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ABSTRACT

A generalized approximate equation for duct lining sound attenuation is
presented. The specification of two parameters, the maximum possible attenua-
tion and the optimum wall acoustic impedance is shown to completely determine
the sound attenuation for any acoustic mode at any selected wall impedance. The
equation is based on the nearly circular shape of the constant attenuation contours
in the wall acoustic impedance plane. For impedances far from the optimum, the
equation reduc2s to Morse's approximate expression, The equation can be used
for initial acoustic liner design. Not least important is the illustrative nature of
the solutions which provide an understanding of the duct propagation problem
usually obscured in the exact calculations. Sample calculations using the approxi-
mate attenuation equation show that the peak and the bandwidth of the sound atten-
uation spectrum can he represented by quite simple functions of the ratio of actual
wall acoustic resistance to optimum resistance,



ATTENUATION OF SOUND IN DUCTS WITH ACOUSTIC TREATMENT -
A GENERALIZED APPROXIMATE EQUATION
by Edward J. Rice

Lewis Research Center

SUMMARY

A generalized approximate equation for duct lining sound attenuation is pre-
sented. The specification of two parameters, the maximum possible attenuation
and the optimum wall acoustic impedance is shown to completely determine the
sound attenuation for any acoustic mode at any selected wall impedance. The
equation is based on the nearly circular shape of the constant attenuation con-
tours in the wall acoustic impedance plane, For impedances far from the opti-
mum, the equation reduces to Morse's approximate expression,

The equation can be used for initial acoustic liner design. Not least impor-
tant is the illustrative nature of the solutions which provide an understanding of
the duct propagation problem usually obscured in the exact calculations.

Sample calculations using the approximate attenuation equation show that
the peak and the bandwidth of the sound attenuation spectrum can be represented
by quite simple functions of the ratio of actual wall acoustic resistance to opti-
mum resistance.

INTRODUCTION

The approximate sound attenuation equation developed by Morse (ref. 1)
which is valid for nearly hard walls has been extremely useful and produces
quite good results over its range of validity. This equation is easy to use re-
quiring only liner resistance, reactance, and duct length to diameter ratio as
inputs, Unfortunately, as liner resistance i{s reduced and the exact calculations
using the wave equation predict higher sound attenuations, the approximate equa-
tion becomes inaccurate,

The purpose of this paper is to generate an approximate sound attenuation
equation which is as simple as possible in form but which will adequately com-
pare with some exact calculations in the lower resistance or high attenuation
region of the wall impedance plane. The approximate equation is anchored on
the optimum impedance and the maximum possible attenuation associated with
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this impedance. This optimum has been extensively studied and reported for
single (ref. 2) and multiple modes (ref. 3) without flow, multiple modes with
flow (ref. 4), for spinning modes with uniform flow (ref. 5), and with boundary
layers (ref. 6). The mathematical implications of, and a technique for deter-
mining this optimum impedance have been reported (refs, 7 and 8). A complete
correlation of the optimum point for arbitrary spinning modes in a circular duct
with uniform flow is included in this paper.

With this well established optimum point as an input to the approximate at-
tenuation equation, the liner attenuation at any other wall impedance can be cal-
culated. The model is used to generate illustrative examples which provide in-
sight into the operation of acoustic suppressors. Design tools or ''rules of
thumb'* are also generated for the peak spectral attenuation and the attenuation
bandwidth,

SYMBOLS
By optimum resistance coefficient
BX optimum reactance coefficient
b resonator backing depth, m
c speed of sound, m/sec
D circular duct diameter, m
AdB sound power attenuation, dB
AdBm maximum possible sound power atienuation which is a function of

frequency and other variables, dB
AdB value of AdBm at the frequency of peak sound attenuation, dB

m)
AdBp ’ peak value of sound power attenuation

F function of maximum possible attenuation (see eq. (8))

f frequency, Hz

fp frequency of peak spectral attenuation, Hz

£, upper frequency at which half of peak attenuation is attained, Hz
fz upper frequency at which half of peak attenuation is attained, Hz
: A1

L acoustically treated duct length, m
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R

m, p

w0
o

3 O R

uniform steady flow Mach nunber in duct

spinning mode lobe pattern number

1 +iMy(o +ir)

amplitude of eigenvalue o

radius of constant attenuation contour in wall impedance plane

circular duct radius, m

complex eigenvalue (o = Rei‘p)

complex eigenvalue for mode with m circumferential lobes of radial
order u

ratio of maximum possible to actual sound power attenuation at a par-
ticular frequency

value of B at the frequency of peak attenuation
dBm/dB- 1or -1

boundary layer thickness, m

frequency parameter, fD/C

n at the frequency of peak attenuation

specific acoustic resistance

resistance coordinate of the center of an equal attenuation or damping
contour in the specific acoustic impedance plane

optimum specific acoustic resistance which is a function of frequency
and other variables

value of 6, at the frequency of peak sound attenuation
radial mode number

normalized frequency, f/fp

attenuation coefficient

maximum possible value of ¢ for given set of conditions
propagation coefficient

phase of eigenvalue a

specific acoustic reactance



Xeo reactance coordinate of the center of an equal attenuation or damping
contour in the specific acoustic impedance plane

Xm optimum specific acoustic reactance which is a function of frequency
and other variables

Xmp value of Xy atthe frequency of peak sound attenuation

w circular frequency, rad/sec

DEVELOPMENT OF THE APPROXIMATE EQUATION

The approximate equation that will be presented for the equal damping con-
tours was suggested by the shape of these contours as shown in figure 1, The
solid line contours represent exact calculations for a plane wave input into the
acoustic liner (ref. 3). Although the contours are quite irregular for high attenu-
ation they become more nearly circular as the attenuation is reduced. Even for
high attenuations, a circular contour would usually be sufficient for first approxi-
mations. Nouce that, as the attenuation is reduced, the center of the contours
move to higher resistance. All contour plots seem to show this behavior. Re-
sults for spinning modes in ducts with sheared flow will be presented later in
this paper. Also shown on figure 1 are the results calculated from Morse's ap-
proximate equation which is valid for nearly hard walls or for very low attenua-~
tions (less than 10 dB attenuation for the conditions of fig. 1). If this system of
circular contours (Morse's approximate results) could be shifted up and to the
left, perhaps an adequate approximation to the exact calculations could be
achieved even near the optimum impedance. This impedance shift of the circu-
lar contours is exactly what the approximate expressions of this paper are in-
tended to accomplish,

Approximate Equation of Morse

The approximate sound attenuation expression, representing the dashed con-
tours of figure 1, which is valid for a plane wave entering a circular duct with
nearly hard walls (low attenuation) is given by (ref. 1)

(02 + xz)

where AdB is the sound power attenuation in decibels, § and x are the liner

cew
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specific acoustic resistance and reactance, L is the length of acoustic treat-
ment, and D is the diameter of the circular duct. The no-flow (M0 = () condi-
tion is represented by equation (1), Attenuation is understood here and the usual
minus sign is omitted. Equation (1) can also be written

2 2

(6_8.7 L/D) oy (81 L/D) @
AdB AdB

which represents a system of circular contours with the centers located at

o =81L/D 3)
¢ AdB
Xe =0 (4)
and of radius

q=87L/D
AdB

(5)

Notice that the approximate expressions already have some of the properties
noted in the exact calculations: as the attenuation is reduced the center of the
circle moves to higher resistance (Gc) and the radius (R) increases.

Improved Approximate Equation

When making the translation of the approximate equal damping cantours in
the impedance plane, certain restrictions are set upon the equations.

(1) As the maximum possible attenuation is approached the contour radius
must approach zero.

(2) At very low attenuations the results should approach equation (1) which
is krnown to be valid for low attenuations,

(3) The contour radius must always be less than the resistance ordinate of
the circle center (negative 6's not allowed).

A simple system of equations which satisfies the above restrictions is

ocaom+Fy (6)
6y

R = -2 + Fy (7
l+y



where Om is the optimum resistance and where

F~—87L/D
AdB_ (1 + Mg)?

(8)

and

AdB

y=—"-1 (9)
AdB

with the subscript m on AdBm implying the maximum possible attenuation for
the given conditions., Equations (6) to (9) can then be used in

(0= 0)% +(x - xp)? = &2 (10)

to provide a reasonable estimate to the exact calculations. The above results
were obtained by fitting 6, and ® to the results obiained from figures 4 and 5
of reference 3 with the Mach number correction determined from reference 5.
Note that a plane wave incident upon a soft walled section may produce several
modes in the suppressor. The energy balance between, and the effect upon over-
all sound attenuation of, these modes depend upon the frequency, duct size (L and
D), and the wall impedance. These approximate expressions (egs. (6) to (10)) do
not precisely fit the exact calculations over the wide range of conditions considered
because of the presence of the several modes, In a later section a more precise
expression which is very adequate for single modes will be developed. The be-
havior of multimodal distributions may then be approximated by repeated use of
the single mode equations for several different modes. However, much informa-
tion has been gained by the use of the cruder expressions given above and the de-
velopment will proceed with these expressions.

Returning to equations (6) to (10), it is interesting to look at their limits.
Note that as AdB —~ AdBm, then y—~ 0, .~ 6 and R~ 0 as required. Also

ml
as AdB—~0, yw~ AdBm/AdB and

AdB(1 + Mo)2
thus
g - 8.7 L/D (12)
¢ 2
AdB(1 + Moﬁ

Dt i



q-_87L/D (13)
AdB( + M0)2
and equation (10) becomes
2 2
6. 8.7 L/D “(x - xm)z o 8.7 L/D (14)
AdB(1 + Mp)® AdB(1 + M)?

which is like equation (2) (when M, = 0) except for the Xm term, Thus the re-
sult for very small attenuation is like Morse's approximate expression except for
the slight shift in reactance.

Notice that all that is now required to cc mpletely specify the damping
contours throughout the wall impedance plane (using eqs. (6) to (10)) is the opti-
mum resistance (Om) and reactance (xm) and the maximum possible attenuation
(AdBm). Thus off-optimum liner performance can be estimated using only the
optimum properties and the liner impedance behavior. These optimum properties
will be specified in a later section,

The inverse problem is often of interest: given the resistance and reactance
of an acoustic liner, what is the damping? Equations (6), (7), and (10) can be
combined to give

9
02-28(6m+F-y)+(x-xn)2 - omﬂ—“-z-ﬂ +2F'y]=0 (15)
t (1+7) (1 +y)

If the damping ratio is defined as

AdB
B=——t=y+1 (18)

AdB

then equation (15) is

02 - 200 - 20F(B - 1) + (x - xm)z vo Emﬁ%l +2F B- 1] =0 (17)

Note tha" to solve for attenuation (AdB), 8 must first be determined from equa-
tion (17) which is cubic in 5. Istead of using a closed form (but complicated)
cubic equation technique, a procedure taking increments in 8 was used (starting
with 8 = 1) until equation (17) was satisfied. Approximate solutions to equation
(16) or (17) can also be derived for small y or large B, respectively. For
example, wher B is large,
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2 2
9% - 266 +20F +26_F + (x - X..)
20F
or
AdB 17.4 6(L/D) (19)

Eaz - 200 +26F +20_F +(x - xm)z:)(l + Mg)?

which provides a considerable improvement over equation (1).

INPUTS REQUIRED FOR THE APPROXIMATE ATTENUATION EQUATION

In this section the inputs required for the approximate attenuation equations
will be presented. These are intended mainly for the single mode equations de-
veloped later in the paper. For the simpler equations of the previous section
(plane wave) the inputs will be developed as they are used in the next section,

Inspection of equations (8), (16), and (17) shows that M, L, D, AdBm,
Oy and Xq must be specified before the approximate equations can be used
to caloulate AdB. Also the frequency is necessary to determine the frequency
parameter

n=10 (20)
Cc

since AdBm, 0 and Xy are functions of 7, M,, L, D, and n will be
quite easily determined since they will be dictated by the mass flow, size, and
frequency of the noise source and the allowable duct length, The results which
follow have been determined by empirical correlations of the optimum resis-
tance, reactance, and eigenvalues obtaired from exact but tedious calculations
involving single mode solutions with lobe number from 1 to 20 and up to the
tenth radial mode. The eigenvalues will be used to calculate maximum possible
attenuation (AdBm). Circular ducts without centerbedies are considered here.
The optimum resistance and reactance are determined from (ref. 5)

6, = ByQ@°n (21)

Xm = B, Q% (22)

where



Q=1 +iM(o +ir) (23)
. 2\ [ a 2
IMO +1 - (1 - MO) (—-—\
¢ +ir = i/ (24)
1- M2

with ¢ and r representing the damping and propagation coefficients of the mode
(part of the complex wave number) and the eigenvalue is

a = Rel? (25)

The optimum resistance and reactance coefficients (B, and Bx) will be pre-
sented below. Double subscripts (indicating specific modes) have been left off
for brevity .on Om, Xm? By, BX' Q, o, 7, and «) but it must be recognized that
we are considering a particular mode in the correlations given here. For in-
stance, a@ should really be considered as A B where m is the circumferen-
tial mode number and p is the radial mode number. Using this more complete
notation, the eigenvalue correlations can be expressed as

Ry, SRy - e +0.076 myj - 1 (26)
~u-1)
O ™ O, 12V @n
where
R ,%m+2.247 ml/3 41,521 m™1/3 28)
1
and
m +2)0-8

Equation (26) is good for m#0. If m=0, use R, , = 3.278. The resistance
and reactance coefficients can be -stimated from, )
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<1 ,0.78 m2/3
# ———————
3/4
3/
B, ~ 0.92 (31)

pp +3.17 m2/3)

Note that equations (26) to (31) are valid only at the optimum impedance which is
the only input point needed for the approximate attenuation equations. Finally
the maximum possible attenuation is calculated from

AdB_ =17.4 mpm(L/D) (32)

where again attenuation being understood, the minus sign has been dropped and
the subscript on sigma cignifies maximum possible attenuation coefficient.

If equations (25) to (29) are used with u = 1 to define the eignevalue, and
equation (24) is used to calculate the damping coefficient (om), then equation (32)
will provide an approximate reproduction of figure 5 in reference 5 for the damp-
ing of the least attenuated spinning mode,

A correction may be required for the optimum resistance and reactance in
inlets if the boundary layer thickness is cignificant. This carrection is corre-
lated in reference 6 for well vut-on modes. By well cut-on it is implied that

1- M3) (ﬁ) <1 (33)

For modes that are approaching cut-off, a boundary layer refraction correlation
has not yet been developed. However as cut-u.. is approached, the wave fronts
travel more transverse to the velocity gradients and the refraction effects should
be reduced.

The correlations given in this saction are mainly intended to be used with
the improved singie mode approximate attenuaticn expressions developed later
in this paper. In the next gection where plane wave inputs are considered, even
more simplified approximations will be used.
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SAMPLE CALCULATION - PEAK ATTENUATION AND BANDWIGTH
Ilustrative Example

Before the calculations for peak attenuation and handwidth are made, it is
instructive to illustrat: the frequency dependent behavior of the equal attenuation
contours and of a typica: liner impedance. Such an illustration is shown in fig-
ure 2 where the atteruation contours are shown for three frequencies each an
octave apart. The properties of the optimum points shown here imply well cut-on
behavior for all three frequencies. These properties evolve from equations (20)
to (22) which show that

6 o« f (34)
o -f (35)

and equat;ons (24) and (32) which show that (see ref, 5)
AdB_ « 1/f (36)

The oytimum points are shown as plus signs; and these, as well as the equal
damp.ng contours, are labeled with their relative attenuations. Superimposed
upon the damping contours are some sample liner resistances and reactances,
These liner impedance loci assume that the resistance (6) is constant with fre-
quency while the reactance of a Helmholtz resonator at low frequencies behaves
as

x & =1/1 (37)

which implies that back cavity stiffnese is controlling the reactance.

First consider the lower resistance locus (open symbols) which pass through
the optimum point at the center frequency. As frequency increaces the liner
impedance moves to the right toward less negative reactance (eq. (37)) while the
optimum point and its related contours move t> the uppe: left toward movre posi-
tive resistance (eq. (34)) and more negative reactance (eq. (3{)). As long as the
reactance is to the left of its associated optimum (remember that each liner im-
pedance point and each contour set have a frequency issociated with them) the
damping {s increasing with frequency as ever higher damping contour3 are being
ocut. When the reactance moves to the right of its associated contour set the
damping will fail off and when x = Xm the peak damping will occur. An example
will {llustrate these points. At = 1/2 fp the far left wa)l impedance point
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(6 =1, x = -2) is associated with the contours centered at the lower right and a
relative damping of 0. 52 dB is obtained. At f= fp, the liner impedance is coin-
cident with the optimum point of the center contour set and a relative damping of
1 dB is obtained. For the far right liner impedance (1, -0,5) at f = zfp use the
contour set centered at the upper left to read 0. 19 dB. In this example three
points have been established in the sound attenuation spectrum. More points
could be similarly determined at other frequencies.

Now if this exercise is repeated at a higher resistance of 6 = 3 shown by
the solid symbols in figure 2 it is seen that the liner impedance never passes
through an optimum impedance point but the relative damping still has a relative
peak at the center frequency where x = Xme Table I reviews the above results
with an intermediate resistance also included.

Note that a modest increase in resistance (6 = 1.6) above the optimum
causes the peak damping to be reduced only moderately while both the high and
low frequencies have improved attenuation, A further increase in resistance
(6 = 3) improves the higher frequency damping but decreases the damping at both
of the other frequencies., Further increases in resistance would result in falloff
of attenuation at all frequencies, The trade-off between peak attenuation and
bandwidth would be determined by the specific application being studied.

An exact calculation using the wave equation and more exact liner proper-
ties would be performing the same ritual as illustrated in figure 2 except that
the significance of the visualization would be lost in the process. A more
sophisticated approach would use many modes at a time meaning that multiple
contour sets would be considered simultaneously,

Equations and Approximations

In this section the peak attenuation and the attenuation bandwidth with a
plaase wave input are determined to provide one illustration of the use of the ap-
proximate attenuation equations. Both quantities are functions mainly of the
ratio of actual resistance to the optimum resistance at the peak attenuation fre-
quency. The starting point is equation (17), which when divided by ofnp, ylelds

2
2 206 - X 6 0.(28-1
(96 ) - zm-ng«s-m‘" Xm +m | ? ’+2f;<ﬁ-u =0 (38)
2 2
m omp omp amp mp OmpB mpB

Recall that 6 is the suppressor resistance, 6 is the optimum resistance which

[PV NN
.
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is a function of frequency, and Om is the optimum resistance at the frequency

of peak attenuation at which y = Xm' In the development which follows (to eq.

(43)), some very simplified interrelationships among the quantities in equation (38)
will be used. The objective is to reduce equation (38) to a form which gives attenu-
ation (through pB) as a function only of a frequency ratio, a resistance ratio, and a

peak frequency parameter. Define the quantity

: =f—f (39)
P

where fp is the frequency at which yx = X From equation (20) and (21)

_m_=ll_=£.=§ (40)
] n f

where it was assumed that Q2 is not a function of frequency, which implies that
either M0 = 0 (then Q = 1), or that the frequencies involved are all above cut-off
leading to Q= 1/(1 + M,) (see ref. 5). Let the reactance be controlled by the
back cavity

xz—coti‘)l)z-—c— 41)

c 27bf

where the second approximation is valid for small arguments o1l the cotangent,
and where b i. the liner backing depth. Also

£ X
x®-—— B - TF (42)
21rbfp f :

where equation (41) was used to define Xmp as y at f= fp. Equations (21)
and (22) yield

B
=--X 0y 1 (43)

where Ba ~ 3Bx is a rough estimate from table I of reference 6 for axisym-
metric wave propagation. Then from equations (40), (42), and (43)

2
- x)® (1-¢2)

2 2
Omp 8¢

(44)

e ..
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If, instead of using the approximation in equation (41), the cotangent had been
retained, the result would be

e 3
(x - Xm)z - -1 §.
62 ~< 1(3> i ' o
mp p tan | tan “[—
L Wp J

An approximation to the maximum possible attenuation results of reference 3
can be expressed as,

AdB
m . 65 (46)
L/D 4\174
(1 +38n )
Finally using equations (8), (21), and (46)
1/4
4.4
1+38n_¢ )
F - ( D @a7)
6mp 7.517p

where B6 ~1 and Qm 1/(1 + Mo) were used, For sufficiently high frequencies
(high n.£)

B Y 4 (48)
emp 3

Inserting equations (40) and (44) into (38) yields,
2
2 Y
(.L) ] 2(.%)5 ] 2<_9_..><_F_.)(,3- T
emp Om emp emp 952

+E em’”w(F)@ﬂ =0  (49)
e Omp) B

Equation (49) along with (47) or (48) (depending upon npg or frequency) can be
used in two ways., “'irst with ¢ = 1 the peak attenuation was calculated through
Bp as a funotion mainly of 6/ 0 The inverse of ﬁp (AdBp/AdBmp) deter-
mined from equation (49) is plotted in figure 3. For liner resistance below the
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optimum resistauce, a single curve is ottained for all frequency parameters
(np) and the result is

__°8 .
AdB = AdBy 5 (6< 0 ) (50)
mp

a conveniently simple expression. Ejuation (49) can be seen to contain the fac-
tor (3 - 6/ Gmp) when ¢ =1, which accounts for this simple relationship.

For liner resistance above the optimum the peak attenuation is seen to be a
weak function of frequency parameier (np). An adequate approximation is,

G
_mp )
AdB, p AdB_ i (0> 6, ) (51)

These two relaticnships, equations (50) and (51), are extremely useful ' rules
of thumb'' in preliminary suppressor design considerations and in interpretation
of acoustic liner data.

Some results of exact calculations obtained from reference 3 are included
on figure 3 for comparison with the approximate results obtained from equa-
tion (49).

The second use of equation (49) was to fix g at some desired level and de-
termine the frequency ratio (¢ = f/fp) at which this attenuation occurred. This
was done to determine the attenuation bandwidth or the frequencies at which
AdB = 1/2 AdBp, for instance, This can be accomplished by the following. Let

AdB=1/2 AdBp (52)

then

5o AdBm _ AdBp AdBum AdB .o AdBm (53)

B
P
AdB AdB Adli’»p AdBmp AdBmp

Use of equation (46) gives,

4\ 1/4
AdBm 1+38n 1
~ P ~ = (for large ngk) (54)
AdBmp 1+ 38174&4 ¢

P

The lower and upper frequencies (fl/fp and fz/fp) for which one-half peak
attenuation occurs were calculated with both representations of the reactance
(eq. (41)). The results are shown in figures 4 and 5 with all of the calculations
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made with the cotangent representation of reactance except for the curves labeled
t'large Tp limit, lumped reactance,'' For large Tp the colangent representa-
tion approaches the lumped reactance result, The breakaway from the ''lumped
reactance'' curve for 6/ Om > 1 in figure 5 occurs where the back cavity half
wave frequency is being approached, the reactance is approaching infinity and
the attenuation is going to zero. In a real liner where a high damping resonator
is used this cannot occur and the use of the lumped reactance curve is probably
more nearly corr:ct for constructing the attenuation spectrum. Some fall off in
attenuation will ke anticipated beyond this half wave point,

Some interesting conclusions can be seen from figures 4 and 5, For liner
resistance below the optimum (8/6 mp < 1) bandwidth remains essentially constant
since fl/fp and f?_‘/fp do not change much. Recall from figure 3 that peak at-
tenuation falls off as resistance is reduced below the optimum. Thus no im-
provement 1n liner performance is gained from underdamping the liner. How-
ever, for high resistance (6/ Omp > 1) although peak attenuation is lost, band-
width is gained since fl/fp is reduced and fz/f is increased, Recall from the
discussion of figure 2 that increasing the resistance above the optimum value to
improve attenuation bandwidth can be pushed too far since at very high resistance
the entire atteuuation spectrum will be reduced as resistance is increased.

Some useful ' rules of thumb'' can also be determined for bandwidth. These
are obtained from observation of the results in figures 4 and 5. For resistances
below the optimum,

fl/fp R fl/fp)opt (55)
£/t fz/fp)opt (56)
For resistance above optimum
0
f o P
U fl/fp)opt (57)
0
£,/ ~— f,/f (58)
2'°p 2'°p
emp )opt

The subscript opt implies the condition when 0 = Om . The following correla-
tions are offered at the optimum resistance for use with equations (55) to (58).
These were obtained by plotting the results at 6/ 6mp =1 from figures 4 and 5

against p:
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1+0.56 32
NP
fl/fp) t z (59)
opt 4 ,1.67%/2
p
1+4,2192
f2/fp) Ne— P (60)

2

ot ;1305 n

Although the sample calculations made here used information about circular
duct optima, the final results (peak attenuation and bandwidth ''rules of thumb'')
would be expected to apply to other geometries as well. For other geometries
only the constants (such as B, Bx, AdBm) in the problem would change. The
key behavior of the approximate attenuation contours would not change. This
behavior includes the unsymmetrical shape of the contour pattern, the movement
of the contours in the impedance plane as frequency changes, and the fall-off in
AdBrn as frequency increases. One precaution must be observed, however, and
that is in the use of equations (59) and (60). The frequency parameter at peak at-
tenuation (np) must be considered relative to the cut-off frequency parameter.
For example when n_ =1, cut-off is approached in the example shown. For
smaller values of 7_, AdBm approaches a constant (losing the 1/f dependence).
For the first radial mode of a 20-lobe spinning pattern in a circular duct, AdB
versus 7n will flatten out below n = 10 (see ref. 5).

The three quantities calculated here (AdBp, fl’ and fz) can be used to obtain
a first approximation to the attenuation spectrum. Log AdB versus logf is
used with straight lines connecting the three points to obtain a reasonable approx-
imation to the attenuation spectrum. Of course, the entire attenuation spectrum
could be calculated from the approximate attenuation equations by using a multi-
tude of frequencies rather than just fl’ fp, and f2.

These simplified notions about peak attenuation and bandwidth have been used
to analyze the attenuation data for inlet suppressors with splitter rings mounted
on full scale fans and engines. These results are reported in reference 9 and
show fairly good agreement between theory and data. Splitter ring suppressors
seem to be relatively insensitive to spinning mode content (ref. 5) and can be
adequately described using the least attenuated radial mode.

IMPROVED SINGLE MODE APPROXIMATE ATTENUATION EQUATION

Due to the form of the approximate attenuation egaations discussed in this
paper, the attenuation is assured of being an accurate representation of the more

B T T USRI
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exact propagation calculations at the extremes of damping. At the optimum irm-
pedance the attenuation will become the maximum possible and far from the opti-
mum impedance the attenuation will approach zero. Between these extremes a
good fit to exact calculations was obtained by the empiricism inserted in the ap-
proximate equations. As discussed previously, a plane wave input to a soft
walled duct leads to a multimodal solution in the soft duct. The balance among
the modes in determining the overall attenuation depends upon the wall imped-
ance, the frequency and the liner geometry. A good fit of the approximate equa-
tions to the exact calculations cannot be made over all conditions. A better ap-
proach is to use approximate equations for each mode and to build up the total
solution from the component parts, An improved single mode solution to pro-
vide the basis for such an approach will now be developed.

The resistance coordinate for the circular contour center was not altered,

6= 0m +Fy=0_+F@-1) (6)

but the radius has been changed to,

2 2
6_y B -1
R = m +Fy= )

(y +1)(y +2) BB +1)

+F(@B-1) (61)

In addition, the reactanca coordinate for the center of the constant attenuation
contours can bhe represented as,

X X
Xg = — =L (62)
y+1 B

The definition of F has not been altered and is repeated as,

Fe—87L/D
AdB_(1 + M0)2

(8)
Technically the definition of F should have been altered since the solution for

nearly hard walls results in,

8.7 a2 L/D

AdB(1 + My? (ai - mz)

Gc and | - (83)
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Where m is the spinning pattern lobe number and «_, !s the mode eigenvalue

for hard walls. Empirically this refinement (using ai/ (o:a‘?o - m2)) was found to
be unnecessary in any reasonable vicinity of the optimum impedance (attenuations
down to 1/50 of the maximum possible) and this term was omitted from the de-
velopment. For extremely low damping equation (63) might be used with equa-
tion (10) (with X = 0) if desired.

Use of equations (6), (61), and (62) in equation (10) (with x c replacing Xm
in eq. (10)) yields,

2 P Xm)?
0% - 2010 +F@-1) +(x- -2
fm ™ 5C )J < B)

2
0 (38-1)|6_(28°-p+1
 Om(38 ){mus B4Y ey 0 68
BB+1) | BB+ N

il

For circular ducts, the inputs (Om, X AdBm) can be calculated from the
results given in a previous section (INPUTS REQUIRED FOR THE APPROXIMATE
ATTENUATION EQUATION) and the attenuation (through p) can then be calculated
at any resistance (6) and reactance (x) using equation (64). This equation is now
seen to be of fifth power in 8 and a stepping or iteration approach must be used.
Usually the 8 denominator of Xy can be omitted without much loss of accuracy.

The equal attenuation contours (expressed for convenience by the .attenuation
coefficient o rather than AdB, see eq. (32) for relationship) of the improved
single mode approximate equation are compared to the exact calculations for a
seven lobe spinning wave in figures 6 and 7, Figure 6 illustrates the first radial
while figure 7 is for the fifth radial mode. The agreement between the approxi-
mate and exact calculations is seen to be quite good in both cases. The first
radial mode would be considered well cut-on while the fifth radial is approaching
cut-off (the left hand side of eq. (33) is =~0.46 which is not much less than 1).
The rotation of equal attenuation contours which occurs in the wall impedance
plane due to Qz in equations (21) and (22) has been accounted for and the entire
contour pattern rotates with the optimum point. The exact equal damping con-
tours of figures 6 and 7 were calculated as in reference 6 using a fairly thin
boundary layer. Note the exact contours are tear-drop shaped for the higher at-~
tenuations but rapidly approach circular shape as the damping of the contours is
reduced. The shift of the equal contour centers toward higher resistance as
damping dacreases is much more obvious in figures 6 and 7 than in figure 1.
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CONCLUDING REMARKS

Many equal damping contour plots have been investigated beyond the three
that have been presented in this paper. These include a wide range of spinning
lobe numbers and radial mode numbers, both with and without steady flow bound-
ary layers. All of these plots seem to have the bchavior described in this paper.
The contours are nearly circular with the centers of these circles moving to
higher resistance as the attenuation of the contour is reduced.

With the contour properties and Morse's approximate equation as guides,
the spproximate attenuation equations were developed, Two versions of the
approximate equations were presented. The first version has some contour
broadening due to the multimodal nature of the exact solution to which it was fit.
The second version, which is the favored version for future use, was generated
to fit single moaes only, As a result this version is a more accurate represen-
tation of more exact calculation procedures.

Although the approximate attenuation equation was presented only as an
alternate to more time consuming exact calculation procedures, sucin approxi-
mate solutions may represent the most sensible approach for acoustic liner
design, Due to the unknowm nature of the modal input to be used and the possible
errors in physically obtaining the desired (analytical) value of wall acoustic im-
pedance, it is possible that exact wave equation solutions are not justified.

Using the approximate attenuation equation the following '' rules of thumb''
were observed.

1. For liner resistance above the optimum, the peak attenuation is inversely
proportional to resistance and t.e attenuation bandwidth increases with resistance.

2, For liner resistance below the optimum, the peak attenuation is reduced
proportionally with the resistance but the attenuation bandwidth remains constant,
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TABLE 1. - RELATIVE DAMPING WITH

RESISTANCE AND FREQUENCY

] 1/2 fp fp zfp
1 0.52 1 0.19
1.6 .61 .82 .27
3 .51 .57 .35
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