con-
t	trol, high data rate processing.
6.	RATIONALE AND ANALYSIS (CONTINUED)
ł	D. All payloads will benefit, in particular AS-31-S, combined AS-01, -03, -04, -05-S, and S0-01-S, dedicated solar sortie mission (DSSM).
Ċ	c. Experiment operator must have very effective data processing support to monitor several concurrently operating experiments for proper operation and to make necessary adjustments to experiment operation based on the quick look data.
	i. The level of technological maturity is the laboratory simu- lation of software techniques being developed. This simu- lation should demonstrate that an operator can monitor and control a full set of experiments concurrently. It is also necessary to demonstrate that data processing hardware techniques are available to implement the software techniques that have been developed. It is important that hardware size, weight and electrical power requirements are compatible with the Orbiter PSS and pallet mounting locations. TO BE CARRIED TO LEVEL 8
7.	. T. CHNOLOGY OPTIONS:
3	The following items need to be traded for application to providing the required soft-
1.	vare/computer configurations: . Use a voice recognition processor to execute commands spoken by the airborne xperiment controller.
2	그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같
	ntegrate it with a microprogrammable processor to reduce executive verhead and achieve flexibility.
3. pi	Demonstrate software executive control of a configuration of CPUs in a multi- rocessor configuration with a flexible dedication of memory in blocks to individual PUs with CPUs dedicated to functional sets of sensors provided by a particular
1 a a 1	sperimenter. Subgroups of CPUs should operate as a multiprocessor or perform
dj	arallel processing for sensor data channels. Software and hardware should he ynamically reconfigurable for CPU or memory failures and adapt to processing equirement changes.
4. of 5.	Identify and develop generalized utility programs of general use to a large number payloads such as data formatting, data display. Establish efficient techniques for verifying and validating computer programs by us a software generator system and interpretive language techniques to assure that new oftware or new command sequences will not interfere with existing software operation

۰.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. C-19.4

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Software</u>, for experiment PAGE 3 OF <u>6</u> operation accurate control, monitoring, quality of control, high data rate processing.

7. TECHNOLOGY OPTIONS (Continued)

Develop proof of correctness techniques for checking out key elements of software such as executive.

6. Develop software for an RF or light multiplexed data bus operating at 100 mhz (for example) with 20 or 30 separate 1 or 2 Mbps digital buses for separate functions or sensors as required to operate either under computer software control or under sensor control.

7. Select and/or develop standard data compression techniques to be applied to sensor data to be recorded or transmitted to ground. Demonstrate the separation of information from data at the sensor to reduce data rates. The scientists must be assured that no useful data is lost.

8. Develop hardware/software techniques for accurate time correlation of experiment data.

9. Develop methods of monitoring and displaying sensor data efficiently to determine if real time adjustments need to be made in the experiment operation.

10. Develop techniques for a real time virtual memory implementation.

11. Develop a set of standard, flexible software modules to meet all payload requirements by standardizing hardware interface with computer.

12. Develop computer input/output techniques to handle high data rates (up to 700 Mbps total for SO-01-S) by use of dedicated data processors for each sensor to reduce data rates. High data rates exist only in each experiment and each individual sensor.

13. Develop a standardized central stratum for use with those payloads using distributed computers to eliminate control and allow another computer to assume the primary functions of a failed computer.

14. Develop techniques to reduce overhead during software execution (more efficient executives).

15. On-board image processing for conical-scan conversion. (Ref. f., p. 506).

16. Develop micro-processor capability to handle man/machine conversions of data for use with operator control displays.

The critical parameter is the degree of payload automation required to allow one observer to monitor multiple experiments operating concurrently with simple low cost software and compact, low weight, inexpensive hardware.

	1. TECHNOLOGY REQUIREMENT (TITLE): SOFTWARE, for PAGE 4 OF 6
	experiment operation accurate control, monitoring, quality con-
	trol, high data rate processing.
	8. TECHNICAL PROBLEMS:
	1. Early determination of detailed data processing require- ments from experimenters. Degree of automation allowed by experi- ments must be defined early.
.	2. Reduction of software complexity.
	3. Real time 10^6 point fast fourier transformation.
	9. POTENTIAL ALTERNATIVES:
	1. Extensive use of ground facilities.
	2. Limit the number of experiments carried on each mission.
	3. Reduce the objectives of the experiments.
	 Increase the time duration of each mission. Accumulate large amounts of raw data on film or tape to be reduced for users after the mission.
	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT
	1. SUMC, AADC, MSC, etc. LSI computer developments will increase hardware capability.
	2. Bubble, CCD, and DOT mass memory and recorder develop- ments will greatly expand storage capacity.
	3. No directly applicable software or special purpose hard- ware advancement expected.
	4. RTOP W74-70459 (175-31-42), Spacecraft Data Processing, NASA/GSFC, Marvin Maxwell, (301) 982-4036.
	5. RTOP W-75 (656-11-04), User Technology, NASA/MSFC, G. F. McDonough, (205) 453-3723.
	6. RTOP W-75 (656-12-01), Systems Analysis, Concepts and Modeling for Optimum Data Flow, NASA/MSFC, G. F. McDonough, (205) 453-3723. EXPECTED UNPERTURBED LEVEL. 7
	11. RELATED TECHNOLOGY REQUIREMENTS:
i i i i Sigar sait	a. Accurate GN&C pointing up to 0.01?
	b. Support for basic vehicle operation.
e a se esta esta esta esta esta esta est	가수가 있는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같

. .

TECHNOLOGY REQUIREMENT (TITLE): SOFTWARE, for PAGE 5 OF _6_	1 .	
1 TECHNOLOGY REQUREMENT (TITLE): <u>SOFTWARE</u> , for PAGE 5 OF <u>6</u> experiment operation accurate control, monitoring, quality control, high data rate processing		
bigh data raté processing 12 TECHNOLOGY REQUIREMENTS SCHEDULE:		4
CALENDAR YEAR		
SCHI U E ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91		1
TECHNOLOGY . Parametric Analysis		
. Design Software		
. Integrate W/Hardware		
APPLICATION	•	
. Design (Phase C)		
. Development/Fabri- cation (Phase D)		
. Operations $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
│		
USAGE SCHEDULE:		
ECHNOLOGY NEFD DATE TI TI TI TI TI TI 2TI 2TI 2TI 2TI 2TI 2	1	
L MBER OF LAUNCHES		
a Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL pp. 83-119.		
b. Summarized NASA Payload Descriptions, Sortie Payloads, July 1974 NASA/MSFC.		
c. Spacelab Sortie Payload Software Sizing Analysis, Feb. 1974, IBM.		
d. Summarized NASA Payload Descriptions, Automated Payloads, July 1974, NASA/MSFC.		
e. Statement of Work, Spacecraft Adaptable Software Concept Study, NASA/LaRC.	120204	
March 29, 1974, RFP 1-15-4529.		
i. Advinced Scanners and Imaging Systems for Earth Observations, NASA SP-335, 1973 p 506-27. LEGFND	3 	
(T1) = AS-31-S, Combined AS-01,-03,-04,-05-S		49 H H
(T2) = S0-01-S, Dedicated Solar Sortie Mission (DSSM)		
(T3) = Other sortie flights.		
(T4) = Automated payload flights.		
15. LEVEL OF STATE OF ART 5. COMPONENT OR AREADBOARD TESTED IN RELEVANT		
1. BASIC PHENOMENA ODSERVED AND REPORTED 5. MODEL TESTED IN AIRCRAIT & NVIRONMENT. 2. THEORY FORMULATED TO DESCRIBE PHENOMENA 7. MODEL TESTED IN SPACE ENVIRONMENT. 3. THEORY FORMULATED TO PHYSICAL EXPERIMENT 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OR MATHEMATICAL MODEL. 0PERATIONAL MODEL.		
4. PERTIN N FUNCTION OR CHARACTERISTIC DEMONSTRATED, 9. RELIABLITY UPGRADING OF AN OPERATIONAL MODEL. C NATERIAL, COMPONENT, ETC. 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.		

19. 1911 -

	Payload			2 4 4 4 	·	Contr	ol/Dis	play		•		On .	Board	Data P	rocessi	ng	. :
						(3) ohes		រដូ		-[un 5003	ł			Ra Acc Men		Ba 1."em	
lef, No,	Name	Number of Simultaneously Operating Sensors/ Data Channels	Output Data Rate BPS	Observers/ Shift	Number of Keyboards	Number of (3) Indicater/Switches	% of C/O Automated	Number of Inter- active Displays	Display Area m ² (it ²)	Number of Simul- taneous Eunctions	Number of Chua- nels/Routines	Computations per Second	Word Length Bits	Number of Words	Access Time (µsces) *	Number of Words	Access Time (µseco)
S-22-S	Combined Astronomy Sortie	3 exp(1) 6 pt.	2.6×10 ⁴	1	1	68	90	2	0.78 (8.38)	9	9	50K	32	8K	6	125K	50
50-31-5	Dedicated Solar Sortie Mission	85 exp 12 to 15 pt	1.3×10 ⁷	2	2	840	90	4	1,91 (20,5)	97	97	200K	32	32K	2.5	500K	25
\P-05-S	Atmospheric & Spaco Pluŝma Physics	22(2) 22 pt	10 ⁶	2 to 3	2	352	80	4	1, 12 (12) to 4,48 (48)	44	44	86K	16	32K	1	30M	1000
30-01-5	Earth Resources Sarvey Facility (ESRO)	11 exp 14 pt	6.25 x10 ⁷	1	1	44	60	1	2m ² (21.6) to 4 (43.2)	25	25	100K	32	56K	1	COBK	*ŋ ⁴
9 P14- S	Space Processing Applications	4 cxp	1.4×10 ⁴	1 One Shift Only	1	16	30	1	1. 116	4	4	(10K)	(15)	(8K)	(50)	None	-
GS-098	Life Sciences Shuttle Lab + Research Center	24 exp	3.4×10 ⁴	3 One Shift Only	2	200	80	1	0.56 (6)	24- 100			16	32K	1	10M	15 x 10 ⁶

÷

TECHNOLOGY REQUIREMENT (TITLE); SOFTWARE, experiment operation accurate control, monitoring, high duta rate processing,

for

PAGE 6 OF 6

NO

C-19.

4

quality control,

DEFINITION OF TECHNOLOGY REQUIREMENT

=

S.

5

ан. 1

دهم المتلادية (المراجع المراجع المراجع المراجع <u>المراجع المراجع المراجع المراجع</u> المراجع المراجع المراجع المراجع

اور و مربع م

4

DEFINITION	OF	TECHNOLOGY	REG	UIREMENT	•
------------	----	------------	-----	----------	---

NO.GE 19.5

1 TECHNOLOGY REQUIREMENT (TITLE): <u>On-board processing of</u> PAGE 1 OF <u>5</u> <u>Mission Data for Payload Experiments/Operations.</u>

2. TECHNOLOGY CATEGORY: <u>Software/Systems</u>

.. OBJECTIVE/ADVANCEMENT REQUIRED: <u>Develop</u> advanced software and system techniques for on-board and ground processing of remote sensing data.

4. CURRENT STATE OF ART: Limited on-board processing is planned for

automated spacecraft in 1978-1980 time frame.

HAS BEEN CARRIED TO LEVEL 6

5. DESC UPTION OF TECHNOLOGY

Technological advances are needed in software, on-board processors, and the techniques for utilizing these most effectively to handle the increasing complexity of multi-sensor, multi-disciplinary payloads that will service a large number and broad variety of users. Current techniques for on-board and ground processing of earth-sensing data are based on limited knowledge of user requirements, and are tailored to individual sensors rather than observational systems.

P/L requirements based on: \square PRE-A, \square A, \square B, \square C/D

6 RATIONAL F AND ANALYSIS: A.

The processing of mission data requires a large portion of the overall cost of orbital remote sensing systems. The processes encompass all the functions required between the sensor's output and the input to the users. The system equired for their implementation must provide optimum allocation of those functions that are more efficiently accomplished on-board and those that should be performed in ground based facilities. Candidate functions for on-board processing include geometric, radiometric and dynamic response corrections, data compaction, and information extractive processes. In order to realize significant savings in design, procurement and operation of these systems, the advances in software, on-board processors and implementation techniques must be based on satisfying current and projected user needs. These needs vary according to the type of investigation being performed, from the gathering of data using very new (unproven) sensor concepts, to repetitive operational surveys of national or global scope. Thus, the first input to the technology program should be a statement of specific user requirements in remote sensing disciplines, representative of the spectrum of current and future users such as that prepared by the TERSSE Study for OA/ERPO. Having established the baseline, the following steps will be required:

(continued on page 2)

TO BE CARRIED TO LEVEL 8.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO, <u>GE 19.5</u>

1. TECHNOLOGY REQUIREMENT (TITLE): <u>On-board processing of</u> PAGE 2 OF <u>5</u> Mission Data for Payload Experiments/Operations.

(C Continued)

 a) Determination of the characteristics of the data processes needed to do data correction and extraction. Included here should be not only data transformation, but also consideration of the data transmission links and attendant data compression requirements.

b) Commonality analyses to permit the grouping of user requirement categories and attendant characteristics according to similarities in implementation needs.

c) Assessment of current and projected state-of-the-art in software, processors, memory devices, computer attitude determination systems data links, etc. as they relate to the user requirements, characteristics and groupings in a and b above.

d) Determination of cost-effective implementation approach applicable to specific cases in each user requirement category. The primary criteria will be cost, and will consider centralized and distributed networks of groundbased facilities as well as on-board processing equipment.

e) is choology advances will be effected to permit the implementation of the approaches in d above, within the time constraints of the specific payloads affected.

В.

The payle ads that will benefit from this program are automated and sortie P/L's in Earth Observation, Earth and Ocean Physics, Atmospheric and Space Physics, Astronomy, High Energy Astrophysics and Solar Physics.

C. .'

Using cost as a primary criterion, this advancement potentially will aid in realizing a significant portion of the future resources allocated to space payloads (including not only NASA's but also NOAA, DOD, DOI, DoA's etc.).

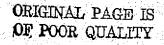
D.

The level of technological maturity required is the analysis of at least one representative payload in each user requirement category. Probably extensive use of on-board processing will not be accepted by the users prior to demonstration on a spacecraft.

		موجدة المراجعة المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا		
·	DLFINITION OF 'I	ECHNOLOGY RE	QUIREMENT	NO GE 19.5
TECH	IOLOGY REQUIREMEN	NT(TIT1 I): <u>On-b</u>	oard processing of	PAGE 3 OF _5
Mission E	ata for Payload Expe	eriments/Operati	Ons	
	OLOGY OPTIONS: ology advance encomp	asses the follo	wing parameters:	
a)	Time constraints bet the user.	ween data acqui	sition and data dis	semination to
b) c)	Desired format(s) fo (ost-including devel necessary to impleme	lopment and recu		
	Quality (accuracy, r approach 'e.g. real- Impact of the approa	resolution, line time vs. non re	al-time correlation	1)
	of HADAMARD transformanifested in the tr	mation may impr	ove the manner in w	
			(contir	wed on page 4)
9. POTEN An altern trade-off the simil	TIAL I. FLENATIVE ative the develop analyses or each in arities would be evi ad to apply to anoth	S: ment of this me ndividual payloa ident enough to	thodology is to per d that is flown. I	cform detailed In some payloads
e e statut	na i na shekara		ang salat na anatar kapada	n Na selate participations
PLANN	ED PROGRAMS OR UI	NPERTURBED TI	ECHNOLOGY ADVAN	CEMENT:
	-51 177-32-11	177-32-71 1	77-42-41 177-42- 77-42-81 177-42.	-82 -81
	·		EXPECTED UNPER	FURBED LEVEL 6
a. b. c.	TFD TECHNOLOGY Sensor development t Advancements in soft Advancements in data Pointing and trackir	rends and proje ware designs a processors		
	같이			

ドリレ

and the second second second second second second second second second second second second second second second



7-443

7. j.

eleti etetjia	DEFINITION	OF TECHNOLOGY	REQUIREMENT	N	O, <u>GE 19.</u>
		IREMENT (TITLE):		ssing of PAG	e 40f_ <u>5</u>
Mission	Data for Payl	load Experiments/Op	erations.		

f) Grow h in technology capability in software and hardware (e.g. use of Tukey-Cooley algorithms to reduce computation time requirements; development of a chip for performing Fourier transforms in multielement arrays.)

DEFINITION O	гŢ	EC	HNC	DLC	GY	RE	QU	IRE	MF	NT	1				N	10.0	E 1	L9.5	
1 TECHNOLOGY REQUIR Mission Data for Payl	- 10 A.		- T.							<u></u>	ess	ing	of	 [1	AG	E 5	OF	5	-
12. TECHNOLOGY REQUI	REM	EN	TS	SCI	IED			ND.	AR	YE	AR				, .				
SCHEDULE ITEM	75	76	77	78	79			82				86	87	88	89	90	91		
TECHNOLOGY 1. USER SURVEY						· .													
 ²• REQUIREMENTS DEFINI- TION ³• S.O.A. ASSESSMENT 	++	·					· · ·												
4. TRADEOFFS 5. DEVELOPMENTS			- 		··· .			· · · · ·											
APPLICATION 1. Design (Ph. C) N/A							 : 												
2. Devl/Fab (Ph. D) N/A																			
 Operations 4. 		e de N																	
13. USAGE SCHEDULE:					· ···														
TECHNOLOGY NEED DATE				4														roi	ΆL
NUMBER OF LAUNCHES *	Γ				1	9 1	4 1	7 14	+ 1:	2 1	1 1	5 2() 19	9 21		7 2:	3 18	3 22	1
14 REFERENCES: Earth Observation Sate Cost Trade-off Studies									Stu	ıdy	Rej	port	t No	. 1	3:	Des	sigi	n	
Iotal Earth Resources	Sys	ten	ι fc	r t	he	Shu	itt]	le I	lra	Fir	1al	Re	port	Ė, Vo	b 1.	3.	· 1		
* Based on automated	P/I	. 1e	unc	hes				app	5 J.	eab.	le d	lis	cip.	lin	es.			· · · · · ·	
er den ser en en en en en en en en en en en en en														Жен,				n n n Len if	
가지 가지 않는 것이 있는 것이 있다. 같은 것은 것은 것은 것은 것은 것은 것은 것을 했다.														. :				، این اور اور اور اور اور اور	
15. LEVEL OF STATE O	F A	RТ		sige exit	1 2			5. (N REI	LEVA	ЯТ
 I. EASIC PHENOMENA OBSERVED THEORY FORMULATED TO DES THEORY FISTED BY PHYSICAL OR MATHEMATICAL MODEL, 4. PERTINENT FUNCTION OR CHA E.G., MATERIAL, COMPONE. 	AND ! CRIBE E (PE F.ACT	iepo Piie Rime Eris:	NOMI NT	ENA.	1STR/	NTED	1999. Sigi s	6. 1 7. 1 8. 1 9. 1	EN MODE MODE NEW OP RTLL	VIRON L TE L TE CAPA ERAJ A BILI	NMEN STEL STEL DILI IONA TY U	T IN IN A IN S IN S L MC PGRA	THE IRCR PACE RIVE DEL. DING	LARC AFT ENV	IRATO ENVII IRONI OM A	DRY, RONM MENT MUC ERAT	ENT.	SSER	DEL.

.....

. . .

and the fact

101 102000 CV

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>GE 19.6</u>
1 FECHNOLOGY REQUIREMENT (TITLE): Data Retrieval & Ground- Based Fransformation and Distribution	- PAGE 1 OF <u>3</u>
 2 TECHNOLOGY CATEGORY: Software/Systems 3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop software and stransforming data into the user's frame of reference and permit 	
rapid remote access to it.	
4. CURRENT STATE OF ART: AFOS distribution system permits	rapid access;
GE image 100 permits rapid processing; transformation/gridding	
not yet developed. HAS BEEN CARR	IED TO LEVEL 5

5. DESCRIPTION OF TECHNOLOGY

Future Earth observations systems will produce data for a multitude of users who are performing various tasks and who are geographically distributed. The users all have individual frames of reference and information extraction needs. Systems and software required which can access Earth Observations data banks, transform the coordinates of the data into user-determined systems, and permit the user to interactively process the data for his own needs via low-cost remote terminals. The systems will encompass large mass storage, special purpose processors, telecommunications links, and low-cost interactive remote terminals.

Current Earth Observations technology has progressed only to the point of preprocessing. A few first-generation systems exist for rapid extractive processing but no distributed time-shared system has been concieved.

P/L REQUIREMENTS BASED ON: X PRE-A, A, B, C/D

6. RATIONALE AND ANALYSIS:

A The data retrieval and transformation/distribution system will require several technological advances in the area of processors, time-sharing strategies, telecommunications, and remote terminals. Low cost is of utmost importance because of the ultimate large number of such systems to be implemented. The planned U.S. Domestic Communications Network is an enabling technology, High-speed digital equipment and large memory-storage technologies are potential sources for solutions.

B Payloads in Earth Observations, Earth and Ocean Physics, and Atmospheric Physics will benefit from this technology advancement.

C. This advancement would be useful in realizing significant savings in the resources allocated to payloads.

D. The technology program will require the demonstration of the system through modeling techniques, using a representative spectrum of user requirements.

PRECEDING PAGE BLANK NOT FILMED

TO BE CARRIED TO LEVEL 8

DEFINITION OF TECHNOLOGY REQUIREMENT NO. GE 19.6	1	
		· · · ·
 1. TECHNOLOGY REQUIREMENT(TITLE): Data Retrieval & Ground- PAGE 2 OF 3		
Based Transformation and Distribution		∮ ∱ ≿ i
TECHNOLOGY OPTIONS:		
Technology options exist at each stage of the process. Retrieval can be accomplished either manually or by machine. The transformation to the user's coordinates must be done at high speed but with great flexibility, leading to a trade between special purpose and general purpose machines. The distribution option involves a bandwidth versus terminal cost trade.		
a series a substantia e construir e la substantia e construir de la substantia de la substantia de la substant En substantia e construir e construir e construir e construir e construir e construir e construir e construir e		
물건이 있는 것은 것은 것은 것은 것은 것을 가지 않는 것은 것이 있는 것은 것은 것이 있는 것은 것은 것은 것은 것은 것은 것은 것은 것이 있는 것은 것은 것은 것은 것은 것은 것은 것은 것은 것 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은		
8. TECHNICAL PROBLEMS:	*	 [
Data compression: high-speed digital logic that is flexible; standardization of user terminals, formats, and procedures.		
i de provinse en la finite en production de la construction de la construction de la construction de la constru La construction		
		1
n en en en en en en en en en en en en en		
9. POTENTIAL ALTERNATIVES:		
Totally centralized processing and/or mail distribution for analysis on user omputers where they exist.		
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:		1
· 사실· 통하는 것 같은 것 같아요. 전 것 같아요. 가지 않는 것 같아요. 가지 않는 것은 것 같아요. 가지 않는 것 같아요. 가지 같아요. 가지 않는 것 않는 것 않는 것 않는 것 않는 것 않는 것 않는 것 않는		
None known.	atas e data de Alexandra datas Alexandra datas	
1993년 1993년 1993년 1월 1985년 1993년 1993년 1993년 1993년 1997년 19 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 199		
EXPECTED UNPERTURBED LEVEL 5		
11 RELATED TECHNOLOGY REQUIREMENTS:		
Sensor design, telecommunications development, onboard processing large data base development, applications development (by OA)		217 ⁻¹² 1260 ¹¹ 46 04.5 44
n. Na su su su su su su su su su su su su su	i para seri	

۰.,

DEFINITION O	FТ	EC	INC	DLC	ΟGΥ	RE	ເຊບ	IRE	ME	NT	1			· ·			GE		
1. TECHNOLOGY REQUIR Transformation and		1.1				<u>. Da</u>	ita	Ret	ric	eval				1	'AG	E 3	OI	3	
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	IED			ND.	AR	YE.	AR		·· ·				· · ·		· · ·
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. TRANSFORMATION SYSTEM				-	-											 			
2. TERMINAL SYSTEM	·	<u> </u>																÷	
3. RETRIEVAL SYSTEM	, t	<u> </u>									• •	· .		÷	· ·	 			a [
4. MANAGEMENT SYSTEM	, 			2 	e.						11. 11.								:
5. An an Anna Charles an Anna Anna Anna Anna Anna Anna Anna	·								. * .	v				w ^r .					 :
PPLICATION		·· ·														f			
1. Design (Ph. C)			<u> </u> :	.			·	•						· · · · · ·					
2. Devl/Fab (Ph. D)				<u> </u>		ļ	н 											ŀ	
 Operations 4. 				 	, 								 						
13. USAGE SCHEDULE:		<u> </u>		<u> : : -</u>		L	_	1	1		.				<u> </u>	<u> </u>	1	1	
		<u> </u>	1	1.	Ţ	Î.	T.	<u> </u>		1	-	1	T	ľ	1	T		гот	TAT
FECHNOLOGY NEED DATE NUMBER OF LAUNCHES		<u> </u> .								-								+	
	<u> </u>		· · · ·	<u> </u>	<u> </u>	(TB	<u>4)</u>	Ļ		-		<u> </u>	. <u> </u>	<u> </u>		<u> </u>		_	
 REFERENCES: Total Earth Resour Volumes 1 & 3. Office of Applicat 	•	e iy i			. •	÷		 	•		· ·	3	·			- 		275	
																		en d Strig	in Internet Surres
 LEVEL OF STATE OI BASIC PHENOMENA OBSERVED THEORY FORMULATED TO DESC THEORY TESTED BY PHYSICAL OR MATHEMATICAL MODEL. PERTINENT FUNCTION OR CHAI 	AND I CRIBE EXPE	REPOI PHEI RIME	NOME NT	NA.	ST 13	TED		6. N 7. N 8. N	EN 10DE 10DE 10DE 1EW (0PI	ЛRON L TE L TE JAPA	imen Sted Sted Nilli Iona	T IN IN A IN S Y DE L MO	ADEC THE I IRCRI PACE RIVE DEL.	LABO AFT I ENV D FR	RATO ENVIE IRONI OM A	ORY. IONM MENT MUC	ENT. H LE	SER	

ì

Į,

REFERENCES

8

The applicable references and data sources are listed in Paragraph 14 'REFERENCES" of each 'Definition of Technology Requirement" item in Section 7 of this report.

t_{elen}

PERSONNEL CONTACTED

CONTENTS

Page

÷.

A. 1	NASA/OAST PAYLOAD TECHNOLOGY PANEL AND DIR SUPPORTING PERSONNEL	ECTLY	A3
A.2	NASA HEADQUARTERS	n de la Calender N	A-4
A. 3	GODDARD SPACE FLIGHT CENTER		A5
A.4	LANGLEY RESEARCH CENTER		A-8
A.5	GEORGE C. MARSHALL SPACE FLIGHT CENTER		A-10
A. 6	LYNDON B. JOHNSON SPACE CENTER		A-12
A. 7	JET PROPULSION LABORATORY		A-13
A. 8	AMES RESEARCH CENTER		A-14
A. 9	LEWIS RESEARCH CENTER		A-16
A.10	WALLOPS FLIGHT CENTER		A-16

A-1

APPENDIX A NASA AND JPL CONTACTS

A. 1 NASA/OAST PAYLOAD TECHNOLOGY PANEL AND DIRECTLY SUPPORTING PERSONNEL

NASA Headquarters Washington, D. C. 20546 RX/S. Sadin SL/R. Tarver RS/W. Hayes RS/E. Gabris REM/H. Anderton MK/G. Esenwein RC/F. Demeritte RC/A. Henderson EX/G. Kayten SG/R. Chandler

Goddard Space Flight Center Greenbelt, MD 20771 745.0/W. Russell, Jr. 410.0/F. Cepollina

Langley Research Center Langley Station Hampton, VA 23365 412/R. Osborne

George C. Marshall Space Flight Center Marshall Space Flight Center Alabama 35812

> PD21/R. Nixon PS06/H. Craft

Lyndon B. Johnson Space Center Houston, Texas 77058 CB/J. Allen Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Frank T. Barath/M.S. 186-118

Ames Research Center Moffett Field, CA 94035 202-5/A. Worden, Panel Chairman 202-9/L. Alton

Lewis Research Center 21000 Brookpark Rd. Cleveland, Ohio 44135 5401/E. Otto

John F, Kennedy Space Center Kennedy Space Center, Florida 32899 SO-B/J. Clark DD-SED-4/W. Boggs

Col. R. Johnson Code DY SAMSO P.O. Box 92960 Worldway Postal Center Los Angeles, CA 90009

PRECEDING PAGE BLANK NOT FILMED

A-3

PERSONNEL CONTACTED

A.2 NASA HEADQUARTERS, Washington, D.C. 20546

Name

Discipline/Category

Dr. Jeffrey D. Rosendhal Dr. Albert Opp Dr. Adrienne Timothy Fred Berko Pitt G. Thome Dr. Joseph W. Siry (GSFC) Dr. James H. Bredt Dr. Rufus R. Hessberg Robert W. Dunning Edward Gabris Paul Tarver Samuel W. Fordyce C. E. Pontius Franklin D. Martin Floyd I. Roberson Jules Lehman George C. Deutch Norman J. Mayer James Gangler Bernard G. Achhammer Dr. Joseph G, Lundholm, Jr. Dr. Peter Kurzhals Clarence E. Catoe Dr. Bernard Rubin Ernst M. Cohn James Lazar Frank W. Stephenson, Jr.

Astronomy Astrophysics Solar Physics Atmospheric and Space Physics Earth Observations Earth & Ocean Physics Space Processing Life Sciences Life Sciences Space Technology Planetary Communication/Navigation Communication/Navigation Lunar Lunar Sensors Structures/Mechanical & Materials Structures/Mechanical & Materials Structures/Mechanical & Materials Environmental Control Radiation Protection/Hardening GN & C/Attitude Control TT&C/Data Sensors, Systems and Instrument Electronics Electrical Power Propulsion Propulsion

PERSONNEL CONTACTED

A.3 GODDARD SPACE FLIGHT CENTER, Greenbelt, Maryland 20771

Name	Item No.	Subject/Category
Peter Argentiero	18,5	Gravity Analog/Digital Filtering
Dr. S. Auer	5.3	Solids Analysis – Comet Tail
Charles Capps	19.1 thru	Software
an an the second second second second second second second second second second second second second second se	19.4	
Ed Chin	1.4	UV - IR Telescope, Large Optics
	2,7	UV Echelle Spectrograph
	8	Contamination
Jerome Eckerman	1.9	Ratio-Large Microwave Antenna Arrays
	4,3	Synthetic Aperture Radar
Carl E. Fichtel/	1.1	Gamma-Ray Survey Instrument, Large
R. Hartman	2.1	Cosmic Ray Spatial Detector
· · · · · · · · · · · · · · · · · · ·	9,3	Cosmic Ray/Gamma Ray Protective Shell
	18.1	High Energy Pulse Measurement and
	•	Correlation Detection
Dr. M. W. Fitzmaurice	3.1	VIS & IR Laser
	4.1	IR LIDAR System
Arthur J. Fuchs	19 , 1 thr u	Software
	19.4	
I. Larry Goldberg	2,16	IR Pyroelectric Detector, Uncooled
Henry Hoffman	15.5	Earth Resource - Star Sensor, Strapped
		Down, Advanced Gyro
Stephen S. Holt	1.2	X-Ray Telescope
	2.2	X-Ray Transmission Grating
	2.3-1	X-Ray Maximum Sensitivity Detector
	2.3-2	X-Ray Polarimeter
	2.4 & 2.5	X-Ray Proportional Counter, Position Sensing
	2.6	X-Ray Converter/Intensifier
	9,6	X-Ray Instrument Mount/Selector
Dr. Robert Hunter	14.1	Planetary-Thruster, Mercury Ion
	14,2	Sta. Keeping-Thruster, Cesium Bombardment
Seymour Kant	2,8 thru	VIS - IR Mapper
방상부장 공부 전에 관련하는 것이 없다.	2.11	
	6.1	Gradiometer Accelerometer
Robert E. Kidwell	2.26	Relativity - Precession Gyroscope
	10.1	IR Chamber/Selector
	12.1	Super-conduction - Cryostat Dewar, He II
이번 승규가 한 것을 수 있는 것 같아요.	12.2	Long Duration IR Missions - Helium
De la grant de la constant de la constant de la constant de la constant de la constant de la constant de la cons		Reliquification
		승규의 이번 것을 물었는 것을 만들는 것을 물질을 가지 않는 것을 했다.

A-5

PERSONNEL CONTACTED

A.3 GODDARD SPACE FLIGHT CENTER, Greenbelt, Maryland 20771 (Continued)

		이 문제 같은 것이 같아요. 이 같아요. 이 것이 같아요. 이 것이 같아요. 이 것이 같아요. 아이지?
Name	Item No.	Subject/Category
Marvin S. Maxwell	2.8 thru	VIS - IR Mapper
	2.10	
	19.4	Software for Experimental Control
John McElroy	3.1	VIS & IR Laser
	4.1	IR LIDAR System
Werner Neupert	9.4	UV-IR Solar Telescope
Stan Ollendorf	2,26	Relativity - Procession Gyroscope
	10.1	IR Chamber/Selector
	12,1	Super-conduction - Cryostat Dewar, He II
	12.2	Long Duration IR Missions - Helium
		Reliquification
Jonathan Ormes/J. Arens	9.3	Cosmic Ray/Gamma Ray Protective Shell
Harvey Ostrow	2,11	VIS - IR Mapper
David Schaeffer	16.1	Planetary Data Transmission
	16.4	Monitor and Control Data Memory
	16	TT&C/Data Processing
	19.4	Software for Experiment Control
Paul E. Schmidt	2,18	Radio – Range & Range Rate Sensor
Stanley Sobieski	2.7	UV Spectrograph, Echelle
	2,19	VIS-UV Photon Detector
	2,20	VIS-UV Polarimeter
	2,21	VIS-UV Electrographic Camera
	2.22	IR-VIS-UV-XUV Filters
Nelson Spenser	5.5	Plasma Data System
	16.1	Transmission Systems - Planetary Probe
Dr. C. E. Velez	19.1 thru	Software
and the second states of the second states and the	19.4	and a second second second second second second second second second second second second second second second
Oscar Weinstein	1.7	IR Scanner (Thermal Scanner Radiometer)
		VIS-IR Mapper
	2.12	VIS-IR Spectrometer
John J. Over	10.2	Gravity Gradiometer Temperature Control
Frank J. Capollina/	5.7	Self Aligning Multipen Electrical Connector
William Logan, Jr.	9.7	Module Resupply Mechanism
	9.8	Spacecraft to Shuttle Docking/Deployment & Retention Mechanism
alah di kumun dalam di sing di ku Ka	9 . 9	Backup EVA Drives & Tools for Resupply of Modular Spacecraft
	Å	-6

PERSONNEL CONTACTED

A.3 GODDARD SPACE FLIGHT CENTER, Greenbeit, Maryland 20771 (Continued)

Name	Item No.	Subject/Category
	9.10	Remote Manipulator System End Effector Mechanism – Shuttle to Spacecraft
	9,11	Spacecraft to Tug Docking Mechanism
Thomas T. Wilheit/	2,17	Soil Moisture Sensor
Thomas J. Schmugae	·. ·	
Walter Carrion/	3,1	Visible & IR Laser
Don Premo		
Charles MacKentic/	17.1	High Voltage Solar Array
Luther W. Sufer, Jr.		

PERSONNEL CONTACTED

A.4 LANGLEY RESEARCH CENTER, Langley Station, Hampton, VA 23365

Name	Item No.	Subject/Category
Wendell G. Ayers	2.8 thru 2.11	VIS – IR Mapper
Williard Anderson	2.12 & 2.13	VIS-IR Spectrometer
	2,23	VIS-IR Advanced Atmospheric Sensors Group
D. E. Barthlome	10.4	CO ₂ Desorption - Steam Generation, Zero-G
Walter E. Bressette	2.8 thru 2.11	VIS – IR Mapper
	2.12 & 2.13	VIS – IR Spectrometer
	2.23	IR - VIS Advanced Atmospheric Sensors Group
Dr. W. P. Chu	1.8	VIS - IR Optical System for Laser
Gary W. Grew	2.10	VIS - IR Mapper
	2,23	VIS - IR Advanced Atmospheric Sensor Group
Charles Gurtler	2.8 thru	VIS - IR Mapper
	2.11	
Jack Hall	2.8 thru	VIS – IR Mapper
	2.11	
	2.12 &	VIS – IR Spectrometer
	2.13	
	2.23	IR - VIS Advanced Atmospheric Sensors Group
Herbert D. Hendricks	2.14 - 1	IR Photometer
	2.15	IR Spectrometer, Interferometer
	2.16	IR Pyroelectric Detector, Uncooled
	11.1	Planetary – Structural Mechanism
Robert V. Hess	3.1	VIS & IR Laser
	14.1	Planetary Thruster, Mercury Ion
Edwin T. Kruszewski	9.1	Plasma and Fields - Instrument Boom, 50m
	9.2	Payload and Spacecraft Structure
Don Lawrence	2.10	VIS - IR Mapper
	2.13	VIS – IR Spectrometer
M. P. McCormick	1.8	VIS – IR Optical System for Laser
	2.14-1	IR Photometer
	2.23	IR - VIS Advanced Atmospheric Sensors Group
	3.1	VIS & IR Laser
	14.1	Planetary Thruster, Mercury Ion

A--8

13

PERSONNEL CONTACTED

A.4 LANGLEY RESEARCH CENTER, Langley Station, Hampton, VA 23365 (Continued)

Name	Item No.	Subject/Category
R. S. Osborne	2,23	VIS – IR Advanced Atmospheric Sensors Group
James L. Raper	2.8 thru	VIS - IR Mapper
	2.11	
	2.12 &	VIS – IR Spectrometer
	2.13	
	2,23	IR - VIS Advanced Atmospheric Sensors Group
H. J. E. Reid, Jr.	15.5	Earth Resources - Star Sensor, Strapped
		Down, Advanced Gyro
Eugene Sivertson	1.9	Radio – Large Microwave Antenna Arrays
	2.8 thru	VIS - IR Mapper
	2.11	
Robert B. Spiers, Jr.	2.10	VIS – IR Mapper
	2.23	VIS – IR Advanced Atmospheric Sensor Group
Charles Tynan	10.4	CO ₂ Desorption – Steam Generation, Zero G
Willard R. Weaver, Jr.	13.2	Planetary Return - Docking
John W. Wilson	2.15	IR Spectrometer, Interferometer

l List a

PERSONNEL CONTACTED

A.5 C ORGE C. MARSHALL SPACE FLIGHT CENTER, Marshall Space Flight C ter, Alabama 35812

Nai e	Item No.	Subject/Category
James B. Dozier	8.1	Optical and Plasma - Surface Cleaning
	8.2	IR-IVS-UV-X-RAY Contamination Monitor
	8,3	IR-VIS-UV-X-RAY Contamination Processes Understanding
	8.4	IR-VIS-UV-X-RAY Contamination Avoidance Devices, e.g., Electrets
Garvin Emanuel	1.4	UV-IR-Telescope, Large Optics
Richard B. Hoover	1.2	X-Ray Telescope
Thomas N. Marshall, Jr.	2.15	IR Spectrometer, Interferometer
	11.1	Planetary Structural Mechanism
W. Mordan	9.1	Plasma and Fields - Instrument Boom, 50m
Robert J. Naumann	8.1	Optical and Plasma - Surface Cleaning
	8.2	IR-VIS-UV-X-RAY Contamination Monitor
	8.3	IR-VIS-UV-X-RAY Contamination Processes Understanding
	8.4	IR-VIS-UV-X-RAY Contamination Avoidance Devices, e.g., Electrets
Max Nein	8.1	Optical and Plasma - Surface Cleaning
	8.3	IR-VIS-UV-X-RAY Contamination Avoidance
		Devices, e.g., Electrets
	15.1	Astronomy Physics - Tracker, Field Monitor and Guide Star Sensors
Charles R. O'Dell	2.19	VIS - UV Photon Detector
	2.22	IR-VIS-UV-XUV Filters
R. A. Potter	1.1	Gamma- Ray Survey Instrument, Large
	1.2	X-Ray Telescope
	2.1	Cosmic Ray Spatial Detector
	9,3	Cosmic Ray/Gamma Ray Protective Shell
	9.4	UV - IR Solar Telescope-Structure
Percy H. Rhodes	5.2	Bio & Organic - Electrophoretic Process
W. Roberts	9.1	Plasma and Fields - Instrument Boom, 50m
Kenneth R. Taylor	5.1	Liquid & Solid – Levitation Unit
W. Thompson	9.1	Plasma and Fields - Instrument Boom, 50m
W. G. Thornton	7.3	ElectMech. Teleoperator Subsystems
	2.18	Range and Range Rate
J. Waite	9.1	Plasma and Fields - Instrument Boom, 50m

A-10

PERSONNEL CONTACTED

. . . .

A.5 GEORGE C. MARSHALL SPACE FLIGHT CENTER, Marshall Space Flight Center, Alabama 35812 (Continued)

Name	Item No.	Subject/Category
Paul Schwindt/D. Wasserman	1.4	UV - IR Telescope, Large Optics
	2.19	VIS - UV Photon Detector
	2,21	VIS – UV Electrographic Camera
Dr. Eugene W. Urban	2,26	Relativity - Precession Gyroscope
	10.1	IR Chamber/Selector
	12.1	Super-Conduction Cryostat Dewar, He II
	12.2	Long Duration IR Missions – Helium
		Reliquification

PERSONNEL CONTACTED

A.6 LYNDON B. JOHNSON SPACE CENTER, Houston, Texas 77058

Name	Item No.	Subject/Category
Dr. G. D. Badhwar	2.26 10.1	Relativity – Precession Gyroscope IR Chamber/Selector
	12.1	Super-Conduction - Cryostat Dewar, He II
	12.2	Long Duration IR Missions – Helium Reliquification
Dr. G. D. Badhwar/	2.1	Cosmic Ray – Spatial Detector
Mr. Robert L. Golden	18.1	High Energy – Pulse Measurement & Correlation Detection
William J. Burke	2.17	Radio - Soil Moisture Sensor, μ w
Karl G. Henize	2.21	VIS-UV Electrographic Camera
	2,22	IR - VIS - UV - XUV Filters
J. L. Lacy	2.1	Cosmic Ray – Spatial Detector
	18.1	High Energy - Pulse Measurement &
	0.15	Correlation Detection
Dr. William B. Lenoir	2.17	Radio - Soil Moisture Sensor, µw
Glen C. Miller	7.3	Elect Mech Teleoperator Subsystems
Richard A. Moke/	4.3	Radio – Imaging Radar
A. Mathews		
Dr. Donald E. Robbins	3.1	VIS & IR Laser
	4.1	IR LIDAR System
Curtiss Mason	2.17	Soil Moisture Sensor

A-12

PERSONNEL CONTACTED

A.7 JET PROPULSION LABORATORY, 4800 Oak Grove Drive, Pasadena, CA 91103

Name	Item No.	Subject/Category
Dr. Raymond F. Bohling	15,1	Astronomy/Physics - Tracker, Field Monitor and Guide Star Sensors
James Burke	9.5	Planetary – Entry Heat Shield
	10.2	Gravity Gradiometer - Thermal
John C. Beckman	2.15	IR Interferometer Radiometer – Radiation Effects
Walter Brown	1.9	Large Microwave Antennas
Dr. T. Neil Divine	2.15	IR Interferometer Radiometer – Radiation Effects
Dr. Alain L. Fymat	4.2	Nephelometer - Planetary
Charles E. Giffin	5.3	Solids Analysis – Comet Tail
Dr. William A. Mahoney	2.3 - 1	X-Ray Maximum Sensitivity Detector
	2.4	X-Ray Proportional Counter, Position Sensing
	2.6	X-Ray Converter/Intesifier
	16.5	X-Ray Image Disection
John V. Goldsmith/	17.1 &	Electric Power
Lloyd D. Runkle	17.5	
Dr. Ewald Heer	7.3	Tele-operator Subsystem Electro-mech
W. Marco	11,1	Thermal & Pressure Protection for Payload Instruments
Richard H. Parker	2,15	IR Interferometer Radiometer-Radiation Effects
Joseph A. Plamondon	11.1	Thermal & Pressure Protection for Payload Instruments
David H. Rodgers	2.14-2	IR Spectrometer, Interferometer
Dr. Joel G. Smith	16.1	Planetary - Data Transmission
Dr. William H. Spuck	19.1 thru 19.4	Software
Howard Weiner	17	Electric Power
Jesse Moore	13.2 19.1	Automatic & Remote Docking Software – Rendezvous & Docking

A-13

PERSONNEL CONTACTED

A.8 AMES RESEARCH CENTER, Moffett Field, California 94305

ŝ,

Name	Item No.	Subject/Category
Kenneth Billman	3.1	VIS & IR Laser
	4.1	IR LIDAR System
Dr. Paul Callahan	7.1	Biological – Life Sciences Organism
		Holding Units
	7,4	Biological - Surgical
Robert M. Cameron	1.5 &	IR Telescope, 0.2m & 1.5m, cooled
	1.6	•••
Duayne Duggan	14.1	Planetary Thruster, Mercury Ion
	14.2	Station Keeping - Thruster, Cesium Bombardment
Terry L. Grant	16.1	Planetary – Data Transmission
	16.4	Monitor and Control - Data Memory
John Kirkpatrick	2,26	Relativity - Precession Gyroscope
	10.1	IR Chamber/Selector
	12.1	Super-Conduction - Cryostat Dewar, He II
	12.2	Long Duration IR Missions - Helium Reliquification
Dr. Dale Lumb	13.1	Planetary - Low Thrust Techniques, SEP
Robert Mah/	7.1	Biological – Life Sciences Organism
William Berry		Holding Unit
Craig McCreight	2.26	Relativity - Precession Gyroscope
	10.1	IR Chamber/Selector
	12.1	Super-Conduction - Cryostat Dewar, He II
	12.2	Long Duration IR Missions - Helium
		Reliquification
Ramsey K. Melugin	1.5	IR Telescope
	1.6	LHe Cooled Telescope
Robert M. Munoz	19 . 1 thru	Software
	19.4	
Phil Nachtsheim	9.5	Planetary – Entry Heat Shield
Dr. Jiro Oyama	7.2	Bio-Functional Bioresearch Centrifuge
Dr. Richard Simmonds	7.1	Biological – Life Sciences Organism Holding Units
	7.4	Biological - Surgical
Joel Sperans	18.1	High Energy – Pulse Measurement & Correlation Detection

A-14

PERSONNEL CONTACTED

A.8 AMES RESEARCH CENTER, Moffett Field, California 94305 (Continued)

Name	Item No.	Subject/Category
Henry Lum	16.—	TT&C - Wide Compression
J. P. Murphy	15.1 &	Attitude Control
	15.5	
John Parker	5	Special Devices
Nick Vojvodich	2.15	IR Spectrometer, Interferometer
	9.5	Planetary – Entry Heat Shield
	11.1	Planetary - Structural Mechanism
	13.2	Planetary Return - Docking
Hubert Vykukal/	7.3	ElectMech. Teleoperator Subsystems
James Jones		
Fred Witteborn	1.5 &	IR Telescope, 0.2m & 1.5m, Cooled
	1.6	
	2.14-1	IR Photometer
	2.14 - 2	IR Spectrometer, Interferometer
	2.26	Relativity – Precession Gyroscope
	8.	Contamination
	10.1	IR Chamber/Selector
	12.1	Super-Conduction Cryostat Dewar, He II
	12.2	Long Duration IR Missions – Helium Reliquification
Arthur C. Wilbur	17.1	High Voltage Solar Array

A-15

PERSONNEL CONTACTED

A.9 LEWIS RESEARCH CENTER, 21000 Brookpark Rd. Cleveland, Ohio 44135

Name	Item No.	Subject/Category
Bruce A. Banks	14.1	Planetary - Thruster, Mercury Ion
	14.2	Station Keeping – Thruster, Cesium Bombardment
John M. Bozek/	17.1	High Voltage Solar Array
Stan Domitz	17.5	High Energy Density Battery
Dave C. Byers	14.1	Planetary - Thruster, Mercury Ion
	14.2	Station Keeping - Thruster, Cesium Bombard- ment
Thomas H. Cochran	2,24	G-Jitter Sensor
	2.25	Mass Measurement
James E. Cake	13.1	Planetary - Low Thrust Techniques, SEP
Robert W. Easter/	17.5	Plasma and Earth Applications - High
Marvin Warshay		Energy Storage
Bruce E. Leroy	13.1	Planetary - Low Thrust Techniques, SEP
Lyle O. Wright/	17.1	High Voltage Solar Array
Stan Domitz		
Edward Miller/	5.4	High power Transmitter
Norbert Stankiewite/		
Robert Alerevich		

A.10 WALLOPS FLIGHT CENTER, Wallops Island, Virginia 23337

Name	Item No.	Subject/Category
J. T. McGoodan	4.4	Radio - Altimeter, Pulsed K-Band

MANUFACTURER/LABORATORY AND UNIVERSITY PARTICIPANTS

CONTENTS

Page

B.1	CONTRIBUTING MANUFACTURERS/LABORATORIES	В-3
B, 2	CONTRIBUTING UNIVERSITIES	3-10

в-1

MANUFACTURER/LABORATORY AND UNIVERSITY PARTICIPANTS

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES

Organization & Participant	Item No.	Subject/Category
A. D. Little, Inc. 25 Acorn Park Cambridge, Mass. 02140 R. W. Breckenridge	2.26 12.1 12.2	Relativity-Precession Gyroscope Super-conduction-Cryostat Dewar, Hell Long Duration IR Missions - Helium Reliquification
Barnes Engineering Co. 30 Commerce Road Stamford, Connecticut 06904	1.8	VIS-IR Optical System for Laser
R. Martin		
Barnes Engineering Company 30 Commerce Road Stamford, Connecticut 06904	2.16	IR Pyroelectric Detector, Uncooled
S. Weiner		
Battelle Columbus Lab. 505 King Ave. Columbus, Ohio 13201	2.15	IR Spectrometer, Interferometer
D. J. Hammon		
Bell Aerospace P. O. Box 1 Buffalo, New York 14205 Ernest H. Metzger (I-85)	6.1	Accelerometer Sensitivity
Block Engineering 19 Blackstone St. Cambridge, Mass. 02173 Geert Wijntjes	2.7 2.13 2.14-1 2.14-2	UV Echelle Spectrograph VIS-IR Spectrometer IR Photometer IR Spectrometer, Interferometer
Boeing Company Box 3707 Seattle, Washington 98124 R. B. Gillette	8.1 8.3 B-3	Optical and Plasma-Surface Cleaning IR-VIS-UV-X-RAY Contamination Processes Understanding

PRECEDING PAGE BLANK NOT FILMED

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
Brown Engineering Company Research Park Huntsville, Alabama 35807	8.4	IR-VIS-UV-X-RAY Contamination Avoidance Devices, e.g., Electrets
Dr. Neil E. Chatterton		
C. S. Draper Labs 75 Cambridge Parkway Cambridge, Mass. 02142	13.1	Planetary – Low Thrust Techniques SEP
T. N. Edelbaum/J. J. Deyst, Jr.		
Control Data Corporation Hawthorne Division 2815 West El Segundo Blvd. Hawthorne, California 90250	16.4	Monitor and Control-Data Memory
T. C. Farrel, Jr.		
Faraday Labs P.O. Box 2308 La Jolla, California 92037	8.1 8.2	Cleaning of Optical Surfaces IR-VIS-UV-X-RAY Contamination Monitor
Dan McKeown		
The Garrett Corp. AiResearch Mfg. Co. of Calif. Mail Station T-25 2525 W. 190th Street	10.4 12.1 12.2	CO ₂ Decomposition - Steam Generation in Zero-g Super-Conduction-Cryostat Dewar, He II Long Duration IR Missions - Helium
Torrance, California 90509	14.4	Reliquification
R. Hunt		
General Dynamics Data Systems Services P.O. Box 80847 San Diego, California 92138 C. H. Gutzler	19.1 thru 19.4	Software
and and the first provent		

B-4

B. 1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
General Electric Co. Corporate Research & Dev. Building 37, Room 559 Schenectady, N.Y. 12345	2.18	Radio-Range & Range Rate Sensor
R. E. Anderson		
General Electric Co. Space Divisior. P.O. Box 8555 Philadelphia, PA 19101	2,23	IR-VIS Advanced Atmospheric Sensors Group
Dr. T. R. Rietof/ Dr. H. M. Bortner		
General Electric Company Bldg. 100 Room M-9533 P.O. Box 8555	5.1 2.24	Liquid & Solid - Levitation Unit Gravity Measurement, Low Mass and High Accuracy
Philadelphia, PA 19101 Dr. R. T. Frost/ Dr. Robert Soberman	2,25	Mass Measurement, Low Mass and High Accuracy
General Electric Space Division P.O. Box 8555 Philadelphia, PA 19101 Dr. A. T. Tweedie	8.2	R-VIS-UV-X-RAY Contamination Monitor
Honeywell Radiation Center Mail Zone 20 2 Forbes Road Lexington, Mass 02173	2.9 2,14-2	VIS-IR Mapper (Tavares) IR Spectrometer, Interferometer (Bohne)
H. R. Tavares/Carl R. Bohne		
Honeywell Radiation Center 2 Forbes Road Lexington, Mass 02173	2.15	IR Spectrometer, Interferometer
R. A. Rotolante		

,此外的"是不是,我们就是不是不是,我们不是,你不是我们的你的。""你们就是我们的?""你们就是你的,你们就是你的?""你是我们的,我们就是你们就能能能能。""你 我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的?""你们就是我们的,我们就是我们的,我们就是我们的,你就是你们的

 $\left(t \right)$

B--5

Organization & Participant	Item No.	Subject/Category
Honeywell Radiation Center 2 Forbes Road Lexington, Mass 02173	15.1	Astronomy Physics-Tracker, Field Monitor and Guide Star Sensors
B. Stanton		
Hughes Aircraft Company Centinela & Teale Streets Culver City, California 90230	1.5	IR Telescope, 0.2m & 1.5m, cooled
J. N. Brown		
Hughes Aircraft Co. Laser Communication Dept. P.O. Box 92919 Los Angeles, California 90009	3.1	VIS & IR Laser
F. E. Goodwin		
Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265	10.2 18.5	Gradiometer Passive Temperature Control Gravity Analog/Digital Filtering
Dr. R. L. Forward		
Hughes Research Laboratory Ion Physics Dept. 3011 Malibu Canyon Road Malibu, California 90265	14.1 14.2	Planetary – Thruster Mercury Ion Station Keeping–Thruster, Cesium
J. H. Molitor		
Hughes Aircraft Co. Space & Communications Group El Segundo, California 90245 B. Klestadt	15.5	Earth Resource-Star Sensor, Strapped Down, Advanced Gyro

B-6

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
IBM Federal Systems Div 10215 Fernwood Rd. Bethesda, Md. 20034	19 . 1 thru 19.4	Software
R. J. Kirchoff		
IBM Federal Systems Div 10215 Fernwood Rd. Bethesda, Md. 20034	16.4	Monitor & Control – Data Memory
W. A. Bohan		
Intermetrics Inc. 701 Concord Ave. Cambridge, Mass 02128	19 .1 thru 19 . 4	Software
W. Zimmerman		
Itek Corporation Optical Systems Division 10 Maguire Road Lexington, Mass 02173 Tom Vogt	1.2 1.8 2.8 9.4	X-Ray Telescope VIS-IR Optical System for Laser VIS-IR Mapper UV-IR Solar Telescope
Logicon P.O. Box 471 San Pedro, California 90733 Robert E. Brooks	19.1 thru 19.4	Software
Martin Marietta Corp. Denver Division P. O. Box 179 Denver, Colorado 80201 W. T. Scofield	13.2	Planetary Return-Docking
Martin Marietta Corp. P.O. Box 179 Denver, Colorado	16.1	Planetary – Data Transmission
F. A. Smith	B-7	

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
Martin Marietta Denver Division Box 179 Denver, Colorado 80201 R. D. Vaage	19.1 thru 19.4	Software
Motorola Inc. Government Electronics Div. 8201 E. McDowell Road Scottsdale, Arizone 85251	5.4	Improved Life and High Power RF Amplifiers
J. E. Kirch		
Naval Research Laboratory Washington, D.C. 20375	2.21	VIS-UV Electrographic Camera
George Carruthers		
Philco-Ford Aeronutronic Division Ford Road Newport Beach, California 92663	9.4	UV-IR Solar Telescope Metering Structure
R. R. Auelmann/R. R. Sernka		
RCA Advanced Technology Labs Bldg. 10-8 Front & Cooper Sts. Camden, N.J. 08102 P. E. Wright	2,26 12,1 12,2 16,4	Relativity-Precession Gyroscope Super-Conduction-Cryostat Dewar, He II Long Duration IR Missions - Helium Reliquification Charge Couppled Devices for Data Storage
Rockwell International Autonetics Group 3370 Miraloma Ave. P.O. Box 4192 Anaheim, California 92803	16.4	Monitor and Control Data Memory

E. T. Brown

B-8

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
Santa Barbara Research Center 75 Coronomar Drive	2.8 thru 2.11	VIS-IR Mapper
Goleta, California 93017	2.12	VIS-IR Spectrometer
	2.14-2	IR Spectrometer, Interferometer
R. F. Hummer		
System Development Corp. 2500 Colorado Avenue Santa Monica, California 90406	19.1 thru 19.4	Software
R. D. Knight		
TRW Systems Group Bldg, R1 Room 1196 One Space Park Redondo Beach, California 90278	5.3	Lower density measurement of solid particles
J. F. Friichtenicht		
Westinghouse Electric Corp. Systems Development Div.	1.7	IR Scanner (Thermal Scanner Radio- meter)
P.O. Box 746 - M.S. 433	2,9	VIS-IR Mapper
Baltimore, Md. 21203	2,18	Radio – Range & Range Rate Sensor
James F. Pitts		
Westinghouse Electric Co. Defense Space Center P.O. Box 746 Baltimore, Md. 21203	2.19	VIS-UV Photon Detector
Fred Schaff		
Westinghouse Electric Corp. Aerospace & Electronics Sys Div	1,9	Radio-Large Microwave Antenna
	4 9	Arrays Padia Imaging Badan
P. O. Box 746 Baltimore, Md 21203	4.3	Radio-Imaging Radar
~ ~ ~		

R. C. Fox

В-9

B.1 CONTRIBUTING MANUFACTURERS/LABORATORIES (Continued)

Organization & Participant	Item No.	Subject/Category
Westinghouse Electric Corp. Astronuclear Laboratory Silicon Carbide Technology P.O. Box 10864 Pittsburgh, PA 15236 Dr. R. B. Campbell	11.1	Planetary – Structural Mechanism
Dr. R. D. Campbert		
Xerox Corporation Electro-Optical Systems Instrument & Propulsion Dept. 300 N. Halstead Street Pasadena, California 91107	14.1 14.2	Planetary – Thruster, Mercury Ion Station Keeping – Thruster, Cesium Bombardment
Dr. R. M. Worlock		
B.2 CONTRIBUTING UNIVERSIT	IES	
Center for Radar Astronomy Durad 21 Stanford University Stanford, California 94305	5.5	Plasma Data System Reduce effects of boom mounted insitu data system on plasma measurements
Dr. Von Eshleman		
Space Technology Center University of Kansas Lawrence, Kansas 66044	2.17	Radio – Soil Moîsture Sensor, μ w
Dr. Fawwaz T. Ulaby		
Physics Department Stanford University Stanford, California 94305	12.1 2.26	Super-Conduction Cryostat Dewar, He II Relativity - Precession Gyroscope
Dr. John A. Lipa		

B-10

B.2 CONTRIBUTING UNIVERSITIES (Continued)

Organization & Participant	Item No.	Subject/Category
University of California Space Science Laboratory Berkeley, California 94720	2,2 2,3-1 2,3,2	X–Ray Transmission Grating X–Ray Maximum Sensitivity Detector X–Ray Polarimeter
Dr. Mike Lampton	2.4 & 2.5 2.6 19.4	X-Ray Proportional Counter, Position Sensing X-Ray Converter/Intensifier Software
University of California Lawrence Radiation Laboratory Berkeley, California 94720	2. 1 9.3	Cosmic Ray Spatial Detector Cosmic Ray/Gamma Ray Protective Shell
Dr. Andrew Buffington	18.1 18.2	High Energy Pulse Measurement and Correlation Detection Cryogenic Superconducting Magnet Control
Center for Astrophysics	1.2	X-Ray Telescope
Smithsonian Astrophysical	2.2	X-Ray Transmission Grating
Observatory	2.3.1	X-Ray Maximum Sensitivity Detector
High Energy Astrophysical	2.3.2	X-Ray Polarimeter
Division	2.4	X-Ray Proportional Counter,
60 Garden Street		Position Sensing
Cambridge, Mass 02138	2.5	X-Ray Proportional Counter, Position Sensing
Marvin L. Lipshutz Program Mangger, HEAO-B	2.6	X-Ray Converter/Intensified
	9.6	X-Ray Instrument Mount/Selector
	V + V	an well work and the second the second

B-11