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ABSTRACT

A generalized approximate equation for duct lining sound attenuation is

presented. The specification of two parameters, the maximum possible attenua-

tion and the optimum wall acoustic impedance is shown to completely determine

the sound attenuation for any acoustic mode at any selected wall impedance. The

equation is based on the nearly circular shape of the constant attenuation contours

in the wall acoustic impedance plane. For impedances far from the optimum, the

equation reduces to Morse' s approximate expression. The equation can be used

for initial acoustic liner design. Not least important is the illustrative nature of

the solutions which provide an understanding of the duct propagation problem

usually obscured in the exact calculations. Sample calculations using the approxi-

mate attenuation equation show that the peak and the bandwidth of the sound atten-d)
[

uation spectrum can be represented by quite simple functions of the ratio of actual

wall acoustic resistance to optimum resistance.
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ATTENUATION OF SOUND IN DUCTS WiTH ACOUSTIC TREATMENT -

! A GENERALIZED APPROXIMATE EQUATION

by Edward J. Rice

Lewis Research Center

SUMMARY

: A generalized approximate equatien for duct lining sound attenuation is pre-

, sented. The specification of two parameters, the maximum possible attenuation

and the optimum wall acoustic impedance is shown to completely determine the

sound attenuation for any acoustic mode at any selected wall impedance. The

equation is based on the nearly circular shape of the constant attenuation con-

tours in the wall acoustic impedance plane. For impedances far from the opti-

mum, the equation reduces to Morse' s approximate expression.

The equation can be used for initial acoustic liner design. Not least impor-

tant is the illustrative nature of the solutions which provide an understanding of

the duct propagation problem usually obscured in the exact calculations.

Sample calculations using the approximate attenuation equation show that

the peak and the bandwidth of the sound attenuation spectrum can be represented

by quite simple functions of the ratio of actual wall acoustic resistance to opti-

mum resistance.

INTRODUCTION

The approximate sound attenuation equation developed by Morse (rvf. 1)

which is valid for nearly hard wails has been extremely useful and produces

quite good results over its range of validity. This equation is easy to use re-

quiring only Liner resistance, reactance, and duct length to diameter ratio as

, inputs. Unfortunately, as liner resistance is reduced and the exact calculations

using the wave equation predict higher sound attenuations, the approximate equa-
tion becomes inaccurate.

The purpose of this paper is to generate an approximate sound attenuation

equation which is as simple as possible in form but which will adequately com-.

pare with some exact calculations in the lower resistance or high attenuation

region of the wall impedance plane. The approximate equation is anchored on I

the optimum impedance and the maximum possible attenuation associated with !

1976005739-004



2

this impedance. This optimum has been extensively studied and reported for

single (ref. 2) and multiple modes (ref. 3) without flow, multiple modes with

flow (ref. 4), for spinning modes with uniform flow (ref. 5), and with boundary

layers (ref. 6). The mathematical implications of, and a technique for deter-

mining this optimum impedance have been reported (refs. 7 and 8). A complete

correlation of the optimum point for arbitrary spinning modes in a circular duct

with uniform flow is included in this paper.

With this well established optimum point as an input to the approximate at-

tenuaUon equation, the liner attenuation at any other wall impedance can be cal-

culated. The model is used to generate illustrative examples which provide in-

, sight into the operation of acoustic suppressors. Design tools or "rules of

thumlY t are also generated for the peak spectral attenuation and the attenuation
bandwidth.

SYMBOLS

B 6 optimum resistance coefficient

Bx optimum reactance coefficient

b resonator backing depth, m

C speed of sound, m/sec

D circular duct diameter, m

AdB sound power attenuation, dB

AdB m maximum possible sound power st_enuation which is a function of
frequency and other variables, dB

AdBmp value of AdB m at the frequency of peak sound attenuation, dB

AdBp peak value of sound power attenuation

F function of maximum possible attenuation (see eq. (8))

, f frequency, Hz

fp frequency of peak spectral attenuation, Hz

fl upper frequency at which half of peak attenuati(m is attained, Hz

f2 upper frequency at which half of peak attenuat/on is attained, Hz

L acoustically treated duct length, m
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M0 uniform steady flow Mach nun, ber in duct

m spinning mode lobe pattern number

Q 1 + iMo(a + iT)

R amplitude of eigenvalue

radius of constant attenuation contour in wall impedance plane

r0 circular duct radius, m

e complex eigenvalue (o_ = Re i_)

, am, _ complex eigenvalue for mode with m circumferential lobes of radial
order

ratio of maximum possible to actual sound power attenuation at a par-

ticular frequency

tip value of /3 at the frequency of peak attenuation

dBm/dB- 1 or _- 1

6 boundary layer thickness, m

frequency parameter, fD/C

_p _ at the frequency of peak attenuation

8 specific acoustic resistance

0c resistance coordinate of the center of an equal attenuation or damping
contour in the specific acoustic impedance plane

0m optimum specific acoustic resistance which is a function of frequency
and other variables

Omp value of 8 at the frequency of peak sound attenuation, Ill

radial mode number

' _ normalized frequency, f/fp

a attenuation coefficient

am maxim'_n possible value of a for given set of conditions

propagation coefficient

phase of eigenvalue

X specific acoustic reactance

I
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Xc reactance coordinate of the center of an equal attenuation or damping
contour in the specific acoustic impedance plane

Xm optimum specific acoustic reactance which is a function of frequency
and other variables

×rap value of ×m at the frequency of peak sound attenuation

0_ circular frequency, rad/sec

_" DEVELOPMENT OF THE APPROXIMATE EQUATION

The approximate equation that will be presented for the equal damping con-

tours was suggested by the shape of these contours as shown in figure 1. The

solid line contours represent exact calculations for a plane wave input into the

acoustic liner (ref. _). Although the contours are quite irregular for high attenu-

ation they become more nearly circular as the attenuation is reduced. Even for

high attenuations, a circular contour would usually be sufficient for first approxi-

mations. No_ice that, as the attenuation is reduced, the center of the contours

move to higher resistance. All contour plots seem to show this behavior. Re-

sults for spinning modes in ducts with sheared flow will be presented later in

this paper. Also shown on figure 1 are the results calculated from Morse' s ap-

proximate equation which is valid for nearly hard walls or for very low attenua-

tions (less than 10 dB attenuation for the conditions of fig. 1). If this system of

circular contours (Morse' s approximate results) could be shifted up and to the

left, perhaps an adequate approximation to the exact calculations could be

achieved even near the optimum impedance. This impedance shift of the circu-

lar contours is exactly what the approximate expressions of this paper are in-

tended to accomplish.

Approximate Equation of Morse

The approximate sound attenuation expression, representing the dasbed con- i

tours of figure 1, which is valid for a plane wave entering a circular duct with

nearly hard walls (low attenuation) is given by (ref. I) I

AdB _ 17.4 0(L/D} (I)

(02 + X2)

where AdB is the sound power attenuation in decibels, 0 and X are the liner
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specific acoustic resistance and reactance, L is the length of acoustic treat-

ment, and D is tbe diameter of the circular duct. The no-flow (M0 = 0) condi-
tion is represented by equation (1). Attenuation is understood here and the usual

minus sign is omitted. Equation(I)can alsobe written

which represents a system of circular contours with the centers located at

0 -8"7 L/D (3)
c AdB

xc = 0 (4)

and of radius

= 8.7 L/D (5)
AdB

Notice that the approximate expressions already have some of the properties
noted in the exact calculations: as the attenuation is reduced the center of the

circle moves to higher resistance (0c) and the radius (_) increases.

Improved Approximate Equation

When making the translation of the approximate equal damping contours in

the impedance plane, certain restrictions are set upon the equations.

(1) As the maximum possible attenuation is approached the contour radius

must approach zero.

(2) At very low attenuations the results should approach equation (I) which
is known to be valid for low attenuations, i

(3) The contour rad/us must always be less than the resistance ordinate of

the circle center (negative _ s not allowed).

A simple system of equations which satisfies the above restrictions is

0c = e m + F_, (6)

= Ore7 + F7 (7)
1+-?
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where 0m is the optimum resistance and where
I

F -- 8.7 L/D (8)

AdBm(1 + M0)2

and

AdB m
- 1 (9)

AdB

.p

with the subscript m on AdB m implying the maximum possible attenuation for
the given conditions. Equations (6) to (9) can then be used in

(0- 0c)2 + (X - Xm )2 = _2 (10)

to provide a reasonable estimate to the exact calculations. The above results

were obtained by fitting _c and (R to the results obtained from figures 4 and 5
of reference 3 with the Mach number correction determined from reference 5.

Note that a plane wave incident upon a soft walled section may produce several

modes in the suppressor. The energy balance between, and the effect upon over-

all sound attenuation of, these modes depend upon the frequency, duct size (L and

D), and the wall impedance. These approximate expressions (eqs. (6) to (10)) do

not precisely fit the exact calculations over the wide range of conditions considered

because of the presence of the several modes. In a later section a more precise

expression which is very adequate for single modes will be dex'eloped. The be-

havior of multimodal distributions may then be approximated by repeated use of

the single mode eq_.mt/ons for several different mode,#. However, much informa-

t/on has been ga/ned by the use of the cruder expressions given above and the de-

velopment will proceed with these expressions.

Returning to equations (6) to (I0), it is interesting to look at their limits.

Note that as AdB --AdBm, then 7 -" 0, Sc -, Ore, and _ -- 0 as requ/red. Also

as AdB-- 0, _ _ AdBm/AdB and

FT"*, 8.7 ,LID (11)

Ad_l + M0)2

thus

8.7 L/D .... (IZ)
00 --

AdB(1 + M0 }2

] 976005739-009



-. 8.7 L/D (13)

_dB(1 + MO)2

and equation (10) becomes

which is like equation (2) (when M0 = 0) except for the Xm term. Thus the re-
sult for very small attenuation is Like Morse' s approximate expression except for

the slight shift in reactance.

Notice that all that is now required to cc mpletely specify the damping

contours throughout the wall impedance plane (using eqs. (6) to (10)) is the opti-

mum resistance (0m) and reactance (Xm) and the maximum possible attenuation

(AdBm). Thus off-optimum liner performance can be estimated using only the
optimum properties and the Liner impedance behavior. These optimum properties

will be specified in a later section.

The inverse problem is often of interest: given the resistance and reactance

of an acoustic liner, what is the damping? Equations (6), (7), and (10) can be

combined to give

Xm)20m_ Y_
02 - 20(0 m + F_) + (X - +__ (1 + 27) + 2F = 0 (15)(1+_) m (1+_)

If the damping ratio is defined as

_dB m=- = _ + 1 (]6)
AdB

then equation (15) is

02,.200 m- 20F(8-1)+(X-Xm)2+0m_...(2_" 1)+2F(_- 1)1ffi 0 (17)J

Note thai"to solve for attenuation (A(Lq), # must first be determined from equa-

t/on (17) which is cubic in /3. Instead of using a closed form (but compLicated)
cubic equation technique, a procedure taking increments in # was used (starting

with _ = 1) until equation (17) was satisfied. Approxims_ solutions to equation

(16) or (17) can also be derived for small 7 or large #. respect/vely. For

exam_le, wbe_ # is laqie,

]976005739-0]0
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02- 288 m +28F +20mF +(X- Xm)2
_ (18)

20F

or

AdB _ 17.4 0(LID) (19)

_02 - 200 m + 20F + 20raN + (X- Xm)2_( 1 + Y0)2

which provides a considerable improvement over equation (1).

INPUTS REQUIRED FOR THE APPROXIMATE ATTENUATION EQUATION

In this section the inputs required for the approximate attenuation equations

will be presented. These are intended mainly for the single mode equations de-

veloped later in the paper. For the simpler equations of the previous section

(plane wave) the inputs will be developed as they are used in the next section.

Inspection of equations (8), (16), and (17) shows that M0, L, D, AdBm,

0m, and Xm must be specified before the approximate equations can be used
to calculate AdB. Also the frequency is necessary to determine the frequency

parameter

,__-fV (20)
O

sinee AdBm, Ore, and Xm are functions of _. MO, L, D, and _ wiU be
quite easily determined since they will be dictated by the mass flow, size, and

frequency of the noise source and the, allowable duct length. The results which

foUow have been determined by empirical correlations of the optimum resis-

tance, reactm, ce, and eigenvalues obtaLued from exact but tedious calculations

involving single mode solutions with lobe number from 1 to 20 and up to the

tenth radial mode. The eigenvalues will be used to calculate maximum possible

attenuation {AdBm). Circular ducts without evnterbod/es are considered here.
The optimum resistance and reactance are determined from (ref. 5)

0m - BO_ (21)

and

Xm"
where

,-I

1976005739-011
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Q = 1 + iM(a + iT) (23)

a + i_ = _1 (24)
2

1 - M0

with _ and T representing the damping and propagation coefficients of the mode

(part of the complex wave number) and the eigenvalue is

I a = Re ka (25)
l

'; The optimum resistance and reactance coefficients (B0 and BX) will be pre-
sented below. Double subscripts (indicating specific modes) have been left off

for brevity ,on 8m, ×m' B0' BX' Q' _' T, and a) but it must be recognized that
we are considering a particular mode in the correlations given here. For in-

stance, a should really be considered as am, _ where m is the circumferen-
tial mode number and _ is the radial mode number. Using this more complete

notation, the eigenvalue correlations can be expressed as

+(p- 1)_+0.076 mp_- 1 (26)Rm, p Rm, 1

-(u-l)

Cm,_ _ era, Ie2(_/'_+m/7) (27)

where

Rm, 1 _ m * 2.247 m 1/3 + 1.521 m" 1/3 (28)

and

_°m, 1 *' 35. 15 (29)
(m + 2)0. 0

Equation (28) is good for m _ 0. If m = 0, use R0, 1 = 3.278. The resistance
and reactance coefficients can be _stimated from,

1976005739-012
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B0 _ 1.15 (30)

. +o.y /

B× _ 0.92 (31)
gl_ + 3.17 m2/3)

Note that equations (26) to (31) are valid only at the optimum impedance which is

_. the only inputpointneeded for the approximate attenuation equations. Finally
the maximum possible attenuation is calculated from

AdB m = 17.4 _m(L/D) (32)

where again attenuation being understood, the minus sign has been dropped and

the subscript on sigma signifies maximum possible attenuation coefficient.

If equations (25) to (29) are used with _ = 1 to define the eignevalue, and

equation (24) is used to calculate the damping coefficient (_m), then equation (32)
will provide an approximate reproduction of figure 5 in reference 5 for the damp-

ing of the least attenuated spinning mode.

A correction may be required for the optimum resistance and reactance in

inlets if the boundary layer thickness is cigaiflcant. This cnrrection is corre-

lated in reference 6 fox' well cu-t-_ modes. By well cut-on it is implied that
n

- << I (33)
V'"I

For modes that are approaching cut-off, a boundary layer refraction correlation

has not yet been developed. However as eut-_ is approached, the wave fronts

travel more transverse to the velocity gradients and the refraction effects should
be reduced.

The eorrelat/ons given in this seetioa are mainly intended to be treed w_th

the improved single mode apprex_mate attenuatio_ expressions developed later

in this paper. In the next sectioa where plane wave inputs are considered, even
more simplified approximation_, will be used.

1976005739-013
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SAMPLE CALCULATION - PEAK ATTENUATION AND BANDWIDTH

IllustrativeExample

Before the calculationsforpe._kattenuationand l-,andwidthare made, itis

instructiveto illustrat_thefrequepcydependentbehaviorof theequalattenuation

contoursand of a typl_a_linerirr._edance.Such an illustrationis shown infig-

ure 2 where theattenuationcontoursare shown forthreefrequencieseach an

octaveapart. The ',Jropertiesof theoptimum pointsshown here imply wellcut-on

behaviorforallthreefrequencies. These propertiese,,olvefrom equations(20)

.. to (22) which show that

0m cc f (34)

xm = -f (35)

and equat'_ons (24) and (32) which sbow that (see ref. 5)

AdB m oc l/f (36)

The oTJtimt,m po/_.ts are shown as plus signs; and these, as well as the equal

damp',ng contours, are labeled with their relat/ve attenuations. Superimposed

upon the damping contours are some sample liner resis_.ances and reactances.

These liner impedance loci assume that the resistance (0) is constant with fre-

quency while the reactance of a Helmholtz resonator at low frequencies behaves
as

x = - z/f (37)

which implies that bsck cavity st/ffnese is controlling the reactance.

First consider the lower resistance locus (o_en symbols) which pass through

the opt/mum point at the center frequency. A s frequency incresu_es the llner

impedance moves to the r_ght toward less mpgnt/ve reactance (eq. (3'/)) wh/le the

opt/mum point and its related coatours move t_ the uppez left toward more posi-

tive resistance (eq. (34)) and more negative reactance (eq. (3r,)). As leng u the

reactance is to the left og its a.s_ociated ol_murn (remember that each liner im-

pedance point and each contour set have a frequeBcy _ssoc/ated with them) the

damp/nl; ts increas/ng with frequency as ever h/gher damping contour2 are being

cut. WhGmthe reactance moves to the right of its associated centour set the

damping will f_l off and when X = Xm the peak dlmplng will occur. An examrle

will illustrate these po/nts. At f = 1/2 fp the far left ws)l impedance point

1976005739-014
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(0 -- 1, × = -2) is associated with the contours centered at the lower right and a

relative damping of 0.52 dB is obtained. At f = fp, the liner impedance is coin-
cident with the optimum point of the center contour set and a relative damping of

1 dB is obtained. For the far right liner impedance (1, -0.5) at f = Zfp use the
contour set centered at the upper left to read 0.19 dB. In this example three

points have been established in the sound attenua_on spectrum. More points

could be similarly determined at other frequencies.

Now if this exercise is repeated at a higher resistance of 0 = 3 shown by

the solid symbols in figure 2 it is seen that the liner impedance never passes

through an optimum impedance point but the relative damping still has a relative

peak at the center frequency where × = ×m" Table I reviews the above results
with an intermediate resistance also included.

Note that a modest increase in resistance (0 = 1,6) above the optimum

causes the peak damping to be reduced only moderately while both the high and

low frequencies have improved attenuation. A further increase in resistance

(0 = 3) improves the higher frequency damping but decreases the damping at both

of the other frequencies. Further increases in resistance would result in falloff

of attenuation at all frequencies. The trade--off between peak attenuation and

bandwidth would be determined by the specific application being studied.

An exact calculation using the wave equation and more exact liner proper-

ties would be performing the same ritual as illustrated in figure 2 except that

the significance of the visualization would be lost in the process. A more

sophisticated approach would use many modes at a time meaning that multiple

contour sets would be considered simultaneously.

Equationsand Approximations

Inthissectionthepeak attenuationand the attenuationbandwidthwitha

plaaewave inputare determined toprovideone illustrationoftheuse oftheap-

proximateattenuationequations.Both quantitiesare functionsmainly ofthe

ratioofactualresistancetothe optimum resistanceatthepeak attenuationfre-

quency. The startingpointisequation(17),which when dividedby 0rap,2 yields

2 2°°m 20F(__I)+(×-xm)2 0m pm(2_-I) _rC_-lq 0 (38)
+_0-_ 2 + =

2 2 2 jOmp Omp Omp Omp

Recallthat 0 isthe suppressorresistance,0m isthe optimum resistancewhich

4"
i

t
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is a function of fr_<luency, and 0rap is the optimum resistance at the frequency
of peak attenuat'.on at which X -- Xm. In the development which follows (to eq.
(49)), some very simplified interrelationships among the quantities in equation (38)

will be used. The objective is to reduce equation (38) to a form which gives attenu-

atlon (through _) as a function only of a frequency ratio, a resistance ratio, and a

peak frequency parameter. Define the quantity

= ---f (39)

fp

where fp is thefrequencyatwhich × = ×m" From equation(20)and (21)

0m -l- f - _ (40)

t Omp _p fp

where it was assumed that Q2 is not a function of frequency, which implies that

either M0 = 0 (then Q = 1), or that the frequencies involved are all above cut-off

leading to Q = 1/(1 + MO) (see ref. 5). Let the reactance be controlled by the
back cavity

X _ -cotw__bb_ c (4i)
c 2rbf

where the second approximation is valid for small arguments of the cotangent,

and where b i. the liner backing depth. Also

X_ C fp =X_p (42)

21rbfp f

where equation (41) was used to define Xmp as X at f = fp. Equations (21)
and (22) yield

0m
, Xm = - _ _ - _ (43)

B e 3

where B e _ 3B x is a rough estimate from table I of reference 6 for axisym-
metric wave propagation. Then from equations (40), _42), and (43)

. _ (44)

2 9_2Omp

i

]976005739-0]6
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If, instead of using the approximation in equation (41), the cotangent had been

retained, the result would be

(×- ×m)2 -1
,_ + (45)

0mp lp tan tan- 1

An approximation to the maximum possible attenuation results of reference 3

can be expressed as,

AdBm 65
-- _ (46)

L/D (1+3874)1/4

Finally using equations (8), (21), and (46)

F _ (1+38_p_4) 1/4 (47)

0rap 7.5 _p

where B 0 _ 1 and Q _ 1/(1 + M0) were used. For sufficiently high frequencies

(hl

_ -_- (48)

Omp 3

Inserting equations (40) and (44) into (38) yields,

a" f-2 _-1)+ --
m 9_ 2

,49,
Equaticm (49) along with (47) or (48) (depending upon _p_ or frequemcy) can be
used in two ways. "'trst with g = 1 the peak attenuation was calculated through

_p as a function mainly of 0/0rap. The inverse of Cp (AdBp/AdBmp) deter-
mined from equation (49) is plotted in figure 3. For liner resistance below the

}
I
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optimum resistauce, a single curve is ol:tained for all frequency parameters

0?p) and the result is

AdBp- 0 A,IBmp ; (0 < 0rot _ (50)O
mp

a conveniently simple expression. E_uation (49) can be seen to contain the fac-

tor (fl - O/Omu) when _ = 1, which accounts for this simple relationship.
For liner resistance above the optimum the peak attenuation is seen to be a

weak function of frequency parameter (_p). An adequate approximation is,

(J

&dBp _ mp AdBmp; (0 > 0mt _ (51)O

' These two relationships, equations (50) and (51), are extremely useful "rules

of thumb tv in preliminary suppressor design considerations and in interpretation

of acoustic liner data.

Some results of exact calculations obtained from reference 3 are included

on figure 3 for comparison with the approximate results obtained from equa-

tion (49).

The second use of equation (49) was to fix fl at some desired level and de-

termine the frequency ratio (_ = f/fn) at which this attenuation occurred. This
was done to determine the attenuation bandwidth or the frequencies at which

AdB = 1/2 AdBp, for instance. This can be accomplished by the following. Let

AdB ffi 1/2 AdBp (52)

then

AdB m AdBp AdBmp AdB m = AdB m
- = (53)

AdB AdB AdBp AdBmp AdBmp

Use of equation (46) gives,

AdB m _ I1 1 + 38_ 4h 1/4 1 (for

large
_p_)

(54)

The lower and upper frequencies (fl/fu and f2/f_ for which one-half peak
attenuation occurs were calculated with both representations of the reactance

(eq. {41)). The results are shown in figures 4 and 5 with all of the calculations

t
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made with the cotangent representation of reactance except for the curves labeled

"large _p limit, lumped reactance." For large _p the cotangent representa-
tion approaches the ]umped reactance result. The breakaway from the "lumped

reactance" curve for 0/0rap > 1 in figure 5 occurs where the back cavity half
wave frequency is being approached, the reactance is approaching infinity and

the attenuation is going to zero. In a real liner where a high damping resonator

is used this cannot occur and the use of the lumped reactance curve is probably

more nearly corr,_ct for constructing the attenuation spectrum. Some fall off in

attenuation will _e anticipated beyond this half wave point.

Some interesting conclusions can be seen from figures 4 and 5. For liner

resistance below the optimum (0/0mp < 1) bandwidth remains essentially constant

since fl/fp and f2/fu_ do not change much. Recall from figure 3 that peak at-
tenuation falls off as resistance is reduced below the optimum. Thus no im-

provement m liner performance is gained from underdamping the liner. How-

ever, for high resistance (0/0rap > 1), although peak attenuation is lost, band-

width is gained since fl/fp is reduced and f2/fp is increased. Recall from the
discussion of figure 2 that increasing the resistance above the optimum value to

improve attenuation bandwidth can be pushed too far since at very high resistance

the entire attei,uation spectrum will be reduced as resistance is increased.

Some useful ', rules of thumb v' can also be determined for bandwidth. These

are obtained from observation of the results in figures 4 and 5. For resistances

below the optimum,

fl/fp _ fl/fP)opt (55)

f2/fp _ f2/fP)opt (56)

For resistance above optimum

fl/f p _ ?mp8 fl/fP)opt (57)

f2/fp _ _ f2/fP)op t (58)0rap

the subscript opt implies the condition when 0 = 0rap. The following correla-
tions are offered at the optimum resistance for use with equations (55) to (58).

These were obtained by plotting the results at 0/0rap = 1 from figures 4 and 5

against _p.

!

1976005739-019



t t

17

fl / _ (59)

opt 1 + 1.6 773/2

1 +4.21 2

f2/fp) _. _ TIP (60)2
opt 1 + 3.05 _lp

Although the sample calculations made here used information about circular

duct optima, the final results (peak attenuation and bandwidth "rules of thumb,,)

would be expected to apply to other geometries as well. For other geometries
i

only the constants (such as B0, B×, AdBm) in the problem would change. The
key behavior of the approximate attenuation contours would not change. This

behavior includes the unsymmetrical shape of the contour pattern, the movement

of the contours in the impedance plane as frequency changes, and the fall-off in

AdB m as frequency increases. One precaution must be observed, however, and
that is in the use of equations (59) and (60). The frequency parameter at peak at-

tenuation (_li_ must be considered relative to the cut-off frequency parameter.

For example when Tlp= 1, cut-off is approached in the example shown. For

smaller values of Tip, _ldBm approaches a constant (losing the 1/f dependence).
For the first radial mode of a 20-lobe spinning pattern in a circular duct, AdB m
versus _1 will flatten out below T1= 10 (see ref. 5).

The three quantities calculated here (AdBp, fl' and f2) can be used to obtain
a first approximation to the attenuation spectrum. Log AdB versus log f is

used with straight lines connecting the three points to obtain a reasonable approx-

imation to the attenuation spectrum. Of course, the entire attenuation spectrum

could be calculated from the approximate attenuation equations by using a multi-

tude of frequencies rather than Just fl' fp' and f2"
These simplified notions about peak attenuation and bandwidth have been used

to analyze the attenuation data for inlet suppressors with splitter rings mounted

on full scale fans and engines. These results are reported in reference 9 and

show fairly good agreement between theory and data. Splitter ring suppressors

seem to be relatively insensitive t_ spinning mode content (ref. 5) and can be

adequately described using the least attenuated radial mode.

IMPROVED SINGLE MODE APPROXIMATE ATTENUATION EQUATION 1

Due to the form of the approximate attenuation equations discussed in this
paper, the attenuation is assured of being an accurate representation of the more

I
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exact propagation calculations at the extremes of damping. At the optimum im-

pedsmce the attenuation will become the maximum possible and far from the opti-

mum impedance the attenuation will approach zero. Between these extremes a

good fit to exact calculations was obtained by the empiricism inserted in the ap-

proximate equations. As discussed previously, a plane wave input to a soft

walled duct leads to a multimodal solution in the soft duct. The balance among

the modes in determining the overall attenuation depends upon the wall imped-

ance, the frequency and the liner geometry. A good fit of the approximate equa-

tions to the exact calculations cannot be made over all conditions. A better ap-

proach is to use approximate equations for each mode and to build up the total

solution from the component parts. An improved single mode solution to pro-

vide the basis for such an approach will now be developed.

The resistance coordinate for the circular contour center was not altered,

ec=e m+F'y=em+F_- i) (6)

but the radius has been changed to,

Ore'Y2 Om(_- 1)2
+ F_ = + F(_ - i) (61)

('y+ l)(y+ 2) _(19+ 1)

In addition, the reactanc_ coordinat(_ for the center of the constant attenuation

contours can be represented as,

×m Xm
Xc = -- = -- (62)

y+l /9

The definition of F has not been altered and is repeated as,

F =, 8.7 L/D (8)

AdBm(1 + M0)2

TechnleaUy the definition of F should have been altered since the solution for

nearly hard walls results in,

2 L/D8.7 a_

AdB(1 _ - m 2

I
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Where m is the spinning pattern lobe number and c_ !s the mode eigenvalue
2 2

for hard walls. Empirically this refinement (using C_oo/(a_ - m2)) was found to
be unnecessary in any reasonable vicinity of the optimum impedance (attenuat!ons

down to 1/50 of the maximum possible) and this term was omitted from the de-

velopment. For extremely low damping equation (63) might be used with equa-

tion (10) (with ×m = 0) if desired.

Use of equations (6), (61), and (62) in equation (10) (with Xc replacing Xm
in eq. (10)) yields,

02- 20_m +F03- 1 + -

Om(3B- 1) +
+ m - __ i)+2F(_- i) =0 (64)

_(_ + I) L /3(_+ 1)

For circular ducts, the inputs (_m' Xm' AdBm) can be calculated from the
results given in a previous section (INPUTS REQUIRED FOR THE APPROXIMATE

ATTENUATION EQUATION) and theattenuation(through_) can thenbe calculated

at any resistance(e)and reactance(X)using equation(64). This equationisnow

seen tobe offifthpower in _ and a steppingor iterationapproach must be used.

Usuallythe _ denominatorof ×m can be omittedwithoutmuch lossof accuracy.
The equalattenuationcontours{expressedfor convenienceby the.attenuation

coefficient_ ratherthan AdB, see eq. (32)for relationship)of theimproved

singlemode approximateequationare compared to theexactcalculationsfora

seven lobespinningwave infigures6 and 7. Figure 6 illustratesthefirstradial

whilefigure7 isfor thefifthradialmode. The agreement between the approxi-

mate and exactcalculationsis seen tobe quitegood inboth cases. The first

radialmode would be consideredwell cut-onwhilethefifthradialisapproaching

cut-off(thelefthand sideof eq. (33)is _0.46 which isnot much lessthan 1).

The rotation of equal attenuation contours which occurs in the wall impedance

plane due to Q2 in equations (21) and (9.2) has been a_.counted for and the entire

contour pattern rotates with the optimum point. The exact equal damping con-

tours of figures 6 and 7 were calculated as in reference 6 using a fairly thin

boundary layer. Note the exact contours are tear-drop shaped for the higher at-

tenuations but rapidly approach circular shape as the damping of the contours is

reduced. The shift of the equal contour centers toward higher resistance as

damping dJcreases is much more obvious in figures 6 and 7 than in figure 1.
i
|

!
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CONC LUDING REMARKS

Many equal damping contour plots have been investigated beyond the three

that have been presented in this paper. These include a wide range of spinning

lobe numbers and radial mode numbers, both with and without steady flow bound-

ary layers. All of these plots seem to have the behavior described in this paper.

The contours are nearly circular with the centers of these circles moving to

higher resistance as the attenuation of the contour is reduced,

With the contour properties and Morse, s approximate equation as guides,

the npproximate attenuation equations were developed. Two versions of the

approximate equations were pre'_ented. The first version has some contour

broadening due to the multimodal nature of the exact solution to which it was fit.

The second version, which is the favored version for future use, was generated

to fit single moaes only. As a result this version is a more accurate represen-

tation of more exact calculation procedures.

Although the approximate attenuation equatio,: was presented only as an

alternate to more time consuming exact calculation procedures, such approxi-

mate solutions may represent the most sensible approach for acoustic liner

design. Due to the unknovm nature of the modal input to be used and the possible

errors in physically obtaining the desired (analytical) value of wall acoustic im-

pedance, it is possible that exact wave equation solutions are not Justified.

Using the approximate attenuatien equation the following "rules of thumb"

were observed.

1. For liner resistance above the optimum, the peak attenuation is inversely

proportional to resistance and t,_e attenuation bandwidth increases with resistance.

2. For liner resistance below the optimum, the peak attenuation is reduced

proportionally with the resistance but the attenuation bandwidth remains constant.
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TABLE I. - RELATIVE DAMPING WITH

RESISTANCE AND FREQUENCY
Q

0 1/2 fp fp 2fp
.i

1 O. 52 1 O. 19

1.6 . 61 . 82 . 27

3 .51 .57 .35

f
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